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Abstract

Electromagnetic metal forming is a contact-free high-speed forming process in which strain
rates of more than 103 s−1 are achieved. The deformation of the workpiece is driven by a
material body force, the Lorentz force, that results from the interaction of a pulsed magnetic
field with eddy currents induced in the workpiece by the magnetic field itself. The purpose
of this work is to present a fully-coupled 3D simulation of the process. For the mechanical
structure a thermoelastic, viscoplastic, electromagnetic material model is relevant, which is in-
corporated in a large-deformation dynamic formulation. The evolution of the electromagnetic
fields is governed by Maxwell’s equations under quasistatic conditions. Their numerical solu-
tion in 3D requires particular arrangements due to a reduced regularity at material interfaces.
Hence, Nédélec elements are employed. Coupling between the thermomechanical and elec-
tromagnetic subsystems takes the form of the Lorentz force, the electromotive intensity, and the
current geometry of the workpiece. A staggered scheme based on a Lagrangian mesh for the
workpiece and an ALE formulation for the electromagnetic field is utilized to solve the coupled
system, guaranteeing the efficiency and accuracy of the data transfer between the two meshes.
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1 Introduction

Electromagnetic metal forming (EMF) is a contact-free high-speed forming process in which
strain rates of more than 103 s−1 are achieved. In this process, the deformation of the workpiece
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the DFG for its financial support.



is driven by a material body force, the Lorentz force, that results from the interaction of a pulsed
magnetic field with eddy currents induced in the workpiece by the magnetic field itself. The
magnetic field is triggered by a tool coil adjacent to the workpiece, which is excited by the
discharging current of a capacitor bank. Fig. 1 displays a typical device for sheet metal forming.
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Figure 1: A typical device for electromagnetic sheet metal forming

EMF offers certain advantages over other forming methods such as an increased formability,
a reduction in wrinkling, reduced tool making costs, the opportunity to combine forming and
assembly operations, the avoidance of contact, and many more. However, the highly dynamic
nature of this process inhibits its monitoring and control. Consequently, its industrial use has
been limited to joining tubular semi-finished materials, while e.g. electromagnetic sheet metal
forming is not ready for a profitable application yet. This emphasizes the significance of reliable
simulations of this process to identify relevant process parameters and to optimize them.

Since the introduction of high speed computers in the 1980s, several attempts at the nu-
merical simulation of EMF have been undertaken, including [1, 2, 3, 4]. More recently, [5, 6] and
[7] utilized commercial programs like ABAQUS or MARC for the simulation of the process. How-
ever, in all approaches reported on above emphasis is placed on the modeling and simulation
of the coupling between the electromagnetic and the mechanical model, while the employed
material models were not adapted to the particular requirements of the process. These include
first of all a consideration of the rate-dependence, which is typical of the behavior of metallic
materials at high forming rates such as those achieved during EMF. This is connected to the
fact that the mechanical dissipation may result in a possibly significant temperature increase in
this nearly adiabatic process. A relevant thermodynamically-consistent electromagnetic ther-
moelastic multifield model has been developed in [8, 9] and implemented in [10], based on a
Lagrangian formulation for the mechanical system and an Eulerian formulation on a fixed mesh
for the electromagnetic system within an axisymmetric context.

A further drawback of the numerical schemes reported on above is their restriction to two-
dimensional or axisymmetric situations. However, practical forming devices often significantly
deviate from axisymmetry. Beside the much larger number of unknowns that dramatically in-
crease the numerical expenses necessary to solve the problem and that require much more
sophistication to avoid unacceptably long computing times, three-dimensional electromagnetic
simulations demand a particular numerical treatment due to the lack of smoothness solutions
to Maxwell’s equations typically exhibit at material interfaces: A standard approach based on
finite elements that enforce continuity of the approximation leads to a poor approximation of the
jumps of the normal component of the electromagnetic field at material interfaces. There are
several methods to cope with this difficulty, including penalty or least square methods. In this



work, Nédélec elements [11, 12] are applied, which imitate the regularity of the electromagnetic
field. Instead of values in the vertices of the cells of the finite elements discretization, integral
mean values over the edges represent the degrees of freedom of these elements. Nédélec el-
ements have also been chosen in [13] to simulate three-dimensional coupled electromagnetic
mechanical systems, where emphasis is laid on a fast solution of the coupled system via a
multigrid solver. However, these results do not apply for EMF since the mechanical system is
restricted to linear elasticity. A further difficulty arises from the fact that a Coulomb gauge con-
dition, which is always satisfied in plane or axisymmetric situations, is not automatically fulfilled
and has to be cared for. In this work, a novel non-isoparametric version of Nédélec elements
is presented working with trial functions with zero divergence such that the Coulomb gauge
condition is automatically fulfilled without any further requirements. This simplifies the system
equations to be discretized significantly.

