
Online QoS/Revenue Management for Third Generation 
Mobile Communication Networks 

 

 

 

Dissertation 

zur Erlangung des Grades eines 

D o k t o r s  d e r  N a t u r w i s s e n s c h a f t e n  

der Universität Dortmund 
am Fachbereich Informatik 

 

von 

 

M a r c o  L o h m a n n  

 

 

Dortmund 

2004 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tag der mündlichen Prüfung: 8. Juli 2004 

Dekan:        Prof. Dr. Bernhard Steffen 

Gutachter:       Prof. Dr.-Ing. Christoph Lindemann, Prof. Dr. Heiko Krumm 



 

 





V 

 

Abstract 

This thesis shows how online management of both quality of service (QoS) and provider 
revenue can be performed in third generation (3G) mobile networks by adaptive control of 
system parameters to changing traffic conditions. As a main result, this approach is based on a 
novel call admission control and bandwidth degradation scheme for real-time traffic. The 
admission controller considers real-time calls with two priority levels: calls of high priority 
have a guaranteed bit-rate, whereas calls of low priority can be temporarily degraded to a 
lower bit-rate in order to reduce forced termination of calls due to a handover failure. A 
second contribution constitutes the development of a Markov model for the admission 
controller that incorporates important features of 3G mobile networks, such as code division 
multiple access (CDMA) intra- and inter-cell interference and soft handover. Online 
evaluation of the Markov model enables a periodical adjustment of the threshold for maximal 
call degradation according to the currently measured traffic in the radio access network and a 
predefined goal for optimization. Using distinct optimization goals, this allows optimization 
of both QoS and provider revenue. Performance studies illustrate the effectiveness of the 
proposed approach and show that QoS and provider revenue can be increased significantly 
with a moderate degradation of low-priority calls. Compared with existing admission control 
policies, the overall utilization of cell capacity is significantly improved using the proposed 
degradation scheme, which can be considered as an “on demand” reservation of cell capacity. 

To enable online QoS/revenue management of both real-time and non real-time services, 
accurate analytical traffic models for non real-time services are required. This thesis identifies 
the batch Markovian arrival process (BMAP) as the analytically tractable model of choice for 
the joint characterization of packet arrivals and packet lengths. As a key idea, the BMAP is 
customized such that different packet lengths are represented by batch sizes of arrivals. Thus, 
the BMAP enables the “two-dimensional”, i.e., joint, characterization of packet arrivals and 
packet lengths, and is able to capture correlations between the packet arrival process and the 
packet length process. A novel expectation maximization (EM) algorithm is developed, and it 
is shown how to utilize the randomization technique and a stable calculation of Poisson jump 
probabilities effectively for computing time-dependent conditional expectations of a 
continuous-time Markov chain required by the expectation step of the EM algorithm. This 
methodological work enables the EM algorithm to be both efficient and numerical robust and 
constitutes an important step towards effective, analytically/numerically tractable traffic 
models. Case studies of measured IP traffic with different degrees of traffic burstiness 
evidently demonstrate the advantages of the BMAP modeling approach over other widely 
used analytically tractable models and show that the joint characterization of packet arrivals 
and packet lengths is decisively for realistic traffic modeling at packet level. 
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1 Introduction 

HE THIRD GENERATION of mobile networks is expected to complete the worldwide 
globalization process of mobile communication. In third generation (3G) mobile 

networks, the efficient utilization of scarce radio frequencies by means of code division 
multiple access (CDMA) provides the foundation for new services with high bandwidth 
requirements not provided by current second generation networks [KAL+01]. A variety of 
new services that can be roughly divided into delay-sensitive real-time services (e.g., video 
conferencing, voice over IP, and audio/video streaming) and delay-tolerant non real-time 
services (e.g., Web browsing, e-mail, and file transfer) have been introduced and require 
different quality of service (QoS) demands, e.g., low delay/delay-jitter and guaranteed 
bandwidth [3GPPc]. In order to support QoS in 3G mobile networks, sophisticated 
management schemes are required. Network resources should be allocated efficiently to 
achieve best possible QoS for mobile users, e.g., by means of QoS aware call admission 
strategies. On the other hand, differentiated pricing of services is an effective tool for optimal 
resource allocation and utilization. Thus, it seems naturally to combine QoS and provider 
revenue (QoS/revenue) management. To enable online QoS/revenue management of both 
real-time and non real-time services, analytically tractable traffic models for non real-time 
services are required. Whereas real-time services can be characterized by their required 
bandwidth (which is exclusively reserved due to delay-sensitivity) [CDZ02], [CS02], 
[DJK+00], [SDB+98], aggregated non real-time traffic is “bursty” in nature and, thus, 
requires characterization at packet level [LTW+94]. The following describes the evolution 
towards 3G mobile communication networks and presents previous results on QoS 
management in 3G mobile networks and traffic characterization and modeling. Finally, the 
contributions of this thesis are summarized and the thesis outline is presented. 

1.1 Evolution towards 3G Mobile Communication Networks 

Traditionally, wireless communication networks were considered as an auxiliary approach 
that was used in regions where it was difficult to build a connection by wireline. With the 
advent of the first generation (1G) of cellular systems in the mid 1980s, mobile 
communications has experienced enormous growth during the last twenty years. Table 1.1 
summarizes the development process from 1G systems up to 3G systems in terms of starting 
time, signal processing, switching technology, representative standards, utilized radio 

T
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frequencies, provided bandwidth, radio access technology, cellular coverage, provided service 
types, and key characteristics. First generation mobile systems such as the Advanced Mobile 
Phone System (AMPS), the Total Access Communications System (TACS), and the Nordic 
Mobile Telephone System (NMT) utilized analogue or semi-analogue (i.e., analogue radio 
path and digital switching) network technologies. Operated in the 400 and 800 MHz 
frequency band, 1G systems used variants of frequency division multiple access (FDMA) 
schemes at the air interface. Operated in circuit-switched mode, these systems offered basic 
speech and speech-related services with basic mobility support for mobile users. As 1G 
mobile communication networks were developed with national scope only, specifications of 
technical requirements were agreed between the governmental telecommunication operator 
and the domestic industry without further publication [EVB01], [KAL+01]. Thus, 1G 
networks were inherently incompatible with each other and interworking between different 
networks was rarely implemented. Consequently, a subscriber could not use services on a 
network other than the one to which he or she subscribed. 

With an emerging demand of mobile communication, the need for a more global mobile 
communication system increased. In the late 1980s, second generation (2G) mobile 
communication networks were introduced and should be accessible basically anywhere within 
regional (e.g., Europe-wide) or semi-global domains. To accomplish this advanced mobility 
(i.e., roaming) objective, emphasis was given on compatibility and international transparency. 
Due to the regional nature of standardization, the globalization concept did not succeed 
completely, and, thus, there are several (incompatible) 2G systems available [EVB01], e.g., 
 

1G 2G 2.5G 3G

Starting time mid 1980s late 1980s 1995 2002

Signal processing / 
switching technology

(semi-) analogue /
circuit-switching

digital /
circuit-switching

digital /
 towards packet-switching

digital /
packet-switching

Standards AMPS, NMT, TACS GSM, IS-136 (DAMPS),
IS-95 (cdmaOne), PDC

HSCSD, GPRS, EDGE, ECSD, 
EGPRS, 1XRTT

IMT-2000, CDMA2000, 
UMTS, WCDMA, 

Radio frequency (HZ) 400 M - 800 M around 2,000 M

Bandwidth (bps) 2.4 k - 30 k 9.6 k - 14.4 k 50 k - 384 k 144 k - 2 M

Radio access FDMA CDMA

Cellular coverage large area small area

Service types voice voice, SMS,
low-rate data

voice, SMS,
medium-rate data

voice, SMS, high-rate data,
real-time multimedia

Characteristics
technology-driven,

basic mobility, basic 
services, incompatibility

advanced mobility (roaming), 
more data services,

towards global solution

enhanced data rates, packet-
switching capabilities,

towards IP core networks

application-driven, seamless 
roaming, global radio access,

all IP networks

800 M - 900 M, 1,800 M - 1,900 M

TDMA, CDMA

medium area

 

Table 1.1. The evolution towards 3G mobile communication networks 
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the Global System for Mobile Communications (GSM, previously known as Groupe Spéciale 
Mobile), IS-136 or Digital AMPS (DAMPS), IS-95 or cdmaOne, and Personal Digital 
Cellular (PDC). As a technological revolution, 2G networks are based on digital signal 
processing techniques. Digital technology has not only improved voice quality and services, 
but also significantly reduced the cost of handset and infrastructure systems, leading to further 
acceleration of the telecommunication industry’s growth since the mid 1990s. 

The advent of GSM for 2G systems was a huge step forward. GSM is widely deployed 
throughout the world, is the predominant standard in Europe, and has gained tremendous 
success during 1990s. Moreover, GSM is recognized as the world leader in terms of number 
of subscribers. The introduction of the subscriber identity module (SIM) cards and the GSM 
mobile application part (MAP) protocol enabled seamless interworking between different 
networks, allowing subscribers to roam worldwide [EVB01]. In its original form, GSM in the 
900, 1,800 and 1,900 MHz frequency bands uses a time division multiple access (TDMA) 
scheme at the air interface. Similarly, IS-136 and PDC utilize TDMA schemes at the air 
interface, whereas IS-95 relies on CDMA technology. Beside the transmission of digitized 
speech, 2G networks are able to offer electronic messaging services (e.g., the short message 
service, SMS), low bit-rate data services (up to 9.6 kbps), and more sophisticated 
supplementary services (e.g., call forwarding services or call barring services). 

Due to the Internet and the (surprisingly) successful electronic messaging, the pressures for 
mobile data transfer have increased enormously. This development was underestimated at the 
time when 2G systems were specified. Thus, while the evolution towards the third generation 
of mobile communication networks continues, many operators upgraded their 2G networks to 
evolved 2G (2.5G) networks as interim solution [DGA01]. This generation of cellular 
networks extends 2G systems with enhanced data rates and packet-switching capabilities. The 
evolution of GSM towards 2.5G systems (also called GSM Phase 2+) is double-tracked 
[EVB01]. On the one hand, traditional circuit-switched technologies are enhanced such that 
higher data rates become available for mobile users, e.g., more effective channel coding 
mechanisms increase the data rate from 9.6 kbps to 14 kbps. To put more data through the air 
interface High Speed Circuit-Switched Data (HSCSD) has been introduced that uses several 
traffic channels simultaneously (multi-slot capability) to increase the data rate from 9.6 kbps 
up to 50 kbps [DGN+98], [KAL+01]. However, circuit-switched network interfaces in 2G 
systems are designed for symmetric traffic and, consequently, do not take into account traffic 
asymmetry, i.e., a low data rate in the uplink (terminal to network) and high data rates in the 
downlink (network to terminal). This and the fact that data traffic is packet-switched in nature 
motivated the enhancement of 2G systems by packet-switched interfaces. 
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Generally, packet-switched enhancements make 2G systems more suitable for effective 
data transfer and bring IP mobility and the Internet closer to the mobile user. In GSM, the 
packet-switched General Packet Radio System (GPRS) technology provides data rates of up 
to 160 kbps and is capable to support asymmetric connections. GPRS is based on packet 
transmission in the core network, while using the existing GSM/TDMA radio interfaces and 
radio access network (RAN) technologies. Whenever packet-switched connections are used, 
QoS is a very essential issue. Whereas GPRS supports QoS in principle, GPRS traffic is 
considered as low priority traffic in GSM networks and just utilizes otherwise unused voice 
capacity. Consequently, a certain bandwidth or QoS cannot be guaranteed, and, thus, GPRS 
can only provide “best effort” services, i.e., delay-tolerant non real-time data services. 

Some GSM operators as well as operators of other TDMA-based 2G systems are planning 
for Enhanced Data Rate for Global Evolution (EDGE). The development of EDGE aims to 
increase the throughput per time slot for both HSCSD and GPRS [DGA01]. These enhanced 
standards are called Enhanced Circuit-Switched Data (ECSD) with a data rate up to three 
times the HSCSD rate and enhanced GPRS (EGPRS) with a data rate of up to 384 kbps. Note 
that GPRS and EGPRS allow the efficient operation of “always-on” data and Internet services 
through packet-switched transmission. For IS-95, operators are considering 1XRTT, which 
provides data rate of up to 144 kbps [DGA01]. 

The phenomenal growth of high-rate data services and the increasing popularity of 
multimedia applications were the driving forces for third generation systems that support at 
least 144 kbps in all radio environments (e.g., for high-mobility users) and up to 2 Mbps for 
low-mobility and indoor users. While 2G systems have brought mobile telephony to the mass 
market, 3G systems bring packet-switched, high-speed data and multimedia applications to 
mobile users (e.g., Web browsing, video conferencing, voice over IP, audio/video streaming, 
interactive games, etc.). From a technical point of view, this seems to be a mere technological 
evolution towards packet-switched, high-rate data services, but its potential lies in the 
promotion of communications not only from person-to-person, but also from person-to-
machine and from machine-to-machine [KJ01]. However, the air interface has to cope with 
variable, asymmetric data rates with different QoS requirements (e.g., low delay/delay-jitter 
and guaranteed bandwidth). As mobile users with different QoS requirements will coexist in 
3G networks, sophisticated radio resource management schemes have to guarantee the 
required QoS for mobile users in a fair manner [OP98]. High-rate data services together with 
the lack of radio frequencies motivate the development of more efficient radio technologies. 
Thus, 3G systems are based on the wideband CDMA (WCDMA, [DGN+98]) technology at 
the 2,000 MHz frequency band. WCDMA provides a significantly better spectral efficiency 
than TDMA and is more suitable for packet transfer than TDMA-based radio access [KS01]. 
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As WCDMA and its radio access equipment are not compatible with existing second 
generation equipment, additional network equipment is required to enhance 2G or 2.5G 
networks. To be backward compatible with existing CMDA-based IS-95 (cdmaOne) systems, 
CDMA2000 (also known as wideband cdmaOne) has been specified as an alternative 
framework for wideband CDMA [PO98]. Since different parts of the world emphasize 
different issues of mobile communication, the global term 3G has regional synonyms. In 
Europe, 3G systems are called Universal Mobile Telecommunication System (UMTS, 
[KAL+01]) following the European Telecommunications Standards Institute (ETSI) 
perspective [ETSI]. In the United Stated and Japan, 3G systems often carry the name 
International Mobile Telecommunications in 2000 (IMT-2000), which comes from the 
International Telecommunication Union (ITU) development project [ITU].  

For the standardization of UMTS, the European industrial players have created the Third 
Generation Partnership Project (3GPP) [3GPPa]. Relatively soon after the 3GPP an 
independent organization called Operator Harmonization Group (OHG) was established 
[KAL+01]. The role of the OHG is to look for compromise solutions for those items the 
3GPP cannot handle internally. To ensure that the American point of view will be taken into 
consideration a separate Third Generation Partnership Project Number 2 (3GPP-2) was 
founded [3GPP2]. This organization performs specification work from the IS-95 radio 
technology basis. The common goal for 3GPP, OHG, and 3GPP-2 is to create specifications 
according to which a global cellular system using wideband radio access could be 
implemented. While the standardization of 3G is still ongoing, the discussion of technical 
issues of Beyond 3G (B3G) mobile communication networks has already started and visions 
for the future of B3G systems have already been proposed (see Section 5 for research 
challenges in B3G). 

 

1.2 Previous Results on QoS Management for 3G Mobile Networks 

There has been a significant amount of research to provide QoS in an efficient and scalable 
manner in wireline networks. Notably among them are the integrated services (IntServ) / 
resource reservation protocol (RSVP) model, the differentiated services (DiffServ) model, 
multiprotocol label switching (MPLS), traffic engineering, and constraint-based routing 
[XN99]. IntServ is characterized by resource reservation, i.e., real-time applications must first 
set up paths and reserve resources (by means of the RSVP signaling protocol) before data are 
transmitted. In DiffServ, packets are marked differently to create several packet classes with 
different service. MPLS is a forwarding scheme that assigns labels to packets at the ingress of 
an MPLS-capable domain. Subsequent classification, forwarding, and services of packets are 
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based on these labels. Traffic engineering is the process of arranging how traffic flows 
through the network. Constraint-based routing finds routes that are subject to some 
constraints, such as bandwidth or delay requirements. 

However, the support of multimedia services over wireless channels is more challenging 
and requires more attention [DGA01]. One of the major challenges is the effective utilization 
of scarce bandwidth in the radio access network. In CDMA cellular networks (i.e., 3G mobile 
networks) bandwidth is varying over time due to intra- and inter-cell interference, path-loss, 
fast fading, and shadowing [Lee91]. Thus, the bit error rate (BER) differs about 7 to 10 
orders of magnitude compared with wireline networks [ZCD02]. Additionally, in wireless 
networks errors are more likely to occur in bursts. Furthermore, user mobility can trigger 
rapid degradation in delivered QoS during a handover (i.e., an ongoing call moves from one 
cell to another). These system characteristics result in time-varying QoS for mobile 
applications, and, thus, the provision of different QoS classes and call priorities is desirable, 
e.g., as defined by the 3GPP in [3GPPc]. As most QoS results achieved for wireline networks 
do not directly apply for wireless networks, QoS provisioning in wireless networks has 
attracted significant attention in recent years. Whereas some researchers try to extend existing 
methods for QoS management in wireline networks towards wireless networks (e.g., see 
[MS01]), other develop novel management schemes to achieve best possible QoS for mobile 
users. 

There are two critical QoS parameters in mobile wireless networks [LYW+01], namely the 
new call blocking probability and the handover failure probability (also known as call 
handoff dropping probability). Since cell capacity is limited, call attempts may be blocked. 
The probability that a new call is not admitted into the system is called new call blocking 
probability. Even after a call is admitted, the network may terminate the call prematurely 
when a handover is attempted into a cell that has no capacity available. The probability that 
an already admitted call will be terminated some time before call completion is called 
handover failure probability. Generally, terminating a call in progress is considered more 
severe and needs to be kept under control [LYW+01]. Effective QoS management strategies 
(e.g., call admission control algorithms) have to ensure that handover failure probability is 
maintained at a predefined level, while minimizing new call blocking probability at the same 
time, i.e., maximizing bandwidth utilization. 

Differentiated pricing of services has proven as an effective tool for optimal resource 
allocation and utilization. From a system engineer’s point of view, a primary target of 
differentiated pricing is the prevention of system overload and an optimal resource usage 
according to different daytimes and different traffic intensities [GSW95], [MMV95]. Thus, 
pricing should consider multiple call priorities to guarantee different QoS requirements 
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according to different service level agreements. In general, pricing policies can be partitioned 
into usage-based pricing and dynamic pricing [DaS00]. In usage-based pricing policies, a 
user is charged according to a connection time or traffic volume. Whereas circuit-switched 
calls (e.g., in GSM) are charged by the connection time, the transferred data volume 
determines charging in packet-switched services (e.g., in UMTS). Dynamic pricing models 
take into account the state of the mobile radio network for determining the current price of a 
service. MacKie-Mason and Varian introduced the concept of congestion-sensitive pricing in 
their smart market scheme [MMV95]. Under this model, the actual price for each packet is 
determined based on the current state of network congestion. In [RP98], Rao and Petersen 
discussed the optimal pricing of priority services. Taking into account that differentiated 
pricing of services is an effective tool for optimal resource allocation and utilization, it seems 
naturally to combine both QoS and provider revenue management to provide an effective 
mechanism for the operation of 3G mobile networks. 

For most multimedia applications, e.g., voice over IP or video conferencing, service can be 
degraded temporarily in case of congestion as long as it is still within the pre-defined range 
[CDZ02], [CS02], [DJK+00]. For example, generic video conferencing requires 40 kbps, 
whereas low-motion video conferencing requiring about 25 kbps is acceptable [SDB+98]. 
Thus, the system could free some radio capacity for new or handover calls by decreasing the 
QoS level of ongoing calls. Chou and Shin proposed an analytical model for a combined 
degradation and traffic restriction mechanisms [CS02]. Call degradation is for admission of 
more new and handover calls in the cell, and, hence, reduces the new call blocking and 
handover failure probability. However, the number of degraded calls is restricted by a fixed 
value that is not adjusted according to changing traffic load. In [LRS+00], Lataoui, Rachidi, 
Samuel, Gruhl, and Yan defined the components of a QoS management structure for packet 
switched 3G mobile communication networks. They introduced the seamless service 
descriptor as QoS parameter and specified an admission controller that utilizes this QoS 
parameter to allow degraded services at multiple levels according to a user specific profile. 
Das, Jayaram, Kakani, and Sen proposed a framework for QoS provisioning of multimedia 
services in 3G wireless access networks [DJK+00]. To support a differentiated treatment of 
real-time and non real-time traffic flows and to guarantee QoS demands, they developed a call 
admission controller that utilizes different schemes, i.e., channel reservation, bandwidth 
degradation, and bandwidth compaction. In [SDB+98], Sen et al. introduced a novel 
framework for cellular networks to degrade calls on demand depending on their bandwidth 
requirement. They calculated revenue functions and showed that a saturated cell can generate 
more revenue for the system provider by degrading ongoing calls to be able to admit more 
calls. Chlamtac, Das, and Záruba studied service degradation with respect to revenue 
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optimization [CDZ02]. They proposed an admission control framework for optimal call mix 
selection to maximize the revenue earned by the service provider. 

Several recent studies [CS00], [LK02], [LY01], [ZL01] have been conducted concerning 
the forced-termination of calls due to handover failure. As dropping of a handover call is 
generally considered more seriously than blocking of a new call, a certain amount of 
bandwidth (also called guard channels) is exclusively reserved for handovers. This amount of 
bandwidth can be either fixed or adaptively controlled with respect to the current traffic load. 
More precisely, Choi and Shin compared several schemes for reserving bandwidths for 
handovers and admission control for new connection requests in QoS-sensitive cellular 
networks [CS00]. Some of these schemes keep handover failure probability below a 
predefined target (1) by predicting the bandwidth required to handle handovers estimating 
possible handovers from adjacent cells or (2) by predicting the total required bandwidth in the 
current cell estimating both incoming and outgoing handovers at each cell. Other schemes 
guarantee no handover failures due to per connection bandwidth reservation. 

In [LK02], Lee and Kim proposed an approach for adaptive bandwidth reservation with 
admission control for handover calls utilizing network traffic information. Their approach 
considers both QoS assurance and bandwidth utilization in order to optimize the amount of 
bandwidth to reserve for handover admissions. In [LY01], Leung and Yu presented call 
admission control and bandwidth reservation schemes for wireless cellular networks that 
guarantee a certain amount of handover failure probability by means of statistical prediction 
of user mobility based on the mobility history of users. Based on this mobility prediction, 
bandwidth is reserved to guarantee some target handover failure probability. The admission 
threshold is controlled adaptively to achieve a better balance between guaranteeing handover 
failure probability and maximizing resource utilization. Zhang and Liu developed an adaptive 
algorithm for call admission control in wireless networks that is built upon the concept of 
guard channels and uses an adaptation algorithm to search automatically the optimal number 
of guard channels to be reserved at each base station [ZL01]. They showed that their 
algorithm guarantees that the handover failure probability is below a given threshold and, at 
the same time, minimizes the new call blocking probability. 

In [LLT02], Lindemann, Lohmann, and Thümmler introduced an approach that determines 
the amount of bandwidth to be reserved for handover calls according to a look-up table, which 
is determined by extensive offline simulations. Based upon this work, Lindemann, Lohmann, 
and Thümmler extended this approach towards general utility functions depending on online 
monitored performance measures such as call blocking probability and handover failure 
probability [LLT03]. Furthermore, the improvement of both quality of service and provider 
revenue is considered for non real-time traffic. In order to improve the dropping probability of 
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soft handover calls, Ma, Han, and Trivedi considered a stochastic model for an admission 
controller in CDMA cellular networks that prioritizes soft handover calls using soft guard 
channels [MHT02]. In summary, none of these previous approaches investigates the 
prioritization of soft handover calls by applying a graceful degradation scheme that adapts 
according to changing traffic load. 

 

1.3 Previous Results on Traffic Characterization and Modeling 

In the last decade, extensive research effort has been spent on the characterization of 
measured IP traffic in local area networks (LAN) and wide area networks (WAN), e.g., see 
[CB97], [CDJ+91], [LTW+94], [PF95], [TMW97], [Wil01], [WTS+97]. Among other 
characteristics, the most important findings of these studies are (1) the fractal-like nature of 
packet traffic implying the so-called long-range dependence (LRD) and self-similarity and (2) 
the “spiky” distribution of transport control protocol (TCP) packet lengths with peaks at 
common sizes. In particular, these studies have convincingly shown that measured traffic 
rates, i.e., number of packets or bytes per time unit, in both LAN and WAN environments 
look statistically the same in the small and in the large (i.e., self-similar), and no natural 
length of a “burst” is discernible. That is, at every time scale ranging from milliseconds to 
minutes (and beyond) bursts have the same qualitative appearance and cause the resulting 
traffic to exhibit fractal-like characteristics [LTW+94], [PF95]. 

Traffic modeling and understanding is imperative for network design and simulation, for 
providing QoS to diverse applications, and for network management and control. The central 
idea of traffic modeling is to construct stochastic models that capture perhaps not all traffic 
statistics, but those who are important in the sense that they affect the queuing behavior 
significantly. Many analytical studies have shown that self-similar network traffic can have a 
detrimental impact on network performance, including queuing delay and packet loss rate 
[ST99]. A practical effect of self-similarity is that buffers needed at switches or multiplexers 
must be bigger than those predicted by traditionally queuing analysis and simulation, and, 
thus, create larger delays in individual streams than originally anticipated. 

Self-similar characteristics on network level can be related to high-level system 
characteristics [LTW+94], [WTS+97]. These papers pointed out that self-similar traffic could 
be constructed by a large number of ON/OFF sources (or packet trains models) that have ON 
and OFF period lengths that follow a heavy tailed distribution, respectively. For example, the 
observed self-similar nature of Ethernet LAN traffic at the aggregated level (i.e., aggregated 
over all active hosts in the network) can be explained by the superposition of heavy-tailed 
ON/OFF (or busy/idle) times of individual hosts [LTW+94]. Furthermore, Crovella and 
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Bestavros found out that aggregated traffic generated by WWW transfers shows self-similar 
characteristics primarily due to the distribution of available file sizes in the Web and user 
“think times” [CB97]. Recent studies [VB00], [VKM+00] indicate instead that traffic 
properties are originated in the TCP congestion control mechanism, which induces LRD 
properties in the aggregated traffic stemming from the superposition of independent sources. 

The evidence of LRD and self-similarity (and its rich scaling properties) in packet traffic 
motivated many researchers to abandon usual Markovian assumptions in favor of new and 
more complex traffic models. Numerous attempts were made to develop traffic models that 
capture LRD and self-similarity of measured packet traffic authentically. In [WTE96], 
Willinger, Taqqu, and Erramilli presented a comprehensive overview of stochastic approaches 
for modeling self-similar phenomena. Following the (assumed) origins of LRD, first attempts 
mimic LRD properties by superposing a large number of independent traffic sources each of 
which is modeled by a simple ON/OFF source (renewal-reward process) with heavy-tailed 
distribution of ON and OFF periods. This approach was originally suggested by Mandelbrot 
for economic settings [Man69] and was later extended by Taqqu and Levy [TL86]. Leland, 
Taqqu, Willinger, and Wilson rephrased this approach in the context of traffic modeling 
[LTW+94], as it provides a “phenomenological” explanation of the observed self-similar 
nature of aggregated packet traffic. The following touches upon a number of further 
approaches that (try to) capture LRD and self-similarity in network traffic. 

From a modeling point of view, the two major families of self-similar time series models 
are fractional Gaussian noises (FGN), i.e., the increment processes of fractional Brownian 
motion (FBM), and fractional auto-regressive integrated moving-average processes 
(FARIMA), a generalization of the very popular auto-regressive integrated moving-average 
(ARIMA) models [WTE96]. Originally introduced by Mandelbrot and van Ness [MvN68], 
FGN models received a lot of attention for modeling LRD, since its Gaussian nature supports 
studying queuing performance [Nor94], [Nor95]. However, the applicability of FGN models 
is limited because of the strict auto-correlation structure that fails to capture short-range 
dependence (SRD) of measured traffic. In fact, network traffic such as variable bit-rate 
(VBR) video can exhibit a complex mixture of SRD and LRD [BST+95], [GW94]. That is, 
the corresponding auto-correlation function behaves similarly to that of long-range dependent 
processes at large lags and to that of short-range dependent processes at small lags. On the 
other hand, FARIMA models are capable to capture both short-range and long-range 
correlations in time series and, thus, are very popular in modeling complex traffic structures, 
e.g., VBR video traffic [GW94], [KM98]. 

Wavelet analysis has been widely used as a natural approach to study scale invariance 
[AFT+00], but only recently introduced in the field of data networks [MJ01]. Intuitively, the 
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(deterministic) self-similar structure of wavelets is a natural match to the statistical self-
similarity of traffic. One of the main motivations for using wavelets is their ability to reduce 
the temporal correlation so that wavelet coefficients are less correlated. A radically different 
approach for modeling self-similar phenomena relies on ideas from the theories of chaos and 
fractals. Erramilli and Singh proposed chaotic maps for fractal traffic modeling [ES95]. The 
underlying idea is based on a non-linear map that describes the evolution of a state variable 
over discrete time governed by a set of dynamical laws. Recently, many research efforts were 
devoted to multi-fractal models, which are generalizations of self-similar models [RCR+99]. 
Due to their rich scale-invariant properties, multi-fractal models are suggested as possibly 
being the best fit to measured data [ENW96], [FGW98], [TTW97], but they are difficult to 
manage due to their analytical complexity. 

However, queuing theoretical techniques developed in the past are hardly applicable for 
these kinds of models. In order to benefit from the availability of a large number of 
techniques and tools for computing performance measures, researchers have tried to capture 
the self-similarity of network traffic in more “traditional” Markovian, i.e., analytically 
tractable, models that continue to be widely used for performance evaluation purposes with 
good results, see e.g., [AN98], [RLB97]. Grossglauser and Bolot recently showed that long-
range correlations of traffic beyond a certain threshold does not influence the performance of 
a system, i.e., matching LRD and self-similarity is only required within the time scales of 
interest for the system under study [GB99]. Because of this result, Markovian traffic models, 
such as Markov-modulated Poisson processes (MMPP, [FMH93]), with limited correlation 
can be successfully employed to model traffic exhibiting LRD. As Markovian traffic models 
are intrinsically not long range dependent, Robert and Le Boudec defined the local Hurst 
parameter, using an approximate LRD definition, valid on a limited range of time scales 
[RLB97]. 

In the last few years, a number of promising approaches based on Markovian traffic 
models have been developed. All of these different approaches reach similar conclusions 
using different techniques. The objective is always to take into account as accurately as 
possible real traffic behavior. Generally, Markovian traffic models, when extended to capture 
LRD, often result in a complicated structure with many states and parameters. Anderson and 
Nielsen [AN98] proposed a MMPP model build up as a superposition of independent two-
state Markov processes (ON-OFF sources) and a homogeneous Poisson process. Although the 
model seems to be acceptable for describing second-order traffic properties, it does not appear 
to be suitable to predict queuing behavior. In [YKT01], Yoshihara, Kasahara, and Takahashi 
proposed a fitting procedure for MMPPs tailored to self-similar network traffic. Similarly to 
[AN98], they constructed an MMPP as the superposition of two-state MMPPs and fitted it so 
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as to match the variance function over several time scales. Salvador, Valadas, and Pacheco 
introduced a multi-scale fitting procedure for (discrete-time) MMPPs that leads to accurate 
estimates of queuing behavior for network traffic exhibiting LRD behavior [SVP03]. 
Matching both the auto-covariance and marginal distribution of the counting process, their 
results illustrate that MMPP models can capture LRD up to the time-scales of interest at the 
expense of a complex structure with numerous states. In an outstanding paper, Muscariello et 
al. recently proposed a MMPP traffic model that accurately approximates the LRD 
characteristics of Internet traffic traces over the relevant time scales [MMM+04]. Using the 
notions of sessions and flows, the proposed MMPP model mimics the real hierarchical 
behavior of the packet generation process by Internet users and, thus, allows the generation of 
traffic with desired characteristics by easily setting few input parameters with an intuitive 
physical meaning. 

