
Selecting and Improving System Call Models for
Anomaly Detection

(or, 30 minutes before CIPHER 5’s CTF results)

Alessandro Frossi Federico Maggi Gian Luigi Rizzo
Stefano Zanero

July 10, 2009

Topic of this talk

System Call Based Anomaly Detection
Detecting intrusions using system call flows w/ data models

Applications

Kernel

1. run applications into processes
2. intercept system calls
3. create models of good system calls
4. flag deviations to detect anomalies

Let's take a look at a simple, generic example.

Sy
st

em
 c

al
ls

System Call Based Anomaly Detection
Detecting intrusions using system call flows w/ data models

Applications

Kernel

1. run applications into processes
2. intercept system calls
3. create models of good system calls
4. flag deviations to detect anomalies

Let's take a look at a simple, generic example.

Sy
st

em
 c

al
ls

System Call Based Anomaly Detection
A set of models is created based on certain features of the system calls

Applications

Kernel

Models of good system calls

M1 MnM2 M3

System Call Based Anomaly Detection
Models estimate feature values observed in “good” system calls

Applications

Kernel

Models of good system calls

MnM1 M3M2

Example of models
— string length
— number of arguments
— function name
— string character distribution

System Call Based Anomaly Detection
Estimations become more accurate as more system calls are analyzed

Applications

Kernel

Models of good system calls

Models of good "behaviors"

M1 MnM2 M3

C1

C3

C2
M1

C7 C1

C3
M2

C2
C10 C7

Mn

System Call Based Anomaly Detection
Also, models based on sets of system calls can be constructed

Applications

Kernel

Models of good system calls

Models of good "behaviors"

M1 MnM3M2

C1

C2

C3
M1

C7 C1

C3
M2

C2 C5
C10

C3

C7
Mn

C1

System Call Based Anomaly Detection
Knowledge about system calls’ context is learned

Applications

Kernel

Models of good system calls

Models of good "behaviors"

M1 MnM2 M3

C1

C2

C3
M1

C7 C1

C3
M2

C2 C5
C10

C3

C7
Mn

C1

System Call Based Anomaly Detection
In detection mode, the same models can be used to spot malicious system calls...

Applications

Kernel

Detection of bad system calls

M1 MnM2 M3

System Call Based Anomaly Detection
...or malicious execution contexts

Applications

Kernel

Detection of bad "behaviors"

C1

C2

C3
M1

C7 C1

C3
M2

C2 C5
C10

C3

C7
Mn

C1

Training and detection may be
more complex, but the basic
idea is the same.

The systems we analyzed

Different Approaches: Deterministic vs. Stochastic
We analyzed two anomaly detectors based on different approaches

FSA-DF [IEEE S&P 2006]

I Deterministic

I Control-flow: FSA

I Data-flow: unary/binary
relations

S2A2DE [IEEE TODS 2009]

I Stochastic

I Control-flow: Markov-chain

I Data models: clusters

Different Approaches: Deterministic vs. Stochastic
We analyzed two anomaly detectors based on different approaches

FSA-DF [IEEE S&P 2006]

I Deterministic

I Control-flow: FSA

I Data-flow: unary/binary
relations

S2A2DE [IEEE TODS 2009]

I Stochastic

I Control-flow: Markov-chain

I Data models: clusters

Different Approaches: Deterministic vs. Stochastic
We analyzed two anomaly detectors based on different approaches

FSA-DF [IEEE S&P 2006]

I Deterministic

I Control-flow: FSA

I Data-flow: unary/binary
relations

S2A2DE [IEEE TODS 2009]

I Stochastic

I Control-flow: Markov-chain

I Data models: clusters

Deterministic Data-flow Anomaly Detection
The system calls generated by each process are examined

8052110

808ec46

80a0b7f

unlink
capget

5866
5866
5866

8052110
808ec46
80a0b7f

unlink(“/usr/local/var/proftpd/test.sock”) = 0
capget(DONT_CARE, DONT_CARE) = 0
timer_gettime (DONT_CARE, DONT_CARE) = 3

Process

Deterministic Data-flow Anomaly Detection
Different PCs means different process states

8052110

808ec46

80a0b7f

unlink
capget

5866
5866
5866

8052110
808ec46
80a0b7f

unlink(“/usr/local/var/proftpd/test.sock”) = 0
capget(DONT_CARE, DONT_CARE) = 0
timer_gettime (DONT_CARE, DONT_CARE) = 3

Deterministic Data-flow Anomaly Detection
A system call changes the process’ state...

