

Realization of the Highly Integrated

Distributed Real-Time Safety-Critical System

M

ELODY

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

der Universität Dortmund

am Fachbereich Informatik

von

Jon Arthur Lind

Dortmund

1999

Tag der mündlichen Prüfung: Januar 26,1999

Dekan/Dekanin: Prof. Dr. Heinrich Müller

Gutachter: Prof. Dr. Horst F. Wedde

Prof. Dr. Heiko Krumm

Table of Contents

List of Figures. iii

List of Algorithms. vi

Acknowledgments . viii

Chapter 1: Introduction. 1
1.1 Key Issues in Distributed Safety-Critical Real-Time Systems 1
1.2 Direction and Goals of the Thesis. 2
1.3 Outline of the Thesis . 5

Chapter 2: Previous and Related Work. 7

Chapter 3: M

ELODY

 Model. 11
3.1 Task Model . 12

3.1.1 Criticality and relative degrees of Criticality . 12
3.1.2 Sensitivity and relative degrees of Sensitivity . 12

3.2 File Model . 13
3.3 Task Life Cycle . 15
3.4 System Model . 16

Chapter 4: File Server. 19
4.1 File Server Model . 19

4.1.1 Delayed Insertion Protocol. 19
4.1.2 File Server Client Allocation Policies . 23
4.1.3 File Server Server Allocation Policies . 25
4.1.4 Physical File Access Handling . 26
4.1.5 File History. 26
4.1.6 Task History . 27

4.2 File Server Implementation. 27
4.2.1 File Server Client Implementation . 27
4.2.2 File Server Server Implementation . 34

Chapter 5: Task Scheduler . 43
5.1 Task Scheduler Model. 43
5.2 Task Scheduler Implementation . 44

Chapter 6: File Assigner . 47
6.1 File Assigner Model . 47

6.1.1 File Assigner Lock Protocol. 48
6.1.2 File Assigner Client Functionality . 50
6.1.3 File Assigner Server Functionality. 54
6.1.4 File Assigner Integration . 55

6.2 File Assigner Implementation . 57
6.2.1 File Assigner Client Implementation . 58
6.2.2 File Assigner Server Implementation. 59

Chapter 7: Run-Time Monitor . 63
7.1 Run-Time Monitor Model. 63

ii

7.1.1 Task Scheduler/File Server Integration Controller Sub-Server. 64
7.1.2 Task Monitor Sub-Server . 65
7.1.3 File Monitor Sub-Server . 66
7.1.4 Run-Time Monitor Integration . 67

7.2 Run-Time Monitor Implementation. 67
7.2.1 Task Scheduler/File Server Integration Controller Services 68
7.2.2 Task Monitor Services. 69
7.2.3 File Monitor Services . 71

Chapter 8: File System Experiments . 73
8.1 Read Dominance . 74
8.2 Even Mix . 77
8.3 Write Dominance . 79

Chapter 9: File Server/Task Scheduler Integration Experiments . 83
9.1 Low Criticality . 85
9.2 Middle Criticality. 87
9.3 High Criticality . 90

Chapter 10: File Assigner Integration Experiments . 93
10.1 Read Dominance . 95
10.2 Even Mix . 97
10.3 Write Dominance . 99

Chapter 11: Task Monitoring Integration Experiments. 103
11.1 Deadline Failure Rate Performance . 105
11.2 Survivability Performance . 107

11.2.1 Low Competition . 107
11.2.2 Medium Competition . 108
11.2.3 High Competition . 109

Chapter 12: Conclusion and Future Outlook. 113

Appendix:
A Communication Model . 117

B Time Synchronization . 119

C Source Code. 122

References . 123

List of Figures

Figure 3-1: Safety-Critical Environment . 11
Figure 3-2: Frame of Criticality . 12
Figure 3-3: Frame of Sensitivity. 12
Figure 3-4: Task Execution Phases. .15
Figure 3-5: M

ELODY

 Modules at each node. 17
Figure 4-1: File Server Client/Server Model . 19
Figure 4-2: Read Allocation Handling Protocol . 23
Figure 4-3: Write Allocation Handling Protocol . 24
Figure 4-4: File Server Client / Server Modules . 35
Figure 4-5: M

ELODY

 File Object . 35
Figure 6-1: File Assigner Client/Server Model . 48
Figure 6-2: Get Local Public Copy Protocol . 52
Figure 6-3: Reduce Number of Public Copies Protocol . 53
Figure 6-4: Delete Local Public Copy Protocol . 53
Figure 6-5: Emergency Reduction of Public Copies Protocol . 54
Figure 6-6: File Assigner: Task Scheduler-Oriented Integration Model 56
Figure 6-7: File Assigner: File Server Oriented Integration Model . 57
Figure 6-8: File Server/File Assigner Control Integration . 57
Figure 7-1: Run-Time Monitor Sub-Servers . 64
Figure 7-2: Reading Task Instance Sub-Deadlines. 66
Figure 7-3: Writing Task Instance Sub-Deadlines . 66
Figure 7-4: Run-Time Monitor Services Intergration . 68
Figure 8-1: Read Dominance (

C

j

[9..15]/

R

j

[6..9]) . 75
Figure 8-2: Read Dominance (

C

j

[9..15]/

R

j

[9..12]) . 75
Figure 8-3: Read Dominance (

C

j

[9..15]/

R

j

[12..15]) . 76
Figure 8-4: Read Dominance (

C

j

[7..13]/

R

j

[6..9]) . 76
Figure 8-5: Read Dominance (

C

j

[7..13]/

R

j

[9..12]) . 76
Figure 8-6: Read Dominance (

C

j

[7..13]/

R

j

[12..15]) . 76
Figure 8-7: Read Dominance (

C

j

[5..11]/

R

j

[6..9]) . 76
Figure 8-8: Read Dominance (

C

j

[5..11]/

R

j

[9..12]) . 76
Figure 8-9: Read Dominance (

C

j

[5..11]/

R

j

[12..15]) . 77
Figure 8-10: Even Mix (

C

j

 [9..15]/

R

j

 [6..9]) . 77
Figure 8-11: Even Mix (

C

j

 [9..15]/

R

j

 [9..12]) . 77
Figure 8-12: Even Mix (

C

j

 [9..15]/

R

j

 [12..15]) . 78
Figure 8-13: Even Mix (

C

j

 [7..13] /

R

j

 [6..9]) . 78
Figure 8-14: Even Mix (

C

j

 [7..13] /

R

j

 [9..12]) . 78
Figure 8-15: Even Mix (

C

j

 [7..13]/

R

j

 [12..15]) . 78
Figure 8-16: Even Mix (

C

j

 [5..11] /

R

j

 [6..9]) . 78
Figure 8-17: Even Mix (

C

j

 [5..11] /

R

j

 [9..12]) . 78
Figure 8-18: Even Mix (

C

j

 [5..11] /

R

j

 [6..9]) . 79
Figure 8-19: Even Mix (

C

j

 [5..11] /

R

j

 [9..12]) . 79
Figure 8-20: Even Mix (

C

j

 [5..11]/

R

j

 [12..15]) . 79

iv

Figure 8-21: Write Dominance (

C

j

[9..15]/

R

j

[6..9]) . 80
Figure 8-22: Write Dominance (

C

j

[9..15]/

R

j

[9..12]) . 80
Figure 8-23: Write Dominance (

C

j

[9.15]/

R

j

[12.15]) . 80
Figure 8-24: Write Dominance (

C

j

[7..13]/

R

j

[6..9]) . 80
Figure 8-25: Write Dominance (

C

j

[7..13]/

R

j

[9..12]) . 81
Figure 8-26: Write Dominance (

C

j

[7.13]/

R

j

[12.15]) . 81
Figure 8-27: Write Dominance (

C

j

[5..11]/

R

j

[6..9]) . 81
Figure 8-28: Write Dominance (

C

j

[5..11]/

R

j

[9..12]) . 81
Figure 8-29: Write Dominance (

C

j

[5.11]/

R

j

[12.15]) . 81
Figure 9-1: Low Criticality (Period=10, FTh=1, STh1=1, STh2=1). 86
Figure 9-2: Low Criticality (Period=50, FTh=1, STh1=1, STh2=1). 86
Figure 9-3: Low Criticality (Period=90, FTh=1, STh1=1, STh2=1). 86
Figure 9-4: Low Criticality (Period=90, FTh=1, STh1=1, STh2=5). 86
Figure 9-5: Low Criticality (Period=90, FTh=3, STh1=1, STh2=5). 86
Figure 9-6: Low Criticality (Period=90, FTh=5, STh1=1, STh2=5). 86
Figure 9-7: Low Criticality (Period=90, FTh=5, STh1=3, STh2=3). 87
Figure 9-8: Low Criticality (Period=90, FTh=5, STh1=1, STh2=1). 87
Figure 9-9: Low Criticality (Period=90, FTh=5, STh1=3, STh2=5). 87
Figure 9-10: Low Criticality (Period=90, FTh=5, STh1=5, STh2=5). 87
Figure 9-11: Middle Criticality (Period=10, FTh=1, STh1=1, STh2=1) 88
Figure 9-12: Middle Criticality (Period=50, FTh=1, STh1=1, STh2=1) 88
Figure 9-13: Middle Criticality (Period=90, FTh=1, STh1=1, STh2=1) 88
Figure 9-14: Middle Criticality (Period=90, FTh=1, STh1=1, STh2=5) 88
Figure 9-15: Middle Criticality (Period=90, FTh=3, STh1=1, STh2=5) 88
Figure 9-16: Middle Criticality (Period=90, FTh=5, STh1=1, STh2=5) 88
Figure 9-17: Middle Criticality (Period=90, FTh=5, STh1=3, STh2=5) 89
Figure 9-18: Middle Criticality (Period=90, FTh=5, STh1=5, STh2=5) 89
Figure 9-19: Middle Criticality (Period=90, FTh=5, STh1=3, STh2=3) 90
Figure 9-20: Middle Criticality (Period=90, FTh=5, STh1=1, STh2=1) 90
Figure 9-21: High Criticality (Period=10, FTh=1, STh1=1, STh2=1) . 91
Figure 9-22: High Criticality (Period=50, FTh=1, STh1=1, STh2=1) . 91
Figure 9-23: High Criticality (Period=90, FTh=1, STh1=1, STh2=1) . 91
Figure 9-24: High Criticality (Period=90, FTh=1, STh1=1, STh2=5) . 91
Figure 9-25: High Criticality (Period=90, FTh=3, STh1=1, STh2=5) . 91
Figure 9-26: High Criticality (Period=90, FTh=5, STh1=1, STh2=5) . 91
Figure 9-27: High Criticality (Period=90, FTh=5, STh1=3, STh2=5) . 92
Figure 9-28: High Criticality (Period=90, FTh=5, STh1=5, STh2=5) . 92
Figure 9-29: High Criticality (Period=90, FTh=5, STh1=3, STh2=3) . 92
Figure 9-30: High Criticality (Period=90, FTh=5, STh1=1, STh2=1) . 92
Figure 10-1: File Assigner: Task Scheduler Oriented Integration Model 94
Figure 10-2: File Assigner: File Server Oriented Integration Model . 94
Figure 10-3: Read Dominance (

C

j

[9..15] /

R

j

[6..9]) . 96
Figure 10-4: Read Dominance (

C

j

[9..15] /

R

j

[9..12]) . 96
Figure 10-5: Read Dominance (

C

j

[9.15]/

R

j

[12.15]) . 96
Figure 10-6: Read Dominance (

C

j

[7..13] /

R

j

[6..9]) . 96
Figure 10-7: Read Dominance (

C

j

[7.13] /

Rj[9.12]) . 96
Figure 10-8: Read Dominance (Cj[7.13] / Rj[12.15]) . 96

v

Figure 10-9: Read Dominance (Cj[5..11] / Rj[6..9]) . 97

Figure 10-10: Read Dominance (Cj[5.11]/Rj[9..12]) . 97

Figure 10-11: Read Dominance(Cj[5.11]/Rj[12.15]) . 97

Figure 10-12: Even Mix (Cj[9..15]/Rj[6..9]) . 98

Figure 10-13: Even Mix (Cj[9..15]/Rj[9..12]) . 98

Figure 10-14: Even Mix (Cj[9..15]/Rj[12..15]) . 98

Figure 10-15: Even Mix (Cj[7..13]/Rj[6..9]) . 98

Figure 10-16: Even Mix (Cj[7..13]/Rj[9..12]) . 98

Figure 10-17: Even Mix (Cj[7..13]/Rj[12..15]) . 98

Figure 10-18: Even Mix (Cj[5..11]/Rj[6..9]) . 99

Figure 10-19: Even Mix (Cj[5..11]/Rj[9..12]) . 99

Figure 10-20: Even Mix (Cj[5..11]/Rj[12..15]) . 99

Figure 10-21: Write Dominance (Cj[9..15]/Rj[6..9]) . 100

Figure 10-22: Write Dominance (Cj[9.15]/Rj[9.12]) . 100

Figure 10-23: Write Dominance (Cj[9.15]/Rj[12.15]) . 100

Figure 10-24: Write Dominance (Cj[7..13]/Rj[6..9]) . 100

Figure 10-25: Write Dominance (Cj[7.13]/Rj[9.12]) . 100

Figure 10-26: Write Dominance (Cj[7.3]/Rj[12.15]) . 100

Figure 10-27: Write Dominance (Cj[5..11]/Rj[6..9]) . 101

Figure 10-28: Write Dominance (Cj[5.11]/Rj[9.12]) . 101

Figure 10-29: Write Dominance (Cj[5.11]/Rj[12.15]) . 101

Figure 11-1: Writing Task Profile. 106

Figure 11-2: Reading Task Profile .106

Figure 11-3: Low Competition (Cj [7-11]) . 107

Figure 11-4: Low Competition (Cj [6-10]) . 107

Figure 11-5: Low Competition (Cj [5-9]) . 108

Figure 11-6: Low Competition (Cj [4-8]) . 108

Figure 11-7: Medium Competition (Cj[8-12]) . 108

Figure 11-8: Medium Competition (Cj[7-11]) . 108

Figure 11-9: Medium Competition (Cj[6-10]) . 109

Figure 11-10: Medium Competition (Cj[5-9]) . 109

Figure 11-11: High Competition (Cj[8-12]) . 110

Figure 11-12: High Competition (Cj[7-11]) . 110

Figure 11-13: High Competition (Cj[6-10]) . 110

Figure 11-14: High Competition (Cj[5-9]) . 110

Figure A-1: MELODY Communication Layers . 117

Figure B-2: Clock Variance without any Time Synchronization. 120

Figure B-3: MELODY Time Synchronization Protocol . 120

Figure B-4: Synchronization (Allo) . 121

Figure B-5: Synchronization (Bronto) . 121

Figure B-6: Synchronization (Edmonto). 121

Figure B-7: Synchronization (Plateo) . 121

Figure B-8: Synchronization (Titano) . 121

Figure B-9: Synchronization (Tyranno) . 121

List of Algorithms

Algorithm 4-1: Delayed Insertion Access Request Handler . 21
Algorithm 4-2: Delayed Insertion Schedule Handler . 22
Algorithm 4-3: Delayed Insertion Release Handler . 22
Algorithm 4-4: Delayed Insertion Call Back Acknowledgment Handler 22
Algorithm 4-5: Begin Location Phase. 28
Algorithm 4-6: Begin Acquisition Phase. 28
Algorithm 4-7: Begin Allocation Phase . 28
Algorithm 4-8: Begin Locking Phase . 29
Algorithm 4-9: Begin Computation Phase . 29
Algorithm 4-10: Complete Computation Phase . 30
Algorithm 4-11: Begin Task Instance Abort . 30
Algorithm 4-12: Located File Copy . 31
Algorithm 4-13: Acquired File Copy . 31
Algorithm 4-14: Allocated File Copy . 31
Algorithm 4-15: Locked File Copy . 32
Algorithm 4-16: Called-Back File Copy . 32
Algorithm 4-17: Done File Copy . 32
Algorithm 4-18: File Distribution Change . 33
Algorithm 4-19: Update Task History . 33
Algorithm 4-20: Relative Criticality of a Task Instance . 34
Algorithm 4-21: Relative Sensitivity of a Task Instance. 34
Algorithm 4-22: Estimated Execution Time . 34
Algorithm 4-23: Read Acquire File Copy . 36
Algorithm 4-24: Read Release File Copy . 36
Algorithm 4-25: Write Request File Copy . 37
Algorithm 4-26: Write Lock File Copy. 37
Algorithm 4-27: Write Unlock File Copy . 38
Algorithm 4-28: Write Release File Copy. 38
Algorithm 4-29: Write Refresh File Copy. 39
Algorithm 4-30: Handle Physical Write . 39
Algorithm 4-31: Handle Physical Read. 40
Algorithm 4-32: Update Write Access . 40
Algorithm 4-33: Update Read Access . 41
Algorithm 5-1: Run Task Scheduler . 45
Algorithm 6-1: Priority Insertion Access Request Handler. 49
Algorithm 6-2: Priority Insertion Release Handler . 50
Algorithm 6-3: Priority Insertion Call Back Acknowledgment Handler. 50
Algorithm 6-4: Check Move Copy. 58
Algorithm 6-5: Check Create Copy . 58
Algorithm 6-6: Check Delete Copy . 58
Algorithm 6-7: Get FA Lock . 59
Algorithm 6-8: Granted FA Lock . 59

vii

Algorithm 6-9: Release FA Lock. 59
Algorithm 6-10: Released FA Lock. 59
Algorithm 6-11: Allow Replication. 60
Algorithm 6-12: Allow Relocation . 60
Algorithm 6-13: Allow Delete. 60
Algorithm 6-14: Request FA Lock . 61
Algorithm 6-15: Release FA Lock. 61
Algorithm 7-1: Handle New Instance Creation . 69
Algorithm 7-2: Check Task Scheduler Invocation. 69
Algorithm 7-3: Check Write Sub-Deadline. 70
Algorithm 7-4: Check Read Sub Deadline . 71
Algorithm A-1: Receive File . 118

Algorithm A-2: Send File. 118

Acknowledgments

I would like to first thank my advisor Professor Dr. Horst F. Wedde. I feel indebted for the
guidance and support he has extended to me over the years that we have known each other. He put an
extraordinary amount of time and effort into developing and reviewing this thesis. Without his effort I
would not have been able to write this thesis. His effort and dedication has meant more to me than I
can say. Thank you very much!

I would also like to take this time to thank the other members of my committee, Professor Dr.
Heiko Krumm, Professor Dr. Norbert Fuhr and Dr. Peter Buchholz. The time and effort spent reviewing
this thesis is of great value to me.

To Bernd Klein, I am forever grateful for his invaluable time and effort in reviewing this thesis.

To all my colleagues at Lehrstuhl III, thank you all for the wonderful work environment and
introduction to german culture and society. It has been a great experience that would not have been
without you all.

To my wife, Heidi, I dedicate this thesis. For without her endless support and dedication
throughout, along with her valued assistant in reviewing, this thesis would never have been completed.
It’s a strong person that can endure through it all to see the end of this chapter in our life, and the
beginning of the next. Thank you very much.

Additionally, I would like to thank my parents, Alfred and Norma, to whom this would not have
been possible without some crucial guidance over the years. I also would like to thank all my family
and relatives for the encouragement throughout the duration of my thesis.

Chapter 1 Introduction

1.1 Key Issues in Distributed Safety-Critical Real-Time Systems

Real-time systems are vital to a wide range of applications such as nuclear power plants, process
control plants (automated factories), robotics, flight control (automatic piloting), control of automobile
engines, laboratory experiments, Space Shuttle and strategic defense systems. Exactly what constitutes
real-time computing has not yet been rigorously defined. Real-time systems cover the spectrum from
the very small to the very large, and the size and complexity of such systems is growing. One of the
main characteristics of real-time systems is that the timing constraints of real-time systems go beyond
basic efficiency as characterized by notions of response times, throughput and utilization. In real-time
systems, the time that an operation produces its results is as important (if not more important) to the
success of the computation as is the logical correctness of the result. Normally this temporal
correctness is defined in terms of deadlines. Thus, the basic difference between real-time systems and
non-real-time systems is the notion of time. The traditional notion of fairness does not have the same
significance in real-time computing. In some real-time systems it may not be possible for all tasks to
meet their deadlines. In such real-time systems, when deadlines must be met, the criticality of tasks to
the system’s mission is more important than throughput and utilization. Critical tasks should be
scheduled to meet their deadlines, even at the expense of less critical tasks. Predictability is a
fundamental requirement of such systems.

This thesis focuses on a particular research effort for developing the novel distributed real-time
operating system MELODY . MELODY has been specifically tailored to the requirements of safety-
critical systems. A safety-critical system is a real-time system typically operating in an unpredictable
environment. Examples of safety-critical system include: nuclear power plants, automated robot
systems, automatic landing systems. Tasks in such systems not only have to meet their associated
deadlines, but most of these are critical in the sense that the system would not survive in the case of a
certain number of deadline failures of subsequent task instances. A task instance in such a critical stage
would have a hard deadline, and is said to have become essentially critical. MELODY terms the ability
to handle such essentially critical task instances a system’s survivability [WeD91a]. Beyond this
special real-time aspect of survivability, safety-critical system must also satisfy the following rigid
dependability requirements: reliability, fault tolerance and flexibility. To satisfy these conflicting
requirements, a very high degree of adaptability of system services is demanded. Such that, the safety-
critical system is able to adjust dynamically to the changing environmental conditions typically found
in safety-critical applications. Safety-critical systems have gained rapidly increasing relevance in
research and development, both industrial and commercial, and are typically distributed. All this makes
the design, implementation and testing of large safety-critical systems an extraordinarily complex
modeling and engineering challenge.

Incremental Experimentation. Reliability and timing constraints (regarding external or
environmental time) are conflicting requirements in distributed safety-critical real-time systems. To
achieve reliability (and availability of information) multiple and mutually consistent copies of files are
maintained. This is further enhanced by requiring that a minimum number of copies be available at any
time. The real-time responsiveness of the system should be optimized by placing copies of a file at
nodes were they are most frequently read while the system at the same time tries to reduce the number
of copies that are frequently updated. Measures for achieving high reliability and availability are in
conflict with those that improve the real-time responsiveness since a large number of mutually
consistent file copies improves the availability of file information and the reliability of services
depending on it while requiring a high communication overhead. This in turn reduces the chances that

2 Introduction

writing task instances meet their deadlines. Under the assumption of unpredictable events in the
application environment the trade-off between reliability and real-time responsiveness is dynamic.
Heuristic modeling and analysis procedures are thus to be used, also due to the need for adaptivity in
the system design. For taking into account the large number of relevant parameters, and their complex
interdependencies, in such systems and at the same time designing the MELODY system in a transparent
procedure we followed a novel incremental approach which we termed incremental experimentation
[WeL97]. Incremental experimentation is a heuristic experimental, performance-driven and
performance-based methodology that allows in an educated way to start with a coarse system model
(with accurate logical expectations regarding its behavior). Through experimental investigation, these
expectations are validated. If they are found to successfully stand the tests extended expectations and
model features are generated for refining the previous design model (as well as its performance
criteria). The refinement is done in such a way that the previous experimental configurations are
extreme model cases or data profiles that both logically and experimentally are to reproduce the
behavior of the previous modeling step. Thus novel performance aspects (or tendencies) could
unambiguously be attributed to the influences of the refined model features. MELODY has currently
progressed through five phases of incremental experimentation. The main basis for this thesis is the
completion of this sixth phase in MELODY’s development and distributed implementation. A technical
presentation of the incremental progress in the MELODY project is to be found in [WeL97].

1.2 Direction and Goals of the Thesis

MELODY’s development through five previous phases of incremental experimentation is outlined
below:

Phase 1: The MELODY File System. In the first phase in the MELODY project, novel file system
functions tailored to safety-critical requirements were designed [WeA90]. The functions were
shaped to be both sensitive to real-time constraints and adaptable to the needs in the unpredictable
environments in which safety-critical systems typically operate. This included the development of
three system modules that interacted at each node: File Server, File Assigner, and Task Scheduler.
The main objective was to develop algorithms that adaptively distribute (relocate, replicate and
delete) file copies within the MELODY system.

Phase 2 & 3: Criticality and Sensitivity of Tasks. In practice task instances have a varying degree
to which they are be sensitive to latest information (this applies to read tasks only). It is also
reasonable that a number of subsequent deadline failures of task instances could be tolerated
without endangering the whole system's survivability. The results from phase 1 provided basic
expectations for refining the MELODY model by including criticality and sensitivity measures
[WeX92]. Criticality was then defined as a relative measure based on the number of subsequent
deadline failures and therefore its increasing impact on the system’s survivability. Sensitivity was
defined as the relative degree to which task instances needed access to latest file information. The
concept is based on the number of subsequent deadline failures.

Phase 4: Distributed Resource Scheduling Algorithms. At the same time as phases 2 and 3 were
being completed, novel distributed resource scheduling algorithms had been defined and validated
in extensive comparative simulation experiments [Dan92, WeD91a, WeD91b and WeD94]:
Priority Insertion Protocol: This protocol was designed to minimize priority inversion. To avoid

deadlocks, a call-back mechanism was included that would prevent lower priority tasks from
keeping a lock while a higher priority task was already scheduled in a local priority scheduling
queue.

Delayed Insertion Protocol:This protocol is designed to reduce the effects of cascaded blocking
(that may take place between tasks that need mutually exclusive access to overlapping sets of
shared resources). It is an extension of the Priority Insertion Protocol in which the inclusion into
the scheduling queue is preceded by the tasks needing to achieve a ready status at all resources
requested.

On-the-Fly Protocol:To eliminate cascaded blocking completely this protocol employs an abort
(suspend) and restart strategy. A priority scheduler is used to determine the winning task at a
resource (that has received a lock grant at all resources) while all other tasks which are

1.2 Direction and Goals of the Thesis 3

competing against the winner are determined to be losers. Losers will be suspended and placed
into a local sleep list while being forgotten by all other resource managers. When a busy resource
is released, the scheduler will look at its sleep list for candidates to be awakened and restarted.

When survivability (see section 1.1) of the algorithms was evaluated a key result was that the
Priority Insertion and Delayed Insertion protocols performed significantly superior to the On-the-
Fly protocol. Also, it had been found that for distributed safety-critical real-time systems, by the
overall deadline failure rate performance (the standard performance measure in the real-time
literature), the Delayed Insertion protocol performance was very good, even compared to the
Priority Insertion protocol. Thus it was chosen to implement the distributed resource scheduling in
MELODY. The Priority Insertion Protocol and the Delayed Insertion Protocol are the first examples
of such algorithms, to our knowledge are the only ones, specifically designed and evaluated to be
near optimal in distributed resource scheduling for distributed real-time safety-critical systems.

Phase 5: The Principle of Reversed Task and Resource Scheduling. In traditional operating
system design, resource acquisition is done prior to task scheduling. A task instance that had
achieved locks on all its required resources would then be scheduled/guaranteed by the Task
Scheduler, or otherwise be subject to abortion. Throughout this entire time competing task instances
would be blocked and may run out of time. This remote blocking would be uncontrollable by their
local agencies. Distributed resource allocation occupies a comparably large portion of the task
execution time, in contrast to the purely local task scheduling activities. Thus the abortion decision
by the Task Scheduler would come very late. To instead abort tasks as early as possible and at the
same time lock the resources as late as possible the principle was established [WeK93] to reverse
the order of task and resource scheduling in MELODY. This leaves the Task Scheduler without
accurate information on task execution times (the actual resource allocation time is unknown when
the Task Scheduler is invoked) and a task instance would then have to be scheduled based on
estimates. As a result the Task Scheduler can no longer guarantee a task instance will meet its
deadline (since resource scheduling would be completed after task scheduling). However, by
introducing a novel Run-Time Monitor module not only would the Task Scheduler abort task
instances, but the Run-Time Monitor would supervise resource acquisition and would abort task
instances as early as possible during their acquisition phase. This abortion would be an accurate
decision since the execution time is known before the locking procedure begins. At the same time
competing task instances would benefit from resources being locked as late as possible (after the
task scheduling phase).
Integrated Task and Resource Scheduling. To satisfy the tight constraints found in safety-critical
real-time systems it is necessary to control all activities that could effect a task instance’s ability to
meet its deadline. Since the purely local task scheduling activity takes much less time than (remote)
file acquisition integration of task and resource scheduling means most likely to invoke the Task
Scheduler during the resource scheduling activities of the File Server. Integration of task scheduling
activities would have to handle the following conflicting goals:

• Infrequent invocation of the Task Scheduler. This minimizes the overhead caused by Task
Scheduler activities (increasing the time for resource scheduling activities) while at the same
time the number of task instances waiting to be scheduled is increased thus providing for wiser
scheduling decisions. This policy equally means to invoke the Task Scheduler as late as
possible.

• Invocation of the Task Scheduler as early as possible. This increases, for every individual task
instance, the time available for acquiring the needed resources.

To adaptively handle these issues a dynamic integration policy was developed [WeL94 and WeL97]
which would invoke the Task Scheduler based upon the level of competition and the number of task
instances waiting to be scheduled.

Upon completion of Phase 5, simulated results regarding MELODY’s file system features had been
obtained. Initial simulation regarding the integration of task and resource scheduling had been
conducted, however, the insights were limited to investigating task profiles where survivability was not
at stake. At this point no work had been done to also integrate the File Assigner and Run-Time Monitor
activities. This is a major objective of this thesis. Finally, the current step (phase 6) in the MELODY

4 Introduction

system project constituted a major model extension, from simulation to distributed experiments, that
explicitly reflects actual task computation, file manipulation (read and write operations) and real
communication traffic. In detail, the need for distributed experiments will be described next.

Simulation and Distributed Experimentation. For the purpose of the MELODY simulations a
number of simplifications had been made to the system model. The computation time of a task instance
had been modeled to be selected from a given interval of time. The task instances were then simulated
by placing each of them on an execution queue and generating an event at a certain time for its
completion. File manipulation was handled in such a way that the read/write request was placed onto
an access list with a completion event being generated during a prespecified time interval in the future.
Communication in the simulators was increasingly refined. The initial simulators (phase 1 through 4)
had only generated a message to be sent, and they placed it into the receiving node’s communication
queue. This message was then handled during the next simulation time unit thus suggesting that the
communication took just one (simulation) time unit. The simulator in phase 5 refined the simulation of
the communication medium such that the message transmission time was selected from a bounded
interval of time. In all simulations, the assumption was made that messages were neither lost nor
duplicated, and were received in the order sent. Virtual task computation, file manipulation, and
communication were done to simplify the implementation of the simulator.

However, the effect that communication, real task computation and file manipulation would have
as compared to the simulation model, was an open question. In particular, since the distributed model
had been implemented on a single processor it was not possible to realistically implement distributed
task computation and file manipulation, or to study the real overhead caused by invoking the
corresponding system services. Also, actual communication within a distributed real-time environment
is designed to have a strict upper bound. As the load on the real communication medium increases (due
to unpredictable task arrival rates, file update frequency or file transfers) so does the potential for the
communication time to exceed any designed bounds. The load on the communication medium also
effects the basic assumption that no message is lost and that the order of messages is preserved, like in
case of the UDP protocol which is used by our current distributed implementation, for synchronization
messages. This makes communication a key issue for realistic experimental studies.

This thesis addresses the mentioned issues. Taking this into account it was hoped that by
modifying and varying model parameters, task and data profiles the simulation set-ups and
assumptions could be modeled as extreme circumstances in the distributed set-ups. At the same time it
was expected that the results/tendencies of the simulation studies could be recovered under the
corresponding extreme distributed set-ups while they would be refinable or extendible to the general
distributed experimental situation. This is the line of discussion in the subsequent chapters, and will be
explained there in detail.

The major focus of the distributed experiments is on the performance of MELODY’s integration
policies. The performance criteria employed are the global deadline failure rate (see the paragraph
behind Phase 4) and survivability (see section 1.1). In the experiments the following combined
measure was used: the deadline failure rate was averaged for a given number of experimental runs,
however if a run failed to survive then the outcome of the experimentation was counted as (deadly)
failure at this one observed failure point since survivability is understood as a worst-case measure.

To summarize, the goals for the thesis are:

1: Develop and apply the novel incremental experimentation methodology to implement MELODY

as an academic prototype of a distributed real-time safety-critical system.

2: Specifically report on the particular performance studies regarding the step-wise
conceptualization, development, and integration of the MELODY servers (File Server, Task
Scheduler, File Assigner and Run-Time Monitor).

1.3 Outline of the Thesis 5

1.3 Outline of the Thesis

In chapter 2, previous and related work will be discussed. The technical concepts and features of
the MELODY system are introduced and summarized in chapter 3. The technical model and
implementation of each local MELODY server is described in detail in chapter 4 (File Server), chapter
5 (Task Scheduler), chapter 6 (File Assigner), and chapter 7 (Run-Time Monitor). In chapter 8, initial
experimental results are discussed that were used to verify the implementation of the distributed
implementation of MELODY. The following chapters discuss experimental results (including
experimental set-ups and expectations) regarding the unique and novel integration policies
implemented in MELODY. The experiments on the integration models used for the Task Scheduler/File
Server integration are discussed in chapter 9. In chapter 10, experiments on the integration policies for
the File Assigner are reported. In chapter 11, the integration of the Run-Time Monitor is reported. Final
conclusions are given in chapter 12. Specific information regarding the communication model
(appendix A) and time synchronization protocol (appendix B) is supplied. C-language source code for
the distributed implementation of MELODY is not included in this thesis (directions for obtaining it
along with the distributed experimental set-ups can be found in appendix C).

6 Introduction

Chapter 2 Previous and Related Work

The MELODY project was started at Wayne State University in Detroit, Michigan, evolving from
an extensive Ph.D. research study [Ali88]. For MELODY’s development through five previous phases
of incremental experimentation see section 1.2. These previous stages of the MELODY project have
been reported in [Dan92, WeA90, WeD91a, WeD91b, WeX92, WeD94, WeK93, WeL94, WeL97, and
WeL98]. Although valuable related work (detailed below) has been reported on studying issues
regarding: run-time monitoring, task scheduling, and file assignment and data similarity such
discussions have never been fully integrated into a comprehensive view. Likewise these approaches do
not take into account the unpredictability in safety-critical environments. Thus adaptivity has not been
discussed.

Run-Time Monitoring . Despite extensive work on monitoring and debugging facilities for
distributed and parallel systems, run-time monitoring of real-time systems has received little attention
(with a few exceptions). Special hardware monitoring for collecting run-time data in real-time
applications has been considered in a number of papers [CJD91, MoL97, RRJ92 and TKM88]. These
approaches introduce specialized co-processors for the collection and analysis of run-time information.
The use of special-purpose hardware allows for non-intrusive monitoring of a system by recording the
run-time information in a large repository, often for post-analysis. In related work [HaS89, TFC90 and
HaW90] the use of monitoring information to aid in scheduling tasks has been studied. Here the under-
utilization of a CPU due to the use of scheduling methods based on the worst-case execution times of
tasks is approached through a hardware real-time monitor that measures the task execution times and
delays due to resource sharing. The monitored information is fed back to the system for achieving an
adaptive behavior.

Previous work has been reported on studying on-line run-time monitoring of timing constraints
[OhM96]. In this model, a system computation is viewed as a sequence of event occurrences. The
system properties that must be maintained are then expressed as invariant relationships between
various events, which are monitored at run-time. If a violation of an invariant is detected, the system is
notified so that suitable recovery options can be taken. The invariants are specified using a notation
based on real-time logic, and timing constraints are allowed to span processors. The run-time
monitoring facility monitors and detects violations in a distributed fashion. This allows violations of
the local machine to be detected as early as possible. The monitor consists of a set of cooperating
monitor processes (at each processor). Application tasks on a processor inform the local daemon of
events as they occur. The daemon on the local machine checks for violations as local events happen
while sending information about event occurrences needed by remote machines to other remote
daemons.

Other related work has been reported on the application of real-time monitoring for scheduling
tasks with random execution times [HaS90]. The main focus of this work is to feed back monitored
information to the system for an a posteriori improvement of the behavior. Specifically, the analyzed
results about task execution behavior are funneled back to the host’s operating system and used for the
dynamic scheduling of tasks. The monitor provides accurate and timely information about task
execution behavior. The real-time monitor is then used to measure the elapsed pure execution time,
which is used on-line to calculate the anticipated future execution time. The comparison between the
worst case execution time and the pure execution time is used to determine an estimated execution time.
This estimated execution time is used to determine at an earliest possible time if the task can meet its
deadline.

8 Previous and Related Work

In MELODY, the Run-Time Monitor is responsible for using run-time monitor information
maintained by the File Server to determine, at the earliest possible time, when to abort the task instance.
The Run-Time Monitor uses actual values from prior instances of a task to determine an estimated
execution time and estimates for the time required to complete acquisition of shared resources. Using
these estimates the Run-Time Monitor is then able to determine the earliest point of time at which it
can check the current task instance (based on its current deadline). At this earliest point of time the Run-
Time Monitor uses also the estimates for the remaining time required for the task to determine whether
to abort the task instance. This results in a run-time monitoring facility that is adaptive to changing
environmental conditions that would effect the estimated times.

Task Scheduling. Tasks and their schedulability has been studied [ABD95, HLF95, LiL73,
NaS94, RSL89 and XuP93] in regards to the potential advantages of off-line task scheduling for hard
real-time systems. Off-line scheduling, however, is not reasonable in safety-critical real-time systems
due to the inherent unpredictability of the system environment. An off-line scheduling algorithm would
have to take into account the unpredictability of the tasks and adjust the schedule to handle this
unpredictability. This unpredictability in the scheduling would then have a significant effect on the
quality of the schedule and the performance of the operating system. On-line scheduling is therefore
typically the standard method of task scheduling in safety-critical real-time systems from which work
for example has been reported in [LeM80 and LeW82]. In on-line scheduling, the schedule for tasks is
computed as tasks arrive while the scheduler is not assumed to have any knowledge about the major
characteristics of tasks that have not yet arrived. The major advantage of this approach is its
adaptability to handle unpredictable environments. However, there are two fundamental disadvantages
with on-line scheduling in safety-critical real-time systems. The first problem is the limited ability of
the task scheduler to guarantee that the timing constraints will be satisfied, because there is always the
possibility that a newly arrived task will make a previously scheduled task miss its deadline. The
second problem is the amount of time available for the scheduler to compute schedules on-line is
severely restricted.

A well-understood on-line scheduling algorithm for guaranteeing the deadlines of periodic tasks
in a distributed real-time system is the rate monotonic scheduling algorithm [LiL73]. Under this
algorithm, fixed priorities are assigned to tasks based upon the rate of their requests (tasks with
relatively shorts periods are given a relatively high priority). However, the scheduling problem for
aperiodic tasks is very different from that for periodic tasks. Scheduling algorithms for aperiodic task
must be able to guarantee the deadlines for periodic tasks while providing good average response times
for aperiodic tasks even though the occurrence of the aperiodic requests are non-deterministic. Two
common approaches for servicing these aperiodic tasks are background processing and polling [LSS87
and SLR86]. Background servicing of aperiodic tasks would occur whenever the processor is idle. If
the load of the periodic tasks is high, then the utilization left for background service is low, and
background service opportunities are relatively infrequent. The polling method consists of creating a
periodic task for servicing aperiodic tasks. At regular intervals, the polling task is invoked and services
any pending aperiodic requests. However, if no aperiodic tasks are pending, the polling server suspends
itself until its next period and the time originally allocated for aperiodic tasks is not preserved but is
instead used by periodic tasks. Even though polling and background processing can provide time for
servicing aperiodic tasks, they have the drawback that the average response times for the algorithms
are unpredictable (especially for background processing). In safety-critical systems the relatively long
average response time would have a significant impact on the system’s ability to schedule essentially
critical task instances having a severe impact the system’s survivability.

The sporadic server algorithm [SLS88 and SSL89] has been developed to provide faster average
response times for aperiodic tasks while guaranteeing the deadlines of periodic tasks. As with polling,
the sporadic server algorithm creates a high priority periodic task for servicing aperiodic tasks. The
sporadic server accommodates aperiodic tasks by inserting them into a free slots in the “periodic
schedule” (which is likely to happen as long as aperiodic tasks occur sporadically). However unlike
polling, the sporadic server yields improved average response times for aperiodic tasks because of its

Chapter 2 Previous and Related Work 9

ability to provide immediate service for aperiodic tasks (due to it’s high priority). Slack stealing is a
relatively new approach which offers improvements in average response times over the sporadic server
[ShG92 and SpB96]. The Slack stealing algorithm is an optimal service method for the sporadic server
based on the idea of “stealing” all the possible processing time from the periodic tasks. The amount of
slack time available during a given interval is equal to the amount of time that can be used to execute
aperiodic requests without causing any periodic request to miss its deadline.

In MELODY, due to the unpredictable environment which is typical for safety-critical applications,
aperiodic tasks are not assumed to arrive sporadically (as in safety-critical environments) thus the two
techniques discussed cannot be applied. Rather, in MELODY the order of task and resource scheduling
has been reversed (see section 1.2) with invocation of the Task Scheduler occurring during the resource
scheduling activities of the File Server. Invocation of the Task Scheduler is then based upon a dynamic
method (rather than a static priority) which takes into account both the number of task waiting to be
scheduled and the current number of competing task instances in the File Server.

File Assignment Problem. In distributed computing determining the optimal number of file
copies and their distribution is known as the file assignment problem. Improper distribution of files is
likely to yield a poor performance. This poor performance is the result of overhead on the operating
system caused by remote access, and the additional communication required to access a remote file
copy also adds transmission costs to the overhead. While read access to a low number of file copies
would cause access delays (since it is more likely that a task will need to access a remote copy) it
improves write performance (due to fewer number of mutually consistent copies needing to be
updated). This inherently conflicting issue in turn then effect issues such as file availability and system
reliability. The file assignment problem directly addresses how to minimize the local node and global
network costs of the system by distributing the correct number of file copies among a set of nodes. The
local node costs are decomposed into the storage cost and the CPU cost for processing the information
such as updating, retrieving, and storing. Network cost are decomposed into communication and
transmission costs. This problem of determining a solution to this problem under varying system
conditions has been addressed in a number of publications [ChL87, DoF82, MoL77, Mur83, NoA87,
Pol94, Pu86, RoS96, SeS79, Seg76, Yu85 and ZSA92].