Surprisingly, while the packet arrival process of measured traffic data has deserved 
considerable attention, very few works have addressed the packet length process, and, 
especially, the joint characterization of the packet arrival process and the packet length 
process [GR99], [SPV04]. Thus, almost all (i.e., Markovian and non-Markovian) traffic 
models just capture packet arrivals, whereas packet lengths are ignored completely [JMW97], 
[MMM+04]. When dealing with such models, it is a common practice to assume an average 
packet length for each packet arrival or to draw packet lengths according to the empirical 
distribution of the measured traffic. For packet lengths that are uncorrelated with packet 
arrivals, this approach would be adequately. As shown for a huge number of LAN and WAN 
traffic measurements [CDJ+91], [TMW97], [Wil01], TCP packet lengths follow a “spiky” 
distribution with peaks at just a few predominating lengths that are mainly due to protocol and 
network specific characteristics. This dependence on protocol and network specific 
characteristics is a first indicator of correlations between the arrival process and the packet 
length process. In summary, none of these previous approaches derived a Markovian (i.e., 
analytically tractable) traffic model that jointly captures the packet arrival process, the packet 
length process, and their correlations. 

 

1.4 Summary of Contributions of this Thesis 

The contribution of this thesis is three-fold. First, this thesis shows how online management 
of both QoS and provider revenue can be performed in 3G mobile networks by adaptive 
control of system parameters to changing traffic conditions. To enable online QoS/revenue 
management of both real-time and non real-time services, analytically tractable (i.e., 
Markovian) traffic models for non real-time services are required. Due to the scarce 
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bandwidth in the radio access network, accurate stochastic modeling of byte-based traffic 
rates (i.e., bytes per time unit) is essentially. Otherwise, results, gathered in performance 
studies of 3G mobile networks, may be misleading and, thus, may lead to significant 
performance losses during the operation of 3G networks in practice. Thus, as a second 
contribution, this thesis identifies the batch Markovian arrival process (BMAP, [Luc91]) as 
the analytically tractable model of choice for the joint characterization of packet arrivals and 
packet lengths. This thesis shows that it is not sufficient to utilize state-of-the-art analytically 
tractable traffic models (e.g., the Markovian arrival process or the MMPP) that just capture 
inter-arrival times (ignoring packet lengths completely) and assume an average packet length 
or draw packet lengths according to the empirical distribution of the measured traffic. As a 
third and major contribution, this work solves an open research problem and derives a novel 
expectation maximization (EM, [DLR77]) algorithm for parameter estimation of BMAPs. 

Online QoS/Revenue Management for 3G Mobile Communication Networks 

The proposed QoS/revenue management approach is based on a novel call admission control 
and bandwidth degradation scheme for real-time traffic. The admission controller considers 
real-time calls with two priority levels: calls of high priority have a guaranteed bit-rate, 
whereas calls of low priority can be temporarily degraded to a lower bit-rate in order to 
reduce forced termination of calls due to a handover failure. Opposed to previous work 
[CS02], [LLT03], [MHT02], degradation of bandwidth is performed gracefully in several 
steps. Furthermore, calls of low priority are degraded equally rather than picking out one call 
randomly for degradation. Clearly, due to fairness reasons this approach should be preferred 
over a random choice of calls applied in [CS02]. To enable online QoS/revenue management 
this work develops a Markov model for the admission controller that incorporates important 
features of 3G cellular networks, such as CDMA intra- and inter-cell interference, different 
call priorities and soft handover [KAL+01]. Online evaluation of the Markov model enables a 
periodical adjustment of the threshold for maximal call degradation according to the currently 
measured traffic in the radio access network and a predefined goal for optimization. Using 
distinct optimization goals, this allows optimization of both QoS and provider revenue. 

Performance studies illustrate the effectiveness of the proposed approach and show that 
QoS and provider revenue can be increased significantly with a moderate degradation of low-
priority calls. Beside the evaluation of the optimization goals, the proposed degradation 
scheme is compared with existing admission control policies based on adaptive guard 
channels [CS00], [ZL01]. It is shown that overall utilization of cell capacity is higher with the 
degradation scheme that can be considered as an “on demand” reservation of cell capacity, 
whereas the guard channel scheme implements an “a-priori” reservation. Thus, the 
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degradation scheme is the method of choice in future mobile networks that support service 
degradation, since it guarantees a certain handover failure probability and also high cell 
capacity utilization. Simulation studies considering a half-day window of a daily usage 
pattern illustrate the effectiveness of the proposed approach in practice. 

Parameter Estimation of the Batch Markovian Arrival Process 

The developed EM algorithm for parameter estimation of BMAPs is mathematically very 
complex and requires the computation of conditional expectations of a continuous-time 
Markov chain (CTMC, [Lin98]). Extensive calculations show that these conditional 
expectations can be computed by means of matrix exponentials and integrals over matrix 
exponentials. Whereas the computation of matrix exponentials can be performed directly 
using the randomization technique [GM84] and a numerical stable computation of Poisson 
probabilities [FG88], the computation of integrals over matrix exponentials requires further 
effort. Previous known EM-based parameter estimation procedures for special cases of the 
BMAP are numerically unstable, e.g., the EM algorithm for parameter estimation of MMPPs 
proposed by Ryden in [Ryd96]. Thus, it is shown how to utilize the randomization technique 
for the computation of integrals over matrix exponentials. This methodological work enables 
the EM algorithm to be both efficient and numerical robust and constitutes an important step 
towards effective, analytically/numerically tractable traffic models. Moreover, this thesis 
analyzes the computational complexity of the EM algorithm given by O(n·l3/2·N2) for an EM 
iteration and gives some insights in the convergence behavior of the EM algorithm. 

Traffic Modeling Using the Batch Markovian Arrival Process 

Whereas almost all (analytically tractable) traffic models capture inter-arrival times of 
measured IP traffic [JMW97], [MMM+04], the BMAP enables “two-dimensional”, i.e., joint, 
characterization of packet arrivals and packet lengths. The proposed EM algorithm for 
parameter estimation of BMAPs jointly captures the packet arrival process and the packet 
length process of measured traffic and, thus, considers correlation structures between packet 
arrivals and packet lengths naturally given by the BMAP’s capabilities. The key idea is to 
customize the BMAP such that different packet lengths are represented by different rewards, 
i.e., batch sizes of arrivals, of the BMAP. This is the first analytically tractable traffic model 
that jointly captures the packet arrival process, the packet length process, and their 
correlations. A scaling procedure is proposed that reduces the number of parameters 
dramatically without changing the BMAP’s quality. This is decisively for the practical 
utilization of parameterized BMAPs in Markovian performance models, as the solution of 
these kinds of performance models primarily depends on the number of non-zero entries in 
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the corresponding infinitesimal generator matrix of the underlying CTMC. Case studies of 
measured IP traffic with different degrees of traffic burstiness evidently demonstrate the 
advantages of the BMAP modeling approach over other widely used analytically tractable 
models and show that the joint characterization of packet arrivals and packet lengths is 
decisively for realistic traffic modeling at packet level. Beyond the case studies of TCP traffic 
presented in this thesis, the joint characterization of packet arrivals and packet lengths by 
customized BMAPs has been utilized successfully in practice for aggregated traffic modeling 
of non real-time traffic in 3G mobile communication networks [KLL01]. 

 

1.5 Key Publications Making up this Thesis 

This thesis is mainly based on three key publications that have been published in international 
scientific journals and conference proceedings [KLL02], [KLL03], and [LLT04]. Since these 
publications constitute joint work with other Ph.D. students, the following outlines the 
individual contribution of the author. 

As published in [LLT04], the online QoS/revenue management for 3G mobile 
communication networks has been developed jointly with the by-then Ph.D. student Axel 
Thümmler. In this publication, the author developed the mathematical foundations of the 
proposed management schemes, derived the underlying Markov model of the admission 
controller mathematically, and performed the entire set of performance studies. Axel 
Thümmler mainly developed formulas for CDMA cell capacity and derived statistics of the 
core and soft handover zone required for iterative balancing. 

The novel parameter estimation method for BMAPs has been recently published in 
[KLL03]. In this joint publication with the Ph.D. student Alexander Klemm, the author 
derived the entire mathematical framework including the derivation of the EM algorithm and 
the development of effective computational formulas for conditional expectations of a CTMC. 
Moreover, the author showed how to compute complex integrals over matrix exponentials and 
derived the computational complexity of the EM algorithm. Alexander Klemm mainly 
performed detailed traffic measurements that helped utilizing the EM algorithm in practice. 

The ideas of modeling IP traffic using the BMAP have been published jointly with 
Alexander Klemm [KLL02]. The author found out that packet arrivals and packet lengths are 
correlated due to protocol and network specific characteristics and derived a framework that 
utilizes the BMAP as an ideal vehicle to capture these kinds of correlations in a Markovian 
model. Moreover, the author invented an effective scaling procedure that helps minimizing 
the number of model parameters and conducted detailed performance studies that illustrate the 
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benefit of the proposed traffic modeling framework. As in [KLL03], Alexander Klemm 
mainly performed detailed traffic measurements required for the conducted case studies. 

Furthermore, the author of this thesis is coauthor of some further publications, which are 
not part of this thesis. In [KLL01], the author developed a mathematical framework to derive 
effective traffic models for non real-time services in 3G mobile communication networks 
based on real-world traffic measurements. As a first step towards effective management of 
QoS (and provider revenue) in 3G networks, management schemes for real-time and non real-
time services based on a tailored lookup table and closed-form formulas have been published 
jointly with Axel Thümmler [LLT02], [LLT03]. In these publications, the author derived the 
methodology for packet-based modeling of data services and embedded the 3G traffic model 
[KLL01] in the proposed framework. The publications [LTK+00] and [LTK+02] focus on the 
performance analysis of time-enhanced UML diagrams based on stochastic processes. 
Concerning these publications, the author supported the development of the software package 
DSPNexpress [Lin98] and derived corresponding performance curves. The publications 
[LLT02], [LLT03], [LTK+00], and [LTK+02] constitute the core of the Ph.D. thesis of Axel 
Thümmler [Thü03]. 

 

1.6 Thesis Outline 

This thesis is organized as follows. In Section 2, this thesis presents the online QoS/revenue 
management framework including a detailed description of the proposed admission controller 
and the bandwidth degradation scheme. To make this thesis self-contained, this section 
describes the architecture of 3G communication networks and recalls principles of CDMA-
based radio access. Furthermore, this section derives feasibility functions to estimate current 
available bandwidth and shows how online QoS/revenue management can be performed by 
periodical optimization of an embedded Markov model. Finally, Section 2 presents 
quantitative results of the proposed framework in practice. 

Section 3 presents the developed EM algorithm for parameter estimation of BMAPs. To 
make this thesis self-contained, this section first recalls the randomization technique and an 
efficient method for stable calculations of Poisson probabilities. Beyond the derivation of the 
EM algorithm and its highly complex mathematical framework, Section 3 outlines key 
implementation issues, derives the computational complexity the EM algorithm, and gives 
some insights in the convergence behavior of the EM algorithm. 

Section 4 recalls important characteristics of today’s IP traffic, such as self-similarity and 
TCP packet length characteristics and describes how to utilize the batch Markovian arrival 
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process for IP traffic modeling. Two comprehensive case studies of measured IP traffic with 
different degrees of traffic burstiness illustrate the effectiveness of the joint characterization 
of packet arrivals and packet lengths. Furthermore, Section 4 shows how model specification 
and parameter estimation are performed in practice. 

Section 5 outlines future directions of research concerning research areas examined in this 
thesis. This includes ideas for online QoS/revenue management of both real-time and non 
real-time services as well as extensions of the QoS/revenue management scheme towards 
emerging B3G mobile communication networks. Furthermore, future research ideas 
concerning the EM algorithm for parameter estimation of BMAPs are given, and it is outlined 
how an EM algorithm could be utilized for effective modeling the state of TCP connections in 
mobile ad-hoc networks (MANET). Finally, Section 6 sums up major research results 
presented in this thesis and gives concluding remarks. 
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2 Online QoS/Revenue Management of 
Real-Time Services 

UPPORTING MULTIMEDIA SERVICES over wireless channels presents a number of 
technical challenges. One of the major challenges is the effective utilization of scarce 

bandwidth in the radio access network. For most multimedia applications, e.g., voice over IP 
or video conferencing, service can be degraded temporarily in case of congestion as long as it 
is still within the pre-defined range [CDZ02], [CS02], [DJK+00]. For example, generic video 
conferencing requires 40 kbps, whereas low-motion video conferencing requiring about 25 
kbps is acceptable [SDB+98]. Thus, the system could free some radio capacity for new or 
handover calls by decreasing the QoS level of ongoing calls. This section presents a novel call 
admission control and bandwidth degradation scheme for real-time data services and shows 
how online management of both QoS and provider revenue can be performed in 3G mobile 
networks by adaptive control of system parameters to changing traffic conditions. An 
efficiently analyzable Markov model enables online optimization of the admission controller 
and incorporates important features of 3G cellular networks, such as CDMA intra- and inter-
cell interference, different call priorities, and soft handover [KAL+01]. Detailed performance 
studies illustrate the effectiveness of the proposed approach by quantitative analysis of the 
Markov model and simulation studies. The methodological work including expressive 
performance studies has been published in the ACM Journal on Wireless Networks (WINET), 
which is a leading journal in wireless network research [LLT04]. 

2.1 Architecture of 3G Communication Networks 

Third generation mobile communication networks have a cellular structure, where a large area 
is divided into a number of sub-areas called cells (see Figure 2.1). The cellular concept 
resolves the basic problems of radio systems in terms of radio system capacity constraints 
[BGM+98], [KAL+01], but at the same time it encounters other problems such as interference 
due to the cellular structure (see Sections 2.4 and 2.5), problems due to mobility (handover), 
i.e., an ongoing call moves from one cell to another, and cell-based radio resource scarcity. As 
depicted in Figure 2.1, each cell has its own base station (BS), which is able to provide a 
radio link for a specific number of mobile stations (MS), simultaneously. The BS itself 
encompasses the technical equipment (e.g., antennas) that is required for radio 

S
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Figure 2.1. Basic architecture of 3G communication networks 

 

communication and is capable of operating both as a transmitter and receiver device. A base 
station controller (BSC) is connected to a cluster of BSs and manages radio resources such as 
scheduling of data packets and admission control of (1) new calls and (2) handover calls 
inside the cell cluster as well as towards and from neighboring cell clusters. 

As a fundamental concept, 3G networks separate the radio access functionality from the 
core network functionality and, thus, are subdivided into the radio access network (RAN) and 
the core network (CN) [KAL+01]. The RAN consists of a set of BSCs that are connected to 
the core network. Inside the RAN, the several BSCs can be interconnected with each other to 
support smooth handover for MSs leaving the cluster of cells covered by the serving BSC and 
entering a cell served by another RNC. The CN covers all network elements needed for 
switching and subscriber control and is responsible for handling circuit-switched connections 
(e.g., voice calls) and tunneling packet-switched data to public networks (e.g., the Internet). 
Therefore, the RAN provides an access platform for MSs to all CN services. Moreover, it 
hides all radio access technology dependent and mobility functions from the CN. Whereas 
QoS management in the CN and public networks (e.g., ATM networks) has been researched 
extensively (see Section 1), the scarcity of radio resources in the RAN demands innovative 
QoS (and revenue) management strategies to provide real-time services in 3G mobile 
networks. 
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2.2 QoS/Revenue Management Framework 

This section introduces a framework for online QoS/revenue management of real-time 
services in 3G mobile networks by means of a Markov model. As illustrated in Figure 2.2, the 
framework is part of a BSC. The framework is subdivided into (1) the admission controller 
that decides whether to accept or reject a call request, (2) the online traffic measurement unit, 
and (3) the integrated QoS/revenue management unit that aims to determine the optimal 
setting of the admission controller’s system parameters in control periods of fixed duration. 
Thus, the QoS/revenue management framework closes the loop between network operation 
and network control. The proposed approach focuses on optimizing a single adjustable 
parameter, i.e., the threshold for maximal bandwidth degradation, which is part of the 
admission controller introduced next. 

The optimization is based on currently measured traffic characteristics, called traffic 
pattern, determined by the online traffic measurement unit, a Markov model of the admission 
controller, and a predefined goal for QoS/revenue optimization (see Figure 2.2). Roughly 
speaking, this Markov model captures dependencies between the adjustable parameter of the 
admission controller and the traffic pattern. For different settings of the adjustable parameter, 
the evaluation of the Markov model yields a set of QoS and revenue measures crucial for 
optimization. Based on these QoS and revenue measures, the predefined goal for QoS/revenue 
 

 

Figure 2.2. Illustration of online QoS/revenue management 
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optimization is evaluated. The parameter setting that maximizes this goal is optimal for the 
current state of the RAN, i.e., optimal for the current traffic pattern. 

 

2.3 CDMA Principles 

In mobile cellular systems, there are three major techniques that can provide multiple access 
to mobile users, i.e., FDMA, TDMA, and CDMA [KAL+01]. As utilized in 1G cellular 
networks, FDMA subdivides the available frequency band into a number of channels (in the 
frequency domain) each of which can be used by a mobile user. The most common multiple 
access technique in 2G is TDMA, which is a more efficient way to utilize frequency resources 
and, thus, increases a cellular system’s capacity. In TDMA, the available frequency band is 
subdivided (in the time domain) into a number of logical channels (timeslots) each of which 
can serve a call. However, these “traditional” multiple access techniques or combinations of 
them can only provide a limited capacity in cellular systems. Thus, as discussed in the 
introduction of this thesis, 3G systems are based on the wideband CDMA. 

Unlike in FDMA and TDMA schemes, CDMA allocates radio resources based on code 
sequences [KAL+01], [PO98]. Each user is assigned a unique code sequence used for 
encoding its information-bearing signal. Additionally, the encoding process enlarges (i.e., 
spreads) the small bandwidth of the information-bearing signal to the broad bandwidth of the 
available frequency band (spread-spectrum signal). Therefore, this kind of modulation is also 
known as spread-spectrum modulation. The ratio of the total spread bandwidth to the bit-rate 
of the information bearing-signal is called the processing gain or spreading factor [KS01]. 
For simultaneous transmissions of multiple users, each user utilizes the same broad frequency 
band at the same time, and, thus, the receiver gets the spread-spectrum signals of all users. As 
a consequence, each user can occupy the same frequency band simultaneously without 
frequency allocation or time slots. 

The receiver is able to distinguish between different users since each user has a unique 
code that has a sufficiently low cross-correlation with the other codes. Correlating the 
received signal with the code from a certain user will then only despread the signal of this 
user, while the other spread-spectrum signals will remain spread over a large bandwidth. 
Nevertheless, from the perspective of a certain user (and its signal), signals stemming from 
other users contribute to an increased interference (i.e., noise) that is still distributed over a 
wide spectrum. To provide a certain signal quality, the signal to noise ratio should not fall 
short of a certain threshold (see Section 2.5 for more detailed considerations). Consequently, 
the number of users within a cell (and, thus, the cell capacity) is interference limited, while 
FDMA and TDMA cell capacities are bandwidth limited [KAL+01]. Thus, admission control 
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mechanisms in 3G cellular systems must consider these CDMA-specific characteristics. As 
the number of users is not fixed in general, but determined by a desired minimum signal 
quality, the capacity of CDMA is often called soft capacity [Lee91], [PO98]. 

Because of the coding process and the resulting enlarged bandwidth, spread-spectrum 
signals have a number of properties that differ from the properties of narrowband signals. 
This results in the following advantages of CDMA cellular systems over cellular systems 
based on FDMA or TDMA. From the communication systems point of view, the key 
advantages of CDMA in cellular systems are the high spectrum efficiency, support of variable 
bit-rates, interference limited (i.e., soft) capacity (see Sections 2.4 and 2.5) as well as 
frequency reuse in all neighboring cells, soft handover, and macro diversity (see Section 2.4). 
In fact, CDMA systems increase cell capacity in the order of 4 to 6 compared with digital 
TDMA (e.g., GSM) and in the order of 10 compared with analog FDMA (e.g., AMPS) 
[GJP+91]. As a major advantage of CDMA over FDMA and TMDA in cellular systems, the 
frequency band of the entire spectrum can be reused in all neighboring cells since there is no 
concept of frequency allocation in CDMA. This increases the capacity of the CDMA system 
to a large extent [KAL+01]. 

 

2.4 Admission Control Based on Bandwidth Degradation 

This section describes the proposed admission control and bandwidth degradation scheme that 
is subject of optimization according to the framework introduced above. Before a mobile user 
can start a new call, an admission controller decides to accept or reject the user’s request. 
Generally, this decision is based on the bandwidth requirements of the new call and the 
network’s current state, e.g., given by currently available bandwidth. As the capacity of 
CDMA cellular systems is interference limited and each cell uses the same frequency band, 
the admission decision considers interference in the considered cell, i.e., intra-cell 
interference, and in the surrounding cells, i.e., other-cell interference (see Figure 2.3). As 
introduced in the next section, a feasibility function determines whether a given system 
configuration is feasible in terms of CDMA cell capacity (see equation (2.8)). Intuitively, in a 
feasible system configuration the demands of all users in the system are satisfied. The 
admission controller weighs up whether to accept a call request that may result in a QoS 
degradation of already admitted calls or to reject a call request in order to guarantee ongoing 
calls a certain QoS. Furthermore, the admission controller prioritizes handover call requests 
over new call requests, since dropping a handover call is generally considered more serious 
than blocking of a new call. 



24 2.   ONLINE QOS/REVENUE MANAGEMENT OF REAL-TIME SERVICES 

 

Inter-Cell
Interference

Intra-Cell
Interference

 

Figure 2.3. Intra- and inter-cell interference 

 

Because of the scarcity of wireless cell capacity and the potentially large population of 
mobile users, it is desirable to offer preferential treatment to those who are willing to pay 
more for their service. This implies that the network has to provide multiple service classes. 
Therefore, the proposed admission controller distinguishes two different call priorities, i.e., 
class-one calls correspond to calls of high priority and class-two calls are of lower priority. 
Note that the ideas presented in the following can be easily extended towards more than two 
service classes (with different bandwidth requirements). Class-one and class-two calls are 
abbreviated with C1 calls and C2 calls, respectively. In order to prioritize handover call 
requests over new call requests as well as C1 calls over C2 calls, a tailored algorithm 
temporally degrades the bandwidth reserved for C2 calls. Once the total required bandwidth 
exceeds the cell capacity, the system reduces the bandwidth currently assigned to C2 calls in 
order to admit more new C1 calls or handover calls. This decreases blocking probability of 
new C1 calls as well as the probability of handover failures. Without bandwidth degradation, 
calls of class C1 and C2 require a bit-rate of R kbps, respectively. Bandwidth degradation is 
performed stepwise in so-called degradation steps of size d. Moreover, each C2 call could 
receive degraded service as long as this degraded service is within a tolerable range, i.e., a 
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certain minimum bandwidth has to be reserved for a C2 call. Therefore, the maximal number 
of degradation steps, denoted by mmax, is bounded by a degradation threshold q, i.e., 
q = mmax·d (see Figure 2.4). Opposed to previous work [CS02], [LLT03], [MHT02], 
degradation of bandwidth is performed gracefully in several steps and calls of low priority are 
degraded equally rather than picking out one call randomly for degradation. Clearly, due to 
fairness reasons this approach should be preferred over a random choice of calls applied in 
[CS02]. 

The admission controller considers the soft handover capability of CDMA cellular systems 
[KAL+01], [VVG+94]. Generally, CDMA systems enable handovers within a common RAN, 
i.e., an intra-system handover, as well as handovers between two different RANs, i.e., inter-
system handover. This approach considers a homogenous CDMA cellular network, where 
neighboring cells use the same frequency band (intra-frequency) and do not take into 
consideration inter-system handover calls. Thus, opposed to cellular systems based on FDMA 
and/or TDMA, the frequency has not to be changed at the time of a handover. Within an intra-
system, intra-frequency CDMA system hard handovers can only occur, if the handover is 
performed between two neighboring BSs with distinct BSCs that are not connected due to 
radio network planning strategy or transmission reasons. Under these circumstances, intra-
frequency hard handover is the only handover to support seamless radio access. 

According to [KAL+01], the vast majority of handovers are intra-system, intra-frequency 
soft handovers. Thus, investigations are restricted to this kind of handovers. In fact, a MS near 
the cell boundary can maintain connectivity to an active set of more than one BS 
simultaneously (see Figure 2.5). Whenever a MS with an ongoing call moves from one cell to 
another, the handover process is performed in multiple steps. First, the mobile notices the new 
cell, and the call will be carried on both cells (macro diversity). As the mobile continues 
moving, the strength of the signal originating from the cell the mobile is moving away from 
eventually comes up to a certain threshold, where it is not useful any longer. Again, the 
mobile informs the cell system of this fact, and the system terminates connectivity to the 
 

0 R

bandwidth available for a C2 call
at a certain point in time

maximal degradation of a C2 call: q = mmax·d kbps
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Figure 2.4. Bandwidth degradation of C2 calls 
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Figure 2.5. Soft-handover in 3G networks with an active set of two base stations 

 

original cell. Because of this “make before break” transition, this handover mechanism is 
called soft handover. In strong contrast, cellular systems based on FDMA and/or TDMA, such 
as GSM, employ the more traditional hard handover (“break before make”), where the mobile 
maintains connectivity to at most one BS at each point in time. Moreover, the mobile station 
breaks connectivity to the old BS (due to different frequency bands in neighboring cells) 
before establishing connectivity with the BS of the new cell [EVB01]. As a main advantage of 
soft handovers over hard handovers, the “ping-pong” effect (i.e., constant handing back and 
forth between BSs at the cell border), a common effect in hard handover, is avoided under this 
“make before break” strategy. 

Figure 2.6 presents an activity diagram in Unified Modeling Language (UML, [Fow97]) 
notation for decisions of the admission controller upon arrival of a new or soft handover call 
request. If the call request can be accommodated in the cell without exceeding the cell 
capacity, the request is granted. In case of insufficient bandwidth availability with respect to 
the feasibility function (see equation (2.8)), the admission controller distinguishes between C1 
and C2 new calls and soft handover calls. New low priority call requests, i.e., new C2 calls, are 
rejected. In order to prioritize new C1 calls over already admitted C2 calls, the admission 
controller degrades C2 calls as long as the available bandwidth gets sufficient (to accept the 
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Figure 2.6. Activity diagram for admission controller: arrival of a call request 

 

new C1 call request) or a maximum of h·mmax degradation steps is reached. The parameter h, 
0 ¢ h ¢ 1, specifies the extent of prioritizing C1 calls over C2 calls, i.e., h = 0 corresponds to 
no prioritization and h = 1 corresponds to maximal prioritization, respectively. If the available 
bandwidth is still insufficient, the new C1 call request has to be rejected. Note that to 
accommodate a new C2 call the current number of degradation steps must not exceed h·mmax 



28 2.   ONLINE QOS/REVENUE MANAGEMENT OF REAL-TIME SERVICES 

 

steps (see Table 2.1 for detailed considerations). This is an important restriction to avoid 
prioritization of C2 calls in times of heavy degradation. 

For soft handover calls, decisions are somewhat different. Independent of their priority, 
soft handover calls can degrade C2 calls to the maximum of mmax degradation steps. If the cell 
is still saturated, even with maximal degradation of C2 calls, the soft handover request may be 
queued in a handover queue with limited capacity K. Queued soft handover calls can (1) be 
accepted, if sufficient bandwidth gets available, (2) leave the cell, i.e., the MS moves to an 
adjacent cell or the call is completed, and (3) be terminated due to a timeout. Note that queued 
soft handover calls are still ongoing calls and, thus, contribute to the intra-cell interference. In 
fact, queued soft handover calls lead to cell overload with respect to the feasibility function 
(2.8). Therefore, for each queued soft handover call a timer is utilized to bound this overload 
effect. Furthermore, the capacity of the handover queue should be reasonably small. In the 
case of a full handover queue, an arriving soft handover call request must be terminated to 
protect ongoing calls in the cell from further cell overload. 

Figure 2.7 presents an UML activity diagram for actions of the admission controller, if the 
MS moves to an adjacent cell or a user completes the call. In terms of cell capacity, a 
handover to an adjacent cell is similarly to a call termination since no more resources are 
occupied in the cell (the call only contributes to the interference received from other cells). 
The admission controller checks whether the new available bandwidth is sufficient to 
accommodate a queued soft handover call. Recall that a queued soft handover call is only 
tolerated in the cell until a timer assigned to this call expires. In contrast, a regular accepted 
call is not restricted in its call duration. Therefore, it is desirable to admit a queued soft 
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Figure 2.7. Activity diagram of admission controller: call leaving the considered cell 
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handover call in the cell if possible. If no more queued soft handover calls exist and 
bandwidth is still available, ongoing (degraded) C2 calls are upgraded to the minimal number 
of required degradation steps with respect to the feasibility function (2.8). Section 2.6 
considers this update mechanism in detail. 

 

2.5 Derivation of the Feasibility Function 

This section derives the feasibility function that is required by the admission controller in 
order to determine whether sufficient bandwidth is available to accommodate a new or 
handover call in the cell. The derivation of the feasibility function is based on CDMA cell 
capacity considerations. Note that the following does not aim to derive CDMA cell capacity 
in general as has been done in many previous studies (see e.g. [GJP+91], [EE99b], and 
[KS01]). In fact, CDMA cell capacity considerations are taken into account only to determine 
the feasibility function according to the considered user classes with different bandwidth 
requirements. 

Consider a cell with bandwidth W Hz that comprises a single BS with omni-directional 
antenna to which n1 users of class C1 and n2 users of class C2 are connected. For capacity 
calculations the uplink, i.e., the reverse link, is considered only, as it is generally accepted to 
be the limiting factor for the number of users that can be served by a single cell [EE99a], 
[Zor97]. It is assumed that perfect power control is applied so that all reverse link signals are 
received at the minimum required power level at the BS [SJ00]. Recall that without 
bandwidth degradation users of classes C1 and C2 require a bit-rate of R kbps, respectively. 
Considering a degradation of m steps, the assigned bit-rate for a user of class C2 reduces to 
R - m·d kbps. For adequate call performance (i.e., signal quality) in terms of bit error rate 
(BER), it is assumed that each user requires a minimum bit energy to interference density 
ratio denoted by emin = (Eb/I0)min. After despreading and filtering the incoming signal, the 
currently received Eb/I0 for each user is obtained as 

0

bE Cs
I I

= Ö , (2.1) 

where s denotes the spreading factor and C/I the carrier to interference ratio. For calls of 
classes C1 and C2 with data rates R and R - m·d, spreading factors are given by W/R and 
W/(R - m·d), respectively. Let Pi, i = 1,2, denote the power of a call of class Ci received at the 
BS and let t denote the power of interference from other cells. Background noise is assumed 
to be negligible. In order to meet the minimum required bit energy to interference density 
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ratio, emin, for each user, there must exist non-negative received power levels P1 and P2 such 
that each of the following equations holds: 

1
min

1 1 2 2( 1)
W Pe
R n P n P

¢ Ö
- Ö + Ö + t

 (2.2) 

2
min

1 1 2 2( 1)
W Pe

R m n P n P
¢ Ö

- Ö d Ö + - Ö + t
 (2.3) 

In equation (2.2), the carrier to interference ratio is determined by the carrier power level 
P1 of a C1 call, the cumulative interference power level of n1 - 1 interfering C1 calls, n2 
interfering C2 calls, and the interference from other cells t. Analogously, the carrier to 
interference ratio in equation (2.3) is determined by the carrier power level P2 of a C2 call, the 
cumulative interference power level of n1 interfering C1 calls, n2 - 1 interfering C2 calls, and 
the interference from other cells t. 