8052110

808ec46

80a0b7f

unlink
capget

5866
5866
5866

8052110
808ec46
80a0b7f

unlink(“/usr/local/var/proftpd/test.sock”) = 0
capget(DONT_CARE, DONT_CARE) = 0
timer_gettime (DONT_CARE, DONT_CARE) = 3

Deterministic Data-flow Anomaly Detection
...and so forth

8052110

808ec46

80a0b7f

unlink
capget

5866
5866
5866

8052110
808ec46
80a0b7f

unlink(“/usr/local/var/proftpd/test.sock”) = 0
capget(DONT_CARE, DONT_CARE) = 0
timer_gettime (DONT_CARE, DONT_CARE) = 3

Deterministic Data-flow Anomaly Detection
This analysis is repeated until termination

8052110

808ec46

80a0b7f

unlink
capget

5866
5866
5866

8052110
808ec46
80a0b7f

unlink(“/usr/local/var/proftpd/test.sock”) = 0
capget(DONT_CARE, DONT_CARE) = 0
timer_gettime (DONT_CARE, DONT_CARE) = 3

Deterministic Data-flow Anomaly Detection
A network of unary/binary data-flow relations on top of the process’ FSA

1

3

6

8

11 12

13

14

18

1920

start(I, O)

FD3 = open(F3, M3)
M3elementOf{WR}

M3equal O

opendir(F6)

isWithinDirI

F8isWithinDir F6

isDirectory F8

F′
8

isWithinDir F6

isDirectory F′
8

FD11 = open(F11, M11)

F11equal F8

read(FD12)

FD12equal FD11

write(FD13)

FD13equal FD3

close(FD′
14

)

FD′
14

equal FD11

close(FD14)

FD14equal FD11

close(FD18)

FD′
18

equal FD3

return(0)

1

Deterministic Data-flow Anomaly Detection
A network of unary/binary data-flow relations on top of the process’ FSA

1

3

6

8

11 12

13

14

18

1920

start(I, O)

FD3 = open(F3, M3)
M3elementOf{WR}

M3equal O

opendir(F6)

isWithinDirI

F8isWithinDir F6

isDirectory F8

F′
8

isWithinDir F6

isDirectory F′
8

FD11 = open(F11, M11)

F11equal F8

read(FD12)

FD12equal FD11

write(FD13)

FD13equal FD3

close(FD′
14

)

FD′
14

equal FD11

close(FD14)

FD14equal FD11

close(FD18)

FD′
18

equal FD3

return(0)

1

Deterministic Data-flow Anomaly Detection
Other types of relations

I Unary: capture properties of a single argument.

I equal

I elementOf

I subsetOf

I range

I isWithinDir

I hasExtension

I Binary: capture relations between two arguments.

I equal

I isWithinDir

I contains

I hasSameDirAs

I hasSameBaseAs

I hasSameExtensionAs

Major Drawback: False Positives
Mostly due to the deterministic relations

open(“/tmp/php1553”, 0, 0x1b6) = 5

unary elementOf({/tmp/php1553, /tmp/php9022})

open(“/tmp/php9022”, 0, 0x1b6) = 5

What if “/tmp/php1990” is found?
These false positives occur pretty often.

Major Drawback: False Positives
Mostly due to the deterministic relations

open(“/tmp/php1553”, 0, 0x1b6) = 5

unary elementOf({/tmp/php1553, /tmp/php9022})

open(“/tmp/php9022”, 0, 0x1b6) = 5

What if “/tmp/php1990” is found?
These false positives occur pretty often.

