
SPOT

Sequential Parameter Optimization

Toolbox

Thomas Bartz-Beielstein
Faculty of Computer Science and Engineering Science

Cologne University of Applied Sciences
D-51643 Gummersbach

Germany
Christian Lasarczyk, Mike Preuß

Algorithm Engineering
Dept. of Computer Science

Dortmund University
D-44221 Dortmund

Germany
Version 0.3

January 11, 2007

Contents

1 Introduction 2

2 Requirements 3

3 Installation 4
3.1 A first example . 4
3.2 Adapting SPOT Settings to Your Needs 5

3.2.1 Modifying the Region of Interest (Algorithm Design) . . . 5
3.2.2 Modifying the Problem Dimension (Problem Design) . . . 9
3.2.3 Modifying Factors that Remain Constant (Algorithm De-

sign) . 9
3.2.4 Summary . 9

4 Design and Result Files 9
4.1 Design Files . 10
4.2 Result Files . 10

1

5 Examples 10
5.1 Downloading and installing the SPOT program 11
5.2 Optimizing a JAVA algorithm . 11

5.2.1 Downloading and installing the JAVA program 11
5.2.2 The SPOT interface to the JAVA program 11
5.2.3 Files for the JAVA ES Optimization 12

5.3 Optimizing a particle swarm optimization (MATLAB) 12
5.3.1 Downloading and installing the particle swarm optimization 12
5.3.2 The SPOT interface to the PSOTOOLBOX 12

6 Common Errors 12

7 Questions 12

8 Functions 15
8.1 SPOT . 15
8.2 Additional files for the SPO toolbox 16
8.3 esmatlab Toolbox . 17

9 Parameters, Variables, Factors 18
9.1 SPOT . 18
9.2 esmatlab . 18

1 Introduction

This article describes the SPO toolbox. SPO is an acronym for sequential
parameter optimization (Bartz-Beielstein, 2006). The SPOtoolbox described in
this article is referred to as SPOT. It was developed over the last years by
Thomas Bartz-Beielstein, Christian Lasarczyk, and Mike Preuß at the Chair of
Algorithm Engineering, Dortmund University. The main purpose of SPO is to
determine improved parameter settings for optimization algorithms to analyze
and understand their performance.

SPO was successfully applied to numerous optimization algorithms, espe-
cially in the field of evolutionary computation, i.e., evolution strategies, particle
swarm optimization, algorithmic chemistries etc. in the following domains:

• machine engineering: design of mold temperature control (Mehnen et al.,
2005; Weinert et al., 2004; Mehnen et al., 2004)

• aerospace industry: airfoil design optimization (Bartz-Beielstein & Nau-
joks, 2004)

• simulation and optimization: elevator group control (Bartz-Beielstein et al.,
2005c; Markon et al., 2006)

• technical thermodynamics: non sharp separation (Bartz-Beielstein et al.,
2005b)

2

• economy: agri-environmental policy-switchings (de Vegt, 2005)

Other fields of application are in fundamental research:

• algorithm engineering: graph drawing (Tosic, 2006)

• statistics: selection under uncertainty (optimal computational budget al-
location) for PSO (Bartz-Beielstein et al., 2005a)

• evolution strategies: threshold selection and step-size adaptation (Bartz-
Beielstein, 2005)

• other evolutionary algorithms: genetic chromodynamics (Stoean et al.,
2005)

• computational intelligence: algorithmic chemistry (Bartz-Beielstein et al.,
2005b)

• particle swarm optimization: analysis and application (Bartz-Beielstein
et al., 2004a)

• numerics: comparison and analysis of classical and modern optimization
algorithms (Bartz-Beielstein et al., 2004b)

Further projects, e.g., vehicle routing and door-assignment problems and the
application of methods from computational intelligence to problems from bioin-
formatics are subject of current research.

SPOT relies on functions provided by the MATLAB Kriging Toolbox DACE
developed by Lophaven et al. (2002).

2 Requirements

SPOT requires MATLAB, the MATLAB statistics toolbox, and the MAT-
LABDACE toolbox. It runs under different operating systems. Experiments
described in Bartz-Beielstein (2006) were performed on various Linux Systems
(Debian, Suse).