A configuration of a cell consists of the number of ongoing C1 and C2 calls, i.e., n1 and n2, 
and the current number of degradation steps m. According to [EE99a], a particular cell 
configuration (n1, n2, m) for which non-negative received power levels P1 and P2 exist such 
that equations (2.2) and (2.3) hold is called feasible. Thus, in a feasible cell configuration 
choosing appropriate power levels P1 and P2 can satisfy the users demands in terms of emin. It 
is assumed that the ratio of the received power levels P1 and P2 for C1 and C2 calls is directly 
proportional to the ratio of the required bit-rates, i.e., 

1

2

P R
P R m

=
- Ö d

. (2.4) 

This is a fairly natural constraint that implies that increasing/decreasing the bit-rate of C2 calls 
increases/decreases the received power at the BS in the same way. According to [EE99a], 
requirements of calls of class Ci, i = 1,2, are encapsulated in the minimum signal to 
interference density ratio (SIDR) values, denoted by Gi: 

1 minv R eG = Ö Ö  (2.5) 

2 min( )v R m eG = Ö - Ö d Ö , (2.6) 

where v represents the activity factor of the call, e.g. v º 0.4 for voice activity monitoring 
(corresponding to the human voice activity cycle of 35-40% [GJP+91]). In order to check 
whether a particular configuration is feasible, the received interference power from other cells 
t has to be determined. According to [VVZ94], [Zor97], the received interference power from 
other cells can be computed by considering a relative other cell interference factor b. Let 1n  
and 2n  be the average number of C1 and C2 calls per cell in a tier of cells surrounding the 
considered cell, respectively. Furthermore, let m  be the average number of degradation steps 
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in the surrounding cells. Applying equation (2.4), the interference power from other cells can 
be determined by: 

1 1 2 1
R mn P n P

R
- Ö då õt = b Ö Ö + Ö Öæ ö

ç ÷
 (2.7) 

Inserting (2.4), (2.5), (2.6), and (2.7) into (2.2) and (2.3), defining 2 min( )v R m eG = Ö - Ö d Ö  as 
the average requirements of C2 calls in the surrounding cells, and using some algebra, results 
in the following feasibility function: 

1 1 2 2 1 1 2 2
1 2

feasible , if ( 1) ( )
( , , )

unfeasible , else
n n n n W

F n n m
ë G + G - + b Ö G + G ¢

= ì
í

 (2.8) 

 

2.6 Optimization of the Admission Controller 

2.6.1 Markov Chain Analysis of the Admission Controller 

The optimization of the admission control and bandwidth degradation scheme introduced 
above is performed by means of a continuous-time Markov chain (CTMC, [Lin98]). In 
particular, the Markov chain is utilized to determine the optimal value for the degradation 
threshold q (see Figure 2.4 for a definition of q) with respect to a given traffic pattern and a 
predefined goal for optimization. This section shows how to analyze the Markov chain 
efficiently and how to derive QoS and revenue measures that constitute the building blocks 
for the optimization goals specified in the following. 

The Markov model considers the admission controller of one target cell. It is assumed that 
new call requests of class C1 and C2 arrive according to a spatially uniform Poisson process 
with arrival rate ln,1 and ln,2, respectively. Furthermore, soft handover requests from ongoing 
C1 and C2 calls arrive according to a Poisson process with rate lh,1 and lh,2, respectively. The 
amount of time that a MS with an ongoing call remains within the cell is called dwell time. 
With respect to the feasibility function (2.8), the dwell time is the time the call contributes to 
the intra-cell interference. Indeed, a soft handover to an adjacent cell can occur during the 
dwell time. Then the target cell and the corresponding adjacent cell serve the call 
simultaneously. If the call is still active after dwell time, it leaves the cell to a neighboring cell 
without being in soft handover with the target cell anymore. The call duration is defined as 
the amount of time that the call will be active, assuming it completes without being forced to 
terminate due to handover failure. It is assumed that the dwell time and the call duration are 
exponentially distributed random variables with mean 1/mh and 1/md, respectively. The overall 
rate of calls leaving the considered cell is denoted by m = mh + md. The reciprocal 1/m is called 
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cell residence time of a call. Recall that a queued soft handover call may be terminated by a 
timeout event. Moreover, it is assumed that the timeout event is an exponentially distributed 
random variable with mean 1/mt. Note that the assumption of exponentially distributed dwell 
times may be relaxed by including phase-type distributions in order to incorporate a slightly 
more realistic mobility process [FJ99], while still allowing Markov chain analysis. However, 
based on the experience gathered in [LLT02] and [LLT03], the impact on the anticipated 
results is expected to be marginally, while obtaining the equilibrium distribution of the 
ensuing higher-dimensional Markov chain would be computationally more expensive. 

A state of the model representing the target cell is determined by the number of active C1 
and C2 calls, denoted by n1 and n2, respectively, the current number of degradation steps, 
denoted by m (0 ¢ m ¢ mmax), and the number of C1 and C2 calls waiting in the soft handover 
queue, denoted by k1 and k2 (k1 + k2 ¢ K), respectively. Thus, a state can be expressed by a 
vector s = (n1, n2, m, k1, k2). The model dynamics are determined by the underlying CTMC 
that causes state transitions at random instants. State transitions correspond to different kinds 
of events that must be processed in the cell. The following kinds of events may occur: 

(1) incoming new call request, 

(2) incoming soft handover call request, 

(3) call leaving the cell, 

(4) queued soft handover call leaving the cell. 

One can easily show that the CTMC underlying the queuing model is homogeneous and 
irreducible for any fixed degradation threshold q (0 ¢ q < R). Thus, the steady state 
distribution pq can be computed by the matrix equation pq·Qq = 0 in conjunction with the 
normalization condition |pq| = 1. Here, Qq denotes the infinitesimal generator matrix of the 
CTMC for threshold q. The transition rates, i.e., the entries of matrix Qq, are obtained from 
the analysis of the system events (1) to (4). For each type of event, Table 2.1 shows all 
possible state transitions from a state s = (n1, n2, m, k1, k2), i.e., the conditions for a transition 
to take place, the successor state, and the rate associated with the transition. Note that 
different types of events, e.g., a new call request or a soft handover request, can result in the 
same successor state. Therefore, the overall rate for a transition to the considered successor 
state is the sum of individual rates that have to be stored in the generator matrix Qq. 

The actions of the admission controller introduced in Figures 2.6 and 2.7 are encapsulated 
in the enabling conditions presented in Table 2.1. For a proper representation, two Boolean 
functions B(n1, n2, m, k) and Q(n1, n2, m, k1', k1, k2', k2) are defined, where the former is 
responsible for bandwidth upgrade and bandwidth degradation of C2 calls, and the latter 
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Event type Condition Successor state Rate 

New C1 call request 
k1+k2 = 0 Ø $ m': m ¢ m' ¢ 
max(h·mmax, m) Ø B(n1+1, n2, m', 0) 

(n1+1, n2, m', k1, k2) ln,1 

New C2 call request k1+k2 = 0 Ø m ¢ h·mmax Ø F(n1, n2+1, m) (n1, n2+1, m, k1, k2) ln,2 

C1 call leaving cell 

n1 > 0 Ø $ m', k1', k2': 0 ¢ m' ¢ mmax 
Ø 0 ¢ k1' ¢ k1 Ø 0 ¢ k2' ¢ k2 
Ø Q(n1-1, n2, mmax, k1', k1, k2', k2) 
Ø B(n1-1+k1', n2+k2', m', k1-k1'+k2-k2') 

(n1-1+k1', n2+k2', m', 
 k1-k1', k2-k2') 

n1·m 

C2 call leaving cell 

n2 > 0 Ø $ m', k1', k2': 0 ¢ m' ¢ mmax 
Ø 0 ¢ k1' ¢ k1 Ø 0 ¢ k2' ¢ k2 
Ø Q(n1, n2-1, mmax, k1', k1, k2', k2) 
Ø B(n1+k1', n2-1+k2', m', k1-k1'+k2-k2') 

(n1+k1', n2-1+k2', m', 
 k1-k1', k2-k2') 

n2·m 

$ m': m ¢ m' ¢ mmax 
Ø B(n1+1, n2, m', k1+k2) 

(n1+1, n2, m', k1, k2) lh,1 
Soft handover C1 
call request k1+k2 < K Ø " m ¢ m' ¢ mmax: 

  ×B(n1+1, n2, m', k1+k2) 
(n1, n2, mmax, k1+1, k2) lh,1 

$ m': m ¢ m' ¢ mmax 
Ø B(n1, n2+1, m', k1+k2) 

(n1, n2+1, m', k1, k2) lh,2 
Soft handover C2 
call request k1+k2 < K Ø " m ¢ m' ¢ mmax: 

  ×B(n1, n2+1, m', k1+k2) 
(n1, n2, mmax, k1, k2+1) lh,2 

Soft handover C1 call 
leaving queue 

k1 > 0 Ø $ m': 0 ¢ m' ¢ mmax 
Ø B(n1, n2, m', k1-1+k2) 

(n1, n2, m, k1-1, k2) k1·(m+mt) 

Soft handover C2 
call leaving queue 

k2 > 0 Ø $ m': 0 ¢ m' ¢ mmax 
Ø B(n1, n2, m', k1+k2-1) 

(n1, n2, m, k1, k2-1) k2·(m+mt) 

Table 2.1. Transitions from a state (n1, n2, m, k1, k2) in the Markov chain 

 

accomplishes the admission of queued soft handover calls upon termination of a call in the 
target cell. The Boolean function B(n1, n2, m, k) is 1 (i.e., true), if m is the minimum number 
of degradation steps required such that the cell configuration (n1, n2, m) is feasible with k 
queued soft handover calls. The Boolean function Q(n1, n2, m, k1', k1, k2', k2) is 1 (i.e., true), if 
k1' and k2' are the maximum numbers of queued C1 and C2 calls that can be regularly admitted 
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(due to termination of a call in the target cell) such that the cell configuration 
(n1 + k1', n2 + k2', m) is feasible with remaining k1 - k1' and k2 - k2' queued soft handover calls 
of class C1 and C2, respectively. Again, queued C1 calls are prioritized over queued C2. 
Utilizing the feasibility function (2.8), B(·) and Q(·) are defined in equations (2.9) and (2.10), 
respectively. 
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As already mentioned, Table 2.1 shows conditions for state transitions for each type of 
event. These conditions are formed by means of Boolean predicates, i.e., the Boolean 
functions B(·) and Q(·) and existential/universal quantifiers. The conjunction of Boolean 
functions and quantifiers guarantee that the successor state is unique and optimal with respect 
to the set of possible successor states. To illustrate this, consider a soft handover C1 call 
request and the condition: $ m': m ¢ m' ¢ mmax Ø B(n1 + 1, n2, m', k1 + k2) (see Table 2.1). The 
Boolean function B(·) is evaluated for each m' in the range from m up to mmax and guarantees 
by its definition that B(·) is true, if and only if, m' is the minimum number of degradation 
steps required such that the cell configuration (n1, n2, m') is feasible. The existential quantifier 
itself guarantees that the corresponding state transition is only performed, if such an m' exists. 

From the steady state solution of the Markov model, performance measures of interest can 
be determined by summing up appropriate state probabilities. Let S be the state space of the 
Markov model and let ps = pq,s be the probability of being in state s Í S in steady state. The 
new call blocking probability (CBP) is the probability of rejecting a new call request by the 
admission controller. It is the weighted sum of the probabilities CBP1 and CBP2 of blocking a 
newly arriving C1 and C2 call, respectively. 
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The handover failure probability (HFP) is the probability of terminating a soft handover 
request. It is distinguished between handover failures due to timeout and queue overflow, 
abbreviated with HFPt and HFPq, respectively. 
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In equation (2.15), the expressions k1(s) and k2(s) denote the number of queued C1 and C2 soft 
handover calls apparent in state s, respectively. The overall HFP is simply the sum of HFPt 
and HFPq. As defined in (2.16), the average call degradation (ACD) is the average steady 
state number of degradation steps for C2 calls. Similarly to equation (2.15), m(s) denotes the 
state-dependent number of degradation steps. 

ACD [ ] ( ) s
s S

E m m s
Í

= = Ö pä  (2.16) 

For a stand-alone evaluation of the Markov model, the interaction of the considered cell 
with its neighbors is determined by an iterative fixed-point procedure. This is a common 
method for decoupling a cellular system that comprises several cells [AMM+00], [MHT02]. 
In fact, the average number of C1 and C2 calls in the neighboring cells, 1n  and 2n , the average 
number of degradation steps in a neighboring cell, m , and the arrival rates of soft handover 
C1 and C2 calls, lh,1 and lh,2, have to be determined. Recall that 1n , 2n , and m  are required to 
determine the received interference power from other cells t (see equation (2.7)). The fixed-
point iteration relates the incoming soft handover rate for the target cell to the soft handover 
departure rate, i.e., the flow of ongoing calls that results in an incoming soft handover in a 
neighboring cell.  

According to Figure 2.8, a cell cluster is considered that encompasses seven circular cells 
with the target cell located in the center of the cluster. The assumed circular structure of cells 
allows the separate consideration of the core zone and the soft handover zone of the target cell 
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Core Zone

Soft Handover Zone

 

Figure 2.8. Core zone and soft handover zone for a target cell in a cluster of cells 

 

[MHT02]. It is assumed that the core zone covers a portion a of the target cell area and the 
soft handover zone covers the remaining portion (1 - a). Thus, the radius of the core zone is 

a  times the radius of the target cell as can be shown by a simple calculation. Recall that 
new calls originate according to a spatially uniform Poisson process. Under the assumption 
that MSs move in a straight line at a random angle, the dwell time of terminals in the core 
zone is ha m . 

The soft handover departure rate of Ci calls, i = 1,2, in step j of the fixed-point iteration can 
be approximated by the average number of Ci calls in the core zone in step j, i.e., ( )[ ] j

iE na Ö , 
divided by the dwell time in the core zone, i.e., ha m , plus the rate of newly accepted Ci 
calls in the target cell starting in the soft handover zone: 

( )( 1) ( ) ( )
, ,(1 ) 1 CBP [ ]j j j

h i n i i h iE n+l = - a Öl Ö - + a Öm Ö  , for i = 1,2, (2.17) 

where E[ni](j) is the average steady state number of Ci calls in the cell in step j and CBPi
(j) is 

the steady state probability of rejecting a new Ci call request in step j. For the experiments 
presented below, a cell overlapping of approximately 10% is considered that corresponds to 
a = 0.4. Indeed, the area of the core zone is slightly smaller than the area of the soft handover 
zone. With this assumption the average number of calls and the average number of 
degradation steps in the neighboring cells can be balanced as follows: 

( 1) ( )9
10 [ ]j j

i in E n+ = Ö  , for i = 1,2 (2.18) 
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( 1) ( )[ ]j jm E m+ =  (2.19) 

The iteration (2.17), (2.18), and (2.19) is performed until a predefined accuracy for the 
fixed point is achieved. According to [MT96], a fixed point exists, if the iteration function is a 
weighted sum of state probabilities and the weights are constant. Furthermore, the CTMC 
must be irreducible with more than one state. It is easy to verify that the Markov model and 
the iteration functions (2.17), (2.18), and (2.19) satisfy these conditions. 

2.6.2 Optimization of the Degradation Threshold 

As outlined above, the optimization of the degradation threshold q is performed at the end of 
each control period using the Markov model and a predefined goal. Recall that q specifies the 
maximal bit-rate the admission controller can degrade a C2 call (see also Figure 2.4). Three 
different optimization goals for the degradation threshold q are considered: 

(i) Minimize the average number of degradation steps subject to a hard constraint on the 
handover failure probability. 

(ii) Maximize a QoS function depending on the handover failure probability and the 
average number of degradation steps. 

(iii) Maximize a QoS/revenue function depending on the average number of C1 and C2 
calls and the average number of degradation steps. 

Determining qopt with respect to a hard constraint of handover failure probability is 
accomplished by evaluating the Markov model for q = 0, d, 2·d, 3·d,..., subsequently. After 
each evaluation, the handover failure probability is checked against the predefined constraint. 
If the handover failure probability is above the constraint for q = (m - 1)·d and below the 
constraint for q = m·d, than qopt = m·d. To determine qopt with respect to optimization goal (ii), 
a utility function [CL01] for each of the QoS measures HFP and ACD is considered that 
describes how sensitive users are to changes in these measures. The utility function can be 
interpreted as mapping of the QoS measure onto a “measure of satisfaction”. Furthermore, a 
utility function makes the QoS measures comparable since HFP operates on a scale from 0 to 
1 and ACD on a scale from 0 to mmax. Utility functions for HFP and ACD are denoted by u1 
and u2, respectively. Without loss of generality, assume ui(si) Í [0,1], for i = 1, 2, where 
ui(si) = 1 indicates that users are completely satisfied and ui(si) = 0 indicates that users are 
completely unsatisfied. Furthermore, it is assumed that si, for i = 1, 2, is the current value of 
HFP and ACD, respectively. The weighted sum of the utility functions defines the QoS 
function G that is subject to be maximized: 

1 2 1 1 2 2( , ) ( ) (1 ) ( )G u us s = wÖ s + - w Ö s , (2.20) 
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with weight w Í [0,1] characterizing the influence of u1(s1) on the QoS function. Note that 
this definition of a QoS function is similarly to the linear objective function defined in 
[RNT96] that determines the optimal number of guard channels. For each utility function ui, a 
lower bound Li and an upper bound Ri are defined and complete satisfaction, i.e., ui(si) = 1, is 
reached, if si ¢ Li. If si ² Ri, the user is completely unsatisfied, i.e., ui(si) = 0. Between these 
bounds, i.e., Li < si < Ri, a linear decreasing function, which is shaped with an exponent g ² 0, 
is considered. The utility functions are given by: 
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 , for i = 1, 2. (2.21) 

The choice of Li and Ri depends on the QoS measure si and is essentially for the 
meaningful specification of a utility function. For scaling purposes, the lower and upper 
bounds are repeatedly determined in each control period according to the best/worst 
achievable QoS for the current configuration of the Markov model (i.e., the current traffic 
pattern). The best/worst achievable QoS with respect to the considered measures can be 
determined by considering border values of q, i.e., q = 0 and q = R - d. The upper bound for 
HFP, i.e., R1, and the lower bound for ACD, i.e., L2, are derived from the evaluation of the 
Markov model for q = 0, whereas the lower bound for HFP, i.e., L1, and the upper bound for 
ACD, i.e., R2, are derived from the evaluation of the Markov model for q = R - d. To 
determine qopt, the Markov model is solved, s1 and s2 are determined, and the QoS function is 
evaluated for q = 0, d, 2·d, 3·d,..., mmax·d. The value of q that maximizes the QoS function 
determines qopt. 

For revenue maximization, i.e., achieving optimization goal (iii), the QoS/revenue function 
is determined similarly to (2.20). Replacing the QoS measure HFP by the revenue measure F, 
again two measures with contrary influence are considered. The revenue measure describes 
the revenue generated due to the carried traffic from ongoing calls. The revenue earned is 
proportional to the average number of C1 and C2 calls in the cell. As C1 calls have higher 
priority, C1 calls are more expensive than C2 calls (per provided kbit). Without loss of 
generality, it is assumed that users of C1 calls have to pay 4/3 cost units for one provided kbit 
per hour and users of C2 calls have to pay one cost unit for a provided kbit per hour. With the 
previous definitions, the revenue measure is determined from the steady state solution of the 
Markov model as follows: 

( )4
1 23 ( ) ( ( )) ( ) s

s S
R n s R m s n s

Í

F = Ö Ö + - Ö Ö pä  (2.22) 
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where R is the (timeless) amount of kbit provided for calls without degradation, (R - m(s)) 
denotes the state-dependent (timeless) amount of kbit provided for degraded C2 calls, and 
n1(s) and n2(s) denote the state-dependent number of C1 calls and C2 calls, respectively. The 
utility function corresponding to the revenue measure is defined analogously to (2.21) with a 
linear increasing shape. 

 

2.7 Quantitative Results for the QoS/Revenue Management Framework 

2.7.1 Numerical Analysis of the Markov Model 

This section illustrates the benefit of the proposed approach for optimization of the admission 
control and bandwidth degradation scheme. In particular, this section shows the improvement 
of QoS and revenue measures (defined above) under separate consideration of the 
optimization goals (i), (ii), and (iii). For demonstrating purposes, the steady state results of the 
Markov model are derived for a particular parameter setting. 

As defined for wideband CDMA that will be utilized in UMTS networks (see Section 1), 
an overall bandwidth spectrum of W = 3.84 MHz is assumed [KAL+01]. Moreover, constant 
bit rate (CBR) data services, e.g., CBR video streams, are assumed for C1 and C2 calls with 
required bit-rate of R = 32 kbps (without degradation). According to [ETSI] and [MR00], for 
this kind of data services the activity factor (see Section 2.5) should be set to v = 1.0. For 
sufficient quality each user should achieve a minimum bit energy to interference density ratio 
emin = 3.16 (= 5dB). For the interference from neighboring cells, the relative other cell 
interference factor is set to b = 0.486 that corresponds to lognormal shadowing with zero 
mean and standard deviation s = 4 [Zor97]. For C1 and C2 calls, the mean call duration is 
1/md = 180 seconds and the mean call dwell time is 1/mh = 90 seconds, respectively. As 
described above, parameters lh,1, lh,2, 1n , 2n , and m  are determined by the fixed-point 
procedure. In almost all figures, the arrival rate of new call requests is varied to study the 
behavior of the admission controller under increasing traffic load. Since high priority calls are 
more expensive, it is assumed that 80% of the arriving requests are of low priority, i.e. C2 
calls, and 20% are of high priority, i.e. C1 calls. The admission controller prioritizes C1 calls 
with h = 0.5 (see Section 2.4 for the definition of h). 

The choice of d is essential for the performance of the analytical and simulation results. If 
the admission controller decides to degrade existing C2 calls because an additional amount of 
bandwidth, denoted by D, is required, each C2 call is degraded by m' - m steps, where m is the 
current number of degradation steps and m' is the minimum number of degradation steps to 
get the required amount of bandwidth. Generally, the additional amount of bandwidth 
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allocated after degradation exceeds the required bandwidth D. Thus, a bandwidth of 
(m' - m)·d·n2 - D is available after degradation but not utilized by any call. A small d would 
minimize this negative effect of unused bandwidth. On the other hand, a small d also 
increases the number of degradation steps to allocate the required bandwidth and this in turn 
leads to a large state space of the underlying Markov model making it impracticable for 
online QoS/revenue optimization. Considering this tradeoff and taking into account the 
particular setting of parameters presented above, experiments show that a degradation step 
size of d = 1 kbps is appropriate and leads to a small amount of unused bandwidth and a 
reasonable small state space. 

In the experiments, the optimal value for the degradation threshold q is determined in a 
range from 0 to 31, i.e. a minimum bit-rate of one kbps is guaranteed for each C2 call. In fact, 
degrading a call to a bit-rate of one kbps is very unsatisfying. This must be considered in the 
QoS and revenue function. Nevertheless, the experiments show that average call degradation 
is usually below 12 degradation steps for the entire spectrum of new call arrival rates. With 
the parameters defined above, the Markov model consists of a sufficient small state space of 
at most 14227 states, which makes the model applicable for online evaluation. Note that the 
size of the state space, i.e., the dimension of generator matrix Qq, becomes maximal, if q = 
31. Due to the sparse nature of the generator matrix, a representation of Qq in a sparse format 
is suitable and enables a fast solution with iterative solvers for a system of linear equations 
like GMRES [Ste94b]. The number of fixed-point iterations to achieve an accuracy of 10-3 
varies from 7 to 11, and the solution time of a single iteration is only about 0.5 seconds of 
CPU time on a Pentium IV 1.7 GHz PC with 256 MB of main memory. 

2.7.2 Calibrating the Soft Handover Queue 

The first experiment determines a suitable size of the soft handover queue as well as the 
amount of time soft handover calls may be queued. Figure 2.9 presents a three-dimensional 
plot of the handover failure probability for different call arrival rates and different capacities 
of the soft handover queue. Calls are allowed to be queued for 1/mt = 15 seconds. The 
degradation threshold q is set to 16 kbps and is not adjusted adaptively. As expected, Figure 
2.9 shows an increase in handover failure probability for increasing new call arrival rate. This 
is, because an increase in new call arrival rate results in an increase in the handover call 
arrival rate due to the iterative balancing (2.17). Furthermore, for high arrival rates, fewer 
calls can be accommodated in the cell since the cell gets more and more saturated, and, thus, 
the handover failure probability increases. 

Comparing the handover failure probability for queue capacities K = 0 to K = 3, one 
observes a significant improvement. In fact, for call arrival rates from 0.4 to 1.2 calls per 
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Figure 2.9. Effect of soft handover queue on handover failure probability 
for different call arrival rates and queue capacities 
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Figure 2.10. Effect of soft handover queue on average cell overload 
for different call arrival rates and queue capacities 
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second the handover failure probability can be reduced about one order of magnitude. 
Increasing the queue capacity from K = 4 to K = 10 does not result in further improvements of 
HFP. This means that for K ² 4 the probability of a handover failure due to queue overflow, 
HFPq, is insignificantly. Thus, the termination of most handover calls is due to the timeout of 
15 seconds for each queued call. This indicates that a queue capacity of K = 3 is sufficient for 
queuing soft handover calls temporarily (with a queue timeout of 1/mt = 15 seconds). 

As discussed in Section 2.4, queued soft handover calls lead to cell overload with respect 
to the feasibility function (2.8). Figure 2.10 depicts the average cell overload induced by 
queued soft handover calls for a queue timeout of 1/mt = 15 seconds. In agreement with Figure 
2.9, the average cell overload increases significantly for queue capacities K = 0 to K = 3 and is 
nearly unchanged for queue capacities K ² 4. Fortunately, the average cell overload is very 
small irrespective of the call arrival rate and the queue capacity, i.e., the maximum average 
cell overload is about 0.12% for an arrival rate of 1.2 and a queue capacity of K = 10. Note 
that the average cell overload is tightly coupled with the average queue length that shows 
qualitative similarities with the evolution of the average cell overload for different call arrival 
rates and queue capacities. 
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Figure 2.11. Effect of soft handover queue on handover failure probability 
for different queue timeouts and queue capacities 
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Figure 2.11 presents a three-dimensional plot of the handover failure probability for 
different timeouts and capacities of the soft handover queue. Calls arrive according to a fixed 
arrival rate of 0.6. Again, the degradation threshold q is set to 16 kbps and not adjusted 
adaptively. As shown in Figure 2.11, increasing the timer duration further improves the HFP, 
but, as discussed above, also increases the cell overload. In summary, for K = 3 and 1/mt = 15 
seconds, (1) handover failure probability can be reduced about one order of magnitude, (2) the 
timeout of queued soft handover calls has a meaningful value, and (3) the cell overload is 
below 0.1% for the entire spectrum of new call arrival rates. Therefore, subsequent 
experiments consider these values. 

2.7.3 Evaluation of Optimization Goals 

The next set of experiments evaluates optimization goal (i), i.e., determining qopt subject to a 
hard constraint e on the handover failure probability. Figure 2.12 shows the handover failure 
probability, and Figure 2.13 shows the average call degradation as well as the maximal 
possible call degradation, i.e., qopt, for increasing new call arrival rate. In Figure 2.13, average 
values are plotted with “unfilled” symbols and corresponding maximal values are plotted with 
“filled” symbols. 
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Figure 2.12. Optimization with respect to a hard constraint on HFP 
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Figure 2.13. Optimal value for q and average call degradation 

 

For e = 10-1 and e = 10-2, the degradation threshold is adjusted such that the handover 
failure probability keeps below the bounds for all arrival rates. In fact, to keep the handover 
failure probability below e = 10-2 a maximal number of 23 degradation steps must be allowed, 
whereas C2 calls are only degraded by 8 degradation steps on average (see Figure 2.13). For 
e = 10-1 almost no degradation is needed. According to Figure 2.13, the maximal number and 
average number of degradation steps are 3 and 1.2, respectively. Since qopt is adjusted 
according to discrete degradation steps, the handover failure probability may be lowered for 
subsequent call arrival rates as plotted in Figure 2.12. For example, consider the curves for 
e = 10-1. If the new call arrival rate increases from 0.3 to 0.35, qopt is increased from 0 to 1, 
which results in a decrease in handover failure probability from 0.09 to 0.06. For e = 10-3 and 
e = 10-4, Figure 2.12 shows that the handover failure probability can be kept below the 
constraint only for arrival rates less than 0.7 and 0.5, respectively. The only reason for this is 
that a further degradation of C2 calls is not possible anymore since the maximal possible 
number of degradation steps is reached (see Figure 2.13). Note that C2 calls are only degraded 
by 10.8 steps on average. 

Figures 2.14 and 2.15 present handover failure probability and average call degradation 
considering the QoS function G as defined in equation (2.20), respectively. The utility 
function corresponding to HFP is shaped with exponent g = 1.0 (see equation (2.21)). For 
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Figure 2.14. Optimization with respect to QoS function: handover failure probability 
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Figure 2.15. Optimization with respect to QoS function: average call degradation 
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ACD, the corresponding exponent is set to g = 0.4. Thus, only heavy degradation results in a 
significant loss in utility for the user. In other words, a small number of degradation steps are 
still acceptable. The figures show results for fixed values of q, i.e., q = 0, q = 16, and q = 31. 
Furthermore, results for an optimal adjustment of q with respect to the QoS function for 
different weights w are plotted. By means of w the optimization goal can be varied, i.e., 
w = 0.1 prioritizes the average call degradation, w = 0.5 equally weights both QoS measures, 
whereas w = 0.9 prioritizes the handover failure probability. Recall that q = 0 corresponds to 
no degradation of C2 calls. Therefore, Figure 2.15 does not contain this curve. Figures 2.14 
and 2.15 clearly indicate the effect of the QoS function and the weights on HFP and ACD. To 
illustrate the effect of call degradation on new call blocking probability of C1 calls, Figure 
2.16 depicts this performance measure for fixed values of q, i.e., q = 0, q = 16, and q = 31 as 
well as for an optimal adjustment of q with respect to the QoS function for different weights 
w. As expected, new call blocking probability of C1 calls is significantly decreased due to call 
degradation of C2 calls. Figure 2.17 plots the QoS function itself for a fixed call arrival rate of 
0.6 calls per second and varying degradation threshold q. This figure illustrates how the QoS 
measures HFP and ACD can be prioritized by choosing appropriate weights. This figure 
exactly plots the functions for which the maximum must be found by subsequent evaluation 
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Figure 2.16. Optimization with respect to QoS function: 
new call blocking probability of C1 calls 
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Figure 2.17. Prioritizing partial goals under the QoS function 

 

of the Markov model. For weights w = 0.1, w = 0.5, and w = 0.9 the QoS function is maximal 
for q = 1, q = 9, and q = 19, respectively. 

