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Chapter 1. Introduction

The triangulation is a basic geometric notion. It is fundamental in prob-

lems arising in computer graphics, physical simulation, and geographical in-

formation systems. Most applications demand not just any triangulation, but

rather one with triangles satisfying certain shape and size criteria. It is gener-

ally true that large angles are undesirable, and a bound of π/2 on the largest

angles has special importance.

A triangulation of a two-dimensional space means a collection of (full)

triangles covering the space, such that the intersection of any two triangles is

either empty or consists of a vertex or of an edge. A triangle is called geodesic

if all its edges are segments, i.e., shortest paths between the corresponding

vertices. We are interested only in geodesic triangulations, all the members of

which are, by definition, geodesic triangles. An acute (non-obtuse) triangula-

tion is a triangulation whose triangles have all their angles less (not larger)

than π
2
.

The discussion of non-obtuse and acute triangulations has one of its origins

in a problem of Stover reported in 1960 by Gardner in his Mathematical Games

section of the Scientific American (see [20], [21]). There the question was raised

whether a triangle with one obtuse angle can be cut into smaller triangles, all

of them acute. Another, even earlier, interest in non-obtuse triangulations

stems from the discretization of partial differential equations [33].

In 1960 Burago and Zalgaller [11] deeply investigated acute triangulations

of polygonal complexes. However, their proofs cannot be used to obtain a

good estimate of the actual number of triangles in it. What can be said about

the size, i.e., the number of triangles, of an acute triangulation of a given

7



8 Chapter 1. Introduction

polygon? In the same year, Burago and Zalgaller [11] and, independently,

Manheimer [37] considered the case of obtuse triangles. In 1980 Cassidy and

Lord [12] discussed the acute triangulations of squares and in 2000, Hangan,

Itoh and Zamfirescu [25] considered the case of rectangles. In 2001 Maehara

[34] investigated the acute triangulations of all quadrilaterals (convex or not).

In Chapter 2, we discuss the acute triangulations of trapezoids and in Chapter

3 those of pentagons.

On the other hand, several heuristic methods have been developed to

compute non-obtuse triangulations of polygons [3, 4, 6, 7, 38, 41]. In 1995

Bern, Mitchell and Ruppert [10] gave an algorithm for triangulating n-gons into

O(n) non-obtuse triangles. In 2002 Maehara [35] provided acute triangulations

for any polygon on the basis of the existence of a non-obtuse triangulation.

He gave the upper bound 2 · 65N for the number of triangles in the acute

triangulation, where N denotes the number of triangles in the existing non-

obtuse triangulation. In Chapter 4, we consider the acute triangulations of n-

gons in an entirely different way, and improve Maehara’s upper bound to 22N .

In addition, we obtain an upper bound for the size of the acute triangulations

of n-gons depending on n.

At the same time, compact convex surfaces have also been triangulated.

In 2000 Hangan, Itoh and Zamfirescu started the investigation of acute trian-

gulations of all platonic surfaces, which are the surfaces of the five well-known

Platonic solids [25, 26, 27]. But the case of arbitrary convex surfaces is very

difficult, and even the case of doubly covered convex sets is still difficult. In

2004 C. Zamfirescu considered the acute triangulation of the doubly covered

triangles [52]. In Chapter 5, we continue this line of research and investigate

the acute triangulations of doubly covered quadrilaterals, doubly covered pen-

tagons and doubly covered convex sets. Moreover, the acute triangulations
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of several well-known surfaces, such as flat tori and Möbius strips, are also

considered in Chapter 5.

The finite elements method requires triangles having not too small and

not too large angles, that is all angles are (uniformly) bounded away from 0

and π. Also, there is a new task to provide both acute triangles and a positive

lower bound on the angles. In Chapter 6 we consider in the case of rectangles

acute triangulations whose angles are bounded away from 0.
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Chapter 2. Acute Triangulations of Convex

Quadrilaterals

§2.1 Introduction

What can be said about the size, cardT of an acute triangulation T
of a given polygon? In 1960, Burago and Zalgaller [11] and, independently,

Manheimer [37] proved that every obtuse triangle can be triangulated into 7

acute triangles, and 7 is the minimum number. In 1980, Cassidy and Lord [12]

showed that every square can be triangulated into 8 acute triangles, and 8 is

the minimum number. In 2000, Hangan, Itoh and Zamfirescu [25] extended

this result to any rectangle.

Now, for a polygon Γ, let f(Γ) denote the minimum size of an acute

triangulation of Γ, and let f(n) denote the maximum value of f(Γ) for all

n-gons Γ. Thus f(3) = 7. In 2001, Maehara [34] proved that f(4) = 10.

Since the example used to prove that f(4) ≥ 10 is a non-convex quadrilateral,

Maehara [34] asked whether f(Γ4) ≤ 8 holds for every convex quadrilateral.

We prove this here for the case of trapezoids.

§2.2 Preliminaries

A polygon Γ is a planar set homeomorphic to the compact disc, having

as boundary bdΓ a finite union of line-segments.

Let T be an acute triangulation of a polygon Γ. A vertex P of T is called

a corner vertex if P is a vertex of bdΓ;

11



12 Chapter 2. Acute Triangulations of Convex Quadrilaterals

a side vertex if P lies on bdΓ but is not a corner vertex;

an interior vertex otherwise.

We can regard T as a plane graph, that is, a planar graph embedded in

the plane. Clearly, a side vertex has degree at least 4 and an interior vertex

has degree at least 5.

We will make repeated use of the obvious

Proposition 2.2.1. If ABC is an acute triangle and A′ lies in a sufficiently

small neighbourhood of A, then the triangle A′BC is acute too.

The following result of Maehara will also be used.

Proposition 2.2.2. ([34]) Let ABC be a triangle with acute angles at B and

C, and let P ∈relintAC. If the angle at A is acute (non-acute), then there is

an acute triangulation T of ABC with size 4 (7) such that P is the only side

vertex on AC.

By |s| we denote the length of the segment s and by AB the line passing

through A and B.

§2.3 Acute Triangulations of Trapezoids

A trapezoid is a quadrilateral two sides of which are parallel.

Theorem 2.3.1. Let T4 be the family of all trapezoids; then f(T4) = 8.

Proof. By [25], any acute triangulation of a rectangle has size at least 8, whence

f(T4) ≥ 8. Now we’ll prove that f(T4) ≤ 8.
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Let ABCD be a trapezoid with AD ‖ BC. If ABCD is a rectangle,

then f(ABCD) ≤ 8. If ABCD is not a rectangle but a a parallelogram, then

it is easy to see that f(ABCD) ≤ 4. Now we may assume that ABCD is

a trapezoid with |AD| = a < |BC| and an acute corner B. Let E be the

orthogonal projection of A on the line BC and suppose that |AE| = h.

Case 1. ∠C < π
2
.

A

B C

D

F

H

E

Figure 2.1 ∠C < π
2

Let F be the orthogonal projection of D on the line BC. Clearly, {E, F} ⊆
relintBC. Now let H ∈ relintAD be a point closed to A such that the triangle

HEF is acute. Then segments AE, EH, HF and FD divide ABCD into

5 non-obtuse triangles, as shown in Figure 2.1. Now we slightly slide E in

direction
−−→
BC and F in direction

−−→
CB such that all the triangles become acute.

Case 2. ∠C = π
2
.

A

B C

D
M

N

E

Figure 2.2 ∠C = π
2
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Then E ∈ relintBC. For any point N ∈ AE, let M be the point on AB

such that MN ⊥ AE. Now we choose N close to A enough such that N lies

out the circle with diameter CD and M lies out the circle with diameter BE.

Then the trapezoid ABCD admits a non-obtuse triangulation with size 6, as

shown in Figure 2.2. Now we slightly slide N in direction
−−→
AD and then we

obtain an acute triangulation of ABCD with size 6.

Case 3. ∠C > π
2
.

Subcase 3.1. E ∈ relintBC.

Let F be the orthogonal projection of C on the line AD; then C ∈
relintAD since E ∈ relintBC. We slightly slide E in direction

−−→
BE and F

in direction
−−→
DF , and obtain an acute triangulation of ABCD with size 4.

Subcase 3.2. E = C.

A

B C

D

M
NP

G

Figure 2.3 ∠C > π
2
, E = C

Let M be the orthogonal projection of C on side AB. Let N ∈ CD

such that MN ‖ BC and denote MN ∩ AC by P . Let G be the orthogonal

projection of N on the line AD. Then the line-segments PA, PM , PC,PN ,

PG, MC and NG divide the trapezoid ABCD into 7 non-obtuse triangles, as

shown in Figure 2.3. Let H be the midpoint of CN . Now we slightly slide P

towards the side AD in the direction perpendicular to PH such that PMC,

PCN , PNG and APG become acute, and ∠APM + ∠MPC becomes less

than π. Finally, we can slide M in direction
−→
BA and G in direction

−−→
DA such
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that all the triangles become acute.

Subcase 3.3. E ∩BC = ∅.

H

A

B C

D

M
N

Figure 2.4 ∠C > π
2
, E ∩BC = ∅

Let M be the orthogonal projection of C on the side AB. Let N ∈ CD

with AN ‖ MC. Then the line-segments AN , MN and CM divide ABCD

into 4 triangles, as shown in Figure 2.4. Firstly, we slightly slide M in direction
−−→
BM and N in direction

−−→
DN such that ANM and BMD become acute. Let

H be a point on MC such that ∠NHC = π
2
. Clearly H ∈ relintCM . By

Proposition 2.2.2, there is an acute triangulation of acute triangle BMC with

size 4 such that H is the only side vertex lying on MC. After slightly sliding

H in direction
−−→
NH, we obtain an acute triangulation of ABCD with size 8.

¤
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Chapter 3. Acute Triangulations of

Pentagons

In this chapter we discuss the acute triangulations of pentagons. In §3.1,

we present some preparatory propositions. In §3.2, we prove the main result

of this chapter, saying that every pentagon can be triangulated into at most

54 acute triangles.

§3.1 Preliminaries

The following results obtained by Maehara [34] will be very useful.

Proposition 3.1.1. ([34]) Let ABCD be a convex quadrilateral. If ∠B < π
2

and ∠D ≥ π
2
, then there is an acute triangulation T of ABCD of size at most

9 such that there is no side vertex in CD∪DA, B has degree 2, and each other

vertex of T has degree at least 3.

Proposition 3.1.2. ([34]) Every quadrilateral admits an acute triangulation

of size not larger than 10 with at most two side vertices on each side. Further-

more, there are at most 2 vertices with degree 2, and they are not adjacent.

The following results will also be used.

Proposition 3.1.3. Let ABC be a triangle with ∠B < π
2

and let M , N ∈
relintAC. Then ABC admits a non-obtuse triangulation of size at most 11,

with M , N as the only side vertices on AC, so that the angles at all vertices

different from M and N are acute.

