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ABSTRACT 

 
Since, it is believed that the native structure of most proteins is defined by their sequences, 
utilizing data mining methods to extract hidden knowledge from protein sequences, are un-
avoidable. A major difficulty in mining bioinformatics data is due to the size of the datasets 
which contain frequently large numbers of variables. In this study, a two-step procedure for 
prediction of relative solvent accessibility of proteins is presented. In a first “feature selec-
tion” step, a small subset of evolutionary information is identified on the basis of selected 
physicochemical properties. In the second step, support vector regression is used to real value 
prediction of protein solvent accessibility with these custom selected features of evolutionary 
information. The experiment results show that the proposed method is an improvement in av-
erage prediction accuracy and training time. 
 
Keywords: Feature selection method; physicochemical properties of amino acids; PSI-
BLAST; support vector regression 
 
Abbreviations: RSA: Relative Solvent Accessibility; SVR: Support Vector Regression; 
PSSM: Position Specific Scoring Matrix 

 

 
INTRODUCTION 

 
Protein native structure strongly influ-

ences the protein’s biological function, thus 
it is relevant to study protein functions, 
knowing the protein tertiary structure and 
thus its solvent accessibility. Because 
knowledge of the solvent accessibility of a 
protein plays a vital role in predicting the 
tertiary structure of the protein.  

Accessible Surface Area (ASA) reflects 
the percentage of the surface area of a given 
residue that is accessible to the solvent. 
Relative Solvent Accessibility (RSA) was 
computed by the ASA of a residue normal-
ized by the ASA of this residue in its ex-
tended tripeptide (Ala-X-Ala) conforma-
tion. 

This paper investigates whether im-
proved sequence representation, which is 
based on the custom selected features har-
vested from evolutionary information, 
could lead to improving the accuracy of 
RSA prediction. In prediction of protein 
solvent accessibility with evolutionary in-
formation, the dimensions of features are 
too high, i. e. N*20, where N is the size of 
the window. The idea of this paper is based 
on the hypothesis that if data mining fea-
tures selection methods are used for select-
ing subset of best-performing features, then 
prediction accuracy and training time would 
be improved. This idea results in a simpli-
fied prediction model, reduced computa-
tional time, and optimized prediction qual-
ity. 
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The goals of this paper are achieved by 
designing a two-step procedure for predic-
tion of relative solvent accessibility of pro-
teins. In a first “feature selection” step, a 
relatively small subset of evolutionary in-
formation is identified on the basis of se-
lected physicochemical properties in each 
position of the given window. In the second 
step, support vector regression method is 
used to real value prediction of protein sol-
vent accessibility with these custom se-
lected features of evolutionary information. 

 
PREVIOUS RELATED WORKS 

The existing solvent accessibility pre-
diction methods can be divided into two 
main groups: 
- Real valued predictors that predict real-
value of solvent accessibility. The represen-
tative existing methods are based on linear 
regression (Wagner et al., 2005), neural 
network based regression (Adamczak et al., 
2004), neural networks (Shandar et al., 
2003; Faraggi et al. 2009; Petersen et al. 
2009; Dor and Zhou, 2007), support vector 
regression (Yuan and Huang, 2004; Xu et 
al., 2005), pace regression (Meshkin et al., 
2009) and look up table (Wang et al., 
2004). In the study of Shandar et al. (2003), 
binary coding of the sequence was taken as 
the input features, while all other studies 
use the evolutionary information (Wagner 
et al., 2005; Adamczak et al., 2004; Yuang 
and Huang,, 2004; Xu et al., 2005; Wang et 
al., 2004). 
- Discrete valued predictors classify each 
residue into a predefined set class. The 
classes are usually defined based on a 
threshold and include buried, intermediate, 
and exposed classes (in most cases the pre-
dictions concern only two classes, i. e., bur-
ied vs. exposed). The corresponding predic-
tion methods apply fuzzy-nearest neighbor 
(Sim et al., 2005), neural network (Cuff and 
Barton, 2000; Shandar and Gromiha, 2002; 
Gianese and Pascarella, 2006), support vec-
tor machine (Kim and Park, 2004; Yuan et 
al., 2002), two stage support vector ma-
chine (Nguyen and Rajapakse, 2005), in-
formation theory (Naderi-Manesh et al., 

2001), and probability profile (Gianese et 
al., 2003). Early studies only used sequence 
to generate features (Shandar and Gromiha, 
2002; Naderi-Manesh et al., 2001), while 
recent studies have used the evolutionary 
information (Kim and Park, 2004; Nguygen 
and Rajapakse, 2005). 