Figures 2.18 and 2.19 present provider revenue and average call degradation considering 
the QoS/revenue function for different weights w. With weight w = 0.1 the average call 
degradation, i.e., the part representing QoS, is prioritized and with weight w = 0.9 the revenue 
measure is prioritized. Results for fixed values of q, i.e., q = 5 and q = 10, are also shown. 
Figure 2.20 shows a three-dimensional plot of the revenue measure F (see equation (2.22)). In 
this figure both call arrival rate and the degradation threshold q are varied. An increase in 
revenue can be observed for increasing new call arrival rate and for increasing C2 call 
degradation. For increasing degradation threshold q, the number of C1 calls also increases, 
since C1 calls are allowed to degrade C2 calls to a number of h·mmax degradation steps. This 
fact is indicated in Figures 2.21 and 2.22 that show the average number of C1 and C2 users in 
one cell for different settings of the QoS/revenue function, respectively. Note that an 
optimization that considers only provider interests, i.e., optimization only with respect to 
revenue, results in unacceptable performance for C2 users, since (1) the number of rejected 
users increases and (2) the few admitted users are heavily degraded. A service provider that 
follows such a one-sided strategy will surely annoy his customers and therefore decreases his 
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Figure 2.18. Optimization with respect to QoS/revenue function: provider revenue 
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Figure 2.19. Optimization with respect to QoS/revenue function: 
average call degradation 
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Figure 2.20. Shape of the revenue measure F 
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Figure 2.21. Average number of C1 users under QoS/revenue optimization 
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Figure 2.22. Average number of C2 users under QoS/revenue optimization 

 

revenue in the long term. Thus, the QoS/revenue function must include ACD as counterpart 
for an optimization, which considers both QoS and provider revenue. 

2.7.4 Comparison of Degradation Scheme and Guard Channel Scheme 

The last experiment investigates the proposed degradation scheme in comparison with a guard 
channel scheme [CS00], [ZL01], which exclusively reserves a certain amount of bandwidth 
(also called guard channels) for handovers. This amount of bandwidth can be either fixed or 
adaptively controlled with respect to the current traffic load. To implement the guard channel 
scheme the Markov model must be slightly modified. In fact, the Markov model is considered 
without degradation, i.e., q = 0. Furthermore, the feasibility function (2.8) must be modified 
for new call requests. That is, after the admission of a new call the cell configuration must be 
feasible with respect to the bandwidth W - g, where g denotes the amount of bandwidth 
exclusively reserved for handover calls. Figure 2.23 presents the utilization of cell capacity 
for the guard channel and degradation scheme for increasing new call arrival rate. For each 
new call arrival rate, the degradation threshold q and the amount of guard bandwidth g are 
optimized, i.e., adaptively controlled, according to a hard constraint e on the handover failure 
probability. For a fair comparison of both schemes, h = 0 in the degradation scheme, i.e., new 
C1 calls cannot degrade ongoing C2 calls. Furthermore, in the guard channel scheme the 
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(constant) bit-rate requirement of C2 calls is determined according to the average bit-rate that 
C2 calls get in the degradation scheme in a corresponding experiment. Note that these 
restrictions are only applied to make the arrival process and required bit-rate of new calls in 
both schemes comparable, and, thus, a fair comparison between both schemes can be 
performed. The results of this comparison are not affected even without these restrictions. 

Note that Figure 2.23 shows only one curve for the degradation scheme since the 
utilization of cell capacity is the same for each value of e. Comparing the curves for the guard 
channel scheme shows that a huge amount of bandwidth is wasted in order to achieve the 
constraint on handover failure probability. In other words, the more stringent the constraint 
the more bandwidth must be reserved for handover calls and the higher the probability that 
this bandwidth is unused. This effect can be observed from Figure 2.24 that shows the 
probability of rejecting a new call request although sufficient cell capacity to accommodate 
the call is available. In fact, if the cell gets saturated, most new calls are rejected since 
capacity is reserved for handover calls, but currently unused. Thus, the degradation scheme is 
the method of choice for future mobile networks that support service degradation, since it 
guarantees a certain handover failure probability and also high capacity utilization. 
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Figure 2.23. Utilization of cell capacity: guard channel vs. degradation scheme 
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Figure 2.24. New call blocking probability for guard channel scheme 

 

2.8 QoS/Revenue Management Framework in Practice 

2.8.1 Implementation Issues 

This section discusses implementation issues for the proposed QoS/revenue management 
framework. As outlined above, the QoS/revenue management framework comprises two new 
components: (1) the admission controller and (2) the QoS/revenue management unit for 
optimization of the threshold for maximal bandwidth degradation. The computations 
performed by the admission controller to decide whether to admit or to reject a call introduces 
no additional overhead compared with traditional admission control schemes, since only 
simple decisions have to be made. When the admission controller decides to degrade/upgrade 
current C2 calls to a specified bandwidth, additional signaling is required in order to notify the 
corresponding MSs. 

The overhead that is induced by the QoS/revenue management unit is twofold. First, in 
order to find the optimal setting for the degradation threshold q, the Markov model has to be 
evaluated several times at the end of each control period. As already mentioned, this 
evaluation requires just a few seconds of CPU time due to the small state space of the Markov 
model. Moreover, results of previously computed parameterizations of the Markov model can 
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easily be cached avoiding the repetition of identical evaluations of the Markov model in 
subsequent control periods. Secondly, the Markov model requires monitored traffic 
characteristics gathered by the online traffic measurement unit. Precisely, arrivals of C1 and 
C2 new call requests and handovers as well as the cell residence times are monitored online in 
each control period. An exponential-weighted moving-average technique from time series 
analysis [KN01] is adopted to compute the expected arrival rates ln,1, ln,2, lh,1, lh,2, and the 
expected residence time 1/m at the end of each control period (using the values monitored 
during the current control period and the estimated values from the last control period). Let 

( )m
nj  be the average rate corresponding to the monitored values during control period n, and 

let ( )
1

e
n-j  be the estimated arrival rate at the end of control period n - 1. Then, the new estimate 

for control period n is computed by 

( ) ( ) ( )
1 (1 )e e m

n n n-j = r Öj + - r Öj . (2.23) 

The coefficient r Í [0,1] has to be properly chosen to smooth the estimated values. In 
general, a small value r can keep track of the changes more accurately, but is perhaps too 
heavily influenced by temporary fluctuations. On the other hand, a large value of r results in a 
more stable estimation, i.e., more history is considered, but could be too slow in adapting to 
real traffic changes. Recently, more sophisticated techniques are proposed for estimating 
future traffic load in mobile networks based on heuristics to improve the exponential-
weighted moving-average technique [KN01]. 

Beside the estimation of arrival rates and residence time, monitored values for the average 
number of users in neighboring cells as well as the average number of degradation steps in 
neighboring cells are communicated to the target cell. Note that in general the same BSC 
controls the target cell and the neighboring cells, and, thus, no expensive signaling messages 
are required. Figure 2.25 summarizes the actions performed at the end of each control period 
in order to determine the optimal value of the degradation threshold q. 

Finally, it is discussed how management of user profiles as well as call charging can be 
accomplished. Each user profile has to comprise the user’s QoS class, i.e., high or low priority 
class that is stored in the customer database of the provider, e.g., the home location register  
(HLR) in UMTS [KAL+01]. For charging C2 calls the current bit-rate granted by the 
admission controller, i.e., R - m·d kbps, has to be taken into account during call duration. This 
is unnecessary for C1 calls that have a constant bit-rate R. In UMTS networks, this call 
charging can be processed by the subscription management component of the operation 
subsystem using a user’s profile [KAL+01]. Utilizing these existing charging mechanisms, no 
additional signaling overhead arises for charging real-time services. 

 



54 2.   ONLINE QOS/REVENUE MANAGEMENT OF REAL-TIME SERVICES 

 

(1) Determine current traffic pattern by online traffic monitoring according to 
equation (2.23). 

(2) Initialize q = 0 and gmax = 0 

(3) Solve the global balance equations pq·Qq = 0 in conjunction with the normalization 
condition |pq| = 1, for the given traffic pattern and degradation threshold q. 

(4) Determine the QoS and revenue measures from the steady state solution of the 
Markov model according to equations (2.11) to (2.16) and equation (2.22). 

(5) Evaluate the QoS/revenue function (2.20) with utility function (2.21) depending on the 
predefined optimization goal. Let g be the outcome of the QoS/revenue function (2.20). 

(6) IF g > gmax THEN DO 

(7)  gmax = g 

(8)  qopt = q 

(9) OD 

(10) q = q + d 

(11) IF q < R THEN restart calculation with step (3) 

Figure 2.25. Algorithm for determining qopt at the end of each control period 

 

2.8.2 Simulation Results for the QoS/Revenue Management Framework 

Using simulation experiments, the following illustrates the benefit of the proposed integrated 
framework for adaptive online optimization of the admission controller. The simulator 
considers a cluster of seven cells with the target cell in the center as presented in Figure 2.3. 
Furthermore, the simulator contains the implementation of the algorithmic procedure 
presented in Figure 2.25 in order to determine the optimal value qopt for the degradation 
threshold in control periods of fixed duration Dt. Subsequently, the degradation threshold of 
the simulator is updated according to the optimal value qopt determined from the Markov 
model. In [KLL01], measurements have been taken over several weeks in order to derive a 
typical daily usage pattern, i.e., a traffic model for mean arrival rates of new calls with 
respect to the daytime. Table 2.2 presents the first part (half-day window) of this daily usage 
pattern, i.e., the mean arrival rates of new calls for 0 a.m. up to 12 a.m. These arrival rates are 
utilized in the following experiments in order to evaluate the effectiveness of the proposed 
adaptive call admission control scheme within a transient scenario. 

Figures 2.26 and 2.27 depict the average call degradation in every control period for the 
transient scenario. Both figures show the average call degradation with knowledge of the 
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1 2 3 4 5 6 7 8 9 10 11 12
New call 

arrival rate 0.49 0.57 0.60 0.48 0.62 0.55 0.68 0.87 0.96 1.20 1.15 1.06

Hour

 

Table 2.2. Half-day window of a daily usage pattern 

 

current new call arrival rate (i.e., the average call degradation corresponding to the optimal 
setting of the degradation threshold q for the actual new call arrival rate) and the average call 
degradation with respect to the online monitored traffic pattern (i.e., the average call 
degradation corresponding to the optimal setting of the degradation threshold q for the 
estimated new call arrival rate). The figures differ in the length of the control periods, i.e., in 
Figure 2.26 a control period has duration Dt = 2 minutes and in Figure 2.27 a control period is 
of duration Dt = 5 minutes. The value r corresponding to the exponential-weighted moving-
average is set to r = 0.7 in order to consider more history in the traffic estimation process. In 
both experiments, the optimization is performed according to optimization goal (ii). As 
defined in equation (2.20), the QoS function G is considered with w = 0.9, i.e., handover calls 
are prioritized. 

The intention of these experiments is to study how fast the online QoS/revenue 
management can adapt the degradation threshold to changing traffic conditions over several 
control periods. Comparing both figures, we find larger fluctuations in the average call 
degradation but also faster adaptation to the optimal value in Figure 2.26, as expected. Due to 
shorter control periods, less call arrivals are counted during a control period leading to larger 
fluctuations in the monitored arrival rate. Considering Figure 2.27, we find a more stable but 
also slower adaptation of the threshold. For example, consider the end of the second hour of 
the experiments in Figure 2.26. Figure 2.26 shows a quite fast reduction in average call 
degradation from about 4 to 3 due to a fast adaptation of the degradation threshold, whereas 
the adaptation requires much more time with longer control periods (see Figure 2.27). 

 

2.9 Summary 

This section introduces a novel call admission control and bandwidth degradation scheme for 
real-time services with two priority levels. Calls of high priority have a guaranteed bit-rate 
whereas calls of low priority can be temporarily degraded to a lower bit-rate in order to 
reduce forced termination of calls due to a handover failure. Opposed to previous work 
[CS02], [LLT03], [MHT02], degradation of bandwidth is performed gracefully in several 
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Figure 2.26. Adjustment of degradation threshold for control periods of Dt = 2 minutes 
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Figure 2.27. Adjustment of degradation threshold for control periods of Dt = 5 minutes 
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steps. Furthermore, calls of low priority are degraded equally rather than picking out one call 
randomly for degradation. Clearly, due to fairness reasons this approach should be preferred 
over a random choice of calls applied in [CS02]. A second contribution constitutes the 
development of a Markov model for the admission controller that incorporates important 
features of 3G cellular networks, such as CDMA intra- and inter-cell interference and soft 
handover. From the online quantitative analysis of the Markov model the threshold for 
maximal call degradation is periodically adjusted according to the currently measured traffic 
in the RAN and predefined optimization goals: (i) minimizing call degradation subject to a 
hard constraint on handover failure probability, (ii) maximizing a QoS function, and (iii) 
maximizing a QoS/revenue function. Thus, the presented approach allows the effective online 
management of both QoS for mobile users and provider revenue in 3G mobile networks. 

To illustrate the effectiveness of the proposed QoS/revenue management approach, 
performance curves present quantitative results for the Markov model. Using different 
optimization goals, performance studies evidently demonstrate that QoS and provider revenue 
can be increased significantly with a moderate average call degradation of C2 calls. Beside the 
evaluation of the optimization goals, the proposed degradation scheme is compared with 
existing admission control policies based on adaptive guard channels [CS00], [ZL01]. It is 
shown that overall utilization of cell capacity is higher with the degradation scheme that can 
be considered as an “on demand” reservation of cell capacity, whereas the guard channel 
scheme implements an “a-priori” reservation. Thus, the degradation scheme is the method of 
choice in future mobile networks that support service degradation, since it guarantees a 
certain handover failure probability and also high capacity utilization. Simulation studies 
considering a half-day window of a daily usage pattern illustrate the effectiveness of the 
proposed approach in practice. 
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3 EM Algorithm for Parameter 
Estimation of the Batch Markovian 
Arrival Process 

ARAMETER ESTIMATION for the batch Markovian arrival process has been an open 
research problem for years. In this thesis, a novel expectation maximization algorithm for 

parameter estimation of BMAPs is presented. This is the first numerical robust parameter 
estimation procedure for BMAPs published in scientific literature. Whereas Section 4 
demonstrates the practical applicability of BMAPs for IP traffic modeling, this section treats 
the EM algorithm for BMAPs as mathematical framework in its own right. It is shown how 
the randomization technique and a stable calculation of Poisson jump probabilities can be 
utilized for computing time-dependent conditional expectations of a continuous-time Markov 
chain required by the expectation step of the EM algorithm. This methodological work 
enables the EM algorithm to be both efficient and numerical robust. Moreover, this section 
analyzes the computational complexity of the EM algorithm and gives some insights in the 
convergence behavior of the EM algorithm. The EM algorithm has been published in the 
well-known Performance Evaluation journal [KLL03]. An open source software 
implementation of the EM algorithm including detailed software documentation is available 
from the IP2BMAP Web site (http://www.ip2bmap.de). 

3.1 The Batch Markovian Arrival Process 

The batch Markovian arrival process [Luc91] belongs to the class of Markov renewal 
processes and was first introduced with alternative notation as the versatile Markovian point 
process in [Neu79]. The idea of the BMAP is to keep the tractability of the Poisson arrival 
process but significantly generalize it in ways that allow the inclusion of dependent inter-
arrival times, non-exponential inter-arrival time distributions, and correlated batch sizes 
[Luc93]. BMAPs encompass as special cases both phase-type renewal processes, e.g., Erlang, 
Ek, and hyperexponential, Hk, renewal processes, and non-renewal processes such as the 
MMPP and many other processes in the applied probability literature. This wide range of 
arrival processes as very special cases of the BMAP evidently demonstrates that an efficient 
and numerical robust parameter estimation procedure shows comprehensive applicability and, 
thus, is of major interest for applied probability. It has been shown that the BMAP/G/1 queue 

P
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is a relatively simple matrix generalization of the M/G/1 queue. Using matrix analytic results 
as well as numerical transform inversion, stationary and transient distributions and for the 
queue length and waiting time distributions can be computed [Luc93]. The following defines 
the BMAP mathematically and outlines some basic properties. 

Consider a CTMC {X(t): t ² 0} with N + 1 states {0,1,...,N}, where the states in {1,2,...,N} 
are transient and 0 is absorbing. Moreover, p denotes the initial state probability vector of the 
CTMC. Based on this governing CTMC, the BMAP can be constructed as follows. The 
CTMC evolves until an absorption in state 0 occurs. The chain is then instantaneously 
restarted in one of the transient states {1,2,...,N}. When restarting the BMAP after absorption 
in a transient state j, the probability for selecting state j is allowed to depend on state i from 
whom absorption has occurred. Thus, the distribution of the next arrival may depend on the 
previous history. Furthermore, there may exist multiple paths between two states i and j that 
correspond to different rewards, i.e., batch sizes of arrivals. Due to the addition of rewards, 
the BMAP provides a more comprehensive model for representing arrivals than the MMPP 
and the Markovian arrival process (MAP, [LMH+90]), while still being analytically tractable. 

Formally, assume the BMAP is in a transient state i for an exponentially distributed time 
with rate li. When the sojourn time has elapsed, there are M + 1 possible cases for state 
transitions. With probability P(m)i,j, 1 ¢ m ¢ M, the BMAP enters the absorbing state 0 and an 
arrival of batch size m occurs. Then, the process is instantaneously restarted in state j. Note 
that the selection of state j (1 ¢ j ¢ N) and batch size m (1 ¢ m ¢ M) is uniquely determined by 
P(m)i,j. On the other hand, with probability P(0)i,j the BMAP enters another transient state j, 
j ¸ i, without generating an arrival. It follows immediately that for each fixed i with 1 ¢ i ¢ N: 

, ,
1, 1 1

(0) ( ) 1
N M N

i j i j
j j i m j

m
= ¸ = =

+ =ä ääP P  (3.1) 

Note that more general definitions of the BMAP are not restricted to finite values of M. 
However, for parameter estimation of BMAPs it is sufficient to restrict M to be finite. It is 
convenient to represent the evolution of the system in terms of a sequence of matrices D(m), 
by defining D(0)i,j = li·P(0)i,j for i ¸ j, D(0)i,i = -li, and D(m)i,j = li·P(m)i,j, 1 ¢ m ¢ M. Here, 
D(0) defines the rate matrix of transitions without arrivals, whereas the matrices D(m) define 
rate matrices of transitions with arrivals of batch size m (1 ¢ m ¢ M). Summing up D(0) and 
D(m) for 1 ¢ m ¢ M leads to 

1
(0) ( )M

m
m

=
= + äD D D , (3.2) 

where D is the infinitesimal generator matrix of the CTMC underlying the BMAP. The matrix 
D(0) has strictly negative diagonal entries, non-negative off-diagonal entries, and row sums 
less than or equal to zero. It is assumed that D(0) is non-singular, i.e., it is a stable matrix, and 
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this implies that inter-arrival times are finite and that the arrival process does not terminate. 
The matrix fm(t) of probability density functions (PDF) defines probability laws for state 
changes in the CTMC from state i to state j with an arrival of batch size m at time t. The 
matrix of complementary cumulative distribution functions (CCDF) Fc(t) defines conditional 
probabilities that given the CTMC is in state i the chain will reside in state j at time t without 
arrivals until time t. The matrices fm(t) and Fc(t) are given by: 

(0)( ) e ( )t
m t m= ÖDf D  (3.3) 

(0)( ) ec tt = DF . (3.4) 

Previous known EM-based parameter estimation procedures for special cases of the BMAP 
are numerically unstable, e.g., the EM algorithm for parameter estimation of MMPPs 
proposed by Ryden in [Ryd96]. Thus, the proposed EM algorithm for BMAPs utilizes two 
key numerical methods, i.e., randomization technique and the numerical stable computation 
of Poisson weights. The following recalls definitions and basic ideas of these methods that are 
required for computing time-dependent conditional expectations of a CTMC in the 
expectation step of the EM algorithm. 

 

3.2 The Randomization Technique 

Randomization (also called uniformization or Jensen’s method [GM84], [Gra77], [RT89]) has 
proven to be an effective numerical method for computing transient measures of CTMCs 
involving matrix exponentials as required in equations (3.3) and (3.4). Reibman and Trivedi 
showed that randomization constitutes the method of choice for non-stiff and mildly stiff 
CTMCs [RT89]. For transient analysis of stiff CTMCs, the implicit Runge-Kutta method or a 
hybrid between randomization and implicit Runge-Kutta can effectively be employed. 
Applying the randomization technique to a continuous-time Markov chain with generator 
matrix Q of dimension N, a scalar q and a matrix A are defined as follows: 

1
,1.02 max

i N
i iq

¢ ¢
= Ö Q  (3.5) 

1
q

= +A Q I  (3.6) 

Wallace and Rosenberg [WR66] proposed to scale the maximum diagonal element q by the 
factor 1.02 to ensure that the discrete-time Markov chain (DTMC, [Lin98]) with generator A 
is aperiodic. Since negative entries of the matrix Q are restricted to its diagonal, all entries of 
the matrix A are non-negative. Rewriting equation (3.6), the matrix Q and the matrix 
exponential eQt can be expressed as: 
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q q= -Q A I  (3.7) 

e e et qt qt-= ÖQ A . (3.8) 

Using the truncated series expansion of the matrix exponential and equation (3.8), the 
transient probability vector pt can be calculated by 

( , ) ( , )

0 0
( , ) ( , )

( )e e ( ) ( ; )
!

nR qt R qt
t n qt

t
n L qt n L qt

qt n n qt
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e e
-

= e = e

= Ö @ Ö Ö Ö = Öbä äQ Ap p p F , (3.9) 

where L(qt,e) and R(qt,e) denote the left and right truncation points for a given error tolerance 
e, respectively. 

In equation (3.9), F(n) denotes the state probability vector of the DTMC with transition 
probability matrix A at step n. The term b(n; qt) denotes the probability mass function (PMF) 
of the Poisson distribution with parameter qt at n. According to equation (3.9), the 
computation of the transient probability vector pt of the CTMC is reduced to the computation 
of the transient probability vector F(n) of a DTMC with probability matrix A and appropriate 
Poisson probabilities. The function F(n) can be efficiently computed by recursive vector-
matrix multiplications [GM84] by 

0(0) =F p  and ( 1) ( )n n+ = Ö AF F . (3.10) 

Since the probability mass function of the Poisson distribution thins for growing qt, round-
off errors for large qt may affect the computation of Poisson probabilities. Thus, the 
randomization technique is enhanced by a stable calculation of Poisson probabilities proposed 
by Fox and Glynn [FG88]. As a stable calculation of Poisson probabilities is decisively for the 
numerical stability of the proposed EM algorithm, the next section summarizes its key ideas. 
Given an error tolerance e, the computational complexity of a dense/sparse implementation of 
the randomization method is given by O(qt·N2) and O(qt·h), respectively, where h denotes the 
number of non-zero entries in the generator matrix Q. Note that the randomization technique 
is also suitable for calculating the conditional expectation of the state probability vector of a 
CTMC in a time interval (0, t] given the chain resides in state i at time 0. 
 

3.3 Effective and Stable Calculation of Poisson Probabilities 

Fox and Glynn [FG88] proposed a stable calculation of Poisson probabilities that rigorously 
bounds truncation errors and guarantees no overflow or underflow when implemented. That 
algorithm is effectively in work and space requirements with a computational complexity 
given by O((qt)1/2), i.e. proportional to the square root of the Poisson parameter qt. 
Furthermore, their algorithm speeds the generation of truncated Poisson variates as required 



3.3.   EFFECTIVE AND STABLE CALCULATION OF POISSON PROBABILITIES 63 

 

in equation (3.9) of the randomization technique. The calculation starts at mode m qt= é ùê ú  
with a weight w(m) ² 1 appropriately chosen so that no overflow can occur in equations (3.13) 
and (3.14). In the first step, the left and right truncation points L = L(qt,e) and R = R(qt,e) of 
the summation (3.9) are determined. If the product qt < 25, no left truncation is used, i.e., 
L = 0, and the weight w(m) is set to 1. If the product qt > 25, the summation in (3.9) starts at 
some L > 0 determined by equation (3.11) and the left tail of the Poisson distribution is 
neglected. 
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Having determined the left truncation point L of formula (3.11), its right truncation point R is 
determined according to equation (3.12) 
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n L
R r n qt

=

ë û
= Í - b ¢ eì ü

í ý
ä8  (3.12) 

In the second step, the weights W are derived by recurrence equations (3.13) and (3.14). 

( 1) ( ), , 1,..., 1nw n w n n m m L
qt

- = Ö = - +  (3.13) 

( 1) ( ), , 1,..., 1
1

qtw n w n n m m R
n

+ = Ö = + -
+

 (3.14) 

Subsequently, the sum of these weights has to be calculated in order to obtain Poisson 
probabilities. 

( )
R

n L
W w n

=

= ä  (3.15) 

To minimize the round-off error, the smallest terms near the end points of L and R of the 
summation in (3.15) are added first. Given the weights by equation (3.13) and (3.14) and the 
constant W of (3.15), the Poisson probabilities b(n; qt) are determined by: 

( ) ( ) ( ); e , , 1,...,
!

-b = = = +
n

qt qt w nn qt n L L R
n W

 (3.16) 

Note that due to the recursive computation in (3.13) and (3.14) and subsequent normalization 
with W, the exponential function e-qt does not need to be computed explicitly. This yields 
considerable advantages for a numerical computation because underflow is prevented when qt 
is large (e.g., qt > 700). 

Considering the smallest and the largest representable machine number of the computer 
employed, this computational method for Poisson probabilities ensures that numerical 
overflow or underflow do not occur. Since equations (3.11) and (3.12) define a bound on the 
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total mass of the truncated series, they provide a conservative estimate of the truncation error 
for formula (3.9) for appropriate values of e. 

 

3.4 The EM Algorithm for the BMAP 

3.4.1 Fundamentals of the EM Algorithm 

Originally, the EM algorithm has been developed as a method for the estimation in hidden 
Markov models (HMM) [BE67], [BPS+70], [Lin78] and has been extended to a broader class 
of problems in [DLR77], [Sun76]. There are various families of problems for which it is the 
only available method of solution, e.g., missing data, censored data, grouped data, random 
effects models and mixtures. It has been applied for real-time pattern recognition, speech 
recognition, tomography, message source discrimination in communications, and other 
situations in which the “natural” model can only be partially observed [Mei89]. The EM 
algorithm is a general method for computing maximum likelihood estimates (MLE) in 
statistical models with incomplete data, i.e., models in which there exist random variables that 
are not observable. Thus, such incomplete data can be thought of as partial observations of a 
larger experiment. In fact, for a BMAP only arrivals times and batch sizes of arrivals, e.g. 
arrival times of packets and their packet lengths, are observable. All state changes in the 
governing CTMC not hitting the absorbing state are not observable and, thus, cannot be 
derived from measured trace data. Thus, the missing data is the complete trajectory of the 
hidden CTMC. 

To be more specific, the EM algorithm is dedicated for those estimation problems in which 
the likelihood function of the data is difficult or impractical to differentiate or maximize, but 
in which the data may be viewed as being a function of some unobserved random variables 
under which, had they been observed, the evaluation of the maximum likelihood would have 
been straightforward. Like many other maximum likelihood methods, the EM algorithm is a 
method to find zeros of some function. Numerical analysis offers various techniques, such as 
Newton-Raphson methods (NR), quasi-Newton methods, and modified Newton methods. 
However, these methods require the analytical computation of highly complex and difficult 
functions [DLR77]. By resorting the complete data (see equation (3.26)), the EM algorithm 
confines itself to use much simpler functions. Dempster, Laird, and Rubin pointed out that 
NR-type methods have a much faster convergence than does the EM method and provide 
consistent estimates of the covariance matrix of the MLEs. These advantages are at the 
expense of heavy analytical preparatory work and numerical instability, i.e., these algorithms 
may not converge unless good initial values are used, and the model provides a reasonable 
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good fit to the data. On the other hand, careful implementations of the EM algorithm are 
numerically very stable, but generally slow and, as repeatedly pointed out in [DLR77], 
[Lou82], compute the MLE of the parameter but no estimate of its variance-covariance 
matrix. 

In recent years, EM algorithms have been successfully developed for some stochastic 
processes. In [ANO96], Asmussen, Nerman, and Olsson derive an EM algorithm for 
parameter estimation of phase-type renewal processes. They utilized the notion of sufficient 
statistics to rearrange complete data [BPR80] and present methods to implement the EM 
algorithms using a Runge-Kutta method to solve the underlying linear system of homogenous 
differential equations. Based upon this work, Olsson introduced an EM algorithm for 
parameter estimation of phase-type distributions of fixed order from censored data [Ols96]. 
The derived EM algorithm shows strong similarities with the EM algorithm presented in 
[ANO96] and, again, uses Runge-Kutta methods to solve the underlying linear system of 
homogenous differential equations. Deng and Mark presented an EM algorithm for parameter 
estimation of the Markov-modulated Poisson process [DM93]. As a key idea, they employed 
time-discretization to convert an MMPP from the continuous-time domain into the discrete-
time domain and then use the EM algorithm to obtain MLEs of the model parameters. In 
[Ryd96], Ryden proposed an EM algorithm for parameter estimation of MMPPs and 
compares it with other maximum likelihood methods for the MMPP [Ryd94]. As in 
[ANO96], Ryden used the notion of sufficient statistics to simplify the complete data and 
proposed a diagonalization method to compute matrix exponentials required in the EM 
algorithm. 

3.4.2 Mathematical Framework 

Formally, suppose that y is the observable part of a considered experiment. This experiment 
can be described completely by y and the non-observable data x denoted as the missing data. 
Let A(f,y) be the likelihood of a parameter set f given the observation y and let ( , , )c x yfA  be 
the so-called complete likelihood of the parameter set f given the missing data x [DLR77]. 
The likelihood for a parameter set f captures the probability of generating the sequence of 
observations y using a BMAP with parameter set f. Assume y = {(t1,b1),(t2,b2),...,(tn,bn)} is 
the observed sequence of arrival times tk and corresponding batch sizes bk. Without loss of 
generality t0 = 0 and tn = T. For each arrival epoch from tk-1 to tk, 1 ¢ k ¢ n, inter-arrival times 
are denoted Dtk = tk - tk-1. Then, the likelihood of a BMAP with parameter set f is given by: 
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n

b k
k

t
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= Ö D ÖÔy f 1f pA  (3.17) 



66 3.   EM ALGORITHM FOR PARAMETER ESTIMATION OF THE BMAP 

 

Recall that, in equation (3.17), p denotes the initial state probability vector of the CTMC, 
( )

kb tf  defines the matrix of probability density functions, and f is a specific parameter set for 
the BMAP comprising p and the transition rate matrices D(0),D(1),...,D(M). The vector 1 
denotes a vector of appropriate dimension comprising 1s in each entry. Note that the 
(logarithm of the) likelihood measures the quality of the estimated parameter set [DLR77]. 

