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System Call Based Anomaly Detection

Detecting intrusions using system call flows w/ data models

Applications

Susiern cals

Kernel

1. run applications into processes

2. intercept system calls

3. create models of good system calls
4. flag deviations to detect anomalies

Let's take a look at a simple, generic example.



System Call Based Anomaly Detection

A set of models is created based on certain features of the system calls

Applications
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System Call Based Anomaly Detection

Models estimate feature values observed in “good” system calls

Applications

Models of good system calls

Example of models

— string length

— number of arguments

— function name

— string character distribution

Kernel



System Call Based Anomaly Detection

Estimations become more accurate as more system calls are analyzed
Applications

Models of good system calls

Models of good "behaviors"
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System Call Based Anomaly Detection

Also, models based on sets of system calls can be constructed
Applications

Models of good system calls

Models of good "behaviors"
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System Call Based Anomaly Detection

Knowledge about system calls’ context is learned

Applications
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S Models of good system calls
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System Call Based Anomaly Detection

In detection mode, the same models can be used to spot malicious system calls...

Applications

Detection of bad system calls
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System Call Based Anomaly Detection

...or malicious execution contexts

Applications
]
I Training and detection may be
e more complex, but the basic
] . i
S idea is the same.
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The systems we analyzed



Different Approaches: Deterministic vs. Stochastic

We analyzed two anomaly detectors based on different approaches
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Different Approaches: Deterministic vs. Stochastic

We analyzed two anomaly detectors based on different approaches

FSA-DF [IEEE S&P 2006]
» Deterministic
» Control-flow: FSA

» Data-flow: unary/binary
relations

S2A2DE [IEEE TODS 2009]
» Stochastic
» Control-flow: Markov-chain

» Data models: clusters



Deterministic Data-flow Anomaly Detection

The system calls generated by each process are examined

5866 8052110 unlink(“/usr/local/var/proftpd/test.sock”) = 0
5866 808ec46 capget(DONT_CARE, DONT_CARE) =0
5866 80a0b7f timer_gettime (DONT_CARE,DONT_CARE) =3

8052110 80a0b7f

unlink
\ Apget

808ec46

Process



Deterministic Data-flow Anomaly Detection

Different PCs means different process states

5866 8052110 unlink(“/usr/local/var/proftpd/test.sock”) = 0
5866 808ec46 capget(DONT_CARE,DONT_CARE) =0
5866 80a0b7f timer_gettime (DONT_CARE,DONT_CARE) =3

8052110 80a0b7f
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Deterministic Data-flow Anomaly Detection

A system call changes the process’ state...

5866 8052110 unlink(“/usr/local/var/proftpd/test.sock”) = 0
5866 808ec46 capget(DONT_CARE,DONT_CARE) =0
5866 80a0b7f timer_gettime (DONT_CARE,DONT_CARE) =3

8052110 80a0b7f

unlink
\ /capget

808ec46



Deterministic Data-flow Anomaly Detection

...and so forth

5866 8052110 unlink(“/usr/local/var/proftpd/test.sock”) = 0
5866 808ec46 capget(DONT_CARE,DONT_CARE) =0
5866 80a0b7f timer_gettime (DONT_CARE,DONT_CARE) =3

8052110 80a0b7f

unlink
\ /capget

808ec46



Deterministic Data-flow Anomaly Detection

This analysis is repeated until termination

5866 8052110 unlink(“/usr/local/var/proftpd/test.sock”) = 0
5866 808ec46 capget(DONT_CARE,DONT_CARE) =0
5866 80a0b7f timer_gettime (DONT_CARE,DONT_CARE) =3

8052110 80a0b7f

unlink
\ /capget

808ec46



Deterministic Data-flow Anomaly Detection

A network of unary/binary data-flow relations on top of the process’ FSA



Deterministic Data-flow Anomaly Detection

A network of unary/binary data-flow relations on top of the process’ FSA

FD3 = open(F3, M3)

/
F8

M3equal O

isDirectory Fé opendir(Fg)
isWithinDir Fg

isDirectory Fg
FgisWithinDir Fg

return(0)
—) —
start(I, O)
®

M3elementOf { WR}
©
isWithinDir I

®)

14equal FDll

FD11 = open(Fy1, M11)
i

close(FDy7)

e)—®

/7
FDlSequaI FD3

close(FD1g)

)

FD]  equal FD1;

’
cIose(FD14)

FDj3equal FD3
write(FD73)
@3
FDjpequal FDqq
read(FD13)

@

Fll equal F8



Deterministic Data-flow Anomaly Detection
Other types of relations

» Unary: capture properties of a single argument.