MATLAB’s tdfread function, which belongs to the statistic toolbox, uses
the assignin function to export data from a function to the MATLAB workspace.
This has to be modified, because the data should be exported to the caller func-
tion. Please perform the following steps to fix this problem:

1. Enter in the command window: type tdfread

2. Copy the result and save it as a new MATLAB function, i.e., spottdf-
read.m

3. Replace every occurence of the string ‘base’ with ‘caller’ in spottd-
fread.m

4. Save the modified spottdfread.m in your MATLAB path.

3

Figure 1: Directory
structure after the files
have been unzipped

Due to copyright restrictions, a modified tdfread.m is not delivered with the
SPO toolbox. We have contacted MathWorks Inc. already, so that this problem
may be solved in further versions.

3 Installation

3.1 A first example

1. Create a new directory, e.g., g:\myspot.

2. Download the spot03.zip file from
http://ls11-www.cs.uni-dortmund.de/people/tom/spot03.zip and un-
zip it to g:\myspot.

3. Download and unzip the MATLAB DACE toolbox, which is freely avail-
able from:http://www2.imm.dtu.dk/~hbn/dace/ to a directory of your
choice, e.g., g:\myspot.

4. Start MATLAB. SPOT can be used to tune every algorithm that allows
(or requires) the specification of exogenous parameters. Since there are
several algorithms available, we use an evolution strategy (ES) to exemplify
the procedure first. In a second step, we illustrate how this procedur
can be generalized. To continue with the ES example, the reader should
download and unzip the ES package to a directory of her choice, e.g.,
g:\myspot. The ES package is freely available from http://ls11-www.
cs.uni-dortmund.de/people/tom/esmatlab03.zip

5. The resulting directory structure is shown in Fig. 1. MATLAB should be
started in g:\myspot.

6. Add the ES toolbox directories to the MATLAB path. This can be done
manually or you can also use startspot.m to add myspot and its subdi-
rectories to the path from the command line. Please note, that the ES
and the SPOT package can be used independently.

7. That is all. Now you can call demoSpotMatlab(’demo1’) to generate the
initial designs and improve the performance of the ES algorithm sequen-
tially. First demoSpotMatlab generates the initial design and starts the
sequential parameter optimization next. You can delete results from previ-
ouss run by selecting new=1. Otherwise, if you have chosen new=0 existing

4

http://ls11-www.cs.uni-dortmund.de/people/tom/spot03.zip
http://ls11-www.cs.uni-dortmund.de/people/tom/spot03.zip
http://www2.imm.dtu.dk/~hbn/dace/
http://www2.imm.dtu.dk/~hbn/dace/
http://ls11-www.cs.uni-dortmund.de/people/tom/esmatlab03.zip
http://ls11-www.cs.uni-dortmund.de/people/tom/esmatlab03.zip
http://ls11-www.cs.uni-dortmund.de/people/tom/esmatlab03.zip

results are included in the current model. After the runs are finished,
Fig. 2 and 3 are displayed.

Figure 2: Left: Predicted values. Right: Mean squared error

3.2 Adapting SPOT Settings to Your Needs

Based on the example from Sect. 3.1, we demonstrate several features of the
SPO toolbox. Note, there are configuration files related to SPOT:

1. ROI files, e.g., demo1.roi

2. CONF files, e.g., demo1.m

and files related to the algorithm

1. esdemo1.m

3.2.1 Modifying the Region of Interest (Algorithm Design)

The region of interest (ROI) contains interesting algorithm design points, e.g.,
interesting settings for the population size. Figure 4 reveals that small popu-
lation sizes (NPARENTS) and low selective pressures (NU) worsen the perfor-
mance of the ES. To adjust the region of interest, the ROI file can be modified

Figure 3: Effect plots

5

Figure 4: Left: Predicted values. Right: Effects

name low high isint pretty
NPARENTS 1 10 TRUE ’NPARENTS’
NU 1 5 FALSE ’NU’
TAU1 0.5 3 FALSE ’TAU1’

Figure 5: demo1.roi

using a simple text editor. Figure 5 shows the roi file demo1.roi from the exam-
ple. The region of interest was modified as shown in Fig. 6 and saved as a new
file demo2.roi. Alternatively, a modification of the file demo1.roi would have
been possible, too. However, by saving the modifications in new files results
can be reproduced very easily. SPOT uses a configuration files like demo1.m to
specify SPOT related variables. demo1 is the prefix of the names used for all
files related to one experimental run, i.e., the resultfile, the designfile, and the
roifile: demo1.res, demo1.des, demo1.roi, respectively.

The optimization algorithm, i.e., the ES, reads a design file written by SPOT
and writes a result file which will be used by SPOT to fit the stochastic process
model. The name of design file is demo1.des. The ES in our example adds
the string ‘es’ to the filenames, so it reads automatically the configuration file
‘esdemo1.m’.