The EM algorithm iteratively determines estimates of the missing parameter set f of the 
BMAP. Denote by f(r) the parameter set calculated in the r-th iteration of the EM algorithm. 
f(r) encompasses p(r) and D(0,r),D(1,r),...,D(M,r) that denote the initial state probability 
vector as well as the transition rate matrices in the r-th iteration, respectively. Pf and Ef 
denote the conditional probability and the conditional expectation given the estimate f, 
respectively. As shown in [DLR77], the estimate 

ˆ arg max ( ( )), 0,1,2,...r r= =ff f, fF , (3.18) 

where 

( )( )( ( )) log ( , , )c
rr E= x y yff, f fF A  (3.19) 

satisfies ˆ( , ) ( ( ), )r²y yf fA A  and ˆ( 1)r + =f f  is the estimate for the parameter set determined 
in the (r + 1)-th iteration step of the algorithm. In words, given the parameter set f(r) and the 
observed sequence y, f̂  is the parameter set that maximizes the conditional expectation of 
equation (3.19). Moreover, the likelihood (i.e., the quality) of the estimated parameter set 
grows monotonously in each iteration. This iterative procedure is repeated until a predefined 
maximum number of iterations is reached or until some convergence criteria holds, which can 
be, for instance, that each component of f(r) and f(r + 1) differs only up to a predefined e, 
respectively. The computation of the conditional expectation in (3.19) is called the E-step, 
whereas the derivation of the maximum in (3.18) constitutes the M-step of the EM algorithm. 
As described in [Ryd96], the likelihood A(f,y) is highly non-linear in f and is difficult to 
maximize, while the complete likelihood ( , , )c x yfA  employed in the M-step can often be 
computed in closed form. This is the main reason for the widespread use of the EM algorithm. 
A further advantage of the EM algorithm over other maximum likelihood methods lies in the 
good convergence behavior of the iterative scheme regardless of the initial estimate f(0). 

Already for the MMPP, the practical applicability of the EM algorithm for parameter 
estimation depends on a stable numerical computation of matrix exponentials as required in 
equations (3.3) and (3.4). In [Ryd96], Ryden proposed a diagonalization method to compute 
eQt, but this approach relies on the diagonalization property of the matrix Q. It is well known 
that decomposition techniques like diagonalization are in general not stable numerical 
methods for computing matrix exponentials [GM84], [MvL78]. Thus, the following shows 
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how to employ the randomization technique enhanced by a stable calculation of Poisson 
probabilities for the numerical computation of matrix exponentials as well as integrals over 
matrix exponentials introduced by the E-step of the EM algorithm for BMAPs. 

3.4.3 Effective Computational Formulas 

Recall that the observed data of a BMAP is {(t1,b1),(t2,b2),...,(tn,bn)}, i.e., arrivals times and 
batch sizes of arrivals, whereas state changes in the governing CTMC not hitting the 
absorbing state are not observable. Thus, the infinitesimal generator matrix D of the CTMC 
{X(t): t ² 0} underlying the BMAP constitutes the missing data. The following derives an 
expression for the complete likelihood with a quite intuitive meaning and presents equations 
for the E-step and the M-step of the EM algorithm for BMAPs. 

First of all, the complete likelihood ( , , )c x yfA  of the BMAP using the observed data y and 
the non-observable data x is defined. Let m(k) be the number of transient states entered during 
the k-th arrival epoch. Moreover, let il(k) and sl(k) denote the l-th transient state and the 
sojourn time in the l-th transient state during the k-th arrival epoch, respectively. Then the 
complete likelihood of the BMAP is given by 
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where P(m) and li are defined as in Section 3.1 and bk is the batch size of the k-th arrival. 
Note that the inter-arrival time Dtk is given by the sum of sojourn times during the k-th arrival 
epoch: 

( )

0

( )
m k

k j
j

t s k
=

D = ä  (3.21) 

The first term of the right hand side of equation (3.20) specifies the probability of starting the 
CTMC in state i0(1). For each arrival epoch of the BMAP, the second term describes the 
transient trajectory up to a state im(k)(k) from which absorption occurs. The last portion of 
equation (3.20) represents the transition from the transient state im(k)(k) to the absorbing state 0 
and the restart of the CTMC in state i0(k + 1) with an arrival of batch size bk. Recall that 
P(m)i,j,1 ¢ m ¢ M, is the probability, given the chain is in state i, the CTMC enters the 
absorbing state 0 and is instantaneously restarted in state j with an arrival of batch size m. 
Figure 3.1 visualizes the sequence of state transitions within the k-th arrival epoch up to 
absorption in state 0 after the inter-arrival time Dtk with batch size bk. 
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Figure 3.1. State transitions within the k-th arrival epoch 

 

In order to simplify the notation in the expectation step, the complete likelihood (3.20) is 
rearranged using the notion of sufficient statistics [BPR80]. The key idea of these sufficient 
statistics is to capture the complete likelihood expression in a more intuitive fashion. It is 
assumed that N(t) is the counting process of the batch sizes for arrivals that is defined as 
follows: 

1

( ) ( )
n

k k
k

N t b t t
=

= Ö ¢ä > , (3.22) 

where >(·) is the indicator function. As sufficient statistics, T, A(m), and s are defined in 
equations (3.23) to (3.25). Note that these sufficient statistics show structural similarities 
compared with the EM algorithm for MMPPs [Ryd96]. In the following, t- denotes the point 
in time instantaneously before t. For 1 ¢ i, j ¢ N and i ¸ j, Ti,j is defined as: 

{ }, # 0 , ( ) , ( ) , ( ) ( )i j t t T X t i X t j N t N t= ¢ ¢ - = = = -T  (3.23) 

Ti,j is the number of transient state transitions from state i to state j without an arrival. For 
1 ¢ m ¢ M and 1 ¢ i, j ¢ N, A(m)i,j is defined as: 

{ },( ) # 1 , ( ) , ( ) , ( ) ( )i j k k k k km t k n X t i X t j N t N t m= ¢ ¢ - = = = - +A  (3.24) 

A(m)i,j is the number of absorbing state transitions from state i to state j with an arrival of 
batch size m at arrival times tk. Finally, for 1 ¢ i ¢ N, si is defined as: 

0

( ( ) )
T

i X t i dt= =ñs >  (3.25) 
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si captures the total time the CTMC resides in state i. 

Typically, the sufficient statistics can be determined by numerically tractable 
characteristics of the CTMC. Applying some calculus, these sufficient statistics can be used to 
rewrite and simplify the expression of the complete likelihood in equation (3.20). That is: 
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i i i j j i m i j
mT ADx y D D>A  (3.26) 

Intuitively, the second product of equation (3.26) symbolizes the sojourn time of the CTMC 
for each state i. The third product of equation (3.26) captures the behavior for all transient 
state transitions between states i and j. Similarly, the last product of equation (3.26) represents 
the absorbing state transitions between states i and j with arrivals of batch size m. 

In order to derive the E-step and the M-step of the EM algorithm, it is essential to 
understand that the observed sequence y of arrival times tk and the corresponding batch sizes 
bk, is completely captured by the counting process of the batch sizes for arrivals N(t) 
introduced above. To understand this fundamental insight, consider a point in time t, where 
N(t) changes its value, i.e., N(t-) ¸ N(t). Thus, the underlying sequence of observations y 
includes an arrival at time t with batch size b = N(t) - N(t-), and, as a consequence, the 
sequence of observations y and the counting process of the batch sizes for arrivals N(t) are 
equivalently. For ease of notation, L(k) and R(k) are defined as: 

L(0) = p(r), ( ) ( 1) ( )
kb kk k t= - Ö DL L f , for k = 1,...,n (3.27) 

R(n + 1) = 1, ( ) ( ) ( 1)
kb kk t k= D Ö +R f R , for k = n,...,1. (3.28) 

Let 1i and T
i1  denote the i-th unity column and row vector, respectively. As shown in equation 

(3.19), the E-step requires taking the logarithm of the complete likelihood ( , , )c x yfA  given 
the parameter set f(r) and the observed sequence y, i.e., the counting process N(t). Thus, 
inserting the complete likelihood ( , , )c x yfA derived in equation (3.26) and simplifying, 
directly leads to equation (3.30) with abbreviations (3.31) to (3.34) for ease of notation 
(presented in Figure 3.2). 

Using the constraint (3.29) according the BMAP’s definition for each i and taking into 
account that the sum of all pi equals 1, it can be easily shown by means of appropriate partial 
differentiation that equation (3.30) is maximized by the unique maximum given in (3.35). 
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= - -ä ääD D D  (3.29) 

Beside the maximization by means of partial differentiation, each expression in equation 
(3.35) utilizes the maximized sufficient statistics (3.31) to (3.34) in a very intuitive manner. 
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For example, ,
ˆ (0)i jD  is the ratio of the total number of transient state transitions between 

states i and j and the total time spent in state i. Expressions (3.30) to (3.34) in Figure 3.2 
represent the E-step of the EM algorithm, whereas the expressions in Figure 3.3 represent the 
M-step of the EM algorithm. As shown by Ryden for MMPPs [Ryd96], the first sum of the 
right hand side of equation (3.30) is negligible for large sample sizes n compared with the 
other summands. Note that equation (3.30) takes the natural logarithm of the complete 
likelihood. This is for ease of notation only and does not affect equations (3.31) to (3.34). 
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where 

{ }( )ˆ (0) ( ),0i rP X i N u u T= = ¢ ¢fp  (3.31) 

{ } { }( ) ( )
0

ˆ ( ),0 ( ) ( ),0
T

i r i rE s N u u T P X t i N u u T dt= ¢ ¢ = = ¢ ¢ñs f ff f  (3.32) 

{ }, ( )
0

ˆ ( ) , ( ) , ( ) ( ) ( ),0
T

i j rP X t i X t j N t N t N u u T dt= - = = = - ¢ ¢ñT f  (3.33) 

{ }, ( )
1

ˆ ( ) ( ) , ( ) , ( ) ( ) ( ),0
n

i j r k k k k
k

m P X t i X t j N t N t m N u u T
=

= - = = = - + ¢ ¢äA f  (3.34) 

Figure 3.2. E-step for parameter estimation of BMAPs 

 

M-step: 
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Figure 3.3. M-step for parameter estimation of BMAPs 
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3.4.4 Detailed Investigations of Conditional Probabilities 

The implementation of the EM algorithm requires the computation of conditional 
probabilities in equations (3.31) to (3.34). Using the definition of conditional probabilities, 
equation (3.31) can be rewritten as follows: 
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As stated above, the counting process of batch sizes for arrivals N(t) and the observed 
sequence y are equivalent. Thus, the probability Pf(r){N(u), 0 ¢ u ¢ T} is directly given by the 
likelihood estimate A(f(r),y) = p(r)·R(1). Recall that the likelihood for a parameter set f(r) 
captures the probability of generating the sequence of observations y using f(r) as the 
BMAP’s parameter set. Using the same idea, the probability of additionally starting the 
CTMC in state i, i.e., X(0) = i, is immediately given by equation (3.37). 
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Using the abbreviations defined above, equation (3.31) can be expressed as follows: 
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Similarly to formula (3.36), the conditional probability in equation (3.32) of ˆis  can be 
rewritten using the definition of conditional probabilities: 
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 (3.39) 

Using Bayes’s law and conditional independence, probability Pf(r){X(t) = i, (N(u), 0 ¢ u ¢ T)} 
can be transformed as follows: 
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 (3.40) 

Using the BMAP’s PDF and CCDF given in equations (3.3) and (3.4), the probability 
Pf(r){X(t) = i, (N(u), 0 ¢ u < t)} is given by equation (3.41). 
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N*(t) denotes the counting process of the arrival process defined in equation (3.42). 
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The composition of the right hand side of equation (3.41) can be explained quite intuitively. 
According to equation (3.41), the first and second term give the probability that the BMAP 
has generated N*(t) arrivals t1,t2,...,tN*(t) < t with corresponding batches b1,b2,...,bN*(t) using 
parameter set f(r). The third term gives the probability that between tN*(t) and t no further 
arrivals occur. Finally, the last term selects the probability that the CTMC is in state i at time 
t. Similar considerations show that probability Pf(r){(N(u), t ¢ u ¢ T)| X(t) = i} is given by 
equation (3.43). 
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The first term of the right hand side of equation (3.43) ensures that the CTMC is in state i at 
time t. Starting at time t, the next arrival occurs at tN*(t)+1 as described by the second term in 
equation (3.43). The third term gives the probability that the BMAP generates n - N*(t) - 1 
arrivals tN*(t)+2,tN*(t)+3,...,tn = T with corresponding batches bN*(t)+2,bN*(t)+3,...,bn using parameter 
set f(r). Summarizing (3.41) and (3.43), equation (3.32) can be expressed as follows: 

( ) ( )
*

* *
* ( ) 1

*

( )

( ) ( ) 1
10

( ) 2

1ˆ ( ) ( )
( ( ), )

( )

k N t

k

T N t
c

i b k i i bN t N t
k

n

b k
k N t

r t t t t t
r

t dt

+ +
=

= +

= Ö Ö D Ö - Ö Ö Ö -

Ö D Ö

Ôñ

Ô

Ts f F 1 1 f
y

f 1

p
fA

 (3.44) 

Again, the conditional probability in equation (3.33) of ,
ˆ

i jT  can be rewritten using the 
definition of conditional probabilities: 

{ }
( ){ }

{ }

( )

( )

( )

( ) , ( ) , ( ) ( ) ( ),0

( ) , ( ) , ( ) ( ), ( ),0
( ),0

r

r

r

P X t i X t j N t N t N u u T

P X t i X t j N t N t N u u T
P N u u T

- = = = - ¢ ¢

- = = = - ¢ ¢
=

¢ ¢

f

f

f

 (3.45) 

Similarly to (3.40), the probability Pf(r){X(t-) = i, X(t) = j, N(t) = N(t-)| N(u), 0 ¢ u ¢ T} is 
decomposed by means of Bayes’s law and conditional independence. The computation of this 
probability follows exactly the same ideas described for the computation of ˆis  in detail and 
directly leads to equation (3.46) for the computation of ,

ˆ
i jT . 
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where is and >(N(t) = N(t-)) is true except for arrival times t = tk. Compared with equation 
(3.44), this equation considers the probability Pf(r){X(t) = j| X(t-) = i} of a transient state 
transition from i to state j in an infinitesimal time unit that is given by D(0,r)i,j. 

Similarly to (3.44) and (3.46), the conditional probability in equation (3.34) of ,
ˆ ( )i jmA  can 

be computed by equation (3.47), where >(N(tk) = N(tk-) + m) is true for all arrival times t = tk 
with batch size m. Compared with equation (3.44) and (3.46), this equation considers the 
probability Pf(r){X(tk) = j, N(tk) = N(tk-) + m| X(tk-) = i} of an absorbing state transition from i 
to state j in an infinitesimal time unit with an arrival of batch size m that is given by D(m,r)i,j. 
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Equations (3.38) and (3.47) require the computation of fm(t) and Fc(t). As defined in 
equations (3.3), (3.4), these functions mainly require the computation of matrix exponentials 
that can be determined by means of the randomization technique and a stable calculation of 
Poisson jump probabilities. On the other hand, equations (3.44) and (3.46) require the 
computation of integrals over fm(t) and Fc(t), i.e., integrals over matrix exponentials have to 
be computed. 

3.4.5 Effective Calculation of Integrals over Matrix Exponentials 

For efficient and robust calculation of the integrals over matrix exponentials of equations 
(3.44) and (3.46), the following presents effective computational formulas based on the 
randomization technique. Using abbreviations L(k) and R(k) as well as fundamental 
integration rules, the integrals over matrix exponentials can be subdivided at arrival times as 
follows: 
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Appropriately scaling the limits and using the series expansion of the matrix exponential 
yields equation (3.49). 
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where ak(m) and bk(n) are defined in equations (3.50) and (3.51), respectively. 
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Applying some calculus and utilizing the truncated series expansion according to equation 
(3.9), directly leads to equation (3.52). 
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According to equation (3.52), integrals over matrix exponential can be efficiently and 
numerically stable calculated by means of the randomization technique and a stable 
calculation of Poisson probabilities. In [Lin98], Lindemann utilized a similar approach for 
computing of integrals over matrix exponentials. 
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3.5 Implementation Issues 

Based on the computational formulas derived in the previous section, Figure 3.4 presents an 
iterative scheme for the implementation of the EM algorithm using the forward-backward 
(Baum-Welch) method [Bau72], [LRS83]. According to the forward-backward method, the 
forward recursion (3.2) in Figure 3.4 computes the “forward probabilities” and the backward 
recursion (3.3) in Figure 3.4 computes the “backward probabilities”. As shown above, the 
detailed expressions of the maximized sufficient statistics ˆis  and ,

ˆ
i jT  in equations (3.44) and 

(3.46) reveal strong similarities. Thus, the computation of ˆis  can be performed by means of 

,
ˆ

i jT  without additional effort (see Figure 3.4, M-step). Furthermore, for calculating the 
maximized sufficient statistics ˆ ip , ˆis , ,

ˆ
i jT , ,

ˆ ( )i jmA , and the likelihood estimate A(f(r),y) the 
scaling procedure proposed by Levinson, Rabiner, and Sondhi in [LRS83] has been adopted. 
This scaling procedure is necessarily because these quantities can take extremely small or 
extremely large values. For the computation of Poisson weights, the error tolerance is set to 
10-10. Convergence is reached, if each component of f(r) and f(r + 1) differs only up to 10-3. 

The initial parameter set f(0) can be determined by different approaches including simple 
random initialization, precondition according to moment matching methods, and heuristic 
initialization. Irrespective of the initialization method, zero entries in f(0) are preserved in the 
corresponding elements of the successive estimates f(r). This property enables the estimation 
of specialized BMAPs, e.g. MAPs or MMPPs. However, simple random initialization is 
employed for determining the initial parameter set f(0). A set of initial estimates is generated 
randomly and f(0) is set to the estimate with the maximum likelihood. In almost all cases, 
different initial estimates just result in a slightly different number of iterations required for the 
convergence of the EM algorithm, whereas the quality of different estimated parameter sets is 
very similarly. The following shows that a careful implementation of the EM algorithm based 
on the computational formulas presented in this thesis requires for each iteration only a few 
seconds of CPU time on a modern PC for considerable large trace files. Thus, random 
initialization is sufficiently for determining initial parameter sets in practice. For a discussion 
of initialization methods, it is referred to Section 5. 

 

3.6 Computational Complexity of the EM Algorithm 

The analysis of the computational complexity is based on a careful implementation of the 
iterative scheme presented in Figure 3.4 using the computational formulas derived in Section 
3.4. Following Figure 3.4, an iteration of the EM algorithm encompasses the E-step, the 
computation of the likelihood, the M-step, the assignment of the new parameter set, and 
checking for convergence. According to equation (3.5), let q denote the maximum diagonal 
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(1) Determine f(0) according to simple random initialization. 

(2) Initialize r « 0. 

(3) do 

  E-step: 

  (3.1) for i, j = 1,...,N and m = 1,...,M, let ,
ˆ 0i j «T , ,

ˆ ( ) 0i jm «A . 
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  (3.5) for i, j = 1,...,N and k = 1,...,n set 

     m « bk. 

     , ,
ˆ ˆ( ) ( ) ( 1) ( ) ( 1)c T

i j i j k i jm m k t k« + - Ö D Ö Ö Ö +A A L F 1 1 R . 

 

  (3.6) Compute the likelihood ( ( ), ) ( ) (1)r r= Öy Rf pA . 

 

  M-step: 
  (3.7) for i, j = 1,...,N and m = 1,...,M set 

     ˆ ( ) (1) ( ( ), )i i ir r« Ö Ö1 R yp p fA . 

     , , , ,
ˆ ˆ ˆ(0) (0, )i j i j i j i ir« ÖD T D T  and , , , ,
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  (3.8) ( )ˆ ˆ ˆˆ( 1) , (0), (1), , ( )r M+ = D D Df p >  and r « r + 1. 

 until {convergence or maximum number of iteration is reached} 

Figure 3.4. Forward-Backward method for implementing the EM algorithm 
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element of ˆ (0)D . As shown in Section 3.2 and 3.3, the randomization technique as well as the 
stable computation of Poisson weights depends on the Poisson parameter qDtk. Thus, for 
different inter-arrival times Dtk, the computational complexity differs and the derivation of an 
overall computational complexity of the EM algorithm is not tractable. As a consequence, the 
following assumes that irrespective of Dtk operations are performed for l = q·Dtmax with 
Dtmax = maxk{Dtk}. This enables the derivation of the worst case computational complexity of 
the EM algorithm. 

Following the enumeration in Figure 3.4, the E-step is subdivided into steps (3.1) to (3.5). 
The initialization of ,

ˆ
i jT  and ,

ˆ ( )i jmA  in step (3.1) for i, j = 1,...,N and m = 1,...,M can be 
performed with O(M·N2) operations. According to equations (3.3) and (3.27), the computation 
of L(k) given L(k-1) requires the computation of a matrix exponential and an additional 
vector-matrix product. Referring to Section 3.2 and using the worst case assumption 
l = q·Dtmax, the matrix exponential can be computed by means of the randomization technique 
with computational complexity O(l·N2). Obviously, the vector-matrix product can be 
computed in time O(N2). Thus, the overall computational complexity of step (3.2) is given by 
O(n·l·N2). Using the same argumentation, the computation of all R(k), k = n,...,1, in step (3.3) 
can be performed with an overall computational complexity O(n·l·N2). In step (3.5), the terms 
L(k-1)·Fc(Dtk) have been determined while computing L(k) in step (3.2). Thus, for fixed i, j, 
and k the computation of ,

ˆ ( )i jmA  requires O(1) operations, and, thus, step (3.5) can be 
performed with computational complexity O(n·N2). 

Determining the computational complexity of step (3.4) requires further effort and detailed 
analysis. This is mainly due to the fact that step (3.4) computes complex integrals over matrix 
exponentials for each i, j = 1,...,N and k = 1,...,n. According to equations (3.48) to (3.52), these 
integrals over matrix exponentials can be computed by means of the randomization technique 
as given by expression (3.53). 
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The Poisson weights b(m + n + 1; qDtk) in (3.53) are independent of i and j, and, thus, have to 
be determined only once for each k. Following the worst case considerations outlined above, 
this can be performed in time O(l1/2) for each k. According to Fox and Glynn [FG88], for 
large qDtk the left and right truncation points of the sum in equation (3.53) are given by 
L(qDtk,e) = qDtk - O((qDtk)1/2) and R(qDtk,e) = qDtk + O((qDtk)1/2), respectively. Taking into 
account the worst case assumption l = q·Dtmax, this fact has two direct implications utilized in 
the following discussion. First, R(l,e) is an upper bound of the right truncation point 
R(qDtk,e), and, secondly, the number of summands in (3.53) is limited by O(l1/2) with 
truncation points L(l,e) = l - O(l1/2) and R(l,e) = l + O(l1/2). 
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For fixed m + n, the structure of (3.53) implies that m + n + 1 different summands have to 
be added, e.g., for fixed m + n = 1, two summands arise from m = 0, n = 1 and m = 1, n = 0. 
Assume that ak(m) and bk(n), required in (3.53), have already been computed. This implies 
that the computation of each of these m + n + 1 summands takes time O(1). Utilizing this fact 
and taking into account the truncation points L(l,e) and R(l,e), simple calculations by means 
of the Gaussian sum show that (3.53) can be computed in time O(l3/2). However, the 
computation of ak(m) and bk(n) has not been considered so far. Investigating their structure, 
ak(m) and bk(n) can be determined effectively by successive computations for increasing 
values of m and n, respectively. Taking into account the upper bound of the right truncation 
point R(l,e), a careful implementation requires l + O(l1/2) vector-matrix products to compute 
all ak(m) and bk(n) required in (3.53), i.e., the computational complexity is given by O(l·N2). 
Note that due to their definitions (see equations (3.50) and (3.51)) these vector-matrix 
products have to be computed only once for fixed k irrespective of i and j. Summing up these 
investigations, for fixed k, step (3.4) requires O(l1/2) operations to compute Poisson 
probabilities, O(l·N2) operations to compute vector-matrix products for ak(m) and bk(n), and 
O(l3/2·N2) to compute the sum for all i, j = 1,...,N. Thus, step (3.4) can be performed with an 
overall computational complexity given by O(n·l3/2·N2). 

As R(1) has already been computed, the likelihood in step (3.6) can be determined by 
means of a vector product with computational complexity of O(N). Obviously, the M-step 
takes time O(M·N2) required for the computation of ,

ˆ ( )i jmD  for i, j = 1,...,N and m = 1,...,M. 
The assignment of the new parameter set in step (3.8) as well as checking for convergence 
takes time O(M·N2), respectively. 

Assume that M is much smaller than the number of observations n, i.e., M << n. 
Summarizing the computational complexity of steps (3.1) to (3.8), the overall computational 
complexity of an EM iteration is given by O(n·l3/2·N2). Note that the run-time of each 
iteration differs as the maximum diagonal element q differs dependent on ˆ (0)D . As described 
above, random initialization is employed to determine the initial parameter set f(0), where a 
set of initial estimates is generated randomly, and f(0) is set to the estimate with the 
maximum likelihood. Computing the likelihood requires the computation of R(1) with the 
computational complexity of step (3.3). As a consequence, the likelihood of each random 
estimate is computed in time O(n·l·N2). 

 

3.7 Convergence Behavior 

This section demonstrates the convergence behavior of the derived estimation procedure. As 
specified in the first column of Table 3.1, a 3-state BMAP with M = 4 distinct batch sizes is 
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considered. Based on this parameter set, a trace file with n = 200,000 arrivals and 
corresponding batch sizes is generated. This trace file is used as input for the EM algorithm in 
order to derive estimates of the (known) parameter set of the BMAP. The parameter set 
shown in the second column of Table 3.1 serves as initial parameter set for the estimation 
procedure. Running the EM algorithm for r = 400 iterations for this trace file results in the 
estimated parameter set presented in the third column of Table 3.1. As mentioned above, 
Table 3.1 shows that zero entries in the initial parameter set are preserved in the 
corresponding elements of successive estimates. Comparing estimated and original parameter 
sets, most parameter estimates calculated by the EM algorithm are quite close to the 
corresponding values of the original parameter set. As shown in [BHM87], BMAPs are over-
parameterized, i.e., different parameter sets can yield the same distribution. Therefore, both 
the original and the estimated parameter set can differ while still showing similar quality, i.e., 
likelihood, for the considered trace file. Thus, the quality of the estimated BMAP should be 
compared with the quality of the original parameter set by the ratio of their (logarithm of the) 
likelihood. With a ratio of 1.000029, this comparison evidently shows that the original and 
estimated parameter set have quite the same quality, although they (slightly) differ in 
parameter values. 

Additionally, the EM algorithm has been applied for five different (random) initial 
parameter sets for the considered trace file. Figure 3.5 plots the logarithm of the likelihood 
versus the number of iterations for these five estimation runs. While the likelihood differs 
significantly for a small number of iterations, this difference diminishes rapidly for an 
increasing number of iterations, i.e., beyond 250 iterations all likelihood estimates are nearly 
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Table 3.1. Original (left), initial (center), and estimated (right) BMAP parameter sets 
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Figure 3.5. Convergence behavior for different (random) initial parameter sets 

 

the same. This indicates that for a given convergence criteria, where successive estimates 
differ only up to a predefined e, different initial parameter sets result in estimated parameter 
sets of similar quality with a slightly different number of iterations required for their 
estimation. Figures 3.6 and 3.7 show the maximum relative percentage change and absolute 
change in parameter values of successive iterations. Regardless of the parameter values of the 
initial parameter set, the maximum relative percentage change is below 10% after 50 
iterations and below 2% after 400 iterations. Similarly, as depicted in Figure 3.7, the absolute 
change in parameter values is below 0.1 after 100 iterations and below 0.01 after 400 
iterations for almost all initial parameter sets. In practice, random initialization has proven to 
be an easy and sufficient way for determining initial parameter sets. 

 

3.8 Open Source Toolkit IP2BMAP 

An open source software implementation of the EM algorithm including detailed software 
documentation is available from the IP2BMAP Web site (http://www.ip2bmap.de) depicted in 
Figure 3.8. The EM algorithm is implemented in C++ and comprises about 8,000 lines of 
source code. Moreover, IP2BMAP comes along with a complete online documentation of the 
C++ source code. The IP2BMAP Web site contains detailed information concerning system 
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Figure 3.6. Maximum relative percentage change in parameter values 
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Figure 3.7. Maximum absolute change in parameter values 
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Figure 3.8. Snapshot of the IP2BMAP homepage (http://www.ip2bmap.de) 

 

requirements, configuration, and installation of the IP2BMAP software. Beside the software 
for parameter estimation of BMAPs, the IP2BMAP package provides some useful tools for 
pre- and post-processing of trace-files, trace-file generation, queuing system simulation, and 
generation of sample paths. Furthermore, a reference manual describing the synopsis of 
IP2BMAP binaries is provided. The following summarizes the mission of these binaries: 

¶ abs2rel: The abs2rel binary is a simple tool that converts trace-files with absolute time-
stamps, i.e., arrival times, to relative time-stamps, i.e., inter-arrival times, as required 
for EM estimation by the bmapem binary. 

¶ bmapem: The bmapem binary constitutes the main program of the IP2BMAP package 
from which the EM algorithm for parameter estimation of BMAPs is invoked. Initial 
parameter estimates can be set by the user or by random. 

¶ bmapsim: The bmapsim binary simulates a single server queuing system with 
deterministic service time, where the input is taken from a trace-file. The simulation 
engine supports confidence intervals for 95% and 99% confidence. Simulation is 
stopped when convergence is reached or the maximum simulation time is elapsed. It 
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was implemented for queuing system analysis that enables effective comparisons of the 
originally trace-file with traces-files generated according to estimated BMAP parameter 
sets. 

¶ bmaptrace: The bmaptrace binary generates a trace-file of desired length according to 
an estimated BMAP parameter set. 

¶ samplepath: The samplepath binary generates byte-based as well as packet-based 
sample paths for a given trace-file and a specified resolution. 

 

3.9 Summary 

This section presents an efficient and numerical stable EM algorithm for parameter estimation 
of BMAPs with computational complexity given by O(n·l3/2·N2) for an EM iteration. The 
derived EM algorithm is mathematically very complex and requires the computation of 
conditional expectations of a CMTC. Extensive calculations show that these conditional 
expectations can be computed by means of matrix exponentials and integrals over matrix 
exponentials. Whereas the computation of matrix exponentials can be performed directly of 
the randomization technique and a numerical stable computation of Poisson probabilities, the 
computation of integrals over matrix exponentials required further effort. It is shown how to 
utilize the randomization technique for computing integrals over matrix exponentials. Beside 
the iterative implementation of the EM algorithm by means of the forward-backward method, 
implementation issues as well as initialization methods are discussed. Additionally, this 
section gives some insights in the convergence behavior of the EM algorithm and introduces 
an open source software implementation of the EM algorithm available from the IP2BMAP 
Web site (http://www.ip2bmap.de). 
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4 Modeling IP Traffic Using the 
Batch Markovian Arrival Process 

EASURED IP TRAFFIC encompasses arrival times as well as lengths of IP packets. 
Usually, almost all traffic models (try to) capture the inter-arrival times of measured 

IP traffic data, whereas packet lengths are ignored completely (e.g., see [JMW97], 
[MMM+04]). For additionally modeling of packet lengths, these traffic models assume an 
average packet length for each packet arrival or draw packet lengths according to the 
empirical distribution of the measured traffic. For packet lengths that are uncorrelated with 
packet arrivals, this approach would be adequately. This section proposes the BMAP as 
analytically tractable traffic model for the joint characterization of packet arrivals and packet 
lengths. The BMAP is customized such that different packet lengths are represented by batch 
sizes of arrivals. Thus, the proposed EM algorithm for parameter estimation of BMAPs can 
jointly capture the packet arrival process and the packet length process of measured traffic 
and considers correlation structures between packet arrivals and packet lengths (naturally 
given by the BMAP’s capabilities). This is the first analytically tractable traffic model that 
jointly captures the packet arrival process, the packet length process, and their correlations. 
Case studies of TCP traffic with different degrees of self-similarity evidently demonstrate the 
advantages of the BMAP modeling approach over other widely used analytically tractable 
models and show that joint (i.e., correlated) characterization of packet arrivals and packet 
lengths is decisively for realistic IP traffic modeling. The joint characterization of packet 
arrivals and packet lengths by customized BMAPs and the case study of ISP IP traffic have 
been published (with distinct objectives) in the proceedings of the Globecom 2001 conference 
[KLL01] and the Tools 2002 conference [KLL02]. 