Solutions to the file assignment problem can be divided into two classes: static file assignment and
dynamic file assignment. In static file assignment [MoL77, Mur83, and Pu86], the design of the file
assigner is based upon a set of time-invariant system parameters. Therefore, in solutions based on static
file assignment the distribution of files is determined prior to system start-up and their locations remain
unchanged for the entire operation period. Clearly in an unpredictable environment (such as assumed
for MELODY), static file allocation is totally unrealistic and has limited applications. Dynamic file
assignment [LeM78, SeS79, Seg76, Smi81, and Yu85] is defined in terms of time-variant file location
and system parameters such as the file request rate and file access patterns. In these approaches the file
access patterns are monitored, and then a static file assignment function is invoked whenever the access
patterns change. In MELODY, the File Assigner is responsible for adaptively changing the distribution
of file copies according to the changing and typically unpredictable environment [Ali88, Sta96 and
WeL97]. Rather than invoking the File Assigner based upon changes in the file access patterns,
MELODY invokes the File Assigner based on changing task request patterns and deadline failure rates.
The File Assigners then utilizes information monitored by the local and remote sites to determine
which of the many alternatives should be taken to improve the survivability and deadline failure rate
performance of the local site.

Imprecise Computations & Similarity. The value of a data object that models an entity in the
real world cannot be updated continuously to perfectly track the dynamics of the real-world entity. The
time required to perform the update alone introduces a time delay which means that the value of a data
object can not instantaneously be the same as the real-world entity. In critical system situations it may
well be more important for the survivability to rely on data values which are not quite up-to-date yet
timely available, than to wait for accurate values and potentially miss a critical deadline. Weaker

10 Previous and Related Work

correctness criteria can be introduced for allowing transactions to utilize two different but similar
interchangeable values without adverse effects. In particular, the data values of a data object that are
slightly out-of-date (but locally available) are often usable as read data for a task. Two data objects
would be viewed as similar if the corresponding values in the data objects are viewed as similar.

Recently work has been done exploiting similarity between task instances to improve the
performance of real-time data-intensive applications [HKM97, KaR95, KuM93, and RaP95]. In a
schedule, two task instances are considered similar if they are of the same type and access similar
values of the data object. An algorithm to produce a reduced schedule has been proposed [HKM97] to
exploit the trade-off between data consistency and system work-load. This reduced schedule is
generated based upon the observation that certain similar consecutive task instances are insignificant
to the system. The real-time scheduler would then skip unimportant task instances with the hope of
satisfying timing constraints and/or safety requirements within the system. This algorithm further
reduces the schedule by removing one of two similar task instances in a schedule which would still
preserve similarity of the output, and in this way data consistency within the system would not be
violated. In MELODY tasks are assumed to be critical in a varying degree to which the survival of the
system depends on their timely completion. If a task instance misses its deadline it is assumed that it
would be more critical that the subsequent task instance meets its deadline. At some time, following a
number of deadline failures, the task instance would become essentially critical and must meet its
deadline (or else the system may not survive) (see section 1.1). In this way MELODY views the previous
failed instances of a task as insignificant in respect to the system’s survivability.

The imprecise computation technique is a way to provide flexibility in scheduling and resource
management [LLL92]. For many applications, one is willing to accept the results of a poorer quality
when the desired results of the best quality cannot be obtained. This is especially true for safety-critical
applications where every essentially-critical task must meet its timing constraints. The imprecise
computation technique improves the chances that a critical task will meet its deadline by making sure
that an approximate result of an acceptable quality is available to the task when the result of the desired
quality cannot be obtained. One method to avoid timing faults is to leave less important tasks
unfinished if necessary [LiS90 and LNL87]. In this way, rather than treating all tasks equally, the
system views important tasks as mandatory and less important tasks as optional. This is then further
extended such that every task is composed of two subtasks: a mandatory subtask and an optional
subtask. The imprecise computation technique makes meeting deadlines in real-time systems
significantly easier for the following reason. To guarantee that all timing constraints are met, the system
needs only to guarantee that all mandatory subtasks are completed, while optional subtasks can be
completed as time permits. In MELODY weakly consistent local file copies (Private copies) are meant
to be dynamically provided in due time at a site for enhancing the chances that an essentially critical
task instance will be able to meet its deadline, and in turn preserve the system’s survivability. This
enhanced performance is due to faster local access times in comparison to remote access times which
would incur additional communication overhead. More generally, tasks in MELODY are viewed as
sensitive relative to the degree in which they need to utilize latest file information. With an increased
number of subsequent deadline failures, the need to obtain up-to-date file information is increasingly
neglected such that locally available information would be utilized for the sake of meeting the deadline
and ensuring that the system survives (see section 1.2).

Chapter 3 MELODY Model

The model of a distributed safety-critical application is shown in figure 3-1. Here, there is a safety-
critical environment in which the application and operating system have been distributed. Typically,
safety-critical systems designate that certain nodes are providing specific services to the safety-critical
application (due to specialized hardware and software located at these nodes). The model of such a
safety-critical system also allows that certain nodes only provide system services to remote application
nodes, but contain no application tasks (node C in figure 3-1). The safety-critical application in this
environment is then held responsible for: defining which tasks are located at which nodes; and
determining when task instances are created, and associating deadlines with those instances. Due to the
unpredictable environment the time between two instances of the same task cannot be predetermined
by the application.

Figure 3-1: Safety-Critical Environment

In the example of an Automated Landing System (ALS) (as mentioned in section 1.1), tasks would
be operations such as contributing to trajectory adjustments for approach and landing. Task instances
would have to be completed under increasingly rigid and increasingly critical time constraints. An ALS
would have to take into account the following conditions when generating task instances and
associating their deadlines:

• Allow for subsequent adjustments that would altogether guarantee the correct angle with respect to
the runway under unpredictably changing wind conditions (e.g. gusty wind);

• The delay of the aircraft's reaction (approximately 4 sec. for a 747) makes a correction after a certain
point of time obsolete. If the course is still wrong at this time the aircraft may crash onto the runway.

If a guidance system is to be used to determine the position with respect to the runway, then the
deadlines of some task instances could possibly be missed. This being dependent upon the amount of
“unexpected” information in the guidance system under processing. The closer a critical point of time
comes, after which a collision with the ground becomes unavoidable, the tighter are those deadlines of
corrective task instances. In this sense these tasks, and their instances, become increasingly critical, and
eventually essentially critical (see also the formal concepts in section 3.1). The last instance of a task
with a deadline before the point of no return (essentially critical task instance) must succeed.
Otherwise, the airplane (and thus the ALS inside) would be endangered (possibly destroyed).

Communication
Medium

Node A

Safety-Critical
Application

Safety-Critical
Operating System

Node B

Safety-Critical
Application

Safety-Critical
Operating System

Node C

Safety-Critical
Operating System

Node D

Safety-Critical
Application

Safety-Critical
Operating System

Safety-Critical Environment

12 MELODY Model

3.1 Task Model

Tasks represent control functions, corrective actions etc. They are executed on a regular basis.
Every occurrence of a task is termed a task instance or incarnation. In MELODY, due to the
unpredictability of the environment typical in most safety-critical applications, they are assumed to be
aperiodic in nature. They may also be executing on dedicated processors. File access is done using
remote file operations rather than task migration or file transfer to the accessing site. Each task is a
small-scale, transaction-like operation with just one segment of task activity termed critical section in
which it accesses a number of objects (copies of possibly different files) concurrently. Write operations
work on all copies of a file, through remote local write operations, while read operations read from only
one copy. We also assume that task execution times on each local file copy could be determined within
tight bounds.

3.1.1 Criticality and relative degrees of Criticality

Tasks in safety-critical systems are critical in a varying degree to which the survival of the system
depends on their timely completion. We will define a formal concept of task criticality in the following
way:

Definition 1: For each site I , site-dependent integer thresholds ai’ and ai" (which could be readjusted
e.g. under changing hardware technology) will represent a frame of criticality (figure 3-2) for all
tasks arriving at I . Each task Tj at site I is then assigned an individual criticality value Cj. If Cj ≥
ai", then Tj is considered as a non-critical task, if Cj ≤ ai’, then the task is an essentially critical
task. If ai’< Cj < ai", the task is called critical.

Figure 3-2: Frame of Criticality

Cj is understood then to be the criticality of the initial instance of task Tj, and would typically be
experimentally determined (tailored to the application). Then, the essential step is to define a relative
degree of criticality:

Definition 2: Let Cj be the criticality value of Tj, and Tjk the kth instance or incarnation of Tj. The
relative criticality of instance Tjk is the integer Cjk defined as follows:
Cjk := Cj; Cj ≤ ai’ or Cj ≥ ai" or Tj(k-1) met its deadline;
otherwise
Cjk := max{(Cj- # of failures after last successful instance completion), ai’}

3.1.2 Sensitivity and relative degrees of Sensitivity

 In a similar way read tasks need latest information to a varying degree. With an increased number
of subsequent instance failures, however, the need of obtaining latest file information is more and more
neglected, for the sake of making the deadline. Similar to definition 1 we define a formal concept of
task sensitivity:

Definition 3: For each site I , site-dependent integer thresholds bi’ and bi" will represent a frame of
sensitivity (figure 3-3) for all tasks arriving at I . Each task Tj at site I is then assigned an
individual sensitivity value Rj. If Rj ≥ bi", then task Tj is called robust. If Rj ≤ bi’, the task is
considered as essentially sensitive. If bi’ < Rj < bi", the task is called sensitive.

Figure 3-3: Frame of Sensitivity

Rj is understood to be the sensitivity value of the initial instance of task Tj, and would typically be
experimentally determined (tailored to the application). Then, the essential step is to define relative
degrees of sensitivity:

Essentially Critical

Highest Criticality

Non Critical

Lowest Criticality

Critical

ai´ ai´´

Essentially Sensitive

Highest Sensitivity

Robust

Lowest Sensitivity

Sensitive

bi´ bi´´

3.2 File Model 13

Definition 4: Let Rj be the sensitivity value of Tj, and Tjk the kth instance of Tj. The relative sensitivity
of instance Tjk is an integer Rjk defined as follows:
Rjk := Rj; Rj ≤ bi’ or Rj ≥ bi" or Tj(k-1) met its deadline;
otherwise
Rjk := min{(Rj + # of failures after last successful instance completion), bi"}

Thus the relative criticality (relative sensitivity) of the instances of Tj is constant if Tj is essentially
critical or non-critical (essentially sensitive or robust). Also, once the threshold values ai’ or bi" have
been reached by a task instance Tjk the value Cjk does not change, except after successful completion of
Tjk. Finally the instance Tjk of task Tj is called critical, non-critical, essentially critical (sensitive, robust,
essentially sensitive) depending how Cjk (Rjk) relates to the threshold values ai’, ai" (bi’, bi") as given
above.

Tasks such as described in the example, discussed in the beginning of this chapter, typically need
up-to-date information since the environment as depicted may change quickly and broadly, and
therefore they are sensitive according to definition 3. If public copy information would come too late
for the next task instance to complete within its deadline while waiting for the analysis of the latest
information to be reflected in the public copies and if the next task instance were essentially critical, it
is reasonable for the survival of the system to make use instead of local private copies, even care for
having such copies available when they are needed. In this way there would be a chance to avoid the
loss of the system. Correspondingly, with subsequent task instances failing the next instance is
considered less sensitive, or more robust. In table 3-1 and table 3-2 a few task histories should further
clarify the concepts.

Table 3-1: Sample Failure History for Task T1 (ai’ := 2 =: bi’ , ai" := 8 =: bi")

In table 3-1, task T1 has C1=R1=4 as initial criticality and sensitivity values, respectively. Instance
T11 fails to meet its deadline. T11's failure results in instance T12 having a decreased relative criticality
C12=3 (T12 is more critical than T11), and an incremented relative sensitivity R12=5 (i.e. T12 is more
robust than T11). The failure of instance T12 again implies changes of T13's relative criticality and
sensitivity values to 2 and 6, respectively. T13 has become essentially critical but completes by its
deadline. The success of T13 causes T14's relative criticality and sensitivity values to be reset to the
initial values of C1 and R1, respectively. However, had instance T13 not been successful the entire
system might no longer have survived since it was essentially critical.

Table 3-2: Sample Failure History for Task T2 (ai’ := 2 =: bi’ , ai" := 8 =: bi")

A failure history for task T2 with an initial criticality C2=6 and sensitivity R2=7 is shown in table
3-2. After the failure of T21, instance T22 is robust. As also T22 fails the relative sensitivity of T23 remains
at 8 since T22 was already robust. Instance T23 is able to complete successfully, so T24's relative
criticality and sensitivity values will be set to the initial values C2 and R2, respectively.

3.2 File Model

Concurrency control. Concurrency control in the sense of data consistency among a number of
replicated data objects has been broadly discussed in distributed databases (recently also including
real-time transactions, see chapter 2). Strong concurrency control protocols offer error-free data access,
but require longer response times due to synchronization delays. Weak concurrency control protocols

Instance #k 1 2 3 4
Status Failed Failed Success

Criticality C1k 4 3 2 4

Sensitivity R1k 4 5 6 4

Instance #k 1 2 3 4
Status Failed Failed Success

Criticality C2k 6 5 4 6

Sensitivity R2k 7 8 8 7

14 MELODY Model

reduce the communication overhead, but provide less error-free data access, and might not always be
sufficient for a system. To provide adaptive real-time services in a safety-critical environment, MELODY

maintains two types of file copies: public and private. Public copies utilize a strong concurrency
protocol to guarantee that they are kept mutually consistent. Private copies utilize only a weak
concurrency protocol (insuring that the copy is refreshed some time after the public copy is updated).
For every public copy their exist a shadow copy from which tasks would read even while the
corresponding public copy is being updated. The shadow copy thus provides for concurrent read/write
access to public copies (this technique has been used frequently for non-replicated files, and has been
extensively described in the literature (see chapter 2)). Write operations always work on all copies of
a file, while read operations would be accommodated by either a shadow or private file copy, the latter
being locally available. Whether an instance would tolerate using information from a private copy
depends on its criticality and sensitivity (see section 3.1).

Public copies of a file are shared resources within the distributed real-time operating system
MELODY. Write operations are performed on all public copies by utilizing a strong concurrency
protocol. Write operations are multicasted (see appendix A) to all sites requiring information regarding
the update. The strong concurrency protocol used in MELODY causes the access times for write
operations to depend directly on the number of file copies rather than on their location. This results
from additional overhead caused by an increasing number of public copies, while changes in public
copy locations do not necessarily increase the overhead. In MELODY updating of a public copy is
controlled by the local File Servers (see chapter 4) utilizing the Delayed Insertion protocol (see section
4.1.1). This protocol provides a method for logically locking all copies simultaneously prior to
execution of the update operation. The updating of a shadow copy is a locally atomic action in
conjunction with the public copy update operation. This atomic action guarantees that no new write
operation is allowed to be performed until the completion of the update to the shadow copy. However,
read operations are allowed to continue using either an old version of the shadow copy (which is the
latest copy while the public copy is being updated) or the new shadow copy (while the old shadow copy
is being transformed into the new public copy). To further enhance the reliability of public copies a
minimum number of public copies should be available at any time (for information of crucial
relevance). In this way ensuring that information would be available in the case of site or link failures.

An example of a public copy update of file F at a site I can be seen in table 3-3. At time 0, a public
copy update is requested by task instance T21, and will not complete updating the public copy until time
15. At time 10, a read operation is requested by task instance T11, is started on the shadow copy and
will continue until time 20. At time 15, the updating of the public copy is completed. The File Server
then designates this copy as the new shadow copy, and as a result all future read operations will be
performed on this copy. The File Server then proceeds to transform the old shadow copy into the new
public copy version. This is done by applying the update to the old shadow copy before responding to
task instance T21 that the update has been completed. However, task instance T11 is still currently
reading the old shadow copy, therefore the updating of the public copy must wait until the completion
of task instance T11. The consistency of the information read by task instance T11 is still accurate since
the update operation on the public copy has not yet been completed. Therefore, the information read is
still the most current (readable) information available at this site. At time 20, the read operation for task
T11 is completed. Following the completion of task instance T11, the File Server detects that there are
no longer any outstanding read requests for the old shadow copy. At this time it proceeds to perform
the update operation (from task instance T21) on the old shadow copy. At time 25, task instance T31

requests to read the shadow copy of file F. Its request is granted and the read operation proceeds on the
new shadow copy. At time 35, the update operation is completed on the old shadow copy and it’s then
designated as the public copy version, and task instance T21 is informed that the update has completed.
Whether the update was successful would be based on whether the update operation was completed
prior to the deadline at all sites holding a public copy. Also at time 35, the read operation for task
instance T31 is completed.

3.3 Task Life Cycle 15

Table 3-3: Public Copy Update Example

Private copies of a file are a non-sharable resource among sites within the MELODY system, while
they provide weakly consistent information to local robust or essentially critical reading task instances.
They are requested when the robust (see section 3.1) read access rate to a file is high at a certain site
and the updates are rather infrequent. MELODY would also request a private copy when it determines
that the next instance of a task Tj would be essentially critical (see section 3.1). Maintaining a private
copy of the file at a site would enhance the chance for specific task instances to meet their deadlines
under all circumstances when necessary. This enhanced performance results from faster access times
for local access, in comparison to remote access (with its inherent communication overhead).
Therefore, as the number of private copies of a file increases the expected time required to access a
copy of this file is reduced. The local File Server ensures that a private copy is refreshed after a public
copy update operation has occurred. A reading task instance would use a local private copy if Tjk is
considered essentially critical or robust. Otherwise, the read operation must be performed on a shadow
copy. The characteristics of whether the task is robust and how fast it becomes essentially critical are
aspects that would be tailored by the application using MELODY’s parameter settings (see section 3.1).

3.3 Task Life Cycle

A task instance Tjk goes through the following four phases to successfully complete before its
deadline (figure 3-4):

Scheduling: Instance Tjk is placed into an execution schedule by the Task Scheduler.
Location: The list of required files for task instance Tjk are located by the File Server.
Acquisition: All necessary file copies for instance Tjk are acquired by the File Server.
Computation: The instance performs its read/write operation on the acquired files in cooperation

with FS.

Figure 3-4: Task Execution Phases

An application creates a task instance Tjk at a specific time (determined by the application in
regards to the real-time environment) that will be termed as the creation time of the task instance.
Following its creation, task instance Tjk is sent, by the application, to MELODY together with its relative
degrees of criticality and sensitivity (which are based on the prior task instance Tj(k-1)). If instance Tjk is
essentially critical, it will be sent to the local File Server (section 3.4) to begin its location phase.
Otherwise, it is sent to the local Task Scheduler (section 3.4) to begin its scheduling phase.

During the scheduling phase of a task instance Tjk, the Task Scheduler tries to schedule the task
instance based on its scheduling algorithm (see chapter 5). Once the instance has been scheduled it is
sent to the File Server to begin its location phase. However, if the task instance is determined to be non-
schedulable, it is aborted and removed from the system. More detailed information regarding the task
scheduling in MELODY can be found in chapter 5.

Time Task Instance Operation File F (copy a) File F (copy b) Operation Task Instance
0 T21 write --> Public Shadow
5
10 Shadow <-- read T11
15 T21 completed <-- Public

New Shadow Old Shadow
20 Old Shadow -->

<--
completed

update
T11

T21
25 T31 read --> New Shadow
30
35

T31 completed <-- Shadow
Old Shadow

Public
--> completed T21

Other System
Activities

Creation
Time

Scheduling
Phase

Location
Phase

Aquisition
Phase

Computation
Phase Laxity Real-Time

Deadline

Completion
Time

Start
Time

Execution Time

16 MELODY Model

Task instances received by the File Server are to begin their associated location Phase. The File
Server locates all files in the list of required files (LRFjk) for an instance Tjk. Writing task instances locate
all public file copies. Reading task instances locate either a local copy (shadow or private based on the
task instance’s relative degrees of criticality and sensitivity) or a remote shadow copy (private copies
can not be accessed remotely). An instance completes its location phase and begins its acquisition
phase after all files have been located. At this point the time required for the computation phase of the
task instance is known based on: the number of files accessed; physical location of the file copies; and
the operation to be performed (read/write).

A task instance that is in the acquisition phase acquires files based on the type of access required.
Writing task instances go through the two sub-phases to complete their acquisition phase: allocation
and locking. These two sub-phases for writing task correspond directly to the steps 1 through 3 in the
Delayed Insertion Protocol (see section 4.1.1). In the allocation phase a task instance sends access
request messages to all file copies and waits to acquire ready messages from copies of all files in it's
LRFjk. Only after acquiring all ready messages will the instance start the locking phase. During the
locking phase the instance sends schedule messages to all copies of all files in it's LRFjk and waits to
be granted locks from the file copies. A writing task instance completes the acquisition phase only after
being granted locks from copies of all files in it's LRFjk. Reading task instances are not required to
compete for access to either shadow or private file copies. However, they are required to be queued at
the site holding the copy and receive in response an acquired message (read lock) before beginning
their computation phase. Once a writing (reading) task instance has received a ready (acquired)
messages from a File Server holding a copy of the file, the file copy will be guaranteed not to be
physically deleted until the task instance has either completed its computation phase or is aborted and
releases the copy.

If during the location and acquisition phases of a task instance it is no longer possible for the task
instance to complete before its associated deadline it will be aborted, and all files acquired are released
before the task is removed from the system. A task instance that has completed its acquisition phase
can no longer be aborted. Whether the task instance completes successfully before its deadline is
determined by the File Server.

An instance that has completed its acquisition phase begins its computation phase based on the
order determined by the Task Scheduler. Once the task instance has begun its computation phase it uses
a remote procedure call (RPC) mechanism to send the read/write operation to all files. The task instance
then waits to receive a response back from all files. A response with a successful status is sent back to
the task instance if the File Server (at the location where the file copy resides) was able to perform the
operation (read/write) on the file before the task instance’s associated deadline. Otherwise, a response
with a failed status is returned. The determination as to whether a reading task instance Tjk has
completed before its associated deadline, is made when the response from the read operation is
received by Tjk. If the response is received prior to deadline DTjk then Tjk is determined to be successful,
otherwise Tjk has failed (this is reflected in the relative degree of criticality and sensitivity of the next
task instance of Tj(k+1)). The File Server, however, guarantees that once a writing task instance Tjk

broadcasts its write operation to all sites, involved in the write operation, the write will be completed
regardless of whether or not the operation has been completed prior to deadline DTjk. This ensures
consistency of the MELODY file copies since some sites may have already performed the write
operation prior to the deadline expiring (MELODY also provides no mechanism to handle a roll-back on
the task level in order to avoid the high overhead this would create). The determination as to whether
a writing task instance Tjk has completed prior to its deadline, is then based on the status of response to
the write operation returned by each site. If any site responded with a failed status then Tjk is marked
as having failed.

3.4 System Model

In MELODY four major modules interact at each node: File Server, Task Scheduler, Run-Time
Monitor and File Assigner (figure 3-5). The first two are standard operating system functions while the

3.4 System Model 17

File Assigner and Run-Time Monitor realize quite novel services in MELODY. All modules are realized
through local agents interacting under distributed control. Each module is briefly described below
(specifications can be found in the following chapters).

Figure 3-5: MELODY Modules at each node

File Server (FS). Each File Server engages in allocating concurrently the needed files for some k
tasks. These are selected from the Competing Task Queue (CT). In our present distributed
implementation the allocation is done through one of our novel distributed resource scheduling
algorithms, the Delayed Insertion Protocol (see section 4.1.1), which is near-optimal both for
minimization of deadline failures and survivability [Dan92]. Upon learning about an update of a file,
i.e. of its public copies, the File Server, at a site holding a private copy, requests to refresh the private
copy using a remote procedure call from a site holding a public copy. The File Server also maintains a
read/write access history for each file requested by a task. This is used to calculate an estimated
execution time (EETjk) for a task instance Tjk to the set of needed files (LRFjk):

EETjk = Estimated_Location_Time(Tj) + Estimated_Acquisition_Time(Tj) (3.4-1)
+ ∑r∈ LRFjk Computation_Time(r)

The Estimated_Location_Time and Estimated_Acquisition_Time for Tj is determined as the average of
the corresponding values of the last 5 instances of Tj. The Computation_Time is the time required to
access the needed copies of file r, including the communication time for the possibly involved remote
operations.

Task Scheduler (TS). The Task Scheduler schedules a set of all tasks that have arrived at a site I
according to a scheduling policy tailored to the application needs. A task instance Tjk arriving at site I
(unpredictably), would be considered for scheduling using the following parameters:

EETjk: Estimated Execution Time of a task instance Tjk;
DTjk: Deadline for task instance Tjk;
LRFjk: List of required files for Tjk, containing for every file its identifier and access pattern;
PrTj: Static Priority.

Upon arrival of Tjk, the local Task Scheduler communicates with the local File Server to check which
of the files in LRFjk are locally available, and calculates an estimate for the actual execution time based
on EETjk. Tasks are then placed into the local task queue (LTQ) according to their order of execution,
and dispatched for execution from this queue. Due to the unpredictability of the environment, and the
ensuing typical aperiodicity of task instance occurrences, task scheduling in MELODY is non-
preemptive. The Task Scheduler also characterizes tasks as either: Strongly Schedulable (Tjk can be
inserted into LTQ and meet its deadline), or Weakly Schedulable (Tjk is decided to fail but could have
met its deadline in case that all files from LRFjk had been locally available, or the number of public
copies would have been smaller).

File Assigner (FA). An essential adaptive feature in MELODY is its handling of distributed
information resulting in strongly consistent (public) file copies, distributed over different system sites
for both better availability and reliability. Their number, location, and quality are adaptively rearranged
to ensure improved availability and system survivability under hard real-time constraints. This adaptive
control of file copy distribution is handled by the novel File Assigner module. The File Assigner must
make a trade-off, under changing request and deadline failure patterns, between the costs of serving
file requests with a given distribution of public copies, and the costs for realizing various alternative
distributions. The term “costs” here denotes time delays for overhead operations, communication and

Run-Time Monitor

Task Scheduler

File Server

File Assigner

18 MELODY Model

transmission delays, both for remote and local communication. A large number of public copies is
advantageous for sensitive read tasks since a copy is the more likely to be locally available. However,
write tasks at the same time suffer from this since the cost for updating grows with the number of copies
(as discussed previously). Each local File Assigner then cooperates with the File Server and with
remote File Assigners to manage the replication, relocation, and deletion of public file copies within
the MELODY file system. Private copies are not managed by the File Assigner since decisions for
creation or deletion are solely local and require no consensus from remote sites.

Run-Time Monitor (RTM). As discussed previously (see section 1.2), to abort tasks as early as
possible and at the same time lock the resources as late as possible the principle was established to
reverse the order of task and resource scheduling in MELODY. This leaves the Task Scheduler without
accurate information on task execution times (the actual resource allocation time is unknown when the
Task Scheduler is invoked) and a task instance would then have to be scheduled based on estimates. As
a result the Task Scheduler can no longer guarantee a task instance will meet its deadline (since
resource scheduling would be completed after task scheduling). However, by introducing a novel Run-
Time Monitor module not only would the Task Scheduler abort task instances, but the Run-Time
Monitor would supervise resource acquisition and abort task instances as early as possible during their
acquisition phase. This abortion would be an accurate decision since the execution time is known
before the locking procedure begins. At the same time competing task instances would benefit from
resources being locked as late as possible.

Also discussed in section 1.2, to satisfy the tight constraints found in safety-critical real-time
systems it is necessary to control all activities that could effect a task instance’s ability to meet its
deadline. Since the purely local task scheduling activity takes much less time than (remote) file
acquisition, integration of task and resource scheduling means most likely to invoke the Task Scheduler
during the resource scheduling activities of the File Server. Integration of task scheduling activities
would have to handle the following conflicting goals:

• Infrequent invocation of the Task Scheduler. This minimizes the overhead caused by Task
Scheduler activities (increasing the time for resource scheduling activities) and the context
switching overhead while at the same time the number of task instances waiting to be scheduled is
increased thus providing for ‘wiser’ scheduling decisions (selection from a larger set of waiting task
instances). This policy equally means to invoke the Task Scheduler as late as possible.

• Invocation of the Task Scheduler as early as possible. This increases, for every individual task
instance, the time available for acquiring the needed resources.

To adaptively handle these issues a dynamic integration policy under the control of the Run-Time
Monitor was developed to invoke the Task Scheduler based upon the level of competition and the
number of task instances waiting to be scheduled.

Chapter 4 File Server

In MELODY, local File Server (FS) modules are responsible for handling all aspects regarding
access to physical file copies located at the site. The File Server also handles the competition of local
task instance’s for local/remote file copies. This includes the following services:

• Complete requests, from local task instances, for the allocation of files (local/remote);
• Allocate local copies of files to task instances (located either local/remote);
• Handle physical access (read and write) to local copies of files;
• Maintain file history information for all files accessed by local tasks, or for file copies at the site;
• Maintain task history information for all tasks located at the site;

4.1 File Server Model

Each local File Server works in cooperation with remote File Servers to complete requests to files
that may or may not be locally available. The File Server module uses a client/server approach to
handle the management of local task instances and local file copies. The division of responsibilities
between the File Server client and server has been subdivided as follows:

Client: Responsible for handling activities regarding competing task instances located at a site;
Server: Responsible for managing all activities regarding access to copies of files located at a site

using the Delayed Insertion protocol (details follow).
This separation of the File Server client and server responsibilities is shown in figure 4-1. As a result
of the separation of responsibilities, the FS client has no direct access to file copies located at the site.
The FS client must however communicate (internally) with the local FS server to gain access to those
copies.

Figure 4-1: File Server Client/Server Model

4.1.1 Delayed Insertion Protocol

The Delayed Insertion protocol is a distributed resource scheduling algorithm that has been
defined and validated in extensive comparative simulation experiments by D.C. Daniels [Dan92,
WeD91a, WeD91b, and WeD94]. This protocol is designed to reduce the effects of cascaded blocking
that may take place between tasks that need mutually exclusive access to an overlapping set of shared
resources. Cascaded blocking results in poor utilization of the resources due to the fact that tasks must

Task Instances

Files

File Server

Client

Server

Node A
Files

File Server

Server

Node B

Files

File Server

Server

Node C

Files

File Server

Server

Node D

Client

Client

Client

20 File Server

wait for other tasks to complete before accessing their set of resources. As a result of the loss of
concurrency the average task turnaround times are longer due to longer blocking durations. Though the
protocol does not eliminate cascaded blocking, it employs a heuristic designed to reduce its occurrence.
When a task requests to access some busy file, the file manager places the task in a wait list until the
file is released and becomes free. When released and no other task is scheduled for access at the file,
the task is then notified about a ready status by the file manager. If Tj has received the ready messages
about all files (r∈ LRFj) then Tj requests to be scheduled in the execution queue at all files (r∈ LRFj).
The following is a short description of the delayed insertion protocol. A detailed explanation of the
protocol and its properties (along with proof for the protocol being starvation free, deadlock free and
priority inversion is limited to the blocking duration of one executing task) can be found in [Dan92].

A file manager Mi maintains an execution schedule Ei which is ordered by priority. Each task
instance that arrives for resource scheduling will have an associated priority. The schedules maintained
by the file manager will be order by the lexicographical ordering among relative criticality, deadline,
task instance id and host id. The procedure INSERT(t,s), which inserts a task instance into the schedule
according to the lexicographical order just mentioned. Let Cjk and DTjk be the parameters associated
with task instance Tjk respectively. If two task instances are found in any two schedules, they will be
found in the same order in those schedules. Provided that the task at the front of the schedule always
holds the lock for a resource, the Delayed Insertion protocol is deadlock free. The lock for a resource
is always granted to the task instance at the front of the scheduler. However, there is no guarantee that
at any given time the task instance at the front of the schedule holds the lock for the resource. Moreover,
this ambiguity can lead to disagreement between the schedulers which may lead to deadlock. To
resolve this condition, we introduce the Call Back Mechanism.

From time to time, in order to avoid deadlock, it may be necessary for a scheduler to request that
a lock which has been granted to a task be released by that task. This situation will occur whenever a
scheduler inserts a task into a non-empty schedule such that the task instance is at the front of the
schedule. Locks are always granted to the task which is at the front of a non-empty schedule. As the
ordering between messages sent from different sites is not preserved, it is possible for access requests
from different task instances to arrive at the front of a schedule in different orders. Because it is the
policy of a scheduler to grant access to the task at the front of its schedule, a disagreement (potentially
deadlocking) between schedulers over which task should proceed is possible. The call back mechanism
then solves this problem be utilizing the three rules defined below. Schedulers follow rules 1 and 3,
while task follow rule 2.

Rule 1: If some task instance holds the lock, then when the scheduler inserts a task instance into a
non-empty schedule, such that the newly inserted task instance is at the front of the schedule
and no call back message has been sent to the task instance holding the lock, then the
scheduler will send a call back message to the task instance holding the lock (on behalf of
new higher priority task instance).

Rule 2: If the task instance is considered executing, then upon receipt of a call back message from a
resource, the task instance will ignore the message. Otherwise the task instance will
temporarily release the lock by responding with a call back acknowledge message and will
remove the previously granted lock from its list of granted locks. The task does not release
the other locks which it holds.

Rule 3: Upon receipt of a call back acknowledge message, the receiving scheduler grants the lock to
the instance at the front of the schedule (sending a grant message to the instance).

Note that when a call back is ignored, the task which holds the lock (the one that ignored the call back)
will continue executing and release the lock upon completion. A call back acknowledge message is
treated the same as a release message by the schedulers, except that a release message implies that the
sending task is no longer an active client of the scheduler. When a client releases, the schedulers discard
all information pertaining to that it. Servers maintain information only on their current, active clients.

The heuristic behind scheduling is that a newly arriving task is held out of the schedule of
executing tasks until the server's backlog of currently scheduled tasks have been serviced. Thus the

4.1 File Server Model 21

delayed tasks cannot block other tasks at remote sites while they wait locally. Cascaded blocking can
only occur between tasks that have been inserted into the schedule. In addition to the schedule Ei, a file
manager Mi maintains two additional queues. Let Wi represent the set of waiting tasks at file manager
Mi and let Ci represent the set of candidate tasks at file manager Mi. Taken together, Wi and Ci represent
a secondary schedule in which tasks wait until they are ready at all needed files. When the execution
schedule for file Fi is emptied (Mi = Ø), all tasks in the wait queue are promoted to the candidate queue
and are sent ready messages. When a task has been informed that it is a candidate at all files (r∈ LRFj)
then it requests to be placed in the execution schedule at all files (r∈ LRFj) by sending the needed
resources a schedule message. Let FRt be the set of files that have sent ready messages to task Tj, and
let FLt be the set of files that have sent lock grant messages to task Tj. The following is a description of
the operations performed on both the Task (client) and File Manager (server) sides.

4.1.1.1 Task (client) Operations

Task operations are sequential for the delayed insertion protocol and defined by the following
steps:

Step 1: As task instance Tj begins the acquisition phase at some site I∈ M. The Cj (criticality) and Dj
(deadline) values of the Tj are known (FLj = Ø, FRj = Ø). An access request (including the
values of SPj and Dj) is sent to all file managers (F∈ LRFj). GOTO step 2.

Step 2: Task instance Tj will wait for all needed files to respond with a ready message. As file Fi
responds it is added to the set of ready files, FRj (FRj=FRj+Fi). If (FRj=LRFj), Tj requests to be
scheduled in the execution queue at resources r∈ LRFj, and GOTO step 3.

Step 3: Task instance Tj now waits for all files to respond with lock grant messages. As each lock is
granted, the sending file Fi, is added to set FLj (FLj=FLj+Fi). If (FLj = LRFj),Tj will GOTO step 4.
Note that only during this step will a task instance acknowledge a call back message (they
are ignored in all other steps). This acknowledgment is done by releasing the lock (previously
granted) and then waiting again to receive the lock grant message from the site.

Step 4: Task Tj will begin execution.
Step 5: Upon completion, Tj will be released from all files (F∈ LRFj) and enter its inactive phase.

Note that when a task is aborted due to a failure to meet its deadline it sends release messages to all
resources.

4.1.1.2 File Manager (server) Operations

File manager operations for the delayed insertion protocol are completely message driven. The
behavior of the file manager can be expressed as message handlers that define the actions taken in
response to incoming messages. A File Manager (Mi) then responds to access, schedule, call-back and
release request messages and execute the corresponding handler access, schedule, call-back or release.
The variable HOLDS_LOCKI indicates which task holds the lock at file Fi. Procedures are common to all
request handlers are: SEND (send the message msg to tasks Tj); INSERT (insert task Tj into a priority
ordered queue Q); REMOVE (remove task Tj from queue Q).

Access Request Handler. Receiving an access message from an instance, causes the file manager
to execute the following algorithm. If the execution queue is empty the file manager inserts the instance
into the candidate queue and informs it of its ready status. Otherwise, it inserts the instance into the
waiting queue.

Algorithm 4-1: Delayed Insertion Access Request Handler

Schedule Handler. Upon receipt of a schedule message from task Tj, file manager Mi executes the

task_request_access (task Tj , file manager Mi)
{

if (E i == NULL) {/* is the Execution queue empty */
INSERT(Tj ,C i); /* place task T j into Candidate queue */
SEND("ready", Tj); }

else {
INSERT(Tj ,Wi); } /* place task T j into Waiting queue */

}

22 File Server

following algorithm. The file manager first inserts the task instance into the execution queue (in the
order defined in section 4.1.1). If the task instance is then at the front of the execution queue, the file
manager then checks if another task instance already hold the lock. If no other task instance holds the
lock, the file manager will notify the task instance that it has the lock. Otherwise, the file manager will
request to call-back the lock from the lower priority task that currently holds the lock.

Algorithm 4-2: Delayed Insertion Schedule Handler

Release Handler. When the file manager Mi receives a release message from task Tj, it executes
the algorithm task_request_release. The algorithm first removes the task instance from which the queue
that it is currently located. It then checks if the highest priority task instance queued at the file is located
in the waiting queue. If true, the algorithm then removes the task instance from the waiting queue and
inserts this task instance into the candidate queue and sends to the task instance a ready message. The
algorithm then checks if the lock is free. If free, the algorithm checks if the execution queue is empty.
An empty execution queue causes the file manager to send ready messages to all task instances in the
waiting queue and insert them in the candidate queue. If the execution queue is not empty, the file
manager grants the lock to the highest priority task instance.

Algorithm 4-3: Delayed Insertion Release Handler

Call Back Acknowledgment Handler. When a call back acknowledge message is received by the
file manager Mi it executes the following algorithm. It the execution queue is empty, the file manager
will grant the lock to the task instance in the front of the execution queue.

Algorithm 4-4: Delayed Insertion Call Back Acknowledgment Handler

task_request_schedule (task Tj , file manager Mi)
{

INSERT(Tj ,E i);/* Schedule task T j into the E i for file M i */
if (front(E i) == T j) { /* is task T j at the front of the E i */

if (HOLDS_LOCK i == NULL) { /* is the lock free */
SEND("lock_grant", Tj);/* send lock grant to task T j */
HOLDS_LOCKi = Tj ; }

else {
SEND("call_back",HOLDS_LOCK i); } } /*Call Back lock*/

}

task_request_release (task Tj , file manager Mi)
{

if (Tj is in W i) { /* is task T j queue in the W i */
REMOVE(Wi , Tj); }/* remove task T j from the W i */

else {
if (Tj is in C i) { /* is task T j queue in the C i */

REMOVE(Ci , Tj); } /* remove task T j from the C i */
else {

REMOVE(Ei , Tj); } } /* remove task T j from the E i */
if (the highest priority current client T c of M i is in W i) {

REMOVE(Tc,Wi);/* remove the task client T c from the W i */
INSERT(T c,C i);/* insert the task client T c into the C i */
SEND("ready",T c); }

if (HOLDS_LOCK i == NULL) { /* is the lock free */
if (E i == NULL) { /* is the Execution Queue empty */

SEND("ready",W i);/* send ready to tasks in W i */
Ci = UNION(C i ,Wi);/* place all W i into the C i */
Wi = NULL;/* empty the W i */ }

else {
HOLDS_LOCKi = Tj ;/* send lock grant to E i */
SEND("lock_grant",front(E i)); } }

}

task_request_acknowledge_callback (task Tj , file manager Mi)
{

if (E i == NULL) { /* is the execution queue empty */
HOLDS_LOCKi = Tj ;
/* send lock grant to the front task in the E i */
SEND("lock_grant",front(E i)); }

}

4.1 File Server Model 23

4.1.2 File Server Client Allocation Policies

The FS client completes requests for the allocation of files needed by local task instances
depending on the type of the access requested. Requests are separated into two types of categories: read
access requests and write access requests. Read access requests are requests that execute preferably
against a shadow copy, but could execute against a local private copy. The decision whether to use a
private or shadow copy depends on the task instance’s relative degree of sensitivity and relative degree
of criticality. Write access requests are requests from task instances that intend to execute an update on
all public copies.

Read Allocation Handling. The FS server requires that FS clients queue read requests at the site
(where a copy resides) to ensure that the physical copy is not deleted before the read can be completed.
FS clients, as a result, then handle read access requests (protocol graphically shown in figure 4-2) using
the following steps:

1: Determine the location of either a shadow or local private copy based on the following priority:
• Shadow copy, if a copy is locally available;
• Private copy, if a copy is locally available and either of the following conditions are true:

•The task instance is considered as robust;
•The task instance is considered essentially critical;

• Shadow copy, located at a remote site;
2: Requests to acquire the file copy from the FS server at the specified location (see step 1);
3: Complete the read request by sending a RPC to the server at the specified location.
4: Mark task instance successful/failed based on deadline of the task instance.

Figure 4-2: Read Allocation Handling Protocol

In step 1, the FS locates a readable (shadow/private) copy for all the files in task instance Tjk’s LRFjk by
selecting a copy based on Tjk’s location and Tjk’s Cjk and Rjk. Upon completion of step 1, the location of
all files in Tjk’s LRFjk has been fixed and a reasonable estimated execution time (EETjk) for the read
access is known. The FS client then goes on to step 2. In step 2, the FS client sends requests to acquire
the file copies, determined in step 1, for Tjk. The FS client then waits to receive acquired messages from

Begin Acqisition Phase

Begin Location Phase

Handle Physical Read

Complete Computation Phase

Done File Copy

Locate File Copy

Acquired File Copy

Begin Computation Phase

All read operations completed

Perform execution request

Deadline has not expired

Acquire copy
for all files

Deadline has not expired

Determine location
of copies for all files

Deadline elapsed

Deadline elapsed

Start Read Instance

File Server (client) File Server (server) (local / remote)

Locate a file

Respond with location
of a file copy

Request read operation

Respond with read information
and status

Read Acquire File Copy

Acquire a file copy

Respond with read lock
on a file copy

Read Release File Copy

Release a file copy

Begin Task Instance Abort

Located File Copy

Located all file copies

wait for all

wait for all

wait for all

Acquired all copies

24 File Server

the FS servers at the sites where the file copies reside. Once the FS client has received acquired
messages from all files in Tjk’s LRFjk, it then goes on to step 3. In step 3, the FS client requests that a
read (specified by the application) be performed against the file copies specified in Tjk’s LRFjk. The FS
client then waits to receive done messages from the FS servers at the sites where the file copies reside.
Upon receiving a done message from all needed file copies the File Server marks the read access
request as completed. The FS client then checks if Tjk was successful in completing before its deadline
(based on the definition of a successful read task in section 1.3).

