

HProxy

Client-Side detection of SSL Stripping
attacks

Nick Nikiforakis, Yves Younan, Wouter Joosen
Katholieke Universiteit Leuven

Belgium

DIMVA 2010 – Bonn, Germany

Introduction

 More than one million websites use SSL to
protect their transactions
 Average monthly grow of 18,000 certificates

 Attackers always try to circumevent it
 Forging certificates
 SSL stripping

Roadmap
 Introduction
 MITM

 Attack overview
 MITM & SSL

 Effectiveness of SSL stripping attacks
 HProxy Architecture

 Modules
 Detection set

 Evaluation
 Related Work
 Conclusion

MITM attack

 Active eavesdropping
 Attacker places himself between two victims

and relays messages between them
 Reading
 Writing
 Altering

 Misuse of the ARP
protocol

MITM attack & SSL

 The attacker can either:
 Forward the original certificate of the web server

and lose the ability to eavesdrop on data
 Craft his own certificate and forward that to the user

while establishing a ”normal” encrypted session
with the web server

MITM attack

 But all that was before SSL strip
 Presented as part of the ”New tricks for defeating

SSL” talk in BlackHat 2009
 Enables MITM attackers to continue to

eavesdrop on data even when the websites
operate over SSL

 How?!?

SSL Stripping workings

 Users rarely type ”https://”
 Webservers redirect them through 302 Messages

(HTTP MOVED)
 Secure links and form targets

 All of this is done behind the scenes (by the
server & user's browser without the users
knowledge)

HTTP Moved Messages
GET / HTTP/1.1
Host: www.paypal.com
User-Agent: Mozilla/5.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 100
Proxy-Connection: keep-alive

HTTP/1.1 301 Moved Permanently
Date: Wed, 31 Mar 2010 13:56:51 GMT
Server: Apache
Location: https://www.paypal.com/
Vary: Accept-Encoding
Content-Type: text/html
Content-Length: 0

Secure Connection to
https://www.paypal.com

HTTP Moved Messages
GET / HTTP/1.1
Host: www.paypal.com
User-Agent: Mozilla/5.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 100
Proxy-Connection: keep-alive

HTTP/1.1 301 Moved Permanently
Date: Wed, 31 Mar 2010 13:56:51 GMT
Server: Apache
Location: https://www.paypal.com/
Vary: Accept-Encoding
Content-Type: text/html
Content-Length: 0

Secure Connection to
https://www.paypal.com HTTP

HTTPS

HTTP Moved Messages
GET / HTTP/1.1
Host: www.paypal.com

1. Establish secure connection with PayPal

HTTP/1.1 301
Location: https://www.paypal.com/

2. Take the resulting HTML and return it to
the requesting user

HTTP/1.1 200 OK
<html><title>Paypal</title>....

Cleartext connection
with PayPal relayed
through the attacker's
secure tunnel

HTTP Moved Messages
GET / HTTP/1.1
Host: www.paypal.com

1. Establish secure connection with PayPal

HTTP/1.1 301
Location: https://www.paypal.com/

2. Take the resulting HTML and return it to
the requesting user

HTTP/1.1 200 OK
<html><title>Paypal</title>....

Cleartext connection
with PayPal relayed
through the attacker's
secure tunnel

HTTPS

HTTP

Roadmap
 Introduction
 MITM

 Attack overview
 MITM & SSL

 Effectiveness of SSL stripping attacks
 HProxy Architecture

 Modules
 Detection set

 Evaluation
 Related Work
 Conclusion

Effectiveness

 Why is this attack effective?
 Is it effective only against novice computer users or

are ”we” vulnerable as well?

Negative Feedback in Software

SSL warnings - Firefox

SSL warnings - Firefox

SSL warnings - Firefox

SSL warnings - Firefox

SSL warnings - Chrome

SSL warnings - Chrome

SSL Stripping

What the user sees...

Before SSL stripping

After SSL stripping

Before SSL stripping

After SSL stripping

Behind the scenes...

<form method="POST"
action="https://login.facebook.com/login.php?
login_attempt=1" id="login_form">

<form method="POST"
action="http://login.facebook.com/login.php?
login_attempt=1" id="login_form">

becomes

Roadmap
 Introduction
 MITM

 Attack overview
 MITM & SSL

 Effectiveness of SSL stripping attacks
 HProxy Architecture

 Modules
 Detection set

 Evaluation
 Related Work
 Conclusion

Hproxy: History Proxy

 Leverage a browser's history
 Construct a security profile of each regurarly

visited website
 Requests & Responses (R&R)

 What is ”expected” security-wise?
 Which parts of the website are protected by SSL?