Major Drawback: False Positives
Mostly due to the deterministic relations

open(“/tmp/php1553”, 0, 0x1b6) = 5

unary elementOf({/tmp/php1553, /tmp/php9022})

open(“/tmp/php9022”, 0, 0x1b6) = 5

What if “/tmp/php1990” is found?

These false positives occur pretty often.

Major Drawback: False Positives
Mostly due to the deterministic relations

open(“/tmp/php1553”, 0, 0x1b6) = 5

unary elementOf({/tmp/php1553, /tmp/php9022})

open(“/tmp/php9022”, 0, 0x1b6) = 5

What if “/tmp/php1990” is found?
These false positives occur pretty often.

Stochastic Behavior Profiling of Processes
Clusters of similar system calls interconnected by Markov-chains

Stochastic Behavior Profiling of Processes
Clusters of similar system calls interconnected by Markov-chains

Applications

Kernel

write

write

write

write1

Finding similar system calls

— anomaly scores [ACM TISSEC 2006] based on
certain features of the arguments

— distance metrics [ACM TODS 2009] used to cluster
similar system calls

— each application's process creates different clusters

Stochastic Behavior Profiling of Processes
Clusters of similar system calls interconnected by Markov-chains

Applications

Kernel

open

open

open

write

write

write

write1

open1

Stochastic Behavior Profiling of Processes
Clusters of similar system calls interconnected by Markov-chains

Applications

Kernel

open

open

open

chmod

chmod

chmod

write

write

write

write1

chmod1

open1

Stochastic Behavior Profiling of Processes
Clusters of similar system calls interconnected by Markov-chains

write1

chmod1

open1

Stochastic Behavior Profiling of Processes
Clusters of similar system calls interconnected by Markov-chains

write1

chmod1

open1

Stochastic Behavior Profiling of Processes
Clusters of similar system calls interconnected by Markov-chains

write1

chmod1

open1

Stochastic Behavior Profiling of Processes
Clusters of similar system calls interconnected by Markov-chains

write1

chmod1

open1

1.0 0.5

0.5

1.0

Markov-chains encode process behavior

— transitions between system calls can occur
with different probabilities [ACM TODS 2009]

— a call is anomalous if either there is no matching
state (i.e., cluster) or transition probability is violated

Major Drawbacks: False Negatives
Mostly due to the stochastic nature of Markov-chains

Clustering

I clustering depends on configuration parameters

I different paramenters → different results

Markov-chains (example)

Major Drawbacks: False Negatives
Mostly due to the stochastic nature of Markov-chains

Clustering

I clustering depends on configuration parameters

I different paramenters → different results

Markov-chains (example)

Major Drawbacks: False Negatives
Mostly due to the stochastic nature of Markov-chains

Clustering

I clustering depends on configuration parameters

I different paramenters → different results

Markov-chains (example)

C1

C3

C2

C5C4

0.5

0.5

0.5

0.5
1

1

Major Drawbacks: False Negatives
Mostly due to the stochastic nature of Markov-chains

Clustering

I clustering depends on configuration parameters

I different paramenters → different results

Markov-chains (example)

C1

C3

C2

C5C4

0.5

0.5

0.5

0.5
1

1

Threshold = 0.5 ∗ 1 ∗ 0.5 = 0.25

Major Drawbacks: False Negatives
Mostly due to the stochastic nature of Markov-chains

Clustering

I clustering depends on configuration parameters

I different paramenters → different results

Markov-chains (example)

C1

C3

C2

C5C4

0.5

0.5

0.5

0.5
1

1

Threshold = 0.5 ∗ 1 ∗ 0.5 = 0.25

Major Drawbacks: False Negatives
Mostly due to the stochastic nature of Markov-chains

Clustering

I clustering depends on configuration parameters

I different paramenters → different results

Markov-chains (example)

C1

C3

C2

C5C4

0.5

0.5

0.5

0.5
1

1

Threshold = 0.5 ∗ (1 ∗ 0.5)n ∗ 0.5→ 0

Major Drawbacks: False Negatives
Mostly due to the stochastic nature of Markov-chains

Clustering

I clustering depends on configuration parameters

I different paramenters → different results

Markov-chains (example)

C1

C3

C2

C5C4

0.5

0.5

0.5

0.5
1

1

Threshold = 0.5 ∗ (1 ∗ 0.5)n ∗ 0.5→ 0
No valid threshold can be found if cycles are not of fixed length.