4.1 Important Characteristics of IP Traffic 

In the last decade, extensive research effort has been spent on the characterization of 
measured IP traffic in local and wide area networks, e.g., see [CDJ+91], [LTW+94], [PF95], 
[TMW97], [Wil01], [WTS+97]. Using specialized network measurement hardware or 
software, researchers collect information about network packet transmissions, including their 
timing structure and contents. Among other characteristics, the most important findings of 
these studies are (1) the fractal-like behavior of IP traffic streams implying long-range 

M 
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dependence and self-similarity and (2) the “spiky” distribution of TCP packet lengths with 
peaks at common sizes. 

4.1.1 Self-Similarity in IP Traffic Streams 

Statistical analysis of traffic measurements from a wide range of communication networks 
have convincingly shown that actual network traffic is (multi-) fractal in nature in that it 
exhibits statistical properties over many time scales. In particular, these studies have 
demonstrated that measured traffic rates, i.e., number of packets or bytes per time unit, in both 
LAN and WAN environments look statistically the same (i.e., self-similar) in the small and in 
the large, and no natural length of a “burst” is discernible. That is, at every time scale ranging 
from milliseconds to minutes (and beyond) bursts have the same qualitative appearance and 
cause the resulting traffic to exhibit fractal-like characteristics [LTW+93]. The following 
gives a brief description of the concept of self-similar processes, introduces the Hurst 
parameter as measure of self-similarity, and recalls the causes of self-similarity. For a more 
detailed discussion of self-similarity concepts and modeling of self-similar phenomena it is 
referred to [CB97], [LTW+94], [PW00], and [WPT98]. 

Note that there are a number of different, not equivalent, definitions of self-similarity. This 
definition tightly follows [Cox84] and [LTW+94]. Consider a covariance-stationary (also 
called wide-sense stationary) stochastic process X = {Xt: t ² 1}. That is, a process with 
constant mean, finite variance, and an auto-correlation function 

2( ) [( ) ( )] / [( ) ], 0t t k tr k E X X E X k+= - m Ö - m - m ²  (4.1) 

that only depends on k. Moreover, consider the aggregated process X(m) with level of 
aggregation m ² 1, defined by: 
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Self-similarity concepts relate statistical properties of X to those of X(m). According to Cox 
[Cox84], X is called exactly self-similar with self-similarity parameter H (also called Hurst 
parameter), if 

1 ( ) , 1, 0 1,H m
dX m X m H-= Ö ² < <  (4.3) 

where the equality =d in (4.3) means that X and m1-H·X(m) have the same finite-dimensional 
distribution. Moreover, X is called asymptotically self-similar, if (4.3) holds for m ­ ¤, and, 
X is said to be exactly second-order self-similar or asymptotically second-order self-similar, if 
X has the same variance and auto-correlation function as m1-H·X(m) for all m or for m ­ ¤, 
respectively. Mathematically, self-similarity (1/2 < H < 1) manifests itself in a number of 
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equivalent ways, e.g., auto-correlations that decay hyperbolically (i.e., X exhibits long-range 
dependence), a spectral density that exhibits the 1/f a-phenomenon around the origin, and 
variances of the arithmetic mean that decrease more slowly than the reciprocal of the sample 
size (see [LTW+94] for details). However, the most striking feature of (second-order) self-
similar processes is that their aggregated processes X(m) possess a non-degenerative auto-
correlation function r(m) as m ­ ¤. The existence of a non-degenerative correlation structure 
of X(m) is in strong contrast to conventional short-range dependent processes, e.g., Markovian 
processes, with the common property that their aggregated processes X(m) tend to second-order 
pure noise as m ­ ¤. That is, short-range dependent processes satisfy r(m)(k) ­ 0, k > 0. 
Historically, the importance of self-similarity processes lies in the fact that they provide an 
elegant explanation and interpretation of an empirical law that is commonly referred as Hurst 
effect. Section 4.3 presents further details concerning the Hurst effect. 

As self-similarity is believed to have a significant impact on network and queuing 
performance, understanding the causes of self-similarity is important. As shown in [LTW+94] 
and [WTS+97], self-similar characteristics on network level can be related to high-level 
system characteristics. As already mentioned, these papers pointed out that self-similar traffic 
could be constructed by a large number of ON/OFF sources that have ON and OFF period 
lengths that follow a heavy tailed distribution, respectively. Recall that a distribution is 
heavy-tailed if 

{ } , as , 0 2P X x x x-a> ­ ¤ < a <- . (4.4) 

That is, the asymptotic shape of the distribution follows a power law. Intuitively, a random 
variable that follows a power law can take extremely large values with non-negligible 
probability. For example, the observed self-similar nature of Ethernet LAN traffic at the 
aggregated level (i.e., aggregated over all active hosts in the network) can be explained by the 
superposition of heavy-tailed ON/OFF (or busy/idle) times of individual hosts [LTW+94]. 
Furthermore, Crovella and Bestavros have shown that aggregated traffic generated by WWW 
transfers shows self-similar characteristics [CB97]. They found that (1) transmission times 
(which determine ON times) of individual WWW clients are heavy-tailed, primarily due to 
the distribution of available file sizes in the Web, and (2) silent times (which determine OFF 
times) also follow a heavy-tailed distribution, primarily due to the influence of user “think 
times”. Recent studies [VB00], [VKM+00] indicate instead that traffic properties are 
originated in the TCP congestion control mechanism, which induces LRD properties in the 
aggregated traffic stemming from the superposition of independent sources. 
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4.1.2 TCP Packet Length Characteristics 

As shown for a huge number of LAN and WAN traffic measurements [CDJ+91], [TMW97], 
[Wil01], the transport control protocol is by far the dominant protocol and, usually, averages 
about 95% of all bytes and 90% of all IP packets. This explains why IP traffic modeling 
usually focuses on modeling TCP traffic. However, detailed investigations show that TCP 
packet lengths follow a discrete distribution regardless of time and place of measurement. To 
illustrate this fact, Figure 4.1 depicts probability mass functions of TCP packet lengths based 
on several traffic measurements conducted at different locations in several years. The traces 
BC-Oct89Ext, DEC-PKT-1, and LBL-PKT-4 are taken from the Internet Traffic Archive 
[ITA]. The BC-Oct89Ext trace was gathered in October 1989 and contains a million packet 
arrivals seen on an Ethernet at the Bellcore Morristown Research and Engineering facility. 
Gathered in March 1995, the DEC-PKT-1 trace contains more than 3 million TCP packet 
arrivals of all wide-area traffic between Digital Equipment Corporation and the rest of the 
world. The LBL-PKT-4 trace was gathered in January 1994 and contains 1.3 million TCP 
packets of all wide-area traffic between the Lawrence Berkeley Laboratory and the rest of the 
world. The Bell-Labs-I-20020522-10AM trace is taken from the NLANR PMA Trace Archive 
[NLANR] and was collected at the outside of the firewall servicing researchers at Bell Labs to 
the Internet in May 2002. 

As evidently shown in Figure 4.1, TCP packet lengths have a “spiky” distribution with 
peaks at the common sizes of 40 to 44, 48, 52, 60, 552, 576, and 1500 bytes. In addition to 
these predominating packet lengths, other packet lengths are scattered quite uniformly 
between 40 bytes and 1500 bytes. Small packets, 40 to 44 bytes in length, include TCP 
acknowledgement segments (ACK), TCP control segments such as SYN, FIN, and RST 
packets, and Telnet packets carrying single characters [Ste94a]. Note that the minimum size 
of TCP packets is 40 bytes. 48 byte packets are SYN packets setting up a connection, 
requesting a specific MTU and usually selective acknowledgement. 52 byte packets are ACKs 
that include timestamps, whereas the 60 byte packets are SYNs with some combination of 
previous options (often with a window scale option as well). Most application protocols like 
FTP, HTTP, POP3, and SMTP are used to transfer relatively large data blocks. Therefore, in 
order to reduce overhead, as many packets as possible are filled up to the maximum 
transmission unit (MTU) of the underlying protocol, which typically are 576 bytes in the 
serial line Internet protocol (SLIP) and 1500 bytes in the Ethernet protocol. The choice 
between a MTU of 576 bytes or 1500 bytes depends on the host’s network configuration. 
Furthermore, many TCP implementations that do not implement path MTU discovery use 
either 512 or 536 bytes as the default maximum segment size (MSS) for non-local IP 
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Figure 4.1. Probability mass functions of TCP packet lengths 
for several traffic measurements 

 

destinations, yielding a 552-byte or 576-byte packet length [Ste94a]. Occasionally, spikes in 
the distribution occur due to IP fragmentation between networks with different MTU sizes or 
due to application specific implementations. 

 

4.2 Joint Characterization of Packet Arrivals and Packet Lengths 

As mentioned above, almost all (analytically tractable) traffic models just capture the inter-
arrival times of packets and assume an average packet length for each packet arrival or draw 
packet lengths according to the empirical distribution of the measured traffic. Thus, the packet 
arrival process is uncorrelated with the packet lengths process. Detailed explanations given 
above reveal that predominating packet lengths are due to protocol and network specific 
characteristics, and, this in turn indicates correlations between packet arrivals and their 
lengths. In fact, case studies presented in this section reveal that packet arrivals and packet 
lengths possess strong correlations. 

Opposed to these “one-dimensional” traffic models, the batch Markovian arrival process 
enables “two-dimensional”, i.e., joint, characterization of packet arrivals and packet lengths, 
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and is able to capture (1) the packet arrival process, (2) the packet length process including 
spiky packet length characteristics, and (3) correlations between the packet arrival process and 
the packet length process. The key idea is to represent different packet lengths by different 
rewards, i.e., batch sizes of arrivals, of the BMAP. For a given traffic trace, such a customized 
BMAP can be parameterized directly by means of the EM algorithm introduced in Section 3. 
Thus, correlations between packet arrivals and packet lengths are already taken into account 
during parameter estimation and are captured by the estimated transition rate matrices D(m) 
for batch arrivals of size m (see explanations of Table 4.1 and 4.3). 

However, for each packet length m such parameterized BMAPs comprise a transition rate 
matrix D(m) of size N2. For packet lengths distributed between 40 bytes and 1500 bytes (see 
Figure 4.1), this would result in enormous large parameter sets comprising (1500-40+2)·N2 
parameters for rate matrices D(0), D(40), D(41),...,D(1500). Detailed investigations have 
revealed that this large number of parameters can be reduced dramatically by means of a 
simple scaling procedure. Generally, BMAPs with such reduced parameter sets show (nearly) 
the same quality or, in some rare cases, are superior in quality, while still being capable to 
mimic real-word characteristics such as spiky packet lengths and correlations between packet 
arrivals and packet lengths. Reducing the number of parameters is decisively for the practical 
utilization of parameterized BMAPs in Markovian performance models, as the solution of 
these kinds of performance models primarily depends on the number of non-zero entries in 
the corresponding infinitesimal generator matrix of the underlying CTMC. 

The following outlines this scaling procedure. According to the notation in Section 3, the 
observed sequence of packets is given by {(t1,b1),(t2,b2),...,(tn,bn)} with arrival times tk and 
corresponding packet lengths bk. Let R denote the maximum packet length. First, the scaling 
procedure subdivides the domain of packet lengths in M intervals of equal size R/M and 
computes the average (integer) length sm, 1 ¢ m ¢ M, of all packets whose lengths falls in the 
interval (R·(m - 1)/M, R·m/M]. Formally, sm is defined as follows: 

( ) 1
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with indicator function >(m,bk) = >(R·(m - 1)/M < bk ¢ R·m/M) for ease of notation. Finally, 
packets of length bk get the “new” length sm such that >(m,bk) is true. This reduces the number 
of different packet lengths to M. After scaling, the parameter estimation procedure is applied 
as usual and yields parameterized rate matrices D(0),D(s1),...,D(sM). As packet lengths are 
restricted to lengths s1,s2,..., sM, rate matrices D(m), m Î {0,s1,...,sM}, are empty and this in 
turn reduces the number of parameters enormously. As the computational complexity of the 
EM algorithm does not depend on the number of distinct batch sizes (for considerable large 
trace files), the scaling procedure does not have any effect on the computational effort 
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required for parameter estimation. The question arises how to choose M such that scaling of 
packet lengths does not affect quality of the estimated BMAP. Numerous empirical studies 
have shown that M should be chosen such that the predominant packet lengths of the original 
traffic trace each fall in separate intervals, whereas larger values of M do not result in BMAPs 
of higher quality. 

4.3 The Rescaled Adjusted Range Statistic 

As discussed above, long-range dependence and self-similarity are common in today’s IP 
traffic. Thus, among other characteristics, case studies of TCP traffic presented below 
compare the degree of self-similarity of the original trace and the traces generated by 
analytical traffic models. This requires a method for formal analysis of self-similarity. Among 
other methods for inferring the degree of self-similarity [TT98], the rescaled adjusted range 
statistic (R/S-statistic) is one of the better-known methods and quite popular in practice 
[LTW+93], [MT79], [MW69]. The most useful and attractive feature of the R/S-statistic is its 
relative robustness against changes in the marginal distribution. Historically, the hydrologist 
Hurst introduced the R/S-statistic during his studies of the level of the river Nile [Hur51]. 

The objective of the R/S analysis of an empirical record is to infer the degree of self-
similarity H for the self-similar process that presumably generated this record. Consider a set 
of empirical observations Xi, i ² 1, with partial sum 

1
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The rescaled adjusted range statistics is defined by 
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Hurst found that many naturally occurring empirical records are well represented by relation 
(4.8) with typical values of the Hurst parameter H º 0.73 for u ­ ¤ [Hur51]. 
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It has been shown that relation (4.8) holds for short-range dependent processes with H = 0.5 
[MvN68] and for increment processes of self-similar models with 1/2 < H < 1 [MT79]. This 
discrepancy is generally referred as the Hurst effect. 

When working with empirical data, a practical implementation of the R/S-statistic is based 
on a heuristic graphic approach that computes the R/S-statistics (4.7) at many different lags u 
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and for different portions of the observations. Strictly speaking, a given sample of n 
observations is subdivided into k blocks each of size n/k. Then, for each lag u, u ¢ n, different 
estimates R(km,u)/S(km,u) of R(u)/S(u) are computed starting at km = (m - 1)n/k + 1,  
m = 1,2,...,k, such that km + u ¢ n. Thus, for any given m all observations before km are 
ignored. For a given value of u, one obtains many estimates of R(u)/S(u), as many as k for 
small u and as few as one when u is close to the total sample size n. Next, one chooses 
logarithmically spaced values of u, starting with u º 10. Plotting log(R(km,u)/S(km,u)) versus 
log(u) for all starting points km, results in the rescaled adjusted range plot (also known as pox 
diagram of the R/S-statistic). A typical rescaled adjusted range plot starts with a transient 
zone representing the nature of short-range dependence in the observations, but eventually 
settles down and fluctuates in a straight “street” of a certain slope. The Hurst parameter H is 
given by the street’s asymptotic slope and is typically obtained by a simple least squares fit of 
the points in the pox diagram. Note that points within the transient zone at the low end and the 
few points in the upper end are omitted in the least squares fit. 

 

4.4 Case Study I: Traffic Modeling of ISP IP Traffic 

4.4.1 Traffic Measurements 

For this case study, detailed traffic measurements at the Internet service provider (ISP) dial-
up modem/ISDN link of the University of Dortmund have been conducted. The trace ran from 
11 a.m. to 12 a.m. on Tuesday, December 13, 2000, capturing 1.5 million TCP packets. 
Tracing was performed by the software package TCPdump running on a Linux host that sniffs 
all IP packets in the Ethernet segment between the MaxTNT dial-up routers and the Internet 
router. For all IP datagrams sourced or targeted by dial-up modems the TCP/IP header 
information in conjunction with a timestamp of the arrival-time have been recorded and 
stored for offline processing. Note that the TCP/IP header information includes the packet 
length [Ste94a]. This cases study considers a representative fraction of this trace comprising 
150,000 packet arrivals. 

Similarly to the TCP packet length characteristics outlined above, the analysis of the 
packet length distribution reveals that the packet lengths of all relevant TCP applications 
follow a discrete distribution to a large extent. Figure 4.2 depicts the corresponding 
probability mass function (left) as well as the cumulative distribution function (right) and 
shows that packet lengths of 40 bytes, 576 bytes, and 1500 bytes dominate with an overall 
percentage of 83% of all TCP packets. Recall that the large amount of 40 bytes packets (47%) 
is caused by TCP acknowledgments with an empty data field, whereas packet lengths of 576 
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bytes (28%) and 1500 bytes (8%) are due to MTUs of the SLIP protocol and the Ethernet 
protocol, respectively. For ISP dial-up modem/ISDN links, the choice between a MTU of 576 
bytes or 1500 bytes depends on the network configuration of the dial-up client. In agreement 
with Figure 4.1, other packet lengths are scattered quite uniformly between 40 bytes and 1500 
bytes with a preference of small packet lengths (see Figure 4.2, right). 

4.4.2 Model Specification and Parameter Estimation 

The following utilizes several analytically tractable traffic models to reproduce this measured 
traffic trace. As analytically tractable traffic models, this case study considers the simple 
Poisson process, the MMPP, the MAP, and the customized BMAP, and compares the 
effectiveness of these traffic models by means of visual inspection of sample paths over 
multiple time scales, by presenting important statistical properties, by formal analysis of self-
similarity as well as by investigations of queuing performance. As stated in Section 3, the 
BMAP includes the MMPP as well as the MAP as special cases, and, thus, the EM algorithm 
for BMAPs is also suitable for parameter estimation of MMPPs and MAPs. This requires the 
estimation of rate matrices D(0) and D(1), where D(0) captures state transitions without 
arrivals and D(1) captures state transitions with arrivals. For the MMPP, the rate matrix D(1) 
is restricted to its diagonal entries that are associated with the state-dependent Poisson arrival-
rates of the MMPP. Recalling its definition, the rate matrices of the MAP are directly given 
by the rate matrices of the BMAP. Whereas the rate matrix D(0) is identically for MAP and 
BMAP, the rate matrix D(1) of the MAP is just the sum of all rate matrices D(m), 1 ¢ m ¢ M, 
of the BMAP. Thus, the MAP and the BMAP result in the same packet arrival process 
(ignoring the packet length process). Provided that the packet arrival process and the packet 
length process were uncorrelated, additionally assigning packet lengths to packet arrivals of 
the MAP (according to the empirical distribution of the measured traffic) would result in the 
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Figure 4.2. Probability mass function (left) and 
cumulative distribution function (right) of TCP packet lengths 
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same performance compared with the BMAP. To draw fair conclusions in the comparative 
study presented below, MMPP, MAP, and BMAP are specified with the same number of 
states N. For the Poisson process, the arrival-rate is naturally given by the mean arrival-rate of 
the measured traffic trace. 

For effective parameterization of the BMAP, the choice of M is crucial for accurate 
capturing the packet length process. As proposed above, the scaling procedure is applied 
before parameter estimation, where the number of different packet lengths M is chosen such 
that the predominant packet lengths of the original traffic trace each fall in separate intervals. 
This heuristic choice of M should guarantee that scaling of packet lengths does not affect 
quality of the estimated BMAP. According to Figure 4.2, the predominant packet lengths, i.e., 
40 bytes, 576 bytes, and 1500 bytes, each fall in a separate interval for M = 3. In fact, detailed 
investigations of queuing performance show that customized BMAPs with M ² 3 different 
packet lengths are of the same quality, whereas the choice of M = 2 different packet lengths 
significantly decreases a customized BMAP’s quality (see Figures 4.9 and 4.10). As defined 
above, the average (integer) packet lengths sm (1 ¢ m ¢ M = 3) of this traffic measurement are 
as follows: s1 = 95 bytes, s2 = 573 bytes, and s3 = 1465 bytes. As the predominant packet 
length of 40 bytes in the first interval is the minimum size of TCP packets, the average packet 
length s1 is somewhat above 40 bytes. The average packet length of the second interval nearly 
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Figure 4.3. Likelihood estimates for different number of states N 
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matches the corresponding predominant packet length of 576 bytes, whereas the predominant 
packet length of 1500 bytes in the third interval is the MTU in the Ethernet protocol, and, 
thus, the average packet length s3 is somewhat below 1500 bytes. 

Furthermore, the number of states N is crucial to capture the packet arrival process 
accurately. Thus, the parameter estimation procedure is applied for BMAPs with M = 3 
different packet lengths and a varying number of states N. Figure 4.3 depicts the likelihood 
estimates of the EM algorithm for BMAPs with two up to six states. As expected, the 
likelihood estimates, i.e., the quality of parameterized BMAPs, increase in value with 
growing number of states. On the other hand, the difference between the likelihood estimates 
gets significantly smaller for an increasing number of states. Further increasing the number of 
states (i.e., N > 6) continues this trend, and, thus, likelihood estimates can be increased just 
slightly. In agreement with Figure 4.3, investigations of queuing performance show that two-
state BMAPs are not sufficient to capture the arrival process, whereas BMAPs with three to 
six states show nearly same queuing performance (see Figures 4.9 and 4.10). 

Consequently, the customized BMAP that is utilized for traffic modeling in this case study 
encompasses N = 3 states with M = 3 different packet lengths. According to Section 3, a set of 
initial estimates is generated randomly and the initial parameter set f(0) is set to the estimate 
with the maximum likelihood. As packet lengths are restricted to average integer packet 
lengths s1 = 95 bytes, s2 = 573 bytes, and s3 = 1465 bytes, the EM algorithm just estimates 
parameters of rate matrices D(0), D(95), D(573), and D(1465), whereas other rate matrices are 
empty. Convergence is reached, if each component of f(r) and f(r+1) differs only up to 10-3. 
The EM estimation procedure is quite effective and requires less than 20 minutes of CPU time 
on a Pentium IV 1.7 GHz PC with 256 MB of main memory for convergence after 91 
iterations. Table 4.1 presents the initial as well as the estimated rate matrices after r = 91 
iterations of the EM algorithm. According to the estimated rate matrices, arrivals with packet 
 

217.73 16.94 21.78
(0,0) 84.42 943.88 72.82

212.56 122.65 1582.90

-è ø
é ù= -é ù

-é ùê ú

D
 53.87 3.25 7.80

(0, ) 287.25 1576.91 0.00
1566.03 1289.07 5213.80

r
-è ø

é ù= -é ù
-é ùê ú

D
 

16.69 21.35 24.14
(95,0) 70.89 62.20 69.17

193.10 81.53 107.72

è ø
é ù= é ù
é ùê ú

D
 25.70 0.00 7.10

(95, ) 84.50 40.33 0.00
270.70 0.00 2088.00

r
è ø
é ù= é ù
é ùê ú

D
 

21.44 23.16 14.24
(573,0) 70.37 123.63 128.10

142.83 198.91 120.88

è ø
é ù= é ù
é ùê ú

D
 0.53 7.97 0.60

(573, ) 223.89 663.69 237.38
0.00 0.00 0.00

r
è ø
é ù= é ù
é ùê ú

D
 

19.53 22.98 15.48
(1465,0) 51.73 85.43 125.12

154.79 141.10 106.83

è ø
é ù= é ù
é ùê ú

D
 0.11 0.46 0.35

(1465, ) 11.96 13.17 14.74
0.00 0.00 0.00

r
è ø
é ù= é ù
é ùê ú

D
 

Table 4.1. Initial (left) and estimated (right) BMAP rate matrices 
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Figure 4.4. Convergence behavior of different (random) initial parameter sets 

 

lengths of 95 bytes may occur in each state, whereas arrivals with packet lengths of 573 bytes 
and 1465 bytes mainly occur in the second state. This state-dependent generation of different 
packet lengths as well as the remaining structure of state transitions indicate that the original 
traffic trace possesses some kind of correlations between packet arrivals and packet lengths. 

Figure 4.4 shows the convergence behavior of the EM algorithm for five different random 
initial estimates. Opposed to the convergence behavior shown in Figure 4.4, the convergence 
behavior depicted in Figure 4.4 reveals the existence of local maxima in the parameter space 
that become apparent at likelihood estimates about 506,000 and 516,000. For initial parameter 
sets 4 and 5, the evolution of the likelihood seems to converge against a likelihood estimate of 
506,000. Especially for initial estimate 5, the evolution seems to get stuck at this likelihood 
estimate for about 45 iterations. On the other hand, for initial parameter sets 1, 2, 4, and 5, the 
evolution of the likelihood settles down at likelihood estimate 516,000 for just around 15 
iterations. 

4.4.3 Performance Evaluation 

The following illustrates the advantages of the joint characterization of packet arrivals and 
packet lengths using the BMAP. As stated above, the customized BMAP is compared with the 
Poisson process as well as the MMPP and the MAP both of the same number of states as the 
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customized BMAP (i.e., N = 3 states). Additionally, the average packet length of all packets 
(i.e., 315 bytes) is associated with packet arrivals of the Poisson process, the MMPP, and the 
MAP. Further investigations show that assigning packet lengths according to the empirical 
distribution of the measured traffic instead of these average packet lengths does not change 
performance results significantly. Thus, for clearness of presentation the corresponding 
performance curves are omitted in the following. Using the estimated parameter sets of these 
traffic models, traffic streams are generated comprising the same number of samples as the 
measured traffic trace (i.e., n = 150,000 packet arrivals). Similarly to [LTW+93], this case 
study starts with visual inspection of sample path over multiple time scales. Furthermore, the 
cumulative distribution functions (CDF) as well as the first four moments of transferred data 
volume per time are investigated in detail. The degree of self-similarity is formally analyzed 
by means of the R/S-statistic. Finally, investigations of queuing performance show the 
practical applicability of the customized BMAP. Note that the MMPP and the MAP show 
nearly the same performance for each of these characteristics (especially in terms of queuing 
performance). Thus, for clearness of presentation performance curves of the MMPP are also 
omitted in the following. 

Figures 4.5 and 4.6 plot (excerpts from) sample paths (i.e., the sequence of byte counts) of 
the measured traffic (Figure 4.5, left) compared with the sample paths of the traffic streams of 
the customized BMAP using the estimated parameter set of Table 4.1 (Figure 4.5, right), the 
MAP (Figure 4.6, left), and the Poisson process (Figure 4.6, right), respectively. To visualize 
the degree of traffic burstiness in these traffic streams, the sample paths are plotted on four 
different time scales, i.e. 0.001 sec, 0.01 sec, 0.1 sec, and 1.0 sec. Obviously, the sample paths 
of the measured traffic show noticeable sustained periods of arrivals above the mean (i.e., 
bursts) over all considered time scales. This is a first (informal) indicator (i.e., a “pictorial” 
proof) of self-similarity in the measured traffic. Figure 4.5 shows that the customized BMAP 
captures traffic burstiness over multiple time scales. Especially on the largest time scales (i.e., 
0.1 sec and 1 sec), the customized BMAP outperforms the MAP in terms of traffic burstiness. 
As expected, the Poisson process just reproduces the average transferred data volume per time 
unit and fails to capture traffic burstiness of the measured traffic over all time scales. 

To emphasize these observations, the following investigates the distribution of the 
transferred data volume per time unit for the measured traffic, customized BMAP, the MAP, 
and the Poisson process, respectively. Figure 4.7 plots the cumulative distribution functions of 
transferred data volume at time scales 0.001 sec, 0.01 sec, 0.1 sec, and 1 sec. For time scales 
0.01 sec, 0.1 sec, the customized BMAP’s CDF accurately represents the CDF of the 
measured traffic. On the smallest time scale, i.e., 0.001 sec, both CDFs exhibit the same 
trends, whereas the CDF of the measured traffic is not exactly matched by the customized 
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Figure 4.5. Sample paths of the measured traffic (left) 
and the customized BMAP (right) on different time scales 
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Figure 4.6. Sample paths of the MAP (left) 
and the Poisson process (right) on different time scales 
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BMAP. This can be explained by the choice of M = 3 for the customized BMAP, where the 
lack of various different packet lengths leads to additional “steps” in shape of the BMAPs 
CDF. By increasing the value of M, the differences of the CDFs on this time scale diminish. 
On the other hand, the shapes of the CDFs on the largest time scale show significantly 
differences, whereas the trends in both CDFs are roughly identically. Increasing the number 
of states N improves the BMAP’s CDF on this time scale to a certain degree. This is, because 
the flexibility for transitions between states is increased by the choice of N, i.e., an increased 
number of states are actually capable to generate very low data rates (head of the CDF) and 
very high data rates (tail of the CDF) even on large time scales. As expected, the CDF of the 
Poisson process performs badly and shows significant differences compared with the CDF of 
the measured traffic over all considered time scales. Obviously, the MAP outperforms the 
Poisson process, but is inferior in capturing the CDF of the measured traffic, compared with 
the customized BMAP over all considered time scales. 

Table 4.2 presents additionally statistical properties for the data rates of the measured 
traffic, the BMAP, the MAP, and the Poisson process, on different time scales in terms of 
mean m, standard deviation s, Fisher skewness g1, and Fisher kurtosis g2. Recall that the 
mean gives the center of a distribution and the standard deviation measures the dispersion, 
i.e., spread, of a distribution about the mean. The Fisher skewness, usually referred to simply 
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Figure 4.7. Cumulative distribution functions of data rates on different time scales 
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as “the” skewness, is a normalized form of the third central moment of a distribution and 
measures the degree of asymmetry of a distribution. Formally, the skewness is given by 
g1 = m3 / s3, where m3 denotes the third central moment. If a distribution has a longer tail less 
than the maximum, a distribution has negative skewness otherwise it has positive skewness. 
Similarly, the Fisher kurtosis g2, usually referred to simply as “the” kurtosis, is a normalized 
form of the fourth central moment of a distribution. It measures the degree of peakedness of a 
distribution, also called the excess or excess coefficient. Formally, the kurtosis is given by 
g2 = m4 / s4 - 3, where m4 denotes the fourth central moment. If a distribution has a high peak, 
kurtosis is positive, whereas a distribution has a negative kurtosis, if its shape is flattened. 
Note that for the normal distribution kurtosis is zero. 