 Use the current set of R&R and a detection
ruleset to identify ”unexpected” behaviour

HProxy Architecture

Webpage Analyzer

 Module responsible for
identifying & recording all
sensitive data structures
 HTTP Messages
 Forms
 Iframes
 JavaScript code

 Profile Creation

MITM Identifier

 Combination of:
 Current R&R
 Original profile
 Detection Ruleset

 Drops the request and
notifies the user in case of
a MITM identification

PageTainter

 Failsafe module
 Preventing leakage when

MITM Identifier emmits a
false negative

 Identification of private
data

 Monitoring & Tainting of
all Forms

Detection Ruleset

 A set of pragmatic rules describing attack
scenarios

 Rules for:
 HTTP MOVED message
 FORMS
 Iframe tags
 JavaScript code

Detection Ruleset: HTTP MOVED

Current Response Modification Allowed?
MOVED HTTPS
domain_a/page_a

None Yes

MOVED HTTPS
domain_a/page_b

Different Page Yes

MOVED HTTP
domain_a/page_a

Non SSL No

MOVED HTTP
domain_b/page_a

Different Domain No

MOVED HTTPS
domain_b/page_a

Different Domain No

HTTP 200 OK
<html>....

OK instead of MOVED No

REQUEST: GET domain_a
ORIGINAL RESPONSE: MOVED HTTPS domain_a/page_a

Detection Ruleset: IFrames

 Simple rule:

 On login pages, no iframes tags are allowed
 Why?

 Clickjacking
 External JS sources loaded

<iframe src=”...”>

Detection Ruleset: Forms

Detection Ruleset: Forms

 New forms
 Alert if:

 Login form with a different domain
 Absense of forms

 Alert if:
 Form missing is secure login form & new login

form detected with different domain or non-SSL
 Modified forms:

 Alert if
 Different domain or security downgrade

Detection Ruleset: JavaScript

 JavaScript can be used to steal credentials in
pages where the user types them in

 Differentiating between original & "added" JS
 Not an easy task
 Both internal & external JS can be abused

JavaScript Whitelisting

1.Identify JavaScript of login pages
2.HASH them
3.Store the hash in the page's profile
4.Compare the hash with all subsequent hashes
5.If they are not equal, MITM identified

Right?

JavaScript Whitelisting

1.Identify JavaScript of login pages
2.HASH them
3.Store the hash in the page's profile
4.Compare the hash with all subsequent hashes
5.If they are not equal, MITM identified

Right?

Wrong!

JavaScript Pre-processor

 Dynamic Web is more than dynamic HTML
output

 JavaScript is also dynamic
 Making simple whitelisting, prone to false-positives

 Creation of dynamic JS templates for each
website
 Recording the dynamic & static parts

JavaScript Pre-processor

 Two
consecutive
requests for the
same page

 Recording the
position &
length of the
changing parts

 Option for strict
or flexible policy

Twitter's Login Page

Roadmap
 Introduction
 MITM

 Attack overview
 MITM & SSL

 Effectiveness of SSL stripping attacks
 HProxy Architecture

 Modules
 Detection set

 Evaluation
 Related Work
 Conclusion

JS False-positives

3 Ways of whitelisting
a) MD5 checksum
b) JS Preprocessor
c) JS Preprocessor +

 tolerance factor (10)

Time Overhead

Average load time overhead of 500 locally served websites

No Proxy -> Hproxy: Overhead of 0.41 seconds

Roadmap
 Introduction
 MITM

 Attack overview
 MITM & SSL

 Effectiveness of SSL stripping attacks
 HProxy Architecture

 Modules
 Detection set

 Evaluation
 Related Work
 Conclusion

Related work

 No work so far related specifically to SSL
stripping attacks

 MITM & WiFi Impersonation Attacks Detection
 Leveraging

 802.11 protocol (Beacons)
 Physical characteristics of Wireless comm. (RSS)

 Warning systems
 Xia et. al

Roadmap
 Introduction
 MITM

 Attack overview
 MITM & SSL

 Effectiveness of SSL stripping attacks
 HProxy Architecture

 Modules
 Detection set

 Evaluation
 Related Work
 Conclusion

Conclusion

 We analyzed and expanded SSL stripping
attacks

 We presented a novel client-side detection
mechanism for stripping attacks using a
browser's history

 HProxy:
 Identified all attacks
 Acceptable performance
 Low false positive rate

Thank you

Questions?

nick.nikiforakis@cs.kuleuven.be

Defenses

 How can we defend against SSL stripping
attacks?
 Server-side

 Global repository of SSL protected websites
 Each website providing a discovery service which

the browser can use in order to determine the
support of SSL

 Client-side
 Much harder since all the data coming in are

potentially altered by the MITM

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