If the ES is started, it opens a file demo1.des to read the parameter an writes
results to the resultfile demo1.res.

name low high isint pretty
NPARENTS 2 10 TRUE ’NPARENTS’
NU 2 5 FALSE ’NU’
TAU1 1 3 FALSE ’TAU1’

Figure 6: demo2.roi. It defines an improved design based on results from the
design specified in Fig. 5.

6

new=0
defaulttheta=1
loval=1E-3
upval=100
spotrmodel=’regpoly2’
spotcmodel=’corrgauss’
isotropic=0
repeats=3
maxrepeats=100
mergetype=1
ntestpointsperdim=10000
seed=0
na=40
newdesignsize=4
lhdsamples=30
lhdintervals=0
budget=250
nsteps=Inf
spotdirname=’spot03/’
dacemodelname=’’
npoints=10
tol=1.e-2
algorithmname= ’’
yname=’YALL’

Figure 7: demo1.m. Table 1 explains these variables.

Table 1: SPOT
new To start a new run, especially with filenames that have

been used for other runs and these files should be over-
written, set this value to ”1”. To continue an existing ex-
periment, choose ”0”.

spotdirname Directory where the optimization algorithm reads configu-
ration and writes results files (use a closing \ or /). Default:
Directory where the spot files reside.

isotropoic Define number of theta values, default is # of factors,
which defines anisotropic models. Set nTheta to 1 to use
isotropic models.

nsteps Number of sequential optimization steps to be performed.
algorithmname Call to the algorithm to be tuned. A script or batch file

that calls the optimization algorithm has to be specified
here.

7

esdirname=pwd
nparents = 1
nu = 1
sigmanull = 1
nsigma = 1
taunull = 1
tauone = 1
rho = 2
xreco = ’disc’
sreco = ’inter’
xrscale = 0.5
srscale = 0.5
kappa = Inf
fname = ’Sphere’
startpoint = 1000
lb = -22
ub = 42
stepinit = ’detmod’
delta = 0
dim = 10
init = ’nunirnd’
tmax = 1000
termcriteria = ’iterations’
noisetype = ’noNoise’
noisedistribution = ’noNoise’
noiselevel = 0
testset = ’standard’
gm = 0
xopt = 0
successlimit = 0.01
showrun = 0
showpoints = 0
showendpoints = 0
showsuccessfullstartpoints = 0
showunsuccessfullstartpoints = 0
interval = 0
intervalsize = 100

Figure 8: esdemo1.m

Table 2: SPOT: esdemo1
esdirname Path to the *des and *res-files

8

3.2.2 Modifying the Problem Dimension (Problem Design)

The experimenter might be interested in the question if similar algorithm designs
are beneficial for different problem dimensions. Therefore, he has to modify the
problem design. The problem design subsumes information about the objective
function, e.g., the problem dimension, and specifies the available budget, e.g.,
time, number of function evaluations etc. To modify the problem dimension,
the file esdemo1.m (Fig. 8) has to be edited. For example, using a text editor,
you can change dim = 2 to dim =10 to analyze a 10 dimensional problem.

3.2.3 Modifying Factors that Remain Constant (Algorithm Design)

Factors that are varied during the sequential parameter optimization are speci-
fied in the ROI file. Many algorithms have factors that remain constant during
the sequential parameter optimization. They are specified in the esdemo1.m
file. By default, every factor of the optimization algorithm is specified in the
esdemo1.m file, SPO overwrites these values with values generated in the ROI
file. Since nparents, nu, and tau1 are listed in the ROI file, we can modifiy the
kappa value in the esdemo1.m file.

3.2.4 Summary

SPO requires the specification of the following parameters:

1. Algorithm parameters to be tuned and varied. They are specified in the
ROI file, e.g., demo1.roi.

2. SPOT specific parameters, e.g., (demo1.m)

In addition, the algorithm which should be tuned requires the specification of
the following parameters:

1. Algorithm parameters that remain constant

2. Problem specific parameters

In our example (esdemo1.m) was used to specify these parameters.

4 Design and Result Files

The SPOT concept is very simple and can be used for any optimization algo-
rithm that can read and write ASCII files.

SPOT proposes algorithm designs for the algorithm. The algorithm is run
with these designs, results from these runs are written to result files (res-files).
SPOT reads the res-files and builds a stochastic process model. Based on this
model, new algorithm design points are generated and written to the design file
(des-file). See also Bartz-Beielstein et al. (2005b).