> equal > range
» elementOf » isWithinDir
» subsetOf » hasExtension

» Binary: capture relations between two arguments.
> equal > hasSameDirAs
> isWithinDir » hasSameBaseAs

» contains » hasSameExtensionAs



Major Drawback: False Positives

Mostly due to the deterministic relations



Major Drawback: False Positives

Mostly due to the deterministic relations

open(“/tmp/php1553”, 0, 0x1b6) = 5

unary elementOf({/tmp/phpl553, /tmp/php9022})
open(“/tmp/php9022”, 0, 0x1b6) = 5
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Major Drawback: False Positives

Mostly due to the deterministic relations

open(“/tmp/php1553”, 0, 0x1b6) = 5

unary elementOf({/tmp/phpl553, /tmp/php9022})
open(“/tmp/php9022”, 0, 0x1b6) = 5

What if “/tmp/php1990” is found?
These false positives occur pretty often.



Stochastic Behavior Profiling of Processes

Clusters of similar system calls interconnected by Markov-chains



Stochastic Behavior Profiling of Processes

Clusters of similar system calls interconnected by Markov-chains

Applications

write [
Finding similar system calls

write [ —
— anomaly scores [ACM TISSEC 2006] based on

- certain features of the arguments

write
— distance metrics [ACM TODS 2009] used to cluster
similar system calls

Kernel

— each application's process creates different clusters



Stochastic Behavior Profiling of Processes

Clusters of similar system calls interconnected by Markov-chains

Applications

write [
]

open [N
]

open NI
]
S
I

write [ —
—————————]
I

write [ —

open | ——
]
S
S

Kernel



Stochastic Behavior Profiling of Processes

Clusters of similar system calls interconnected by Markov-chains

Applications
write

open

open I
chmod [ |
chmod

write [T e

open

openi

chmod
Kernel




Stochastic Behavior Profiling of Processes

Clusters of similar system calls interconnected by Markov-chains

openi
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Clusters of similar system calls interconnected by Markov-chains

openi




Stochastic Behavior Profiling of Processes

Clusters of similar system calls interconnected by Markov-chains

openi O




Stochastic Behavior Profiling of Processes

Clusters of similar system calls interconnected by Markov-chains

0.5
Markov-chains encode process behavior

. opent
— transitions between system calls can occur

with different probabilities [ACM TODS 2009]

— a call is anomalous if either there is no matching
state (i.e., cluster) or transition probability is violated
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Mostly due to the stochastic nature of Markov-chains
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Mostly due to the stochastic nature of Markov-chains

Clustering
» clustering depends on configuration parameters
» different paramenters — different results
Markov-chains (example)
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Mostly due to the stochastic nature of Markov-chains

Clustering
» clustering depends on configuration parameters
» different paramenters — different results

Markov-chains (example)
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Major Drawbacks: False Negatives

Mostly due to the stochastic nature of Markov-chains

Clustering
» clustering depends on configuration parameters
» different paramenters — different results

Markov-chains (example)

Threshold = 0.5% (1%0.5)"+0.5 — 0



Major Drawbacks: False Negatives

Mostly due to the stochastic nature of Markov-chains
Clustering
» clustering depends on configuration parameters
» different paramenters — different results

Markov-chains (example)

Threshold = 0.5 % (1% 0.5)"« 0.5 — 0
No valid threshold can be found if cycles are not of fixed length.
For instance, DoS attacks may not be detected.
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Pros and cons of the two approaches

FSA-DF

e Perfectly models a soft-

e Introduces a statistical

e No False Negatives

< | ware behavior Control | approach S

= | e No False Negatives Flow e False Negatives =
e Doesn't allow deviations e Few False Positives

» | e Deterministic approach e Stochastic approach o

2| e No new input adaptation Data e Can adapt to new inputs | £

ES e Prone to False Positives Flow e Few False Positives C:)

e False Negatives




First contribution:
combination of the two approaches



Combining Complementary Approaches

Deterministic control-flow + stochastic data models

Hybrid IDS
FSA-DF S°A’DE
e Perfectly models a soft-
< | ware behavior Control
% | e No False Negatives Flow

e Doesn'’t allow deviations

e Stochastic approach
Data e Can adapt to new inputs
Flow e Few False Positives

e False Negatives

Models




Combining Complementary Approaches
The learning algorithm is similar to that used in FSA-DF

» Vcouple(syscall;_y, syscall;) € { TrainingSet}
> make state
> learn relations
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The learning algorithm is similar to that used in FSA-DF