For instance, DoS attacks may not be detected.

Pros and cons of the two approaches

FSA-DF S2A2DE

F
S
A

• Perfectly models a soft-
ware behavior Control

Flow

• Introduces a statistical
approach

M
C
M

• No False Negatives • False Negatives
• Doesn’t allow deviations • Few False Positives

R
el

a
ti
o
n
s • Deterministic approach

Data

Flow

• Stochastic approach

C
lu

st
er

s

• No new input adaptation • Can adapt to new inputs
• Prone to False Positives • Few False Positives
• No False Negatives • False Negatives

Pros and cons of the two approaches

FSA-DF S2A2DE

F
S
A

• Perfectly models a soft-
ware behavior Control

Flow

• Introduces a statistical
approach

M
C
M

• No False Negatives • False Negatives
• Doesn’t allow deviations • Few False Positives

R
el

a
ti
o
n
s • Deterministic approach

Data

Flow

• Stochastic approach

C
lu

st
er

s

• No new input adaptation • Can adapt to new inputs
• Prone to False Positives • Few False Positives
• No False Negatives • False Negatives

First contribution:
combination of the two approaches

Combining Complementary Approaches
Deterministic control-flow + stochastic data models

Hybrid IDS
FSA-DF S2A2DE

F
S
A

• Perfectly models a soft-
ware behavior Control

Flow• No False Negatives
• Doesn’t allow deviations

Data

Flow

• Stochastic approach

M
o
d
el

s

• Can adapt to new inputs
• Few False Positives
• False Negatives

Combining Complementary Approaches
The learning algorithm is similar to that used in FSA-DF

I learn string domains

I ∀couple〈syscalli−1, syscalli 〉 ∈ {TrainingSet}
I make state
I learn relations

I equal save model of similar strings
I elementOf save model of similar strings
I subsetOf
I range
I isWithinDir
I hasExtension
I isWithinDir
I contains save model of similar strings
I hasSameDirAs
I hasSameBaseAs
I hasSameExtensionAs

Combining Complementary Approaches
The learning algorithm is similar to that used in FSA-DF

I learn string domains

I ∀couple〈syscalli−1, syscalli 〉 ∈ {TrainingSet}
I make state
I learn relations

I equal
I elementOf
I subsetOf
I range
I isWithinDir
I hasExtension
I isWithinDir
I contains
I hasSameDirAs
I hasSameBaseAs
I hasSameExtensionAs

Combining Complementary Approaches
The learning algorithm is similar to that used in FSA-DF

I learn string domains

I ∀couple〈syscalli−1, syscalli 〉 ∈ {TrainingSet}
I make state
I learn relations

I equal save model of similar strings
I elementOf save model of similar strings
I subsetOf
I range
I isWithinDir
I hasExtension
I isWithinDir
I contains save model of similar strings
I hasSameDirAs
I hasSameBaseAs
I hasSameExtensionAs

Combining Complementary Approaches
The learning algorithm is similar to that used in FSA-DF

I learn string domains
I ∀couple〈syscalli−1, syscalli 〉 ∈ {TrainingSet}

I make state
I learn relations

I equal save model of similar strings
I elementOf save model of similar strings
I subsetOf
I range
I isWithinDir
I hasExtension
I isWithinDir
I contains save model of similar strings
I hasSameDirAs
I hasSameBaseAs
I hasSameExtensionAs

Paths And Filenames
How to find groups of good strings into execve/open/read/... args?

/var/log/http.0 . . . /etc/ftp.conf . . . /tmp/php1231
. . . /var/run/nfsd.pid . . . /etc/smb/samba.conf

. . . /opt/local/lib/libncurses.a . . . /usr/lib/libkmod.a
. . . /tmp/uscreens/427.ttys000 . . . /var/db/ntp.drift . . .