17



18 Chapter 3. Acute Triangulations of Pentagons

A

B C

N

M

N1

Figure 3.1 A non-obtuse triangulation of ABC with two points in relintAC

Proof. Consider N1 ∈ AB∪BC with N1N⊥AC. We may assume without loss

of generality that ∠C < π
2
, M ∈ relintAN and N1 ∈ relintBC, as shown in Fig-

ure 3.1. By Proposition 3.1.1, the quadrilateral ABN1M can be triangulated

into at most 9 acute triangles with no new vertex introduced on AM ∪MN1.

Hence ABC admits a non-obtuse triangulation of size at most 11, with M , N

as the only side vertices on AC. ¤

A point P ∈ Γ and an edge XY of Γ are said to be facing each other in

Γ, if the points P , X, Y are the vertices of a non-degenerate triangle contained

in Γ and ∠PXY , ∠PY X are both not greater than π
2
. A point P ∈intΓ is

called a pivot of Γ if all edges of Γ are facing P in Γ.

The following result refines Proposition 1 in [35]; the similar proof is

omitted.

Proposition 3.1.4. If a convex polygon Γ has a pivot P ∈intΓ, then it admits

an acute triangulation in which the vertices newly introduced on the edges

facing P are the orthogonal projections of P . Furthermore, if Γ has n vertices,

m non-obtuse angles and r edges such that the orthogonal projection of P on

each of them is one of its endpoints, then the number of triangles in this acute

triangulation is at most 4n + 2m− r.
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§3.2 Acute Triangulations of Pentagons

Theorem 3.2.1. Every pentagon can be triangulated into at most 54 acute

triangles.

In order to prove Theorem 3.2.1, we first present some lemmas.

Lemma 3.2.2. Every pentagon with at least one acute angle can be triangu-

lated into at most 21 acute triangles. Furthermore, there are at most 2 vertex

with degree 2.

Proof. Let Γ = ABCDE. We may assume without loss of generality that ∠B

is acute. By Proposition 3.1.2, ACDE admits an acute triangulation T with

cardT ≤ 10 such that there are at most 2 side vertices on AC.

Case 1. There is no side vertex on AC.

Then we assume that ACM is the acute triangle in T which contains AC.

Let H be the orthogonal projection of M on AC. By Proposition 2.2.2, ABC

can be triangulated into at most 7 acute triangles with H as the only side

vertex on AC. Then we can slightly slide H in direction
−−→
MH such that both

triangles MAH and MCH become acute, and obtain an acute triangulation

of Γ whose size is at most 18.

Case 2. There is precisely one side vertex on AC.

Then, by Proposition 2.2.2, Γ can be triangulated into at most 17 acute

triangles.

Case 3. There are exactly two side vertices on AC.

We may assume that M , N are the two side vertices on AC. Use Propo-

sition 3.1.3 to triangulate Γ into at most 21 non-obtuse triangles. Finally we
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can slightly slide M , N away from ABC in direction perpendicular to AC such

that all the triangles become acute.

Also, by Proposition 3.1.2, it is easy to see that there are at most 2 vertex

with degree 2. ¤

Lemma 3.2.3. Let ABE be a triangle with AH⊥BE (H ∈relintBE). Then

for any two points S ∈relintBH and T ∈relintHE, ABE can be triangulated

into at most 22 non-obtuse triangles such that the only side vertices on BE

are S, H and T , and the angles at all vertices different from S, H and T are

acute.

Proof. Consider S ′ ∈ relintAB, T ′ ∈ relintAE with S ′S ⊥ BE, T ′T ⊥ BE.

B E

A

H T

T ′

(a) (b)

S

S ′

B E

A

H T

T ′

P

S

S ′
H ′

H ′

Figure 3.2 Three side vertices on BE

Case 1. S ′T ′ ‖ BE.

Let H ′ = S ′T ′∩AH. Then ABE can be triangulated into 8 right triangles

as shown in Figure 3.2(a). Now we can slightly slide H ′ in direction
−−→
AH ′ such

that AS ′H ′, S ′SH ′, AH ′T ′, H ′TT ′ become acute.

Case 2. S ′T ′ ∦ BE.

We may assume without loss of generality that |S ′S| < |T ′T |. Let S ′P ‖
BE, as shown in Figure 3.2(b), then P is a pivot of AHE. By Proposition

3.1.4, AHE can be triangulated into at most 18 acute triangles and therefore
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ABE can be triangulated into 22 non-obtuse triangles such that the only side

vertices on BE are S, H and T . Finally we can slightly slide H ′ in direction
−−→
AH ′ such that only S ′BS and H ′SH are right triangles. ¤

Lemma 3.2.4. Let ABE be a triangle with AH⊥BE (H ∈relintBE). Then

for any three points S1, S2 ∈relintBH and T ∈relintHE, ABE can be triangu-

lated into at most 42 non-obtuse triangles such that the only side vertices on

BE are S1, S2, H and T , and the angles at all vertices different from S1, H

and T are acute.

B E

A

H T

T ′

(a) (b)

(c)

S1

S1
′

B E

A

H T

T ′

P2

S1

H ′
H ′

B E

A

H T

T ′

S1
′

H ′P1

S2

P

S2
′

S2
′

P1

S2

S1

S1
′

S2

S2
′

P2
O

Figure 3.3 Four side vertices on BE

Proof. Consider S1
′, S2

′ ∈ relintAB, T ′ ∈ relintAE with S1
′S1⊥BE, S2

′S2⊥BE,

T ′T⊥BE.

Case 1. |S1
′S1| < |T ′T |.

Let S1
′P2 ‖ BE, as shown in Figure 3.3 (a). Then P1 (resp. P2) is a pivot

of AS1
′S1H (resp. AHE). By Proposition 3.1.4, AS1

′S1H (resp. AHE) can

be triangulated into at most 21 (resp. 18) acute triangles and therefore ABE
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admits a non-obtuse triangulation with size at most 40, where only S1
′BS1 is

a right triangle.

Case 2. |S1S1
′| = |TT ′|.

See Figure 3.3 (b). P is a pivot of AS1
′S1H and therefore ABE can be

triangulated into at most 26 non-obtuse triangles. Now we can slightly slide H ′

in direction
−−→
AH ′ such that only S1

′BS1, H ′HT and T ′TE are right triangles.

Case 3. |S1S1
′| > |TT ′|.

Let P1T
′ ‖ BE, S2

′P2⊥AH, as shown in Figure 3.3 (c), then P1 (resp. P2)

is a pivot of S2
′BS2 (resp. AS2

′OT ′) and therefore ABE admits a non-obtuse

triangulation with size at most 42. Finally we can slightly slide H ′ in direction
−−→
AH ′ such that only H ′S2H, H ′HT and T ′TE are right triangles. ¤

Lemma 3.2.5. Every pentagon without any acute angle can be triangulated

into at most 54 acute triangles.

Proof. If the pentagon Γ has no acute angle, then it must be convex. Let

Γ = ABCDE be such a convex pentagon; we may assume without loss of

generality that BE is the longest diagonal, which implies that ∠EBC < π
2
,

∠BED < π
2
. Let AH⊥BE with H ∈ BE.

Case 1. Both ∠BCH and ∠EDH are less than π
2
.

We may assume without loss of generality that ∠EHD < π
2
. ∠BCH < π

2

implies that BCDH can be triangulated into at most 10 acute triangles such

that there is only one side vertex on BH. If there is no side vertex on DH, then

let DT⊥HE, as shown in Figure 3.4 (a). We use Lemma 3.2.3 to triangulate

Γ into at most 34 non-obtuse triangles. If there is a vertex on DH, then by

Proposition 2.2.2 HDE can be triangulated into 4 acute triangles such that

there is exactly one new vertex introduced on HE. Therefore we can trian-
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A

B

C D

E
H

A

B

C D

E
H

(a) (b)

S T S T

Figure 3.4 Both ∠BCH and ∠EDH are less than π
2

gulate Γ into at most 36 non-obtuse triangles. Finally, in both triangulations

we slightly slide H in direction
−−→
AH at first and then slightly slide S, T in

direction
−→
BS,

−→
ET respectively, and obtain the desired acute triangulations.

Case 2. Both ∠BCH and ∠EDH are not less than π
2
.

A

B

C D

E
H

(a)

A

B

C D

E
HM N

H ′

(b)

S T

Figure 3.5 Both ∠BCH and ∠EDH are not less than π
2

If ∠CHD < π
2
, then CHD is an acute triangle. Let CS⊥BH, DT⊥HE,

as shown in Figure 3.5 (a). We use Lemma 3.2.3 to triangulate Γ into at most

27 non-obtuse triangles, which can be converted into acute triangles by the

similar sliding used in Case 1.

If ∠CHD ≥ π
2
, then the extending line of AH must intersect the relative

interior of CD at a point H ′, as shown in Figure 3.5 (b). Since ∠HCH ′ < π
2

and ∠BCH ′ > π
2
, there is a point M ∈ relintBH such that ∠MCH ′ = π

2
.
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Similarly, there is a point N ∈relintHE such that ∠NDH ′ = π
2
. Thus M is a

pivot of ABCH ′ and N is a pivot of AH ′DE. By Proposition 3.1.4, ABCDE

can be triangulated into at most 38 acute triangles.

Case 3. One of ∠BCH and ∠EDH is less than π
2

while the other is not.

We may assume without loss of generality that ∠EDH < π
2
, ∠BCH ≥ π

2
.

A

B

C D

E
H

(a)

E

D

A

B

C
(b)

H

T

N

N

T
S S1 S2

Figure 3.6 ∠EDH < π
2
, ∠BCH ≥ π

2
.

If ∠HDC is acute, then let CS⊥BH, HN⊥CD, as shown in Figure 3.6

(a). By Proposition 3.1.1 we know that HNDE can be triangulated into at

most 9 acute triangles such that there is exactly one new vertex introduced on

HE. Now we slightly slide N in direction
−−→
CD such that HCN becomes acute.

We use Lemma 3.2.3 to triangulate Γ into at most 34 non-obtuse triangles,

and all of them can be converted into acute by properly sliding of H, S and

T .

If ∠HDC ≥ π
2
, then by Proposition 3.1.1, the quadrilateral BCDH can

be triangulated into at most 9 acute triangles such that there is no new vertex

introduced on DH while there are exactly two new vertices introduced on BH,

as shown in Figure 3.6 (b). Let HN⊥DE and slightly slide N in direction
−−→
DE such that HDN becomes acute. Let NT⊥HE. We use Lemma 3.2.4 to
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triangulate Γ into at most 54 non-obtuse triangles. Now we slightly slide H

in direction
−−→
AH at first and then slightly slide S1, T in direction

−−→
BS1,

−→
ET

respectively, and obtain an acute triangulation of Γ. ¤

Proof of Theorem 3.2.1.