Table 4.2 shows that mean and standard deviation of the measured traffic and the 
customized BMAP perform quite similarly over the considered time scales, with exception of 
the BMAP’s standard deviation on the largest time scale. The skewness of the measured 
traffic is quite similarly on medium time scales, i.e., 0.01 sec and 0.1 sec, while the 
customized BMAP overestimates the skewness on the smallest time scale and underestimates 
it on the largest time scale. Furthermore, the last column of Table 4.2 indicates, that kurtosis, 
i.e., peakedness, is well captured on the three largest time scales, whereas the BMAP 
significantly exceeds the measured traffic on the smallest time scale. This is, because on the 
smallest time scale the various packet lengths of the measured traffic cannot be represented 
 

Time unit [sec] Traffic source Mean Standard deviation Skewness Kurtosis
Measured traffic 27.63 153.02 6.72 49.77

Customized BMAP 27.70 160.03 8.46 91.06
MAP 27.55 118.12 5.59 39.93

Poisson process 27.55 93.02 3.38 11.43
Measured traffic 276.27 697.46 4.21 26.03

Customized BMAP 277.02 683.92 3.89 19.37
MAP 275.51 487.54 2.81 11.07

Poisson process 275.53 294.60 1.07 1.15
Measured traffic 2762.64 2240.81 1.44 3.15

Customized BMAP 2770.09 2265.65 1.28 1.96
MAP 2755.03 1646.61 0.82 0.78

Poisson process 2755.19 932.97 0.37 0.26
Measured traffic 27621.50 10954.80 0.60 0.21

Customized BMAP 27692.80 7377.52 0.49 0.27
MAP 27543.90 5237.81 0.22 -0.07

Poisson process 27543.90 2914.84 0.03 1.10

0.001

0.01

0.1

1

 

Table 4.2. Statistical properties of data rates on different time scales 
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exactly by only three (M = 3) different reward values, i.e., packet lengths. This effect 
diminishes with increasing value of M. Moreover, Table 4.2 evidently shows, that the MAP as 
well as the Poisson process are clearly inferior compared with the customized BMAP and 
badly capture standard deviation, skewness and kurtosis, over all considered time scales. 

The formal analysis of traffic burstiness, i.e., self-similarity, confirms these observations. 
As introduced above, the R/S-statistic is utilized to infer the degree of self-similarity H. 
Analogously to [MV97], the R/S-statistic analyses the sequence of byte counts in every 10-3 
sec. Figure 4.8 plots the pox diagram of the R/S-statistic for the measured traffic, the 
customized BMAP, the MAP, and the Poisson process. Recall that the Hurst parameter H is 
typically obtained by a simple least squares fit of the points in the pox diagram. The linear 
regression plots of least squares fits are also depicted in Figure 4.8. As expected, the Poisson 
process (H = 0.4967) fails to capture the traffic burstiness, while the MAP (H = 0.5508) and 
the customized BMAP (H = 0.5609) both indicate a certain amount of traffic burstiness 
compared with the Hurst parameter of the measured traffic (H = 0.6394). 

Finally, investigations of queuing performance demonstrate the practical applicability of 
the joint characterization of packet arrivals and packet lengths by customized BMAPs. The 
queuing behavior is one of the most important criteria to assess the suitability of traffic 
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Figure 4.8. Pox diagram of the R/S-statistic for the measured traffic 
and the analytically tractable traffic models 
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models (and associated parameter fitting procedures), since it addresses the effect of traffic on 
network performance. Many analytical studies have shown that self-similar network traffic 
can have a detrimental impact on network performance, including queue length distribution 
and packet loss probability [ST99]. A practical effect of self-similarity is that buffers needed 
at switches or multiplexers must be bigger than those predicted by traditionally queuing 
analysis and simulation. Thus, the following investigates the queuing performance in terms of 
queue length distribution and packet loss probability. As proposed in [AR00], [MMM+04], a 
single server queuing model with deterministic service time and infinite capacity is considered 
to investigate the complementary cumulative distribution of the queue length Q (in bytes). 
Considering a typical dimensioning problem [MMM+04], [ST99], a queuing model with 
deterministic service time and finite capacity (in bytes) is utilized to investigate the impact of 
the queue capacity on the packet loss probability. 

Figures 4.9 and 4.10 depict the complement distribution of the queue length and the packet 
loss probability for the analytical traffic models compared with simulations performed with 
the measured traffic for different traffic intensities r, respectively. Beside the customized 
BMAP specified above, these figures additionally depict the considered performance 
measures for customized BMAPs with a different number of packet lengths M = 2 (using 
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Figure 4.9. Complementary distribution of queue length Q of a single server queue 
with deterministic service time for different traffic intensities r 
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N = 3 states) and with a different number of states N = 6 (using M = 3 packet lengths). These 
additional curves motivate the model specifications of the customized BMAP utilized for all 
performance studies presented in this case study. As stated above, Figures 4.9 and 4.10 
confirm that the choice of M = 2 different packet lengths is not sufficient and decreases 
queuing performance significantly. On the other hand, further investigations of queuing 
performance show that customized BMAPs with M ² 3 different packet lengths are of the 
same quality. As queuing performance is nearly identically, these curves are not presented in 
Figures 4.9 and 4.10 due to clearness of presentation. Especially for high traffic intensities, 
both figures show unanimously that queuing performance is improved only slightly by 
increasing the number of states (N = 6). Increasing the number of states further does not result 
in improved queuing performance, and, thus, the corresponding curves are also omitted. 

Compared with the queuing performance of the measured traffic, it is obviously that the 
customized BMAP shows a similar behavior in terms of queuing performance (i.e., queue 
length distribution and packet loss probability) for low traffic intensities, i.e., r = 0.3 and 
r = 0.4. For traffic intensities r = 0.5 and r = 0.6, the customized BMAP matches the 
distribution of the queue length up to medium queue lengths (see Figure 4.9). Similarly, the 
packet loss probability of the measured traffic is captured authentically (only) up to medium- 
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Figure 4.10. Packet loss probability of a single server queue with deterministic 
service time for increasing queue capacities and different traffic intensities r 
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sized queue capacities for high traffic intensities. As expected, the Poisson process performs 
badly in terms of queue length distribution and packet loss probability for all considered 
traffic intensities. Again, the MAP outperforms the Poisson process, but is significantly 
inferior in capturing the complement distribution of the queue length as well as the packet 
loss probability compared with the customized BMAP for all considered traffic intensities. As 
shown in Figure 4.9, for medium up to large queue lengths, the customized BMAP 
outperforms the MAP by at least one order of magnitude regardless of the considered traffic 
intensity. Figure 4.10 reveals that this discrepancy increases even more for the packet loss 
probability, where the MAP is significantly inferior to the customized BMAP by some orders 
of magnitude. 

In summary, with exception of the R/S-statistic, performance curves presented in this case 
study show the clear advantage of the customized BMAP over other analytically tractable 
traffic models. Especially, studies of queuing performance indicate that already customized 
BMAP with a small number of states and a small number of different packet lengths (i.e., a 
small number of different parameters) are able to capture measured traffic better than other 
analytically tractable traffic models. 

 

4.5 Case Study II: Traffic Modeling of WAN IP Traffic 

4.5.1 Traffic Measurements 

The trace considered in this case study contains wide area TCP traffic measured between the 
Lawrence Berkeley Laboratory and the rest of the world. The trace ran from 14:10 to 16:10 on 
Thursday, January 20, 1994, capturing 1.8 million TCP packets. The tracing was done on the 
Ethernet DMZ network over which flows all traffic into or out of the Lawrence Berkeley 
Laboratory, located in Berkeley, California. The raw trace was made using TCPdump on a 
Sun Sparcstation using the BPF kernel packet filter. Originally, the trace comprises data bytes 
of TCP packets, and, thus, 40 bytes (TCP/IP header length) were added to get real packet 
lengths. This trace is well known in the literature and has been extensively used in various 
studies concerning self-similar network traffic and traffic modeling, e.g., it corresponds to the 
LBL-PKT-3 trace in [PF95]. This cases study considers a representative fraction of this trace 
comprising 250,000 packet arrivals. 

Similarly to observations in the previous case study, the analysis of the packet length 
distributions shows that TCP packet lengths mainly follow a discrete distribution, i.e., packet 
lengths of 40 to 48 bytes (56%), 552 bytes (18%), and 1500 bytes (4%) dominate with an 
overall percentage of 78% of all TCP packets. Figure 4.11 plots the probability mass function 
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Figure 4.11. Probability mass function (left) and 
cumulative distribution function (right) of TCP packet lengths 

 

(left) as well as the cumulative distribution function (right). Recall that small packets, 40 to 
48 bytes in length, include TCP acknowledgement segments, TCP control segments, Telnet 
packets carrying single characters, and SYN packets requesting a specific MTU and usually 
selective acknowledgement. Again, packet lengths of 1500 bytes are caused by the MTU in 
the Ethernet protocol, whereas packet lengths of 552 bytes stem from TCP implementations 
that do not use path MTU discovery. According to the cumulative distribution function, other 
packet lengths are scattered between 40 bytes and 1500 bytes with a preference of small 
packets up to 200 bytes in length (75% of all packets are smaller than 200 bytes). 

4.5.2 Model Specification and Parameter Estimation 

As in the first case study, the Poisson process, the MMPP, the MAP, and the customized 
BMAP are utilized in order to reproduce this measured traffic trace. Using the same number 
of states N, parameter estimation of the MMPP, the MAP, and the BMAP is accomplished by 
means of the EM algorithm for BMAPs. Whereas the previous case study considers measured 
traffic with a medium degree of self-similarity, this case study demonstrates the success of the 
customized BMAP at modeling measured WAN IP traffic with a large degree of self-
similarity. 

Effective parameterization of the customized BMAP follows the same ideas stated in the 
first case study. Again, in order to reduce the number of BMAP parameters, the proposed 
scaling procedure is applied before parameter estimation. Opposed to the first case study, the 
choice of M = 2 is the optimal number of different packet lengths. Subdividing the domain of 
packet lengths in two instead of three intervals may be explained by the fact that 75% of all 
packets are smaller than 200 bytes (see Figure 4.11, right). From a modeling point of view, 
this may indicate that it is sufficient to differentiate between two types of packets, i.e., small 
packets and large packets. However, detailed investigations of queuing performance show 
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that customized BMAPs with M ² 3 different packet lengths are of the same quality, 
respectively, but inferior compared with M = 2 different packet lengths (see Figures 4.18 and 
4.19). For M = 2, average (integer) packet lengths after scaling are given by s1 = 157 bytes 
and s2 = 1493 bytes. These average packet lengths reflect the notion of very small (i.e., below 
200 bytes) and very large packets apparent in this traffic trace. 

In order to find the number of states N that is suitable to capture the packet arrival process, 
the EM algorithm is applied for BMAPs with a varying number of states N and M = 2 
different packet lengths. Similarly to Figure 4.3, Figure 4.12 plots likelihood estimates for 
BMAPs with two up to six states. In agreement with the previous case study, the likelihood 
estimate of two-state BMAPs is significantly smaller than likelihood estimates for BMAPs 
with three or more states. As already observed in the previous case study, likelihood estimates 
increase with growing number of states, whereas, compared with the previous case study, 
differences between likelihood estimates diminish even more for N ² 4 states. Again, studies 
of queuing performance reveal that BMAPs with two states are unsuitable for capturing the 
packet arrival process. As illustrated in Figures 4.18 and 4.19, three-state BMAPs show 
nearly the same performance as BMAPs with N ² 4 states, and, thus, this case study utilizes a 
three-state BMAP with M = 2 different packet lengths. 
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Figure 4.12. Likelihood estimates for different number of states N 
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To determine the BMAP’s initial parameter set, some initial estimates are generated 
randomly and the initial parameter set f(0) is set to the estimate with the maximum 
likelihood. As a consequence of scaling to M = 2 different packet lengths, the EM algorithm 
just estimates parameters of rate matrices D(0), D(157), and D(1493). The EM algorithm 
converges after r = 49 iterations and requires less than 6 minutes of CPU time on a Pentium 
IV 1.7 GHz PC with 256 MB of main memory for convergence. Again, the EM algorithm 
converges, if each parameter of two successive parameter sets differs only up to 10-3. Initial 
and estimated parameter sets are presented in Table 4.3. Compared with the first case study, 
the EM algorithm not only converges much faster, but also requires about half the time for an 
EM iteration on average. As the number of states N is the same in both case studies and the 
sample size n is even larger in this case study, considerations of computational complexity 
(presented in Section 3) indicate that the run-time differs due to (1) the distribution of inter-
arrival times and (2) the values of maximum diagonal elements taken during the estimation. 

Investigating the structure of the estimated rate matrices reveals that arrivals with packet 
lengths of 157 bytes may occur in each state, whereas arrivals with packet lengths of 1493 
bytes mainly occur in the second state. Moreover, the transition to the second state (from a 
distinct state) has a very small probability (see second column of estimated rate matrices). 
Thus, the estimated BMAP generates sequences of arrivals comprising (1) many arrivals with 
packet lengths of 157 bytes in succession and (2) many arrivals with alternating packet 
lengths of 157 bytes and 1493 bytes in succession. This state-dependent generation of 
different packet lengths indicates that the original traffic trace possesses strong correlations 
between packet arrivals and packet lengths. 

To illustrate the convergence behavior of the EM algorithm for different random initial 
parameter sets, Figure 4.13 plots the logarithm of the likelihood versus the number of 
iterations. Although the transient behavior of likelihood estimates is quite different during the 
first iterations, the evolution of each likelihood estimate rapidly converges against a common 
likelihood estimate of 1,125,111 after 30 iterations. Opposed to the previous case study, the 
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Table 4.3. Initial (left) and estimated (right) BMAP rate matrices 
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Figure 4.13. Convergence behavior of different (random) initial parameter sets 

 

evolution of likelihood estimates does not seem to settle down at likelihood estimates other 
than this common likelihood estimate. Thus, Figure 4.13 does not reveal the existence of 
dominant local maxima in the parameter space. 

4.5.3 Performance Evaluation 

According to the case study of ISP IP traffic, the following compares the performance of the 
Poisson process, the MMPP, the MAP, and the customized BMAP by means of visual 
inspection of sample paths over multiple time scales, by presenting important statistical 
properties, by formal analysis of self-similarity, and by investigations of queuing 
performance. The MMPP and the MAP have the same number of states as the customized 
BMAP (i.e., N = 3 states) and traffic streams comprising 250,000 packet arrivals are 
generated for each of these traffic models. For the Poisson process, the MMPP, and the MAP, 
the average packet length of 210 bytes is associated with each packet arrival. As in the 
previous case study, assigning packet lengths according to the empirical distribution of the 
measured traffic instead of these average packet lengths does not change performance results 
significantly. Furthermore, the MMPP and the MAP again show nearly the same performance 
for each of these characteristics. Thus, the corresponding performance curves are omitted for 
clearness of presentation. 



110 4.   MODELING IP TRAFFIC USING THE BMAP 

 

Again, to visualize the degree of traffic burstiness in these traffic streams, (excerpts from) 
sample paths are plotted on four different time scales, i.e. 0.001 sec, 0.01 sec, 0.1 sec, and 1.0 
sec. Figure 4.14 presents the sample paths of the measured traffic (Figure 4.14, left) and the 
customized BMAP (Figure 4.14, right), whereas Figure 4.15 plots the sample paths of the 
MAP (Figure 4.15, left) and the Poisson process (Figure 4.15, right). Compared with the 
measured ISP IP traffic, the measured WAN IP traffic shows a much larger degree of traffic 
burstiness over all considered time scales. This indicates that the R/S-statistic presented below 
will reveal a large degree of self-similarity. The sample paths corresponding to the 
customized BMAP are amazing similarly to the measured traffic’s sample paths. Especially 
on large time scales, i.e., 0.1 sec and 1 sec, the customized BMAP generates traffic bursts of 
nearly the same extent as in the measured traffic. On the other hand, the MAP and the Poisson 
process fail to capture traffic burstiness over all considered time scales. Especially, on the 1 
sec time scale, sample paths of both traffic models just fluctuate a little about the mean data 
rate of about 50,000 bytes per sec. Compared with the previous case study, the gap between 
the customized BMAP on the one hand and the MAP and the Poisson process on the other 
hand increases significantly in terms of visualized traffic burstiness. This is a first indicator of 
bad performance of the MAP and the Poison process in subsequent studies. 

Figure 4.16 plots the cumulative distribution functions of transferred data volume per time 
unit for the measured traffic, customized BMAP, the MAP, and the Poisson process at time 
scales 0.001 sec, 0.01 sec, 0.1 sec, and 1 sec, respectively. On the smallest time scale, all 
traffic models fail to capture the measured traffic’s CDF entirely, whereas the customized 
BMAP exactly matches the measured traffic’s CDF for data rates larger than 1150 bytes per 
time unit. Again, the “steps” apparent in all CDFs are due to lack of distinct packet lengths. 
These observations are also valid on the 0.01 sec time scale, where no traffic model is able to 
mimic the intended CDF’s shape. Nevertheless, on large time scales, the customized BMAP 
mimics the tail of the measured traffic’s CDF quite authentically, whereas CDFs of the MAP 
and the Poisson process reaches its maximum quite fast and, thus, fail to capture the measured 
traffic’s CDF. Especially, on the largest time scale, changes in the CDF of the MAP and the 
Poisson process are in a small interval at data rates of about 50,000 bytes per sec. This 
confirms previous observations, where the sample paths of both traffic models just fluctuate a 
little about this data rate. Compared with the previous case study, the customized BMAP 
performs better on the largest time scale, whereas performance decreases on small time scales. 
The performance of the Poisson process is as bad as in the first case study, whereas the 
performance of the MAP gets worse compared with the first case study. As concluded for 
sample path observations, the gap between the MAP and the customized BMAP grows 
increasingly. 
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Figure 4.14. Sample paths of the measured traffic (left) 
and the customized BMAP (right) on different time scales 
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Figure 4.15. Sample paths of the MAP (left) 
and the Poisson process (right) on different time scales 
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Figure 4.16. Cumulative distribution functions of data rates on different time scales 

 

For different time scales, Table 4.4 presents mean, standard deviation, skewness, and 
kurtosis of data rates for the measured traffic, the BMAP, the MAP, and the Poisson process. 
As expected, the mean of all traffic models matches the mean of the measured traffic trace on 
all time scales. Note that the statistics of traffic models base on traffic streams of 250,000 
samples, and, thus, their means show minimal differences on all time scales. As in the first 
case study, the Poisson process performs badly for all considered statistics on all time scales. 
The customized BMAP shows a large degree of variance even on large time scales, whereas 
the MAP fails miserably in capturing standard deviation on large time scales. In the first case 
study, the difference between standard deviation of the measured traffic and standard 
deviation of the customized BMAP and the MAP on the largest time scale is about 33% and 
52%, respectively. In this case study, this difference gets smaller for the customized BMAP 
and is about 23%, whereas the difference of standard deviations worsens significantly for the 
MAP and is about 85%. Table 4.4 reveals similar results for skewness and kurtosis. Recall 
that skewness and kurtosis measure the degree of asymmetry and peakedness, respectively. 
With exception of the smallest time scale, skewness of the customized BMAP is quite 
similarly to the skewness of the measured traffic, whereas the MAP fails to capture skewness 
to a certain degree. On small time scales, the customized BMAP overestimates kurtosis 
significantly, whereas on large time scales, i.e., 0.1 sec and 1 sec, the degree of peakedness is 
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Time unit [sec] Traffic source Mean Standard deviation Skewness Kurtosis
Measured traffic 49.98 202.80 5.59 33.89

Customized BMAP 49.83 173.10 8.49 98.13
MAP 49.79 109.89 2.56 8.29

Poisson process 49.79 102.05 2.05 4.22
Measured traffic 499.79 988.85 3.22 13.47

Customized BMAP 498.25 770.53 4.22 24.20
MAP 497.92 490.62 1.90 5.71

Poisson process 497.94 322.51 0.64 0.38
Measured traffic 4997.67 6760.70 2.56 7.78

Customized BMAP 4982.03 5460.66 3.12 9.51
MAP 4979.04 2480.42 1.07 1.49

Poisson process 4979.04 1032.68 0.21 0.03
Measured traffic 49952.90 57594.00 2.47 6.63

Customized BMAP 49777.60 44328.00 3.00 8.12
MAP 49761.90 8514.36 0.35 0.39

Poisson process 49761.90 3317.78 -0.82 7.49

0.001

0.01

0.1

1

 

Table 4.4. Statistical properties of data rates on different time scales 

 

similarly to the kurtosis of the measured traffic. Compared with statistical properties of the 
traffic models in the first case study, the difference between the customized BMAP and the 
MAP grows enormously. 

To formalize the notion of traffic burstiness, i.e., self-similarity, again, the R/S-statistic 
analyses the sequence of byte counts in every 10-3 sec [MV97]. Figure 4.17 depicts the pox 
diagrams of the R/S-statistic for the measured traffic, the customized BMAP, the MAP, and 
the Poisson process. As expected, linear regression of points in the pox diagram reveals a 
large degree of self-similarity in the measured traffic (H = 0.7733). The customized BMAP 
performs quite well and captures self-similarity on a large scale (H = 0.7464). Whereas the 
pox diagram of the Poisson process indicates the absence of traffic burstiness (H = 0.5157), 
Figure 4.17 reveals a medium degree of self-similarity for the MAP with Hurst parameter 
H = 0.6412. These results differ significantly from results of the previous case study, where 
the measured traffic reveals just a medium degree of self-similarity, and the customized 
BMAP and the MAP both fail to capture self-similarity of the measured traffic. 

As in the previous case study, the practical applicability of the customized BMAP is 
demonstrated by analysis of queuing performance in terms of queue length distribution and 
packet loss probability. Again, a single server queuing model with deterministic service time 
is considered. Recall that the queue capacity is infinite for the analysis of the queue length 
distribution, whereas packet losses are investigated for increasing queue capacities. For 



4.5.   CASE STUDY II: TRAFFIC MODELING OF WAN IP TRAFFIC 115 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

log(u)

lo
g(

R
(u

)/S
(u

))

Pox points of measured traffic
Linear regression (H = 0.7733)

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

log(u)

lo
g(

R
(u

)/S
(u

))

Pox points of customized BMAP
Linear regression (H = 0.7464)

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

log(u)

lo
g(

R
(u

)/S
(u

))

Pox points of MAP
Linear regression (H = 0.6412)

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

log(u)

lo
g(

R
(u

)/S
(u

))

Pox points of Poisson Process
Linear regression (H = 0.5157)

 

Figure 4.17. Pox diagram of the R/S-statistic for the measured traffic 
and the analytically tractable traffic models 

 

different traffic intensities r, Figures 4.18 and 4.19 plot the complementary cumulative 
distribution of the queue length Q and the packet loss probability for the analytical traffic 
models in conjunction with the appropriate performance measures using measured traffic as 
input data. Again, Figures 4.18 and 4.19 present additional curves that confirm model 
specifications of the customized BMAP used throughout this case study, i.e., M = 2 different 
packet lengths and N = 3 states. To clarify the choice packet lengths M, both figures depict the 
queuing performance of a customized BMAP with M = 3 packet lengths using the same 
number of states (i.e., N = 3). Especially at the tail of the distribution (Figure 4.18) and for 
large queue capacities (Figure 4.19), the choice of M = 2 packet lengths yields a significant 
improvement of queuing performance compared with M = 3 packet lengths. As the 
performance of customized BMAPs with M ² 3 packet lengths is nearly identically, these 
curves are not presented. To clarify the choice of N = 3 states, Figures 4.18 and 4.19 plot the 
cumulative distribution of the queue length and the packet loss probability for a customized 
BMAP with N = 6 states using M = 2 different packet lengths. As in the first case study, 
queuing performance is improved only slightly by increasing the number of states especially 
for high traffic intensities. Again, further increasing the number of states, i.e., N ² 6, does not 
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Figure 4.18. Complementary distribution of queue length Q of a single server queue 
with deterministic service time for different traffic intensities r 

 

yield improved queuing performance, and, thus, corresponding curves are omitted due to 
clearness of presentation. 

As expected, the Poisson process fails miserably in terms of queue length distribution and 
packet loss probability for all considered traffic intensities. Although the MAP outperforms 
the Poisson process, the MAP is not able to capture the measured traffic’s queue length 
distribution and shows a quite different behavior in terms of packet losses. However, Figures 
4.18 and 4.19 evidently show that the customized BMAP outperforms the MAP and the 
Poisson process by some orders of magnitude regardless of the considered traffic intensity. 
Recall that in the previous case study the customized BMAP outperforms the MAP by just 
one order of magnitude in terms of queue length distribution for medium up to large queue 
lengths. Compared with the queuing performance of the measured traffic, it is obviously that 
regardless of the traffic intensity the customized BMAP shows a similar behavior in terms of 
queue length distribution up to medium queue lengths, but fails to capture the measured 
traffic’s distribution for large queue lengths. Moreover, packet losses are underestimated 
significantly for increasing queue capacities (see Figure 4.19). 
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Figure 4.19. Packet loss probability of a single server queue with deterministic 
service time for increasing queue capacities and different traffic intensities r 

 

In summary, the customized BMAP outperforms the MAP significantly regardless of the 
considered performance measure. The R/S-statistic reveals that the measured traffic used in 
this case study comprises a large degree of self-similarity. From a modeling point of view, 
this makes things even more difficult. However, the MAP is not capable to capture traffic 
burstiness of the measured traffic, whereas the customized BMAP performs quite well and 
captures self-similarity on a large scale. Studies of queuing performance show that the 
customized BMAP is able to capture the measured traffic’s queue length distribution up to 
medium queue lengths for all considered traffic intensities. Similar results arise from the 
analysis of packet losses. Thus, this case study confirms the results of the previous case study 
and shows the clear advantage of the joint characterization of packet arrivals and packet 
lengths. 

 

4.6 Summary 

This section shows that TCP packet lengths follow a “spiky” distribution with peaks at just a 
few predominating lengths that are due to protocol and network specific characteristics. 
Whereas almost all traffic models capture inter-arrival times of measured IP traffic and 
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assume an average packet length or draw packet lengths according to the empirical 
distribution of the measured traffic, the batch Markovian arrival process enables “two-
dimensional”, i.e., joint, characterization of packet arrivals and packet lengths. Thus, the 
BMAP is able to capture (1) the packet arrival process, (2) the packet length process including 
spiky packet length characteristics, and (3) correlations between the packet arrival process and 
the packet length process. The key idea is to represent different packet lengths by different 
rewards, i.e., batch sizes of arrivals, of the BMAP. A scaling procedure is proposed that 
reduces the number of parameters dramatically without changing the BMAP’s quality. This is 
decisively for the practical utilization of parameterized BMAP in Markovian performance 
models, as the solution of these kinds of performance models primarily depends on the 
number of non-zero entries in the corresponding infinitesimal generator matrix of the 
underlying CTMC. Such a customized BMAP can be parameterized directly by means of the 
EM algorithm introduced in Section 3. 

Case studies of TCP traffic with different degrees of self-similarity compare performance 
of the Poisson process, the MMPP, the MAP, and the customized BMAP by means of visual 
inspection of sample paths, by presenting important statistical properties, by formal analysis 
of self-similarity, and by investigations of queuing performance. Both case studies show the 
clear advantage of the customized BMAP over other analytically tractable traffic models and 
reveal that the difference between the customized BMAP on the one hand and the MAP, the 
MMPP, and the Poisson process on the other hand is enormously. Especially, results of 
queuing performance show that it is not sufficient to utilize state-of-the-art Markovian traffic 
models that just capture inter-arrival times (ignoring packet lengths completely) and assume 
an average packet length or draw packet lengths according to the empirical distribution of the 
measured traffic. Beyond these case studies, the joint characterization of packet arrivals and 
packet lengths using customized BMAPs has been utilized successfully in practice for 
aggregated traffic modeling of non real-time traffic in 3G mobile communication networks 
[KLL01]. 
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5 Future Research Directions 

HIS SECTION presents future directions of research concerning research areas 
examined in this thesis. The proposed QoS/revenue management scheme could be 

extended such that real-time and non real-time services are considered jointly. As a first step 
into this research direction, a Markov model is outlined that considers packet level traffic of 
non real-time services, and an effective evaluation method is presented that utilizes special 
structures in the generator matrix of the underlying Markov chain. Moreover, it seems 
naturally to extend the introduced QoS/revenue management scheme towards emerging 
Beyond 3G mobile communication networks. Referring to the EM algorithm for parameter 
estimation of BMAPs, future research could investigate the determination of initial parameter 
sets, the acceleration of the EM algorithm itself, and the discrepancy between maximum 
likelihood and traffic burstiness. Moreover, it is outlined how an EM algorithm could be 
utilized for effective modeling the state of TCP connections in mobile ad-hoc networks. 

5.1 Online QoS/Revenue Management of Non Real-Time Services 

This thesis introduces a detailed Markov model for online QoS/revenue management of real-
time services that incorporates a novel call admission control and bandwidth degradation 
scheme and considers important features of 3G cellular networks, such as CDMA intra- and 
inter-cell interference, different service classes, and soft handover. The compactness of this 
Markov model enables the online evaluation according to changing traffic load currently 
measured in the RAN. To enable online QoS/revenue management of both real-time and non 
real-time services, it seems naturally to enhance the QoS/revenue management scheme by non 
real-time services that are important in practice. 

Whereas real-time services can be characterized by their required bandwidth (which is 
exclusively reserved due to delay-sensitivity) [CDZ02], [CS02], [DJK+00], [SDB+98], 
aggregated non real-time traffic is “bursty” in nature and, thus, requires characterization at 
packet level (see Section 4). Modeling packet traffic for each user session enlarges the 
Markov model enormously, and, thus, further research effort is required to derive a compact 
Markov model that considers (1) real-time and non real-time services and (2) important 
features of 3G mobile communication networks. To reach this challenging goal the following 
research issues have to be considered: 

T



120 5.   FUTURE RESEARCH DIRECTIONS 

 

¶ Compact and detailed (Markovian) modeling of non real-time traffic at packet level 

¶ Packet scheduling strategies for non real-time traffic of different service classes 

¶ Development of a realistic Markov model for online QoS/revenue management that 
incorporates real-time and non real-time services 

¶ Development of an effective evaluation method suitable for online evaluation of the 
Markov model 

As shown in this thesis, it is not sufficient to utilize state-of-the-art Markovian traffic 
models that just capture inter-arrival times and assume uncorrelated packet lengths for each 
arrival. Thus, due to the scarce bandwidth in the radio access network, accurate stochastic 
modeling of byte-based traffic rates (i.e., bytes per time unit) is essentially. Based on this 
research result, accurate and compact modeling of non real-time traffic can be performed by 
BMAPs that are parameterized utilizing the proposed EM algorithm (see [KLL01] for details 
concerning the non real-time traffic model for 3G mobile communication networks). In order 
to distinguish different priorities of non real-time traffic corresponding to different service 
classes [3GPPc], the Markov model has to consider a tailored packet scheduling strategy 
[BLN99], [DJK+00]. In earlier work [LLT03], a mathematical framework for adaptive 
QoS/revenue management of real-time and non real-time services has been introduced that 
shows how packet scheduling of non real-time services can be effectively performed in 
practice. For online evaluation of the Markov model, highly efficient evaluation methods have 
to be derived that make use of special structures in the generator matrix underlying the 
Markov chain in order to reduce computational complexity. 

The following outlines a first approach of an admission controller and its Markov model 
that exclusively considers non real-time packet level traffic. Special structures in the generator 
matrix are identified and an efficient evaluation method based on the linear level reduction is 
derived. However, this Markov model constitutes just a first step in the desired research 
direction and does not provide the solution of all research issues outlined above. Especially, 
packet scheduling for non real-time traffic of different service classes and byte-based 
modeling of non real-time traffic by means of a BMAP are not considered. 