Self-Organizing Map

Type of artificial neural network, trained using unsupervised learning to
produce a multi dimensional discretized representation of the input space
of the training samples, called map.

Idea

I SOM to capture classes of good strings.

I Model of good strings → nodes.

I Similar strings → neighbor nodes.

Paths And Filenames
How to find groups of good strings into execve/open/read/... args?

/var/log/http.0 . . . /etc/ftp.conf . . . /tmp/php1231
. . . /var/run/nfsd.pid . . . /etc/smb/samba.conf

. . . /opt/local/lib/libncurses.a . . . /usr/lib/libkmod.a
. . . /tmp/uscreens/427.ttys000 . . . /var/db/ntp.drift . . .

Self-Organizing Map

Type of artificial neural network, trained using unsupervised learning to
produce a multi dimensional discretized representation of the input space
of the training samples, called map.

Idea

I SOM to capture classes of good strings.

I Model of good strings → nodes.

I Similar strings → neighbor nodes.

Paths And Filenames
How to find groups of good strings into execve/open/read/... args?

/var/log/http.0 . . . /etc/ftp.conf . . . /tmp/php1231
. . . /var/run/nfsd.pid . . . /etc/smb/samba.conf

. . . /opt/local/lib/libncurses.a . . . /usr/lib/libkmod.a
. . . /tmp/uscreens/427.ttys000 . . . /var/db/ntp.drift . . .

Self-Organizing Map

Type of artificial neural network, trained using unsupervised learning to
produce a multi dimensional discretized representation of the input space
of the training samples, called map.

Idea

I SOM to capture classes of good strings.

I Model of good strings → nodes.

I Similar strings → neighbor nodes.

OK, they look pretty nice. But why SOMs?

OK, they look pretty nice. But why SOMs?

Paths And Filenames
Integration in Hybrid IDS - algorithm

I create SOM of all paths
I SOM initialization with linux directory structure.
I Extract all the paths from the syscalls
I SOM training [Kohonen 2004] with a randomized subset of the

paths.

I ∀couple〈syscalli−1, syscalli 〉 ∈ {TrainingSet}
I make state
I learn relations

I if syscalli−1 contains a path argument
find BMU from the SOM
add BMU to the edge

I subsetOf
I range
I isWithinDir
I hasExtension
I isWithinDir
I hasSameDirAs
I hasSameBaseAs
I hasSameExtensionAs

Second contribution:
improved system call models

Improved System Call Models
New models to reduce false detections

I Goal 1: Resillience to spurious strings in the datasets.

I Long/short strings in the training data can bias interval based
models.

1

Length

Score

150 35

1

Length

Score

15 1500

I Goal 2: Detect simple DoS attacks.
I i.e., process forced to execute the same code region until crash.

C1

C3

C2

C5C4

0.5

0.5

0.5

0.5
1

1

Improved System Call Models
New models to reduce false detections

I Goal 1: Resillience to spurious strings in the datasets.
I Long/short strings in the training data can bias interval based

models.

1

Length

Score

150 35

1

Length

Score

15 1500

I Goal 2: Detect simple DoS attacks.
I i.e., process forced to execute the same code region until crash.

C1

C3

C2

C5C4

0.5

0.5

0.5

0.5
1

1

Improved System Call Models
New models to reduce false detections

I Goal 1: Resillience to spurious strings in the datasets.
I Long/short strings in the training data can bias interval based

models.

1

Length

Score

150 35

1

Length

Score

15 1500

I Goal 2: Detect simple DoS attacks.

I i.e., process forced to execute the same code region until crash.

C1

C3

C2

C5C4

0.5

0.5

0.5

0.5
1

1

Improved System Call Models
New models to reduce false detections

I Goal 1: Resillience to spurious strings in the datasets.
I Long/short strings in the training data can bias interval based

models.

1

Length

Score

150 35

1

Length

Score

15 1500

I Goal 2: Detect simple DoS attacks.
I i.e., process forced to execute the same code region until crash.