Combine Lemma 3.2.2 and Lemma 3.2.5. ¤
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Chapter 4. Acute Triangulations of

Polygons

§4.1 Introduction

Since the wide applications in computer graphics, physical simulation,

and geographical information systems, several heuristic methods have been

developed to compute non-obtuse triangulations of polygons [4, 41]. In 1988,

Baker, Grosse, and Rafferty [3] gave the first provably correct algorithm. In

1992, Melissaratos and Souvaine presented another algorithm of this type. In

the same year, Bern and Eppstein [7] devised a nonobtuse triangulation algo-

rithm using O(n2) triangles, where n is the number of vertices of the input

domain. This result demonstrates a fundamental complexity separation be-

tween bounding large angles and bounding small angles. In the same year,

Bern, Dobkin and Eppstein [6] improved this bound to O(n1.85) for convex

polygons. In 1995, Bern, Mitchell and Ruppert [10] gave an algorithm for tri-

angulating n-gons into O(n) non-obtuse triangles. Later on, in 2002, Maehara

[35] proved that every n-gon can be triangulated into at most 2 · 65N acute

triangles, where N denotes the number of triangles in the existing non-obtuse

triangulation.

In this chapter [48] we discuss the acute triangulations of any polygons.

In Section §4.2, we present some preparatory propositions. In Section §4.3, we

describe another way to acutely triangulate a polygon based on the existence of

a non-obtuse triangulation. We obtain the upper bound 22N for the number

of triangles in the acute triangulation. In Section §4.4, we find a concrete

upper bound for the size of a non-obtuse triangulation of an n-gon, obtaining

27
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N ≤ 106n − 216 on the basis of the method used in [10]. This implies that

every n-gon can be triangulated into at most 22 · (106n− 216) acute triangles.

§4.2 Preliminaries

We shall make use of the following special triangulation of the rectangle.

Proposition 4.2.1. Every rectangle can be triangulated into 14 acute triangles

such that the side-vertices are precisely the 4 mid-points of the sides.

A

B C

D

E G

H

F

A1

B1 C1

D1

O

Figure 4.1 An acute triangulation of the rectangle

Proof. Let ABCD be a rectangle with center O and let E, F , G, H be the

midpoints of AB, BC, CD, DA respectively. Let B1 be a point lying on OB

which is very close to O, and let A1, C1, D1 be the symmetric points of B1

respecting to OE, OF , O respectively. If B1 is close to O enough, then all

the triangles except for A1B1D1 and B1C1D1 in Figure 4.1 are acute. Now we

slightly slide A1 in direction
−→
OA and C1 in direction

−→
OC such that A1B1D1

and B1C1D1 become acute. Thus we obtain an acute triangulation of ABCD
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with size 14 such that there is precisely one new vertex introduced on each

side, and the new vertex is exactly the midpoint of the side. ¤

For the sake of convenience, we call this acute triangulation (described in

Proposition 4.2.1) a basic triangulation of the rectangle.

Let T = ABC be a triangle and M , N , P be the midpoints of AB, BC,

CA respectively. Then MN , NP , MP divide ABC into 4 congruent triangles

which are similar to T . We call such a triangulation an elementary subdivision

of T .

§4.3 Acute Triangulations of Polygons

In a triangulation, two triangles sharing a common edge will be called

adjacent. Let Γ be a polygon and T a non-obtuse triangulation of Γ. We

describe now a new way of transforming T into an acute triangulation of Γ.

Step 1. Subdivide T to T1.

Rule 1.1: Any acute triangle in T will be divided into 4 acute triangles

by an elementary subdivision.

-

A

B C N

A

B
C

M
P

F

R

e

Figure 4.2 The division of a right triangle
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Rule 1.2: Any right triangle in T will be divided into a rectangle and

two right triangles as shown in Figure 4.2, where the point on each side is its

midpoint.

Then we obtain a face-to-face tiling T1 of Γ which consists of acute tri-

angles, rectangles and right triangles. Let S1, R1 and F1 denote the fam-

ily of all acute triangles, all rectangles and all right triangles in T1. Then

T1 = S1 ∪ R1 ∪ F1. Each triangle F ∈ F1 is obtained according to the Rule

1.2 (see Figure 4.2) and has a rectangle R as neighbor. This rectangle R will

be called the basic rectangle of F and the common edge of F and R the basic

edge of F . Thus any F ∈ F1 has one and only one basic rectangle and basic

edge.

Step 2. Subdivide T1 into T2.

Rule 2.1: Apply an elementary subdivision to every element in S1 ∪ F1.

Rule 2.2: Apply a basic triangulation to every rectangle in R1.

Then we obtain a non-obtuse triangulation T2 of Γ. Next we’ll prove that

T2 can be converted into an acute triangulation of Γ.

Let S2, R2, F2 denote all the triangles in T2 which are obtained from S1,

R1, F1 respectively. Every triangle in S2∪R2 is acute. Hence we only need to

consider the triangles in F2. Notice that the right triangles in F2 are obtained

from F1 by elementary subdivision, so we can classify them according to their

corresponding right triangles in F1.

For any acute triangles S ∈ S1, let φ(S) denote the family of four acute

triangles obtained from the elementary subdivision of S. For any rectangle

R ∈ R1, let φ(R) denote the family of 14 acute triangles obtained from the

basic triangulation of R. For any right triangles F ∈ F1, let φ(F ) denote the

family of four right triangles obtained from the elementary subdivision of F .
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We call the three triangles in φ(F ) which have non-empty intersection with

the basic edge e of F the adjacent triangles with respect to e, and the other

one which is disjoint from e the opposite triangle with respect to e. Moreover,

if S1 = {S1, S2, · · · , St} , F1 = {F1, F2, · · · , Fn} and R1 = {R1, R2, · · · , Rm},
then S2 = φ(S1) ∪ φ(S2) ∪ · · · ∪ φ(St), F2 = φ(F1) ∪ φ(F2) ∪ · · · ∪ φ(Fn) and

R2 = φ(R1) ∪ φ(R2) ∪ · · · ∪ φ(Rm).

Lemma 4.3.1. For any F ∈ F1 with basic rectangle R ∈ R1 and basic edge e,

the triangulation can be perturbed so that all triangles in φ(F ) ∪ φ(R) except

the opposite triangle with respect to e (in φ(F )) become or remain acute.

A

B C

M

N

P

R

Figure 4.3 The basic sliding of φ(F )

Proof. Let F = ABC with basic edge BC, and let N be the midpoint of BC, as

shown in Figure 4.3. We can slightly slide N in direction
−−→
NB such that both

MPN and PNC become acute triangles while all triangles in φ(R) remain

acute. Then we slightly slide N in direction
−→
BA such that MBN becomes

acute while MPN , PNC and all triangles in φ(R) remain acute. ¤

For each F ∈ F1, we call the sliding described in the proof of Lemma

4.3.1 the basic sliding of φ(F ).
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Let F1 = {F1, F2, · · · , Fn}, and ei denote the basic edge of Fi (i =

1, 2, · · · , n). Next we convert the triangulation T2 to T3 by the following step.

Step 3. Apply the basic sliding to each φ(Fi), where i = 1, 2, · · · , n.

After Step 3, we know that in each φ(Fi) (i = 1, 2, · · · , n), only the

opposite triangle with respect to ei is not changed into an acute triangle. We

denote by φ3(Fi) the set of four triangles in T3 resulting from φ(Fi). Then,

there are exactly n right triangles in T3, one in each of φ3(Fi) (i = 1, 2, · · · , n).

(a) Type I (b) Type II (c) Type III

Figure 4.4 Three kinds of adjacent triangles in F1

If F ∈ F1 has no adjacent right triangle, then we call it an isolated

triangle. Let Fi and Fj be two adjacent triangles in F1, if they have a common

leg (hypotenuse), we call them of Type I (or of Type II); Otherwise, we call

them of Type III, see Figure 4.4.

Lemma 4.3.2. For any two adjacent triangles Fi and Fj in F1, we can trans-

form all the triangles in φ3(Fi)∪φ3(Fj) into acute triangles, leaving unchanged

all other triangles in T3 − (φ3(Fi) ∪ φ3(Fj)).

Proof. There are three cases to consider.

Case 1. Fi and Fj are of Type I.

From the given condition we know that ei and ej must be collinear. Sup-

pose that Fi = ABC and Fj = ACD, as shown in Figure 4.5. Then ei = BC,
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A

B C

M N
P

D

Figure 4.5 Fi and Fj are of Type I

ej = CD. Thus AMP and ANP are the two remaining right triangles in

φ3(Fi) ∪ φ3(Fj). Now we can slightly slide P in direction
−→
AC such that both

AMP and ANP become acute while all other triangles in φ3(Fi) ∪ φ3(Fj)

remain acute.

Case 2. Fi and Fj are of Type II.

A

B C

D

O
M

N

Figure 4.6 Fi and Fj are of Type II

Without loss of generality, we may assume that Fi = ABC with basic

edge BC and Fj = ACD. Then ej = CD. Hence AMO and ANO are the two

remaining right triangles in φ3(Fi) ∪ φ3(Fj), as shown in Figure 4.6. Now we

can slightly slide O in direction
−→
CA such that all the triangles in φ3(Fi)∪φ3(Fj)

are acute.

Case 3. Fi and Fj are of Type III.

Without loss of generality, we may assume that the common edge is a leg

of Fi and the hypotenuse of Fj.
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A

B C

DO

M
N

P

-

6

x

y

Figure 4.7 Fi and Fj are of Type III

Let Fi = ABC and Fj = ACD, then ei = BC, ej = CD. Thus AMO

and ANO are the two remaining right triangles in φ3(Fi) ∪ φ3(Fj), as shown

in Figure 4.7 . We establish an x-y coordinate system with O as origin, MO

as x−axis and CA as y−axis (also see Figure 4.7). Let kON denote the slope

of the line ON . Then kON 6= 0. Let O be the circumscribed circle of AMO

and l be the tangent line of O at point O, then the slope kl of l is not zero.

If kON ≤ kl, we can slightly slide O in direction
−−→
ON at first such that

AMO becomes acute while ANO remains right and the rest of triangles in

φ3(Fi) ∪ φ3(Fj) remain acute. Then we slightly slide O in direction
−−→
DA such

that all the triangles in φ3(Fi) ∪ φ3(Fj) are acute.

If kON > kl, similarly we can slightly slide O in direction
−−→
NO at first and

then slightly slide O in direction
−−→
DA such that all the triangles in φ3(Fi) ∪

φ3(Fj) are acute.

Finally, it is easy to check that all the slidings mentioned above leave

unchanged all other triangles in T3− (φ3(Fi)∪φ3(Fj)). The proof is complete.