9

4.1 Design Files

Design files are ASCII files which store information columnwise. They consist of
two parts: Header and body. The first line of a design file, the header, describes
the variable names. Entries are separated by blanks. Each of the following lines
contains information from one algorithm run. A minimum design file has two
lines. It might contain the following information:

A REPEATS CONFIG SEED
2 3 1 123

“A” denotes the name of algorithm parameter to be tuned, e.g., NPARENTS.
Each run is repeated three times with different random seeds, the first run uses
seed 123. This is configuration 1.

Based on the values from the des-file the optimization algorithm is run. Its
results are written to the res-file.

The header has to be the first line while the order of the other lines (rows) is
arbitrary. The order of the columns is arbitrary, too. The example from above
could be written as:

REPEATS CONFIG SEED A
3 1 123 2

4.2 Result Files

The structure of result files is the same as for design files: They are des-files with
one additional column which contains the result from the optimization runs. A
minimum result file contains the following information:

Y A REPEATS CONFIG SEED
0.2 2 3 1 123

This might be one result from an experiment which is based on the des-file from
above. The algorithm run yields an function value of Y = 0.2.

Based on the values from the res-file SPOT will fit a stochastic process
model to predict promising design points.

5 Examples

The following examples describe simple parameter optimization scenarios. Sec-
tion 5.1 describes the installation of the SPOTMATLAB files. This installation
is required for any of the following scenarios:

• Section ?? shows how SPOT can be used to tune an evolution strategy
that was written in MATLAB.

• Section 5.3 demonstrates how an existing optimization toolbox, the parti-
cle swarm optimization toolbox written by Jagatpreet Singh
http://psotoolbox.sourceforge.net/
can be integrated into SPOT.

10

http://psotoolbox.sourceforge.net/

• Section 5.2 explains how to tune an evolution strategy which was imple-
mented in JAVA with SPOT.

5.1 Downloading and installing the SPOT program

1. Download the SPOT and DACE packages. In our example, both files
are downloaded to a newly generated directory, i.e., c:\myspot. After the
SPOT and DACE packages are unzipped, the following directories exists:

(a) c:\myspot\spot03
(b) c:\myspot\imm1460\dace25

2. Add these directories to the MATLAB path.

Note, the previous step were already described in Sect. 3. Now we consider how
implementing interfaces to other optimizers.

5.2 Optimizing a JAVA algorithm

5.2.1 Downloading and installing the JAVA program

We use an evolution strategy (ES) which is implemented in JAVA. The zip file
can be downloaded from:
http://ls11-www.cs.uni-dortmund.de/people/tom/esjava.zip. Again, download
the zip file and unzip it to a newly generated directory, i.e., c:\myspot\esjava.
The directory should now contain the evolution strategy and a parameter file
demojava1.par1, that is needed to start the ES run.

5.2.2 The SPOT interface to the JAVA program

The command
java -jar es.jar demojava1.par
should be written to a batch file (Windows, e.g., runJava.bat) or to a shell
script (UNIX, e.g., runJava.sh), which can be called from within MATLAB.
The passage from the MATLAB script demoSpotJava.m reads:

%(8) Call the algorithm to be tuned.
if SpotOptions.System.Unix
[u v] = unix(’../esjava/runJava.sh’)
else
[u v] = dos(’..\esjava\runJava.bat’);
end

The batch file runJava.bat reads:
cd c:\myspot\esjava
java -jar es.jar demojava1.par The batch file from this example can be
downloaded from http://ls11-www.cs.uni-dortmund.de/people/tom/runJava.bat

1The documentation of the parameters in the file demoSpot.par can be downloaded from
http://ls11-www.cs.uni-dortmund.de/people/tom/esParameter.htm

11

http://ls11-www.cs.uni-dortmund.de/people/tom/spot03.zip\protect \let \futurelet \@let@token
http://www2.imm.dtu.dk/~hbn/dace/
http://ls11-www.cs.uni-dortmund.de/people/tom/esjava.zip
http://ls11-www.cs.uni-dortmund.de/people/tom/runJava.bat
http://ls11-www.cs.uni-dortmund.de/people/tom/esParameter.htm

5.2.3 Files for the JAVA ES Optimization

The following files are used to specify the experimental setup:

1. demojava1.roi: Region of interest.

2. demojava1.m: SPOT settings.