Write Allocation Policy. Write access requests are handled (protocol graphically shown in figure
4-3)by the FS client using the following steps:

1: Determine the exact location of all public copies.
2: Request to be placed into the candidate queue at all file copy locations;
3: Request to be scheduled into the execution queue at all file copy locations;
4: Complete the write request by sending a RPC to all servers at the specified locations.
5: Mark task instance successful/failed based on deadline.

Figure 4-3: Write Allocation Handling Protocol

In Step 1, the FS client determines the location of all public copies of needed files in task instance Tjk’s
LRFjk. Upon the completion of Step 1, the location of all copies is fixed and a reasonable estimated
execution time (EETjk) for the write access is known. The FS client then goes on to step 2. In step 2, the
FS client requests from all locations that Tjk is to be placed into the candidate queue for the public copy
located at that site. The FS client receives a ready message from the FS server at a location once the
task instance has been placed into the candidate queue at that location. Once all ready messages have

Begin Allocation Phase

Located File Copy

Begin Location Phase

Handle Physical Write

Complete Computation Phase

Done File Copy

Locate File Copy

Allocated File Copy

Begin Computation Phase

Complete read operation

Perform execution request

Deadline has not expired

Allocate copy
for all files

Deadline has not expired

Determine location
of copies for all files

Deadline elapsed

Deadline elapsed

Start Write Instance

File Server (client) File Server (server) (local / remote)

Locate a file

Respond with location of a file copy

Request write operation

Response from write and status

Write Request File Copy

request a file copy

Respond with ready on a file copy

Write Release File Copy

Release a file copy

Begin Task Instance Abort

Begin Locking Phase

Locked File Copy

Deadline has not expired

Lock copies
for all files

Deadline elapsed

Write Lock File Copy

schedule a
file copy

Respond with write lock
on a file copy

wait for all

Located all file copies

Allocated all file copies

Locked all file copies

wait for all

wait for all

wait for all

Unlock File Copy

unlock a
file copy

Call-back write lock
on a file copy

4.1 File Server Model 25

been received, the FS client then goes on to step 3. In step 3, the FS client requests from all locations
that Tjk is to be scheduled into the execution queue for the public copy at the corresponding site. The
FS client then receives a lock-grant message from the location once the Tjk is located at the front of the
execution queue for the public copy. If during step 3, a callback request message is received, then the
FS client marks the request as having released the lock and responds with a callback-acknowledgment
message to the corresponding FS server. The FS client will only proceed to step 4 when all lock-grant
messages have been received. In step 4, the FS client request that a write be performed on both the
public and shadow copies at all locations. The FS client receives from a remote FS server a done
message once the public and shadow copies have been successfully updated at the corresponding
location. Included in the done message is the status, a timestamp, of when the write was completed.
Once all done messages have been received, the FS client marks the write request as completed. The
FS client then checks if the Tjk completed successfully or not (based on the definition of a successful
write task given in section 1.3).

4.1.3 File Server Server Allocation Policies

The FS server receives requests from local and remote FS clients for the allocation of copies of
files (located at the site) to a task instance Tjk (at the site of the FS client). Requests are separated into
two categories critical access requests (CAR) and normal access requests (NAR). Critical access
requests are those requests from Tjks that are considered essentially critical. Critical access requests
must be handled as soon as possible due to the urgency of Tjk and its direct influence on the survivability
of the entire system. Normal access requests, on the other hand, are requests from task instances
considered either critical or non-critical. The method used to determine which type of request is to be
handled by the FS server is described in the section File Server/File Assigner integration. The policy
for how to handle CAR or NAR types is only dependent on whether the request is for read/write access
to the file copy.

Read Allocation Handling. The FS server allows for concurrent read access to a public copy by
directing all read access requests to the corresponding shadow copy. A private copy located at the site
provides faster read access without the additional overhead occurred by shadow copies. However, the
information contained in the private copy is not guaranteed to be accurate. This inaccuracy results in
only a limited number of task instances being allowed to access the private copy. Private copies only
handle requests for read access given directly by the local FS client. A shadow copy is in effect a shared
object in the MELODY system. Therefore, the FS server provides access for both the local and remote
FS clients. The FS server requires that FS clients queue their read access. This ensures that the
corresponding physical file is not deleted from the site while there are still outstanding read access
requests for the copy located at the site. The FS servers ensure that the updating of a shadow copy is
an atomic action that directly follows the update of the corresponding public copy. Therefore, FS
servers are able to ensure that a request for read access to a shadow copy is at most one update behind
the public copy. However, no such guarantee can be made on the information read from a local private
copy. Since, there is no requirement to update the private copy immediately (only eventually) following
the update of a public copy. For read access, to a locally available shadow or private copy, the FS server
responds to the following requests by performing the corresponding action:

Acquire: The FS server marks the file copy as having been acquired for read access by queueing the
requesting Tjk into its access queue. Once Tjk is queued, the FS server sends an acquired
response message to the requesting FS client informing it that Tjk has acquired the file at its
location. A request to acquire a private copy from a remote FS client is immediately denied
by the FS server.

Execute:Upon receipt of a read execute request the FS server begins the physical read operation to
access the physical file. Once completed, the FS server responds to the requesting FS client
with the result of the read operation. The response is accomplished by sending a done
message to the FS client requesting the read. Finally, the FS server removes Tjk from the file
copies access queue.

Release:When the FS server receives a release request, it removes Tjk from the access queue.

26 File Server

Write Allocation Handling . Handling of write access requests to a public file copy, by the FS
server, uses the Delayed Insertion protocol. The FS server responds to the following requests by an FS
client (for a task instance Tjk) for write access to a public file copy by performing the corresponding
action:

Request:The FS server places Tjk’s write request into either the candidate or waiting queue of the
Delayed Insertion protocol. If Tjk was placed into the candidate queue, then the FS server
immediately sends ready response. However, if Tjk is placed into the waiting queue, then
the FS server sends a ready response to the requesting FS client when execution queue is
empty and Tjk has been moved from the waiting queue into the candidate queue.

Schedule:The FS server moves Tjk’s the write request from the candidate queue into the execution
queue of the Delayed Insertion protocol. A lock-grant response is only sent once Tjk’s write
request is located at the front of the execution queue. A call-back message is sent to the
current lock-grant holder according to the rules regarding callbacks in the Delayed
Insertion protocol.

Call-Back Acknowledge:The FS server gives the lock to the front of the execution queue, and sends
a lock-grant message to the player Tjk located in the front of the execution queue.

Execute:Upon receipt of a write execute request, the FS server begins the physical write operation
to update the public and shadow copies located at the site. Only after the public copy has
been updated, will the FS server respond with the result of the write operation using the
done message. Included in the response is a timestamp of when the request was completed.
This information is used by the FS client to determine if Tjk was able to successfully
complete all requests before its deadline (DTjk). Finally, it removes Tjk from the execution
queue. After which, the FS server gives the lock to the next task instance located in the front
of the execution queue, or move task instances from the candidate queue into the execution
queue.

Release:When the FS server receives a release request, it removes Tjk from the waiting, candidate
or execution queues.

4.1.4 Physical File Access Handling

To be able to guarantee, within established bounds, the physical execution time to a local copy, the
FS server maps all files directly into memory and pins the associated memory. This guarantees that the
data accessed during the read/write request is always in memory, and has a relatively fixed access time.
The FS server receives all messages for the updating and reading of any file copy located on the site
from either local/remote FS clients. An update operation is initially applied to the public copy located
at the site. Once completed on the public copy, by use of an atomic action the FS server applies the
update to the shadow copy (see example in section 3.2). Only after the shadow copy has completed the
update, will the FS server respond to the requesting FS client that the update has completed. Included
in this response is the time at which the update operation was completed. The success of failure of a
task instance is then based upon this time using the rules associated to whether the write task instance
was successful (see section 3.1). A read operation is executed on the corresponding shadow or private
copy. The FS server responds to the FS client with the results of that execution and the time at which
it was completed. However, the time is not utilized by the remote FS client. Since, the status of a read
can only be determined by the requesting FS client, and the time at which the read done message was
received by that location (see section 3.1).

4.1.5 File History

The FS server is designed to maintain the following file history information for every file accessed
by local tasks or file copies located at the local site: Sensitive Read Queue (FSR) contains reading task
instances that have failed and were considered either sensitive or essentially sensitive; Robust Read
Queue (FRR) contains reading task instances that were considered robust; Write Local Queue (FSW)
contains writing task instances that were unable to successfully complete prior to their deadline. The
file history also contains information regarding the total number of local read access requests and the
total number of write access requests (both local and remote) for each file. This information is

4.2 File Server Implementation 27

maintained for a predetermined amount of time. Thus it represents a set of task instances that have
succeeded or failed during a fixed window of time.

This file history information could be utilized by the File Server to determine how to invoke the
File Assigner to change the distribution of public copies in order to improve the performance of local
tasks. For example, if the number of task instances queued in the sensitive read queue (FSR) surpassed
a predetermined threshold value the File Server could then request that the File Assigner create a local
public copy of this file in order to provide faster access to this file. For the tasks queued in the write
local queue (FSW) the File Server could request that the File Assigner reduce the number of public
copies in the system in order to reduce the time required to access the remaining copies. In case of tasks
queued in the robust read queue (FRR) the File Server requests that a private copy would be created
since this would improve their performance while not significantly impacting the performance of
writing tasks within the system. Details regarding this type of File Assigner integration (File Server-
Oriented Integration) will be described in section 6.1.4 as one of two distinctly different integration
methods.

4.1.6 Task History

The FS client maintains the following task history information on the last five task instances for
every task defined at the local site: Status (whether the instance was successful or failed); Criticality
(relative degree of criticality of the instance; Sensitivity (relative degree of sensitivity of the instance;
Location Time (time required to locate all required files copies by the instance); Acquisition Time
(time required by the instance to obtain all required locks); Computation Time (time to completed the
requested read/write request by the instance). This history information allows the Run-Time Monitor
(chapter 7) to determine the relative degree of criticality and sensitivity of newly arrived task instances.
Also, the Task Scheduler (see section 5.1) uses the information to determine a reasonable estimate for
the estimated execution time of a scheduling task instance.

4.2 File Server Implementation

As a summary of the previous presentation the File Server the functionality of the File Server is
given in pseudo-code in this section.

4.2.1 File Server Client Implementation

Services provided by the FS client can be categorized into the two main responsibilities: task
handling and file response handling. Task handling services included all services to control the
progression of a task instance from one phase in the task life cycle (see section 3.1) to another phase
(detailed algorithms for the following routines can be found in section 4.2.1.1). File response services
include those services that directly handle the responses from either the local/remote FS servers
regarding a copy located at the site. This response includes or designates the status of task instance’s
request for access to that specific file copy (detailed algorithms for the following routines can be found
in section 4.2.1.2):

4.2.1.1 File Server Client Task Handling Services

Each of the FS client services handles one specific phase of a task instance Tjk’s task life cycle.
Each of these services take as a parameter the task instance to be handled by the routine.

Begin Location Phase. This service locates all required copies of files in task instance Tjk’s list of
required files (LRFjk). For a reading Tjk this service locates either a locally available shadow or private
copy or a remote shadow copy. For a writing Tjk this service locates all public copies. In algorithm 4-
5, the instance Tjk is marked as having started its location phase. The algorithm uses the conditional
expression IS_WRITE_ACCESS_REQUEST to determine whether the type of access requested is write
access. If true, then the algorithm makes a request to locate all public copies. Otherwise, the conditional
expression IS_LOCAL_COPY_AVAILABLE determines if there is a copy (based on definition given in

28 File Server

section 1.3) at the site that could be used. If there is a locally copy, then the algorithm makes a request
to complete the location of the local private or shadow copy of file F. Otherwise, the algorithm requests
to locate a shadow copy of file F at a remote site.

Algorithm 4-5: Begin Location Phase

Begin Acquisition Phase. Whether the task instance Tjk is a writing or reading task instance is first
determined by this service. For a writing task instance it begins the allocation sub-phase. For a reading
task it proceeds to go ahead and make the requests to acquire the file copies located during the Tjk’s
location phase. In algorithm 4-6, the task instance Tjk is marked that it has started its acquisition phase.
The conditional expression IS_TASK_WRITING_TASK determines whether Tjk is writing to the files in its
LRFjk. If true, the algorithm begins the allocation sub-phase (applicable only to writing instances).
Otherwise, the algorithm requests to acquire all copies for Tjk. This request to acquire either a shadow
or private copy is sent as a single (point-to-point) message to the FS server at the specific site located
during Tjk’s location phase.

Algorithm 4-6: Begin Acquisition Phase

Begin Allocation Phase. For a writing task instance Tjk, this service makes the requests to allocate
those files to Tjk. Meaning that the Tjk requests to be placed into the candidate queue at all locations
holding a public copy of the file. The FS client uses algorithm 4-7 to mark that task instance Tjk has
started its Allocation sub-phase. The algorithm requests for all file copies that Tjk be placed into the
candidate queue at every location that holds a public copy. This request is sent as a multicast request
to all FS servers that have a public copy of the requested file. The location of these sites would have
been determined during Tjk’s location phase.

Algorithm 4-7: Begin Allocation Phase

Begin Locking Phase. For a task instance Tjk, that has completed its allocation sub-phase
(allocated all files in its LRFjk), this service makes the requests to obtain a write lock on those public
copies of files for Tjk. The FS client uses algorithm 4-8 to mark that task instance Tjk has started its
locking sub-phase. The algorithm requests for all file copies in Tjk’s LRFjk that Tjk be placed into the
execution queue at every location that holds a public copy. This request is sent as a multicast request
to all FS servers that have a public copy of the requested file located at that site. The location of these
sites would have been allocated to Tjk during its allocation phase.

Begin Location Phase (Task_Instance Tjk)

{
mark_task_instance(Tjk ,PHASE_LOCATION);
for all request R in Tjk ’ s LRF j do {

if IS_WRITE_ACCESS_REQUEST(R) {
request_locate_public_copies(R, Tjk); }

else {
if IS_LOCAL_COPY_AVAILABLE(R, Tjk) {

request_locate_local_copy(R, Tjk); }
else {

request_locate_remote_shadow_copy(R, Tjk); } } }

}

Begin Acquisition Phase (Task Instance Tjk)

{
mark_task_instance(Tjk ,PHASE_ACQUISITION);
if IS_TASK_WRITING_TASK(Tjk) {

Begin Allocation Phase(Tjk); }
else {

for all request R in Tjk ’ s LRF j do {
request_to_aquire_file_copy(R); } }

}

Begin Allocation Phase (Task Instance Tjk)

{
mark_task_instance(Tjk ,PHASE_ALLOCATION);
for all request R in Tjk ’ s LRF j do {

request_to_allocation_file(R); }

}

4.2 File Server Implementation 29

Algorithm 4-8: Begin Locking Phase

Begin Computation Phase. A task instance Tjk, that has completed its acquisition phase (writing
task instances would have completed both Allocation and locking sub-phases) and has either acquired
(reading task instances) or locked (writing task instances) all files in its LRFjk, use this routine to
requests to perform either the read/write request on their files. In algorithm 4-9, the task instance Tjk is
marked that it has started its computation phase. The conditional expression IS_TASK_WRITING_TASK

determines whether Tjk is writing to the files in its LRFjk. If true, then the algorithm requests for all file
copies in the LRFjk that they update the public and shadow copy locked for this task instance. The
request is sent so that all FS servers detect that Tjk is updating the public copies of file F. This is required
so that those FS servers with private copies may also detect the update and proceed accordingly in
determine when to refresh their local private copy. If Tjk is a reading, then the FS client makes requests,
for all file copies in Tjk’s LRFjk, that they complete the requested read request for Tjk. This request is sent
as a single message since no other FS server needs to be informed of the read request. The copies
requested to perform the read request would have already marked the file as acquired by Tjk. This
marking ensure that the file will not be deleted until at least this Tjk has completed its read request.

Algorithm 4-9: Begin Computation Phase

Complete Computation Phase. Once the task instance Tjk has completed its read/write request,
the FS client determines if it was successful and updates the task history information with that
information. After updating the task history, the FS client finishes Tjk’s task life cycle by removing it
from the system. In algorithm 4-10, the Tjk is marked that it has completed its computation phase. The
conditional expression IS_TASK_WRITING_TASK determines whether the Tjk is writing to the files in its
LRFjk. If true, then the FS client checks whether Tjk successfully updated the files according to the
definition of a successful writing task (see section 1.3). If successful, then the FS client updates the task
history information that Tjk has completed successfully. Otherwise, the algorithm the task history
information is updated with a failed status. For reading instances, the FS client determines whether Tjk

successfully completed the read request according to the definition of a successful reading task (section
3.1). If successful, then the task history information is updated that Tjk has completed successfully,
otherwise it’s updated that Tjk failed. Once the task history has been updated, the FS client proceeds to
finish any required processing to remove Tjk from the MELODY system.

Begin Locking Phase (Task Instance Tjk)

{
mark_task_instance(Tjk ,PHASE_LOCKING);
for all request R in Tjk ’ s LRF j do {

request_to_lock_file(R); }

}

Begin Computation Phase (Task Instance Tjk)

{
mark_task_instance(Tjk ,PHASE_COMPUTATION);
if IS_TASK_WRITING_TASK(Tjk) {

for all request R in Tjk ’ s LRF j do {
request_to_update_file(R); }

else {
for all request R in Tjk ’ s LRF j do {

request_to_read_file_copy(R); }

}

30 File Server

Algorithm 4-10: Complete Computation Phase

Begin Task Instance Abort. For a task instance Tjk, that has been aborted during either its location
or acquisition phases (task instances can not be aborted during any other phase) the FS client
determines whether there are any requests that need to be released by the Tjk. This determination is
based on whether Tjk was trying to acquire shadow or private copies, or it was trying to either allocate
or lock public copies. If no requests need to be released, the FS client finishes the task life cycle for Tjk.
Otherwise, the task instance requests to release those outstanding requests before removing Tjk from
memory and the MELODY system. In algorithm 4-11, the task instance Tjk is marked that it has been
aborted by the MELODY system. The conditional expression HAS_INSTANCE_COMPLETED_LOCATION_
PHASE determines if Tjk had completed the location of the files in its LRFjk. If Tjk had completed its
Location Phase, then the FS client knows that there are outstanding requests that need to be released
before the FS client can finish Tjk. The conditional expression IS_TASK_WRITING_TASK determines
whether Tjk was attempting to write to the copies of files in its LRFjk. If Tjk was a writing task instance,
then the algorithm makes requests for all file copies in Tjk’s LRFjk that they release Tjk from any of the
delayed insertion queue (waiting, candidate or execution) in which it may be queued currently. This
request is sent as a multicast request to those files located during Tjk’s location phase. If Tjk is a reading
task instance, the algorithm makes requests to release all copies of files in Tjk’s LRFjk by sending single
(point-to-point) messages to those specific FS server locations determined during the Tjk’s location
phase.

Algorithm 4-11: Begin Task Instance Abort

4.2.1.2 File Server Client File Response Services

Each of the FS client file response services handles a specific response from a FS server (local/
remote) to a specific task instance Tjk regarding the status of its request for acquisition of a specific file
copy F located at that site. These services all take the following parameters: Tjk (task instance wait for
the response); F (file the response is concerning [must be a member of LRFjk]); I (site of the FS server
responding to a request).

Located File Copy. This service handles a response from an FS server that has a copy of the
requested file. This copy can be used by the local Tjk based on the definition of files accessibility given
in section 3.1. For reading Tjk this means that the FS server has a usable shadow or private (if the local
FS server is responding) copy located at its site. A writing Tjk only receives responses from those FS

Complete Computation Phase (Task Instance Tjk)

{
mark_task_instance(Tjk ,PHASE_COMPLETED);
if IS_TASK_WRITING_TASK(Tjk) {

if WAS_WRITE_SUCCESSFUL(Tjk) {
update_task_history(SUCCESSFUL, Tjk); }

else {
update_task_history(FAILED, Tjk); }

else {
if WAS_READ_SUCCESSFUL(Tjk) {

update_task_history(SUCCESSFUL, Tjk); }
else {

update_task_history(FAILED, Tjk); } }
Finish Task Instance(Tjk);

}

Begin Task Instance Abort (Task Instance Tjk)

{
mark_task_instance(Tjk ,PHASE_ABORTED);
if HAS_INSTANCE_COMPLETED_LOCATION_PHASE(Tjk) {

if IS_TASK_WRITING_TASK(Tjk) {
for all request R in Tjk ’ s LRF j do {

request_to_release_file(R); } }
else {

for all request R in Tjk ’ s LRF j do {
request_to_release_file_copy(R); } } }

Finish Task Instance(Tjk);

}

4.2 File Server Implementation 31

servers that have a public copy located at its site. The algorithm 4-12 finds the specific file request that
the response is about in Tjk’s LRFjk. Once the request has been located, the algorithm adds the location
of this copy to the request. The algorithm then marks this copy as having been located. If the algorithm
detects (using the conditional expression HAS_TASK_LOCATED_ALL _FILES) that all required copies of
the files in Tjk’s LRFjk have been located, then the FS client begins the task instance’s acquisition phase
by calling the FS client routine begin acquisition phase.

Algorithm 4-12: Located File Copy

Acquired File Copy. A response from an FS server that it has queued task instance Tjk into its
access queue is handled by this service. This acknowledgment guarantees that the FS server does not
physically delete the copy at least until after Tjk has completed its computation phase or has released
this copy after being aborted. This service is only invoked for reading task instance. Writing task
instances never receive acquired message responses. The algorithm 4-13 first searches in Tjk’s LRFjk for
the specific file copy the response is concerns. The algorithm then marks the requested file copy as
having been acquired. If the algorithm detects that all required copies of the files in Tjk’s LRFjk have been
acquired, then the algorithm begins Tjk’s computation phase by calling the FS client service begin
computation phase.

Algorithm 4-13: Acquired File Copy

Allocated File Copy. The response from an FS server at that it has queued task instance Tjk into
the candidate queue (Delayed Insertion protocol) is handled by this service. The service is only invoked
for a writing task instance. A reading task instance never receives ready message responses. The
algorithm 4-14 first searches in Tjk’s LRFjk for the specific file copy. The algorithm then marks the
requested file copy as having been allocated. If the algorithm detects that all required copies of the files
in Tjk’s LRFjk have been allocated then the algorithm begins Tjk’s Locking sub-phase by calling the FS
client service begin locking phase.

Algorithm 4-14: Allocated File Copy

Locked File Copy. This service handles a response from an FS server that has queued task
instance Tjk into the execution queue (Delayed Insertion protocol) at the site. Receiving this response
means that Tjk is currently located at the front of the execution queue and holds the lock on this specific
public copy. This service is only invoked for a writing task instance. A reading task instance never
receives lock-grant message responses. The algorithm 4-15 first searches in Tjk’s LRFjk for the specific
file copy the response is in regards to. The algorithm then marks the requested file copy as having been
granted a write lock. If the algorithm detects that all required copies of the files in Tjk’s LRFjk have been
locked, then the algorithm begins Tjk’s computation phase by calling the FS client service begin
computation phase.

Located File Copy (Task_Instance Tjk , File F, Host I)

{
The_Request = find_request(F,LRF j);
add_copy(I ,The_Request);
mark_file_copy(The_Request, I ,LOCATED);
if HAS_TASK_LOCATED_ALL_FILES(LRF j) {

Begin Acquisition Phase(Tjk); }

}

Acquired File Copy (Task_Instance Tjk , File F, Host I)

{
The_Requested_Copy = find_request_copy(F, I ,LRF j);
mark_file_copy(The_Requested_Copy,ACQUIRED);
if HAS_TASK_AQUIRED_ALL_FILES(LRF j) {

Begin Computation Phase(Tjk); }

}

Allocated F i le Copy (Task_Instance Tjk , F i le F, Host I)

{
The_Requested_Copy = find_request_copy(F, I ,LRF j);
mark_copy_aquired(The_Requested_Copy);
if HAS_TASK_ALLOCATED_ALL_FILES(LRF j) {

Begin Locking Phase(Tjk); }

}

32 File Server

Algorithm 4-15: Locked File Copy

Called-Back File Copy. This service handles a response from an FS server that it previously
granted a write lock (lock-granted message), and now needs to callback that granted write lock. The
reason for this is that a more critical task instance has been placed into Execution Queue (Delayed
Insertion protocol) and is currently in front of the local task instance Tjk. In algorithm 4-16, the
conditional expression IS_TASK_IN_LOCKING_PHASE determines if the Tjk is currently in the locking
sub-phase. If Tjk is still trying to lock other copies, the algorithm allows the FS server to callback its
previously granted write lock. The algorithm does this by marking the file copy as being unlocked
(effectively setting the status back to as if it had been only allocated, therefore never having received a
grant-lock message from this FS server). Then the algorithm sends a single (point-to-point) request to
the FS server at site I acknowledging that it has given up the write lock on the public copy of file F
located at that site. If the task had not been in the Locking sub-phase, the algorithm ignores the response
to callback the granted write lock. This denial to give up the write-lock assumes that the task is already
in the computation phase, and that it would be better (no rollbacks or additional overhead) to just allow
Tjk to complete its execution (therefore releasing the files normally) rather than trying to cancel the
execution early.

Algorithm 4-16: Called-Back File Copy

Done File Copy. The response from an FS server that it has completed the requested read/write
request is handled by this service. Informing the task instance that the request from the task instance
has been removed from its site. The algorithm 4-17 first finds the specific requested file copy in Tjk’s
LRFjk for file the F at site I. The algorithm then marks the requested file copy as having received a done
message from the FS server at that site. If the algorithm detects that all required copies in Tjk’s LRFjk

have completed their request, then the algorithm begins to complete the computation phase for Tjk by
calling the service complete computation phase.

Algorithm 4-17: Done File Copy

File Distribution Change. A responses from an FS server that it has changed the distribution of
file F is controlled by this service. In algorithm 4-18, the first checks if Tjk is writing to the files in its
LRFjk. If Tjk is writing, the algorithm checks whether the change is to create a public copy. If a public
copy has been created, then the algorithm adds the copy to Tjk’s LRFjk. The algorithm then requests to
refresh the information at that site with the information regarding Tjk. If the change is the deletion of a
public copy, then the algorithm deletes the copy from Tjk’s LRFjk. All other changes in the distribution
of copies of file F do not effect the completion of writing task instance Tjk. The algorithm handles a
reading task instance Tjk by checking if the change was the activation of a local public file copy. If true,
then the FS client deletes the old request to access a remote shadow copy or local private copy, and
request to access the locally available shadow copy. This improves the chances for Tjk to successfully

Locked File Copy (Task_Instance Tjk , File F, Host I)

{
The_Requested_Copy = find_request_copy(F, I ,LRF j);
mark_copy_locked(The_Requested_Copy);
if HAS_TASK_LOCKED_ALL_FILES(LRF j) {

Begin Computation Phase(Tjk); }

}

Called-Back F i le Copy (Task_Instance Tjk , F i le F, Host I)

{
if IS_TASK_IN_LOCKING_PHASE(Tjk) {

The_Requested_Copy = find_request_copy(F, I ,LRF j);
mark_copy_unlocked(The_Requested_Copy);
acknowledge_callback(The_Requested_Copy); }

}

Done F i le Copy (Task_Instance Tjk , F i le F, Host I)

{
The_Requested_Copy = find_request_copy(F, I ,LRF j);
mark_copy_done(The_Requested_Copy);
if HAS_TASK_COMPLETED_AT_ALL_FILES(LRF j) {

Complete Computation Phase(Tjk); }

}

4.2 File Server Implementation 33

complete before its deadline, while providing it with the most current file information.

Algorithm 4-18: File Distribution Change

4.2.1.3 File Server Client Implementation of Task History

The FS client is required to maintain information on the last five task instances of task Tj regarding
their: status, relative degree of criticality (Cjk), relative degree of sensitivity (Rjk), and execution time of
Tjk. This task history information is then used by both the Run-Time Monitor (chapter 7) and Task
Scheduler (chapter 5) for determining the Cjk, Rjk and EETjk of future task instances. To accomplish this
the FS client provides the history management services (described in the following paragraphs) to
update or query the task history for a given Tj:

Update Task History. This service handles a request to update the task history of a task Tj with
the success or failure of a task instance Tjk. The FS client maintains a predetermined amount of history
information for every task Tj. In the current implementation a maximum of five stored history values is
maintained. The algorithm 4-19 first determines if the maximum number of history items has been
exceeded or not. If it has been exceeded, then the oldest history item is removed from the task history.
The algorithm then adds the information regarding the new history item about task instance Tjk to the
task history.

Algorithm 4-19: Update Task History

Relative Criticality . The determination of the relative criticality Cjk of task instance Tjk based on
the task history (containing the status and Cj(k-1) of the previous task instance Tj(k-1) for task Tj (see
section 3.1)) is done by this service. The thresholds ai’ and ai" are considered to be constant values and
defined during an initialization phase. The defined initial critical Cj of Tj would be determined by the
applications predefined definition of Tj. The algorithm 4-20 first determines if the last instance Tj(k-1)

was successful. If successful, the algorithm then returns the value of Cjk based on Cj. Otherwise, the
service checks if the Tj(k-1)’s Cj(k-1) was considered essentially critical (less than or equal to ai’). If so,
then threshold ai’ is returned as the value for Tjk’s Cjk. If Tj(k-1) was not considered essentially critical,
the algorithm then checks if Tj(k-1)’s Cj(k-1) was considered non-critical (greater than or equal to ai"). If
so, then threshold ai" is returned as the value for Tjk’s Cjk. If none of the previous conditions were true,
then the value of (Cj(k-1)-1) is returned as the value for Tjk’s Cjk.

Fi le D i str i but i on Change (Task_Instance Tjk , F i le F, Host I , F i le_Change_Type Type)

{
if IS_TASK_WRITING_TASK(Tjk) {

if (Type == CREATE_PUBLIC_COPY) {
The_Request = find_request(F,LRF j);
add_copy(I ,The_Request);
request_refresh_copy(I ,The_Request); }

elseif (Type == DELETE_PUBLIC_COPY) {
The_Request = find_request(F,LRF j);
delete_copy(I ,The_Request); } }

else {
if ((Type == ACTIVATE_PUBLIC_COPY) AND IS_HOST_LOCAL(I)) {

The_Request = find_request(F,LRF j);
delete_copy(The_Request);
add_copy(I ,The_Request);
request_refresh_copy(I ,The_Request); } }

}

Update Task H i story (Task_Instance T jk , Task_H i story Hi story j)

{
if (number_history_items(History j) >= MAX_TASK_HISTORY) {

delete_history_item(History j5); }
add_new_history_item(Tjk , History j);

}

34 File Server

Algorithm 4-20: Relative Criticality of a Task Instance

Relative Sensitivity. In order to determine the relative sensitivity Rjk of task instance Tjk based on
the task history (containing the status and Rj(k-1) of the previous task instance for task Tj (see section
3.1)), the thresholds bi’ and bi" are considered to be constant values and defined during an initialization
phase. The defined initial sensitivity value of a Tj would then be determined by the application’s
definition. The algorithm 4-21 first determines if the last instance was successful. If successful, then
the algorithm returns the value of Rjk based on Rj. Otherwise, the service checks if the Tj(k-1) was
considered essentially sensitive (less than or equal to bi’). If so, then threshold bi’ is returned as the
value for Tjk’s Rjk. If Tj(k-1) was not considered essentially sensitive, the algorithm then checks if Tj(k-1)

was considered robust (greater than or equal to bi"). If so, then threshold bi" is returned as the value for
Tjk’s Rjk. If none of the previous conditions were true, then the value of (Rj(k-1) + 1) is returned as the
value for Tjk’s Rjk.

Algorithm 4-21: Relative Sensitivity of a Task Instance

Estimated Execution Time. This service calculates the estimated execution time (EETjk) (see
section 3.1) for a task instance Tjk based on the task history (containing the status and execution time
of a previous determined n task instances Tj1...Tjn) for task Tj. This information is then used by the local
Task Scheduler during the scheduling of Tjk. The algorithm 4-22 determines the average execution time
of all history items in the Tj’s task history by summing them together and then dividing by the number
of items. Then the routine for every file in the Tjk’s LRFjk adds the computation time (including remote
access to locate and acquire the files).

Algorithm 4-22: Estimated Execution Time

4.2.2 File Server Server Implementation

The FS server module can be viewed as four separate sub-servers: acquisition, execution, history

Relat i ve Degree of Cr i t i cal i ty (Task Tj , Task_H i story Hi story j)

{
if (History j ->Last_Instance.Status == SUCCESSFUL) {

return(initial_criticality(T j); }
else {

if (History j ->Last_Instance.Criticality <= a i ’) {
return(a i ’); }

else {
if (History j ->Last_Instance.Criticality >= a i ’’) {

return(a i ’’); }
else {

return(History j ->Last_Instance.Criticality - 1); } } }

}

Relat i ve Degree of Sens i t i v i ty (Task T j , Task_H i story Hi story j)

{
if (History j ->Last_Instance.Status == SUCCESSFUL) {

return(initial_sensitivity(T j); }
else {

if (History j ->Last_Instance.Sensitivity <= b i ’) {
return(b i ’); }

else {
if (History j ->Last_Instance.Sensitivity >= b i ’’) {

return(b i ’’); }
else {

return(History j ->Last_Instance.Sensitivity + 1); } } }

}

Est i mated Execut i on T i me(Task Tj , Task_H i story Hi story j)

{
EET = 0;
for all history item in History j do {

EET = EET + History j item ->Execution_Time; }
EET = EET / (number history items in History j);

for all files R in LRF j do {
EET = EET + Computation_Time(R); }

}

4.2 File Server Implementation 35

and movement; each controlling one specific aspect regarding the copies of files located at the site
(figure 4-4). The responsibilities for each sub-server are defined as follows:

Acquisition:Is responsible for controlling the acquisition (including allocation and locking) for
copies of files located at the site by FS clients (local and remote);

Execution: Handles the physical read/write operations requested by an FS client (local/remote) to a
specific physical data file. The execution sub-server is also responsible for ensuring that
the shadow copy is updated in conjunction with the update of the public copy;

History : Monitors the access for all files accessed by local tasks, or file copies located at the site.
File Assigner (local/remote) access this history to determine how to change the file
distribution;

Movement: Physically transfers a copy of a file to (from) the local site from (to) a remote site.

Figure 4-4: File Server Client / Server Modules

4.2.2.1 File Server Server Implementation of Files

MELODY provides three types of file copies (public, shadow and private) to be distributed amongst
the sites in the MELODY system (see section 3.2). The local FS server implements these files as one file
object that contains a file manager for each file type (figure 4-5). These managers are then responsible
for handling the access request for that specific file type. The public file manager controls all write
access to the public copy (also handling the atomic update of the shadow copy), according to the rules
established by the Delayed Insertion protocol. The other two managers (shadow and private) are only
concerned with read access and the guaranteeing that the physical file remains accessible while
pending read requests (from local or remote FS clients) have been queued at this specific shadow or
private copy. The status of a file manager, determined by the state of physical file information located
at the site, is set to either: active, partial, deleted or inactive. An active status means that the associated
physical file located at the site is available (contains all the physical data) to the FS clients (local/
remote) for acquisition and access. A status of partial is used to state that the file associated with this
manager has recently been created at the site. However, the transfer of the physical file data has not
been completed by the FS Movement module. A public file manager with a partial status must respond
to all allocation and locking request to ensure data consistency once the file transfer is completed (see
section 4.2.2.5). A shadow or private file manager with a partial status does not respond to any access
request, since it can not guarantee that data read from this site would be available to the requesting site
when requested. The deleted status means that the FS server has received a request to delete the
associated data file from a File Assigner (local/remote). However, there are pending requests for access
that must be handled before the physical deletion of the file can be completed. The inactive status states
that this file manager has no file located at the site (will not respond to any requests).

Figure 4-5: MELODY File Object

The file objects also contain a file history information regarding: access type (type of access read/
write); success rate (number of successful requests to access this file); failure rate (number of failed
requests to access this file). All file history information is maintained for a certain predetermined

Files
Task

Instance

Aquisition Execution History Movement

Server
Client

File Server

. . . . FilesFilesFiles
. Task

Instance

Public Shadow Private

MELODY File Object

File Managers
History

Files Files Files

36 File Server

interval of time. This interval of time is specified during the initialization phase of the MELODY system.

4.2.2.2 File Server Server Implementation of Acquisition Services

Acquisition services provided by the FS server are separated by the type of access (read or write)
requested by an FS client (local or remote). Read acquisition services are handled by either the shadow
or private file manager depending upon the location of the requesting FS client, and the status of the
file managers. Write acquisition services are handled by the local public file manager. The
implementation of these services is described in the following paragraphs.

Read Acquire File Copy. This service provided by either the shadow or private file manager
places the requesting task instance Tjk into an access queue of requesting players. It responds to the
requesting FS client that the file has granted a read request at the local site. In algorithm 4-23, the FS
server tries to locate an active file manager for the file F requested by the task instance Tjk located at site
I. If the FS server can not locate an active file manager, then it does nothing in responding to the request
from the FS client at site I. If an active file manager was found, it then checks if the type of file manager
found was a private file manager. If this is true and the site of the requesting Tjk is not local, then the FS
server does nothing in responding to the request from the FS client at site I. Otherwise, the FS server
queues the acquisition request and responds that Tjk has acquired the requested file at this site.

Algorithm 4-23: Read Acquire File Copy

Read Release File Copy. Provided by either the shadow or private file manager, this service
removes the request made by task instance Tjk at site I from the file manager’s access queue of
requesting task instances that have been granted read access to the associated file copy. The algorithm
4-24 removes a previously queued request from Tjk at site I by first locating the file manager for the
associated access type. The algorithm then dequeues Tjk from its access queue. No acknowledgment is
sent, since all access request messages expire after their associated deadline. Therefore, there is no
requirement to guarantee (by sending release acknowledgment messages) that the release action
completed at a certain site.

Algorithm 4-24: Read Release File Copy

Write Request File Copy. The local public file manager queues the associated task instance Tjk

into either the candidate or waiting queue based on the rules established by the Delayed Insertion
protocol using this service. The algorithm 4-25 handles the write access request by completing the
following steps. First it locates the public file manager at the site for the file F requested. If the manager
is active or partial, it proceeds to determine whether the execution queue is empty or not. An empty
execution queue allows the file manager to place the new request from Tjk directly into the candidate
queue of the Delayed Insertion protocol (see section 4.1.1). If Tjk is placed into the candidate queue,
the algorithm sends a response (ready message) that Tjk has acquired this file copy. Otherwise, the file
manager queues Tjk into the waiting queue.

Acqu i re Read Copy (Task_Instance Tjk , F i le F, Host I)

{
A_Manager = locate_active_manager(F);
if (A_Manager->Status == ACTIVE) {

if ((A_Manager->Type == PRIVATE) AND (I is not local Host)) { }
else {

queue_access_request(Tjk , I);
grant_acquisition_request(Tjk , I); } }

}

Release Read Copy (Task_Instance Tjk , Host I , Access_Type Type , F i le F)

{
A_Manager = locate_file_manager(F, Type);
dequeue_access_request(Tjk , I);

}

4.2 File Server Implementation 37

Algorithm 4-25: Write Request File Copy

Write Lock File Copy. A local public file manager (see figure 4-5) uses this service to move a
previously queued task instance Tjk from the candidate queue into the execution queue. Afterwards, the
file manager checks to see if Tjk is at the front of the execution queue. If Tjk is at the front, the file
manager then checks if the lock has already been granted to another task instance. If so, the file
manager checks whether the lock needs to be called back (sending a callback response message to the
current lock holder) based on the criticality and deadline of the two instances. If there currently is no
lock on the file, the file manager then grants to the requesting task instance the lock for this file copy.
For Tjk that is not at the front of the execution queue, the file manager does no more additional work.
The algorithm 4-26 handles requests from task instance Tjk to lock the public copy of file F located at
the site. First it locates the public file manager at the site for the file requested. If the manager is active
or partial, it proceeds to dequeue Tjk from the candidate queue and schedule it into the execution queue.
It then checks to see if Tjk has been placed into the front of the execution queue (based on Tjk’s criticality
and deadline). If so, it checks to see if the lock has already been granted to another task instance. If no
lock has been previously been granted, then it marks the task instance as having the lock. The
algorithm, after granting the lock to Tjk, sends to Tjk a response that it has been granted the lock (lock-
granted message) at this file copy. If another task instance has already been granted the lock, the file
manager requests to call back (see section 4.1.1) the file lock from that task instance. In all other cases,
the file manager does nothing more.

Algorithm 4-26: Write Lock File Copy

Write Unlock File Copy. This service handles the acknowledgment of a call back (see section
4.1.1) made by the task instance Tjk at site I that currently holds the lock on the public copy. After
unlocking the file, it sends a grant lock to the task instance at the front of the execution queue. The
algorithm 4-27 responds to a request by task instance Tjk that previously had been granted the write
lock, and is acknowledging a callback request (resulting from a higher priority task instance being
queued in front of Tjk). The FS server first locates the public file manager at the site for the file
requested. If the manager is active or partial, it checks if the execution queue is empty or not. If it is
empty, the file manager marks the lock as being free. Otherwise, it marks the task instance in the front
of the execution queue as having the lock, and sends to this task instance a grant-lock message from
this file copy.