Queuing Model of the Admission Controller 

In the queuing model of the admission controller, a base station serves a single cell. User 
requests for new non real-time sessions and handover requests from ongoing data sessions 
arrive according to a Poisson process with an overall rate lu. If the session is still active after 
the dwell time, a handover to an adjacent cell takes place. Dwell time and session duration are 
assumed to be exponentially distributed random variables with an overall rate mu of data 
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sessions leaving the considered cell. Data packets are queued in a FIFO queue with capacity K 
at the base station until they are scheduled for transmission over the wireless link [DJK+00]. 
The transmission rate of packets over the wireless link is exponentially distributed with 
parameter mp. In order to prevent buffer overflow, sessions are only admitted, if the current 
queue length k does not exceed a certain buffer availability threshold h, i.e., k ¢ h·K. 
Analogously to the optimization of the threshold for maximal call degradation presented in 
Section 2, the buffer availability threshold h is subject of optimization in this queuing model. 
Each session generates data packets according to the 3G single user traffic model proposed by 
Klemm, Lindemann, and Lohmann [KLL01]. Figure 5.1 shows the extended queuing model 
of the admission controller. In fact, the model consists of two coupled queues, one 
representing the session level and the other representing the packet level. A M/M/¤ queue 
describes the session level where the arrival rate is controlled by the current queue length k of 
the packet queue. In order to keep the state space of the queuing model tractable for numerical 
online solution, aggregated two-state MMPPs, denoted by MMPP(n), capture the aggregated 
packet arrival process for each number of ongoing sessions n. Thus, the packet level is 
represented by a MMPP(n)/M/1/K queue. For accurate parameterization of each MMPP(n), 
 

IF(k ¢ h·K)

ELSE

arriving
session requests

ongoing
sessions

EXP(lu)

terminated
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Session Level
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IF(k < K)
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Figure 5.1. Extended queuing model of the admission controller 
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the EM algorithm for BMAPs is applied for aggregated traffic streams each of which is given 
by the superposition of n individual traffic streams that utilize the 3G single user traffic model 
presented in [KLL01]. 

Efficient Numerical Analysis of the Queuing Model 

The analysis of the queuing model is performed by means of a CTMC. A state of the queuing 
model representing the considered scenario is determined by the number of active data 
sessions n, the number of packets queued at the base station k, and the state of the aggregated 
two-state MMPP, i.e., MMPP(n). State transitions correspond to different kinds of events that 
may occur in the cell, i.e., incoming data sessions and handovers, outgoing data sessions due 
to completion or handover, arrivals of data packets, transfer of data packets, and state changes 
of the MMPP(n). Transition rates are obtained from the analysis of the system events. 
Without any restrictions, the number of active data sessions can be infinite, leading to an 
infinite number of states underlying the model. To make the model analytically tractable, the 
maximal number of active data sessions is restricted by an upper bound N. This bound must 
be chosen such that the effect is negligibly compared with the original model. Therefore, the 
session level model of Figure 5.1 is considered for h = 1, i.e., all session requests are 
accepted. Then, the session level model reduces to a simple M/M/N/N queuing system where 
a closed-form solution exists. In fact, the steady-state probability of N ongoing data sessions 
constitutes Erlang’s loss formula 

0

( , )
! !

N nN

B
n

A AE A N
N n=

= ä  (5.1) 

with A = lu/mu the offered total traffic in Erlangs. EB(A, N) is monotonically decreasing in N. 
Thus, an upper bound N = N0 such that EB(A, N0) < e can be computed effectively [HMT01]. 

One can easily show that the CTMC underlying the queuing model is homogeneous and 
irreducible for any fixed threshold h (0 ¢ h ¢ 1). Thus, the steady state distribution ph can be 
computed by the matrix equation ph·Qh = 0 subject to the normalization condition |ph| = 1. 
Here, Qh denotes the infinitesimal generator matrix for threshold h. Due to the state space 
size of 2(N + 1)(K + 1) states, a straightforward solution of the matrix equation results in a 
computational effort that is not feasible for online evaluation. Moreover, the matrix equation 
has to be solved for several values h in order to find the optimal h value. Therefore, an 
efficient method based on linear level reduction utilizes the notion of special structures in the 
generator matrix [GJL84], [LR99]. With appropriate rearranging of the state space, the matrix 
Qh is of tri-diagonal structure with sub-matrices A, B, C, C , C0, and C 0 of dimension 
2(N + 1). Matrices A and B are diagonal matrices comprising transition rates corresponding to 
an arrival and transfer of a data packet, respectively. Both matrices C and C  contain 
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transition rates corresponding to state changes of the MMPP(n). Furthermore, C contains 
transition rates corresponding to incoming and leaving data sessions, whereas matrix C  
contains only transition rates corresponding to leaving data sessions. Recall that data sessions 
are only accepted by the admission controller, if k ¢ h·K. Therefore, matrix-rows 1 to KhÖé ùê ú  
of Qh contain matrix C in the diagonal and matrix-rows KhÖé ùê ú +1 to K-1 contain matrix C  
as diagonal matrix. 

According to the special structure of the generator matrix, a linear level reduction method 
to compute the steady state probability vector p = ph can be applied. In this context, the 
matrix-rows 0 to K of matrix Qh are considered as levels. The method comprises two phases. 
The first phase reduces the state space progressively by removing one level of states at each 
step, until the states on level K are left over. In the second phase the steady state probability 
vector p is constructed by adding one level at each step. Similarly to [GJL84] and [LR99], 
matrices Zj (0 ¢ j ¢ K) are defined that record the probability, starting from states at level j, of 
returning to level j before reaching the level j + 1. Utilizing the special structure of the 
generator matrix outlined in (5.2) and applying some calculus, yields the recursive definition 
of Zj that performs the level recursion stated above. Figure 5.2 depicts this state space 
reduction as well as the computation scheme of the stationary probability vector p, where I 
denotes the identity matrix of appropriate dimension and q is the maximum diagonal element 
of the generator matrix. The vector pj = (pj(N+1), pj(N+1)+1,..., pj(N+1)+N) comprises the steady 
state probabilities corresponding to level j. Recall that an optimization of h requires the 
computation of the steady state probability vector ph for several values of h. Therefore, a 
major advantage of applying the linear level reduction algorithm for solving the matrix 
equation ph·Qh = 0 is that for different values of h only some of the computational steps (5.3) 
to (5.8) have to be performed. Suppose that ph must be subsequently computed for 
h1, h2 ,..., hm and the computation of h1, h2 ,..., hi is already performed, then the state space 
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(1) State space reduction: 
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(2) Computation of steady state probabilities: 
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-
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Figure 5.2. Effective computation of steady state probabilities 

 

reduction for the computation of phi+1 can start with level 1 1,..,min( ,max ( )) 1i k i k K+ =h h Ö +é ùê ú  
since the matrices Zj for lower levels can be taken from previous computations. 

 

5.2 QoS/Revenue Management for B3G Mobile Communication Networks 

Beyond 3G communication networks integrate heterogeneous communication networks into 
an interworking communication network that combines the advantages of the individual 
communication networks. 3G mobile communication networks and wireless local area 
networks (WLAN) based on the IEEE 802.11 standard [IEEEa] constitute the most important 
components in these emerging B3G mobile communication networks. Both communication 
networks compete in certain segments while completing in others. Whereas 3G mobile 
communication networks, e.g., UMTS, offer an exhaustive available RAN, bandwidth is 
limited to 2 Mbps. On the other hand IEEE 802.11 WLAN networks are available especially 
in so-called hot spots, i.e., city areas, airports, exhibition centers, etc., and offer a bandwidth 
up to 54 Mbps. Following the European perspective of 3G, the integration of UMTS and 
IEEE 802.11 WLAN radio access technologies (UMTS/WLAN) combines the advantages of 
both architectures ideally, i.e., the exhaustive available radio access network of UMTS and 
the higher bandwidth of IEEE 802.11 WLAN. Their integration is very important to make 
wireless multimedia and other high-rate data services a reality for a large population. 
Multimode UMTS/WLAN terminals can access high bandwidth data services where WLAN 
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coverage is offered, while accessing UMTS at other places. To make such multi-access 
solutions effective, an integrated solution that provides seamless mobility between both 
access technologies and continuity of existing sessions is required. 

Seamless integration of these separately developed architectures is a research issue of 
current interest [3GPPb], [AHP03], [BCH+03], [LJK+03], [SFP02]. These and other research 
proposals suggest several degrees of coupling between UMTS and IEEE 802.11 WLAN 
starting with loosely coupled UMTS/WLAN networks up to tightly coupled UMTS/WLAN 
networks. In contrast to tightly coupled networks, interworking between loosely coupled 
UMTS/WLAN networks requires significant administration overhead. These distinct degrees 
of interworking have to be considered carefully during the development of QoS/revenue 
management strategies for B3G mobile communication networks. The research results and 
fundamental ideas for QoS/revenue management in 3G mobile communication networks 
proposed in this thesis and in [LLT02] and [LLT03] can also be adopted for QoS/revenue 
management in B3G mobile communication networks. Nevertheless, additional research 
effort is required for proper interworking of UMTS/WLAN networks. To successfully 
implement QoS/revenue management in B3G mobile communication networks the following 
research issues have to be considered in advance: 

¶ Development of an adaptive inter-system handover management algorithm for optimal 
utilization of the available UMTS/WLAN radio resources 

¶ Design of inter-system end-to-end QoS management mechanisms for UMTS/WLAN 
networks 

¶ Development of adaptive inter-system call admission control mechanisms tailored to 
UMTS/WLAN networks 

The following outlines some (novel) ideas concerning adaptive inter-system handover 
management, inter-system end-to-end QoS management, and adaptive call admission control 
for UMTS/WLAN networks. In [AHP03] and [KH03], ideas concerning other interworking 
aspects including authentication, security aspects, and billing mechanisms for coupled 
UMTS/WLAN networks are presented. 

Inter-System Handovers 

As outlined in the introduction of this thesis, handover management has been studied 
extensively for 3G mobile communication networks. However, heterogeneous UMTS/WLAN 
networks require additional effort for seamless inter-system handover management [MAB00], 
[PKH+00]. The objective for inter-system handovers is two-fold. Inter-system handover 
management mechanisms intend to guarantee continuity of existing sessions for forced 
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handoffs between heterogeneous RANs, e.g., an ongoing session leaves a WLAN network 
due to mobility. On the other hand, inter-system handovers should be triggered explicitly for 
currently overloaded RANs. This migration of ongoing sessions between UMTS and WLAN 
networks enables optimal usage of currently available UMTS/WLAN radio resources. 
Consequently, traffic is reduced in overloaded RANs temporarily and QoS demands of 
ongoing sessions can be fulfilled. Explicitly triggered inter-system handovers require 
additional administration (i.e., signalization) overhead dependent on the degree of 
interworking, i.e., loosely or tightly coupled UMTS/WLAN networks [3GPPb], [BCH+03]. 
Inter-system handover management research should focus the following research issues: 

¶ Redistribution of ongoing UMTS and WLAN sessions with distinct QoS requirements 
on the available UMTS/WLAN radio resources 

¶ Minimization of the administration overhead for loosely and tightly coupled 
UMTS/WLAN networks 

The first research issue includes the definition of services with different UMTS/WLAN QoS 
requirements and requires the prioritization of individual users. The tradeoff between 
fulfilling QoS requirements and the administration overhead induced by inter-system 
handovers may be formalized as an optimization problem. Thus, the redistribution of ongoing 
calls is determined by the administration overhead and the effort required for solving such an 
optimization problem. 

Inter-System End-To-End QoS 

Inter-system end-to-end QoS management mechanisms constitute an important step towards 
developing adaptive inter-system call admission control mechanisms for UMTS/WLAN 
networks. This requires the utilization of QoS supporting technologies provided in each RAN. 
The IEEE 802.11 standard defines several medium access control (MAC) mechanisms to 
enable QoS in WLAN [IEEEb], [LAS03]. IEEE 802.11a/b defines QoS profiles with different 
priorities by means of a point coordinator function that coordinates the centralized allocation 
of access times for a considered WLAN access point. The IEEE 802.11e specification extends 
this standard by a distributed access method (enhanced distributed coordination function) 
with eight different priorities. On the other hand, the UMTS standard just defines four QoS 
classes, i.e., conversational, streaming, interactive, and background, but does not specify 
methods for technical implementation of these QoS classes within the UMTS radio access 
network [3GPPc]. Research issues concerning inter-system end-to-end QoS management are 
as follows: 
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¶ Development of mechanisms to map UMTS QoS profiles onto IEEE 802.11 QoS 
profiles and vise versa 

¶ Technical implementation of QoS profiles (comprising bandwidth-, delay-, and loss 
requirements) subject to UMTS/WLAN radio access technologies 

The existence of different QoS profiles in UMTS and IEEE 802.11 requires the development 
of mechanisms to map UMTS QoS profiles onto IEEE 802.11 QoS profiles and vise versa 
[FM01]. These mechanisms are fundamental to enable end-to-end QoS and adaptive inter-
system call admission control. Technical implementation of QoS profiles in UMTS can be 
performed by (1) explicit reservation of bandwidth, i.e., the session has guaranteed QoS, or 
(2) prioritized scheduling of data packet, i.e., QoS is granted relative to other current sessions. 

Inter-System Call Admission Control 

Similarly to 3G mobile communication networks, inter-system call admission control aims to 
guarantee QoS demands of ongoing sessions. Dependent on these QoS demands and the 
current traffic load in the UMTS/WLAN network, new call requests as well as intra- and 
inter-system handovers must be accepted or rejected. The admission strategies presented in 
this thesis and in [LLT02] and [LLT03] can be adopted appropriately, i.e., inter-system 
handover and inter-system end-to-end QoS, as mentioned above, have to be taken in 
consideration. Research concerning call admission control should focus the following 
research issues: 

¶ Definition of control parameters for the admission controller that enables adaptive 
adjustment according to current traffic load in the UMTS/WLAN network 

¶ Development of an adaptive call admission controller for real-time and non real-time 
data services that optimizes QoS and provider revenue for UMTS/WLAN networks 

For integrated QoS/revenue management, the admission controller considers both QoS 
demands of the users and revenue earned by the provider and requires developing inter-
system accounting strategies. The question arises which control parameters of the admission 
controller have to be adjusted adaptively to fulfill QoS and provider revenue demands. 

 

5.3 Further Enhancements of the EM Algorithm for BMAPs 

As evidently shown in Section 4, the EM algorithm for efficient and numerical stable 
parameter estimation of BMAPs works quite well in practice for real-world traffic traces. 
Nevertheless, the EM algorithm could be enhanced concerning the determination of the initial 
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parameter set. Future research could also investigate possibilities for further acceleration of 
the EM algorithm. Moreover, the discrepancy between the maximization of the likelihood and 
the maximization of traffic burstiness needs further research effort. In the following, some 
remarks and key literature pointers concerning these enhancements are given. 

Acceleration of the EM Algorithm 

Generally, the EM algorithm has been proven as numerically very stable when implemented 
carefully. However, extensive experience with parameter estimation of numerous stochastic 
processes, e.g., the MMPP [Ryd94], revealed that EM algorithms are slow compared with 
other methods for parameter estimation, e.g., Newton-type or gradient methods. It might be 
possible to speed up the EM algorithm by using acceleration methods [JJ93], [Lou82], 
[Mei89]. An acceleration method presented in [Mei89] has been implemented for the EM 
algorithm presented in this thesis. Roughly speaking, this acceleration method utilizes a fast 
minimal polynomial extrapolation method based on the last few estimates of the EM 
algorithm. But so far this acceleration method does not work out quite well, i.e., performance 
is increased only very slightly. 

Determination of Initial Parameters 

As described in Section 3, random initialization is used for determining initial parameter sets 
required by the EM algorithm. Recall that the initial parameter set for the EM algorithm is 
determined as the best (maximum likelihood) parameter set out of some random initial 
parameter sets. Performance curves presented in Section 3 and 4 demonstrate that in almost 
all cases different initial estimates result in a slightly different number of iterations required 
for convergence, whereas the quality of different estimated parameter sets is nearly 
identically. Nevertheless, in some rare cases random initialization results in (1) slow 
convergence behavior of the EM algorithm or (2) convergence in a local (likelihood) 
optimum. Especially for the MMPP, numerous approaches have been proposed that mainly 
utilize preconditioning according to moment matching, clustering, or heuristic methods 
[DM93], [Ryd96]. Moreover, some methods utilize the results of [Cum82] and [DL82] in 
order to determine initial parameter sets with decreasing values. Beside random initialization, 
none of these methods has currently been adopted for initialization of BMAP parameter sets. 

Maximum Likelihood and Traffic Burstiness 

As shown for MMPPs in [AR00], the EM algorithm ends up with the by far largest likelihood 
compared with other parameter estimation methods. On the other hand, the EM algorithm 
does not give the best fit with respect to queuing behavior and traffic burstiness. Similar 
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experience has been gained for BMAP parameter estimation, where BMAPs with a larger 
number of states result in larger likelihood estimates, but show nearly the same performance 
in terms of queuing behavior and traffic burstiness. This clearly indicates that it is not as 
simple as to look at the likelihood only for parameter estimation of bursty traffic traces. This 
tradeoff between the maximization of the likelihood and the maximization of the traffic 
burstiness needs further work. Following ideas proposed for MMPPs [AR00], [SVP03], 
[YKT01], different time scales of the measured traffic could be modeled by different, small 
BMAPs (each of which is estimated using the EM algorithm proposed in this thesis). Using 
the Kronecker sum Ä [Luc93], the superposition of these small BMAPs leads to a composed 
BMAP that may capture traffic burstiness even more accurately. 

 

5.4 EM Algorithm for TCP Optimization in MANET 

With the advent of WLAN based on the IEEE 802.11 standard, bandwidth has increased and 
prices have decreased rapidly for wireless networking solutions. Moreover, wireless 
communication is enabled not only in areas with explicit communication infrastructure, e.g., 
3G mobile communication networks, but also in self-organizing mobile ad-hoc networks with 
connection to the Internet. Currently known variants of the reliable transport control protocol 
TCP show very poor performance in MANET environments. Thus, the development of a 
reliable transport protocol that performs well in hybrid environments consisting of a MANET 
based on IEEE 802.11 with Internet connection is a research issue of major concern [CXN03], 
[FZL+03], [LMC03]. 

TCP and its variants, e.g., TCP NewReno or TCP Vegas [SV03], have been developed for 
wireline networks and assume that packet losses are only due to network congestion. MANET 
specific problems, e.g., interference of neighboring single-hop connections and the hidden 
terminal problem, are not taken into consideration as reasons for packet losses. Additionally, 
packet losses in wireless MANET connections are more frequently than in wireline 
connections. As a consequence, the TCP control algorithm adjusts the size of the TCP 
transmission window according to the degree of packet losses irrespective of their reasons. A 
first approach towards performance optimization of TCP in MANET with Internet connection 
is to split TCP connections at the border of both network parts and consider both partial 
connections separately. Further approaches suggested in the scientific literature can roughly 
be divided into these two categories: (1) support by bottom layers of the TCP/IP protocol 
stack, where information concerning reasons of packet losses is transferred from bottom 
layers to the transport layer explicitly and (2) end-to-end optimizations, where all information 
taken into account for optimization is known at the connection’s end points. 
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The following outlines some key ideas of a novel approach for optimization of TCP 
connections in MANET with Internet connection. TCP connections in this kind of hybrid 
networks can be in different states that can effectively be characterized by round trip times 
(RTT) of packets measured at the sender-side of a TCP connection. Dependent on the current 
connection’s state, the various reasons of packet losses in MANET can be classified more 
preciously. A similar approach has been successfully utilized for mobile networks with 
single-hop connections [LMC03]. As a key component, a hidden Markov model (HMM) 
captures different states of a TCP connection by distinct states of the HMM and describes 
state transitions by individual probability distributions. Thus, reasons of packet losses can be 
differentiated according to the HMM’s current state. This enables the sender of a connection 
to adjust TCP parameters, e.g., size of the TCP transmission window and/or TCP 
retransmission timeout, adaptively according to the connection’s current state. To implement 
this approach the following research issues have to be considered: 

¶ Definition of the HMM, i.e., definition of its states representing a TCP connection’s 
states and definition of the probability distributions for state transitions 

¶ Development of an EM algorithm for parameter estimation of the HMM 

¶ Offline training of the HMM utilizing the EM algorithm 

¶ Online state interference using the parameterized HMM and a Viterbi algorithm 

In previous approaches, only Gaussian distributions are utilized for state transitions 
because of mathematical tractability concerning parameter estimation of the underlying 
HMM. As the BMAP encompasses a wide range of processes as special cases, the algorithmic 
framework for parameter estimation of BMAPs presented in this thesis may be utilized for 
developing tailored EM algorithms for complex HMMs that characterize a TCP connection’s 
state. Therefore, the HMM can reflect the state of a TCP connection more precisely. Utilizing 
the EM algorithm, the HMM is trained offline (i.e., parameterized) according to observations, 
i.e., RTTs of packets, gathered in detailed MANET simulation studies. The nature of these 
simulation studies allows identifying the reasons of packet losses (and its RTTs) and, thus, 
enables accurate parameterization of the HMM. The Viterbi algorithm [Rab89] tries to seek 
the most likely state sequence (of the parameterized HMM) for a given sequence of 
observations, i.e., RTTs of packets, gathered online during TCP data transmission. This 
enables the TCP control algorithm of the sender to estimate the TCP connection’s current 
state and to adopt TCP parameters accordingly. Compared with other approaches for TCP 
optimization in MANET, a major benefit is the compatibility with existing TCP 
implementations, i.e., TCP has to be modified only in the TCP layer of the sender. Thus, this 
approach is also suitable for TCP connections between MANET and the Internet. 
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6 Concluding Remarks 

HIS THESIS presents novel research results concerning online QoS/revenue 
management for 3G mobile networks and traffic modeling of IP networks. The proposed 

online QoS/revenue management scheme outperforms existing admission control policies 
significantly and has been published in [LLT04]. It is based on earlier work for integrated 
QoS/revenue management [LLT02], [LLT03]. The proposed EM algorithm is the first 
numerical robust parameter estimation procedure for BMAPs and has been published in 
[KLL03]. Moreover, this thesis shows how to utilize the BMAP for accurate modeling of 
measured IP traffic, which has been published (with distinct objectives) in [KLL01] and 
[KLL02]. The following sums up major research results presented in this thesis and gives 
concluding remarks. 

Online QoS/Revenue Management for 3G Mobile Communication Networks 

The development of an online QoS and revenue management for 3G mobile communication 
networks is a challenging task that requires closing the loop between network operation and 
network control. Moreover, the joint consideration of both QoS and provider revenue is a 
quite novel research area for 3G mobile networks. Because of missing specifications in 3G 
standards [3GPPc], practical implementation of management schemes within a RAN has to be 
taken into consideration carefully. To take a first step in this research direction, Lindemann, 
Lohmann, and Thümmler proposed a mathematical framework for adaptive QoS/revenue 
management of real-time and non real-time services [LLT03]. Adaptive control of the mobile 
network’s system parameters is performed by means of closed-form formulas dependent on 
online monitored QoS measures. Compared with earlier work [LLT02], the closed-form 
formulas enable an intuitive adjustment of the adaptive control mechanisms and can easily be 
adapted to changing configurations of 3G mobile communication networks. 

Based on experiences gathered during developing this mathematical framework for 
adaptive QoS/revenue management, this thesis shows how online management of both QoS 
and provider revenue can be performed in 3G mobile networks by adaptive control of system 
parameters to changing traffic conditions. As a main result, this approach is based on a novel 
call admission control and bandwidth degradation scheme for real-time traffic. The admission 
controller considers real-time calls with two priority levels. Whereas calls of low priority can 
be temporarily degraded to a lower bit-rate, calls of high priority have a guaranteed bit-rate. 

T



132 6.   CONCLUDING REMARKS 

 

The key idea is to reduce handover failure probability due to call degradation of low-priority 
calls. A Markov model for the admission controller enables the periodical adjustment of the 
admission controller’s system parameter (i.e., the threshold for maximal call degradation) 
according to the currently measured traffic in the RAN and a predefined goal for optimization. 

It is shown that a dedicated soft handover queue can decrease handover failure probability 
significantly (see Figure 2.9), whereas the overload of cell capacity induced by this queue is 
marginally compared with its benefits (see Figure 2.10). Moreover, this thesis describes how 
to embed the proposed QoS/revenue management scheme in existing 3G base station 
controllers and illustrates the effectiveness of the proposed approach in practice. Using 
distinct optimization goals, performance studies evidently demonstrate that QoS and provider 
revenue can be increased significantly with a moderate average call degradation of low-
priority calls (see Figures 2.14 to 2.19). Compared with previous work [CS02], [MHT02], this 
degradation scheme performs degradation gracefully in multiple steps and degrades all calls 
of low priority equally, i.e., fairness among calls of low priority is granted. Detailed 
investigations show that the proposed graceful degradation of bandwidth utilizes currently 
available CDMA cell capacity significantly better than other approaches based on the 
(adaptive) guard channel scheme (see Figures 2.23 and 2.24). In fact, guard channel schemes 
induce a high probability of rejecting new call requests, although bandwidth is still available, 
i.e., guard channels are (partially) unused. In summary, graceful degradation of bandwidth has 
proven as the method of choice for prioritization of handover calls in 3G networks with 
different QoS classes and call priorities. 

Beside the exclusive consideration of real-time services, the mathematical framework for 
QoS/revenue management introduced in [LLT03] and the online QoS/revenue management 
scheme presented in this thesis differ significantly. Whereas the mathematical framework uses 
monitored QoS measures (based on several control periods), the online QoS/revenue 
management scheme utilizes currently measured traffic parameters as input for the adaptive 
control mechanism. Measured traffic parameters as input for adaptive control are practicable 
for traffic parameters with small or medium variation only, e.g., measured arrival rates of new 
call requests or average call duration. Additionally, the mathematical framework [LLT03] 
does not take into consideration important features of 3G mobile communication networks, 
such as CDMA intra- and inter-cell interference and soft handover. However, as fundamental 
difference, the online QoS/revenue management scheme optimizes the considered system 
parameter of the admission controller in each control period, whereas the mathematical 
framework is only capable to approximate the optimal values of the considered system 
parameters based on QoS measures monitored over several control periods. 
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Modeling IP Traffic Using the Batch Markovian Arrival Process 

The previous section presents some ideas of how to extend the proposed online QoS/revenue 
management scheme towards consideration of both real-time and non real-time services. As a 
key component, analytically tractable (i.e. Markovian) models for non real-time traffic are 
required. As aggregated non real-time traffic is “bursty” in nature, such Markovian traffic 
models require traffic characterization at packet level. Due to the scarce bandwidth in the 
radio access network, very accurate stochastic modeling of byte-based traffic rates (i.e., bytes 
per time unit) is essentially. Otherwise, results, gathered in performance studies of 3G mobile 
networks, may be misleading and, thus, may lead to significant performance losses during the 
operation of 3G networks in practice. This thesis identifies the batch Markovian arrival 
process as the analytically tractable model of choice for the joint characterization of packet 
arrivals and packet lengths. As a key idea, the BMAP is customized such that different packet 
lengths are represented by batch sizes of arrivals. Opposed to other (Markovian) traffic 
models, the BMAP enables the “two-dimensional”, i.e., joint, characterization of packet 
arrivals and packet lengths, and is able to capture correlations between the packet arrival 
process and the packet length process. 

For effective parameterization of BMAPs according to measured IP traffic, this thesis 
presents a novel EM algorithm. In fact, this is the first numerical robust parameter estimation 
procedure for BMAPs published in scientific literature. Previous known EM-based parameter 
estimation procedures for special cases of the BMAP are numerically unstable, e.g., the EM 
algorithm for parameter estimation of MMPPs proposed by Ryden in [Ryd96]. Thus, it is 
shown how to utilize the randomization technique and a stable calculation of Poisson jump 
probabilities effectively to compute time-dependent conditional expectations of a CMTC 
required by the expectation step of the EM algorithm. This methodological work enables the 
EM algorithm to be both efficient and numerical robust with a computational complexity 
given by O(n·l3/2·N2) for an EM iteration. As BMAPs encompass (as special cases) both 
phase-type renewal processes, e.g., Erlang and hyperexponential renewal processes, and non-
renewal processes such as the MMPP, and many other processes in the applied probability 
literature, the presented EM algorithm constitutes an important step towards effective, 
analytically tractable traffic models. In fact, the numerical robust parameter estimation 
framework is not restricted to BMAPs only, but can also be applied for a wide range of 
HMMs that require the joint characterization of arrivals and rewards. 

The proposed EM algorithm jointly captures the packet arrival process and the packet 
length process of measured traffic (already during parameter estimation) and, thus, considers 
correlation structures between packet arrivals and packet lengths that are due to protocol and 
network specific characteristics. A scaling procedure is proposed that reduces the number of 
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parameters dramatically without changing the BMAP’s quality. This is decisively for the 
practical utilization of parameterized BMAP in Markovian performance models, as the 
solution of these kinds of performance models primarily depends on the number of non-zero 
entries in the corresponding infinitesimal generator matrix of the underlying CTMC. Case 
studies of TCP traffic with different degrees of self-similarity evidently demonstrate the 
advantages of the BMAP modeling approach over other widely used analytically tractable 
models, e.g., the MMPP or the MAP. In fact, these case studies illustrate the impact of 
modeling packet lengths and its correlations with packet arrivals and, thus, reveal that joint 
characterization of packet arrivals and packet lengths is decisively for realistic IP traffic 
modeling. Especially, for an accurate prediction of the queuing behavior joint characterization 
is of major importance (e.g., see Figures 4.9, 4.10, 4.18, and 4.19). 

Recently, Salvador, Pacheco, and Valadas utilized the ideas for the joint characterization of 
packet arrivals and packet lengths presented in this thesis and proposed a parameter 
estimation algorithm for discrete-time BMAPs [SPV04]. Their parameter estimation 
procedure matches the packet arrival process exactly (at the expense of a enormous large 
number of states) and additionally estimates corresponding batch sizes, i.e., packet lengths. 
The large number of states and parameters of estimated discrete-time BMAP limit the 
practical applicability of this approach. Nevertheless, in agreement with this thesis, their 
research results reveal that packet arrivals and packet lengths show strong correlations. This 
emphasizes the conclusions drawn in this thesis and shows the necessity of the joint 
characterization of packet arrivals and packet lengths for accurate prediction of queuing 
performance in IP-based networks. 

Thus, it seems that modeling IP traffic is more than just capturing the packet arrival 
process accurately (ignoring packet lengths completely) and to assume an average packet 
length or to draw packet lengths according to the empirical distribution of the measured 
traffic. With the advent IPv6 [DH98], the importance of joint characterization of packet 
arrivals and packet lengths may increase even more, as packet lengths in IPv6 may become 
considerable large (i.e., jumbograms with more than 64 kbytes), and correlations due to 
protocol and network specific characteristics will exist further. As very few works have 
addressed the packet length process, and, especially, the joint characterization of the packet 
arrival process and the packet length process [GR99], [SPV04], this research area shows 
significant research potential and is considered to gather considerable attention in future. 
Section 5 gives some hints of how to improve the proposed parameter estimation procedure 
such that different time scales of packet arrivals could be modeled by different, small BMAPs 
(each of which is estimated using the EM algorithm proposed in this thesis). For practical 
applicability, Markovian performance models may utilize BMAPs in an approximately 
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fashion such that packets are not represented by their exact (i.e., byte-based) length, but 
packet lengths are given as a multiple of the minimal packet length. As a consequence, the 
complexity of performance models would be reduced significantly. Assuming a minimal 
packet length of 40 bytes, these packets would get a length (i.e., batch size) of one, whereas, 
for example, packets 400 bytes in size would get a length of ten. For intermediate packet 
lengths, this would result in some kind of inaccuracy, but, nevertheless, correlations between 
packet arrivals and packet lengths of different extents of would be kept. Of course, this needs 
further intensive research effort. 
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