3. demojava1.par: ES parameter file.

4. runJava.bat (WINDOWS) or runJava.sh (UNIX): Batch file/script for
calling the optimization algorithm from SPO.

5.3 Optimizing a particle swarm optimization (MATLAB)

5.3.1 Downloading and installing the particle swarm optimization

We use the psotoolbox which can be downloaded from
http://psotoolbox.sourceforge.net/. This toolbox is a collection of MATLAB
files. Downloading and unzipping the toolbox might create the following direc-
tory:
c:\myspot\spot03\pso\psotb-beta-0.3 Add this directory to the MATLAB
path and test the toolbox by starting the function RunExp.m.

5.3.2 The SPOT interface to the PSOTOOLBOX

Based on the RunExp.m function we implement an interface to SPOT.
TBD

6 Common Errors

Table 3 lists errors, possible causes, and solutions.

7 Questions

• Where can I find more information about the DACE toolbox?
Check: http://www2.imm.dtu.dk/˜hbn/dace/

• My optimization algorithm was written in JAVA, C, C++,... Can I use
SPOT?
You can use any language if your algorithm is able to handle des- and
res-files.

• Does SPOT run without MATLAB?
No.

• My optimization algorithm is written in MATLAB. Is there a generic
method to read des-files?
Yes. Reading des-files from MATLAB can be done as follows.

12

http://psotoolbox.sourceforge.net

Table 3: Common errors.
Error message Possible cause Solution
Unable to open
file.
??? Undefined
function or
variable ’Y’.

Wrong MATLAB
working directory

Change the MATLAB
working directory.
The MATLAB cd
command changes the
working directory. Al-
ternatively you can use
the Current Directory
field in the MATLAB
desktop toolbar.

Batch file/shell script is
not executed correctly

Test the script (per-
missions etc.) in a
DOS/UNIX shell sep-
arately. If it works
fine, you can execute it
in the MATLAB com-
mand window.

??? Error using
==> dacefit
least squares
problem is
underdetermined

Not enough design
points

Increase the number
of design points by
modifying the value of
SpotOptions.Design.
LHDSamples
Reduce the model com-
plexity.

??? Error using
==> textread File
not found.
Error in ==>
spotreadroi at 6
[factornames, lb,
ub, whole, pp] =
textread(spotoptions.File.roifilename,...
Error in ==>
demoSpotJava at
18 SpotOptions =
spotreadroi(SpotOptions);

Wrong spotdirname Select the correct value
for spotdirname in
demoSpotJava.m or
related files.

??? Error using
==> eval Undefined
function or
variable ’Y’.
Error in ==>
demoSpotJava at 64
Y=eval(SpotOptions.Vars.yname)

Wrong dir for external
batch file (shell script)

Select the correct set-
ting in external files,
e.g., runJava.bat

??? Error using
==> predictor
DMODEL has not been
found
Error in ==>
demoSpotMatlab
at 147 [yLhd0,
dy0, mse0] =
predictor(xLhd(i,:),
dmodel0);

Result file contains non
numerical results (Y
values), e.g., Inf

1. Modify algorithm
or problem designs
to avoid divergent
behaviour or 2. Replace
”Inf” with large values
(not recommended)

13

1. Specify the algorithm design variables from your algorithm, e.g., mu
and nu:

factornames = {’MU’, ’NU’};

2. Read the des-file:

tdfread(designfilename, ’ ’);

3. Overwrite default values with values from the des-file:

for i=1:length(factornames)
A(i)=factornames(i);

end
for i=1:length(eval(A{i})) %number of experiments

for j=1:REPEATS(i) %each experimental setting is
% repeated REPEAT(i) times.

% Overwrite default values with algorithm
% design values.
if ismember(’MU’, A)

mu = MU(i);
end
if ismember(’NU’, A)

nu = NU(i);
end
...
RUN YOUR ALGORITHM
...
WRITE RESULT FILE

end
end

• I found a bug in the toolbox.
Please report bugs and suggestions for improvement to
thomas.bartz-beielstein[at]udo.edu.

• Is there any support available?
Currently we cannot provide any support.

• Is SPOT free?
Yes.

• Where can I find more information about experimental research, design
of experiments (DOE), and design and analysis of computer experiments
(DACE)?
Bartz-Beielstein (2006) and Santner et al. (2003) are good starting points.

• How can I quote this article?
Please mention Bartz-Beielstein et al. (2006) if you have used the SPO
toolbox.