Request Write Copy (Task_Instance Tjk , File F, Host I)

{
A_Manager = locate_public_manager(F);
if ((A_Manager->Status == ACTIVE) OR (A_Manager->Status == PARTIAL)) {

if (A_Manager->Execution is Empty) {
queue_player_request(Tjk , I ,A_Manager->Candidate);
send_player_ready(Tjk , I); }

else {
queue_player_request(Tjk , I ,A_Manager->Waiting); } }

}

Lock Wr i te Copy (Task_Instance T jk , F i le F, Host I)

{
A_Manager = locate_public_manager(F);
if ((A_Manager->Status == ACTIVE) OR (A_Manager->Status == PARTIAL)) {

dequeue_player_request(Tjk , I ,A_Manager->Candidate);
queue_player_request(Tjk , I ,A_Manager->Execution);
if (T jk in front of A_Manager->Execution) {

if (A_Manager->Holds_Lock == NULL) {
A_Manager->Holds_Lock = Tjk ;
send_player_grant_lock(Tjk , I); }

else {
send_player_call_back(A_Manager->Holds_Lock); } } }

}

38 File Server

Algorithm 4-27: Write Unlock File Copy

Write Release File Copy. To handle the release request by a task instance Tjk at site I this service
is provided by the local public file manager. After removing Tjk from the either the waiting, candidate
or execution queues, the file manager checks if the lock needs to be granted to another task instance. If
no lock is granted, it then moves task instances from the waiting queue into the candidate queue. The
algorithm 4-28 handles the releasing of a public copy of file F by task instance Tjk at site I. The FS server
first locates the public file manager at the site for the file requested. If the manager is active or partial,
it finds the task instance in either the execution, candidate or waiting queues, and removes it from the
corresponding queue. The algorithm then checks if the highest priority task instance at this file manager
is queued in the waiting queue. If so, the algorithm removes the task instance from the waiting queue
and places it into the candidate queue and responds with a ready message. If no task instance currently
holds the lock on the public copy, the file manager will check if the execution queue is empty or not.
If the execution queue is empty, the file manager moves all task from the candidate queue into the
execution queue. Otherwise, it grants the lock to the task instance in the front of the execution queue,
and sends a response (grant-lock messages) to the task instance that now holds the lock.

Algorithm 4-28: Write Release File Copy

Write Refresh File Copy. It may be possible, during the creation process of a new public copy
file manager at site I, that a request for access by a task instance Tjk (local/remote) may have not been
handled by the local FS server (the file had not been set to partial yet). Therefore, the FS server requires
that when FS clients learn of a new public copy that the FS client makes a request to refresh the
information contained at a site. This process ensures the consistency of the information contained in
the queues of the file manager. The FS client includes in this refresh request the current state of Tjk’s
request at all other public copies. In algorithm 4-29, the FS server first locates the public file manager
at the site for file F being requested to be refreshed by task instance Tjk. If the manager is active or

Unlock Write Copy (Task_Instance Tjk , File F, Host I)

{
A_Manager = locate_public_manager(F);
if ((A_Manager->Status == ACTIVE) OR (A_Manager->Status == PARTIAL)) {

if (A_Manager->Execution is empty) {
A_Manager->Holds_Lock = NULL; }

else {
A_Manager->Holds_Lock = front of A_Manager->Execution;
send_player_grant_lock(A_Manager->Holds_Lock); } }

}

Release Wr i te Copy (Task_Instance Tjk , F i le F, Host I)

{
A_Manager = locate_public_manager(F);
if ((A_Manager->Status == ACTIVE) OR (A_Manager->Status == PARTIAL)) {

if (find_player(Tjk ,A_Manager->Execution) == FOUND) {
dequeue_player_request(Tjk ,I,A_Manager->Execution); }

else {
if (find_player(Tjk ,A_Manager->Candidate) == FOUND) {

dequeue_player_request(Tjk , I ,A_Manager->Candidate); }
else {

dequeue_player_request(Tjk , I ,A_Manager->Waiting); } }
while (find_player(A_Manager->Highest,A_Manager->Waiting)==FOUND) {

dequeue_player_request(A_Manager->Highest,A_Manager->Waiting);
queue_player_request(A_Manager->Highest,A_Manager->Candidate);
send_player_ready(A_Manager->Highest); }

if (A_Manager->Holds_Lock == NULL) {
if (A_Manager->Execution is empty) {

while (A_Manager->Waiting is not empty) {
Temp = front of A_Manager->Candidate;
dequeue_player_request(Temp,A_Manager->Waiting);
queue_player_request(Temp,A_Manager->Candidate);
send_player_ready(A_Manager->Highest); } }

else {
A_Manager->Holds_Lock = front of A_Manager->Execution;
send_player_grant_lock(A_Manager->Holds_Lock); } } }

}

4.2 File Server Implementation 39

partial, it queues the task instance into either the execution, or candidate queues depending on the status
(allocating/locking) of Tjk. A task instance with the status of locking is queued into the execution queue,
while all others are queued into the candidate queue.

Algorithm 4-29: Write Refresh File Copy

4.2.2.3 File Server Server Implementation of Physical Access

The FS server provides two services to FS clients (local and remote) the ability to handle RPCs
for the writing/reading from a copy located at the site. After handling the RPC both services then check
to determine whether to try to delete (reduce the overhead at the site) the copy accessed (see chapter 6).

Handle Physical Write. This service provides the FS server with the ability to handle all remote
procedure calls made by a task instance Tjk at site I to update the public and shadow copies of file F
located at the site. This service also marks the private copy (if located at the site and either active or
partial) that a remote update operation has occurred, and therefore needs to be eventually refreshed.
The algorithm 4-30 first determines whether there is a local public copy. If there is a public copy, then
it checks if the public copy is active or partial. For active copies, the algorithm proceeds to execute the
remote procedure call contained in the command message. Otherwise, the algorithm queues the
command message into a delayed update queue. This delayed update queue is required, since the entire
contents of the physical data is not present at the site. A delayed update is applied when the complete
contents of the file has been received. After either completing or delaying the update, the algorithm
responds to Tjk that the operation has completed. The time that the RPC completed is included in the
message. This completion time is used by the remote site to determine whether the update was
successful. If no public copy is located at the site, but a private copy is, then the algorithm marks the
private copy as having received an update operation and will eventually need to be refreshed.

Algorithm 4-30: Handle Physical Write

Handle Physical Read. The ability to handle all remote procedure calls by task instance Tjk to read
either the shadow or private copy located at the site is provided by this service. The algorithm 4-31 first
determines whether there is a shadow copy located at the local site. If there is, then it proceeds to
execute the remote procedure call made by task instance Tjk contained in the command message on the
contents of the shadow copy. Otherwise, the algorithm executes the remote procedure call on the
contents of the private copy. After completing the read operation, the algorithm responds to Tjk by
sending a response message that the read operation was completed. The time that the remote procedure
call completed at is included in this message.

Refresh Write Copy (Task_Instance Tjk , File F, Host I , Request_Status Status)

{
A_Manager = locate_public_manager(F);
if ((A_Manager->Status == ACTIVE) OR (A_Manager->Status == PARTIAL)) {

if (Status == REQUESTING_LOCK) {
queue_player_request(Tjk , I ,A_Manager->Execution); }

else {
queue_player_request(Tjk , I ,A_Manager->Candidate); } }

}

Handle Physical Write (Task_Instance Tjk , File F, Command_T Command)

{
if (Is Public Copy local for F) {

if (Is Public Copy Active) {
execute_update_operation(Command, F); }

else {
delay_update_operation(Command, F); }

respond_update_done(Tjk ,Local_Time); }
else {

if (Is Private Copy local for F) {
mark_update_private(F->Private_Manager); } }

}

40 File Server

Algorithm 4-31: Handle Physical Read

4.2.2.4 File Server Server Implementation of File History

The FS server is required to maintain history on the last five read/write requests made by a task Tj

that occur on a file F (either accessed by or located at the local site). This information then can be used
by the File Assigner server to determine when and how to change the distribution of copies of files in
the MELODY system. The File Server/Task Scheduler use this information to determine when and how
to invoke the File Assigner. The FS server provides two services for the updating the file history
information. Access to the file history information itself is provided by allowing the File Assigner, Task
Scheduler and File Server to directly access the file history. As a result, no service calls are provided.

Update Write Access. This service provides the FS server with the ability to update the file
history that a write has occurred to a public copy located at the site. This write is characterized as
successful or failed, and local or remote. Both local and remote write requests update the global write
history, but only local write requests update the local write history. The algorithm 4-32 first determines
if the write request was local or remote. If remote, then nothing is done. Otherwise, the algorithm
checks if the access was successful. If successful, the algorithm updates the local write file history
information with the successful write request. Otherwise, the local write file history is updated with a
failed write request. After updating the local write access history the algorithm updates the global write
history. This is done by checking again if the write was successful. If successful, the algorithm updates
the global write file history with a successful write request. Otherwise, the algorithm updates the global
write file history with a failed write request.

Algorithm 4-32: Update Write Access

Update Read Access. Updating the file history information with the information that a read access
has occurred is provided by this service. This read access is characterized as either successful or failed,
sensitive or robust, and the location (local/remote) where the access occurred. The algorithm 4-33 first
looks to determine if the read access is local or remote. If remote, then nothing is done. Otherwise, the
algorithm checks if the access was considered robust. If robust, the algorithm checks if the access was
successful or failed. If successful, the algorithm updates the read robust file history with the successful
read request. Otherwise, the read robust file history is updated with a failed read request. For sensitive
and essentially sensitive access, the algorithm checks if the access was successful. If successful, the
algorithm updates the read sensitive file history with the successful read request. Otherwise, the read
sensitive file history is updated with a failed read request.

Handle Physical Read (Task_Instance Tjk , File F, Command_T Command)

{
if (Is Shadow Copy local for F) {

execute_read_operation(Command, F->Shadow_Manager); }
else {

execute_read_operation(Command, F->Private_Manager); }
respond_read_done(Tjk ,Local_Time);

}

Update Write Access (Status_T The_Status , Location_T The_Location ,

 File_History_T The_History)
{

if (The_Location == LOCAL_HOST) {
if (The_Status == SUCCESSFUL) {

update_history_success(The_History ->Write_Local); }
else {

update_history_failed(The_History ->Write_Local); } }
else { }
if (The_Status == SUCCESSFUL) {

update_history_success(The_History ->Write_Global); }
else {

update_history_failed(The_History ->Write_Global); }

}

4.2 File Server Implementation 41

Algorithm 4-33: Update Read Access

4.2.2.5 File Server Server Implementation of File Movement Handler

The File Movement sub-server of the FS server handles the physical data transfer of physical files
to/from one site from/to another site within the MELODY system. The sender and receiver services of
the file movement handler accomplish this service of transferring a data file between two sites. Both
modules use TCP connections to guarantee that no data loss is experienced by the servers (underlying
medium data loss may exist, but is handled at that layer). Details can be found in appendix A regarding
the MELODY file transfer communication model.

Sending Service. The sender receives a request to send a copy of a file located on the local site to
the remote site making the request. The sender then proceeds to complete the following steps to satisfy
that request for a file by the site:

1: Connect. The sender connects to the receiver located at site I.
2: Open. The sender opens the requested file copy (this copy is a duplicate of the public copy

such that no additional disturbance is caused on the public copy).
3: Header. A file header message containing the file identifier and length is sent to the receiver

at site.
4: Data. The complete contents of the file copy is sent by the sender to the receiver. This is

done by having MELODY send data portions of the file (size based on
communication medium) until the complete contents (length L) of the file copy F

has been sent.
5: Disconnect. The sender disconnects from the receiver.
6: Close. The sender closes the requested file copy F.

Receive Service. The receiver begins the process by accepting a connection request by a remote
sender located at a site which begins the receive operation for a file copy. The receiver then completes
the receive operation by completing the following steps to receive the file sent by the site:

1: Accept. The sender accepts a connection request from a sender located at site I.
2: Header. A file header message is received and decoded by the receiver. This header

contains the file identifier F and the length L of the file to be received.
3: Create. The receiver creates a new file copy of length L.
4: Data. The contents of the file are received by the receiver from the sender and written

into the newly created file copy (continues until the entire length of the file has
been received).

5: Disconnect. The receiver disconnects with the sender.
6: Close. The receiver closes the file copy.
7: Acknowledge. The receiver acknowledges to the local File Assigner that the file has been

received at the site.

Update Read Access (Status_T The_Status , Sensitivity_T The_Sensitivity ,
 Location_T The_Location , File_History_T The_History)
{

if (The_Location == LOCAL_HOST) {
if (The_Sensitivity == ROBUST) {

if (The_Status == SUCCESSFUL) {
update_history_success(The_History ->Read_Robust); }

else {
update_history_failed(The_History ->Read_Robust); } }

else {
if (The_Status == SUCCESSFUL) {

update_history_success(The_History ->Read_Sensitive); }
else {

update_history_failed(The_History ->Read_Sensitive); } }

}

42 File Server

Chapter 5 Task Scheduler

Tasks in MELODY represent control functions, corrective actions etc., and are executed on a regular
basis. Tasks are also viewed as executing on dedicated processors with file access being done using
remote file operations rather than task migration or file transfer to the accessing site (see section 3.1).
Each task is a small-scale, transaction-like operation with just one segment of task activity termed
critical section in which it accesses a number of objects (copies of possibly different files) concurrently.
Write operations work on all copies of a file, through remote procedure calls, while read operations
read from only one copy. It is also assumed that the execution times on each local file copy could be
determined within tight bounds.

5.1 Task Scheduler Model

In MELODY, the principle has been established to reverse the order of task and resource scheduling
(see section 1.2) in order to abort tasks as early as possible and at the same time lock resources as late
as possible. This reversal, however, leaves the Task Scheduler without accurate information on task
execution times (the actual resource allocation time is unknown when the Task Scheduler is invoked)
and a task instance would then have to be scheduled based on estimates. The Task Scheduler is invoked
by the Run-Time Monitor (see section 1.2. Details can be found in chapter 7). The Task Scheduler also
collects information which could then be utilized to determine when and for which files the File
Assigner is invoked. The Task Scheduler cooperates with the local File Server and File Assigner, but
provides for no cooperation with MELODY modules at remote sites.

The Task Scheduler schedules a set of k tasks that have arrived at a site I according to a scheduling
policy tailored to the applications needs. In the current implementation of MELODY this earliest
deadline first scheduling algorithm is used by the Task Scheduler to schedule a set of task instances. A
task instance Tjk would be considered for scheduling using: EETjk (estimated execution time), DTjk

(deadline), LRFjk (list of required files) and PrTj (static priority). When invoked, the Task Scheduler
utilizes a service provided by the local File Server to determine EETjk for those task instances Tjk which
have arrived in the meantime. The service calculates the EETjk (see section 3.4) which is based on the
estimated location and acquisition times (derived from the average of the corresponding values of the
last five instances of Tj) and the computation time (time required to access the needed files and their
copies, including the communication time for the possibly remote operations).

The Task Scheduler then schedules task instances ordered by their static priority and deadline.
Task instances are placed into the local task queue (LTQ) according to their order of execution, and
dispatched from execution from this queue. Task instances that can be scheduled by the Task Scheduler
are termed as strongly schedulable, and are designed to be placed into the strongly schedulable queue
(SSQ). The Task Scheduler also may build a queue of task instances (termed weakly schedulable) that
could have been scheduled if copies of files currently located at another site where locally available or
if there had been fewer public copies of the files needed by the task instance. Based on the relative
degree of sensitivity of the task instance, weakly schedulable task instances are separated into the
following three categories:

Write: This category includes all task instances that would require at least one public copy be
deleted to be scheduled into the SSQ. These task instances are termed weakly schedulable
write and are placed into the weakly schedulable write queue (WWQ);

Sensitive: Includes all task instances requiring the creation of a public (and a shadow) copy at the
local site to be scheduled into the SSQ. These task instances are termed weakly
schedulable sensitive and are placed into the weakly schedulable sensitive queue (WSQ);

44 Task Scheduler

Robust: Tasks that could be scheduled into the SSQ if a private copy was locally available are
termed weakly schedulable robust and placed in the weakly schedulable robust queue
(WRQ). Whether the task instance could also utilize a private copy depends on whether the
task instance is considered robust based on the values of bi" (robust threshold) and Rjk

(relative degree of sensitivity) used by definitions 3 and 4 (see section 1.3).
All task instances that are not placed into SSQ, WWQ, WSQ or WRQ would be termed non-schedulable
and placed into the non-schedulable queue (NSQ). Essentially critical task instances are not handled by
the Task Scheduler, but are immediately given to the File Server by the Run-Time Monitor (see chapter
7). Once the Task Scheduler has determined which task instances are strongly schedulable and weakly
schedulable, it sends all strongly schedulable task instances to the File Server to begin their location
phase. All non-schedulable task instances would then be aborted. Due to the unpredictable environment
typical of safety-critical system, which results in the ensuing typical aperiodicity of task instance
occurrences in that environment, and the fact that task scheduling is very short in duration, task
scheduling in MELODY is non-preemptive.

Using the information regarding weakly schedulable task instances the Task Scheduler could then
invoke the File Assigner to change the distribution of public copies in order to try to improve the
schedulability of these tasks. For example, if the number of task instances queued in WSQ surpassed a
predetermined threshold value the Task Scheduler would then request that the File Assigner create a
local public copy of this file in order to provide faster local access to this file. For the tasks queued in
WWQ the Task Scheduler would request that the File Assigner reduce the number of public copies in the
system in order to reduce the time required to access the remaining copies. The Task Scheduler would
request for the tasks queued in the WRQ that a private copy be created since this would improve their
performance while not significantly impacting the performance of writing tasks within the system.
Details regarding this type of File Assigner integration (Task Scheduler-Oriented Integration) will
be described in section 6.1.4 as one of two distinctly different integration methods.

5.2 Task Scheduler Implementation
As a summary of the presentation above the Task Scheduler is presented in pseudo code in

algorithm 5-1. The algorithm begins going through the set of k task instances (task instances which are
waiting for the TS) in the order based on their static priority. For every Tjk, TS begins by determine the
EETjk for every task instance Tjk. The algorithm then tries to schedule Tjk into the local task queue (LTQ)
(based on the earliest deadline first scheduling algorithm) using the service schedule_task_instance.
This service determines if Tjk can be scheduled into the LTQ without causing any task instance already
in the LTQ to not be schedulable. If successful, the algorithm schedules Tjk into the LTQ and queues Tjk

into the SSQ. If Tjk could not be scheduled based on Tjk’s current EETjk, then TS adjusts Tjk’s EETjk by
calling the service local_execution_time. This service returns the execution time for Tjk based on the
assumption that all files are locally available. Using Tjk’s adjusted EETjk,TS tries again to schedule Tjk

into the LTQ. If successful, then it queues Tjk into one of the three WWQ, WSQ or WRQ, based on Tjk’s Rjk.
Finally, if TS could not schedule Tjk using Tjk’s adjusted EETjk, then TS queues Tjk into the NSQ.

5.2 Task Scheduler Implementation 45

Algorithm 5-1: Run Task Scheduler

Once the algorithm has tried to schedule all waiting task instances, it proceeds to determine is the
Task Scheduler-Oriented Integration method is being used. If so, then the Task Scheduler will request
the file distribution to be changed based in the task queued in the three weakly schedulable task queues:
WWQ, WSQ and WRQ. After this the algorithm would for every task instance that has been queued into
the SSQ call the FS client service begin location phase. For every other task instance the algorithm calls
the service begin_abort_task to complete the abortion of the task instance and remove it from the
MELODY system.

Run_Task_Scheduler (Waiting_Task_Instances k)
{

for every T jk in k ordered by Priority and Deadline {
Tjk ->EET = Estimated_Execution_Time(T jk);
if (schedule_task_instance(T jk ,LTQ) == SUCCESS) {

queue_schedulable_task(T jk ,LTQ);
queue_instance(T jk ,SSQ); }

else {
Tjk ->EET = Local_Execution_Time(T jk);
if (schedule_task_instance(T jk ,LTQ) == SUCCESS) {

if (needs_private_copy(T jk) == SUCCESS) {
queue_instance(T jk ,WRQ); }

else {
if (needs_shadow_copy(T jk) == SUCCESS) {

queue_instance(T jk ,WSQ); }
else {

queue_instance(T jk ,WWQ); } } }
else {

queue_instance(T jk ,NSQ); } }
if (Task_Scheduler_Oriented_Integration) {

request_file_distribution_changes(WWQ,WSQ,WRQ); }
for every T jk in SSQ {

Begin_Location_Phase(T jk); }
for every T jk in WRQ, WSQ, WWQ and NSQ {

Begin_Abort_Task(T jk); }
}

46 Task Scheduler

Chapter 6 File Assigner

In MELODY, a trade-off has to be made, under changing requests and deadline failure patterns,
between the costs of serving file requests with a given distribution of public copies, and the costs for
realizing various alternative distributions. The term cost here denotes time delays for overhead
operations, for communication and transmission delays (both local and remote). A large number of
public copies are advantageous for reading task instances, since such a public copy is more likely to be
locally available. This local copy allows for faster access since there would be no remote
communication required and therefore no inherent delays in accessing the copy. However, writing task
instances suffer from this increased number of copies. The increased cost for updating a public copy
grows as the number of public copies increases due to the additional communication and local
processing required to handle responses from additional sites (even though the updating could be
performed relatively in parallel at the remote sites). In MELODY, the File Assigner (FA) is responsible
for adaptively changing the distribution of public file copies according to the changing and typically
unpredictable environment. The File Assigner then uses information obtained from the local site and
from remote sites to determine which of the alternatives should be taken to improve the survivability
and performance of the local site and the MELODY system. The alternatives for public copies are:

Relocation. Relocating of a public copy from a remote site to the local site;
Replication. Creating an additional public copy at the local site;
Deletion. Deleting a public copy if there were not enough requests over a period of time, or under

emergency (nearly essentially critical task failure) conditions.
The local File Assigners cooperate with the local File Server or local Task Scheduler (depending on
two different methods of File Assigner integration, to be described in section 6.1.4) and with the remote
File Assigners to manage replication, relocation and deletion of public copies within MELODY. Private
copies are not managed by the File Assigner since decisions for creation or deletion are solely local and
require no consensus from remote sites (see section 3.4).

6.1 File Assigner Model

The File Server module uses a client/server approach to handling requests for the relocation,
replication and deletion of files. This allows the File Assigner client to concentrate on satisfying
requests made by the local MELODY servers, while the File Assigner server concentrates on handling
requests for information from File Assigner clients (local/remote). The division of responsibilities
between the File Assigner server and client has then been subdivided in the following way:

Client: The client is responsible for requesting information regarding the distribution of files from
the File Assigner servers. Deciding how (based on information received) best to change the
file distribution to improve cost of accessing files not only from the local site, but also in
respect to the needs or costs that a change would have on remote sites. It also ensures that the
request for an authorized change in the file distribution was completed by requesting an
acknowledgment from the File Servers;

Server:The server handles all requests for information regarding their site’s costs or need for copies
of files located at its site. Since the replication, relocation and deletion of public copies can
drastically effect the performance on remote sites, the File Assigner clients must retrieve an
FA Lock on the file. This ensures that only one File Assigner client changes the distribution
of public copies at any time (see section 6.1.1).

This partition of the File Assigner module can be seen in figure 6-1. As a result of this distribution of
responsibilities, the File Assigner client provides no services to remote sites, while the File Assigner
server provides all required information to the local/remote File Assigner clients. Details regarding the
integration of the File Assigner can be found in section 6.1.4.

48 File Assigner

Figure 6-1: File Assigner Client/Server Model

6.1.1 File Assigner Lock Protocol

The File Assigner lock procedure (FA Lock) ensures that at any point of time only one File
Assigner is allowed to change the distribution of public copies of a file. Without this control, it would
be possible that two (or more) File Assigner could at the same time request to delete two different
public copies of a file (without knowledge that the other had also requested a delete). This might violate
the requirement for maintaining a minimum number of copies (see section 3.2). A second reason to
maintain a FA Lock is to ensure that only one additional copy is created at any time. Since the number
of public copies has a significant effect on the performance of write operations, in MELODY the number
of public copies will only be changed by one within a given interval of time. In this way a change would
be reflected in the file history information which could then be utilized more accurately in determining
whether to create additional copies. In summary, the File Assigner only changes the distribution of
public copies when it has been granted the FA Lock on a given file. Once it has been granted locks on
all public copies of a file it may then proceed to request to change the distribution of public copies.
After the change has been acknowledged it will release the FA Lock.

The protocol used to manage the FA Lock is the Priority Insertion protocol that has been defined
by D.C. Daniels [Dan92, WeD91a, WeD91b, and WeD94]. The Priority Insertion protocol is designed
to minimize priority inversion. To accomplish this, each Priority Insertion scheduler (File Assigner
server), which controls access to a file, maintains a schedule ordered by priority. When a client (File
Assigner client) needs to change the distribution of a file, it sends an access request message to the
scheduler at each site holding a public copy of the file. Upon receipt of the client’s message, the
scheduler insert this request into the local schedule. If no other client holds the FA Lock for this file,
then the scheduler will send a lock grant message to the client. The Priority Insertion protocol utilizes
the total order over clients (ordered by unique server-id and host-id) to maintain schedules such that
between any two schedules, there is agreement on the partial ordering of common clients. Provided that
a client at the front of a schedule always holds the FA Lock for the file, the Priority Insertion protocol
is deadlock free. However, there is no guarantee that at any given time a client at the front of the
schedule holds the FA Lock for the file (a lower priority client may already have been granted the FA
Lock at this location). Moreover, this ambiguity can lead to disagreement between the schedulers
which may lead to deadlock. To resolve this condition, a Call Back Mechanism is utilized (see section
4.1.1).

File Assigner

Server

File Assigner

Server

File Assigner

Client

ServerFile
History

File
History

File
History

Node A

Node C

Node B

File Server

File Server

File Server

FA lock
requests

FA lock
responses

File Distribution
Request

File Distribution
Acknowledgment

File Change
request

File Change
acknowledgment

6.1 File Assigner Model 49

6.1.1.1 File Assigner Client Operations

The operations used by a client trying to obtain the FA Lock are basically sequential and will be
described as a step-wise procedure.

Step 1: The client begins to obtain the FA Lock for a file by sending an access request message to
schedulers at all locations holding a public copy of the file.

Step 2: The client now waits while the public file copies respond with lock grant messages. As each
lock is granted, the sending scheduler, is added to a set of locked sites. If all sites have
responded with granted FA Lock, the client will proceed to step 3. The client will
acknowledge all call back messages while in step 2 (ignored in all other steps). For a
description of call back messages and their purpose, see the Call Back Mechanism defined in
section 4.1.1.

Step 3: The client begins to change the distribution of public copies (all needed locks have been
obtained).

Step 4: Upon completion, the client sends release messages to all scheduler holding a public copy of
the file.

6.1.1.2 File Assigner Server Operations

The operations handled by the scheduler for the Priority Insertion protocol are completely
message driven. Thus, the behavior of the scheduler can be expressed as message handlers which define
the actions taken in response to incoming messages.The variable HOLDS_LOCK indicates which client
that holds the FA Lock for the public copy. Procedures common to all request handlers are: SEND (sends
a message to a client); INSERT (inserts a requesting client into priority ordered queue Q); REMOVE (
removes a requesting client from queue Q).

Access Request Handler. Receiving an access message from a client, causes the scheduler to
execute the following algorithm. If the FA Lock queue is empty the scheduler inserts the client into the
FA Lock queue, sets HOLDS_LOCK to this client, and sends a lock grant message to the requesting client.
Otherwise, it inserts the client into the FA Lock queue. It then determines if the requesting client is in
the front of the FA Lock queue and the HOLDS_LOCK variable is set to another client. If so, the scheduler
will request to call-back the FA Lock from the lower priority (lower order server-id and host-id) client
that currently holds the FA Lock and sets the HOLDS_LOCK variable to a free status.

Algorithm 6-1: Priority Insertion Access Request Handler

Release Handler. When the scheduler receives a release message from a client, it executes the
following algorithm. The algorithm first removes the client from the FA Lock queue, and sets the
HOLDS_LOCK variable to a free status. It then checks if their is another client queued. If so, the
algorithm then grants the FA Lock to the client in the front of the FA Lock queue and sets the variable
HOLDS_LOCK to this client.

file_assigner_request_access (file assigner client FACi)
{

if (FA Lock queue == NULL) {/* is the FA Lock queue empty */
INSERT(FACi ,FA Lock queue);
HOLDS_LOCK = FACi ;
SEND("lock grant", FACi); }

else {
INSERT(FACi ,FA Lock queue);
if (front(FA Lock queue) == FACi) { /* FAC at the front of FA Lock queue */

if (HOLDS_LOCK == NULL) { /* is the lock free */
SEND("call back",HOLD_LOCK);
HOLDS_LOCK = NULL; } } }

}

50 File Assigner

Algorithm 6-2: Priority Insertion Release Handler

Call Back Acknowledgment Handler. When a call back acknowledge message is received by the
scheduler it executes the following algorithm. It sends a lock grant message to the client in the front of
the FA Lock queue and sets the variable HOLDS_LOCK to this client.

Algorithm 6-3: Priority Insertion Call Back Acknowledgment Handler

6.1.2 File Assigner Client Functionality

In MELODY, the FA client is in charge of handling requests to change the distribution of public
copies in order to try to improve the performance of tasks at the local site. However, any change effects
the performance of tasks at remote sites. Therefore, a request to create, move or delete a copy would
only be done if the FA servers, at the sites involved, would allow the change to occur. The FA servers
make the decision to grant or deny a request based on its effect on the tasks located at their sites (this
will be described in section 6.1.3 as part of the FA server functionality). For example, the creation of
an additional public copy would improve the performance of the local read tasks, however it could be
detrimental to write tasks within the system due to the additional overhead required to access an
increased number of copies. Deletion of a copy improves the performance of write tasks within the
system, however it causes read task at that site to access a remote copy. This increases their access times
making it more difficult for them to complete prior to their deadlines. The FA client provides four
services which could be invoked under various situations to request changing the distribution of public
copies, but only after obtaining a consensus amongst all FA servers involved. Under the situation where
a large number of sensitive local read tasks are failing, the FA client requests to create a local public
copy (by either relocating or replicating a copy from a remote site) using the service get local public
copy. As stated above, this improves the read access times of local tasks. A remote FA server would
grant relocation of its copy if it would not be detrimental to its read tasks. It grants replication of an
additional public copy only if it would not cause significant problems for its local write tasks. Where
an excessive number of write tasks are failing, the FA client requests to reduce the number of public
copies using the service reduce number of public copies. Remember, this is done to reduce the time
required by future write tasks to access the remaining copies. However, a copy (somewhere within the
system) would only be deleted if it would not significantly impact the performance of read tasks at the
site where the copy resides (the FA server at that site granted the deletion of its copy). After a period
of time, there may no longer be a high enough number of local sensitive read tasks to justify having a
public copy locally available. When the local File Server detects this it invokes the local FA client. This
module then executes delete local public copy in order to reduce the overhead of maintaining the public
file copy in question. It seeks an FA consensus to delete the copy unless the requirement to maintain a
minimum number of public copies is violated. Following the detection of a nearly essentially critical
write task failure, it’s necessary to request to delete a public copy, somewhere within the system, in
order to improve the chances that the upcoming essentially critical task will complete prior to its
deadline. The failure would be detected by either the File Server or Task Scheduler (see section 6.1.4).
Using the service emergency reduction of public copies, the FA client requests to delete a public copy
regardless of whether or not the remote sites would allow it based on its local read tasks (as in the
reduce number of public copies service).

To determine when to get or delete a public copy the FA client uses the file history information

file_assigner_request_release (file assigner client FACi)
{

REMOVE(FACi ,FA Lock queue);
HOLDS_LOCK = NULL;
if (FA Lock queue == NULL) {/* is the FA Lock queue empty */

HOLDS_LOCK = front(FA Lock queue);
SEND("lock grant",front(FA Lock queue)); }

}

file_assigner_acknowledge_callback (file assigner client FACi)
{

HOLDS_LOCK = front(FA Lock queue);
SEND("lock grant",front(FA Lock queue));

}

6.1 File Assigner Model 51

(maintained by the File Server described in section 4.1.5). This history information records the number
of task instances which have requested a certain type of access to a file copy within a predetermined
time interval (set upon system start-up and conceived to be adaptable, over certain time intervals, to
specifics of the task profiles encountered). Thus the information contained in the file history represents
a set of task instances that have either succeeded or failed during a fixed window of time. The FA client
then requests a file distribution change based on the following preset file threshold values:

Get Copy Threshold:When the number of failed read (both sensitive and robust) access requests for
a file surpasses this threshold the FA client sends a request to receive a public copy at its site by
either relocation or replication. If at least one FA server grants the relocation of its public copy,
then its copy will be moved to the local site. Otherwise, the requesting FA client checks if a copy
could be created. If all FA servers granted the replication of a public copy, then a new public copy
would be created, otherwise no copy would be create or moved.

Reduce Copy Threshold:Once the number of failed write requests for a file surpasses this threshold
the FA client sends a delete request to all FA servers holding a public copy of the file. If at least
one of the FA servers grants the deletion of its copy, then the public copy at the location with the
lowest number of local read access requests will be deleted. If all FA servers denied the deleting
their copy, then no copy is deleted.

Note again that the FA client does not handle requests for the creation or deletion of local private copies
since such a decision requires no consensus amongst the remote sites. When there are no longer enough
read access requests the local public copy will be deleted by the File Server.

To ensure that a change in the distribution of a file does not occur to frequently a request is only
made if the time between this request and the prior request to change the distribution of this file has
exceeded a change waiting time value. In this way only one change to the distribution of a file occurs
within a predetermined interval of time. This value is set upon system start-up. In the future it is
conceived to be adaptable, over certain time intervals, to the task profiles encountered.

In summary, the protocols used to implement the services of the FA client are described in the
following paragraphs.

Get Local Public Copy. Once the local FA client has determined that (based on the number of
failing local read access requests and the get copy threshold) a public copy should be created at the local
site it executes this service (protocol shown in figure 6-2). The FA client sends get copy requests to all
FA servers at sites holding a public copy. These, in turn, would grant or deny an FA lock (see section
6.1.1). If the lock has been granted the corresponding FA server includes in its response the information
regarding whether the remote site would grant the relocation or replication of an additional public copy
to the local site (based on the remote FA server’s need). If any site denies granting the FA Lock the
requesting site will release all previously obtained FA Locks and mark the request as finished. The
remote FA server grants relocation of its local public copy if the local read access requests to this copy
would not significantly suffer from accessing a remote public copy. Replication is granted by the
remote FA server if the local write access requests would not significantly suffer from an additional
copy. Specifically how the remote FA servers grant or deny a request will be described as part of the
FA server functionality (see section 6.1.3). After receiving responses from all remote FA servers, the
requesting FA client first determines if a remote site would allow it to move its public copy to the local
site. If so, the FA client issues a request to the local File Server to move the copy from the granting site
to the local site. If no site permitted the relocation of a copy, then the FA client checks if all sites agreed
to create a public copy. If creation is possible, then the local FA client issues a request to the local File
Server to create a new public copy at the site. If none of the measures are approved, the requesting FA
client will do nothing. At the end of this service the FA client releases all FA Locks that it had obtained
in the beginning of the service.

52 File Assigner

Figure 6-2: Get Local Public Copy Protocol

Reduce Number of Public Copies. The local FA client executes this service (protocol shown in
figure 6-3) after determining that (due to the number of writing task instances failing and the reduce
copy threshold) the number of public copies in the system should be reduced. Delete copy requests are
sent to all FA servers at sites holding a public copy. In response, they would grant or deny an FA lock
(see section 6.1.1). If a lock has been granted the corresponding FA server includes in its response the
information regarding whether the remote site grants or denies the deletion of its local public copy is
based on the remote FA server’s need (see section 6.1.3). If any site denies granting the FA Lock the
requesting site releases all previously obtained FA Locks and marks the request as finished. After all
sites have responded, the FA client checks if at least one FA server granted the deletion of its copy. If
so, the FA client issues a request to the local File Server to delete the copy. If deletion is not possible
the FA client proceeds to the next step of releasing the FA Lock. At the end of this service the FA client
releases all FA Locks that it had obtained in the beginning of the service.

Request Creation

Create or Move Copy

Check FA-Lock

Get Public Copy

FA-Lock Released

Release Done

Release FA-Lock

FA-Lock Requested

Request Movement

Release FA Lock

Move DoneCreate Done

MovementCreation

Granted

Get FA Lock

Denied

Not Possible

File Assigner (client) File Assigner (server) (local / remote)

Request get copy

Respond FA Lock
with relocation and replication info

Release FA-Lock

Respond Release

6.1 File Assigner Model 53

Figure 6-3: Reduce Number of Public Copies Protocol

Delete Local Public Copy. This service (protocol shown in figure 6-4) is executed after the local
File Server has determined to delete the local public copy. The difference between this service and the
reduce number of public copies service is that there is no requirement that the FA client must query the
remote FA servers regarding the impact that this deletion would have on their sites since deletion of the
local public copy would not effect remote sites. The FA client must only obtain the FA lock. After all
sites have responded, the FA client ensures that the deletion of the local public copy does not cause the
number of copies to fall below the minimum number (see section 3.2). If this condition is met, the FA
client issues a request to the File Server to delete the copy.

Figure 6-4: Delete Local Public Copy Protocol

Emergency Reduction of Public Copies. Following the failure of a nearly essentially critical
write task instance (an emergency situation since the survivability of the system is in danger), this
service (protocol shown in figure 6-5) would be executed in order to reduce the number of public
copies. This improves the chance that the next invocation of the failing task (which will be essentially

Request Deletion

Check FA-Lock

Reduce Public Copy

FA-Lock Released

Release Done

Release FA-Lock

FA-Lock Requested

Release FA Lock

Deletion Done

Granted

Get FA Lock

Denied

File Assigner (client) File Assigner (server) (local / remote)

Request FA Lock

Respond FA Lock with delete info

Release FA-Lock

Respond Release

Check Delete

Deletion Possible

Not Possible

Delete local copy

Check FA-Lock

Delete Public Copy

FA-Lock Released

Release Done

Release FA-Lock

FA-Lock Requested

Release FA Lock

Deletion Done

Granted

Get FA Lock

Denied

File Assigner (client) File Assigner (server) (local / remote)

Request delete copy

Respond FA Lock

Release FA-Lock

Respond Release

Check Delete

Deletion Possible

Not Possible

54 File Assigner

critical) will complete prior to its deadline. Requests are sent to all FA servers at sites holding a public
copy. In response, they would grant or deny an FA Lock (see section 6.1.1). If a lock has been granted
the corresponding FA server includes in its response the read access file history for its site. If any site
denies the FA Lock the requesting site releases all previously obtained FA Locks. After all sites have
responded, the FA client chooses to delete the public copy located at the site with the lowest number
of read access requests (as long as it would not violate the requirement to maintain a minimum number
of copies). It then issues a request to the File Server at that site to delete the copy. If it could not delete
a copy the FA client releases the FA locks. This would as well be done after a copy has been
successfully deleted. It is conceivable that in the assumed case of emergency the minimum number of
copies requirement would be superseded by the need for the whole system to survive. For future
implementations and for real applications the emergency service described above could then be tailored
in ways in which the reliability requirement is basically ignored.

Figure 6-5: Emergency Reduction of Public Copies Protocol

6.1.3 File Assigner Server Functionality

The FA server at a given site handles requests from the FA clients for information regarding the
specific needs of the site for the local public copy. Since the creation and deletion of private copies is
solely a local decision (a private copy located at one site does not effect another site’s performance in
a significant way), the FA server handles no requests regarding private copies. The FA client must first
receive an FA Lock on the file (described in section 6.1.1). If the FA server grants this lock then it
includes with the grant response the information on its local site’s needs. If it denies the lock then the
FA server does not include any information. For getting a public copy, the FA server includes whether
or not it would allow the FA client to either move its copy, or create an additional copy. The FA server
allows moving its copy if the number of failed sensitive read task instances in the file history (see
section 4.1.5) is less than the delete copy threshold, otherwise it will deny movement of its copy.
Creation of an additional public copy is allowed by the FA server, if and only if the number of failed
writing task instances in the file history is less than the allow copy threshold, otherwise it will deny
replication of a copy. Both values for the allow copy threshold and delete copy threshold would be set
during start-up of the system, and they are conceived to be adaptable to the needs of the local site for
this specific file. Note that the decisions to allow replication or relocation of a public copy are mutually
exclusive. The FA server grants deleting its local public copy, if the number of failed reading task
instances in the file history is less than the delete copy threshold and the number of public copies
exceeds a preset minimum number of copies (see section 3.2), otherwise it denies deletion of its copy.
The FA server then sends the response back to the requesting FA client (the actions taken by the FA

Request Deletion

Check FA-Lock

Emergency Public Copy

FA-Lock Released

Release Done

Release FA-Lock

FA-Lock Requested

Release FA Lock

Deletion Done

Granted

Get FA Lock

Denied

File Assigner (client) File Assigner (server) (local / remote)

Request emergency copy

Respond FA Lock
with read access history

Release FA-Lock

Respond Release

Check Delete

Delete site selected

Not Possible

6.1 File Assigner Model 55

client in response to this message are described in section 6.1.2).

6.1.4 File Assigner Integration

It is expected that invocation of the File Assigner as early as possible would improve the system’s
survivability since file copies could be relocate, replicated or deleted as early as possible. As a result
there would be improved chances that file distribution changes would be completed prior to the arrival
of the next task instances. Invoking the File Assigner as late as possible however would allow for a
more accurate decision to be made in regards to the actual needs of task instances at a site, but this could
impact the system’s survivability by delaying the time before a decision is made to change the
distribution of copies. Two distinctly different models for the integration of File Assigner were
developed: Task Scheduler-Oriented Integration and File Server-Oriented Integration.

Task Scheduler-Oriented Integration. In this model the Task Scheduler (see section 5.1)
maintains a queue of weakly schedulable sensitive read tasks (WSQ), a queue of weakly schedulable
robust read tasks (WRQ), and a queue of weakly schedulable (sensitive) write tasks (WWQ). Each of the
weakly schedulable tasks is kept in the corresponding queue for a fixed amount of time. Thus the
contents of a queue represent a set of tasks that have (weakly) failed during a fixed time window. Upon
completion of task scheduling, the Task Scheduler sends requests to the File Assigner based on the
following threshold values:

WWQT h: When the number of task instances queued in weakly schedulable (sensitive) write task
queue (WWQ) surpasses this threshold the Task Scheduler sends requests to the local FA
client to reduce the number of public copies for each file required by these tasks. This would
have the effect of improving the schedulability of the tasks by reducing the time required to
access the public copies of these files.

WSQTh: Once the number of task instances queued in the weakly schedulable sensitive read task
queue (WSQ) surpasses this threshold the Task Scheduler sends requests to the local FA
client to create a local public copy for every file required (by these task instances) that
currently is not available at the local site. This improves the schedulability of these tasks by
reducing the time required to access these files (since local access time is much faster then
remote access with its additional communication overhead).