¤
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For any two adjacent triangles Fi and Fj in F1, we call the sliding de-

scribed in the proof of Lemma 4.3.2 the basic pair sliding of Fi and Fj.

Step 4. Apply the basic pair sliding in T3 as follows, and denote the

obtained triangulation by T4:

Step 4.1. Apply the basic pair sliding to all type I adjacent triangles in

F1, and denote all the triangles involved in this step by P1;

Step 4.2. Apply the basic pair sliding to all type II adjacent triangles in

F1 − P1, and denote all the triangles involved in this step by P2;

Step 4.3. If there are two triangles in F1 − (P1 ∪ P2) which are adjacent

triangles of type III, then we apply the basic pair sliding to them. Repeating

this kind of work until there is no type III adjacent triangles anymore. Denote

all the triangles involved in this step by P3.

Let P0 = F1− (P1∪P2∪P3). If P0 = ∅, then T4 is an acute triangulation

of Γ. If P0 6= ∅, then any F ∈ P0 is either an isolated triangle in F1 or its

adjacent triangle (of Type III) admits an acute triangulation. Let F = ABC

be a triangle in P0 with basic edge BC. If there is an X ∈ T1 which has

the common side AB with F , then all the triangles in φ(X) are acute. As

a result, we can slightly slide N in direction
−→
AB such that all the triangles

in φ3(F ) ∪ φ3(X) become acute (see Figure 4.8). If there is not such an X,

then AB lies on a side of Γ and we can perform the similar sliding. Applying

this kind of sliding to each element of P0, we transform T4 into an acute

triangulation of Γ.

Combining the above discussion, we immediately have the following the-

orem.

Theorem 4.3.3. Every polygon admits an acute triangulation.
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A

B C

X
N

Figure 4.8 A triangle in P0

¤

Furthermore, considering the number of triangles in the obtained acute

triangulation, we have the following result.

Theorem 4.3.4. If a polygon can be triangulated into N non-obtuse triangles,

then it can be triangulated into at most 22N acute triangles.

Proof. Let T be a non-obtuse triangulation of a polygon and let ν1(ν2) denote

the number of all acute (right) triangles in T ; thus N = ν1 + ν2. Notice

that cardS1 = 4ν1, cardR1 = ν2 and cardF1 = 2ν2 in T1; we have cardT2 =

4(cardS1+cardF1)+14 cardR1 = 16ν1 +22ν2 = 16(ν1 +ν2)+6ν2 ≤ 22N . This

implies cardT4 =cardT3 =cardT2 ≤ 22N . The proof is complete. ¤

§4.4 Non-obtuse Triangulations of Polygons

In [10] it was proved that every n-gon can be triangulated into O(n) acute

triangles. In this section we obtain a concrete upper bound for the size of a

non-obtuse triangulation of an n-gon basing on work in [10].
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Let Γ be an n-gon (without hole) with r concave corners. We start with

the basic method, namely, disk packing presented in [10].

...............

(a) (b)

Figure 4.9 Adding disks at corners

Firstly, we pack the disks at corners. At every convex vertex of Γ, we

add a small disk tangent to both edges, as shown in Figure 4.9(a). At every

concave corner of Γ, we add two disks of equal radii, tangent to the edges,

and tangent to the angle bisector at the corner, as shown in Figure 4.9(b).

We choose radii small enough such that the disks lie within Γ, and any two

disks from two distinct vertices are disjoint. This step isolates a small 3- or

4-sided remainder region at each corner of Γ. The large remainder region is

a simply connected curved polygon with 2n + r sides, where a curved polygon

is a topological disc with a finite union of line-segments and arcs of circles as

boundary (the circle may have various radii).

Let A be a simply connected curved m-gon. To subdivide A, we add a

disk tangent to three sides, not all of which are consecutive (it is possible that

it is tangent to more than three sides), as shown in Figure 4.10. Then we have

the following result.

Lemma 4.4.1. ([10]) It is possible to reduce the numbers of sides of each of

the remainder regions to at most 4, by packing at most m− 4 non-overlapping

disks into the arc-gon A.
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Figure 4.10 A disk tangent to three edges of an arc-gon

Figure 4.11 Decomposition of Γ into simple polygons with disjoint interiors
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At this point, the polygonal region Γ has been partitioned into disks and

remainder regions with three or four sides, either straight or circular arcs. It

is clear that there are three kinds of such regions, namely, remainder regions

with vertices of Γ (denoted by RPi
, where Pi is a vertex of Γ (i = 1, 2, · · · , n)),

remainder regions with three sides (denoted by R3) and remainder regions with

four sides (denoted by R4). Moreover, each circular arc of a remainder region

R is naturally associated with a pie-shaped sector. We denote the union of R

and its associated sectors by R+. These augmented remainder regions define

a decomposition of Γ into simple polygons with disjoint interiors, as shown in

Figure 4.11.

Now we present several results in [10] concerning the triangulation of each

R+ obtained. New vertices introduced to triangulate Γ are called additional

points (Steiner points in the terminology of [10]). We call an additional point

in an augmented region R+ safe if it lies either in the interior to R+ or on the

boundary of Γ.

Lemma 4.4.2. ([10]) Let Pi (i = 1, 2, · · · , n) be a vertex of an n-gon Γ. If

Pi is a convex (resp. concave) corner, then R+
Pi

can be triangulated into 2

(resp. 4) right triangles such that there is no new vertex introduced in the

triangulation.

Lemma 4.4.3. ([10]) Every R3
+ (resp. R4

+) can be triangulated into at most

6 (resp. 28) right triangles, adding only safe additional points.

Combining Lemma 4.4.1 to Lemma 4.4.3 we know that for every m−arc-

gon A, A+ admits a non-obtuse triangulation (adding only safe additional

points). Therefore Γ admits a non-obtuse triangulation. Let φ(m) denote the

number of triangles in a non-obtuse triangulation of A+ (where A is an m−arc-

gon), then Lemma 4.4.3 implies that φ(3) ≤ 6 and φ(4) ≤ 28. Moreover, we
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have

Lemma 4.4.4. For every m ≥ 4, φ(m) ≤ 34m− 108.

Proof. We prove this by induction on m. The base is φ(4) ≤ 28. Now we

suppose that the conclusion holds for all 4 ≤ k < m.

Let A be an arc-gon with m sides, and let O be the first disk packed in A.

We assume that λ (λ ≥ 3) sides of A are tangent to O. Then A is divided into

one disk and λ arc-gons having k1, k2, · · · , kλ sides, respectively, with 3 ≤ k1 ≤
k2 ≤ · · · ≤ kλ. Thus φ(m) = φ(k1)+φ(k2)+ · · ·+φ(kλ). Since the disk divides

λ sides, and is itself divided in λ places, we have k1 + k2 + · · ·+ kλ = m + 2λ.

Case 1. λ = 3.

Then by the rules of packing disks we know that not all of these three

sides are consecutive in A which implies that 3 ≤ k1 ≤ k2 ≤ k3 < m.

If k1 = 3, then φ(m) = φ(3)+φ(k2)+φ(k3) ≤ 6+34×(k2+k3)−2×108 =

6 + 34× (m + 3)− 2× 108 = 34m− 108.

If k1 ≥ 4, then φ(m) = φ(k1)+φ(k2)+φ(k3) ≤ 34×(k1+k2+k3)−3×108 =

34× (m + 6)− 3× 108 = 34m− 120 ≤ 34m− 108.

Case 2. λ ≥ 4.

Then it is easy to see that kλ < m. We may assume that among all of

the ki (i = 1, · · · , λ), there are exactly λ0 values which are equal to 3, where

0 ≤ λ0 ≤ λ. Then we have

φ(m) = φ(k1) + φ(k2) + · · ·+ φ(kλ) ≤ 6λ0 + 34 · (kλ0+1 + · · ·+ kλ)− 108 ·
(λ − λ0) = 6λ0 + 34 · (m + 2λ − 3λ0)− 108 · (λ − λ0) = 34m − 40λ + 12λ0 ≤
34m− 28λ ≤ 34m− 28× 4 = 34m− 112 ≤ 34m− 108.

The proof is complete. ¤
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Theorem 4.4.5. Every n-gon admits a non-obtuse triangulation whose size

is at most 106n− 216.

Proof. Suppose that an n-gon Γ admits a non-obtuse triangulation (obtained

by the method described above) with size N . Let r denote the number of

concave corners of Γ. From the above discussion we know that P = R+
P1 ∪

R+
P2 ∪ · · · ∪R+

Pn ∪R+
A, where A is an arc-gon with 2n+ r sides. By Lemma

4.4.2 and Lemma 4.4.4 we know that N = 2(n − r) + 4r + φ(2n + r) ≤
2n + 2r + 34(2n + r) − 108 = 70n + 36r − 108. Noticing that r ≤ n − 3, we

have N ≤ 106n− 216.

The proof is complete. ¤

Combining Theorem 4.3.4 and Theorem 4.4.5, we immediately obtain the

following corollary.

Corollary 4.4.6. Every n-gon can be triangulated into at most 22·(106n−216)

acute triangles.
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Chapter 5. Acute Triangulations of Surfaces

§5.1 Introduction

In 2000 Hangan, Itoh and Zamfirescu [25] considered the following prob-

lem: does there exist a number N such that every compact convex surface in

R3 admits an acute triangulation with at most N triangles? Of course, one

should estimate N, if it exists. Indeed, among all the compact convex surfaces

the polyhedral surfaces play a central role. In the same year, Hangan, Itoh

and Zamfirescu started the investigation of acute triangulations of all Platonic

surfaces, which are the surfaces of the five well-known Platonic solids. They

[25] proved that the surface of the cube admits an acute (resp. non-obtuse)

triangulation with 24 (resp. 4) triangles and no acute (resp. non-obtuse)

triangulation with fewer triangles. In 2004 Itoh and Zamfirescu [26] proved

that the surface of the regular icosahedron admits an acute (resp. non-obtuse)

triangulation with 12 (resp. 8) triangles and no acute (resp. non-obtuse)

triangulation with fewer triangles. They [27] also proved that the surface of

the regular dodecahedral admits a non-obtuse triangulation with 10 triangles

and no non-obtuse triangulation with fewer triangles, while it admits an acute

triangulation with 14 triangles and no acute triangulation with less than 12

triangles.

At the same time, acute triangulations of some smooth convex sets were

also considered, so for example, the sphere. The sphere itself can be acutely

triangulated with at least 20 triangles, which can easily be deduced from Eu-

ler’s formula together with the condition that valency is at least 5. In 2002

Itoh and Zamfirescu [28] investigated acute triangulations of triangles on the

43
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sphere, and proved that every proper triangle (a triangle with all angles less

than π) admits an acute triangulation of size at most 10 and every non-proper

triangle with all side lengths smaller than π admits an acute triangulation of

size 18. They also pointed out that both estimates are best possible.