14

8 Functions

8.1 SPOT

The SPO toolbox contains the following MATLAB functions

startspot.m: Helper function to set the path and working directory.

spotWriteNewDesign.m: Update the design file based on predictions from the
DACE model.

spotWriteInitialDesign.m: Write the initial design based on the LHD.

spotWriteDaceModel.m: Write DACE model parameters to a *.dac file.

spottdfread.m: This function is required, but due to copyright problems not
included in the SPOT packages. Users have to copy the tdfread.m to a
new file, i.e., spottdfread.m and perform some minor editing as explained
in Sect. 2.

spotreadroi.m: Read the region of interest file.

spotreadfactornames.m: Returns factornames from res and des files.

spotPlotEffectsSchonlau.m: Plot the factor effects. Based on Schonlau
(1997).

spotPlotDACEModel.m: Plot the 3 dim DACE model (the first two factors from
the ROI file and the predicted response).

spotMergeData.m: Merge data from several repeats of one run configuration.
The following merge functions are implemented:

1. mean (1)

2. median (2)

3. min (3)

4. max (4)

5. spotbestoutof (4)

This function can also return the standard deviation (0).

spotLatinHypercube.m: Generate Latin hypercube distributed random num-
bers:

• m : number of sample points to generate, if unspecified m = 1.

• n : number of dimensions, if unspecified n = m

15

Returns S, the generated n dimensional m sample points chosen from
uniform distributions on m subdivions of the interval (0.0, 1.0) Example:
Let a = [1 2 3 4 5 6 7], be the vector of the lower bounds for 7 variables,
e.g., PSO, and b = [10 20 30 40 50 60 70] the vector of the upper bounds.
Then latinHypercube(10,7,a,b) generates 10 design points.

spotGetOptions.m: Read the SPOT options file.

spotGenerateFileNames.m: Generate generic file names, i.e.,

1. des

2. bst

3. res

4. dac

5. bcl

6. xbst

7. fbst

8. roi

spotCleanUp.m: Delete the following files to enable a clean start:

1. des

2. bst

3. res

4. dac

5. bcl

6. xbst

7. fbst

spotbestoutof.m: Determines the average from nSamples that have been cre-
ated as the minimum from a random sample of size sampleSize. Note:
spotbestoutof(x,inf,1) = mean(x), spotbestoutof(x,1,inf) = min(x)

demoSpotMatlab.m: Main program.

8.2 Additional files for the SPO toolbox

demospotplotresfile.m: Visualize the results from an existing resfile.

16

8.3 esmatlab Toolbox

The esmatlab toolbox contains the following MATLAB functions

addNoise.m: Add noise to the function value.

eseval.m: Enable evaluation of test functions from the More et al. (1981) test
set.

esInitPopulation: Implement initialization schemes from Bartz-Beielstein
(2006, pp. 88) To initialize the set of search points X(0) = {x(0)

1 , . . . , x
(0)
p },

the following methods can be used:

(DETEQ) Deterministic. Each search point uses the same vector, which
is selected deterministically, i.e., xinit = 1T ∈ Rd. As this method
uses only one starting point xinit, it is not suitable to visualize the
starting points for which the algorithm converged to the optimum.

Example 1 Schwefel (1995) proposed the following initialization scheme
for high-dimensional nonquadratic problems:

x
(0)
i = x∗ +

(−1)i

√
d

, for i = 1, . . . , d. (1)

�

(DETMOD) Deterministically modified starting vectors. The algorithm
can be tested with starting vectors x(0), 10x(0), and 100x(0) More
et al. (1981), or any other scheme that generates starting points de-
terministically.

(UNIRND) Uniform random starts. Every search point (i = 1, . . . , p)
uses the same vector xinit ∈ Rd, where the d components are re-
alizations of independent U [xl, xu] random variables. This method
introduces an additional source of randomness. It is suitable to vi-
sualize the starting points for which the algorithm converged to the
optimum. This visualization technique is useful to get some insight
into the behavior of the algorithm.

(NUNIRND) Nonuniform random starts. Every search point uses a
different vector x

(0)
i , (i = 1, . . . , p), that is, X(0) = {x(0)

1 , . . . , x
(0)
p },

with x
(0)
i 6= x

(0)
j ∀ i 6= j. Each of the p vectors xinit ∈ Rd consists of

d components that are realizations of independent U [xl, xu] random
variables. This initialization method is used by many authors. It
introduces an additional source of randomness, and it is not suitable
to visualize the starting points for which the algorithm converged to
the optimum.

esInitStepSizes.m: Initialization of the step sizes.