WRQTh: Once this threshold has been surpassed, the Task Scheduler would request from the File
Server to create a local private copy for each file required by the task instances queue in
weakly schedulable robust read task queue (WRQ). The schedulability of these tasks would
then be improved for the same reason regarding local access times stated for WSQTh. Note
that the creation of private copies is solely under the control of the File Server since this
effects only the local sites performance and therefore there is no requirement to arrive at a
consensus among the remote sites on the impact that the new private copy would have.

Note that these threshold values would be set during a initialization phase of the system and would be
experimentally tailored to the specific application environment (in the same way that deadlines of the
task instance would be adjusted to the application environment).

After a period of time there may no longer be enough local read accesses to justify having a copy
(public or private) locally available due to the overhead incurred by maintaining the local copy. The
File Server using the delete copy threshold (see section 6.1.3) would make its decision whether or not
to delete the local copy. The File Server requests to delete the local public copy (using the service delete
public copy) when the number of read access requests (both sensitive and robust) underpasses this
threshold. For private copies the File Server deletes the copy based on whether the number of robust
read access requests underpasses this threshold.

In addition, following the abortion of nearly essentially critical task instance the File Server
requests for the files required by this task instances that either the number of public copies be reduced
(write access), or a local private copies be created (read access). Both actions improve the chance (by
reducing the acquisition and execution times) that the next incarnation of the task will succeed. For
reading task instances, this tries to ensure that when the next invocation Tj(k+1) does occur that private

56 File Assigner

copies for all read access requests are locally available. This significantly reduces the execution time
required by the task instance since the copy would be locally available and would not require any
remote communication to access the copy (see section 3.2). For writing task instances, it should be
ensured that the number of public copies has been reduced. The reduced number of public copies would
in turn reduce the execution time required to access the copies by reducing the overhead caused by
communicating with a increased number of copies.

After sending the File Assigner requests the Task Scheduler returns control to the Run-Time
Monitor without being preempted. The advantage of this integration model is that decision to send
request to change the distribution of public file copies to the File Assigner can occur very early, through
a Task Scheduler decision to not schedule a number of task instances. However, the basis for this
decision is quite inaccurate since the Task Scheduler has only vague information about the availability
of the needed resources. The interdependencies of the Task Scheduler-Oriented Integration model can
be seen in figure 6-6.

Figure 6-6: File Assigner: Task Scheduler-Oriented Integration Model

File Server-Oriented Integration. In this model the File Server (see section 4.1.5) maintains
three queues of task instances that missed their deadline: for sensitive read tasks (FSR), for write tasks
(FSW), and for robust read tasks (FRR). Each of the failed task instances is kept in the corresponding
queue for a fixed amount of time. Thus the contents of a queue represent a set of task instances that
have (actually) failed during a fixed time window. Upon completion of a updating the file history, the
File Server sends requests to the File Assigner based on the following threshold values:

FSWTh: When the number of task instances queued in FSW surpasses this threshold the File Server
requests to reduce the number of public copies for this specific file. This would have the effect
of improving the performance of task accessing this file by reducing the time required to
access the public copies of this file.

FSRTh: Once the number of task instances queued in FSR surpasses this threshold the File Server
requests to create a local public copy for this specific file that currently is not available at the
local site. This improves the performance of reading task instances at the site (since local
access time is much faster then remote access with its additional communication overhead).

FRRTh: When this threshold has been surpassed by the number of task instances queued in FRR the
File Server requests to create a local private copy for the specific file. The performance of
these task instances would then be improved for the same reason regarding local access times
stated for FSRTh.

As in the Task Scheduler-Oriented model the File Server maintain control over determine when

Run-Time Monitor

Task Scheduler

Dynamic
(-|FTh,STh1,STh2)

File Assigner (client) File Assigner (server)

File Server

relocation/
replication/
deletion of

public copies

Remote File Assigners

request
FA Lock

FA Lock
responses

FA Lock
responses

request
FA Lock

acknowledge
change request

creation of private copies

deletion of local
public copies

change
request

6.2 File Assigner Implementation 57

to delete local public and private copies based on the delete copy threshold. Creation of private copies
and deletion of public copies under emergency conditions would also be handle in the same method
whenever it was detect that the next instance of a task would become essentially critical. Thus, the Task
Scheduler has no further connection with File Assigner, and the File Server acquires a very similar
function without changing its other structures. While decision to request the File Assigner to change
the distribution of public file copies occurs at a later point of time than in the Task Scheduler-Oriented
model the basis this decision is more accurate since the information regarding the files is more accurate.
The interdependencies of the File Server-Oriented Integration model can be seen in figure 6-7.

Figure 6-7: File Assigner: File Server Oriented Integration Model

The actions taken by either the File Assigner client or server are very short in duration, while for
the remaining time both the File Assigner client or server are waiting for remote requests or responses.
Therefore, the invocation of the File Assigner (client and server) is controlled by the File Server,
interleaving File Server and File Assigner requests. All requests are separated into two distinct
categories, essentially critical requests (on behalf of essentially critical task), and non-essential
requests. Both queues are further separated into current access requests and future assignment
requests. Current access requests contain all requests from or to task instances or files located at the
site. Future assignment requests contain all local or remote File Assigner requests and responses for
the relocation, replication and deletion of shared files. The File Server processes requests until it has to
stop under the rules of File Server/Task Scheduler integration (see section 7.1.1). The interleaving of
File Server access requests and File Assigner actions are prioritized in the following order:

1: The File Server handles all current access requests in the essentially critical request queue.
2: The File Assigner handles all future assignment requests in the essentially critical request queue.
3: The File Server handles all current access requests in the non-essential request queue.
4: The File Assigner handles all future assignment requests in the non-essential request queue.

Figure 6-8: File Server/File Assigner Control Integration

6.2 File Assigner Implementation

As a summary of the presentation in the previous section the File Assigner is partially presented
in pseudo code.

Run-Time Monitor

Task Scheduler

Dynamic
(-|FTh,STh1,STh2)

File Assigner (client) File Assigner (server)

File Server

Remote File Assigners

request
FA Lock FA Lock

responses

FA Lock
responses

request
FA Lock

acknowledge
change request

relocation/
replication/

deletion
of public copies

change
request

File Assigner File Server

File Server / File Assigner Controller

Future Assignment Requests
(essentially critical/non-essential)

Current Access Requests
(essentially critical/non-essential)

58 File Assigner

6.2.1 File Assigner Client Implementation

The following protocol services assist the local FA client in completing the specific protocols used
to change the distribution in response to the request made by the decision services. This includes the
services: Check Move Copy, Check Create Copy, Check Delete Copy. Also included are the services
required to request or release the FA Lock: Request FA Lock, Granted FA Lock, Release FA Lock,
Released FA Lock.

Check Move Copy. Using this service the FA client checks to see if the FA servers have allowed
for a public copy to be moved from a remote site to the local site. The algorithm 6-4 first set the status
of the move request to true (meaning the movement is granted). It will then go through all locations
that have a public copy located at their site. If any location has denied the local site the ability to move
its public copy to the local site then the status is set to false. At the end, the value of the move status is
returned. A value of true means that the FA client is allowed to begin moving the public copy at a
granting site to the local site. A false value means that at least one remote FA server has denied the local
FA client’s request to move a public copy to the local site.

Algorithm 6-4: Check Move Copy

Check Create Copy. The FA client checks if the FA servers that have a public copy have allowed
for a public copy to be created at the local site. The algorithm 6-5 first set the status of the creation
request to true. The algorithm then goes through all locations that have a public copy located at their
site. If any location has denied the creation of a new public copy, the status is set to false. At the end of
the algorithm the value of the status is returned. A true value means that the FA client is allowed to
begin to create a new public copy at the local site. A false value means that the local FA client’s request
to create a public copy is denied.

Algorithm 6-5: Check Create Copy

Check Delete Copy. Using this service the FA client checks to see if the FA servers have allowed
for a public copy to be deleted from a site that has a public copy. First the status of the reduction request
is set to true by the algorithm 6-6. It then goes through all locations that have a public copy. If any
location has denied that its local public copy could be deleted the status is set to false. At the end of the
algorithm the value of the status is returned. A true value means that the FA client is allowed to begin
to delete a public copy. A false value means that a remote FA server has denied the local FA client’s
request to reduce the number of public copies.

Algorithm 6-6: Check Delete Copy

Request FA Lock. The FA clients use this service to send requests to all FA servers to obtain the

Check Move Copy (File F)
{

Status = TRUE;
for all locations of F {

if LOCATION_DENIED_MOVE(location) {
Status = FALSE; } }

return(Status);
}

Check Create Copy (File F)
{

Status = TRUE;
for all locations of F {

if LOCATION_DENIED_COPY(location) {
Status = FALSE; } }

return(Status);
}

Check Delete Copy (File F)
{

Status = TRUE;
for all locations of F {

if LOCATION_DENIED_DELETE(location) {
Status = FALSE; } }

return(Status);
}

6.2 File Assigner Implementation 59

FA Lock on the public copy. First algorithm 6-7 marks the file that it is trying to get the FA Lock. It
then sends a broadcast request to all FA servers to try and obtain the FA Lock. After this message is
sent, the FA client waits for the FA servers (local and remote) to respond by either granting or denying
the FA Lock from their sites.

Algorithm 6-7: Get FA Lock

Granted FA Lock. When the FA client receives a response from an FA server this service is
invoked to handle the granted FA Lock. The algorithm 6-8, first marks it has received a FA Lock from
a site holding a public copy. The algorithm then checks to see if all locks have been returned. If all
locations have been locked, then the algorithm returns true (meaning that the FA Lock has been granted
to the local FA client). Otherwise, the algorithm returns a value of false (meaning that the FA Lock has
not yet been granted to the local FA client).

Algorithm 6-8: Granted FA Lock

Release FA Lock. Sends a request to release the FA Lock that the local FA client holds to all FA
servers that have public copy. First algorithm 6-9 marks the request that it is releasing the FA Lock. It
then sends a broadcast to all FA servers to release the FA Lock for the local FA client. After this is sent,
the FA client waits for the FA servers (local/remote) to respond by either granting or denying the FA
Lock from their sites.

Algorithm 6-9: Release FA Lock

Released FA Lock. This service is invoked by the local FA client when it receives a response from
a FA server that the FA server has released the local FA client’s lock on its copy. The algorithm 6-10,
marks that it has received a response stating that the FA Lock has been released at a specific site. The
algorithm then checks to see if all locks have been released. If all locations holding a public copy have
released the lock, then the algorithm returns true, otherwise it returns false.

Algorithm 6-10: Released FA Lock

6.2.2 File Assigner Server Implementation

The FA server has been implemented by separating the services provided into two categories: FA
Lock handling and history decisions. FA Locking services handle all requests to lock or release the FA
Lock on a local public copy. This includes the services: Request FA Lock and Release FA Lock. History
Decision services provide the FA server the ability to decide whether to grant or deny a specific request
to change the distribution of public copies. This includes the services: Allow Replication, Allow
Relocation and Allow Deletion.

Request File Assigner Lock (File F)
{

mark_file_locking(F);
request_FA_lock_file(F);

}

Granted FA Lock (File F, Host I)
{

mark_copy_locked(F, I);
if (HAS_FA_CLIENT_LOCKED_ALL_COPIES(F) {

return(TRUE); }
else {

return(FALSE); }
}

Release File Assigner Lock (File F)
{

mark_file_releasing(F);
request_release_FA_lock(F);

}

Released FA Lock (File F, Host I)
{

mark_copy_released(F, I);
if (HAS_FA_CLIENT_RELEASED_ALL_COPIES(F) {

return(TRUE); }
else {

return(FALSE); }
}

60 File Assigner

Allow Replication. This service decides for the FA server whether it allows a FA client to create
a new public copy at another site. In algorithm 6-11, the total number of failing write access requests
is compared to the threshold Allow_Copy_Threshold. If the value is underpassed, then the algorithm
returns the value true (stating that the FA server allows the remote FA client to create a public copy).
Otherwise, the algorithm returns a value of false.

Algorithm 6-11: Allow Replication

Allow Relocation. To decide whether an FA client is allowed to move the local public copy to
another site the FA server calls this service. In algorithm 6-12, the total number of access requests by
sensitive and essentially sensitive reading task instance is compared to the threshold Delete_Copy_
Threshold. If the value is underpassed, the algorithm then returns the value true (stating that the FA
server allows for the relocation of its local public copy). Otherwise, the algorithm returns a value of
false.

Algorithm 6-12: Allow Relocation

Allow Deletion. The following service decides for the FA server whether to allow the FA client to
delete the public copy located at its site. In algorithm 6-13, the total number of access requests by
reading task instance is compared to the threshold Delete_Copy_Threshold. If the value is underpassed,
the algorithm then checks if there are more than the minimum number of public copies allowed. If there
are more than the minimum, then the algorithm returns the value true (stating that the FA server has
allowed for the remote FA client to delete the public copy located at its site). Otherwise, the algorithm
returns a value of false.

Algorithm 6-13: Allow Delete

Request FA Lock. This service is invoked by the local FA server when it receives a request from
a FA client to obtain the FA Lock on the public copy located at the local site. In algorithm 6-14, a
request to obtain to the FA Lock for a specific file is received by the FA server. If the FA Lock is free
then the lock request is granted to the requesting site. This granted FA Lock includes the file history
information. If the FA Lock is not free, the algorithm then checks to see if the requestor has a higher
priority then the lock holder. If the requestor does have a higher priority, then the old lock holder is
denied the lock by sending a denied lock response. The requesting site is then placed into a waiting
state and waits until the lock is released. In all other cases the requestor is denied the FA Lock.

Allow Replication (File F)
{

if (W.Failures < Allow_Copy_Threshold) {
return(TRUE); }

else {
return(FALSE); }

}

Allow Relocation (File F)
{

if ((RS.Failures + RS.Success) < Delete_Copy_Threshold) {
return(TRUE); }

else {
return(FALSE); }

}

Allow Delete (File F)
{

if ((((RS.Failures + RS.Success) + (RR.Failures + RR.Success)) < Delete_Copy_Threshold)
 AND (Copies(F) > Minimum_Public_Copies)) {

return(TRUE); }
else {

return(FALSE); }
}

6.2 File Assigner Implementation 61

Algorithm 6-14: Request FA Lock

Release FA Lock. Once invoked by the local FA server when it receives a request from a FA client
to release the FA Lock on the public copy that the FA client holds, the algorithm 6-15 releases the FA
Lock for the specific file. If another FA client is waiting to obtain the FA Lock, then that FA client is
granted the lock, otherwise the lock is released.

Algorithm 6-15: Release FA Lock

Request FA Lock (File F, Host I)
{

if IS_FA_LOCK_FREE(F) {
grant_FA_Lock(I); }

else {
if IS_REQUESTOR_GREATER_PRIORITY(I) {

callback_FA_Lock(OLD_FA_LOCK_HOLDER);
wait_FA_Lock(I); }

else {
wait FA Lock(I); } }

}

Release FA Lock (File F, Host I)
{

remove from FA Lock queue(I);
if IS_FA_LOCK_WAITING(F) {

grant_FA_Lock(WAITING_FA_LOCK_HOLDER); }
else {

free_FA_Lock(F); }
}

62 File Assigner

Chapter 7 Run-Time Monitor

In traditional operating system design, resource acquisition is done prior to task scheduling. A task
instance that had achieved locks on all its required resources would then be scheduled/guaranteed by
the Task Scheduler, or otherwise be subject to abortion. Throughout this entire time competing task
instances would be blocked and may run out of time. This remote blocking would be uncontrollable by
their local agencies. Distributed resource allocation occupies a comparably large portion of the task
execution time, in contrast to the purely local task scheduling activities. Thus the abortion decision by
the Task Scheduler would come very late. To instead abort tasks as early as possible and at the same
time lock the resources as late as possible the principle was established to reverse the order of task and
resource scheduling in MELODY (see section 1.2). This leaves the Task Scheduler without accurate
information on task execution times (the actual resource allocation time is unknown when the Task
Scheduler is invoked) and a task instance would then have to be scheduled based on estimates. As a
result the Task Scheduler can no longer guarantee a task instance will meet its deadline (since resource
scheduling would be completed after task scheduling). However, by introducing a novel Run-Time
Monitor (RTM) module not only would the Task Scheduler abort task instances, but the Run-Time
Monitor would supervise resource acquisition and would abort task instances as early as possible
during their acquisition phase. This abortion would be an accurate decision since the execution time is
known before the locking procedure begins. At the same time competing task instances would benefit
from resources being locked as late as possible (after the task scheduling phase). Experiments
conducted using the simulator developed in phase 5 (see section 1.2) showed significant benefits (both
in terms of deadline performance and survivability) in this reversed task and resource scheduling policy
when compared to the classical model (task scheduling prior to resource scheduling) [WeK93].

To satisfy the tight constraints found in safety-critical real-time systems it is necessary to control
all activities that could effect a task instance’s ability to meet its deadline. Since the purely local task
scheduling activity takes much less time than (remote) file acquisition, integration of task and resource
scheduling means most likely to invoke the Task Scheduler during the resource scheduling activities of
the File Server. Integration of task scheduling activities would have to handle the following conflicting
goals:

• Infrequent invocation of the Task Scheduler. This minimizes the overhead caused by Task
Scheduler activities (increasing the time for resource scheduling activities) and the context
switching overhead while at the same time the number of task instances waiting to be scheduled is
increased thus providing for ‘wiser’ scheduling decisions (selection from a larger set of waiting task
instances). This policy equally means to invoke the Task Scheduler as late as possible.

• Invocation of the Task Scheduler as early as possible. This increases, for every individual task
instance, the time available for acquiring the needed resources.

To adaptively handle these issues a dynamic integration policy under the control of the Run-Time
Monitor was developed (see section 1.2) which would invoke the Task Scheduler based upon the level
of competition and the number of task instances waiting to be scheduled. A technically detailed
presentation of the Run-Time Monitor activities will be given in the following sub-sections.

7.1 Run-Time Monitor Model

The distributed Run-Time Monitor has been designed [Seg97] to monitor three main features of
the MELODY system: Tasks, Files and Integration Policies. To accomplish these tasks the Run-Time
Monitor modules have been separated into three sub-servers (see figure 7-1):

Integration Controller : This sub-server has been designed [WeS96, WeL97 and WeL98] to control
the dynamic Task Scheduler and File Server integration policy in MELODY. The integration

64 Run-Time Monitor

controller determines at which points of time the Task Scheduler should be invoked to schedule
a set of newly arrived task instances. Detailed descriptions of the policies used in making this
decision can be found in section 7.1.1. A detailed experimental evaluation of the policies used
for Task Scheduler and File Server integration can be found in chapter 9. The integration
controller also inspects the Task Scheduler’s queue of newly arrived task instances (Task
Scheduler waiting queue (TSW)). It removes any task instance that is essentially critical from
this queue, and immediately places it into the File Server’s competing task queue (CTQ) (these
task instances have priority over all other tasks).

Task Monitor : This sub-server objective is to abort a task instance Tjk, that no longer has a chance
to complete before it’s deadline, as soon as possible. This abortion of Tjk is based on estimates
of the time required to complete resource location, allocation and locking for Tjk. The policies
used are detailed in section 7.1.2. Their experimental evaluation can be found in chapter 11.

File Monitor : This sub-server monitors requests from File Server (local/remote) for access to files
located at the site. If the File Monitor determines that the request can no longer be satisfied by
this site (deadline of the request has expired), then the request is removed. File monitoring is
necessary since the File Servers do not ensure that a release request sent to the location of a file
is received and acknowledged. A detailed description of this function can be found in section
7.1.3.

Each sub-server is then directly responsible for one of the main features provided by the Run-Time
Monitor.

Figure 7-1: Run-Time Monitor Sub-Servers

7.1.1 Task Scheduler/File Server Integration Controller Sub-Server

It is expected that if the Task Scheduler is invoked too frequently that added invocations would
result in degraded performance. This degraded performance results from two major influences:
increased overhead required to invoke and complete Task Scheduler operations, and increased number
of task instances competing for shared resources (due to less reliable information used during task
scheduling). Delaying the invocation of the Task Scheduler for a longer period would improve the Task
Scheduler’s scheduling process. However, this increased delay in a task instance’s task scheduling
phase (see section 3.3) could also have significant effects on the chances of a task instance to complete
prior to its associated deadline, by reducing the time allowed to complete the remainder task life cycle
phases. We developed the following integration models:

Periodic model: In this model the TS is invoked after a preset interval of time has passed.
Dynamic model:The Task Scheduler function would not be of much use for scheduling essentially

critical task instances since abortion of such tasks potentially causes the whole system to
decease. Consequently, in MELODY the RTM also, while inspecting the TS queue of arrived
task instances, picks the essentially critical instances and inserts them (in appropriate scheduling
order) in to a new FS queue, the essentially critical request queue (ECR) (So the essentially
critical tasks would bypass the Task Scheduler). The task instances that are still scheduled by TS
(which are critical or non-critical) are inserted into the non-essential request queue (NER) at FS,
after a TS invocation took place. While ECR and NER together form the set of tasks on which FS
operates, ECR has priority over NER. Three dynamic thresholds are used to determine when to
invoke the TS:

• A threshold FTh is set for the File Server’s Competing Task Queue (CTQ).
• Two thresholds STh1 and STh2 (STh1 < STh2) are set for the Task Scheduler’s Waiting Queue

(TSW). These two thresholds monitor the number of newly arrived tasks instances.
The Dynamic model then invokes the Task Scheduler whenever either of the following

Run-Time Monitor

Integration Controller Task Monitor File Monitor

Task
Instances

File
Copies

Task
Scheduler

File
Server

7.1 Run-Time Monitor Model 65

conditions becomes true:
• FTh has been underpassed and STh1 has been surpassed,
• STh2 alone has been surpassed.

The threshold values are conceived to be adaptable, over certain time intervals, to specifics of
the task profiles encountered.

Adjusted model: Threshold values for the Dynamic model can result in Task Scheduler being
invoked too frequently. Therefore, it may be beneficial to delay invocation for an interval of time
as defined in the Periodic model. This model adjusts the Dynamic model by only invoking the
TS at certain predefined instances in time. The thresholds FTh, STh1 and STh2 (as defined in the
Dynamic model) are used to determine when to invoke the Task Scheduler. However, this model
delays invocation until the next period (defined in the Periodic model).

The main expectation for the new integrated task and resource scheduling policies is that the lack
of guarantee by TS would be more than made up by the less chaotic and harmful way of early resource
locking (as used in traditional operating system design). Our first concern was to compare any of the
new integrated models with a classical model of periodic TS invocation and resource scheduling prior
to task scheduling. This was subject to extensive simulation experiments reported in [WeL94].

It was expected that the Periodic model would have an optimal setting of the invocation period
with respect to the deadline failure rate. This optimal performance would degrade as the period was
increased or decreased from the optimum. For the Dynamic model there should also be optimal settings
for FTh, STh1 and STh2. The Adjusted model had been developed to assure that under certain extreme
settings its performance would match one of its constituent models. For example, a very long period
for the Adjusted model would cause it to be significantly influenced by the period, and as a result its
performance should be nearly identical to the Periodic model. The Adjusted model under a very short
period should match the performance of the Dynamic model. In this way the characteristic tendencies
of the Adjusted model could be directly attributed to the either the Dynamic model or the Periodic
model, and this hybrid model could then be utilized as a benchmark model for comparatively
evaluating the other two models.

7.1.2 Task Monitor Sub-Server

The Task Monitor sub-server of the Run-Time Monitor is responsible for monitoring task
instances that are competing to access shared files. This monitoring is done by determining an estimate
of the remaining time required to acquire all needed resources and complete the computation phase for
the task instance. If the Task Monitor determines that the task instance can no longer complete its
computation phase prior to its deadline then it aborts the task instance. The estimate used to determine
the remaining time required to acquire all needed resources is based on the history of the prior task
instances. The Task Monitor uses the following three estimates to determine the remaining time
required by a task instance Tjk:

Estimated Acquisition Time (EATjk): This is the estimated time required by Tjk in order to acquire
the locks for all needed resources.

Estimate Locking Time (ELTjk): For a writing task instance Tjk the Task Monitor also determines an
estimate for the time required to obtain the lock once all ready messages have been received by
the task instance (once phase 1 of the Delayed Insertion protocol (see section 4.1.1) has been
completed).

Estimated Computation Time (ECTjk): This is the estimated time required to complete the
operation requested by the task. For reading task instances this is the time at which the message
is received at the local site. For writing task instances this is the time at which the update has
completed on the remote site.

Once estimates for Tjk have been determined, the RTM sets a number of sub-deadlines that correspond
to stages during the task execution life cycle (see section 3.3). This estimate is based on the deadline
DTjk, which is determined by the application. The following sub-deadlines then allow the Task Monitor
to check which phase the task instance is trying to complete and whether the corresponding sub-

66 Run-Time Monitor

deadline has expired:
Location Sub-Deadline (DLojk): This sub-deadline is set based on task instance Tjk’s ECTjk and

EATjk. The deadline DLojk is determined by subtracting ECTjk and EATjk from the value of DTjk.
Acquisition Sub-Deadline (DAcjk): This sub-deadline is set based only on the task instance Tjk’s

ECTjk. The deadline DAcjk is determined by subtracting ECTjk from the value of DTjk.
Allocation Sub-Deadline (DAljk): This sub-deadline is set based only on the task instance Tjk’s

ECTjk and ELTjk. The deadline DAljk is determined by subtracting ECTjk and ELTjk from the value
of DTjk. This sub-deadline is only set for writing task instances since a reading task instance is
not required to obtain ready messages from the files in its List of Required Files (LRFjk).

A graphical representation of the points at which a sub-deadline would be set for a reading task instance
can bee seen in figure 7-2. The sub-deadlines for a writing task instance can be seen in figure 7-3 (note
that read task instances have to acquire a read lock on one of the file copies (see section 3.3)). In both
figures, CTjk is the creation time of task instance Tjk. When the Task Monitor has determined that a task
instance Tjk can no longer meet one of its associated sub-deadlines (and therefore its associated
deadline DTjk) then the Task Monitor aborts the task immediately.

Figure 7-2: Reading Task Instance Sub-Deadlines

Figure 7-3: Writing Task Instance Sub-Deadlines

7.1.3 File Monitor Sub-Server

The File Monitor sub-server of the Run-Time Monitor is responsible for monitoring copies of files
located at the local site. The monitor determines if a queued request (both for read/write access) from
a task instance (local/remote) would still be able to obtain the required lock (in time) to complete before
its associated deadline. If it determined that the requesting task instance no longer has a chance to
obtain the required lock and complete its computation phase then the queued request will be removed
from the file manager’s queues according to the Delayed Insertion protocol (see section 4.1.1).
Monitoring is done to improve the response times of the local file copy, since there would be less
blocking requests by a request which has no chance to complete before its deadline. A removal of a
task instance request is possible since the File Monitor only removes those request that have no chance
to complete, therefore it would not be necessary for the local File Server to wait for the release message
from the task instance (that may be delayed by the communication load which would add additional
time to the already unnecessary blocking time). Any release message received after removal of the
request would then be ignored by the local File Server.

Waiting Scheduling Location

Acquisition

Computation

DTjk

CTjk

DLojk

DAcjk

ECT

ECTEAT

Waiting Scheduling Location

Allocation

Locking

Computation

DTjk

CTjk

DLojk

DAljk

DAcjk

ECT

ECT

ECTEAT

ELT

7.2 Run-Time Monitor Implementation 67

7.1.4 Run-Time Monitor Integration

The actions taken by the sub-servers of the Run-Time Monitor are very short in duration, since
they are oriented towards checking whether a specific action should be taken and therefore these
services are non-preemptive. Integration of these modules has then been directly integrated into the
services of the File Server. This being done because it has the information on when the specific
modules should be called to perform their checks. The File Server would then processes requests until
it has to stop under the rules of File Server/Task Scheduler integration (see section 7.1.1). Invocation
of the File Monitor or Task Monitor could be delayed by the invocation of the Task Scheduler (which
may be up for invocation at the same time as the two services). If invocation of the Task Scheduler
occurs before either service is invoked, then once the Task Scheduler completes its operations control
would be returned to the File Server which would then invoke the delayed service (resuming at the
point where it had been interrupted by the Task Scheduler’s invocation). Since the invocation of all
other MELODY modules is control by the File Server no other module could then interrupt the their
invocation. During the File Servers processing it would invoke either the Task Monitor or File Monitor
depending on the type of request being handled. The Task Monitor sub-server is called directly by the
File Server to check the ability of a task instance to complete prior to its associated deadline and is
directly integrated into the access routines of the FS client (see section 4.1.2) that control a task
instance’s movement through its task life cycle (see section 4.2.1). The Task Monitor is invoked for an
individual task instance after the completion of a phase. This invocation checks the current phase the
task instance has just completed and the sub-deadline (see section 7.1.2) that was assigned to that
phase. Following this control is returned to the File Server such that it may be allowed to either
continue handling the task instance or abort it. Invocation of File Monitoring services is then integrated
into the file allocation routines of the FS server (see section 4.1.3). Invocation occurs whenever an
access (read/write), schedule (write) or execution (read/write) request is received. When received, the
File Monitor removes any outstanding requests to ensure that the proper response can be issued by the
File Server to the received request.

7.2 Run-Time Monitor Implementation

Remember that the implementation of the Run-Time Monitor module is separated into the three
sub-servers: integration controller, Task Monitor and File Monitor. The integration controller is
responsible for the following activities:

• Placing newly created task instances into either the Task Scheduler’s Waiting Task Queue (WTQ),
or placing essentially critical task instances into the File Server’s Competing Task Queue (CTQ).

• Determining whether the Task Scheduler should be invoked based on the integration model.
The Task Monitor sub-server is responsible for setting sub-deadlines for all task instances in the File
Server’s CTQ, and for aborting those task instances as soon as possible based upon their corresponding
sub-deadlines. The File Monitor monitors requests (from both reading and writing task instances)
queued for access in the file manager’s access queues (see the Delayed Insertion protocol in section
4.1.1), and it aborts any request that no longer has a chance to complete before its associated deadline.
The relationships between the algorithms of the Run-Time Monitor services and the Task Scheduler
and File Server services is graphically shown in figure 7-4.

68 Run-Time Monitor

Figure 7-4: Run-Time Monitor Services Intergration

7.2.1 Task Scheduler/File Server Integration Controller Services

The integration controller is invoked by the Run-Time Monitor in order to check for any newly
created task instances. A newly created task instance Tjk is assigned a relative degree of criticality and
sensitivity based on the status of the prior task instance Tj(k-1). If Tjk is determined to be essentially
critical, then the integration controller queues the task instance into the File Server’s CTQ. Otherwise,
the task instance Tjk is placed into the Task Scheduler’s WTQ.

The integration controller then checks to determine if the Task Scheduler should be invoked based
on the model for TS/FS integration being used. If the Task Scheduler is not to be invoked, the Run-
Time Monitor gives control to the File Server. Otherwise, the Integration controller invokes the Task
Scheduler. Once the Task Scheduler has completed scheduling all task in its waiting task queue it gives
control to the File Server. In the sequel we describe the relevant functions of the integration controller
in pseudo-code.

Handle Newly Created Task Instance. This service checks for any task instance Tjk newly
created by the application. It assigns it a relative degree of criticality Cjk (see section 3.1.1), and relative
degree of sensitivity Rjk (see section 3.1.2), based on the status of the prior task instance Tj(k-1). Based
on the relative degree of criticality this service then determines if the task is to be placed into the Task
Scheduler’s waiting task queue, or the File Server’s competing task queue.

Check Write Sub Deadline

Check Task Scheduler
Invocation

Handle Newly Created
Task Instance

Run File Server
Invoke
Task Scheduler

Run-Time Monitor File Server

Check Read Sub Deadline

Task Scheduler

Run Task Scheduler
Invoke
File Server

Check for new
Task Instances

Scheduling
Completed

Check TS/FS
Integration

Read Allocation Services

Begin Location Phase
Begin Acquisition Phase

Begin Computation Phase

Write Allocation Services

Begin Location Phase
Begin Allocation Phase
Begin Locking Phase

Begin Computation Phase

Check Read Deadline

Check Write Deadline

Deadline Status

Deadline Status

File Monitor Service

Task Monitor Service

File Allocation Services

Read Acquire File Copy
Read Release File Copy
Write Request File Copy

Write Lock File Copy
Write Unlock File Copy
Write Release File Copy

Check File Manager

Completed

Integration Controller

Handle Read
Task Instance

Handle Write
Task Instance

Handle
File Request

7.2 Run-Time Monitor Implementation 69

Algorithm 7-1: Handle New Instance Creation

Check Task Scheduler Invocation. This service checks to determine if the integration controller
should pass control to the Task Scheduler in order for it to schedule all task instances in its waiting task
queue, or give control to the File Server. The determination of whether to invoke the Task Scheduler or
not is based upon the definition of the integration model selected: Periodic, Dynamic or Adjusted (see
section 7.1.1).

If the Periodic model is being used, the algorithm then checks to determine if the interval has
elapsed. If the interval has elapsed, then the Task Scheduler should be invoked and a successful status
is returned, otherwise the File Server should be given control and a failed status is return. If the
Dynamic model is being used then the algorithm checks if the threshold STh2 has been surpassed, or if
FTh has been underpassed and STh1 has been surpassed. If the Task Scheduler should be invoked by the
Dynamic model then a successful status is returned, otherwise a failed status is return. If the Adjusted
model is being used, the algorithm first checks if the interval has elapsed or not. If the interval has
elapsed and the Dynamic model would have invoked the Task Scheduler then a successful status is
return, otherwise a failed status is returned. In all cases if a successful status is returned by this
algorithm the Integration Controller immediately gives control to the Task Scheduler, otherwise control
is given to the File Server.

Algorithm 7-2: Check Task Scheduler Invocation

7.2.2 Task Monitor Services

The Task Monitor sub-server is invoked directly by the File Server in order to check the ability of
a task instance to complete its phase prior to its associated deadline. Invocation is highly integrated into
the access routines to control a task instance’s movement through its task life cycle (see section 4.2.1),
therefore overhead required to invoke task monitoring services is at minimum and is considered
negligible. The Task Monitor is invoked for a task instance after the completion of each of its phases.
This invocation checks the current phase the task instance has just completed and the sub-deadline (see

handle_new_instance_creation ()
{
 for all new task instances T jk do {

Tjk ->Criticality = assign_criticality(T jk);
Tjk ->Sensitivity = assign_sensitivity(T jk);
if (T jk ->Criticality is essentially critical) {

Begin Location Phase(T jk); }
else {

Begin Scheduling Phase(T jk); } }
}

Status_T Check Task Scheduler Invocation ()
{
 switch (TASK_SCHEDULER_CONFIG->Method) {

case PERIODIC: if CHECK_PERIODIC(TASK_SCHEDULER_CONFIG->Periodic) {
UPDATE_PERIOD(TASK_SCHEDULER_CONFIG->Periodic);
return(SUCCESS); }

 else {
return(FAILED); }

 break;
case DYNAMIC : if CHECK_DYNAMIC(TASK_SCHEDULER_CONFIG->Dynamic) {

return(SUCCESS); }
 else {

return(FAILED); }
 break;

case ADJUSTED: if CHECK_PERIODIC(TASK_SCHEDULER_CONFIG->Periodic) {
UPDATE_PERIOD(TASK_SCHEDULER_CONFIG->Periodic);
if CHECK_DYNAMIC(TASK_SCHEDULER_CONFIG->Dynamic) {

return(SUCCESS); }
else {

return(FAILED); } }
 else {

return(FAILED); }
 break; }

}

70 Run-Time Monitor

section 7.1.2) that was assigned to that phase. Following the monitoring of the task instance control is
returned to the File Server such that it may be allowed to either continue handling the task instance or
abort the task instance. Since the time required by task monitoring is very short in duration this service
is non-preemptive. However, invocation of the Task Monitor is preemptive and could be delayed by the
invocation of the Task Scheduler (which may be up for invocation at the same time as the Task
Monitor). If invocation of the Task Scheduler occurs before the Task Monitor is invoked, then once the
Task Scheduler has completed its operations control would be returned to the File Server which then
invoke the Task Monitor service (resuming at the point where it had been interrupted by the Task
Schedulers invocation). Since the invocation of all other MELODY modules is control by the File Server
no other module could then interrupt the invocation of the Task Monitor.

If the sub-deadline can not be met, then the Task Monitor assumes that the task deadline can also
not be met, and aborts the task instance. The sub-deadlines checked by the Task Monitor are based on
the estimates for the time required by the task instance to complete a certain phase in its task life cycle
(see section 7.1.2): estimated acquisition time (EATjk), estimated locking time (ELTjk) and estimated
computation time (ECTjk). In MELODY all of the estimates are determined by utilizing the task history
for a given task Tj. Depending on the type of estimate used the Task Monitor either utilizes a minimum,
average or maximum value for the phase being estimated. The type of value utilized is envisioned to
be tailored to the application. However, in case of the estimated computation time only an average is
utilized. This is due to the fact that the time to complete the computation phase for both writing and
reading task instances is fairly constant (for a given distribution of the needed file copies). In case of a
reading task instance the computation request always consists of one execution request being sent to
the node which holds the selected file copy to perform the computation against, and a response received
with the result of the computation. For writing task instances the computation phase consists of one
broadcast message being sent to the nodes involved in the update operation. The time used by the
writing task instance is then only until the operation has been completed at all nodes.

The Task Monitor utilizes two services: check write sub-deadline or check read sub-deadline, to
check the deadline for whether a writing or reading task instance Tjk. Based on the return values from
these two services, the Task Monitor either allows the task instance to continue, or it aborts it from the
File Server’s Competing Task Queue using the service begin task abort (see section 4.2.1.1).

Check Write Sub Deadline. This service checks whether a writing task instance still has a chance
to complete the phase that it’s in. If the phase can be completed, and the associated sub-deadline can
still be met, then the service returns a SUCCESSFUL status, otherwise a FAILED status is returned and the
instance is aborted.

Algorithm 7-3: Check Write Sub-Deadline

The phase of the task instance Tjk is checked by the algorithm to determine whether the task
instance is in either the location, allocation or locking phase. If Tjk is in the location phase, the algorithm
then checks if the CURRENT_TIME has surpassed the location sub-deadline (DLojk). If surpassed, then
Tjk is aborted, otherwise it is allowed to continue. If Tjk is in the allocation phase (phase 1 of the Delayed
Insertion protocol), the algorithm then checks if the CURRENT_TIME has surpassed the allocation sub-

Status_T Check Write Sub Deadline (Instances T jk)
{

 switch (Current_Phase(Tjk)) {
case LOCATION : Current_Sub_Deadline = Tjk ->DLo jk ;

 break;
case ALLOCATION : Current_Sub_Deadline = Tjk ->DAl jk ;

 break;
case LOCKING : Current_Sub_Deadline = Tjk ->DAc jk ;

 break; }

 if (CURRENT_TIME > Current_Sub_Deadline) {
return(FAILED); }

 else {
return(SUCCESS); }

}

7.2 Run-Time Monitor Implementation 71

deadline (DAl jk). If sub-deadline DAl jk has been surpassed, then Tjk is aborted, otherwise it is allowed
to continue. If Tjk is in the locking phase (phase 2 of the Delayed Insertion protocol), the algorithm then
checks if the CURRENT_TIME has surpassed the acquisition (end of locking phase) sub-deadline (DAcjk).
If sub-deadline DAcjk has been surpassed, then Tjk is aborted, otherwise it is allowed to continue. In all
cases the algorithm returns the value of failed meaning that the task instance Tjk should be aborted, or
success meaning that Tjk should be allowed to continue.

Check Read Sub Deadline. This service checks whether a reading task instance Tjk still has a
chance to complete the phase that it is in. If the phase can be completed, and the associated sub-
deadline can still be met, then the service returns a successful status, otherwise a failed status is return
and the task instance is aborted.

Algorithm 7-4: Check Read Sub Deadline

7.2.3 File Monitor Services

The File Monitor sub-server is invoked directly by the File Server in order to check the validity of
requests (from local or remote task instances). If the request is no longer valid (the deadline on the
request has elapsed) then the request is removed. The removal of the request is handled in the exact
same method as if the task instance that requested the file had sent a release request message to the file
manager. Requests are checked by the File Server whenever a change in the status of the file happens.
Status changes for file copies occur whenever a reading task instance’s request arrives at either a
shadow or private copy. Status changes also occur when a write lock is released on a public copy, or
there are no longer any task instances in the scheduling queue.

Status_T Check Read Sub Deadline (Instances T jk)
{

 switch (Current_Phase(Tjk)) {
case LOCATION : Current_Sub_Deadline = Tjk ->DLo jk ;

 break;
case ACQUISITION : Current_Sub_Deadline = Tjk ->DAc jk ;

 break; }

 if (CURRENT_TIME > Current_Sub_Deadline) {
return(FAILED); }

 else {
return(SUCCESS); }

}

72 Run-Time Monitor

Chapter 8 File System Experiments

To test the performance of the distributed MELODY implementation a set of experiments was
performed that replicated the previous simulation experiments conducted in phase 5 of MELODY’s
development [WeK93]. These experiments compared the functionality of MELODY’s file system to
simpler, yet less flexible, models that exhibit some but not all of MELODY’s functionality. The
experiments compared the MELODY file system to two simpler file system models, Public model and
Private model. The Public model only allowed for the relocation, replication and deletion of public
copies. No private copies are provided by the Public model. Every update to a file copy invoked a set
of file servers managing the public copies under the strong concurrency requirements detailed in
section 3.2. The Private model allowed for the creation and deletion of private copies, but did not allow
for any relocation, replication or deletion of public copies (rather providing for only a minimum
number of public file copies of each file). This gave rise to a concurrency protocol that required less
communication overhead (no distributed updates, no consensus procedures). However, it was costly to
refresh private copies (through transferring a copy from a remote site) if updates to a file occurred very
frequently.

For the purpose of the MELODY simulations a number of simplifications had been made to the
system model. The effect that communication, real task computation and file manipulation would have
as compared to the simulation model, was an open question (section 1.2). In particular, since the
distributed model had been implemented on a single processor it was not possible to realistically
implement distributed task computation and file manipulation, or to study the real overhead caused by
invoking the corresponding system services. Also, actual communication within a distributed real-time
environment is designed to have a strict upper bound. As the load on the real communication medium
increases (due to unpredictable task arrival rates, file update frequency or file transfers) so does the
potential for the communication time to exceed any designed bounds. The load on the communication
medium also effects the basic assumption that no message is lost and that the order of messages is
preserved for synchronization messages.