C1

C3

C2

C5C4

0.5

0.5

0.5

0.5
1

1

Argument Length Using Gaussian Intervals
Yields to less false positives

Statistics: to estimate the
distribution of args length

I |args| = Xargs ∼ N (µ, σ2)

I Sample Mean, Sample
Variance.

Model precision parameter:

I Kurtosis γ̂X =
µ̂X ,4

σ̂4
X
− 3

I If γXargs < 0 the sample is
spread on a big interval

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

-20 0 20 40 60 80

P(
X

)

x

Norm(29.8, 184.844)
Thresholds: [12.37, 47.22]

Anomaly threshold: percentile Targs centered on the mean.

Argument Length Using Gaussian Intervals
Yields to less false positives

Statistics: to estimate the
distribution of args length

I |args| = Xargs ∼ N (µ, σ2)

I Sample Mean, Sample
Variance.

Model precision parameter:

I Kurtosis γ̂X =
µ̂X ,4

σ̂4
X
− 3

I If γXargs < 0 the sample is
spread on a big interval

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

-20 0 20 40 60 80

P(
X

)

x

Norm(29.8, 184.844)
Thresholds: [12.37, 47.22]

Anomaly threshold: percentile Targs centered on the mean.

Argument Length Using Gaussian Intervals
Integration in Hybrid IDS - algorithm

I create SOM of all paths
I ∀couple〈syscalli−1, syscalli 〉 ∈ {TrainingSet}

I make state
I learn relations

I save BMU
I subsetOf
I range save string length or num. value
I isWithinDir
I hasExtension
I isWithinDir
I hasSameDirAs
I hasSameBaseAs
I hasSameExtensionAs

Mitigating DoS Using Edge Frequency Models
Yields to less false negatives

Given that:

I each FSA edge is traversed
a variable number of times
over multiple executions

I the traversal frequency has a
range

S1

S3

S2

Idea: estimate a validity interval to detect DoS attacks.

Mitigating DoS Using Edge Frequency Models
Yields to less false negatives

Given that:

I each FSA edge is traversed
a variable number of times
over multiple executions

I the traversal frequency has a
range

S1

S3

S2

Idea: estimate a validity interval to detect DoS attacks.

Edge Traversal Frequency
The Model

S1

S3

S2

S1

S3

S2

S1

S3

S2

S1

S3

S2

... multiple executions ...

Edge Traversal Frequency
The Model

S1

S3

S2

S1

S3

S2

S1

S3

S2

S1

S3

S2

... multiple executions ...

I freqs = Xfreqs ∼ Beta(α, β)

I Estimated α and β

I Interval from x-th percentile

I Not estimated if few values available

Mitigating DoS Using Edge Frequency Models
Integration in Hybrid IDS - algorithm

I create SOM of all paths
I ∀couple〈syscalli−1, syscalli 〉 ∈ {TrainingSet}

I make state
I learn relations

I save BMU
I subsetOf
I save string length or num. value
I isWithinDir
I hasExtension
I isWithinDir
I hasSameDirAs
I hasSameBaseAs
I hasSameExtensionAs

I save edge traverse count

How We Built The Evaluation Dataset

I “normal” execution of 5 tools (420509 syscalls)

I recent exploits from CVE (140415 syscalls)

Training (420509 syscalls)

Detection (140415 syscalls)

sing (1528)
mt-daapd (9832)
proftpd (18114)

sudo (3157)
bitchx (107784)At

ta
ck

s
No

rm
al

How We Built The Evaluation Dataset

I “normal” execution of 5 tools (420509 syscalls)

I recent exploits from CVE (140415 syscalls)

Training (420509 syscalls)

Detection (140415 syscalls)

sing (1528)
mt-daapd (9832)
proftpd (18114)

sudo (3157)
bitchx (107784)At

ta
ck

s
No

rm
al

How We Built The Evaluation Dataset

I “normal” execution of 5 tools (420509 syscalls)

I recent exploits from CVE (140415 syscalls)

Training (420509 syscalls)