17

esKappaSelection.m: Environmental selection for ES.

esMakeHandle.m: Function handle.

esMutation.m: Mutation as described in Beyer & Schwefel (2002).

esrecombination.m: Implements discrete, intermediate, scalable, and no re-
combination.

eswritexbest.m: Write object variables (x values) of the best individual to
the xbest file.

terminate.m: Implement three termination criteria, see Bartz-Beielstein (2006,
p.89):

1. budget (number of function evaluations) exhausted

2. minimum distance in the objective space reached

3. minimum distance to the optimum reached

esdemo1.m: Example ES configuration file. Note, that in our implementation
the name of the ES configuration file is generated by adding the prefix ‘es’
to the SPOT configuration file name, i.e., ‘demo1’ results in ‘esdemo1’.
This is done in esGetOptions.m.

esGetOptions.m: Read options (problem and algorithm designs) from an op-
tions file, e.g., esdemo1.m.

generateresfile.m: Write data to the resultfile.

esSpot.m: The ES in MATLAB, i.e., the main class/function/method. It can
also be used as a stand alone ES without the SPOT framework.

9 Parameters, Variables, Factors

This section describes factors and their meaning.

9.1 SPOT

TBD

9.2 esmatlab

lb lower initialization bounds for object variables

ub upper initialization bounds for object variables

18

References

Bartz-Beielstein, T. (2005). Evolution strategies and threshold selection. In
M. J. Blesa Aguilera, C. Blum, A. Roli, & M. Sampels (Eds.), Proceedings
Second International Workshop Hybrid Metaheuristics (HM’05), volume 3636
of Lecture Notes in Computer Science (pp. 104–115). Berlin, Heidelberg, New
York: Springer.

Bartz-Beielstein, T. (2006). Experimental Research in Evolutionary
Computation—The New Experimentalism. Berlin, Heidelberg, New York:
Springer.

Bartz-Beielstein, T., Blum, D., & Branke, J. (2005a). Particle swarm optimiza-
tion and sequential sampling in noisy environments. In R. Hartl & K. Doerner
(Eds.), Proceedings 6th Metaheuristics International Conference (MIC2005)
(pp. 89–94). Vienna, Austria.

Bartz-Beielstein, T., de Vegt, M., Parsopoulos, K. E., & Vrahatis, M. N.
(2004a). Designing Particle Swarm Optimization with Regression Trees. In-
terner Bericht des Sonderforschungsbereichs 531 Computational Intelligence
CI–173/04, Universität Dortmund, Germany.

Bartz-Beielstein, T., Lasarczyk, C., & Preuß, M. (2005b). Sequential parame-
ter optimization. In B. McKay & others (Eds.), Proceedings 2005 Congress
on Evolutionary Computation (CEC’05), Edinburgh, Scotland, volume 1 (pp.
773–780). Piscataway NJ: IEEE Press.

Bartz-Beielstein, T., Lasarczyk, C., & Preuß, M. (2006). Sequential Parameter
Optimization Toolbox. Technical Report CI–15x/06, Universität Dortmund,
Germany.

Bartz-Beielstein, T. & Naujoks, B. (2004). Tuning Multicriteria Evolution-
ary Algorithms for Airfoil Design Optimization. Interner Bericht des Son-
derforschungsbereichs 531 Computational Intelligence CI–159/04, Universität
Dortmund, Germany.

Bartz-Beielstein, T., Parsopoulos, K. E., & Vrahatis, M. N. (2004b). Design and
analysis of optimization algorithms using computational statistics. Applied
Numerical Analysis & Computational Mathematics (ANACM), 1(2), 413–433.

Bartz-Beielstein, T., Preuß, M., & Markon, S. (2005c). Validation and opti-
mization of an elevator simulation model with modern search heuristics. In
T. Ibaraki, K. Nonobe, & M. Yagiura (Eds.), Metaheuristics: Progress as
Real Problem Solvers, Operations Research/Computer Science Interfaces (pp.
109–128). Berlin, Heidelberg, New York: Springer.

Beyer, H.-G. & Schwefel, H.-P. (2002). Evolution strategies—A comprehensive
introduction. Natural Computing, 1, 3–52.

19

de Vegt, M. (2005). Einfluss verschiedener Parametrisierungen auf die Dy-
namik des Partikel-Schwarm-Verfahrens: Eine empirische Analyse. Interner
Bericht der Systems Analysis Research Group SYS–3/05, Universität Dort-
mund, Fachbereich Informatik, Germany.