The results obtained during these prior simulation experiments were well understood and exhibit
distinct characteristic tendencies. All aspects considered it was hoped that by modifying and varying
model parameters, task and data profiles, the simulation set-ups and assumptions (communication
times, file manipulation and task computation) could be modeled as extreme circumstances in the
distributed set-ups. At the same time it was expected that the results/tendencies of the simulation
studies could be recovered under the corresponding extreme distributed set-ups and would be refinable
or extendible to the general distributed experimental situation. In this way using incremental
experimentation the previous well-understood results could be utilized to evaluate differences in the
performance of MELODY under real communication, task computation and file manipulation in a
distributed environment.

Previous experiments showed, for task profiles with high sensitivity values (close to the threshold
of essentially sensitive), that the Public model performed better than the Private model (especially
under a high dominance of read operations). However, it was shown that the influence a task sensitivity
is so strong that it makes the roles of the Public model and the Private model flip in terms of their
relative deadline failure rate performance. In turn, for ranges of decreasing sensitivity (toward
robustness) the Private model is eventually able to improve its performance and surpass the Public
model’s deadline failure rate performance. The performance increase can be attributed to the low
overhead of the Private model for managing public file copies, while there is little overhead being

74 File System Experiments

generated by refreshing public copies. The situation changes significantly as the number of write
operations increases. The Private model no longer outperforms the Public model under decreasing
levels of sensitivity. Also under a high dominance of write operations both models fail completely
(survivability) even for ranges of moderate criticality. Throughout all the simulation runs, MELODY's
performance was distinctively superior over the simpler models. It failed only when there was a high
dominance of write operations and a high level of criticality in the task profile.

Experiments conducted using the simulator were redone by setting up a task profile that, by
modify task profile parameters, would model (under extreme settings) the task profile used by the
simulation experiments. In the experiments discussed here, 7 sites were used with 100 task distributed
among all sites. 16 data files were distributed among all sites, each file initially with one public copy
and no private copies. Parameter ranges for the task profiles (from which initial settings for the tasks
in the profile were made) are shown in table 8-1. In the following task profiles, task deadlines had then
been modeled accordingly to fit tightly. The rather high deadline failure rates (which can be seen in the
following figures) were thus to be expected. They are not unacceptable as long as survivability is
guaranteed, i.e. the failed the failed task instances had not yet been essentially critical. In this way
characteristic differences in the performance of the models under a relatively high load could be more
accurately determined. The threshold values for criticality ai’ and ai" were uniformly set to 1 and 10,
respectively, across all sites. Across all sites, the threshold values for sensitivity bi’ and bi" were
uniformly set to 5 and 10, respectively. In all experiments, the file size was set to 80K (with read/write
operations accessing 20K of data from each file). The experimental parameters chosen showed the
tendencies between models very clearly. The uniformity over all experimental set-ups was chosen
because of representational simplicity not because different parameter ranges exhibited different
tendencies. The performance measurements (as in prior experiments) were based on the percentage
of task failures during a given time interval (1 second), and equally on survivability . Each experiment
was run 10 times with results averaged. Beyond this we did up to 30 runs for better judgment on
survivability but found no significant differences compared to the smaller number of runs which is then
the basis of the report. In addition, survivability was measured in the following way: if an essentially
critical task failed during one of the experimental runs then all other runs were counted as failed at the
same failure time at which the one run had experienced the failure.

Using the above task profile parameters the following three distinct task profiles were developed:
Read Dominance: In this task profile there was a significant dominance (75%) of reading tasks,
Even Mix: This profile contains an even distribution of read/write operations (50%/50%),
Write Dominance: In this profile there was a significant dominance (75%) of writing tasks.

Criticality for each of the profiles was varied between the ranges of 6-9, 9-12 and 12-15. Sensitivity for
each of the profiles was varied between the ranges of 6-9, 9-12 and 12-15. This resulted in 9 distinct
sets of experiments for each of the three task profiles. In this manner the results clearly showed the
influence criticality, sensitivity and read/write dominance on the deadline failure rate performance and
survivability performance of the three models (Public, Private and MELODY).

Table 8-1: File System Experiments Task Profile Parameters

8.1 Read Dominance

In an environment where the dominance of read operations is high, the urgency to have a local file

Task Parameter Range of Values
Read Access Write Access

Deadline 12..15 msec 70..95 msec
Worst Case Execution Time 5 msec 10 msec
Next Arrival Time 230..330 msec 350..450 msec
Criticality (Cj) varied [5..11], [7..13], [9..15]
Sensitivity (Rj) varied [6..9], [9..12], [12..15]
of Required Files 2-4
Read / Write Dominance Write Dominance: 25% readers / 75% writers

Even Mix: 50% readers / 50% writers
Read Dominance: 75% readers / 25% writers

8.1 Read Dominance 75

copy increases due to tendency of read operations to require fast access to file copies. In this situation,
the increased overhead resulting from a public copy would be at a minimum (due to the infrequent
update operations). The primary influence on file access response time performance is whether the file
is available at the local site. Therefore, it’s expected (and shown in previous simulations) that as the
number of sensitive read operations increase the Public model is able to improve its deadline failure
rate performance. The improved performance resulted directly from the model’s ability to replicate or
relocate public copies to those sites requiring local read access. The opposite relation is true for the
Private model. Only as the number of robust read operations increase does the deadline failure rate
performance of the Private model improve, since only Robust task instances are able to utilize a Private
file copy. Under conditions where there is an increased number of essentially critical task instances, the
Private model also improves its deadline failure rate performance (essentially critical task instances use
either a shadow or private copy). However, more important is the improved survivability performance
as the Private model is able to respond quicker to creating a private copy at a site where a nearly
essentially critical task instance has been detected. This improved survivability performance should be
apparent throughout all ranges of sensitivity, since there is no dependency of essentially critical task
instance on the sensitivity of the task instance.

In figure 8-1, there is a dominance of sensitive tasks (sensitivity range 6 to 9) in the task profile.
The deadline failure rate performance clearly shows that following an initial increased overhead (time
intervals 1 through 4), resulting from the replication or relocation of public copies, that the Public
model is able to significantly improve its performance in respect to the Private model. This is a direct
result of the increased number of task instances utilizing a local public file copy, therefore reducing the
communication overhead within the system. Throughout the experiment, it’s quite apparent that the
MELODY model clearly outperformed the two simpler models.

In figure 8-2, an increasing number of robust tasks (sensitivity range 9 to 12) allows the Private
model to significantly improve its deadline failure rate performance. This improved performance
allows the Private model to even match the performance of the Public model. The MELODY model
clearly improves its performance resulting from its ability to locate either a public or private copy of a
file at a site depending on the sites read access requirements.

In figure 8-3, the improved performance of the Private model is most dramatic, resulting in its
deadline failure rate performance surpassing that of the Public model. its performance increases so
dramatically, that during the initial 5 seconds the Private model’s performance surpasses that of the
MELODY model. However, the MELODY model is able to improve its performance much more than the
Private model by correctly locating public and private copies at those sites that most require a certain
type of file copy. This ability to dynamically locate either a public or private file copy, depending on
task access requirements, has clearly shown to be superior under conditions of relatively low criticality
(range 9 to 15).

Figure 8-1: Read Dominance (Cj[9..15]/Rj[6..9]) Figure 8-2: Read Dominance (Cj[9..15]/Rj[9..12])

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

76 File System Experiments

As the criticality of the task profile is increased (range 7 to 13) clearer tendencies regarding the
survivability of the models become apparent. In a middle range of criticality (figure 8-4, figure 8-5 and
figure 8-6) the characteristic tendency in regards to the Private model’s performance improvement
(under increasing levels of robust task instances) is still quite apparent (figure 8-6). The increased
criticality causes significant problems for the Public model as it’s no longer to complete the entire
experiment (failing between the 10th and 14th second in figure 8-6). However, the Private model is able
to survive, and shows the clear benefit in being able to create a private copy at a site where a nearly
essentially critical task instance has been detected. It’s quite apparent that this ability to handle
essentially critical task instance is a significant benefit of private copies. The MELODY model
throughout all three experiments was clearly able to handle the increased level of criticality, while still
outperforming the other two simpler models in respect to deadline failure rate performance.

Figure 8-3: Read Dominance (Cj[9..15]/Rj[12..15]) Figure 8-4: Read Dominance (Cj[7..13]/Rj[6..9])

Figure 8-5: Read Dominance (Cj[7..13]/Rj[9..12])Figure 8-6: Read Dominance (Cj[7..13]/Rj[12..15])

Figure 8-7: Read Dominance (Cj[5..11]/Rj[6..9]) Figure 8-8: Read Dominance (Cj[5..11]/Rj[9..12])

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)
Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
ea

dl
in

e
F

ai
lu

re
s

(%
)

Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
ea

dl
in

e
F

ai
lu

re
s

(%
)

Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

8.2 Even Mix 77

A significant increase in the criticality of the task profile (range 5 to 11) caused even more
problems for the Public model. Under this high level or criticality, the Public model is only able to
survive up to 8 seconds under all ranges of sensitivity (figure 8-7, figure 8-8 and figure 8-9). The Private
model also is no longer able to survive for the entire experimental time (failing in the 13th second).
However, a significant increase in the performance of the Private model can be seen in figure 8-9.
Under this high level of criticality, and increased number or essentially critical task instances, the
Private model’s deadline failure rate performance exceeds that of the Public model. This improved
deadline failure rate results in the model’s improved performance in respect to survivability. The
MELODY model again is able to dynamically adjust the number and location of both public and private
copies to the point that it clearly shows a superior performance to the two simpler models.

8.2 Even Mix

In environments where there is an even distribution of read/write operations the it was expected
that the (and shown in previous simulations) problem resulting from creating additional public copies
becomes more apparent. This problem results from the fact the write access to a public copy is directly
linked to the number of copies located within the system, and has a direct influence on the ability of
the task instance to complete prior to its associated deadline. However, reading task instances still
prefer to have a local file copy to improve the chances that they meet their deadlines. These conflicting
requirements require that the models correctly handle not only the number of public or private copies,
but also the location of those copies. The characteristic tendency in respect to the deadline failure rate
performance of the Public model and Private model under varying degrees of sensitivity should still be
apparent (only to a lesser degree due to the smaller number of task instances benefiting from either a
public or private copy).

Figure 8-9: Read Dominance (Cj[5..11]/Rj[12..15])

Figure 8-10: Even Mix (Cj [9..15]/ Rj [6..9]) Figure 8-11: Even Mix (Cj [9..15]/Rj [9..12])

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

78 File System Experiments

Under a varying range of sensitivity (figure 8-10, figure 8-11 and figure 8-12) the Private model
is still able to improve its performance in respect to the Public model. The performance of all three
models is significantly degraded due to the increased number of writing task instances, therefore and
increased level of competition for those writing task instances. Under this low level of criticality (all
task instances nearly non-critical) all models are able to survive the entire experimental run.

As the level of criticality is increased (range 7 to 13) the tendency of the Public model to fail in
terms of survivability is also still apparent under the increased number of writing tasks. The Public
model does however survive for a longer period of time (failing in either the 12th or 13th seconds).
Both the Private model and MELODY model are still able to handle this level of criticality and survive
for the entire experimental run, as in the Read Dominance experiments.

Figure 8-12: Even Mix (Cj [9..15]/Rj [12..15]) Figure 8-13: Even Mix (Cj [7..13] / Rj [6..9])

Figure 8-14: Even Mix (Cj [7..13] / Rj [9..12]) Figure 8-15: Even Mix (Cj [7..13]/Rj [12..15])

Figure 8-16: Even Mix (Cj [5..11] / Rj [6..9]) Figure 8-17: Even Mix (Cj [5..11] / Rj [9..12])

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
ea

dl
in

e
F

ai
lu

re
s

(%
)

Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
ea

dl
in

e
F

ai
lu

re
s

(%
)

Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

8.3 Write Dominance 79

A significant change in the performance of the Private model can be seen as the level of criticality
is increased (range 5 to 11) (figure 8-18, figure 8-19 and figure 8-20). The improved performance of
the Private model under high levels of criticality and high levels of sensitivity (range 6 to 9) is no longer
superior to the Public model’s deadline failure rate performance (figure 8-18) as was apparent in the
Read Dominance experiments (figure 8-8). However, the Private model’s performance is still superior
where a majority of task instances are Robust (figure 8-20). The performance of the MELODY model
both in terms of deadline failure rate and survivability is still significantly apparent under all levels of
criticality and sensitivity.

A significant change in the performance of the Private model can be seen as the level of criticality
is increased (range 5 to 11) (figure 8-18, figure 8-19 and figure 8-20). The improved performance of
the Private model under high levels of criticality and high levels of sensitivity (range 6 to 9) is no longer
superior to the Public model’s deadline failure rate performance (figure 8-18) as was apparent in the
Read Dominance Experiments (figure 8-8). However, the Private model’s performance is still superior
where a majority of task instances are Robust (figure 8-20). The performance of the MELODY model
both in terms of deadline failure rate and survivability is still significantly apparent under all levels of
criticality and sensitivity.

8.3 Write Dominance

In environments were there is a dominance (75%) of write operation it was expected (and shown
in previous simulations) that the problem resulting from creating additional public copies becomes
much more apparent then in the Even Mix Experiments. This results from the fact that there is very
little benefit in creating any additional public copies (due to the significant overhead). Private copies
are also no longer significantly beneficial due to the frequency of update operations and the overhead

Figure 8-18: Even Mix (Cj [5..11] / Rj [6..9]) Figure 8-19: Even Mix (Cj [5..11] / Rj [9..12])

Figure 8-20: Even Mix (Cj [5..11]/Rj [12..15])

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

80 File System Experiments

this would cause to maintain a private copy at a site. This results in the models having to correctly locate
the available public copies (if possible), control the number of public or private copies created, and
correctly utilize private copies (if possible) to improve performance both in respect to the deadline
failure rate and more importantly the survivability.

Under a varying range of sensitivity (figure 8-21, figure 8-22 and figure 8-23) the Private model’s
deadline failure rate performance no longer surpasses the performance of the Public model. This
significant change in the performance of the Private model results directly from the lack of any
significant benefit from private copies. Only under conditions where there is a high level of Robust task
instances (range 12 to 15) (figure 8-23) does the Private model show an improved deadline failure rate
performance. However, this performance does not at any point surpass the performance of the Public
model.

As the level of criticality in the task profile increases (figure 8-24, figure 8-25 and figure 8-26), a
significant change in the performance of the Public model is apparent. The failures experienced by this
model in the Read Dominance and Even Mix profiles no longer occur. Resulting from the model’s
ability to reduce the number of public copies, which results in a greater chance for writing task
instances to survive. This reduction in the number of public copies created does not significantly affect
the reading task instances due to a smaller communication overhead, which results in increased
response time in remote access. Performance of the MELODY model is significantly worse than in the
Read Dominance and Even Mix experiments, but still is able to survive for the entire experimental run
and surpass the performance of the other two simpler models.

The change in performance of the Private model, under high levels of criticality (range 5 to 11),
is still the case as the number of writing task in the profile is increased (figure 8-27, figure 8-28 and

Figure 8-21: Write Dominance (Cj[9..15]/Rj[6..9])Figure 8-22: Write Dominance (Cj[9..15]/Rj[9..12])

Figure 8-23: Write Dominance (Cj[9.15]/Rj[12.15])Figure 8-24: Write Dominance (Cj[7..13]/Rj[6..9])

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

8.3 Write Dominance 81

figure 8-29). However, this improved deadline failure rate performance is not as apparent due to the
early failure of the Private model, and never appears to surpass the performance of the Public model.
Both the Public and Private models fail very early, while the MELODY model is able to survive the entire
experimental run (under all ranges of sensitivity).

The MELODY model’s ability to improve its performance, both with respect to deadline failure rate
and survivability, clearly showed a significant benefit in unpredictable and safety-critical
environments. Its ability to dynamically relocate, replicate and delete public copies while creating and
deleting private copies, as necessary, clearly outweighs any overhead that may result from the increased
complexity of the model. This pay-off for safety-critical systems, requiring adaptive measures to
operate in unpredictable environments, is even more significant since criticality and sensitivity have
such a strong deteriorating influence on both the Public and Private models.

Figure 8-25:Write Dominance (Cj[7..13]/Rj[9..12])Figure 8-26:Write Dominance (Cj[7.13]/Rj[12.15])

Figure 8-27: Write Dominance (Cj[5..11]/Rj[6..9])Figure 8-28:Write Dominance (Cj[5..11]/Rj[9..12])

Figure 8-29:Write Dominance (Cj[5.11]/Rj[12.15])

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

Melody :

Private:

Public :

82 File System Experiments

From these results, it was apparent that the distributed experiments closely reflected the results
obtained under simulation, both in terms of deadline failure rate and survivability. Throughout all of
the charts it can be seen that the unpredictability of the environment caused significant changes in the
performance during the experiments (resulting in deadline failure rate variations between 5 and 10
percent). This performance variation directly resulted from delays in communication, computation and
file manipulation within a distributed environment. These variations were not seen in the previous
simulation results [WeK93] due to the strict control on the times set for these activities. For example,
in the simulation result the variation after the first few seconds was no more than 1 to 2 percent. Delays
in communication times were randomly selected between the range of 3 to 5, but never exceeded this
range. Computation time and file manipulation times were simulated to adhere very tightly to the times
modeled in the task profiles. For the distributed experiments this was different. Communication times
could exceed the expected bounds (under high communication loads), while computation and file
manipulation times were dependent on the number of records accessed and the load on the processor.
However, at no point of time was there any significant deviation from characteristic tendencies
observed between the three models.

Chapter 9 File Server/Task Scheduler Integration Experiments

As discussed in section 1.2, since the purely local task scheduling activity takes much less time
than remote file acquisition integration of task and resource scheduling means most likely to invoke the
Task Scheduler during the resource scheduling activities of the File Server. Integration of task
scheduling activities would have to handle the following conflicting goals:

• Infrequent invocation of the Task Scheduler. This minimizes the overhead caused by Task
Scheduler activities (increasing the time for resource scheduling activities) while at the same time
the number of task instances waiting to be scheduled is increased thus providing for ‘wiser’
scheduling decisions. This policy equally means to invoke the Task Scheduler as late as possible.

• Invocation of the Task Scheduler as early as possible. This increases, for every individual task
instance, the time available for acquiring the needed resources.

Delaying the invocation of the Task Scheduler for a longer time span improves the Task Scheduler’s
scheduling process by providing a wider basis of decision, however this increased delay in a task
instance’s task scheduling phase (see section 3.3) could also have significant effects on a task instance’s
ability to complete before its associated deadline by reducing the time allowed to complete the
remaining task life cycle phases. More important than the increased deadline failure rate resulting from
poor Task Scheduler/File Server integration is the possible effect that this integration policy would have
upon the survivability of the MELODY system. As a result, we have developed and extensively
investigated the following integration models:

Periodic model: In the Periodic model the Task Scheduler is invoked after a predetermined interval
of time has passed. This model is denoted as Periodic (<period>).

Dynamic model: In the Dynamic model the following three dynamic thresholds are used to
determine when to invoke the TS:

• Threshold FTh is set for the File Server competing task queue, and monitors the number of
task instances currently competing for access to shared resources located either locally or
remotely.

• Thresholds STh1 and STh2 (where STh1 ≤ STh2) are set for the TS waiting queue. These
thresholds monitor the number of task instances currently waiting to be scheduled by the Task
Scheduler at the local site. These thresholds however do not take into account the number of
essentially critical task instances since essentially critical task instances are immediately
placed into the File Server’s competing task queue (essentially critical task instances are not
required to be scheduled by the Task Scheduler due to their high criticality).

The Dynamic model would then invokes the Task Scheduler whenever either of the following
conditions becomes true:

• FTh has been underpassed (the number of task instances at the current site competing for
shared resource has fallen below a predetermined value), and STh1 has been surpassed (there
are enough task instances waiting to be scheduled that TS can create a fairly good task
schedule),

• STh2 alone has been surpassed (there are enough task instances waiting to be scheduled by
TS that it should be invoked immediately regardless of the current level of competition at the
current site).

The threshold values are conceived to be adaptable, over certain time intervals, to specific
characteristics of the profiles encountered.This model will be denoted by Dynamic(-|FTh,STh1,
STh2).

Under extreme settings of the threshold values for the Dynamic model invocation of the Task Scheduler
could be too frequent. Therefore, it determined that it may be beneficial to delay invocation for a certain
interval of time as defined in the Periodic model.

84 File Server/Task Scheduler Integration Experiments

Adjusted model: This model adjusts the Dynamic model by only invoking the Task Scheduler at
certain predefined instances in time. The thresholds FTh, STh1 and STh2 (as defined in the
Dynamic model) are used to determine when to invoke the Task Scheduler. This model however
delays invocation until the next period (defined in the Periodic model). This model will be
denoted by Adjusted (<period> | FTh, STh1, STh2).

In this way the characteristic tendencies of the Adjusted model could be directly attributed to the either
the Dynamic model (under very short periods), the Periodic model (under very long periods), or a
combined influence from both models (this will be discussed in detail in the following experimental
results).

The main expectation for the new integrated task and resource scheduling policies is that the lack
of guarantee by the Task Scheduler would be more than made up by the less chaotic and harmful way
of early resource locking (as used in traditional operating system design). Our first concern was to
compare the new integration policies with a classical model of resource scheduling prior to task
scheduling. This was subject to extensive simulation experiments reported in [WeL94]. Our main
concern in the following experiments is not the deadline failure rate performance of the models in
respect to the classical model, but more importantly the performance of the models in respect to each
other under varying degrees of criticality (survivability). As a result the following three distinct task
profiles have been developed:

Low Criticality : In a low criticality task profile a dominance of tasks whose criticality was nearly
non-critical was established (criticality in the range of [6..9]). This profile would be used to
compare the deadline failure rate performance of the models to previous well understood
simulated experimental results,

Middle Criticality : This profile contained a slightly more critical set of tasks whose criticality
ranged between the values of [4..7],

High Criticality : In this profile there was a significant dominance of tasks whose criticality was
nearly essentially critical (criticality in the range of [2..5]).

Sensitivity for each of the profiles was varied between the ranges of 4-9 (all tasks being sensitive
initially). For each of the criticality ranges we varied the characteristic parameters <period>, FTh,
STh1, and STh2 as shown in table 9-1:

Table 9-1: Task Scheduler/File Server Integration Experiment Parameters

This resulted in 54 distinct sets of experiments for each of the three task profiles. In this manner
the results clearly showed the influence of criticality in respect to the setting of the <period>, FTh,
STh1, and STh2. Performance of the three models (Periodic, Dynamic and Adjusted) was measured
both in respect to the deadline failure rate performance (percentage of task instances failing during a
given interval of time) and in respect to survivability performance (at which point in time did the first
essentially critical task instance fail).

In each of the experiments discussed here, 7 sites were used with 100 task distributed among all
sites. 16 data files were distributed among all sites. There were initially three public copies and no
private copies for each data file. Parameter ranges for the task profiles (from which initial settings for
the tasks in the profile were made) are shown in table 9-2. In the following task profiles, task deadlines
had then been modeled accordingly to fit tightly. The rather high deadline failure rates (which can be
seen in the following figures) were thus to be expected. They are not unacceptable as long as
survivability is guaranteed, i.e. the failed task instances had not yet been essentially critical. In this way
characteristic differences in the performance of the models under a relatively high load could be more
accurately determined.

Integration Parameter Range of Values

<period> varied 10, 50, and 90
File Server Threshold FTh varied 1, 3, and 5
Task Scheduler Threshold STh1 varied 1, 3, and 5
Task Scheduler Threshold STh2 varied 1, 3, and 5

9.1 Low Criticality 85

Table 9-2: Task Scheduler/File Server Integration Experiments Task Profile Parameters

The threshold values for criticality ai’ and ai" were uniformly set to 1 and 10, respectively, while
threshold values for sensitivity bi’ and bi" were uniformly set to 5 and 10, respectively, across all sites.
In all experiments the file size was set to 80K, with both read/write operations accessing 20K of data
from each file requested. The experimental parameters chosen showed the tendencies between models
very clearly. The uniformity over all experimental set-ups was chosen because of representational
simplicity not because different parameter ranges exhibited different tendencies. Each experiment was
run 10 times with results averaged. Beyond this we did up to 30 runs for better judgment on
survivability but found no significant differences compared to the smaller number of runs which is then
the basis of this report.

9.1 Low Criticality

Initial experiments were conducted to determine the models’ performance strictly in respect to the
deadline failure rate performance of the integration. The experiments were set up using a task profile
that had a dominance of low criticality tasks (nearly non-critical). Under these conditions, it was
expected (from the results obtained by the simulator) that the performance of the Periodic model would
have an optimal setting with respect to the deadline failure rate. This performance would then degrade
as the period was increased or decreased from the optimum. For the Dynamic model there should also
be optimal settings for FTh, STh1 and STh2. Also, the Adjusted model had been developed to assure
that under certain extreme settings its performance would match one of its constituent models. For
example, a very long period for the Adjusted model would cause it to be significantly influenced by the
period, and as a result its performance should be nearly identical to the Periodic model. While, a very
short period should match the performance of the Dynamic model. Using these basic functional
expectations, other features of the Adjusted model could then securely be evaluated, and separated
from the effects discussed.

The performance of the Periodic model in respect to a varying interval can be seen in figure 9-1,
figure 9-2 and figure 9-3. The Periodic model’s performance is optimal for a period of 50 (figure 9-2).
However, its performance degrades significantly as the period is increased or decreased (figure 9-1 and
figure 9-3). This optimal interval is directly related to the task profile selected as was found by studying
various profiles, and can be seen throughout all of the following charts.

Since the interval is not utilized as part of the Dynamic model, its performance is unchanged in
figure 9-1, figure 9-2 and figure 9-3. In figure 9-4, figure 9-5 and figure 9-6, threshold FTh is varied
from 1 to 5, showing an optimal setting of FTh to be 3 (figure 9-5). As FTh is increased or decreased
the model’s performance degrades significantly (resulting from either the infrequent (figure 9-4), or
more frequent (figure 9-6) invocation of TS). In figure 9-6, figure 9-9 and figure 9-10, the influence of
STh1 on the Dynamic model’s performance is shown as the threshold STh1 is varied from 1 to 5. These
figures clearly show a degraded performance as STh1 is increased to 5 (figure 9-10), resulting from a
severely delayed invocation of TS. This performance degradation is so sever that the Dynamic model’s
performance matches the poor performance of the Periodic model. The variation of STh2 (between the
ranges of 1 and 5) is shown in figure 9-10, figure 9-7 and figure 9-8. Setting STh2 to either 3 or 5, shows
significant performance improvement to a point that in both charts the Dynamic model again performs
better that the Periodic model (figure 9-8).

Task Parameter Range of Values
Read Access Write Access

Deadline 10..20 msec 40..50 msec
Worst Case Execution Time 3 msec 5 msec
Next Arrival Time 50..90 msec 150..290 msec
Criticality (Cj) varied [2..5], [4..7], [6..9]
Sensitivity (Rj) sensitive ranging between [4..9]
of Required Files 2-4
Read / Write Dominance 75% readers / 25% writers

86 File Server/Task Scheduler Integration Experiments

The effect of the interval on the performance of the Adjusted model can be seen in figure 9-1,
figure 9-2 and figure 9-3. When the interval was set to 90 (figure 9-3) this caused the Adjusted model’s
performance to match that of the Periodic model. Shorter intervals caused the Adjusted model’s
performance to match more closely the performance of the Dynamic model (figure 9-1). This result
from the fact that a short interval causes the Adjusted model only to slightly delay the invocation of TS
in comparison to the invocation of the Dynamic model. However, this is only a result under condition
where the Dynamic model is invoking the TS quite frequently (more frequently than the Periodic
model). If the Dynamic model is invoking TS less frequently than the Periodic model, the short interval
causes an additional delay in the invocation of TS that either improves or degrades the Adjusted

Figure 9-1: Low Criticality (Period=10, FTh=1,
STh1=1, STh2=1)

Figure 9-2: Low Criticality (Period=50, FTh=1,
STh1=1, STh2=1)

Figure 9-3: Low Criticality (Period=90, FTh=1,
STh1=1, STh2=1)

Figure 9-4: Low Criticality (Period=90, FTh=1,
STh1=1, STh2=5)

Figure 9-5: Low Criticality (Period=90, FTh=3,
STh1=1, STh2=5)

Figure 9-6: Low Criticality (Period=90, FTh=5,
STh1=1, STh2=5)

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

9.2 Middle Criticality 87

model’s performance. This degraded performance due to additional delay caused by the interval can be
seen in figure 9-7. In all charts where the interval was set to 90 for the Adjusted model, its performance
was significantly worse than that of the Dynamic model (only matched that of the Periodic model under
certain parameter setting as seen in figure 9-3).

Overall the Periodic model only outperformed any of the other models when its interval was set
to 50 (the optimal setting), and the other models’ performances were at their worst. In all other cases,
the Dynamic model’s performance was never the worst of all models. Throughout nearly all of the
charts its performance is the better or nearly the same as one of the other models. The Adjusted model
was able to match the performance of the Dynamic model under certain parameter ranges, however in
cases with long periods its performance was consistently worse than the Dynamic model. The results
seen here matched very closely (with no significant variation) those obtained by the simulator. As a
result we then proceeded to extend our investigation of the integration methods by increasing the
criticality of the task profile.

9.2 Middle Criticality

To determine the effect that an increased level of criticality has on the TS/FS integration, the
criticality of the task profile was set between the ranges of 4 and 7. The initial expectations were that
the characteristic tendencies observed under a low criticality task profile should be observable in a task
profile with a slightly increased level of criticality. The characteristic difference is that essentially
critical task instances would not be effected by the method of TS/FS integration (since they are
immediately placed into the File Server’s competing task queue and never scheduled by TS). However,
nearly essentially critical task instances would be effect by the chosen method of TS/FS integration
(and the parameters used for that integration). Improved performance, resulting from the integration

Figure 9-7: Low Criticality (Period=90, FTh=5,
STh1=3, STh2=3)

Figure 9-8: Low Criticality (Period=90, FTh=5,
STh1=1, STh2=1)

Figure 9-9: Low Criticality (Period=90, FTh=5,
STh1=3, STh2=5)

Figure 9-10: Low Criticality (Period=90, FTh=5,
STh1=5, STh2=5)

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

88 File Server/Task Scheduler Integration Experiments

policy, should result in fewer essentially critical task instances, therefore resulting in a reduced risk of
an essentially critical task instance missing its deadline. However, a degraded deadline failure rate
performance should have the effect of causing increased levels of essentially critical task instances,
therefore resulting in increased risk that an essentially critical task would miss its associated deadline.

The characteristic performance of the Periodic model in respect to a varying interval was still
clearly observable in all of the charts (as can be seen in figure 9-11, figure 9-12 and figure 9-13). As in
the Low Criticality experiments, the Periodic model’s performance shows an optimal setting for the
interval 50 (figure 9-12). This performance degrades as the interval is increased or decreased from this

Figure 9-11: Middle Criticality (Period=10,
FTh=1, STh1=1, STh2=1)

Figure 9-12: Middle Criticality (Period=50,
FTh=1, STh1=1, STh2=1)

Figure 9-13: Middle Criticality (Period=90,
FTh=1, STh1=1, STh2=1)

Figure 9-14: Middle Criticality (Period=90,
FTh=1, STh1=1, STh2=5)

Figure 9-15: Middle Criticality (Period=90,
FTh=3, STh1=1, STh2=5)

Figure 9-16: Middle Criticality (Period=90,
FTh=5, STh1=1, STh2=5)

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (s)
D

e
a

d
lin

e
 F

a
ilu

re
 R

a
te

 (
%

)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

9.2 Middle Criticality 89

value (figure 9-11 and figure 9-13). However, the Periodic model is only able to complete the entire
experimental run when the interval is set to 90 (figure 9-13). A short interval caused the Periodic model
to fail after 3 seconds. These failures result from the increased overhead caused by the frequent
invocation of the Task Scheduler. While, under long intervals the performance of the model is poorer
the survivability increases to a point that the model is able to survive and complete the experiment. This
results not only from the decreased overhead caused by fewer invocations of TS, but also from less
competition for shared resources due to the increased number of task instances not being successfully
scheduled by TS (since their deadline had expired before TS was invoked). This characteristic tendency
of the Periodic model to fail under short interval was apparent in all of the charts.

As was shown in the Low Criticality experiments, the performance of the Dynamic model was not
effected by the interval chosen. Its performance matched those characteristics observed under Low
Criticality, with only slight changes in deadline failure rate due to increased number of essentially
critical task instances. However, in none of the charts did this slightly increased deadline failure rate
change the relative position of the Dynamic model in respect to the other Periodic model and Adjusted
model. Also, at no point did this increased level of criticality cause an essentially critical task instance
to miss its deadline.

The performance of the Adjusted model in respect to deadline failure rate clearly showed the same
tendencies as in the Low Criticality experiments. In respect to the survivability of the models, the
Adjusted model was able to survive the entire experimental run when the interval was set to 10 (figure
9-11). This resulted directly from its characteristic matching the Dynamic model’s performance under
short intervals. As the interval was increased, this model showed problems in its ability to complete the
entire experimental run. With the interval set to 90 (figure 9-13) the Adjusted model was no longer able
to complete the entire experimental run and failed after 14 seconds. This failure directly resulted from
the model’s delayed invocation of TS, and the resulting increased number of essentially critical task
instances. This characteristic failure under long intervals could clearly be seen in figure 9-14, figure 9-
17, figure 9-18 and figure 9-19.

Overall the Periodic model was no longer successfully able to handle the increased levels of
criticality (only completing an entire experimental run when the interval was set to 90). This
survivability performance shows a significant flaw in using the Periodic model. It was only able
outperformed the other models when its interval was set to 50 (the optimal setting) and the other models
performances were at their worst. In all other cases, the Dynamic model’s performance was never the
worst of all models. Throughout nearly all of the charts its performance is better or nearly the same as
one of the other models. The Adjusted model was able to match the performance of the Dynamic model
under certain parameter ranges, however in cases with long periods its performance was consistently
worse than the Dynamic model, even failing when the period was very long.

Figure 9-17: Middle Criticality (Period=90,
FTh=5, STh1=3, STh2=5)

Figure 9-18: Middle Criticality (Period=90,
FTh=5, STh1=5, STh2=5)

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

90 File Server/Task Scheduler Integration Experiments

9.3 High Criticality

The effect that increasing the level of criticality such that almost all task instances are nearly
essentially critical can be seen in the following experiments were the criticality of the task profile was
set between the ranges of 2 and 5. As in the middle criticality experiments it was expected those
characteristic tendencies observed under a low criticality task profile should be observable in a task
profile with a very high level of criticality. However, the characteristic difference of essentially critical
task instance not being effected by the TS/FS integration would play a more important role in effecting
the performance of the integration policies. Improved performance, resulting from the integration
policy, should have a very significant impact on the survivability of the models resulting from the
reduced risk of an essentially critical task instance competing against another essentially critical task
instance. However, a slightly degraded deadline failure rate performance would have a severe impact
on a models deadline failure rate performance and survivability.

The characteristic performance of the Periodic model in respect to a varying interval was
observable in all of the charts (as can be seen in figure 9-21, figure 9-22 and figure 9-23). As in the Low
Criticality experiments, the Periodic model’s performance shows an optimal setting for the interval 50
(figure 9-22) and degrades as the interval is increased or decreased from this value (figure 9-21 and
figure 9-23). However, due to the Periodic model’s inability to adjust to the changing environmental
conditions the model is only able to survive for 5 seconds under the optimal setting of the period. The
model’s failure is even more drastic when the period is increased or decreased from this optimal setting
where it fails after only one second were the interval is set to 10 and at 3 seconds when the interval was
set to 90. These failures result from the increased overhead caused by either the frequent invocation of
the Task Scheduler (interval 10) or from the delayed invocation of the Task Scheduler (interval 90)
resulting in a significant increased number of essentially critical task instances. The slightly better
survivability performance when the interval was set to 90 is a result of the delayed invocation of the
Task Scheduler making it easier for essentially critical task instance to acquire their need resource since
there are in fact fewer task instances (as was seen in the middle criticality experiments). It can be
clearly seen from these charts (and in fact all charts) that the Periodic model, since its survivability
performance was so poor over the entire range of periodic intervals, was unable satisfy the stringent
requirement of survivability (that no essentially critical task instance should fail).

As was shown in both the low criticality and middle criticality experiments, the performance of
the Dynamic model is not effected by the interval chosen, since it does not utilize this parameter at all
in its decision to invoke the Task Scheduler. Its performance matched those characteristics observed
under low and middle criticality, with only slight changes in deadline failure rate due to increased
number of essentially critical task instances. However, in none of the charts did this slightly increased
deadline failure rate change the relative position of the Dynamic model in respect to the Periodic model
and Adjusted model. Due to the extremely high level of criticality and therefore the increased number

Figure 9-19: Middle Criticality (Period=90,
FTh=5, STh1=3, STh2=3)

Figure 9-20: Middle Criticality (Period=90,
FTh=5, STh1=1, STh2=1)

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

9.3 High Criticality 91

of essentially critical task instances this model is no longer able to complete the entire experimental
run. However, its performance in respect to survivability is in all charts at least as good if not superior
to the best performing model. In no chart does its survivability performance match the relatively poor
performance of the Periodic model. It was very clear that in respect to survivability the Dynamic model
clearly was able to adjust its invocation of the Task Scheduler to meet the changing environmental
conditions, therefore allowing it to survive for significantly longer periods of time.

Figure 9-21: High Criticality (Period=10, FTh=1,
STh1=1, STh2=1)

Figure 9-22: High Criticality (Period=50, FTh=1,
STh1=1, STh2=1)

Figure 9-23: High Criticality (Period=90, FTh=1,
STh1=1, STh2=1)

Figure 9-24: High Criticality (Period=90, FTh=1,
STh1=1, STh2=5)

Figure 9-25: High Criticality (Period=90, FTh=3,
STh1=1, STh2=5)

Figure 9-26: High Criticality (Period=90, FTh=5,
STh1=1, STh2=5)

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (s)

D
ea

dl
in

e
F

ai
lu

re
 R

at
e

(%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

92 File Server/Task Scheduler Integration Experiments

The performance of the Adjusted model in respect to deadline failure rate clearly showed the same
tendencies as in the low and middle criticality experiments. In respect to the survivability of the model,
the Adjusted model was able to survive for at least as long as (if not longer than) the Periodic model in
all charts. However, its survivability performance never exceeded that of the Dynamic model (only
matching the performance under certain parameter settings). More important is its characteristic
tendency to match the performance of the Periodic model where the period is set relatively high (period
set to 90). Here the Adjusted model’s survivability performance is drastically effected by the poor
interval setting and its survivability reflects this since it’s unable to survive for more than 4 seconds.

In these experiments it was clearly shown that the Periodic model would be unable to handle
safety-critical environments were not only is the deadline failure rate performance important, but more
important is the survivability performance. Only integration models that are able to adjust to the
changing environmental conditions (Dynamic and Adjusted models) were able to handle to a
significantly greater degree the more important survivability measurement. Only under extreme
settings of the criticality of the task profile (as seen in these experiments) did the Dynamic model not
complete the entire experimental run. While the Adjusted model was able to match the survivability
performance of the Dynamic model (under certain settings), it was never able improve on the
performance of this model. In conclusion it’s very clear that for systems working in safety-critical
environments where not only is the deadline failure rate performance important but more important is
the survivability performance that the Dynamic model (in particular through its simplicity) clearly
outperformed both the Periodic and Adjusted models. It was therefore choosen as the Task Scheduler/
File Server integration policy implemented in MELODY.

Figure 9-27: High Criticality (Period=90, FTh=5,
STh1=3, STh2=5)

Figure 9-28: High Criticality (Period=90, FTh=5,
STh1=5, STh2=5)

Figure 9-29: High Criticality (Period=90, FTh=5,
STh1=3, STh2=3)

Figure 9-30: High Criticality (Period=90, FTh=5,
STh1=1, STh2=1)

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (s)

D
e

a
d

lin
e

 F
a

ilu
re

 R
a

te
 (

%
)

Periodic
Dynamic
Adjusted

Chapter 10 File Assigner Integration Experiments

Remember that in the MELODY model a trade-off has to be made, under changing request and
deadline failure patterns, between the costs of serving file requests with a given distribution of public
and private copies, and the costs for realizing various alternative distributions. The term cost here
denotes time delays for overhead operations, or for communication and transmission delays, both for
remote and local communication. A large number of public copies is advantageous for sensitive read
tasks since such a copy is then more likely to be locally available. However, write tasks at the same
time suffer from this since the cost for updating grows with the number of copies. The alternatives for
changing the configuration of public copies are:

• relocating a public copy to the requesting site.
• making an additional public copy available to the site of the requesting task.
• deleting a file copy if there were not enough requests over a period of time.

Each local File Assigner cooperates with the File Server or Task Scheduler, and with remote File
Assigners in order to manage replication, relocation, and deletion of files within the MELODY file
system. More details regarding the actions of the File Assigner can be found in chapter 6.

For integrating the File Assigner into the other MELODY functions two different models had been
described in section 6.1.4: the Task Scheduler-Oriented Integration (TS-Oriented) and the File Server-
Oriented Integration (FS-Oriented). While in the first model FA is invoked early on behalf of task
instances, the information about task abortion in the second model is more accurate though each task
instance is treated comparatively late in its life cycle.

Let us also recall that the integration of the File Assigner (client and server) will be controlled by
the File Server in both models. In particular, file access requests are interleaved with the FA actions in
accordance with the operation priority. All requests are separated into two distinct categories,
essentially critical requests (on behalf of essentially critical task), and non-essential requests. Both the
request types are further separated into current access requests and future assignment requests. Future
assignment requests contain all local or remote File Assigner requests and responses for the relocation,
replication and deletion of shared files. The File Server will process essentially critical request or non-
essential requests until it has to stop under the rules of the dynamic model (see chapter 9). The
interdependencies of the TS-Oriented model can be seen in figure 10-1, while the interdependencies of
the FS-Oriented model can be seen in figure 10-2.