» Vcouple(syscall;_y, syscall;) € { TrainingSet}
> make state
> learn relations

v

equal
elementOf
subsetOf

range
isWithinDir
hasExtension
isWithinDir
contains
hasSameDirAs
hasSameBaseAs
hasSameExtensionAs
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Combining Complementary Approaches
The learning algorithm is similar to that used in FSA-DF

» Vcouple(syscall;_y, syscall;) € { TrainingSet}
> make state
> learn relations

v
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Combining Complementary Approaches
The learning algorithm is similar to that used in FSA-DF

» learn string domains

» Vcouple(syscall;_y, syscall;) € { TrainingSet}
> make state
> learn relations

v

VVVYVYVYVYVYVvYVvYYy

egtal save model of similar strings
elementOf save model of similar strings
subsetOf

range

isWithinDir

hasExtension

isWithinDir

€ontatns save model of similar strings
hasSameDirAs

hasSameBaseAs
hasSameExtensionAs



Paths And Filenames

How to find groups of good strings into execve/open/read/... args?

/var/log/http.0 ... /etc/ftp.conf ... /tmp/php1231
... /var/run/nfsd.pid ... /etc/smb/samba.conf

... /opt/local/lib/libncurses.a ... /usr/lib/libkmod.a

... /tmp/uscreens/427.ttys000 ... /var/db/ntp.drift ...



Paths And Filenames

How to find groups of good strings into execve/open/read/... args?

/var/log/http.0 ... /etc/ftp.conf ... /tmp/php1231
... /var/run/nfsd.pid ... /etc/smb/samba.conf
... /opt/local/lib/libncurses.a ... /usr/lib/libkmod.a
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Self-Organizing Map

Type of artificial neural network, trained using unsupervised learning to
produce a multi dimensional discretized representation of the input space
of the training samples, called map.

Idea
» SOM to capture classes of good strings.
» Model of good strings — nodes.

» Similar strings — neighbor nodes.



Paths And Filenames

How to find groups of good strings into execve/open/read/... args?

/var/log/http.0 ... /etc/ftp.conf ... /tmp/php1231
... /var/run/nfsd.pid ... /etc/smb/samba.conf
... /opt/local/lib/libncurses.a ... /usr/lib/libkmod.a
... /tmp/uscreens/427.ttys000 ... /var/db/ntp.drift ...

Self-Organizing Map

Type of artificial neural network, trained using unsupervised learning to
produce a multi dimensional discretized representation of the input space
of the training samples, called map.

Idea
» SOM to capture classes of good strings.
» Model of good strings — nodes.

» Similar strings — neighbor nodes.






OK, they look pretty nice. But why SOMSs?



Paths And Filenames
Integration in Hybrid IDS - algorithm

» create SOM of all paths

» SOM initialization with linux directory structure.
» Extract all the paths from the syscalls
» SOM training [Kohonen 2004] with a randomized subset of the
paths.
» Vcouple(syscall;_1, syscall;) € { TrainingSet}
» make state
> learn relations
> if syscalli_1 contains a path argument
find BMU from the SOM
add BMU to the edge
subsetOf
range
isWithinDir
hasExtension
isWithinDir
hasSameDirAs
hasSameBaseAs
hasSameExtensionAs

vVVvyVYyVYVvYVvVYVYY



Second contribution:
improved system call models
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New models to reduce false detections

» Goal 1: Resillience to spurious strings in the datasets.
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Improved System Call Models

New models to reduce false detections

» Goal 1: Resillience to spurious strings in the datasets.

» Long/short strings in the training data can bias interval based
models.

Length o s 150 Length

» Goal 2: Detect simple DoS attacks.
> i.e., process forced to execute the same code region until crash.

*@\L@



Argument Length Using Gaussian Intervals

Yields to less false positives



Argument Length Using Gaussian Intervals

Yields to less false positives

Statistics: to estimate the Model precision parameter:
distribution of args length

ﬂX,4 _ 3

» Kurtosis 4x = 5%

> |args\ = Xargs ~ N(/L, 0'2)
» Sample Mean, Sample
Variance.

> If vx,,. < 0 the sample is
spread on a big interval

T
Norm(29.8, 184.844)
Thresholds: [12.37, 47.22]

L L
20 0 2 40 60 80

Anomaly threshold: percentile T, centered on the mean.