However, the case of arbitrary convex surfaces is much more difficult,

even for a polyhedra with small number of vertices. So, for example, even the

family of all tetrahedral surfaces is far from being easy to treat. We study

here the acute triangulations of the doubly covered convex set, or simply the

double convex set, which is a (degenerate convex) surface Γd homeomorphic

to the sphere consisting of two planar isometric convex sets, Γ and Γ′, with

boundaries glued in the obvious way. For any point P in Γ, let P ′ denote the

corresponding point in Γ′. Even this case is, in full generality, still too difficult.

In 2004 C. Zamfirescu [52] considered acute triangulations of doubly covered

triangles, and obtained the best estimate 12.

In this Chapter we continue this task and acutely triangulate several sur-

faces. In §5.2 we prove that every doubly covered quadrilateral admits an acute

triangulation of size at most 20. In §5.3 we discuss acute triangulations of dou-

bly covered pentagons [47] and obtain the upper bound 76. In §5.4 we discuss

the acute triangulations of the double of an arbitrary symmetric smooth con-

vex set. Then, we consider acute triangulations of several well-know surfaces.

In §5.5 we prove that every flat torus admits an acute triangulation with size

at most 16. In §5.6 we obtain the minimal size of acute triangulations of flat

Möbius strips in several different cases.
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§5.2 Acute Triangulations of Double Convex

Quadrilaterals

In this section we consider the case when Γd is a double convex quadri-

lateral.

A

B

C

D

A′

B′

Figure 5.1 Γ is a rectangle

Theorem 5.2.1. Every double convex quadrilateral admits an acute triangu-

lation with size at most 20.

Proof. If Γ = ABCD is a rectangle, then Γd admits an acute triangulation

with size 8, as shown in Figure 5.1, where the two ”sides” of Γd are unfolded

on a plane.

Now suppose that Γ is not a rectangle. Then it has at least one acute

corner, say B.

If ∠D ≥ π
2
, then by Proposition 3.1.1 Γ admits an acute triangulation T

with size at most 9 [34], in which the only vertex of degree less than 3 is B

(Figure 5.2). Thus Γd can be divided into at most 18 acute triangles. Notice

that this division is not a triangulation. Choose F , G such that both BF and

FG are edges of T lying in bdΓ. We slightly slide F into the interior of Γ such

that all the triangles in Γ having F as a vertex remain acute, and both BFF ′
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A

B C

D
A

B C

D

(a) Triangle ABC is acute (b) Triangle ABC is non-acute

Figure 5.2 Acute triangulations of a quadrilateral ABCD

and GFF ′ are acute as well. Thus Γd admits an acute triangulation of size at

most 20.

If ∠D < π
2
, we first prove that Γ can be triangulated into at most 8 acute

triangles such that there are at most 2 vertices with degree 2.

If both triangles ABC and ACD are acute, then clearly Γ can be trian-

gulated into 2 acute triangles.

If one and only one of them is acute, we may assume without loss of gener-

ality that the triangle ABC is acute and ∠ACD ≥ π
2
. Let E be the orthogonal

projection of C on the side AD and F be the the orthogonal projection of E

on the side AC. Clearly E ∈relintAD and F ∈relintAC. By Proposition 2.2.2,

ABC can be triangulated into 4 acute triangles such that F is the only side

vertex on AC. Now we slightly slide F in direction
−→
EF and E in direction

−−→
DE, and obtain an acute triangulation of Γ of size 7, in which only the vertices

B and D have degree 2.

If both triangles ABC and ACD are non-acute, we may assume without

loss of generality that ∠ACB ≥ π
2
, ∠CAD ≥ π

2
, and the lines including BA and

CD intersect at some point closer to A than to B. Let M be the orthogonal

projection of C on the side AB. Let N ∈ CD with AN ‖ MC. Then the
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A

B C

D

M
N
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Figure 5.3 Both ABC and ACD are non-acute

line-segments AN , MN and CM divide ABCD into 4 triangles, as shown in

Figure 5.3. Firstly, we slightly slide M in direction
−−→
BM and N in direction

−−→
DN such that ANM and BMD become acute. Let H be a point on MC such

that ∠NHC = π
2
. Clearly H ∈ relintCM . By Proposition 2.2.2, there is an

acute triangulation of the acute triangle BMC with size 4 such that H is the

only side vertex lying on MC. After slightly sliding H in direction
−−→
NH, we

obtain an acute triangulation of ABCD with size 8. Noticing that there are

at most 2 vertices with degree 2 in each triangulation, we can conclude that

Γd admits an acute triangulation with size at most 20. ¤

§5.3 Acute Triangulations of Double Convex

Pentagons

In this section we consider case when Γd is a double convex pentagon.

Lemma 5.3.1. If the convex pentagon Γ has at least one acute angle, then Γd

can be triangulated into at most 46 acute triangles.

Proof. By Lemma 3.2.2, Γ admits an acute triangulation T with size at most

21. Furthermore, there are at most 2 vertices in T with degree 2. Obviously Γd

can be divided into at most 42 acute triangles (which may not form a proper
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triangulation). Now let A be a vertex with degree 2 in T . This vertex belongs

to two congruent triangles T , T ′, one on each face of Γd. Now suppose that

T = T ′ = 4EAF , and FG ⊂bdΓ is an edge of T . Now we slightly slide F into

the interior of Γ in direction perpendicular to AF such that all the triangles in

Γ having F as a vertex remain acute, and both of AFF ′ and GFF ′ are acute

as well. Recalling that there are at most 2 vertices in T with degree 2, we can

conclude that Γd can be triangulated into at most 46 acute triangles. ¤

Lemma 5.3.2. Consider the side AB of Γ and H ∈ intΓ satisfying ∠AHB >

π
2
. Let DAB = ABH ∪ ABH ′. If M ∈relintAH∪relintBH, then DAB admits

a triangulation with precisely the points M , M ′ as side vertices and at most

(i) 20 non-obtuse triangles if ABH has two angles smaller than π
4
;

(ii) 30 non-obtuse triangles otherwise.

Proof. By unfolding DAB in the plane, we obtain a quadrilateral HAH ′B with

AB∩HH ′ = O. We may assume without loss of generality that M ∈relintAH.

Since ∠AHB is obtuse, there is a point U ∈relint AO such that UH⊥HB.

Let l denote the line passing through M and perpendicular to AH.

A B

H

H ′

O
U

X

M

M ′

Figure 5.4 l ∩ (relintAU ∪ {U}) = {X}

Case 1. l ∩ (relintAU ∪ {U}) = {X}.

Then X is a pivot of AH ′H and therefore AH ′H can be triangulated into

at most 18 acute triangles such that only one new vertex O is introduced on
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HH ′. Now we slightly slide O in direction
−−→
BO. So DAB admits a triangulation

with at most 20 acute triangles in which only M , M ′ are side vertices.

Case 2. l ∩ (relintAU ∪ {U}) = ∅.

We suppose that l∩relintHU = {Y }.

A B

H

H ′

OU

Y

Y ′

M

M ′

Figure 5.5 l ∩ (relintAU ∪ {U}) = ∅

(i) If both acute angles of ABH are less than π
4
, then DAB can be tri-

angulated into 8 non-obtuse triangles AY M , AY ′M ′, HMY , H ′M ′Y ′, HY B,

H ′Y ′B, BY Y ′ and AY Y ′, as shown in Figure 5.5. Now we slightly slide Y

in direction
−−→
MY (and Y ′ in direction

−−−→
M ′Y ′) such that only the four triangles

adjacent to M or M ′ are right triangles.

(ii) Otherwise, it is easy to check that Y is a pivot of ABH. By Propo-

sition 3.1.4, ABH can be triangulated into at most 15 acute triangles and

therefore DAB can be triangulated into at most 30 acute triangles such that

M , M ′ are the only side vertices. ¤

Theorem 5.3.3. Every double convex pentagon can be triangulated into at

most 76 acute triangles.

Proof. If Γ has acute angles, the conclusion follows from Lemma 5.3.1.

If Γ has no acute angle, then it has at most two angles which are greater

than or equal to 3π
4

.
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Case 1. Two angles of Γ are greater than or equal to 3π
4

.

Figure 5.6 Two angles of Γ are greater than or equal to 3π
4

Then Γ has two angles equal to 3π
4

and three angles equal to π
2
. So Γ has

two possible non-isomorphic configurations as shown in Figure 5.6, and there

is a pivot in Γ◦ for each of them. By Proposition 3.1.4 Γ can be triangulated

into at most 26 acute triangles and therefore Γd can be triangulated into at

most 52 acute triangles.

Case 2. At most one angle of Γ is greater than or equal to 3π
4

.

Subcase 2.1. Γ has a pivot in its interior.

Then as in Case 1, Γd can be triangulated into at most 52 acute triangles.

Subcase 2.2. Γ has no pivot in its interior.

(a). All of the five angles of Γ are obtuse.

RCD

C D

Figure 5.7 Region RCD
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For each side of Γ = ABCDE, say side CD, let RCD denote the rectan-

gular region formed by two perpendicular lines of CD starting from C and D.

Let RCD = Γ◦ ∩ RCD, as shown in Figure 5.7. Then any point P ∈ RCD is

facing CD in Γ. Let F = {RAB, RBC , RCD, RDE, REA}, then P is a pivot of Γ

if and only if P ∈ ∩F . As a result, Γ has no pivot in its interior means that

∩F = ∅. Notice that each member of F is a convex set, so by Helly’s Theorem

there are three sides e, f , g of Γ such that Re ∩ Rf ∩ Rg = ∅. Furthermore,

it is easy to check that e, f and g are not consecutive. Thus we may assume

without loss of generality that e = AE, f = BC, g = CD and parallelogram

CRST = RBC ∩ RCD lies to the right of RAE, as shown in Figure 5.8. Recall

that the angle at A in Γ is obtuse, so B must lie to the left of RAE, namely, B

and T are separated by RAE. Let HF = RAE ∩ lBT , then HF ⊂ relintBT .

B C

D

E
A

R

S

T

G

H
F

Figure 5.8 Γ has no pivot in its interior

We establish a Cartesian coordinate system with B as origin, BC as

x−axis and BT as y−axis. Let G = lEF ∩ lDS. The angles of Γ being obtuse,

∠GFH > π
2

and therefore ∠AHG = ∠HGF < π
2
. So EAHG is a right
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trapezoid with ∠EGH > π
2
. Notice that ∠GHC > ∠GBC > π

2
, thus GHCD

is a quadrilateral with ∠GHC > π
2
, ∠GDC = π

2
. Furthermore, kAH < 0,

kEG < 0 and kGD < 0 implies that both ∠AHB and ∠DGE are greater than

π
2
.