To study the trade-off between these two integration models a large number of distributed
experiments were performed. In the experiments discussed here, 100 task were distributed amongst all
the sites. 16 data files were distributed with each file initially having one public copy and no private
copies. Parameter ranges for the task profiles (from which initial settings for the tasks in the profile
were made) are shown in table 10-1. In the following task profiles, task deadlines had then been
modeled accordingly to fit tightly. The rather high deadline failure rates (which can be seen in the
following figures) were thus to be expected. They are not unacceptable as long as survivability is
guaranteed, i.e. the failed the failed task instances had not yet been essentially critical. In this way
characteristic differences in the performance of the models under a relatively high load could be more
accurately determined.

94 File Assigner Integration Experiments

Figure 10-1: File Assigner: Task Scheduler Oriented Integration Model

Figure 10-2: File Assigner: File Server Oriented Integration Model

Table 10-1: File Assigner Integration Experiments Task Profile Parameters

The experiments were performed on a Token Ring of 7 IBM RS/6000 machines. Here MELODY
is implemented by using the AIX kernel functions. Its commands are assigned the highest possible
(absolute) priority in AIX. The ranges for criticality and sensitivity values were both [0,15], with the
thresholds set as ai’=bi’:=2; ai"=bi":=8. The experimental parameters chosen showed the tendencies
between models very clearly. The uniformity over all experimental set-ups was chosen because of

Task Parameter Range of Values
Read Access Write Access

Deadline 12..15 msec 70..95 msec
Worst Case Execution Time 5 msec 10 msec
Next Arrival Time 230..330 msec 350..450 msec
Criticality (Cj) varied [5..11], [7..13], [9..15]
Sensitivity (Rj) varied [6..9], [9..12], [12..15]
of Required Files 2-4
Read / Write Dominance Write Dominance: 25% readers / 75% writers

Run-Time Monitor

Task Scheduler

Dynamic
(-|FTh,STh1,STh2)

File Assigner (client) File Assigner (server)

File Server

relocation/
replication/
deletion of

public copies

Remote File Assigners

request
FA Lock

FA Lock
responses

FA Lock
responses

request
FA Lock

acknowledge
change request

creation of private copies

deletion of local
public copies

change
request

Run-Time Monitor

Task Scheduler

Dynamic
(-|FTh,STh1,STh2)

File Assigner (client) File Assigner (server)

File Server

Remote File Assigners

request
FA Lock FA Lock

responses

FA Lock
responses

request
FA Lock

acknowledge
change request

relocation/
replication/

deletion
of public copies

change
request

10.1 Read Dominance 95

representational simplicity not because different parameter ranges exhibited different tendencies. The
performance measurements (as in prior experiments) were based on the percentage of task failures
during a given time interval (1 second), and equally on survivability . Each experiment was run 10
times with results averaged. Beyond this we did up to 30 runs for better judgment on survivability but
found no significant differences compared to the smaller number of runs which is then the basis of the
report. In addition to this we measured survivability in the following way: If an essentially critical task
failed during one of the experimental runs then all other runs were counted as failed at the same failure
time at which the one run had experienced the failure.

Using the above task profile parameters the following three distinct task profiles were developed
to test the models under varying ranges of read/write dominance:

Read Dominance: In this task profile there was a dominance (75%) of reading tasks,
Even Mix: This profile contained an even distribution of read and write tasks (50%/50%),
Write Dominance: In this profile there was a significant dominance (75%) of writing tasks.

In each experiment the TS-Oriented integration model was compared to the FS-Oriented integration
model as well as against a version of MELODY with File Assigner disabled. The disabled model would
not allow for any changes in the distribution of file copies. The model then has the advantage of a very
low overhead and acts as a Base-line model. Criticality for each of the profiles was varied between the
ranges of [5..11], [7..13] and [9..15]. Sensitivity for each of the profiles was varied between the ranges
of [6..9], [9..12] and [12..15]. This resulted in 9 distinct sets of experiments for each of the three task
profiles, and in this manner the results clearly showed the influence criticality, sensitivity and read/
write dominance on the deadline failure rate performance and survivability performance of the three
integration models (TS-Oriented, FS-Oriented and Base-line).

10.1 Read Dominance

In an environment where the dominance of read operations is high, the urgency to have a local file
copy increases due to tendency of read operation to require fast access to file copies. In this situation
both the TS-Oriented and FS-Oriented integration models should improve the Base-line model’s
performance (in respect to the deadline failure rate) due to their invocation of the File Assigner. It is
expected that the deadline failure rate performance of the FS-Oriented model should be significantly
better than that of the TS-Oriented integration model, due to the more accurate information regarding
the access requirements of task instances at a certain site. It is expected that the survivability
performance of the TS-Oriented integration model should be better than the FS-Oriented integration
model. This being due to its earlier invocation of the File Assigner and as a result increased chances
that a copy would be available before the next invocation of a nearly essentially critical task.

All figures clearly show a significantly poor start for both integration models (TS-Oriented and
FS-Oriented) compared to the Base-line integration model demonstrating the heavy overhead load
(resulting from relocation and replication of public file copies) of the more sophisticated models. In the
task profiles with the sensitivity set in the range of [6..9] (figure 10-3) this overhead was the result of
public copy relocation and replication since the majority of task instances could only utilize
information from public copies. When the range of sensitivity was between [12..15] (figure 10-5) the
overhead was found to result from the creation of private copies. This overhead was caused by both
public copy relocation and replication and private copy creation when the sensitivity was set between
the range of [9..12] (figure 10-4). After only 3 to 4 seconds the integration models are performing
distinctively superior to the Base-line integration model (as can be seen in figure 10-3 and all Read
Dominance charts). For the criticality range [9..15] (nearly all non-critical tasks) there is a clear
deadline failure rate performance increase by the FS-Oriented integration model over the TS-Oriented
integration model. This is a direct result from the more accurate decision made by the FS-Oriented
integration model in respect to improving the performance of access to file copies (figure 10-3, figure
10-4 and figure 10-5). No significant performance change can be seen as the sensitivity of the task
profile is varied from [6..9] to [12..15]. This is due to the fact that under such a high read dominance
the additional overhead resulting from public copies is not significantly more than for private copies.

96 File Assigner Integration Experiments

As the criticality of the task profile is increased (range 7 to 13) clearer tendencies regarding the
survivability of the models become apparent. In a middle range of criticality (figure 10-6, figure 10-7
and figure 10-8) the characteristic tendency in regards to both integration model’s deadline failure rate
performance improvement is still quite apparent, with the FS-Oriented integration model improving on
the performance of the TS-Oriented integration model. The increased criticality causes significant
problems for the Base-line integration model as it is no longer to complete the entire experiment
(failing between the 8th and 9th second in figure 10-6). Both integration models are able to survive the
entire experimental run.

A significant increase in the criticality of the task profile (range 5 to 11) caused even more
problems for the Base-line integration model. Under this high level of criticality, the Base-line

Figure 10-3: Read Dominance (Cj[9..15] / Rj[6..9])Figure 10-4:Read Dominance (Cj[9..15] / Rj[9..12])

Figure 10-5: Read Dominance (Cj[9.15]/Rj[12.15])Figure 10-6: Read Dominance (Cj[7..13] / Rj[6..9])

Figure 10-7: Read Dominance (Cj[7.13] / Rj[9.12])Figure 10-8:Read Dominance (Cj[7.13] / Rj[12.15])

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)
FS-Oriented

TS-Oriented

Base-line

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

FS-Oriented

TS-Oriented

Base-line

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
ea

dl
in

e
F

ai
lu

re
s

(%
)

FS-Oriented

TS-Oriented

Base-line

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

FS-Oriented

TS-Oriented

Base-line

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
ea

dl
in

e
F

ai
lu

re
s

(%
)

FS-Oriented

TS-Oriented

Base-line

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

FS-Oriented

TS-Oriented

Base-line

10.2 Even Mix 97

integration model is only able to survive up to the 5th second under all ranges of sensitivity (figure 10-
9, figure 10-10 and figure 10-11). The characteristic tendency in regards to both integration model’s
deadline failure rate performance improvement is still quite apparent, with the FS-Oriented integration
model improving on the performance of the TS-Oriented integration model. Both integration models
however are no longer able to survive the entire experimental run and fail between 7 and 10 seconds.
The TS-Oriented integration model does show a performance increase over the FS-Oriented integration
model in respect to survivability (figure 10-9 and figure 10-10) as it is able to survive between 9 and
10 seconds, while the FS-Oriented integration model is only able to survive only for 7 seconds. This
performance increase results from the TS-Oriented integration model’s early invocation of the File
Assigner. This early invocation of the File Assigner increases the chances that a private copy would be
available before the arrival of an essentially critical task instance. When the sensitivity of the task
profile is increased between the range of 12 to 15 (figure 10-11), no survivability performance increase
can be seen between the two integration models, since the FS-Oriented integration model is creating
additional private copies (due to the high dominance of robust tasks) and is able to survive for 9 seconds
(matching the survivability performance of the TS-Oriented integration model).

10.2 Even Mix

It is expected, as in the Read Dominance experiments, that both the TS-Oriented and FS-Oriented
integration models should improve the performance of the Base-line integration model in respect to the
deadline failure rate performance due to their invocation of the File Assigner. It is also expected that
the deadline failure rate performance of the FS-Oriented model should be significantly better than that
of the TS-Oriented integration model (as in the Read Dominance experiments). The survivability
performance of the TS-Oriented integration model should still outperform both the FS-Oriented
integration and Base-line models.

All figures clearly showed a significantly poor start for both integration models (TS-Oriented and

Figure 10-9: Read Dominance (Cj[5..11] / Rj[6..9])Figure 10-10: Read Dominance (Cj[5.11]/Rj[9..12])

Figure 10-11:Read Dominance(Cj[5.11]/Rj[12.15])

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

FS-Oriented

TS-Oriented

Base-line

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

FS-Oriented

TS-Oriented

Base-line

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

FS-Oriented

TS-Oriented

Base-line

98 File Assigner Integration Experiments

FS-Oriented) compared to the Base-line integration model (figure 10-12, figure 10-13 and figure 10-
14), as was observable in the previous Read Dominance experiments. After only 3 to 4 seconds, their
deadline failure rate performance had also improved and was clearly better than the Base-line model
(as in the previous Read Dominance experiments). The characteristic tendency of the FS-Oriented
integration model to outperform the TS-Oriented integration in respect to deadline failure rate
performance was also observable in all figures.

As the level of criticality is increased (range 7 to 13), the characteristic tendency of the Base-line
model to fail (here after the 13th second), under increasing levels of criticality, can be seen in figure
10-15, figure 10-16 and figure 10-17. Both the FS-Oriented integration model and the TS-Oriented
integration model were again able to survive the entire experimental run. Their relative performance
matched that seen under the low level of criticality. Otherwise no significant performance differences
can be seen between the models.

Figure 10-12: Even Mix (Cj[9..15]/Rj[6..9]) Figure 10-13: Even Mix (Cj[9..15]/Rj[9..12])

Figure 10-14: Even Mix (Cj[9..15]/Rj[12..15]) Figure 10-15: Even Mix (Cj[7..13]/Rj[6..9])

Figure 10-16: Even Mix (Cj[7..13]/Rj[9..12]) Figure 10-17: Even Mix (Cj[7..13]/Rj[12..15])

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

FS-Oriented

TS-Oriented

Base-line

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

FS-Oriented

TS-Oriented

Base-line

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

FS-Oriented

TS-Oriented

Base-line

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

FS-Oriented

TS-Oriented

Base-line

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

FS-Oriented

TS-Oriented

Base-line

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

FS-Oriented

TS-Oriented

Base-line

10.3 Write Dominance 99

Further increasing the level of criticality (range 5 to 11), showed that the characteristic tendency
of the Base-line model to fail (here between 5 and 6 seconds) could also be seen in figure 10-15, figure
10-16 and figure 10-17. Again under higher levels of criticality both the FS-Oriented integration model
and the TS-Oriented integration model failed between 9 and 11 seconds. The TS-Oriented integration
model still shows a significant performance increase over the FS-Oriented integration model in respect
to survivability (figure 10-18 and figure 10-19) as it is able to survive for 11 seconds, while the FS-
Oriented integration model is only able to survive between 8 and 9 seconds. This performance increase
results from the TS-Oriented integration model’s early invocation of the File Assigner. This early
invocation of the File Assigner increases the chances that a private copy would be available before the
arrival of an essentially critical task instance. When the sensitivity of the task profile is increased
between the range of 12 to 15 (figure 10-20), no survivability performance increase can be seen
between the two integration models, since the FS-Oriented integration model is creating additional
private copies (due to the high dominance of robust tasks) and is able to survive for 9 seconds
(matching the survivability performance of the TS-Oriented integration model).

10.3 Write Dominance

As it was expected in previous experiments, both the TS-Oriented and FS-Oriented integration
models should improve the performance of the Base-line integration model in respect to the deadline
failure rate performance due to their invocation of the File Assigner. It is also expected that the deadline
failure rate performance of the FS-Oriented model should be better than that of the TS-Oriented
integration model (as in previous experiments). The survivability performance of the TS-Oriented
integration model should be better than both the FS-Oriented integration model and Base-line model.
The improved survivability performance resulting from the earlier invocation of FA through a Task
Scheduler decision to not schedule a number of task instances.

Figure 10-18: Even Mix (Cj[5..11]/Rj[6..9]) Figure 10-19: Even Mix (Cj[5..11]/Rj[9..12])

Figure 10-20: Even Mix (Cj[5..11]/Rj[12..15])

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

FS-Oriented

TS-Oriented

Base-line

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

FS-Oriented

TS-Oriented

Base-line

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

FS-Oriented

TS-Oriented

Base-line

100 File Assigner Integration Experiments

The characteristic poor deadline failure rate performance during the first few seconds of an
experiment for both integration models (TS-Oriented and FS-Oriented) in comparison to the Base-line
integration model is no longer observable (figure 10-12, figure 10-13 and figure 10-14). This results
from the fact that the overhead to delete a public copy is not high enough to cause serious deadline
failure problems for other tasks. For task profiles were there is a dominance of write operations the
benefit of deleting public copies is so significant that the small communication overhead is nearly
negligible. Therefore, in all charts the deadline failure rate performance of both the FS-Oriented
integration model and TS-Oriented integration model improves significantly after 4 to 5 seconds.

As the level of criticality is increased (range 7 to 13), the characteristic tendency of the Base-line
model to fail (here after the 13th second) under increasing levels of criticality can be seen in figure 10-

Figure 10-21:Write Dominance (Cj[9..15]/Rj[6..9])Figure 10-22:Write Dominance (Cj[9.15]/Rj[9.12])

Figure 10-23: Write Dominance (Cj[9.15]/Rj[12.15])Figure 10-24: Write Dominance (Cj[7..13]/Rj[6..9])

Figure 10-25: Write Dominance (Cj[7.13]/Rj[9.12])Figure 10-26: Write Dominance (Cj[7.3]/Rj[12.15])

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)
FS-Oriented

TS-Oriented

Base-line

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

FS-Oriented

TS-Oriented

Base-line

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
ea

dl
in

e
F

ai
lu

re
s

(%
)

FS-Oriented

TS-Oriented

Base-line

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
ea

dl
in

e
F

ai
lu

re
s

(%
)

FS-Oriented

TS-Oriented

Base-line

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

FS-Oriented

TS-Oriented

Base-line

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

FS-Oriented

TS-Oriented

Base-line

10.3 Write Dominance 101

24, figure 10-25 and figure 10-26. Both the FS-Oriented integration model and the TS-Oriented
integration model were again able to survive the entire experimental run. Their relative performance
matched that seen under the lower level of criticality. Otherwise no significant performance differences
can be seen between the models.

Again the characteristic tendency of the Base-line model to fail (here between 5 and 6 seconds),
as the level of criticality is increased (range 5 to 11), could also be seen in figure 10-27, figure 10-28
and figure 10-29. However, in contrast to previous experimental results, under high level of criticality
both the FS-Oriented integration model and the TS-Oriented integration model completed the entire
experimental run. The TS-Oriented integration model no longer shows a significant survivability
performance increase over the FS-Oriented integration model. The deadline failure rate performance
of both models is nearly identical. This significant change in both the deadline failure rate performance
and survivability performance is a direct result from the relative ease (lower overhead) to delete a
public copy. Therefore, when a nearly essentially critical task instance is detected the small time
variation in invoking FA by the two models no longer has a significant impact on whether or not the
models survive, since both models are able to remove public copies before the next arrival of the
essentially critical task instance.

In conclusion, in all experiments only after a few seconds the sophisticated integration models
performed distinctively superior to the less sophisticated Base-line model. For profiles with a large
number of read operations the deadline failure rate performance of the FS-Oriented integration model
was clearly superior to that of the TS-Oriented integration model. Only under a high dominance of
write operations did the deadline failure rate performance of the TS-Oriented integration model match
that of the FS-Oriented integration model. For the criticality range [7..13] the Base-line integration
model fails very early (between 5 and 9 seconds), in contrast to the integration models which are able
to survive the entire experimental run. As the criticality is increased (range [5..11]), the integrated File

Figure 10-27: Write Dominance (Cj[5..11]/Rj[6..9])Figure 10-28: Write Dominance (Cj[5.11]/Rj[9.12])

Figure 10-29:Write Dominance (Cj[5.11]/Rj[12.15])

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

FS-Oriented

TS-Oriented

Base-line

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

FS-Oriented

TS-Oriented

Base-line

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Time (sec.)

D
e

a
d

lin
e

 F
a

ilu
re

s
(%

)

FS-Oriented

TS-Oriented

Base-line

102 File Assigner Integration Experiments

Assigner models do fail. However, in all charts the survivability performance of the Base-line model is
always much worse than either the FS-Oriented integration model or the TS-Oriented integration
model. It was also shown that under a high dominance of write tasks that the advantage of the TS-
Oriented to invoke FA early than the FS-Oriented model was no longer significant enough to show a
difference in the survivability performance. This change in the survivability performance resulting
from the relative ease (low overhead) to delete a public copy offsetting the difference between the
invocation times of the two models. Given the wide range of read/write variance, criticality and
sensitivity, the FS-Oriented integration model clearly outperformed the TS-Oriented integration model
in terms of deadline failure rate performance, while matching the performance in terms of survivability,
therefore the FS-Oriented integration model was chosen as the File Assigner integration model
implemented in MELODY.

Chapter 11 Task Monitoring Integration Experiments

The task monitor monitors all task instances currently competing for access to shared files (local/
remote). A brief overview of the task monitor is included here to clarify the development of the
integration models used (more details can be found in chapter 7). Monitoring is done by determining
an estimate of the remaining time required to acquire all needed resources and complete the task
instance’s computation phase prior to its associated deadline. If the task monitor determines that a task
instance can no longer complete before its deadline, then it will be abort. The following estimates are
used to determine the remaining time required by Tjk:

Estimated Acquisition Time (EATjk): This is the estimated time required by task instance Tjk to
acquire locks for all needed resources. For a reading Tjk this is the time from which the request
to obtain a read-lock is sent, to the site holding a copy of the file required, until the read-lock is
returned to Tjk. Once a shadow or local private copy has been acquired by Tjk it is guaranteed (by
the remote FS) not to be physically deleted until either Tjk has completed its execution phase or
has released the resource itself. For a writing Tjk this estimates the time interval from the point
at which the access request is broadcast, to all sites holding a public copy, until all write-locks
have been received by Tjk. This includes both phases of the Delayed Insertion protocol (see
section 4.1.1).

Estimate Locking Time (ELTjk): For a writing task instance Tjk the task monitor also determines an
estimate for the time required to obtain all write-locks once all ready messages have been
received by the task instance (once phase 1 of the Delayed Insertion protocol has been
completed). This estimate includes the time from which the schedule request message is
broadcast, to all sites holding a public copy of the file, until all write-locks have been received
by Tjk.

Estimated Computation Time (ECTjk): This is an estimate for the time required to complete the
read/write operation requested by the task instance Tjk. For reading task instances this is the time
from which the read request is sent, to the site holding the copy (shadow or private) that is to be
read, to the point at which the result of the read operation is received by Tjk at the local site. For
writing Tjks this is the time from which the write operation is broadcast, to all sites holding a copy
of the file, to the point at which the operation has been completed at those sites.

In the current distributed implementation of MELODY the estimates used to determine any of the time
values above is derived from the last ten instances of task Tj.

The determination as to whether or not a reading task instance Tjk has completed before its
associated deadline, is made when the result of the read operation is received by Tjk. If the message is
received prior to deadline DTjk then Tjk is determined to be successful. Otherwise, Tjk has failed and the
relative degree of criticality and sensitivity of the next task instance of Tj will reflect this. Any message
received after the deadline would be ignored, since the information is considered to be obsolete by Tjk.
However, the FS guarantees that once a writing task instance Tjk has broadcasted its update operation
to all sites (involved in the write operation) the update will be completed regardless of whether the
operation would be completed prior to deadline DTjk. This ensures consistency of the MELODY file
copies since some sites may have already performed the update operation prior to the deadline expiring
(MELODY also provides no mechanism to handle a roll-back in order to avoid the high overhead this
would create). As a result, the determination of whether or not a writing task instance Tjk is successful,
is made based on the completion status of the write operation returned by each of the sites performing
the update operation. If any site returns a “failed” status (meaning the operation completed after
deadline DTjk) then Tjk is marked as having failed.

Once estimates for Tjk have been determined, the task monitor sets a number of sub-deadlines

104 Task Monitoring Integration Experiments

corresponding to phases during the task execution life cycle (see figure 3-4) based on the deadline DTjk

(determined by the application). The following sub-deadlines allow the task monitor to determine
whether to abort Tjk based on the phase Tjk is in and whether the corresponding phase sub-deadline has
expired:

Location Sub-Deadline (DLojk): This sub-deadline is set based on task instance Tjk’s ECTjk and
EATjk. It is used to determine if the task instance’s location phase has finished in time to
complete the remaining acquisition and computation phases. The deadline DLojk is determined
by subtracting ECTjk and EATjk from the value of DTjk.

Allocation Sub-Deadline (DAljk): This sub-deadline is set based on task instance Tjk’s ECTjk and
ELTjk. It is used to determine if the writing task instance has completed phase 1 of the Delayed
Insertion Protocol in time to finish Phase 2 and the task instance’s computation phase. The
deadline DAljk is determined by subtracting ECTjk and ELTjk from the value of DTjk. This sub-
deadline is only set for writing task instances, since a reading task instance is not required to
obtain ready messages from any the files in it’s list of required files (LRFjk).

Acquisition Sub-Deadline (DAcjk): This sub-deadline is set based only on task instance Tjk’s ECTjk.
It’s only used to determine if Tjk has obtained all necessary locks in time to finish its computation
phase. The deadline DAcjk is determined by subtracting ECTjk from the value of DTjk.

A more detailed description of the policies used by the task monitor can be found in section 7.1.2.

Using minimum values for the estimates to abort a task instance as late as possible creates a very
weak requirement to begin the task instance’s next phase. However, it more accurately aborts only
those task instances that have almost no chance to complete before their deadline. This optimistic view
of a task instance’s ability to complete before its deadline causes many task instances to begin phases
(which creates additional overhead from message communication and possibly unnecessary locking of
copies) where they have no chance to complete (the time required is greater than the minimum). Using
maximum values for the estimates creates a very strong requirement (aborting a task instance as early
as possible) to begin the task instance’s next phase. This pessimistic view of the task instance’s ability
to complete before its deadline causes many task instances to be aborted that have a fair (or reasonable)
chance to meet their deadline. A large number of distributed experiments were conducted in order to
study the trade-offs between these optimistic and pessimistic perspectives.

Experiments were performed on a Token Ring of 7 IBM RS/6000 machines. Here MELODY is
implemented by using the AIX kernel functions. Its commands are assigned the highest possible
priority in AIX. For every experiment 10 runs were performed. Beyond this we did up to 30 runs for
better judgment on survivability but found no significant differences compared to the smaller number
of runs which is then the basis of the report. In each of them the criticality and sensitivity values were
both in the range of [1..15]. The thresholds for criticality and sensitivity were set to ai’ = bi’:= 2; ai" =
bi":= 8. Other information about the task profiles can be found in their associated sections. Performance
was measured as the total number of deadline failures during a 2 second interval of time. If an
essentially critical deadline was missed during an experimental run, the remaining execution of all 10
runs after the point at which the essentially critical task failed, was disregarded. In this way combined
insights into both the different real-time behavior perspectives of deadline failure rate and survivability
could be derived. Recall that a system is called survivable if and only if every essentially critical task
instance meets its deadline [Dan92 and WeL97].

In all experiments a base model (denoted as Base) was developed in which a task instance is only
aborted if the deadline DTjk has expired. This model is used to show the performance of the MELODY

system without any monitoring of task instances during their acquisition phase. This model would then
have the most optimistic view of a task instances chances to complete prior to its deadline. This results
in the lowest amount of additional overhead caused by task monitoring, while resulting in the largest
amount of overhead caused by competing task instances (that relatively have no chance to complete
prior to their deadline). This model could then be used to evaluate the benefits of early abortion of task
instances in comparison to the additional overhead caused by task monitoring. To abort task instances
earlier than the deadline the following model was developed which tries to ensure that no task instance

11.1 Deadline Failure Rate Performance 105

begins its competition phase that does not have a fair chance to complete prior to its deadline.
Abort before Computation (AbC): In this model a task instance would be aborted if the sub-

deadline DAcjk had expired. The execution time of a read/write operation at a site is assumed to
be known (or within a well defined range). The message delay for sending and receiving
messages has been found to be largely constant (within a quite narrow tolerance range close to
the minimal values, and this range is only very rarely surpassed). Therefore, in all experiments
average values for the estimated computation time (ECTjk) were used.

In the following three models a task instance would not only be aborted based on the sub-deadline
DAcjk (as in the AbC model) but also during a task instance’s acquisition phase based on the two sub-
deadlines DLojk and DAljk. These models try to ensure that only those task instances that have a chance
to allocate and lock there required files, are allowed to compete for access to shared resources. In order
to cope with the large variation in the time required to complete a task instance’s acquisition phase
(which varies due to the level of competition) the following three models were developed (based on the
estimate used for EATjk and ELTjk):

Earliest Abort before Acquisition (EAbA) : This is the most pessimistic model using maximum
values for estimates of EATjk and ELTjk. This model tries to abort a task instance at the earliest
point of time during its acquisition phase, therefore reducing the level of competition in the
system as much as possible.

Medium Time Abort before Acquisition (MAbA) : Using average values for both EATjk and ELTjk
allows this model to try and adapt to changing competition levels. Therefore, abort only those
task instances that do not have a reasonable chance to complete.

Latest Abort before Acquisition (LAbA) : Using minimum values for estimates of EATjk and
ELTjk gives this model a very optimistic view of a task instance’s chances to complete before its
deadline. This ensures that a task instance is aborted at the latest point of time, and only if it has
almost no chance to complete before it’s deadline.

Again, as mentioned previously, the maximum, minimum and average values refer to the values of the
prior 10 task instances of task Tj.

11.1 Deadline Failure Rate Performance

As the level of competition in the system increases, the benefit of aborting task instances as soon
as possible increases, (this in effect reduces the competition at remote resources and reduces the
overhead from unnecessary locking and execution against remote resources). The first set of
experiments varies the number of writing tasks at a site between 1 and 12 that compete for access to
the same shared file copies. Each task instance updates 256 records (20K of data) in one file containing
1024 records (80K or data). The deadline was set to 40ms after the creation time of the task instance.
The next arrival of a task instance was then determined to vary between 15ms and 25ms after the
deadline of the prior task instance. These settings for the deadline and next arrival times for the tasks
created a range of environments were the level of competition for a file copy varied from a initially very
low level of competition (1 task at each site) to a very high level of competition (12 tasks at each site).
All task instances in these experiments are non-critical and essentially sensitive (for writing tasks
sensitivity is irrelevant since any update operation must be performed against all public copies and no
decision is made whether to use a private copy). This keeps the File Assigners inactive thus allowing
us to study the tendencies of the task monitoring models (regarding solely the deadline failure rate
performance), without interference of overhead effects brought about by the FA (creation and deletion
of public or private copies at a site). Any FA activity would significantly effect the deadline failure rate
performance of the system and would as a result effect any interpretation of differences in the deadline
failure rate between the separate models.

The figure 11-1 shows the deadline failure rate of each of the models as the number of tasks at
each site is increased from 1 to 12. As the level of competition is increased from 1 to 4 tasks, the EAbA
model’s performance is significantly worse that of all other models (including the Base model). This
results from the EAbA model’s use of a pessimistic estimate for EATjk and ELTjk, resulting in many
more task instances being aborted that would have had a chance to complete if allowed to continue for

106 Task Monitoring Integration Experiments

a longer period of time. As the level of competition is increased from 5 to 8 tasks a significant variation
in all the models can be seen. The AbC model is able, under higher competition levels, to improve the
deadline failure rate performance over the Base model. All of the AbA models (including the EAbA
model) improve their performance over the AbC model. This is a direct result of the extreme benefit
from aborting task instances very early under high levels of competition, even to the point that using a
pessimistic estimate (in the EAbA model) is the best (for 8 to 12 tasks). However, throughout all levels
of competition the LAbA and MAbA models were able to more accurately determine which task
instances to abort (within the range of 1 and 4 tasks), and their performance is as good (if only slightly
worse) than that of the best performing model.

In the second set of experiments the number of reading task instances was varied between 1 and
21. Each task instance read 256 records from a data file containing 1024 records. The deadlines for the
tasks were set to 12ms after the creation time of the task instance. The next arrival of a task instance
was then determined to be between 4ms and 25ms after the deadline of the prior task instance. Here
again the values chosen for the deadline and next arrival times of the tasks were chosen in order to
provide a varying degree of competition in the system that is expected to have the strongest impact on
the differences among the models. All task instances in these experiments are also non-critical and
essentially sensitive (for the same reasons stated above in the writing task profile experiments).

The figure 11-2 shows the deadline failure rate of each of the models as the number of tasks of
each site is increased from 1 to 21. As the number of tasks is increased from 1 to 13 tasks the
performance of the EAbA model is significantly worse than all other models, even the Base model.
This is a result of the EAbA model’s use of a pessimistic estimate for EATjk (the locking time ELTjk is
zero for reading task instances) causing it to abort many task instances that would have had a chance
to complete if allowed to continue for a longer period of time. As the level of competition is increased
from 15 to 21 the change that was apparent in the Base and EAbA models in the previous experiments
for writing profiles, is also apparent for the reading task profiles. For the other models also no
significant difference in performance can be seen, compared to the situation seen in the writing task
profile (figure 11-1).

In all previous experiments, the writing task profile clearly showed that under high levels of
competition there was a significant benefit in aborting task instances as soon as possible. The more
complex EAbA, MAbA and LAbA models outperformed the simpler AbC and Base models at least for
a higher number of tasks (higher amount of competition for accessing the only file). This benefit
resulted directly from the reduced competition for the shared copies of the only file, as task instances
with no chance to complete before their deadline were already aborted in the acquisition phase, and
therefore as early as possible. Under low levels of competition the performance of the EAbA model
suffered significantly from the use of a maximum acquisition duration value for estimating the
remaining time required by a task instance. This maximum value (which occurred rather infrequently)

Figure 11-1: Writing Task Profile Figure 11-2: Reading Task Profile

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100

1 3 5 8 1 2

Number of Tasks

D
e

a
d

lin
e

F

a
ilu

re

R
a

te

(%
)

Base
AbC
LAbA

MAbA
EAbA

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100

1 5 9 1 3 1 7 2 1

Number of Tasks

D
e

a
d

lin
e

F

a
ilu

re

R
a

te

(%
)

Base
AbC
LAbA

MAbA
EAbA

11.2 Survivability Performance 107

caused the EAbA model at times to abort far too many task instances. Several of these instances if
allowed to continue (as in the other models) would have completed before their deadline.

This characteristic tendency of the EAbA model to perform poorly under low levels of
competition was also apparent while studying the reading task profiles. Here the cause is solely the
variation in the communication times to access the partially remote file copies (no locking overhead).
Under higher levels of competition the AbA models again showed significant performance
enhancements resulting from the early abortion of task instances (all models were able to outperform
the Base model). No significant performance difference could be seen between any of the other models,
because of the rather small variation in communication time required to acquire a shadow copy.

In conclusion, both sets of deadline failure rate experiments clearly showed benefits from aborting
task instances as early as possible under high levels of competition. Due to the EAbA model using a
maximum acquisition duration value (for deciding about aborting a task instance) the deadline failure
rate performance degraded significantly under low levels of competition.

11.2 Survivability Performance

The results about the deadline failure rate performance displayed a significant benefit for aborting
task instances as soon as possible, under high levels of competition, while delaying the abortion (as in
the less pessimistic MAbA and LAbA models) was more beneficial under low levels of competition.
However, for safety-critical systems the ability of a system to survive in environments with increasing
levels of essentially critical task instances is much more important than the deadline failure rate
performance. Therefore, three sets of experiments were setup to test the survivability performance of
the models under varying levels of competition and levels of criticality. The sensitivity of all tasks in
the following experiments was set within the range of [3..6]. As already mentioned at the beginning of
this section the frames of criticality and sensitivity were set to [2...8]. In the following task profiles,
task deadlines had then been modeled accordingly to fit tightly. The rather high deadline failure rates
(which can be seen in the following figures) were thus to be expected. They are not unacceptable as
long as survivability is guaranteed, i.e. the failed task instances had not yet been essentially critical. In
this way characteristic differences in the performance of the models under a relatively high load could
be more accurately determined.

11.2.1 Low Competition

In a low competition profile, 3 data files with 2 public copies were distributed amongst the nodes.
7 write tasks updated a varying set of two of the three data files. The deadlines for the tasks were set to
28ms, and their next arrival times were between 15ms and 50ms for each task. The criticality of the
task profile was varied between the ranges of [7..11], [6..10], [5..9], and [4..8].

Figure 11-3: Low Competition (Cj [7-11]) Figure 11-4: Low Competition (Cj [6-10])

1 5

2 0

2 5

3 0

3 5

4 0

4 5

2 6 1 0 1 4 1 8 2 2 2 6 3 0

Time (s)

D
e

a
d

lin
e

F

a
ilu

re

R
a

te

(%
)

Base
AbC
LAbA

MAbA
EAbA

1 5

2 0

2 5

3 0

3 5

4 0

4 5

2 6 1 0 1 4 1 8 2 2 2 6 3 0

Time (s)

D
e

a
d

lin
e

F

a
ilu

re

R
a

te

(%
)

Base
AbC

LAbA
MAbA
EAbA

108 Task Monitoring Integration Experiments

For non-critical tasks (criticality range [7..11], see figure 11-3) the performance of the models
matched the deadline failure rate performance seen in the previous experiments, as expected. Here all
models survive the entire experimental run. It can be clearly seen that the performance of the MAbA
model is significantly worse than all of the other models as was shown to be the tendency in the
previous experiments. As the criticality was increased to the range of [6..10] (see figure 11-4) the EAbA
could no longer complete the entire experimental run (failing after 14 seconds) while all other models
successfully completed the entire experiment. The results are the same for the adjacent criticality range
[5..9] (figure 11-5). It was only under a very high level of criticality [4..8] (figure 11-6) that all the
models failed during the experiment, while both the LAbA and MAbA models were able to survive for
12 to 14 seconds.

11.2.2 Medium Competition

In a medium competition profile 30 tasks updated two of the three data files. The deadlines for the
tasks were set between 32ms and 35ms, and the next arrival times for their task instances were set to
vary between 60ms and 150ms. The criticality of the tasks was varied between the ranges of [8..12],
[7..11], [6..10] and [5..9]. The performance of all of the models for the criticality range [8..12] (non-
critical tasks) matched the performance seen in deadline failure rate performance experiments for a
medium range of competition (see figure 11-7), with the Base model performing significantly worse
than all other models.

Figure 11-5: Low Competition (Cj [5-9]) Figure 11-6: Low Competition (Cj [4-8])

Figure 11-7: Medium Competition (Cj[8-12]) Figure 11-8: Medium Competition (Cj[7-11])

1 5

2 0

2 5

3 0

3 5

4 0

4 5

2 6 1 0 1 4 1 8 2 2 2 6 3 0

Time (s)

D
e

a
d

lin
e

F

a
ilu

re

R
a

te

(%
)

Base
AbC

LAbA
MAbA
EAbA

1 5

2 0

2 5

3 0

3 5

4 0

4 5

2 6 1 0 1 4 1 8 2 2 2 6 3 0

Time (s)

D
e

a
d

lin
e

F

a
ilu

re

R
a

te

(%
)

Base
AbC
LAbA

MAbA
EAbA

1 5

2 0

2 5

3 0

3 5

4 0

4 5

2 6 1 0 1 4 1 8 2 2 2 6 3 0

Time (s)

D
e

a
d

lin
e

F

a
ilu

re

R
a

te

(%
)

Base
AbC

LAbA
MAbA
EAbA

1 5

2 0

2 5

3 0

3 5

4 0

4 5

2 6 1 0 1 4 1 8 2 2 2 6 3 0

Time (s)

D
e

a
d

lin
e

F

a
ilu

re

R
a

te

(%
)

Base
AbC

LAbA
MAbA
EAbA

11.2 Survivability Performance 109

 However, as the criticality was increased into the frame [7..11] (see figure 11-8) the Base model
could no longer complete the entire experiment and failed after 6 seconds. The AbC and LAbA models
failed after 18 seconds. Both the MAbA and EAbA models were able to complete the entire
experiment. Under high levels of criticality, here given by the frame [6..10] (see figure 11-9) all models
failed during the experiment while both the LAbA and MAbA models were able to survive for 2 and 8
seconds, due in part to their superior deadline failure rate performance and the resulting fewer
essentially critical task instances. It was only under a very high level of criticality [5..9] (figure 11-10)
that all the models failed during the experiment, while the MAbA model was able to survive for 8
seconds.

11.2.3 High Competition

In a high competition profile 45 tasks updated two of the three data files. The deadlines for that
tasks were set between 32ms and 35ms, and their next arrival times for subsequent task instances were
set to vary between 60ms and 150ms. The criticality of the tasks was subsequently varied within the
ranges of [8..12], [7..11], [6..10] and [5..9]. The deadline failure rate performance of all of the models
for the criticality range [8..12] matched the performance seen in deadline failure rate performance
experiments for high competition (figure 11-11), with the Base model performing significantly worse
than all other models. As the criticality was increased into the frame [7..11] (see figure 11-12) the Base
and AbC models could no longer complete the entire experiment and failed after 2 and 6 seconds,
respectively. All of the other models successfully completed the entire experiment. As the criticality
was increased into the frame [6..10] (see figure 11-13) the Base and AbC models could no longer
complete the entire experiment and failed after 2 seconds. The LAbA model failed after 12 seconds,
while the MAbA model was able to survive for 18 seconds. The EAbA model was able to complete the
entire experiment. As the criticality was again increased into [5..9] (figure 11-14) only the MAbA and
EAbA models were able to survive for some period of time (8 seconds and 16 seconds, respectively).
This significant performance enhancement with respect to survivability is again the result of a
decreased level of competition resulting from increased number of task instances aborted by the two
models.

In terms of survivability the results of the experiments clearly show a performance benefit under
higher levels of competition which goes along with the early abortion of task instances (see particularly
figure 11-13 and figure 11-14). Although the deadline failure rate performance of the EAbA model was
fairly poor compared to both the AbC and LAbA models, the first model was able to outperform the
latter ones regarding survivability, under both the medium and high competition profiles. The reason is
that the increased number of aborted task instances in EAbA causes a significant reduction regarding
the degree of competition. The decreased competition reduces the acquisition times thus making it
easier for essentially critical task instances to obtain there required locks. This was particularly

Figure 11-9: Medium Competition (Cj[6-10]) Figure 11-10: Medium Competition (Cj[5-9])

1 5

2 0

2 5

3 0

3 5

4 0

4 5

2 6 1 0 1 4 1 8 2 2 2 6 3 0

Time (s)

D
e

a
d

lin
e

F

a
ilu

re

R
a

te

(%
)

Base
AbC

LAbA
MAbA
EAbA

1 5

2 0

2 5

3 0

3 5

4 0

4 5

2 6 1 0 1 4 1 8 2 2 2 6 3 0

Time (s)

D
e

a
d

lin
e

F

a
ilu

re

R
a

te

(%
)

Base
AbC

LAbA
MAbA
EAbA

110 Task Monitoring Integration Experiments

apparent in the medium competition profile of figure 11-9. Here the EAbA model’s deadline failure
rate was very poor but its survivability performance was much better than for the other models with
better deadline failure rate performance. However, the early abortion of tasks in EAbA becomes
detrimental when the level of criticality is very high, due to the increased number of aborted task
instances (and subsequently increased number of essentially critical task instances). This is clearly
displayed in figure 11-10 where the EAbA model fails very early. Instead, the superior deadline failure
rate performance of the LAbA model allows it to survive slightly longer. Finally, the early abortion of
task instances was clearly very beneficial to both the MAbA and EAbA under very high levels of
competition (figure 11-13 and figure 11-14). Here the AbC and LAbA models exhibit their inability to
handle this degree of competition while both the EAbA and MAbA models’ survivability performance
was clearly superior to the performance of the other models.

Under low levels of competition the effect of using a maximum value to determine the remaining
acquisition time caused the EAbA model to perform very poorly, in terms of deadline failure rate (see
figure 11-3, figure 11-4 and figure 11-5) and survivability (see figure 11-4 and figure 11-5). The reason
is that in EAbA the measure to abort task instances during their acquisition phase is the maximum
acquisition duration, taken over the previous 10 instances. This is an extremely pessimistic policy of
early abortion which in the worst case may result in a constant high duration assumption for 10
subsequent task instances. A high number of task abortions, however, has no significant influence on
the competition given that there is a small number of competing task instances anyway in the system.
A similar argument explains why the survivability performance of the excessively optimistic LAbA
model (using the minimum acquisition duration) was very poor under high levels of competition (see
figure 11-14).