There are several coupling mechanisms between the thermomechanical and the electro-
magnetic subsystem. On the one hand, the Lorentz force computed from the electromagnetic
simulation serves as load term in the mechanical impulse balance. On the other hand, the con-
ductivity distribution entering the electromagnetic simulation via the diffusivity is determined by
the current position of the structure. Further, the electromotive intensity represents an addi-
tional coupling term. The most natural way to discretize the field equations in the context of
their usual formulation is to employ a fixed Eulerian mesh for the electromagnetic field and to
use a moving Lagrangian mesh for the mechanical structure. However, there are problems
inherent to this approach since the character of the electromagnetic field equation in a certain
point of the electromagnetic mesh changes from one instant to another when the structure
moves over it: As long as it is not covered by the mechanical structure, the field equations are
elliptic (instantaneous assumption of the equilibrium field) and they become parabolic (diffusion
process) as soon as the point is covered by the structure. This leads to a sudden change in
the local discretizations since in the first case there is no explicit dependency on values of the
preceding instant, while in the second case there is. Methods that rely on this Euler-Lagrange
approach are sometimes called fictitious boundary method and are also applied to simulate
liquid-structure interaction in computational fluid dynamics (e.g. [14, 15] ). They are known to
produce bad approximations to the forces exerted on the mechanical structure since oscilla-
tions are inevitable as long as the discretization in the (moving) transition zone between the
structure and the air is not resolved very finely. However, averaged quantities are quite good
approximated with this approach, even with relatively coarse discretizations. In [10], the de-
formation of the structure could be computed in good accuracy since the determination of the
deformation field canonically includes temporal and spatial averaging of the forces applied.

However, if a good approximation to the forces is required an ALE-based method is more
promising. Here, the position of the electromagnetic mesh is adapted to the current position of
the structure such that the character of the electromagnetic field equations as well as the local
discretizations never change. In the approach presented here, this is done in such a way that
the combinatorial structure of the mesh can be maintained during the simulation, which allows
the use of effective methods like fast multigrid solvers for the solution of the resulting linear
system of equations.



2 Coupled model for conducting, thermoelastic viscoplastic metals

The multifield material model applied in this work is derived from a general continuum thermo-
dynamic approach [8, 9] to the formulation of models for electromagnetic thermoelastic solids.
For all structural problems of interest the frequencies of relevance (i.e. less than 10 MHz) cor-
respond to electromagnetic wave lengths which are much larger than the structures of interest.
Hence, the wave character of the electromagnetic fields is insignificant and can be neglected
for such structural problems. This represents the so-called quasistatic approximation [16, §2.2
and §8.2]. In this case, it is shown in [9] that Maxwell’s relations together with Ohm’s law and
the Coulomb gauge condition divsa = 0 (e.g. [17], §6.5) result in the weak forms*

∫

R

∗

a · a
∗

+ {ζ I + κEM ∇sa} · ∇sa∗
=

∫

∂R

{ζ I + κEM ∇sa}n · a
∗

∫

R

∇sχ · ∇sχ∗
=

∫

∂R

(∇sχ · n)χ
∗

(1)

for all test fields a
∗

and χ
∗

with respect to a domain R containing the workpiece, the tool coil,
and a large area of air around the tool coil and the workpiece. As usual, the test fields van-
ish on those parts of ∂R where a and χ are specified. Here, χ denotes the electric scalar
potential, a the magnetic vector potential, connected to the flux density b via b = curlsa,
ζ : = χ − a · v a Euclidean frame-indifferent form of the scalar potential, I a second order
unit tensor,

∗

a : = ∂a + (∇sa)v + (∇sv)Ta the objective time-derivative of a, and κEM = σ−1
EM µ

−1
EM

the magnetic diffusivity computed from the electric conductivity σEM and the permeability µEM.
For the materials involved ferro-magnetic effects are not relevant and µEM can be constantly
set to the value of the permeability of the vacuum. The conductivity σEM equals zero outside
the tool coil and the workpiece, resulting in an infinite diffusivity there. This means that the
equilibrium distribution of the magnetic vector potential depending on its current values on the
interface to the tool coil and to the workpiece is instantaneously assumed in each time step.
Finally, ∇s represents the usual nabla-operator in the spatial variables. Note that the Coulomb
gauge condition does not automatically hold for three-dimensional problems such that it has to
be considered explicitly. On the timescale τExp ∼ 10−4 s relevant to EMF the typical order of
magnitude κEM ∼ 10−1 m2 s−1 implies that magnetic diffusion will be important in the process
since it takes place over lengthscales of