Detection (140415 syscalls)

sing (1528)
mt-daapd (9832)
proftpd (18114)

sudo (3157)
bitchx (107784)At

ta
ck

s
No

rm
al

Accuracy Evaluation
No false negatives (deterministic control-flow) + almost-zero false positives (stochastic
data models)

sing mt-daapd profdtpd sudo BitchX mcweject bsdtar

Traces 22 18 21 22 15 12 2
Syscalls 1528 9832 18114 3157 107784 75 102

S2A2DE 10.0% 0% 0% 10.0% 0.0%
0.0% 8.7% S2A2DE

FSA-DS 5.0% 16.7% 28% 15.0% 0.0%
0.0% 0.0% SOM-S2A2DE

Hybrid IDS 0.0% 0% 0% 10.0% 0.0%

Table 2. Comparison of the FPR of S2A2DE vs. FSA-DF vs. Hybrid IDS and S2A2DE
vs. SOM-S2A2DE. Values include the number of traces used. Accurate description of
the impact of each individual model is in Section 4.2 (first five columns) and 4.3 (last
two columns).

4.3 Specific Comparison of SOM-S2A2DE and S2A2DE

We also specifically tested how the introduction of a Symbol SOM im-
proves over the original probabilistic tree used for modeling the path
arguments in S2A2DE. As summarized in right side of Table 2, the FPR
decreases in the second test. However, the first test exhibits a lower FNR
as detailed in the following.

The mcweject utility is affected by a stack overflow CVE-2007-1719
caused by improper bounds checking. Root privileges can be gained if
mcweject is setuid. The exploit is as easy as eject -t illegal payload,
but we performed it through userland exec [16] to make it more silent
avoiding the execve that obviously triggers an alert in the S2A2DE for a
missing edge in the Markov chain. Instead, we are interested in comparing
the string models only. SOM-S2A2DE detects it with no issues because
of the use of different “types” of paths in the opens.

An erroneous computation of a buffer length is exploited to execute
code via a specially crafted PAX archives passed to bsdtar (CVE-2007-
3641). A heap overflow allows to overwrite a structure pointer containing
itself another pointer to a function called right after the overflow. The
custom exploit [16] basically redirects that pointer to the injected shell-
code. Both the original string model and the Symbol SOM models detect
the attack when the unexpected special file /dev/tty is opened. However,
the original model raises many false positives when significantly different
paths are encountered. This situation is instead handled with no false
positives by the smooth Symbol SOM model.

4.4 Performance Evaluation and Complexity Discussion

We performed both empirical measurements and theoretical analysis of
the performance of the various proposed prototypes. Detection speed re-

I sing - write on arbitrary file (data-flow).

I mt-daapd - arbitrary code execution (data-flow + DoS).

I proftpd - arbitrary command exeuction (data-/control-flow).

I sudo - arbitrary command execution (control-flow).

I bitchx - arbitrary code execution (control-flow + DoS).

Accuracy Evaluation
No false negatives (deterministic control-flow) + almost-zero false positives (stochastic
data models)

sing mt-daapd profdtpd sudo BitchX mcweject bsdtar

Traces 22 18 21 22 15 12 2
Syscalls 1528 9832 18114 3157 107784 75 102

S2A2DE 10.0% 0% 0% 10.0% 0.0%
0.0% 8.7% S2A2DE

FSA-DS 5.0% 16.7% 28% 15.0% 0.0%
0.0% 0.0% SOM-S2A2DE

Hybrid IDS 0.0% 0% 0% 10.0% 0.0%

Table 2. Comparison of the FPR of S2A2DE vs. FSA-DF vs. Hybrid IDS and S2A2DE
vs. SOM-S2A2DE. Values include the number of traces used. Accurate description of
the impact of each individual model is in Section 4.2 (first five columns) and 4.3 (last
two columns).

4.3 Specific Comparison of SOM-S2A2DE and S2A2DE

We also specifically tested how the introduction of a Symbol SOM im-
proves over the original probabilistic tree used for modeling the path
arguments in S2A2DE. As summarized in right side of Table 2, the FPR
decreases in the second test. However, the first test exhibits a lower FNR
as detailed in the following.