Lophaven, S., Nielsen, H., & Søndergaard, J. (2002). DACE—A Matlab Kriging
Toolbox. Technical Report IMM-REP-2002-12, Informatics and Mathematical
Modelling, Technical University of Denmark, Copenhagen, Denmark.

Markon, S., Kita, H., Kise, H., & Bartz-Beielstein, T., Eds. (2006). Modern Su-
pervisory and Optimal Control with Applications in the Control of Passenger
Traffic Systems in Buildings. Berlin, Heidelberg, New York: Springer.

Mehnen, J., Michelitsch, T., Bartz-Beielstein, T., & Henkenjohann, N. (2004).
Systematic analyses of multi-objective evolutionary algorithms applied to real-
world problems using statistical design of experiments. In R. Teti (Ed.),
Proceedings Fourth International Seminar Intelligent Computation in Man-
ufacturing Engineering (CIRP ICME’04), volume 4 (pp. 171–178). Naples,
Italy.

Mehnen, J., Michelitsch, T., Bartz-Beielstein, T., & Lasarczyk, C. W. G.
(2005). Multiobjective evolutionary design of mold temperature control using
DACE for parameter optimization. In H. Pfützner & E. Leiss (Eds.), Pro-
ceedings Twelfth International Symposium Interdisciplinary Electromagnetics,
Mechanics, and Biomedical Problems (ISEM 2005), volume L11-1 (pp. 464–
465). Vienna, Austria: Vienna Magnetics Group Reports.

More, J. J., Garbow, B. S., & Hillstrom, K. E. (1981). Testing unconstrained
optimization software. ACM Transactions on Mathematical Software, 7(1),
17–41.

Santner, T. J., Williams, B. J., & Notz, W. I. (2003). The Design and Analysis
of Computer Experiments. Berlin, Heidelberg, New York: Springer.

Schonlau, M. (1997). Computer Experiments and Global Optimization. PhD
thesis, University of Waterloo, Ontario, Canada.

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Sixth-Generation Com-
puter Technology. New York NY: Wiley.

Stoean, C., Preuss, M., Gorunescu, R., & Dumitrescu, D. (2005). Elitist Gen-
erational Genetic Chromodynamics - a New Radii-Based Evolutionary Algo-
rithm for Multimodal Optimization. In B. McKay & others (Eds.), Proc. 2005
Congress on Evolutionary Computation (CEC’05), volume 2 (pp. 1839 –
1846). Piscataway NJ: IEEE Press.

Tosic, M. (2006). Evolutionäre Kreuzungsminimierung. Diploma thesis, Uni-
versity of Dortmund, Germany.

20

Weinert, K., Mehnen, J., Michelitsch, T., Schmitt, K., & Bartz-Beielstein, T.
(2004). A multiobjective approach to optimize temperature control systems of
moulding tools. Production Engineering Research and Development, Annals
of the German Academic Society for Production Engineering, XI(1), 77–80.

21

Index

CONFIG, 10

des-file, see design file
design file, 9, 10

evolution strategy (ES), 11

initialization method
DETEQ, 17
DETMOD, 17
NUNIRND, 17
UNIRND, 17

installation, 4

MATLAB DACE toolbox, 3
matlab path, 11

region of interest (ROI), 5
REPEATS, 10
res-file, see result file
result file, 9, 10

SEED, 10
sequential parameter optimization (SPO),

2
sequential parameter optimization tool-

box (SPOT), 2
startspot.m, 4

22

	Introduction
	Requirements
	Installation
	A first example
	Adapting SPOT Settings to Your Needs
	Modifying the Region of Interest (Algorithm Design)
	Modifying the Problem Dimension (Problem Design)
	Modifying Factors that Remain Constant (Algorithm Design)
	Summary

	Design and Result Files
	Design Files
	Result Files

	Examples
	Downloading and installing the SPOT program
	Optimizing a JAVA algorithm
	Downloading and installing the JAVA program
	The SPOT interface to the JAVA program
	Files for the JAVA ES Optimization

	Optimizing a particle swarm optimization (MATLAB)
	Downloading and installing the particle swarm optimization
	The SPOT interface to the PSOTOOLBOX

	Common Errors
	Questions
	Functions
	SPOT
	Additional files for the SPO toolbox
	esmatlab Toolbox

	Parameters, Variables, Factors
	SPOT
	esmatlab