Some conformational structures are 
mainly determined by local interactions be-
tween near residues, whereas others are due 
to distant interactions in the same protein. 
Therefore, with reducing number of feature 
in each position of window, we can enlarge 
the window size and then the effects of 
more neighbors can be considered for better 
prediction of RSA values. In addition, re-
ducing dimensionality and removing irrele-
vant data has further advantages such as 
reducing the costs of data acquisition, better 
understanding of the prediction model, and 
a decrease in training time. 

Considering the advantages that are 
mentioned above, it seems to be important 
to investigate the idea of this paper. With 
regard to the too high number of PSSM 
profile features (in a window with size N), 
the main practical aim of this work is to 
find an optimal subset of features among a 
set of N*20 features which enables an effi-
cient prediction of relative solvent accessi-
bility of proteins. 

 
MATERIALS 

In this section, the dataset is introduced, 
then qualitative and quantitative features 
are described.  

 
Dataset 

In this study, the Manesh dataset 
(Naderi-Manesh et al., 2001) is used and it 
consists of 215 low-similarity proteins, i. e. 
< 25 %. The sequences are available online 
at http://gibk21.bse.kyutech.ac.jp/rvp-
net/all-data.tar.gz. The Manesh dataset has 
been widely used by researchers to bench-
mark prediction methods Adamczak et al., 
2004; Meshkin et al., 2009; Shandar and 
Gromiha, 2002; Garg et al., 2005; Gianese 
et al., 2003), and this motivated us to use it 
to design and validate our method. 
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Qualitative features 
As shown in Table 1, 48 qualitative 

properties of amino acids are applied for 
encoding each of 20 amino acids. Qualita-
tive features for a window surrounding the 
given amino acid are represented by a bipo-
lar vector. Instead of using the physico-
chemical values, for a given property, the 
amino acids are grouped based on the bi-
nary classification, assigning 1 for those 
residues having or strongly showing the 
property and -1 for those without the prop-
erty. According to this grouping scheme, 
each amino acid is encoded and represented 
by a 48-dimensional vector. 

The bipolar vector was produced for a 
13 residues wide window centered on a tar-
get residue. There are 13*48+1 features in a 
bipolar vector for each residue in a se-
quence. The pattern of input vector is 
shown in (1). 

  (1) 

For instance, physicochemical features 
for a window surrounding the given amino 
acid are encoded as (2). 

 
  (2) 

After creating qualitative input vectors 
for all residues of proteins in Manesh data-
set (Naderi-Manesh et al., 2001), subset of 
physicochemical properties which have a 
strong correlation with the relative solvent 
accessibility of proteins is selected by fea-
ture selection method.  

 
Quantitative features 

For a protein sequence, the position 
specific scoring matrix (PSSM) describes 
the likelihood of a particular residue substi-
tution at a specific position based on evolu-
tionary information. PSI-BLAST is used to 
compare different protein sequences to find 
similar sequences and to discover evolu-
tionary relationships (Altschul et al., 1997). 
PSI-BLAST generates a profile represent-
ing a set of similar protein sequences in the 
form of a 20 × N PSSM matrix, where N is 
the length of the sequence and where each 
amino acid in the sequence is described by 

20 features. Since the profile features cre-
ated by sequence alignment and quantita-
tive criterions, we called them quantitative 
features. We used PSI-BLAST with the de-
fault parameters and the BLOSUM62 sub-
stitution matrix in this study.  

 
METHODS 

Figure 1 shows a detailed overview of 
the prediction procedure that consists of 
two steps, the first is aimed for creating in-
put vector by subset selection of evolution-
ary features, the second is responsible for 
model building. 
 

The proposed two-step method works as 
follows: The task of the first step is grouped 
into two subtasks: “Physicochemical Fea-
ture Selection” and “Evolutionary Informa-
tion Selection”. In “Physicochemical Fea-
ture Selection” subtask, we select subset of 
physicochemical properties of amino acids 
in each position of a window which have a 
strong correlation with relative solvent ac-
cessibility of proteins.  

Whenever, the subset of physicochemi-
cal features is selected, in “Evolutionary 
Information Selection” subtask, amino ac-
ids that have those selected physicochemi-
cal properties are chosen in each position of 
window. Finally, we have subset of best-
performing features from PSI-BLAST pro-
file, which are used in the next step for 
training the model. 
 

The second step is responsible for 
building model. This step performs core 
ability and explores unknown relationships 
between selected PSSM features and RSA 
by learning from training data. It creates 
model for RSA prediction of protein se-
quences. Support vector regression with 
RBF kernel applied in this step. 
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Table 1: 48 physicochemical properties of amino acid  
 

 
 
 

 
 
Figure 1: A detailed overview of the proposed method 
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Feature selection 
Feature selection, as a preprocessing step 

to machine learning, is effective in reducing 
dimensionality, removing irrelevant data, 
increasing learning accuracy, and improv-
ing result comprehensibility that performed 
in the first step of our proposed method.  