Now we slightly slide H away from AB in direction perpendicular to AB

and slightly slide G in direction
−−→
EG such that ∠HAE, ∠HBC, ∠GDC are

less than π
2

while the properties of triangle ABH and triangle DEG are not

changed (here the property of a triangle means that both of its acute angles are

less than π
4

or not). Since EAH is an acute triangle, the quadrilateral EAHG

can be triangulated into 6 acute triangles such that there is no new vertex

introduced on EG ∪GH while there is exactly one new vertex introduced on

AH. Similarly, GHCD can be triangulated into 6 acute triangles such that

there is no new vertex introduced on GH ∪ CH while there is precisely one

new vertex introduced on DG. Recall that at most one angle of Γ is greater

than or equal to 3π
4

, so at most one of the triangle AHB and triangle DEG

has an acute angle which is greater than or equal to π
4
. We use Lemma 5.3.2 to

triangulate Γd into at most 13× 2 + 20 + 30 = 76 non-obtuse triangles, which

can be converted into acute triangles by sliding M , M ′, N , N ′ if necessary.

(b). Γ has at least one right angle.

Similar to the discussion in (a), we may also assume that RBC ∩ RCD ∩
RAE = ∅ and parallelogram CRST = RBC ∩ RCD lies to the right of RAE.

Then it is easy to deduce that ∠ABC, ∠BCD and ∠DEA must be greater

than π
2
. Now if ∠EAB = π

2
(or ∠CDE = π

2
), then we chose a point on lBS (or

lEF ) which is very close to B (or E) as the point H (or G). The configuration

obtained has the same property as that described in Figure 5.8 except that

∠EAH (or ∠GDC) is less than π
2

instead of being equal to π
2
. By a method

similar to the one used in (a) we can also triangulate Γd into at most 76 acute
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triangles. ¤

§5.4 Acute Triangulations of the Double of a

Symmetric Smooth Convex set

In this section, we are able to settle the case of the double smooth convex

sets Γd in case Γ has two perpendicular axes of symmetry.

Theorem 5.4.1. If Γ is a smooth convex set with two perpendicular symmetry

axes, then Γd can be triangulated into 72 acute triangles.

. . . . . . . . . . . . . . . . .A1 A2

B1

B2

C1

C2 C3

C4

E1 E2

F1

F2

G1

G2 G3

G4

D1

D2

H1 H2

M1

M2 M3

M4

O

K1

K2 K3

K4

Figure 5.9

Proof. Let Γ ∈ R2 be a smooth convex set with two perpendicular symmetry

axes A1A2 and B1B2 (A1A2 ∩ B1B2 = O); we may assume without loss of
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generality that |A1A2| ≥ |B1B2|. We denote by Â1B1 (resp. Â1C1) the arc on

bdΓ from A1 to B1 (resp. C1) not containing A2.

If |A1A2| > |B1B2|, let C1 ∈ Â1B1 satisfying ∠C1A1A2 = π
4
, and slightly

slide C1 on Â1B1 towards A1. Now let K1 be the point on Â1C1 which has the

maximal distance to A1C1 among all the points on Â1C1. Let M1 ∈ relintA1C1

be the perpendicular foot of K1. Let SA1C1 denote the region between Â1C1

and A1C1 in Γ. Then SA1C1 ∪ S ′A1C1
can be triangulated into 2 right trian-

gles A1M1M
′
1 and C1M1M

′
1. Let C2 (resp. K2, M2), C3 (resp. K3, M3)

and C4 (resp. K4, M4) denote the symmetric points of C1 (resp. K1, M1)

according to A1A2, O and B1B2 respectively, as shown in Figure 5.9. Let

D1 = B1B2∩C1C4, D2 = B1B2∩C2C3, F1 = B1B2∩M1M4, F2 = B1B2∩M2M3,

E1 = A1A2∩M1M2, E2 = A1A2∩M3M4, H1 = A1A2∩C1C2, H2 = A1A2∩C3C4,

G1 = C1C2 ∩ M1M4, G2 = C1C2 ∩ M2M3, G3 = C3C4 ∩ M2M3, G4 =

C3C4 ∩M1M4, and we may assume that |G1G2| ≤ |G3G4|. Thus the hexagon

A1C2C3A2C4C1 can be triangulated into 30 non-obtuse triangles as shown in

Figure 5.9. Noticing that SC1C4 ∪ S ′C1C4
can be triangulated into 2 right tri-

angles C1D1D
′
1 and C4D1D

′
1, we can conclude that Γd admits a non-obtuse

triangulation with size at most 72. Now firstly we slightly slide Di (resp. Fi)

(i = 1, 2) in direction
−−→
BiO. Secondly we slightly slide Ei (resp. Hi) (i = 1, 2)

in direction
−−→
AiO. Thirdly we slightly slide Gi (i = 1, 2, 3, 4) in direction

−−−→
MiGi.

Finally we slide Mi (i = 1, 2, 3, 4) slightly in direction
−−−→
KiMi, then we obtain

an acute triangulation of Γd whose size is at most 72.

If |A1A2| = |B1B2|, let C1 ∈ Â1B1 be a point close to B1. It is easy to

check that all the discussion above still holds. ¤
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§5.5 Acute Triangulations of Flat Tori

In this section, we investigate the acute triangulations of the flat tori. It

is well-known that any triangulation of the torus contains at least 14 triangles.

Concerning acute triangulations, we prove the following result.

Theorem 5.5.1. Every flat torus can be triangulated into 16 acute triangles.

Proof. There are two cases to consider:

Case 1. There is a (planar) rectangle A1A2A3A4, where A1, A2, A3 and

A4 are identical on T . We may assume that |A1A2| ≤ |A2A3|.

A1

A2

A4

A3

B1 B2

C1 C2

D1

D2

E1

E2

F

G

H

O
u

v

Figure 5.10

Let B1, B2, D1, D2 be the midpoints of A1A2, A3A4, A1A4, A2A3 re-

spectively. Keep in mind that Bi (resp. Di) (i = 1, 2) are identical on T .

Let A1B2 ∩ OD1 = F , as shown in Fig. 5.10. Let G ∈ B1O satisfying

GF⊥A1B2. Let B2FGH be a rectangle and let C1, C2, E1, E2 be the or-

thogonal projections of H on A1A2, A3A4, A1A4, A2A3 respectively. Keep

in mind again that Ci (resp. Ei) (i = 1, 2) are identical on T . Noticing
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that ∠D2C1A2 > ∠GC1B1 > π
4
⇒ ∠GC1D2 < π

2
, ∠GD2O < ∠GFO =

∠FA1D1 < ∠FE1D1 = ∠HD2E2 ⇒ ∠GD2H < π
2

and ∠FB2E1 < π
2
, we have

4C1D2G ∼= 4HGD2
∼= 4FB2E1 are acute. It is easy to check that all the

edges are segments, i.e., the shortest paths between the corresponding vertices.

Then T admits a non-obtuse triangulation with size 16 as shown in Fig. 5.10.

Now firstly we slightly slide D2 in direction
−−→
D2O such that A1FD1, E1FD1,

C1A2D2 and HD2E2 become acute. Secondly we slightly slide E2 in direction
−−−→
E2A3 such that C2HE2 becomes acute. Thirdly we slightly slide H in direction
−−→
HG such that B2HC2 and FHB2 become acute. Fourthly we slightly slide B2

in direction
−−→
B2O such that A1B1G, B1C1G and E1B2A4 become acute. Fifthly

we slightly slide G in direction
−−→
HG (the sliding distance is much less than that

of H) such that A1GF and FGH become acute. Finally we slightly slide A3

away from C2 in direction
−−−→
C2A3 such that C2E2A3 becomes acute. Thus we

obtain an acute triangulation of T with size 16.

Figure 5.11

Case 2. There is a (planar) parallelogram A1A2A3A4 with center O, where
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A1, A2, A3 and A4 are identical on T . We may assume that |A1A2| ≥ |A2A3|.

Now we construct a hexagon on the basis of A1A2A3A4 as shown in Figure

5.11, where OF1⊥B1C1 (F1 is the midpoint of A1A2), OA1⊥B1C3, OE1⊥C3B3

(E1 is the midpoint of A1A4), and Bi, Ci (i = 1, 2, 3), Ej, Fj (j = 1, 2) are

identical on T . Clearly the hexagon B1C1B2C2B3C3 is a unfolding figure of T

on the plane.

If |B1C3| ≥ |B3C3|, then we chose a point M very close to O on the

bisector of angle A1OF2 . Let N , G be the orthogonal projections of M on

OA1, OF2 respectively. Let H satisfy NH ‖ MG and HG ‖ NM . Then

NHGM is a rhombus with acute angle NMG and H lies on the bisector of

angle A3OF1, which means that HGN3 is acute. Thus we obtain an non-obtuse

triangulation of T with size 16, as shown in Figure 5.11. Clearly, if we slightly

slide N in direction
−−→
MN and G in direction

−−→
MG, then all the triangles become

acute.

If |B1C3| < |B3C3|, we can construct an acute triangulation similarly. ¤
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§5.6 Acute Triangulations of Flat Möbius Strips

Let R be a rectangle. We may assume without loss of generality that it

has sides 1 and u. If we identify pairs of points symmetric about the center

of R and lying on the sides of length 1, then we obtain a Möbius strip, which

will be denoted by MR.

Let T be an acute triangulation of MR. A transversal of T is an edge

connecting two side vertices of T and having non-empty intersection with the

interior of MR.

Now let R = A1B1A2B2 with |A1B1| = 1; then A1 and A2 (respectively,

B1 and B2) are identical in MR.

Theorem 5.6.1. If u ≥
√

15
3

, then MR can be triangulated into 5 acute trian-

gles, and no smaller acute triangulation is possible.

A1

B1 A2

B2E

F

M

Figure 5.12 u ≥ √
3

Proof. Case 1. u ≥ √
3.

Let E, M ∈ A1B2 such that |B1E| = |B2E|, |A1M | = |A2M |. Clearly

E ∈ relintA1M . Let F be the orthogonal projection of E on B1A2; then

|A2F | = |A2M |, which implies that MFA2 is acute. By our construction,

it is easy to check that A1B1, A1E, B1E, B1F , EM , EF , MB2, MA2 and

FA2 are all segments. (Recall that a segment is the shortest path between the
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corresponding vertices.) Furthermore, since |MF | =
√

u2+1
u

, |MB2| = |B1F | =
u2−1
2u

and u ≥ √
3, we have |MF | ≤ |MB2| + |B1F | < |MA1| + |A2F |, which

implies that MF is also a segment. Thus MR can be triangulated into 5 non-

obtuse geodesic triangles, as shown in Fig. 5.12. Now we slightly slide F in

direction
−−→
B1F and replace the vertex A1 = A2 of the triangulation with a point

on FA2 close to A2. So we obtain an acute geodesic triangulation of MR with

size 5.