Argument Length Using Gaussian Intervals
Integration in Hybrid IDS - algorithm

» create SOM of all paths
» Ycouple(syscall;_y, syscall;) € { TrainingSet}

» make state
» learn relations

v

vVVyVYyVYVvYyVvVYVYYyY

save BMU

subsetOf

range save string length or num. value
isWithinDir

hasExtension

isWithinDir

hasSameDirAs

hasSameBaseAs

hasSameExtensionAs



Mitigating DoS Using Edge Frequency Models

Yields to less false negatives



Mitigating DoS Using Edge Frequency Models

Yields to less false negatives

Given that:
» each FSA edge is traversed
a variable number of times /@
over multiple executions @
» the traversal frequency has a

~®

Idea: estimate a validity interval to detect DoS attacks.



Edge Traversal Frequency

The Model
... multiple executions ...

e ® T ® T ®



Edge Traversal Frequency
The Model

multiple executions

> freqs = Xfeqs ~ Beta(a, 3)
» Estimated « and 3

» Interval from x-th percentile

> Not estimated if few values available

04




Mitigating DoS Using Edge Frequency Models

Integration in Hybrid

IDS - algorithm

» create SOM of all paths
» Vcouple(syscall;_1, syscall;) € { TrainingSet}

» make state
» learn relations

v

VVyVYyVvYyVvYVvYVvYy

> save

save BMU

subsetOf

save string length or num. value
isWithinDir

hasExtension

isWithinDir

hasSameDirAs

hasSameBaseAs
hasSameExtensionAs

edge traverse count
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» recent exploits from CVE (140415 syscalls)



How We Built The Evaluation Dataset

> “normal” execution of 5 tools (420509 syscalls)
» recent exploits from CVE (140415 syscalls)

©
£
o
=2
C a
sing (1528)
2| mt-daapd (9832) J
8] proftpd (18114)
E sudo (3157)
bitchx (107784)




Accuracy Evaluation

No false negatives (deterministic control-flow) + almost-zero false positives (stochastic

data models)

sing mt-daapd profdtpd sudo BitchX mcweject bsdtar

Traces 22 18 21 2 15 12 2
Syscalls 1528 9832 18114 3157 107784 75 102
S2A’DE 10.0% 0% 0%  10.0% 0.0% 252
FSA-DS 5.0% 16.7%  28% 15.0% 0.0% g'g? S'S? :o?v[].DSEMDE
Hybrid IDS 0.0% 0% 0%  10.0% 0.0% b s

Table 2. Comparison of the FPR of S?A?DE vs. FSA-DF vs. Hybrid IDS and S>A’DE
vs. SOM-S?A?DE. Values include the number of traces used. Accurate description of
the impact of each individual model is in Section 4.2 (first five columns) and 4.3 (last

two columns).



Accuracy Evaluation

No false negatives (deterministic control-flow) + almost-zero false positives (stochastic
data models)

sing mt-daapd profdtpd sudo BitchX mcweject bsdtar

Traces 22 18 21 22 15 12 2
Syscalls 1528 9832 18114 3157 107784 75 102
S2A%DE 10.0% 0% 0%  10.0% 0.0%

0.0% 8.7% SZA’DE

07 )
FSA-DS 5.0% 16.7% 28% 15.0% 0.0% 0.0% 0.0% SOM-S2A2DE

Hybrid IDS 0.0% 0% 0%  10.0% 0.0%

Table 2. Comparison of the FPR of S?A?DE vs. FSA-DF vs. Hybrid IDS and S>A’DE
vs. SOM-S?A?DE. Values include the number of traces used. Accurate description of
the impact of each individual model is in Section 4.2 (first five columns) and 4.3 (last
two columns).

sing - write on arbitrary file (data-flow).
mt-daapd - arbitrary code execution (data-flow + DoS).
proftpd - arbitrary command exeuction (data-/control-flow).

sudo - arbitrary command execution (control-flow).

vV vV.v. v Y

bitchx - arbitrary code execution (control-flow 4+ DoS).



Performance Evaluation

Not-so-negligible overhead, but mostly due to ptrace

sing sudo BitchX mcweject bsdtar Avg. speed

System calls 3470 15308 12319 97 705
S?A’DE 0.4 0.8 1.9 0.1 0.1 8463
FSA-DF 1.3 1.5 1.2 - - 7713
Hybrid IDS 29 5.8 27.7 - - 1067
SOM-S?A%DE - - - 8.8 19 25

Table 3. Detection performance measured in “seconds per system call”. The average
speed is measured in system calls per second (last column).



Conclusions and Future Works

Solve performance issues due to SOMs

» determinisitc models accurately capture the control-flow
» stochastic models accurately capture data-flow features
» a hybrid approach lowers false detections

» performance issues:

> the optimization of BMUs lookup is the first item on our
TODO list
» the use of a faster system call interceptor the second one ;)