Feature selection method was used to 
find subset of physicochemical properties 
of amino acids which have a strong correla-
tion with relative solvent accessibility of 
proteins. We applied the best-first method 
for selecting a subset of physicochemical 
features. The best-first method searches the 
space of attribute subsets by greedy hill-
climbing augmented with a backtracking 
facility.  

We applied the best-first (Korf, 1993) 
method with forward direction and use 
CfsSubsetEval (Hall, 1998) method to eval-
uate the worth of a subset of attributes by 
considering the individual predictive ability 
of each feature along with the degree of re-
dundancy between them. Subsets 

of physicochemical features that are highly 
correlated with the RSA values while hav-
ing low intercorrelation are preferred. The 
best-first method filters the redundancy 
among the physicochemical features and 
selects the final number of selected fea-
tures, which in our case were 31 features. 
Table 2, shows the selected physicochemi-
cal features which have strong relationship 
with RSA value of the residue Ai that is lo-
cated in the center of the window with size 
13.  

Whenever, the subset of qualitative fea-
tures are produced, a set of amino acids that 
have those selected properties are chosen in 
each position of window, for example, in 
position Ai+3, if inflexibility or very hydro-
phobic properties are selected, we select 
only amino acids that have at least one of 
those properties in that position. Finally, we 
have a subset of PSI-BLAST profile fea-
tures, which used for training a model in the 
second step, see Table 3. 

 

Table 2: Results of subset selection of physicochemical features 
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Table 3: Results of subset selection of evolutionary information 
 

13-wide window Ai-6 Ai-5 Ai-4 Ai-3 Ai-2 Ai-1 Ai Ai+1 Ai+2 Ai+3 Ai+4 Ai+5 Ai+6 
Total # of features 20 20 20 20 20 20 20 20 20 20 20 20 20 

# of selected features 1 1 4 11 0 4 19 12 2 8 6 1 7 
The selected features G G R RY  I C D AY G A R G A 

   Q N  P E F CV P C C  C 
   E D  T A H G  I Q  I 
   K Q  V I K I  L E  L 
    E   L M L  M K  M 
    H   N P M  F M  F 
    K   Q R F  P   V 
    S   S T P  V    
    T   V W T      
    W   Y  W      

  
The selected features include 76 fea-

tures from the PSSM profile and one binary 
value that corresponds with the residue that 
is located close to either terminus of the 
sequence. We add this binary feature; be-
cause the amino acids that are located at the 
two terminus of the sequence have larger 
probability of being exposed to the solvent, 
see Table 4. 

Among the 13*48 qualitative features, 
only 31 physicochemical features deemed 
more significant for prediction of RSA in a 
given window. The first step of our method 
discovered all the valuable knowledge 
about which qualitative features deemed 
more interesting for prediction of RSA, 
such as: 

- The physicochemical features of the 
central residue i. e. Ai have the strongest 
correlation on the prediction. Interestingly, 
features of other residues have relatively 
small influence at the prediction. 

- The residues that are located in Ai-6, 
Ai-5, Ai-2, Ai+2, Ai+5 positions, have too low 
impact on the RSA prediction of the central 
amino acid. 

- The features of Ai-2 amino acid were 
not selected, i. e. this residue has no impact 
on the RSA prediction of the central amino 
acid. 

- Hydrophilicity, hydrophobicity, long, 
flexibility and inflexibility features of 
amino acids have strong correlation with 
RSA values because these features are men-
tioned in many positions of a window in 
Table 1. 

- Among the 48 physicochemical fea-
tures of amino acids, only 20 distinct phys-
icochemical features have strong correla-
tion with protein solvent accessibility. 

 
Support vector regression 

Given a training set of n data point pairs 
, where  denotes the 

vector of features representing i th protein 
sequence,  denotes the predicted RSA 
value, finding the optimal SVR is achieved 
by solving: 

 

  (3) 

 
Such that 

  (4) 

 (5) 
 

 
Where w is a vector    per-

pendicular to hyperplane, C is a user de-
fined complexity constant,  and  are 
slack variables that measure the degree of 
prediction error of xi for a given hyper-
plane, and   where  

 is a user defined 
kernel function. 

The SVR was trained using sequential 
minimal optimization algorithm (Smola and 
Scholkopf, 1998) that was further opti-
mized by Shevade and colleagues (1999). 
The proposed SVR uses RBF kernel (6).  