Case 2.
√

15
3
≤ u <

√
3.

A1

B1 A2

E1 F B2

G H E2

M1 M2

N1 N2

F ′ F ′′

Figure 5.13
√

15
3
≤ u <

√
3

Let E1 ∈ A1B2 such that |B1E1| = |B2E1|. The Möbius strip MR is

the isosceles trapezoid E1B1E2B2, as shown in Fig. 5.13, where E1 coincides

with E2 in MR. Let F be the midpoint of E1B2, and let G,H ∈ B1E2 such

that |E1G| = |E2G|, |B1H| = |B2H|. Since |B1E2| − (|B1G| + |HE2|) =

3−u2

2u
> 0, G ∈ relintB1H. From our construction, it is easy to check that

B1E1, E1F , E1G, B1G, GH, FB2, B2H and HE2 are all segments. Since

|FG| =
√

u4+10u2+9
4u

, |FB2| + |B1G| = 5u2−3
4u

and u ≥
√

15
3

, we have |FG| ≤
|FB2| + |B1G| < |FE1| + |E2G|. Let Mi be the midpoint of EiBi (i = 1, 2).

M1, M2 coincide in MR. If N1 ∈ B1M1, then |FB2|+|B1G| = |F ′B1|+|B1G| ≤
|F ′N1| + |N1G|, where F ′ = F in MR (see Figure 5.13). If N1 ∈ E1M1, then

|FE1|+|E2G| = |F ′′E2|+|E2G| ≤ |F ′′N2|+|N2G|, where F ′′ = F and N2 = N1

in MR (see Figure 5.13). Hence FG is a segment. Analogously, FH is also a
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segment. Furthermore, since
√

15
3
≤ u <

√
3, we have tan 1

2
∠GFH = 3−u2

4u
< 1

and tan 1
2
∠B1E1G = u2−1

2u
< 1. Thus all the triangles in Fig. 5.13 are acute.

Hence we obtain an acute triangulation of MR with size 5.

Now let T be an acute triangulation of MR with t triangles. We regard T
as a planar graph embedded on MR. If T has at least one interior vertex, then

clearly t ≥ 5. If T has no interior vertex, then we assume that it has s side

vertices. Notice that every side vertex has degree at least 4, so s ≥ 5. Now

denote by e the number of edges of T . Since 3t+s = 2e =
∑

x∈V (T ) d(x) ≥ 4s,

we have t ≥ s ≥ 5.

The proof is complete. ¤

Theorem 5.6.2. If 1 < u <
√

15
3

, then MR can be triangulated into 8 acute

triangles.

Figure 5.14 1 < u <
√

15
3

Proof. Let E, F be the midpoints of A1B2, A2B1 respectively. And let M , N

be two points inside R such that both A1B1M and A2B2N are right isosceles

triangles. Since u > 1, M lies to the left of N . Thus MR is triangulated into

8 non-obtuse triangles as shown in Figure 5.14. Now we can slightly slide M
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in direction
−−→
MN and N in direction

−−→
NM such that all the 8 triangles become

acute. ¤

Theorem 5.6.3. If u ≤ 1, then MR admits an acute triangulation with 9

triangles.

Proof. There are two cases to consider.

Case 1. u < 1.

A1

A2B1

B2

M1
M2

E
F

N

Figure 5.15 u < 1

Let M1 ∈ A1B1 be a point which is very close to the midpoint of A1B1

and satisfies |A1M1| < |B1M1| (M1, M2 are identical on MR). Let l denote the

perpendicular bisector of B1B2. Let E, F ∈ l such that M1E ‖ M2F ‖ B1A2.

Clearly E and F are symmetric with respect to the center of R. Now let

N ∈ A1B2 be a point very close to B2 such that |NM2| < |NM1| and NEF

is an acute triangle. Since u < 1, we obtain a non-obtuse triangulation of

MR with size 9, as shown in Figure 5.15. Now we can first slightly slide F in

direction
−−−→
M2A2 and then slightly slide M1 (or M2) in direction

−−−→
EM1 such that

all the triangles become acute.
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A1

B1 C1 A2

C2
N

E

F
M1

M2

Figure 5.16 u = 1

Case 2. u = 1.

Let C1 be the point on B1A2 such that |B1C1| = 1
4
. The Möbius strip

is the isosceles trapezoid A1C1A2C2, where C1 and C2 are identical in MR.

Let M1 be the midpoint of A1C1 (M1 and M2 are identical in MR) and let

F be the midpoint of C1C2. Now denote by N the orthogonal projection

of F on A1C2. For the sake of convenience, let lCAB denote the line passing

through the point C and perpendicular to AB. Suppose that lM1
A1C1

∩ lFC1N = E.

Thus MR admits a geodesic triangulation with size 9, as shown in Figure 5.16.

Clearly, the triangles C1FA2, FA2M2 and NM2C2 are acute. Now we establish

an x-y coordinate system with C1 as origin, C1A2 as x-axis and lC1
C1A2

as y-

axis. Denote by P the orthogonal projection of F on C1N . By elementary

calculations, we establish that P = ( 3
10

, 3
5
) and E = ( 7

24
, 29

48
), which implies

that both NEF and C1EF are acute. Furthermore, it is easy to check that

|A1E|2+ |EN |2 = 262+2·192+102

482 > 32

42 = |A1N |2, and hence A1EN is acute. Now

firstly we can slightly slide F in direction
−−−→
M2F such that NFM2 become acute

and C1F is still a segment. Then we can slightly slide M1 in direction
−−−→
EM1

such that both A1M1E and C1M1E become acute.
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¤

Theorem 5.6.4. Let M denote the family of all flat Möbius strips. Then

f(M) = 9.

Proof. Theorem 5.6.1, 5.6.2 and 5.6.3 imply that f(M) ≤ 9. Now we shall

show that f(M) ≥ 9.

Let T be an acute triangulation of MR (u < 1) with i interior vertices,

s side vertices and t triangles. Trivially s ≥ 3. Since u < 1, there is no

transversal in T . Hence i ≥ 1.

If i = 1, then s ≥ 5. Since each side vertex has degree at least 4, there

must be at least one transversal emanating from it, which is impossible.

If i = 2, then s ≥ 4. If s = 4, then both interior vertices have degree 5,

and all side vertices have degree 4. So we have 3t + 4 = 2e = 26, which is

impossible. If s ≥ 5, then by 3t+ s = 2e ≥ 10+4s we have 3t ≥ 10+3s ≥ 25,

whence t ≥ 9.

If i = 3 and s = 3, then all the vertices of T have degree 5. So 3t + 3 =

2e = 30 and thus t = 9.

If i = 3 and s ≥ 4, then 3t+s = 2e ≥ 15+4s implies that 3t ≥ 15+3s ≥ 27

and t ≥ 9.

If i ≥ 4 and s ≥ 3, then from 3t + s = 2e ≥ 5i + 4s we can conclude that

3t ≥ 5i + 3s ≥ 29 whence t > 9. ¤
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Chapter 6. Acute Triangulations of

Rectangles with Angles Bounded Below

Impulses from applied mathematics led to the question of finding triangu-

lations with angles bounded away from π and 0. A very natural upper bound

is π/2, and this is the reason for studying acute or non-obtuse triangulations.

We shall consider in this section acute triangulations whose angles are also

bounded away from 0. We shall see that this requirement may dramatically

increase the number N of necessary triangles. So, there are natural families

of polygons, like that of all rectangles, for which no upper bound on N can

be given, once all angles must admit a lower bound ε. We are not trying to

present an exhaustive study of this kind of triangulations, but pick up the

interesting, exemplifying case of rectangles only.

For any triangulation T , let δT denote the minimal value among all the

angles in T .

§6.1 Acute Triangulations of Squares

Clearly, any acute triangulation T of a square satisfies δT ≤ π
4
. Moreover,

we have the following result.

Theorem 6.1.1. The square admits an acute triangulation T such that cardT =

14 and δT = π
4
.

Proof. For any square ABCD, let E, F , G and H be the midpoints of AB,

BC, CD and DA respectively. Let A1, C1 ∈ AC satisfying ∠AHA1 = π
3
,

65
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A

B C

D

E

F

G

H

A1

B1 C1

D1

Figure 6.1 cardT = 14, δT = π
4

∠CFC1 = π
3
; let B1, D1 ∈ BD satisfying ∠BFB1 = π

3
, ∠DHD1 = π

3
. Thus

ABCD can be triangulated into 14 non-obtuse triangles as shown in Fig. 6.1.

Now we slightly slide A1 in direction
−−→
AA1 and C1 in direction

−−→
CC1), and obtain

an acute triangulation T with cardT = 14 and δT = π
4
. ¤

Now we regard an acute triangulation T as a plane graph, that is, a planar

graph embedded in the plane. In a graph, the number of those vertices that

have degree i is denoted by νi.

The following lemma in [34] will be useful.

Figure 6.2

Lemma 6.1.2. ([34]) Let T be an acute triangulation of a polygon, and sup-

pose that (1) T has a single interior vertex, and (2) ν2 + ν3 ≤ 3, ν2 ≤ 2. Then

T is a plane graph isomorphic to the graph shown in Figure 6.2.
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Next we show that the size of the triangulation obtained in Theorem 6.1.1

is best possible.

Theorem 6.1.3. If T is an acute triangulation of a square with δT = π
4
, then

cardT ≥ 14.

Proof. Let T be an acute triangulation of a square Γ = ABCD (whose center

is denoted by O). If δT = π
4
, then there must be precisely one edge emanating

from each corner vertex of T , which is colinear with the diagonal of Γ ema-

nating from the same corner. That is to say, T has at least one interior vertex

and each lies on a diagonal of Γ. Let n denote the number of interior vertices

of T .

If n = 1, then the interior vertex must be O. Since the degree of O is

at least 5, there is at least one more edge emanating from O and connecting

it with a side vertex. Then the degree of this side vertex will be 3, which is

impossible.

A

B C

D

O

Figure 6.3 n = 2

If n = 2, then we have the configuration as shown in Fig. 6.3. Ap-

ply Lemma 6.1.2 to ACD; then there is one more interior vertex on AC, a

contradiction.

If n = 3, then there are two possible configurations as shown in Fig. 6.4.

By Lemma 6.1.2, Fig. 6.4 (a) is impossible. At the same time, BOC is a right
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A

B C

D

O

A

B C

D

O

(a) (b)

Figure 6.4 n = 3

triangle in Fig. 6.4 (b), which can not be converted or triangulated into acute

triangles. So Fig. 6.4 (b) is also impossible.