Figure 11-11: High Competition (Cj[8-12]) Figure 11-12: High Competition (Cj[7-11])

Figure 11-13: High Competition (Cj[6-10]) Figure 11-14: High Competition (Cj[5-9])

2 5

3 0

3 5

4 0

4 5

5 0

5 5

2 6 1 0 1 4 1 8 2 2 2 6 3 0

Time (s)

D
e

a
d

lin
e

F

a
ilu

re

R
a

te

(%
)

Base
AbC
LAbA

MAbA
EAbA

2 5

3 0

3 5

4 0

4 5

5 0

5 5

2 6 1 0 1 4 1 8 2 2 2 6 3 0

Time (s)

D
e

a
d

lin
e

F

a
ilu

re

R
a

te

(%
)

Base
AbC
LAbA

MAbA
EAbA

2 5

3 0

3 5

4 0

4 5

5 0

5 5

2 6 1 0 1 4 1 8 2 2 2 6 3 0

Time (s)

D
e

a
d

lin
e

F

a
ilu

re

R
a

te

(%
)

Base
AbC
LAbA

MAbA
EAbA

2 5

3 0

3 5

4 0

4 5

5 0

5 5

2 6 1 0 1 4 1 8 2 2 2 6 3 0

Time (s)

D
e

a
d

lin
e

F

a
ilu

re

R
a

te

(%
)

Base
AbC
LAbA

MAbA
EAbA

11.2 Survivability Performance 111

MAbA performs very well, both in terms of survivability and deadline failure rate, on all levels of
task competition as well as for all ranges of task criticality. It outperforms all other models regarding
the deadline failure rate performance for medium and high competition (see figure 11-7 through figure
11-14), and it represents the best survivability strategy for low and medium competition (see figure 11-
3 through figure 11-10). For a low competition profile the deadline failure rate is very close to the
optimal LAbA strategy (see figure 11-3 through figure 11-6), and for a high competition MAbA
survives nearly optimally (see figure 11-11 through figure 11-14). The reason is that the measure for
aborting task instances during the acquisition phase is the average acquisition duration value that most
flexibly adapts to changing locking and communication times stemming from a varying competition of
task instances. Since the competition is excessively “reduced” through the EAbA model by aborting
task instances not yet essentially critical, the latter model has a slightly better survivability performance
than MAbA under a high competition. Similarly the late abortion under LAbA gives this model a small
advantage over MAbA under a low competition, regarding the deadline failure rate. Given the wide
range of task competition and criticality the MAbA model is clearly the best choice and therefore was
choosen as the task monitoring policy implemented in MELODY. As stated before, for a better
judgement of survivability up to 30 runs were performed but no significant differences were found in
comparision to the smaller number presented.

112 Task Monitoring Integration Experiments

Chapter 12 Conclusion and Future Outlook

The MELODY project evolving from an extensive Ph.D. research study in 1988 [Ali88] has
currently progressed through six phases (see section 1.2). Phase 6 constituted a major model extension,
from simulation to distributed experiments that explicitly reflected actual task computation, file
manipulation and real communication traffic. Upon completion of phase 5, initial studies regarding the
integration of task and resource scheduling had been conducted, however, the insights had been limited
to investigating task profiles where survivability was not at stake. At this point no work had been done
to integrate either of the File Assigner or Run-Time Monitor activities. Server integration however
needed to be predictable in order to deal with the real-time environment, while, at the same time
needing to be adaptable in order handle the unpredictable environment typical of safety-critical real-
time systems. In the following paragraphs the specific achievements accomplished during phase 6 are
detailed.

In previous development phases, experiments had been conducted to compare the functionality of
MELODY’s file system to simpler yet less flexible models. These simpler models (Public and Private)
exhibited some but not all of MELODY’s functionality. Previous simulators however had not been able
to realistically implement task computation, file manipulation and computation. As the project moved
to a distributed implementation it was thought necessary to replicate these experiments (see chapter 8).
The reason being that previous results could be utilized to validate the distributed implementation,
while at the same time the effects that real task computation, file manipulation and communication
would have on the performance of the MELODY model could also be obtained. This had been an open
question upon completion of phase 5. The file system functionality experiments clearly showed no
significant change in the characteristic tendencies between the three models. There were however
significant deadline failure rate performance changes, but at no time did this change any of the model
tendencies. As in simulation, it was shown that MELODY’s adaptive features pay off despite the
increased overhead resulting from the more complex model.

In phase 5, policies for integrating task and resource scheduling had been developed. These
policies were developed to handle the conflicting goals of tasks needing to be scheduled as early as
possible with the need to reduce the overhead caused by Task Scheduler activities, and at the same time
providing a wiser scheduling decision based on increased numbers of waiting task instances. Upon
completion of phase 5, initial simulation experiments had been done on these integration policies.
These experiments however had only evaluated the performance of the policies in environments were
survivability was not at stake. To obtain a full understanding of the performance, extended experiments
were conducted to evaluate them under wide ranges of criticality, sensitivity and read/write dominance
(see chapter 9). Again, the results did show some significant deadline failure rate performance changes,
due to the distributed environment, but there were no changes in the characteristic model tendencies.
The Dynamic model clearly outperformed all other models both in non-critical environments (as was
shown in simulation studies) and environments were survivability was at stake. It was therefore chosen
as the Task Scheduler/File Server integration policy implemented in MELODY.

A trade-off has to be made, under changing requests and deadline failure patterns, between the
costs of serving file requests with a given distribution of files and the cost for realizing various
alternative distributions. In MELODY, the File Assigner is responsible for adaptively changing the
distribution of files according to the changing and typically unpredictable environment in order to
improve the system’s performance. At the end of phase 5, no work had been done to evaluate the effect
that File Assigner invocation would have on the system’s performance. Distributed experiments were
conducted to evaluate the new novel integration policies under wide ranges of criticality, sensitivity and

114 Conclusion and Future Outlook

read/write dominance (see chapter 10). The integration policies were also compared against a base-line
model in which the File Assigner was deactivated. In all experiments, the deadline failure rate
performance of the File Server-Oriented integration model clearly outperformed both the Task
Scheduler-Oriented integration and base-line models. In terms of survivability, the File Server-
Oriented integration model was able to match the performance of the Task Scheduler-Oriented
integration model, and both models clearly outperformed the base-line model. The File Server-
Oriented integration model was therefore chosen as the model to be implemented in MELODY.

The policy to reverse the order of task and resource scheduling in MELODY had been established
in phase 5. This had been done to abort tasks as early as possible and at the same time lock resources
as late as possible. As a result, blocking of remote task instances caused by a task instance that held a
resource lock but may not be scheduled would be eliminated. The reversed order however also results
in the Task Scheduler no longer being able to guarantee that a task instance would meet its deadline. It
was hoped that this lack of a guarantee would be more than made up for by the lower amount of remote
blocking by task instances that would not complete prior to their deadlines. A novel Run-Time Monitor
module was introduced in phase 5 to supervise resource acquisition and abort task instances as early
as possible. However, no work had been done to develop policies for how task monitoring would be
integrated into MELODY. The effect on the system’s performance resulting from the overhead caused
by task monitoring was an open question. A major accomplishment of this thesis is the development
and evaluation of policies for task monitoring in MELODY (see chapter 7). Four increasingly pessimistic
policies were developed. Experiments conducted on the various policies were done to evaluate their
performance under wide ranges of criticality and task competition levels (see chapter 11). The results
showed that the extreme models (Earliest Abort before Acquisition (EAbA) and Latest Abort before
Acquisition (LAbA)) were able to slightly outperform the Medium Abort before Acquisition (MAbA)
model under extreme competition levels, while the more adaptive MAbA model, through its use of
average acquisition times, performed very well across all ranges of criticality and levels of task
competition. Due to this performance result, the MAbA model was selected as the task monitoring
integration policy implemented in MELODY.

An objective of this thesis was to develop and apply the novel Incremental Experimentation
methodology to implement MELODY as an academic prototype of a distributed real-time safety-critical
system. Given that no closed-form solution can be obtained under the orthogonal objectives of real-
time responsiveness and reliability, this was instrumental for taking into account the large number of
relevant implementation and integration parameters, and their complex interdependencies, while at the
same time designing the MELODY system in a transparent procedure. Incremental experimentation
allowed us to start with a coarse system model (with accurate logical expectations regarding its
behavior). Through experimental investigation, these expectations were validated. If they were found
to successfully stand the tests, extended expectations or model features could be generated for refining
the previous design model (as well as its performance criteria). The refinements are done in such a way
that the previous experimental configurations are extreme model cases or data profiles that both
logically and experimentally are expected to reproduce the behavior of the previous model. If the
special experiments had the expected results, the performance aspects (or tendencies) under fully
varying parameters could unambiguously be attributed to the influences of the refined model features.
In this way, all relevant design and analysis aspects could be integrated in a systematic way into a
realistic and pragmatic modeling methodology, while at the same time reconciling the conflicting
issues.

While in the previous phases simulation was used, a distributed implementation of MELODY’s
modules and services was done in phase 6. In this light, the File Assigner and File Server functions
needed to be reevaluated. It was not a real application environment that served as a testbed, but a wide
variety of task and data profiles were created for covering a reasonable range of application
circumstances. The evaluation method was to compare the proposed mechanisms and services with
simpler ones that could be expected to have considerably smaller overhead. During the comparative
experiments it was found throughout that the ensuing advantage of the simpler mechanisms was easily

Chapter 12 Conclusion and Future Outlook 115

outweighed by the higher flexibility and adaptivity of the more sophisticated MELODY functions.

The results from phase 6 can be used to refine and enhance the MELODY model for including more
complex issues regarding safety-critical real-time systems. These extensions will require more
complex parameters and functions be incorporated into MELODY. The evaluation of such model
extensions will only be carried out using the incremental experimentation methodology based on the
results presented in this thesis.

Future plans for the MELODY project include expanding the integration methods presented. This
includes developing techniques that would allow the parameters to automatically adapt to changes in
the environment. For example, the parameters for Task Scheduler/File Server integration could be
made adaptable to the various task profiles encountered. Remember that tasks in safety-critical real-
time systems not only have to meet their associated deadlines, but most of these are critical in the sense
that the system would not survive in the case of a certain number of deadline failures of subsequent
task instances. A task instance in such a critical stage would have a hard deadline, and is said to have
become essentially critical (see section 1.1). When high levels of these nearly essentially critical tasks
(if this task instance fails the next instance will become essentially critical (see section 3.1.1)) are
encountered the Task Scheduler could be invoked earlier to schedule these task instances as soon as
possible. Policies for task monitoring could also be refined to vary the estimate used to abort task
instances based on the criticality of the task instances. In this way nearly essentially critical task
instances would be aborted under the most optimistic LAbA model, while non-critical task instances
could be aborted using the most pessimistic EAbA model. The effect of these refinements on the
system’s performance however could only be safely attributed to the enhancements by comparing them
to the well-understood results presented in this thesis.

It is conceived that in phase 7 of the MELODY development refinements to criticality and
sensitivity would be undertaken to make the system more reactive to changes in these aspects. In this
way, the system would not only perform emergency actions following the failure of a nearly essentially
task instance, but would take action earlier in order to prevent a task instance from becoming
essentially critical.

The MELODY model could also be extended to include the concept of similarity [KuM91 and
MCG98] in order to relax the consistency requirements of real-time transactions. Typically in safety-
critical real-time systems, there are sensors at the periphery of the application system that input a
continuous stream of data into preprocessors where tasks filter and digitize this data. For each data
object (which is assumed to be a template for its instances) a similarity bound is assigned, which may
be reset according to environmental circumstances (typically the bound would be lowered as the
environment gets more unpredictable). Only if for a data object (the instances of which are filtered out
at a particular preprocessor) the next instance is no longer similar, messages would be sent to alert the
invocation of control tasks at sites which receive such object instances, in order to possibly take
corrective actions. Each control task is also assigned a similarity bound (also adjustable to the
unpredictable environment) for each object/resource that it needs to access. When a message about
exceeding the similarity bound is received at a site that holds the control task, the similarity bound
would be compared against the measure of the change to the data object (included in the message). If
the change exceeds the similarity bound, the control task will be invoked. If the similarity bound is not
less than the change values for all objects accessed by the control task, the control task will not be
invoked (this is an explicit model for setting up the principle of typically aperiodic tasks in safety-
critical systems).

Control tasks in safety-critical environments would be characterized by: a deadline, criticality,
sensitivity, and a similarity predicate. Note that sensitivity and similarity are closely related concepts
in the MELODY context (they both refer to the difference between latest and earlier data/file
information). However, they are still independent parameters. As the situation for a system becomes
less predictable, sensitivity will be more relaxed (see section 3.1.2), while similarity bounds instead are

116 Conclusion and Future Outlook

more tightly approached. Another difference is that sensitivity is a measure that directly relates to task
management while similarity reflects the data management, and is directly environment-oriented.
Given that similarity predicates are defined (and adjusted) for tasks, transactions, as well as for files,
similarity could be used at different levels in MELODY. If a change to the public copies of a file is within
the similarity bounds, the operation to refresh the private copies of the file need not be executed at this
time. Also, as described previously, when changes to a file are similar to the previous ones in the
preprocessor, tasks that operate on these files (including those which write/transfer these values/
structures to processing sites) would not be invoked. Transactions for safety-critical applications would
be characterized by setting the four parameters (given above) for the subtransactions on the leaf level
(which are tasks), or they could be derived from values assigned to the transaction itself.

The performance, reliability and availability of an application can be enhanced through the
replication of data on multiple sites. But recovery and concurrency control problems are aggravated by
distribution and replication. Three primary techniques for distributed concurrency control have been
lately proposed in the literature: locking, validation (optimistic) and timestamping [XRH98 and
XSS98]. However, only the first two techniques are suited to unpredictable real-time environments
since timestamp-based protocols, due to fixing the transaction commit order a priori, appear
fundamentally ill-suited. In the locking protocol, a transaction that intends to read a file has only to set
a read lock on any copy of the item; to update an item, however, write locks are required on all copies.
Write locks are obtained as the transaction executes, with the transaction blocking write requests until
all of the copies have been successfully locked. Locks are held until the transaction either has
committed or aborted. In the optimistic protocol, the execution of a transaction consists of three phases:
read, validation and write, where validation is a distributed two-phase process to coordinate validation
of all updates. The key component is the validation phase where the outcome of a transaction is
decided. If any update at a site fails during the validation phase, the transaction will be aborted,
otherwise the transaction will go ahead and commit the update in the third phase. Concurrency control
algorithms enhanced by features relating to the safety-critical parameters (given in the previous
paragraph) would be much more efficient for safety-critical applications than those which just take into
account deadlines.

In phase 7, the MELODY model will be refined and enhanced to handle the more complex issues
regarding safety-critical real-time systems. Particularly, emphasis will be placed on model
enhancements to handle similarity and concurrency control in safety-critical systems and reactive
databases. These extensions require that more complex parameters and/or more complex functions be
incorporated into MELODY. The evaluation of which could only be safely carried out using the
incremental experimentation methodology. Changes to the performance of MELODY could be
attributed to the new model extensions, while the results present here would be modeled as extreme
parameter settings. This refers to ongoing mid-range project work, in cooperation with the University
of Massachusetts (Amhurst), University of Texas (Austin), and the Indian Institute of Technology
Bombay.

Appendix

Appendix A Communication Model

MELODY provides both UDP and TCP communication protocols for the handling of
communication between MELODY nodes. The UDP protocol provides interprocess communication to
service messages that are characterized as either control messages (Delayed Insertion Protocol) or
informative (relocation/ replication/ deletion of file copies). The TCP protocol provides for a reliable
communication for both file transfer and data transfer. More information regarding specifics of either
UDP or TCP protocols can be found in [Rag93, Ste94a and Ste94b]. The following is only a description
of the model and procedures used by MELODY to provide communication services. The underlying
network protocol is not specified by MELODY and is envisioned to be determined by the hardware
implementation.

Figure A-1: MELODY Communication Layers

A.1 Message Communication

The MELODY communication model allows for messages to be sent using three different methods:
point-to-point, broadcast and multi-cast. Point-to-point communication provides communication
between two specific nodes or more generally between two specific processes. Broadcast
communication is implemented in order to allow MELODY services to send requests to a certain service
(process) at all other MELODY nodes. A message that is sent using broadcast is received by every node
in the system including the sending node. Multi-cast communication allows for a service to send a
message to a select group of services within the system.

Due to the use of UDP as protocol for message sending, two aspects of communication in
MELODY had to be modified. UDP does not provide for a multi-cast within the protocol. Therefore, the
implementation utilizes a broadcast and requires the receiving service to determine if the message is
relevant or not. UDP as a communication protocol does not guarantee that any message sent arrives at
its destination. As a result, services must handle the possible loss of messages due to the unreliable
communication medium. The main advantage of UDP however is the speed at which messages can be
sent from site to site. This time logically increases as the number of other sites trying to communicate
at the same time increases. Broadcast communication, by definition, is slower due to the need of a
message to be handled at more that one site.

A.2 File Transfer

File Transfer within the MELODY communication model is designed in order to handle both files
and large amounts of data transfer between to sites. The transferring of files utilizes a client/server
approach to handling the communication. The client executes the algorithm A-1 to receive a file, while

AIX Network Layer

UDP Communication Protocol

MELODY Message Communication Base

TCP Communication Protocol

MELODY File Transfer

MELODY Services

118 Communication Model

the server executes algorithm A-2 to send the file. Utilizing TCP communication in MELODY has the
distinct disadvantage that a connection must be established prior to the sending of the file. However,
once the connection is established actual communication time, to send the contents of the file, is much
faster than with UDP.

Algorithm A-1: Receive File

Algorithm A-2: Send File

receive-file (file F)
{

accept connection from sending-host for file F
create file F
while receive portion P of file F {

write portion P to file F; }
close file F

}

send-file (file F)
{

connect to receiving-host for file F
open file F
while read portion P of file F {

send portion P to receiving-host; }
close file F

}

Appendix B Time Synchronization 119

Appendix B Time Synchronization

The notion of time plays an important role in any real-time system. In MELODY, time is even more
important due to task instances requiring that certain operation be completed prior to a hard real-time
deadline. Without an accurate time synchronization protocol inconsistencies may occur in that a task
requesting an operation on a remote node may believe that the task would complete before it’s
associated deadline, while the remote node would have aborted the operation due to a local clock that
was not synchronized (and therefore ahead of the local node). Due to the special requirements of
safety-critical real-time operating system (especially in concern with essentially critical task instances)
MELODY can not allow the local clocks at two or more sites to be considered inconsistent (the variance
in the clock times not within a predetermine interval). There has been much research into developing
protocols that would guarantee that clocks within a distributed environment were synchronized
including the following well known protocols:

4.3 BSD Time Protocol:This protocol is the UNIX standard protocol to synchronize clocks within a
LAN environment [Ste92]. This protocol guarantees that the variance between any two node
clocks is no more than 20 milliseconds.

GPS Based Time Server:The global positioning system (GPS) is a world-wide satellite navigation
system [WaH95]. GPS is capable of determining the position of a node within a tolerance of 100
meters, and receiving the an official world Universal Time Coordinate (UTC). This protocol
guarantees that the variance of any GPS receiver clock is no more than 100 nanoseconds.
However, to set the local nodes clock may cause the variance to be increased.

However, due to the impreciseness of the BSD protocol and the special hardware requirements of the
GPS protocol MELODY has developed it’s own time synchronization protocol that has been defined and
validated in extensive experiments [Seg97]. The time synchronization protocol has the following
characteristics:

1: Maximum clock variance between any two node is less than 100 microseconds.
2: The preciousness of the local clock is independent of the overhead of the local site.
3: The overhead caused by synchronization of the local clock is minimal and has no significant

effect on the survivability of task instances within the system.

The time synchronization protocol is based on the idea that the variance between any two local
clocks changes at a constant rate [Tan95]. In extensive experiments [Seg97] this proved to be the case
for the IBM RS6000 machines on which the implementation has been completed. For the seven
machines tested the variation in the change of the clocks was no greater than 50ms (figure B-2). Since
the variance between any two nodes clocks varies at a fairly constant rate, local nodes resynchronize
their clocks based on the known constant change in the variance between the local node and a chosen
time server. Therefore, clocks are only synchronized upon initialization of the local node. To
synchronize the clocks within the distributed environment a node is required to utilize the following
protocol in order to ensure that it’s local clock remains within an tolerable clock variance. The time
synchronization protocol (figure B-3) can be separated into two distinct portions. The initial
synchronization with a predetermined time server, and the resynchroniztion based on a constant
variance.

1: Determine location of the node that has been selected to serve as the time server within the
MELODY distributed environment. Once this server is found proceed to step 2.

2: Request the time stamp from the time server by sending a time request message to the time
server. Upon receiving the time stamp message proceed to step 3.

3: Determine is the message received from the time server has been received within a message
delay window. If the message has not been received within this window then stop the
synchronization and return to step 2. If the message has been received within the window then
proceed to step 4.

4: Determine the difference in the local clock and the time server clock by using following equation
U(Tlocal) = Tserver + (Dmessage/2) - Tlocal. Where Tserver is the time stamp returned by the time server,
Tlocal is the time stamp on the local node, and Dmessage is the communication delay required to
determine the server’s time stamp. If the variance of the local clock is greater that the maximum

120 Time Synchronization

allowed value then return to step 2. Otherwise, the clocks are within a tolerable clock variance,
proceed to step 5.

5: Wait for a given interval of time Tsleep elapse before proceeding to step 6.

6: Resynchronize the local clock using a known local constant clock variance. Return to step 5.

Figure B-2: Clock Variance without any Time Synchronization

Figure B-3: MELODY Time Synchronization Protocol

The experimental results shown in that the over a significant interval (180 seconds) there is no
significant change in the clock synchronization. For each of the six nodes it can be seen that after an
initial synchronization the clocks do not vary more than 10 microseconds. The time points shown in
the charts points taken immediately following the resynchronization of the clocks. The actual clock
variance may have been greater than this but would never had exceeded the following variance plus the
normal clock drift shown in figure B-2.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

Time (s)

Cl
oc

k
Va

ria
nc

e
(m

se
c)

allo bronto edmonto plateo titano tyranno

Determine Variance

Request Timestamp

Locate Time Server

Resynchronize

Location Request

Sleep Interval

Interval
Expired

Synchronized

Get Time Server
Location

Adjust
Clock

Synchronize Clock

Time Client (local node) Time Server

Broadcast Locate Time Server

Respond Time Server Location

Determine Timestamp

Request Timestamp

Respond Timestamp

Get Timestamp

Adjust Clock

Variance Exceeds
Maximum

Check
Synchronization

Appendix B Time Synchronization 121

Figure B-4: Synchronization (Allo) Figure B-5: Synchronization (Bronto)

Figure B-6: Synchronization (Edmonto) Figure B-7: Synchronization (Plateo)

Figure B-8: Synchronization (Titano) Figure B-9: Synchronization (Tyranno)

allo

-5
-4

-3

-2

-1
0

1

2

3

4

5

0 2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

Time (s)

C
lo

ck
 V

a
ri

a
n

ce
 (

u
se

c)

bronto

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

Time (s)

C
lo

ck
 V

a
ri

a
n

ce
 (

u
se

c)

edmonto

-5
-4

-3

-2

-1
0

1

2

3

4

5

0 2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

Time (s)

C
lo

ck
 V

a
ri

a
n

ce
 (

u
se

c)

plateo

-5
-4

-3

-2

-1
0

1

2

3

4

5

0 2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

Time (s)

C
lo

ck
 V

a
ri

a
n

ce
 (

u
se

c)

t itano

-5

-4

-3
-2

-1
0

1

2
3

4

5

0 2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

Time (s)

C
lo

ck
 V

ar
ia

nc
e

(u
se

c)

tyranno

-5
-4

-3

-2

-1

0
1

2
3

4

5

0 2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

Time (s)

C
lo

ck
 V

a
ri

a
n

ce
 (

u
se

c)

122 Source Code

Appendix C Source Code

MELODY is implemented is a homogeneous distributed environment. The experiments were
conducted on a Token-Ring network with 7 IBM RS6000 machines. The implementation has been
highly integrated with the AIX operating system (AIX version 4.2.1) using the programming language
C. Here MELODY is implemented by using the AIX kernel functions. It’s commands are assigned the
highest possible priority in AIX. Communication between machines was handled using TCP and UDP
protocols.

The source code for the complete MELODY implementation can be obtained from Lehrstuhl III
(operating systems and computer architecture) at the University of Dortmund Germany. All of the
source code, scripts and experiment scripts can be found on the machine ls3.cs.uni-dortmund.de. All
source code and the Makefile used to build the executables are contained in the directory /melody/
melody/source. The scripts required to start the MELODY servers and perform individual experiments
can be found under the directory /melody/melody/bin. All scripts used to conduct the experiments
found in this dissertation can be found under the directory /melody/melody/experiments.

References

[ABD95] Audsley N.C., Burns A., Davis R.I., Tindell K.W., Wellings A.J. (1995); "Fixed Priority Scheduling:
An Historical Perspective"; Real-Time Systems; Vol. 8, 1995

[Ali88] Alijani G.S. (1988); "Object Mobility in Distributed Computer Systems"; Ph.D. Dissertation;
Wayne State University

[Alt95] Altenbernd P. (1995); "Allocation of Periodic Hard Real-Time Tasks"; Proceedings of the IFAC/IFIP
Workshop on Real-Time Programming; (1995)

[ATB93] Audsley N.C., Tindell K., Burns A. (1993); "The End of The Line for Static Cyclic Scheduling?";
Proceedings of the 5th EUROMICRO Workshop on Real-Time Systems; (1993)

[CJD91] Chodrow S.E., Jahanian F., Donner M. (1991); "Run-Time Monitoring of Real-Time Systems";
Proceedings of the 12th IEEE Real-Time Systems Symposiums; December 1991

[ChL87] Chu W.W., Leung K.K. (1987); "Module Replication and Assignment for Real-Time Distributed
Processing Systems"; Proceeding of the IEEE; Vol. 75

[Dan92] Daniels D.C. (1992); "The Design and Analysis of Protocols for Distributed Resource Scheduling
under Real-Time Constraints"; Ph.D. Dissertation; Wayne State University

[DoF82] Dowdy L.W., Foster D.V. (1982); "Comparative Models of the File Assignment Problem"; ACM
Computing Surveys Vol. 14 No. 2 (1982)

[FuG91] Furth B., Grostick D., Gluch D., Rabbat G., Parker J., McRoberts M. (1991); REAL-TIME UNIX
SYSTEMS, Design and Application Guide; Kluwer Academic Publishers, 1991

[HaL96] Ching-Chih H., Kwei-Jay L., Chao-Ju H.; "Distance-Constrained Scheduling and Its Applications to
Real-Time Systems"; IEEE Transactions on Computers, Vol. 45, No. 7 (1996)

[HaS89] Haben D., Shin K.G. (1989); "Application of Real-Time Monitoring to Scheduling Tasks with
Random Execution Times"; IEEE Real-Time Systems Symposium (1989)

[HaS90] Haban D., Shin K. (1990); "Application of Real-Time Monitoring to Scheduling Tasks with Random
Execution Times"; IEEE Transactions on Software Engineering; Vol. 16 No. 12 (1990)

[HaS91] Wolfgang A. Halang, Alexander D. Stoyenko (1991); Constructing Predictable Real Time Systems;
Kluwer Academic Publishers, 1991

[HaW90] Haben D., Wybranietz D. (1990); "A Hybrid Monitor for Behaviour and Performance Analysis of
Distributed Systems"; IEEE Transaction on Software Engineering; Vol. 16, No. 2 (1990)

[Hav68] Havender J.W. (1968); "Avoiding Deadlocks in Multitasking Systems"; IBM Systems Journal; Vol.
7, No. 2

[HCM92] Haritsa J.R., Carey M.J., Livny M. (1992); "Data Access Scheduling in Firm Real-Time Database
Systems"; Real-Time Systems; Vol. 4 No. 3 (1992)

[HKM97] Ho S.J., Kuo T.W., Mok A.K.(1997); "Simularity-Based Load Adjustment for Real-Time Data
Intensive Applications"; Proceedings of the 18th IEEE Real-Time Systems Symposium, San
Francisco, California, December 1997

[HLF95] Hsueh C.W., Lin K.J., Fan N. (1995); "Distributed Pinwheel Scheduling with End-to-End Timing
Constraints"; IEEE Real-Time Systems Symposiums; December 1995

[JeN90] Jensen D.E., Northcutt J.D. (1990); "Alpha: A Non-Propriety OS for Large, Complex, Distributed
Real-Time Systems"; Proceedings of the Second International IEEE Workshop on Experimental
Distributed Systems, Huntsville, Alabama, 1990

[JRR94] Jahanian F., Rajkumar R., Raju S.(1994); "Runtime Monitoring of Timing Constraints in Distributed
Real-Time Systems"; Real-Time Systems; Vol. 7 No. 3 (1994)

[KaR95] Kamath M.U., Ramamritham K.(1995); "Performance Characteristics of Epsilon Serializability with
Hierarchical Inconsistency Bounds"; International Conference on Data Engineering; December
1995

124 References

[KuM91] Kuo T.W., Mok A.K. (1991); "Load Adjustment in Adaptive Real-Time Systems"; Proceedings of
the 12th IEEE Real-Time Systems Symposium, December 1991

[KuM93] Kuo T.W., Mok A.K.(1993); "SSP: A Semantics-Based Protocol for Real-Time Data Access";
Proceedings of the 14th IEEE Real-Time Systems Symposium, December 1993

[LaH97] Lam K., Hung S. (1997); "Preemptive Transaction Scheduling in Hard Real-Time Database
Systems"; Journal of System Architechture; Vol. 43, No. 9 (1997)

[LeS90] Levy E., Silberschatz A. (1990); "Distributed File Systems: Concepts and Examples"; ACM
Computing Surveys Vol. 22 No. 4 (1990)

[LeM78] Levin K.D., Morgan H.L. (1978); "A Dynamic Optimization Model for Distributed Database";
Operation Research; Vol. 26, No. 5 (1978)

[LeM80] Leung J.Y.T., Merril M.L. (1980); "A Note on Preemptive Scheduling of Periodic Real-Time Tasks";
Information Processing Letters Vol. 11, No. 3 (1980)

[LeW82] Leung J.Y.T., Whitehead J. (1982); "On the Complexity of Fixed-Priority Scheduling of Periodic
Real-Time Tasks"; Performance Evaluation; Vol. 2, No. 4 (1982)

[LiL73] Liu C.L., Layland J.W. (1973); "Scheduling Algorithms for Multiprogramming in a Hard Real-Time
Environment"; Journal of the Association for Computing Machinery; Vol. 20

[Lin93] Lind J.A. (1993); "Dynamic Integration Policies for Distributed Task and Resource Scheduling in
Mission-Critical Systems"; Masters Thesis; Wayne State University

[LiS90] Lin K.J., Son S.H. (1990); "Concurrency Control in Real-Time Databases by Dynamic Adjustment
of Serialization Order"; Proceedings of the 11th IEEE Real-Time Systems Symposium; December
1990

[LLL92] Liu J.W.-S., Lin K.J., Liu C.L., Gear C.W. (1992); "Imprecise Computation"; IOS Press; Washington
D.C. , 1992, pg. 160-69

[LNL87] Lin K.J., Natarajan S., Liu J.W.-S. (1987); "Imprecise Results: Utilizing Partial Computations in
Real-Time Systems"; Proceedings of the 8th IEEE Real-Time Systems Symposium; December 1987

[LSS87] Lehoczky J.P., Sha L., Strosnider J. (1987); "Enhancing Apreiodic Responsiveness in a Hrad eal-
Time Environment"; Proceedings of IEEE Real-Time Systems Symposium; Los Alamitos. CA ,
1987

[MCG98] Mok A.K., Chen D., Guangtian L. (1998); "Semantics and Resource Management of Real-Time
Database Systems"; (to be published)

[MoL77] Morgan H.L., Levin K.D. (1977); "Optimal Program and Data Location in Computer Networks";
Communications of the ACM Vol. 20, No. 5 (1977)

[MoL97] Mok A., Liu G. (1997); "Early Detection of Timing Constraint Violations at Runtime"; Proceedings
of the 18th IEEE Real-Time Systems Symposiums; San Francisco, California; December 1997

[Mur83] Murthy K. (1983); "An Aproximation the the File Allocation Problem in Computer Networks";
Proceedings of the 2nd ACM SIGACT-SIGMOD symposium on principles of database systems
(1983)

[NaS94] Natale M.D., Satnkovic J.A. (1994); "Dynamic End-to-End Guarantees in Distributed Real-Time
Systems"; IEEE Real-Time Systems Symposiums; December 1994

[NoA87] Noe J.D., Anressian A. (1987); "Effectiveness of Replication in Distributed Computer Networks";
Proceedings of the 7th International IEEE Conference on Distributed Computing Systems, West
Berlin, September 1987

[OhM96] Oh S.K., MacEwen G.H. (1996); "Task Behavior Monitoring for Adaptive Real-Time
Communication"; Real-Time Systems Vol. 11 No. 2.

[Pol94] Poledna S. (1994); "Replica Determinism in Distributed Real-Time Systems: A Brief Survery"; Real
Time Systems Vol. 6 No. 3 (1994)

[Pu86] Pu C. (1986); "Replication of Nested Transactions in the EDEN Distributed System"; Ph.D.
dissertation, University of Washington

[Raj89] Rajkumar R. (1989); "Task Synchronization in Real-Time Systems"; Ph.D. Dissertation,, Carnegie
Mellon University (1989)

[Rag93] Rago S.A. (1993); UNIX System V Network Programming; Addison-Wesley, 1993

[RaP95] Ramamritham K., Pu C.(1995); "A Formal Characterization of Epsilon Serializability"; IEEE

References 125

Transactions on Knowledge and Data Engineering; Vol. 7, No. 6, December 1995

[RoS96] Rosu D.I., Schwan K. (1996); "Improving Protocol Performance by Dynamic Control of
Communicating Resources"; 2nd IEEE International Conference on Engineering Complex
Computer Systems; 1996

[RRJ92] Raju S.C., Rajkumar R., Jahanian F. (1992); "Monitoring Timing Constraints in Distributed Real-
Time Systems"; Proceedings of the 13th IEEE Real-Time Systems Symposiums; December 1992

[RSL89] Rajkumar R., Sha L., Lohoczky J.P. (1989); "An Experimental Investigation of Synchronization
Protocols"; Proceedings of the 6th IEEE Workshop on Real-Time Operating Systems and Software;
Pittsburgh 1989

[Sch93] Werner S. (1993); "The Testability of Distributed Real-Time Systems"; Kluwer Academic
Publishers, 1993

[Seg76] Segall A. (1976); "Dynamic File Assignment in a Computer Network"; IEEE Transaction on
Automatic Control; Vol. 21, No. 2 (1976)

[Seg97] Segbert G. (1997); "Entwurf und Implementierung eines Run-Time Monitors für das verteilte,
sicherheitskritische Betriebssystem Melody"; Masters Thesis; Universität Dortmund

[SeS79] Segall A., Sanell N.R. (1979); "Dynamic File Assignment in a Computer Network - part II:
Decentralized Control"; IEEE Transaction on Automatic Control; Vol. 24, No. 5 (1979)

[ShG92] Sha L., Goodenough J. (1992); "Real-Time Scheduling Theory and Ada"; Mission-Critical
Operating Systems; IOS Press 1992; Washington D.C., 1992, pg. 294-319

[SLR86] Sha L., Lehoczky J.P., Rajkumar R. (1986); "Solutions for Some Practical Problems in Real-Time
Scheduling"; Proceedings of IEEE Real-Time Systems Symposium; Los Alamitos. CA , 1986

[SLS88] Sprunt B., Lehoczky J.P., Rajkumar R. (1988); "Exploiting Unused Periodic Time for Aperiodic
Service Using the Extended Priority Exchange Algorithm"; Proceedings of the 9th IEEE Real-Time
Systems Symposium; Huntsville, Alabama 1988

[Smi81] Smith A.J. (1981); "Long Term Migration: Development and Evaluation of Algorithms";
Communications of the ACM; Vol. 24, No. 8 (1981)

[SpB96] Spuri M., Buttazzo G. (1996); "Scheduling Aperiodic Tasks in Dynamic Priority Systems"; Real-
Time Systems Journal; Vol. 10 No. 2

[SSL89] Sprunt B., Sha L., Lehoczky J.P. (1989); "Aperiodic Task Scheduling for Hard Real-Time Systems";
Real-Time Systems Journal; Vol. 1 No. 1

[Sta96] Stange C. (1996); "Adaptives File Assignment in verteilten, sicherheitskritischen
Betriebssystemen"; Masters Thesis; Universität Dortmund

[Ste92] Stevens R.W. (1992); Programmieren von UNIX-Netzen; Hanser, München, Prentice-Hall, London,
1992

[Ste94a] Stevens R.W.(1994); TCP/IP IIllistrated, Volume 1 The Protocols; Addison-Wesley, 1994

[Ste94b] Stevens R.W.(1994); TCP/IP IIllistrated, Volume 2 The Implementation; Addison-Wesley, 1994

[Tan93] Taneja S.K. (1993); "Distributed Computing in Computer--Integrated Manufacturing Systems";
Ph.D.Dissertation; Wayne State University, July, 1993

[TFC90] Tsai J.P., Fang K.Y., Chen H.Y. (1990); "A Noninvasive Architechture to Monitor Real-Time
Distributed Systems"; IEEE Computer; Vol. 23, No. 3 (1990)

[TiB95] Davis R., Tindell K.W., Burns A. (1995); "Flexible Scheduling for Adaptable Real-Time Systems";
IEEE Computer; 1995

[Tin94] Tindell K. (1994); "Allocating Real-Time Tasks"; Journal of Real-Time Systems; Vol 4, No. 2(1994)

[TKM88] Tokuda H., Kotera M., Mercer C.W. (1988); "A Real-Time Monitor for a Distributed Real-Time
Operating Systems"; Proceedings of the ACM Workshop on Parallel and Distributed Debugging;
1988

[WaH95] Wannemacher M., Halang W.A. (1995); "GPS-Bierte Zeitgeber: Real-zeitsysteme werden endlich
echtzeitfähig"; Proceedings PEARL94-Workshop über Realzeitsysteme; P. Holleczek (Hrsg.), Reihe
Informatik aktuell, Berlin-Heidelberg-New York: Springer 1995

[WeA89a] Wedde H.F., Alijani G.S., Baran D., Kang G., Kim B.K.(1989); "Adaptive Real-Time File Handling
in Local Area Networks"; Proceedings of the EUROMICRO '89 Workshop on Real-Time Systems,
Como/Italy, June 1989

126 References

[WeA89b] Wedde H.F., Alijani G.S., Huizinga D.B., Kang G., Kim B.K. (1989); "Real time file performance of
a completely decentralized adaptive file system"; Proceedings of the Int. IEEE Symposium on Real-
Time Systems, Santa Monica, CA, December 1989

[WeA89c] Wedde H.F., Alijani G.S., Huizinga D., Kang G., Kim B.(1989); "DRAGON SLAYER/MELODY:
Distributed Operating System Support for Mission-Critical Computing"; Proeedings. of the 1989
Workshop on Operating Systems for Mission-Critical Computing; University of Maryland, College
Park, September 1989

[WeA90] Wedde H.F., Huizinga D., Kang G., Kim B.(1990); "MELODY: A Complete Decentralized Adaptive
File System for Handling Real-Time Tasks in Unpredictable Environments"; Real-Time Systems Vol.
2 No. 4

[WeD91a] Wedde H.F., Daniels D.C., Huizinga D.M. (1991); "Efficient Distributed Resource Scheduling for
Adaptive Real-Time Operation Support"; Springer Lecture Notes in Computer Science; Vol. 497
(1991)

[WeD91b] Wedde H.F., Daniels D.C. (1991); "Distributed Resource Scheduling under Real-Time Constraints";
Second Great Lakes Computer Science Conference, Kalamazoo, Michigan, October 1991

[WeD94] Wedde H.F., Dekker M. (1994); "Real-Time Operating Systems and Software: State of the Art and
Future Challenges, in"; A. Kent, J. Williams: Encyclopedia of Microcomputers Vol. 14 (1994)

[WeK93] Wedde H.F., Korel B., Lind J.A. (1993); "Highly Integrated Task and Resource Scheduling for
Mission-Critical Systems"; Proceedings of the EUROMICRO'93 Workshop on Real-Time Systems,
Oulu, Finland, June 1993

[WeL94] Wedde H.F., Lind J.A.,Eiss A. (1994); "Achieving Dependability in Safety-critical Operating
Systems Through Adaptability and Large-Scale Functional Integration"; Proceedings of the
ICPAPDS'94 International Conference on Parallel and Distributed Systems; Hsinchu, Taiwan,
December 1994

[WeL95] Wedde H.F., Lind J.A., Eiss A.(1995); "Incremental Experimentation: A Methodology for Designing
and Analysing Distributed Safety-Critical Systems"; Proceedings of the EUROMICRO '95 Workshop
on Real-Time Systems, Odense, Denmark, June 1995

[WeL97] Wedde H.F., Lind J.A. (1997); "Building Large, Complex, Distributed Safety--Critical Systems";
Real-Time Systems, Vol. 13, No. 3

[WeL98] Wedde H.F., Lind J.A. (1998); "Integration of Task Scheduling and File Services in the Safety-
Critical System MELODY"; Proceedings of the EUROMICRO '98 Workshop on Real-Time Systems,
Berlin, Germany, 1998

[WeS96] Wedde H.F., Stange C., Lind J.A. (1996); "Integration of Adaptive File Assignment into Distributed
Safety-Critical Systems"; WRTP’96, 21st IFAC/IFIP Workshop on REAL TIME PROGRAMMING,
Gramado, RS, Brazil, November 1996

[WeX92] Wedde H.F., Xu M.(1992); "Scheduling Critical and Sensitive Tasks with Remote Requests in
Mission-Critical Systems"; Proceedings of the EUROMICRO '92 Workshop on Real-Time Systems;
Athens, Greece, June 1992

[XRH98] Xiong M., Ramamritham K., Haritsa J., Stankovic J.A. (1998); "Regulating Concurrent Accesses to
Replicated Data in Distributed Real-Time Databases"; Proceedings of the 19th IEEE Real-Time
Systems Symposiums; December 1998 (to be published)

[XSS98] Xiong M., Sivasankaran R., Stankovic J.A., Ramamritham K., Towsley D. (1998); "Scheduling
Transactions with Temporal Constraints: Exploiting Data Semantics"; Proceedings of the 17th IEEE
Real-Time Systems Symposiums; December 1996

[XuP93] Xu J., Parnas D.L., "On Satisfying Timing Constraints in Hard Real-Time Systems"; IEEE
Transaction on Software Engineering; Vol. 19 No. 1 (1993)

[Yu85] Yu C.T. (1985); "Adaptive File Allocation in Star Computer Network"; IEEE Transaction on
Software Engineering; Vol. 11, No. 9 (1985)

[ZSA92] Zhou H., Scwan K., Akyildiz I. (1992); "Performance Effects of Information Sharing in a
Distributed Multiprocessor Real-Time System"; Real-Time Systems Symposium; December 1992

	Cover
	Table of Contents
	List of Figures
	List of Algorithms
	Acknowledgments
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Appendix
	References