The mcweject utility is affected by a stack overflow CVE-2007-1719
caused by improper bounds checking. Root privileges can be gained if
mcweject is setuid. The exploit is as easy as eject -t illegal payload,
but we performed it through userland exec [16] to make it more silent
avoiding the execve that obviously triggers an alert in the S2A2DE for a
missing edge in the Markov chain. Instead, we are interested in comparing
the string models only. SOM-S2A2DE detects it with no issues because
of the use of different “types” of paths in the opens.

An erroneous computation of a buffer length is exploited to execute
code via a specially crafted PAX archives passed to bsdtar (CVE-2007-
3641). A heap overflow allows to overwrite a structure pointer containing
itself another pointer to a function called right after the overflow. The
custom exploit [16] basically redirects that pointer to the injected shell-
code. Both the original string model and the Symbol SOM models detect
the attack when the unexpected special file /dev/tty is opened. However,
the original model raises many false positives when significantly different
paths are encountered. This situation is instead handled with no false
positives by the smooth Symbol SOM model.

4.4 Performance Evaluation and Complexity Discussion

We performed both empirical measurements and theoretical analysis of
the performance of the various proposed prototypes. Detection speed re-

I sing - write on arbitrary file (data-flow).

I mt-daapd - arbitrary code execution (data-flow + DoS).

I proftpd - arbitrary command exeuction (data-/control-flow).

I sudo - arbitrary command execution (control-flow).

I bitchx - arbitrary code execution (control-flow + DoS).

Performance Evaluation
Not-so-negligible overhead, but mostly due to ptrace

sing sudo BitchX mcweject bsdtar Avg. speed

System calls 3470 15308 12319 97 705

S2A2DE 0.4 0.8 1.9 0.1 0.1 8463
FSA-DF 1.3 1.5 1.2 - - 7713

Hybrid IDS 29 5.8 27.7 - - 1067
SOM-S2A2DE - - - 8.8 19 25

Table 3. Detection performance measured in “seconds per system call”. The average
speed is measured in system calls per second (last column).

sults are summarized in Table 3. The datasets for detection accuracy
were reused: we selected the five test applications on which the IDSes
performed worst. Hybrid IDS is slow because the BMU algorithm for the
symbol SOM is invoked for each system call with a path argument (opens
are quite frequent), slowing down the detection phase. Also, we recall that
the current prototype relies on a system call interceptor based on ptrace
which introduces high runtime overheads, as shown in [2]. To obtain bet-
ter performance, an in-kernel interceptor could be used. The theoretical
performance of each engine can be estimated by analyzing the bottleneck
algorithm.

Complexity of FSA-DF During training, the bottleneck is the binary
relation learning algorithm. T train

F = O(S · M + N), where M is the total
number of system calls, S = |Q| is the number of states of the automaton,
and N is the sum of the length of all the string arguments in the training
set. At detection T det

FSA−DF = O(M + N).
Assuming that each system call has O(1) arguments, the training

algorithm is invoked O(M) times. The time complexity of each i-th it-
eration is Yi + |Xi|, where Yi is the time required to compute all the
unary and binary relations and |Xi| indicates the time required to pro-
cess the i − th system call X. Thus, the overall complexity is bounded
by

∑M
i=1 Y + |Xi| = M · Y +

∑M
i=1 |Xi|. The second factor

∑M
i=1 |Xi| can

be simplified to N because strings are represented as a tree; it can be
shown [2] that the total time required to keep the longest common prefix
information is bounded by the total length of all input strings. Further-
more, Y is bounded by the number of unique arguments, which in turn
is bounded by S; thus, T train

F = O(S · M + N). This also prove the time
complexity of the detection algorithm which, at each state and for each
input, requires unary and binary checks to be performed; thus, its cost is

Conclusions and Future Works
Solve performance issues due to SOMs

I determinisitc models accurately capture the control-flow

I stochastic models accurately capture data-flow features

I a hybrid approach lowers false detections
I performance issues:

I the optimization of BMUs lookup is the first item on our
TODO list

I the use of a faster system call interceptor the second one ;)