Combining the above observations, we can conclude that n ≥ 4. Moreover,

no side of Γ can be an edge of T . Let m denote the number of side vertices in

T ; thus m ≥ 4. So, counting twice in two different ways the edges of T gives

3× card T + (m + 4) =
∑

v∈V (T ) d(v) ≥ 3× 4 + 4m + 5n, which implies that

cardT ≥ 14. ¤

Theorem 6.1.4. For any ε > 0 there is an acute triangulation T of the square

with cardT = 8 and δT ≥ arctan16
63
− ε.

A

B C

D
E

M N

F

Figure 6.5 cardT = 8, δT ≥ arctan 16
63
− ε

Proof. Let ABCD be a square and let E, F be the midpoints of AD, BC

respectively. Let M ∈ BE, N ∈ CE such that AM⊥BE, DN⊥CE. Then
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ABCD admits a non-obtuse triangulation T ′ (see Fig. 6.5) with cardT ′ = 8

and δT ′ = ∠MFN = arctan 16
63

. Now for any ε > 0, we can slightly slide M

in direction
−−→
AM and N in direction

−−→
DN , and obtain an acute triangulation T

such that δT = ∠MFN ≥ arctan 16
63
− ε. The proof is complete. ¤

Combining Theorem 6.1.1 and 6.1.4, we have the following corollary.

Corollary 6.1.5. For any θ ∈ (0, π
4
], every square admits an acute triangula-

tion T such that δT ≥ θ and

cardT =





8, if θ ∈ (0, arctan 16
63

);

14, if θ ∈ [arctan 16
63

, π
4
].

§6.2 Acute triangulations of Rectangles

For the sake of convenience, we may assume without loss of generality

that all the rectangles discussed in this section have sides 1 and u (u > 1).

Let R denote such a rectangle. Clearly, for any acute triangulation T of R,

δT ≤ π
4
.

Theorem 6.2.1. If u ∈ (1, 2], then for any ε > 0 R admits an acute triangu-

lation T such that δT ≥ π
4
− ε and

cardT =





8, if u ∈ [
√

2, 2];

16, if u ∈ (1,
√

2).

Proof. Let R = ABCD be a rectangle with |AB| = 1 and |BC| = u. Let E,

F be the midpoints of AD, BC respectively.

Case 1. u ∈ [
√

2, 2].
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A

B C

D
E

F

M N

(a) (b)

A

B C

DE

F

Figure 6.6 u ∈ (1, 2]

Let M be the intersection of the bisectors of corner A and B; let N be the

intersection of the bisectors of corner C and D. Then R admits a non-obtuse

triangulation T ′ such that cardmathcalT ′ = 8 and δT ′ = π
4
, as shown in Fig.

6.6 (a). Now for any ε > 0, we can slightly slide M in direction
−−→
MN and N

in direction
−−→
NM , and obtain an acute triangulation T such that δT ≥ π

4
− ε.

Case 2. u ∈ (1,
√

2).

Firstly we dissect R into 2 congruent rectangles ABFE and EFCD. If

we denote |AB|
|AE| by v, then v ∈ (

√
2, 2). By the proof of Case 1, R admits an

acute triangulation T such that card T = 16 and δT ≥ π
4
− ε. ¤

For the sake of convenience, we call an acute triangulation described in

the proof of Case 1 (resp. Case 2) a type I (resp. type II) acute triangulation

of R. For any real number x, let [x] denote the largest integer not larger than

x and let {x} = x− [x].

Theorem 6.2.2. For any ε > 0, a rectangle R with u > 2 admits an acute
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triangulation T such that δT ≥ π
4
− ε and

card T =





4u, if u is even;

4u + 4, if u is odd;

8([u
2
] + 1), if {u} > 0 and u0 ∈ [

√
2, 2);

16([u
2
] + 1), if {u} > 0 and u0 ∈ (1,

√
2),

where u0 = u
[u
2
]+1

.

Proof. If u is an even integer, then R can be dissected into u
2

rectangles with

sides 1 and 2, and each of them admits a type I acute triangulation. Thus we

obtain an acute triangulation T of R with δT ≥ π
4
− ε and cardT = 4u.

If u is an odd integer, then R can be dissected into u−3
2

rectangles with

sides 1 and two rectangles with sides 1 and 1.5. Noticing that each of them

admits a type I acute triangulation, we obtain an acute triangulation T of R

with δT ≥ π
4
− ε and cardT = 4u + 4.

For any u with {u} > 0, let u0 = u
[u
2
]+1

. Then u0 ∈ (1, 2). Now we dissect

R into [u
2
] + 1 rectangles with sides 1 and u0. If u0 ∈ [

√
2, 2) (resp. u0 ∈

(1,
√

2)), then each of them admits a type I (resp. type II) acute triangulation.

Thus we obtain a desirable acute triangulation. ¤

Lemma 6.2.3. If u ≥ 2, then R admits a non-obtuse triangulation T ′ such

that cardT ′ = 8 and δT ′ = arctan 2√
u2−4+u

. Furthermore, δT ′ is a continuous

decreasing function of u.

Proof. Let R = ABCD be a rectangle with |AB| = 1 and |BC| = u ≥ 2,

and let E, F be the midpoints of AD, BC respectively. Suppose that M is

the rightmost intersecting points of the two circles with diameter AE, BF

and N is the leftmost intersecting points of the two circles with diameter ED,
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A

B C

D
E

F

M N

Figure 6.7 A non-obtuse triangulation of R with u ≥ 2

FC. Since 4AME ∼= 4BMF ∼= 4CNF ∼= 4DNE, 4AMB ∼ 4DNC ∼
4MEN ∼ 4MFN , ∠AMB = 2∠MAE and tan ∠MAE = 2√

u2−4+u
≤ 1,

R admits a non-obtuse triangulation T ′ with size 8, as shown in Fig. 6.7.

So δT ′ = arctan 2√
u2−4+u

is a continuous decreasing function of u under the

condition u ≥ 2. ¤

By the proof of Lemma 6.2.3, we can easily obtain the following corollary.

Corollary 6.2.4. For any θ ∈ (0, π
4
), there is a rectangle R with sides 1 and

2(tan θ+ 1
tan θ

) which admits a non-obtuse triangulation T ′ satisfying cardT ′ =

8 and δT ′ = θ.

Theorem 6.2.5. If u ≥ 2, then for any ε > 0 there is an acute triangulation

T of R such that cardT = 8 and δT ≥ arctan 2√
u2−4+u

− ε.

Proof. By Lemma 6.2.3, R admits a non-obtuse triangulation T ′ such that

cardT ′ = 8 and δT ′ = arctan 2√
u2−4+u

. For any ε > 0, we can slightly slide M

in direction
−−→
MN and N in direction

−−→
NM , and obtain an acute triangulation

T such that all the angles is not less than arctan 2√
u2−4+u

− ε. This ends the

proof. ¤
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Theorem 6.2.6. If u > 2, then for any θ ∈ (0, π
4
), R admits an acute trian-

gulation T such that δT ≥ θ and

card T =





16([ u
uθ

] + 1), if u ∈ (1,
√

2);

8([ u
uθ

] + 1), otherwise,

where uθ = 2(tan θ + 1
tan θ

), u = u
[ u
uθ

]+1
.

Proof. By Corollary 6.2.4, for any θ ∈ (0, π
4
), there is a rectangle Rθ with

sides 1 and uθ = 2(tan θ + 1
tan θ

) > 2 which admits a non-obtuse triangulation

T ′
θ satisfying cardT ′

θ = 8 and δT ′θ = θ. Let u = u
[ u
uθ

]+1
; then clearly u < uθ.

Moreover, if [ u
uθ

] = 0, then u = u > 2; if [ u
uθ

] ≥ 1, then u ≥ uθ[ u
uθ

]

[ u
uθ

]+1
≥ 1

2
uθ > 1.

Hence 1 < u < uθ. Now we dissect R into [ u
uθ

] + 1 rectangles with sides 1 and

u. For the sake of convenience, we denote such a rectangle by Ru.

If u ∈ (1,
√

2) (resp. u ∈ [
√

2, 2]) , then by the proof of Theorem 6.2.1 we

know that Ru admits an acute triangulation TRu
such that cardTRu

= 16 (resp.

cardTRu
= 8) and δTRu

≥ θ. Putting these acute triangulations together, we

obtain a desired acute triangulation.

If u ∈ (2, uθ), then by Lemma 6.2.3 we know that Ru admits a non-obtuse

triangulation T ′
Ru

such that cardT ′
Ru

= 8 and δT ′Ru
> θ. Combining all these

non-obtuse triangulation together and slightly sliding each interior vertex by

the similar methods used in the proof of Theorem 6.2.5, we can obtain an acute

triangulation T of R such that cardT = 8([ u
uθ

] + 1) and δT ≥ θ.

The proof is complete. ¤

Remark. If θ ∈ (0, arctan(
√

2 − 1)], namely, uθ ≥ 2
√

2, or [ u
uθ

] ≥ 3,

then we always have u ≥ √
2. Furthermore, if u > 2, then the size of the acute

triangulation described in Theorem 6.2.6 is best possible.



74 Chapter 6. Rectangles with Angles Bounded Below

Recalling that every acute triangulation of any rectangle has size at least

8, we discuss a little bit more on the acute triangulations of rectangles when

u ∈ (1,
√

2).

Theorem 6.2.7. If u ∈ (1,
√

2), then for any ε > 0 R admits an acute

triangulation T such that cardT = 8 and

δT ≥




arctan 16u3

64−u3 − ε, if u ∈ (1, u0];

arctan u
2
− ε, if u ∈ ([u0,

√
2),

where

u0 =

√
6[(108 + 12

√
177)

1
3 (108 + 12

√
177)

2
3 − 24]

1
2

3(108 + 12
√

177)
1
3

= 1.3467...

Proof. Let R = ABCD be a rectangle with sides |AB| = 1 and |BC| = u.

Then by the similar method used in the proof of Theorem 6.1.4, R admits a

non-obtuse triangulation T ′ with size 8, also see Fig. 6.5. Let ∠MAE = α,

∠MFN = β. Then all the rest of angles in T ′ are not less than α or β. By

calculating we have tan α = u
2
, tan β = 16u3

64−u3 and

u0 =

√
6[(108 + 12

√
177)

1
3 (108 + 12

√
177)

2
3 − 24]

1
2

3(108 + 12
√

177)
1
3

is the unique positive real root of u
2

= 16u3

64−u3 . Hence

δT ′ =





arctan 16u3

64−u3 , if u ∈ (1, u0];

arctan u
2
, if u ∈ ([u0,

√
2).

Now, for any ε > 0, we can slightly slide M in direction
−−→
AM and N in direction

−−→
DN , and obtain an acute triangulation T of R such that δT ≥ δT ′ − ε. The

proof is complete. ¤
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surface? Enseign. Math., 37 (1991) 201-212.

15. Y. Colin de Verdière, A. Marin, Triangulations presque équilaterales des
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