  (6) 
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Table 4: The total count of selected features 
 

Feature set Number of features 
(without feature selection) 

Number of features 
(with feature selection) 

Evolutionary information 13*20=260 76 

Terminus feature 1 1 

The total count of features 261 77 

 
 

 

 
RESULTS AND DISCUSSION 

The SVR and best-first methods were 
implemented in weka, which is a compre-
hensive open-source library of machine 
learning methods (Witten and Frank, 2005). 
The evaluation was performed using 10 
fold cross validation test type to allow for a 
comprehensive comparison with previous 
studies.  

Residues were classified into two states 
(buried/exposed) by different thresholds. 
The prediction accuracy was evaluated by 
the percentage of correctly predicted resi-
dues divided by the total number of resi-
dues in the test dataset. For example, for the 
two states we have  

 
 (7) 
 
where Q% is the percentage of correctly 

predicted residues,  and  represent the 
number of residues correctly predicted as 
buried and exposed, respectively. 

 

Comparison with other prediction methods 
Figure 2 shows the experimental and 

predicted values for each residue in thiore-
doxin. We selected this protein as an exam-
ple, because residues fall within different 
ranges of RSA values which are indicative 
of the high degree of accuracy of this pre-
diction across a wide range of RSAs and 
amino acid residues. It shows good linear 
relationship between the experimental and 
predicted values. 

Since the model training in our method 
is done in one stage, our method should be 
compared with methods that their training 
is done in one stage. 

 

 
Figure 2: Example of predicted RSA values for 
a protein (PDB code 1ABA) 

 
Table 3 shows the comparison between 

this paper and one stage methods for RSA 
prediction, which include neural network 
and SVR models (Adamczak et al., 2004; 
Meshkin et al., 2009; Shandar and 
Gromiha, 2002; Garg et al., 2005; Gianese 
et al., 2003). 

Since methods predict discrete valued 
classes (exposed vs. buried), we examined 
the performance of our method by convert-
ing the real value prediction into the two 
states prediction. We followed the standard 
approach, in which the state is defined 
based on the predicted RSA value and a 
predefined threshold. For instance, a 5 % 
threshold means that the residues having an 
RSA value (%) greater or equal 5 are de-
fined as exposed, and otherwise they are 
classified as buried. The threshold's value is 
usually adjusted between 5 % and 50 %. 
We note that for most of thresholds, our 
method provides more accurate two states 
predictions, see Table 5. 
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Table 5: Comparison between our method and other reported methods; unreported results are de-
noted by “-“ 

 

Methods 5 % 10 % 20 % 25 % 30 % 40 % 50 % 

NETASA (Shandar and Gromiha, 2002) 74.6 71.2 - 70.3 - - 75.9 

PP (Gianese et al., 2003) 75.7 73.4 - 71.6 - - 76.2 

NN (Garg et al., 2005) 74.9 77.2 77.7 - 77.8 78.1 80.5 

SABLE (Adamczak et al., 2004) 76.8 77.5 77.9 77.6 - - - 

RSAPRP (Meshkin et al., 2009) 76.82 74.84 75.35 76.7 77.75 79.86 86.32 

This paper 77.13 77.01 77. 49 77.44 78.09 80.62 85.14 

        
 
 

 

The two main remarks based on the per-
formed experimental evaluation include: 
the proposed method obtains favorable er-
ror rates when compared with five compet-
ing methods; and the reduced number of 
features (i. e. 76+1 attributes instead of 
13*20+1 attributes) result in a simplified 
prediction model, reduced computational 
time, and optimized prediction quality. 

 
CONCLUSION 

In this paper, an approach for predicting 
protein relative solvent accessibility has 
been presented, which relies on a two-step 
procedure, consisting of subset selection of 
evolutionary information, followed by a 
real-value predictor of relative solvent ac-
cessibility. 

As shown in our study, feature selection 
is effective to reduce dimensionality, re-
moving irrelevant features and increasing 
prediction accuracy in prediction of relative 
solvent accessibility of proteins. 

We have recently proposed an approach 
for prediction of RSA (Meshkin et al., sub-
mitted) with scatter search technique. Re-
sults of this paper achieve more improve-
ment in training time by smaller size of fea-
ture set rather than research (Meshkin et al., 
submitted). 

We can conclude from this research that 
most of features in evolutionary informa-
tion profile do not have any significant im-
pact on prediction of RSA for a central 
residue in a given window. Despite of 

choosing subset of features, prediction ac-
curacy has not decreased, and in some 
thresholds, prediction accuracy has im-
proved in comparison with methods that 
their training is done in one stage. 

For future works we will widen our 
scope to consider more feature selection 
and classification algorithms such as boost-
ing, genetic algorithm, evolutionary algo-
rithm, and neural networks, so that we can 
find an optimal approach to determining 
discriminatory features. To find common 
features from different feature selection 
methods is another interesting task. 
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