√

κEM τExp ∼ 10 cm, which are significantly larger than
the smallest dimension of interest (e.g. sheet metal thickness ∼ 1 mm). Turning next to the
mechanical part of the coupled model, the weak momentum balance for the deformation field
ξ is given by

∫

Br

(̺r ξ̈ − f ) · ξ
∗

+ P · ∇rξ∗ =
∫

∂Br

|cof(F )nr| tc · ξ∗ (2)

with respect to the referential configuration Br ⊂ R of the workpiece for all corresponding
test fields ξ

∗
vanishing on those parts of the current boundary ∂Bc where ξ is specified. Here,

f = det(F ) j×b represents the Lorentz (body) force (density), P the first Piola-Kirchhoff stress,
F : = ∇rξ the deformation gradient, and tc the current boundary traction. The mechanical model

*For notational simplicity the volume dv and surface da elements are dispensed with in the
corresponding integrals.



relations are completed by the specification of the material model. For a given thermodynamic
state of the mechanical structure P can, as usual, be computed from the free Helmholtz-energy
stored in the material. The evolution of its density ψr is determined by the evolution of certain
inner variables, which are in this case the accumulated inelastic strain, the elastic left Cauchy
Green tensor, and the temperature. Characteristic for the viscoplastic material model here is a
power law approximation to the inelastic potential determining the inelastic part of ψr. Hence,
the projection onto the yield surface typical of rate independent J2-plasticity is replaced by a
power-law function, penalizing over-stresses. See [8, 9] for a detailed discussion.

3 An ALE approach to the coupled problem

In the above formulation the mechanical field is given in a Lagrangian formulation, while the
electromagnetic field is given in an Eulerian formulation. The most natural discretization of the
field equations leads to a moving mesh for the mechanical system, representing its current con-
figuration and a fixed Eulerian mesh for the electromagnetic field. The whole coupled system
is then solved via a staggered solution algorithm. However, this approach implicates serious
difficulties in the data transfer between the two meshes: In those areas of the electromagnetic
mesh currently covered by the moving structure a diffusive process with a positive finite dif-
fusivity takes place, while outside this region the diffusivity is infinite such that the equilibrium
state of the field is immediately assumed. As shown in Figure 2, whenever the structure moves
those points of the electromagnetic mesh in which a finite diffusivity arises change.

Workpiece Workpiece

Figure 2: Comparison of a fictitious boundary method (Euler-Lagrange-approach, on the left)
and an ALE-approach (Lagrange-ALE, on the right).

Such a change alters the local discretization dramatically since a contribution to the mass ma-
trix arises as soon as a point is covered by the structure and it disappears when it is uncovered
again. Particularly, for those points of the electromagnetic mesh covered by the mechani-
cal structure values of the last time step are relevant, while the values in the other points do
not depend explicitly on those of the preceding time step. It has turned out that this change
of the discretization in a certain point of the electromagnetic mesh causes oscillations in the
time derivative ∂a of the vector potential and, thus, in the Lorentz force via the contribution
σEM∂a × curls a. These oscillations can be moderated by a very fine discretization of that part
of the electromagnetic mesh lying in the interface region of the structure and the surrounding
air. To avoid an inadequate fine discretization of the whole structure, adaptive techniques are
necessary for a sufficiently fine resolution of the interface region. On the other hand, it is well
known that averaged quantities can be determined sufficiently accurate with this approach,



which is sometimes called* fictitious boundary method. In [10], it was successfully applied to
compute the deformation of a mechanical structure even with relatively coarse discretizations.
By the integration of Lorentz forces and due to the time stepping algorithm the above men-
tioned oscillations are smoothed out. However, as soon as a good and efficient approximation
of the forces applied on the mechanical structure is required, a fictitious boundary method is
not adequate. In this case, an arbitrary Lagrangian Eulerian (ALE) formulation leads to much
better results. In this approach, the electromagnetic mesh is adapted to the moving structure
such that always the same elements are covered by the moving mechanical structure (see Fig.
2). Consequently, the character of the discretization in a particular element does never change,
which avoids those jumps of ∂a that are typical for the fictitious boundary method. The move-
ment of the electromagnetic mesh is arbitrary in the sense that the position of the discretizing
mesh is not determined by requirements of the electromagnetic field equations themselves, but
by accompanying conditions. To obtain a high quality mesh for the electromagnetic system with
hexahedra elements that deviate as little as possible from the shape of a parallelepiped and
that matches the mesh for the mechanical structure, the following algorithm is applied. Before
a new time step is started each component of the deformation increment dξ = ξ

n+1 − ξn is con-
sidered as the boundary value of a one-dimensional Dirichlet problem ∆u

k
= 0 in the air around

tool coil and workpiece (i.e. in those parts of R that are outside the workpiece and outside
the tool coil) with boundary values uk = dξ

k
, k = 1, ..,3, on the interface between workpiece

and air as well as uk = 0 on the interface between tool coil and air and on the outer boundary
∂R (i.e. the mesh nodes are held fixed there). The solution of these problems (all possessing
the same stiffness matrix) is added to the current positions of the electromagnetic mesh in the
air-region around tool coil and workpiece to obtain a mesh for the next time step. To get an
impression of the quality of the arising meshes, one can consider the transformation from the
old to the new mesh as an elastic deformation with no transversal contraction and with elasticity
module 1. This deformation is conducted by the boundary values on the interface to the tool
coil, on the workpiece, and on the outer boundary since no forces are assumed to be present.
In contrast to remeshing strategies, this approach preserves the combinatorial structure of the
mesh, which allows an effective solution of the arising huge systems of linear equations.

The discrete field equations on the electromagnetic mesh have to be reformulated such
that the movement of the mesh is correctly considered. Surprisingly, the resulting field equa-
tions simplify. Instead of working with the partial time derivative ∂a, it is convenient in this case
to employ the material time derivative ȧ = ∂a + (∇sa)v since its discretization is a function of
the vertices of the moving mesh inside the mechanical structure rather than of spatial points.
Thus, no interpolation is necessary to link past data to current data. Inside the fixed tool coil
ȧ = ∂a applies and in the air surrounding the tool coil and the workpiece the field assumes an
equilibrium position instantaneously, which is explicitly neither depending on values of ∂a nor
on values of a from a preceding time step. The weak form for the electromagnetic problem –
still under the assumption that a Coulomb gauge is provided for (see the next section) – then

*The approaches discussed here are also used to simulate fluid-structure interaction in com-
putational fluid dynamics.



takes the form
∫

R

κ−1
EM {ȧ + ∇sχ − (∇sa)Tv} · a

∗
+ ∇sa · ∇sa∗

= 0 ,
∫

R

∇sχ · ∇sχ∗
= 0 ,

(3)

with the additional approximation a = 0 and χ = 0 on ∂R, which has been chosen to be a
large box containing the tool coil, the workpiece, and a large area of air surrounding them.
This approximation is well founded due to the asymptotic decay of the vector and of the scalar
potential of a dipole field like O(|x|−2), |x| → ∞. At interfaces between different materials
further transition conditions have to be considered (see e.g. [13]).

4 Divergence-free discretization of the electromagnetic system

Next, the weak form for the electromagnetic system and for the mechanical system have to be
spatially discretized. In the context of the finite-element method, standard eight-node elements
are used in the latter case, while Nédélec elements [11, 12] are employed for the vector poten-
tial equation in the first case. Nédélec elements represent one of several methods to overcome
the problem that finite elements enforcing continuity, as standard nodal finite elements, provide
a very poor approximation to a at material interfaces where the normal components of this field
possess discontinuities. Moreover, a new non-isoparametric divergence-free use of Nédélec’s
elements has been developed here that guarantees a Coloumb gauge condition without any
further requirements.

The discretization of the Lagrangian formulation of the mechanical system is based, as
usual, on a spatial discretization of the mechanical structure with eight-node brick elements,
each of which is the image of a reference cube under transformations that form an isopara-
metric family. All integrations necessary to compute the local contributions of these elements
to the stiffness matrix are pulled back to the referential cube. The same strategy is applied
to solve the equation for the electro-magnetic scalar potential. In case of the vector potential
equation, however, no transformation on a referential cube is performed, but in each element
of the discretization R ≈

⋃

e
Re of R into a finite number of hexahedra Re a local basis of the

test and trial space is constructed as follows: To each edge Γi of a hexahedron Re, 1 ≤ i ≤ 12,
a basis function bk of the form

bk(x) =







a
(k)
11 + a

(k)
12x2 + a

(k)
13x3 + a

(k)
14x2x3

a
(k)
21x1 + a

(k)
22 + a

(k)
23x3 + a

(k)
24x1x3

a
(k)
31x1 + a

(k)
32x2 + a

(k)
33 + a

(k)
34x1x2






(4)

is assigned with
∫

Γi

bk · ti = δki , (5)

where ti represents a tangential vector to Γi of unit length and δki is defined by δii = 1, 1 ≤

i ≤ 12, and δki = 0 for k 6= i respectively. Algorithmically, the determination of the bk leads to
the solution of 12 systems, each of which consists of 12 equations, in any element Re of the



finite-element discretization. The necessary numerical efforts remain acceptably small since
all 12 systems to be solved in a certain element possess the same system matrix and, e.g.
MATLAB, solves 100,000 sets of 12 systems of this type within a CPU time of 5.36 s on a 2394
Mhz Opteron machine.

One easily deduces that all bk are divergence-free and such is the local approximation
to the electromagnetic field being a linear combination of these basis functions. The method
presented here deviates from the usual employment of Nédélec elements (of first order) where
a local basis obeying the above approach (4) is only constructed for a referential cube and
then transformed by a family of isoparametric transformations on the physical elements such
that integrals over the edges of the form (5) remain invariant. However, the local test and trial
spaces obtained from this process are no longer divergence-free such that the Coulomb gauge
condition is not satisfied. Hence, the weak forms for the scalar and for the vector potential
to be discretized contain further terms and are more complicated. Another drawback of an
isoparametric family of Nédélec elements results from further approximations that are usually
undertaken in the practical implementation of the method: Certain second order terms that are
dropped may become significantly large when the shape of the elements deviates too much
from a parallelepiped, which may happen, if large deformations occur in the ALE context.

With the shape function matrix N ∈ R
12×12 at hand constructed in the usual fashion from

the basis functions bk, one obtains

ae = Nae

for the vector potential field at the element level ae. Here, ae ∈ R
12 represents the vector of

integral means (5) over the edges of Re. This implies

∇e
s ae = (∇e

s N)Sae

for the corresponding gradient. On this basis, one obtains the spatially-discretized form

As as + κ−1
EM Bs ȧs = cs (6)

for the vector as of time-dependent integral means of the form (5) over all edges of the dis-
cretization of R. The stiffness matrix As, the mass matrix Bs, and the source vector cs are
assembled from the local contributions

Ae : =
∫

Re

(∇e
s N)ST(∇e

s N)S ,

Be : =
∫

Re∩W

NTN ,

and

ce : =
∫

Re∩W

NT∇sχ

of the single elements as usual. The entries of the source vector are computed from the solution
χ of the electro-static equation. For simplicity, it has not been indicated in the notation that only
a finite-element approximation to χ is available. According to the degenerate parabolic charac-
ter of the underlying boundary value problem, equation (6) represents an ordinary differential-
algebraic system of equations, yielding a purely algebraic relation for those degrees of freedom



lying in the area of infinite diffusivity.
For the simulation of the transient process time stepping algorithms have to be chosen.

To solve the dynamic second order equation for the mechanical system, Newmark’s method is
employed. For the degenerate parabolic electromagnetic equations the generalized trapezoidal
rule is utilized. With optimal parameters both methods provide an accuracy of O(∆ t2), ∆ t → 0,
where ∆ t denotes the size of the time step.

The coupling may be realized explicitly or implicitly. In an explicit coupling scheme the
electromagnetic field of the (n + 1)th time step is computed from the position of the structure in
the nth time step and the position of the structure in the (n + 1)th time step is then computed
according to this field distribution. Hence, in any time step the electromagnetic and the defor-
mation field are only computed once. In an implicit scheme, however, the electromagnetic field
is several times recalculated in each time step according to the position of the altered struc-
ture and the structure is altered several times according to the changed electromagnetic field.
The latter method is more stable and allows for larger time steps. However, if the numbers of
unknowns is large an explicit method may be more efficient.

5 Conclusions

A fully-coupled three-dimensional simulation of EMF has been presented based on a ther-
moelastic, viscoplastic, electromagnetic material model incorporated in a large-deformation dy-
namic Lagrangian formulation and Maxwell’s equations under quasistatic conditions. To com-
pute the applied Lorentz forces in high accuracy, an ALE approach for the electromagnetic fields
has been chosen. The adaption of the electromagnetic mesh to the moving structure avoids,
on the one hand, unphysical oscillations of the computed forces and simplifies, on the other
hand, the field equations. In contrast to remeshing strategies this approach preserves the com-
binatorial structure of the mesh, which allows an effective solution of the arising huge systems
of linear equations. To discretize the electromagnetic system, a novel, non-isoparametric ver-
sion of Nédélec elements is employed. This formulation guarantees a Coulomb gauge, which
simplifies the field relations, avoids a bad approximation at material interfaces due to the dis-
continuity of the normal component of the vector potential, and, finally, avoids further deviations
in case of large mesh deformation, which would arise in an isoparametric context. A compari-
son of simulations based on the methods presented here to experimental data represents work
in progress.
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