
15. ITG-FACHTAGUNG FÜR ELEKTRONISCHE MEDIEN, 26. – 27. FEBRUAR 2013, DORTMUND

Comparison of Code-Pass-Skipping Strategies for Accelerating a

JPEG 2000 Decoder

Volker Bruns, Heiko Sparenberg

Moving Picture Technologies Department,

Fraunhofer Institute for Integrated Circuits

Germany, Erlangen 91058

{volker.bruns, heiko.sparenberg}@iis.fraunhofer.de

Abstract

Code-Pass-Skipping allows a JPEG 2000 decoder to be accelerated by sacrificing the output precision. This paper pre-

sents an evaluation on how the speed gain can be maximized and the quality loss minimized. In particular, the scenario

of rendering a 24-bit preview of a Digital Cinema Package (DCP) with the maximum permitted bitrate is examined. A

comparison shows that a new proposed strategy outperforms the reference implementation from Kakadu Software v6 by

up to 1 dB. Furthermore, it is shown what speed gain can be achieved for a given acceptable quality loss.

1. Motivation

JPEG 2000 is a standard for still image compression, pub-

lished jointly by ISO/IEC and ITU-T [1]. It is most promi-

nently used as the compression format in Digital Cinema

Packages (DCPs) but also finds applications in the fields of

medical imaging and industrial sensor systems. It performs

superior to JPEG in most - if not all – aspects, but this ad-

vantage comes at the cost of a significantly higher compu-

tational complexity. The maximum bitrate for the image

essence of DCPs was specified to be 250 Mbit/s [2]. Cin-

ema servers and also some postproduction workstations are

equipped with dedicated hardware-boards, that are capable

of processing video streams in real-time. For quality con-

trol and screenings, however, software-based solutions for

PC or Mac are being used. The particular hardware-

recommendations vary, but modern CPUs with four or

more cores are required to guarantee decoding times that

are sufficiently fast for real-time playback, even at the

maximum bitrates of 250 Mbit/s. When the currently dis-

cussed amendment for higher frame rates with up to 60 fps

per eye and a maximum bitrate of 500 Mbit/s is passed, the

computational requirements will rise even higher.

For applications other than the theatrical playback itself, a

decoding in full quality is not necessarily required. Smooth

real-time playback, however, is a must. A simple solution

would be to utilize the resolution scalability built into

JPEG 2000 and discard the outermost resolution level. The

decoding time would decrease noticeably but the spatial

resolution would be halved both horizontally and vertical-

ly. Especially when viewing a DCP with a consumer-level

or semi-professional LCD display or projector, this is not

the smartest trade-off as the devices would in fact be capa-

ble of rendering the full resolution. A better approach

would be to sacrifice part of the 36-bit precision, taking

into account that the viewing devices can only render 24-

bit colors anyway. The JPEG 2000 standard does accom-

modate for scalability by quality, but this feature is not

permitted in the profiles specified by the Digital Cinema

Initiative (DCI) for use in DCPs. The concept of „Code-

Pass-Skipping“ does not pose any specific requirements on

the encoded code-stream, however, and can thus be used to

diminish precision in order to gain speed anyway. This

way, a finely tunable compromise between quality and

speed can be realized. It is desirable to implement the con-

cept in a way that maximizes the speed gain and minimizes

the quality loss. This paper examines several alternative

strategies. Furthermore, it is evaluated what speed gain can

be achieved when given a maximally tolerable quality loss

measured in Peak-Signal-to-Noise-Ratio (PSNR).

2. Structure

Figure 1 Block diagram of a JPEG 2000 encoder

For a better understanding, the relevant image compression

algorithms used in JPEG 2000 will be presented briefly.

Then, code-pass skipping will be explained along with an

exemplary code-pass-histogram. Next, alternative strate-

gies proposed by the authors are presented. Finally, the

different strategies are compared and the results discussed.

First, a JPEG 2000 encoder (Figure 1) transforms an un-

compressed input image into a color representation that

distinguishes between luminance and chrominance. Next,

each color component individually undergoes a wavelet

transform.

Level Offset

Reversible

Component

Transform

Irreversible DWT

Reversible DWT

Deadzone

Quantization

Ranging

Region-Of-Interest

Uncompressed Image

Code-Stream
EBCOT

Irreversible

Component

Transform

Irreversible Path

Reversible Path

COMPARISON OF CODE-PASS-SKIPPING STRATEGIES FOR ACCELERATING A JPEG 2000 DECODER 2

Figure 2 2D Dyadic wavelet decomposition

In this step, the spectrum is separated into low and high

frequencies, both in horizontal and vertical direction. Ap-

plying the transform once yields four subbands, denoted as

LL, HL, LH and HH (Figure 2). Recursively, this proce-

dure can be executed multiple times on the resulting LL

subbands. For a DCI-compliant JPEG 2000 code-stream

the transform is typically repeated five times, which yields

six resolution levels with three subbands in each level,

respectively four subbands in the lowest level.

Following, wavelet coefficients are quantized, with the

quantization factor being dependent on the subband level.

This way, higher frequencies can be quantized more heavi-

ly than lower frequencies. Subsequently, each subband is

split into independent code-blocks, which are specified to

be 32x32 pixels in the DCI profiles. Each code-block is

then entropy coded.

JPEG 2000’s entropy coder is named Embedded Block

Coder with Optimized Truncation (EBCOT). The wavelet

coefficients are first converted into a sign/magnitude rep-

resentation and then processed bit-plane by bit-plane, start-

ing with the most significant one (Figure 3). Each plane is

traversed in a zigzag pattern in three passes. In exactly one

of the three pass types a bit is passed to the context-

adaptive arithmetic coder, which successively generates a

bit-stream for the code-block. Additionally, a rate-

distortion value pair is calculated after every completed

code-pass. This value allows making a statement on how

much the inclusion of this code-pass’s information would

raise the final code-stream’s size (cost) and decrease the

difference of the compressed image to the original one

(benefit). Based on these values, the subsequent Post-

Compression Rate-Distortion Optimization (PCRD-

Optimization) algorithm decides which passes to remove

in order to meet a user-defined target bit-rate, e.g. 250

Mbit/s. Consequently, it is not unordinary that more code-

passes are spent for one code-block than for another, even

if they stem from the same subband and are thus coded

with the same nominal bit depth.

3. Code-Pass-Skipping

Since a JPEG 2000 code-stream is constructed in a way

that it can be processed sequentially, it is assumed that the

decoder will not load the entire code-stream into memory

and therefore cannot access all packets at once. Each code-

block is decoded independently. A code-stream packet’s

header contains the information how many code-passes

have been included for the current code-block as well as

the bit-depth that was used to store the wavelet coeffi-

cients. Without code-pass-skipping, a decoder would simp-

ly process all code-passes in order to reconstruct the coef-

ficients as precisely as possible. Only after the wavelet

synthesis and inverse color transform during the de-

normalization would the superfluous precision be truncat-

ed, when only a 24-bit presentation of the image is recon-

structed.

Figure 3 Bit-plane representation of an 8 x 8 block of quantization index magnitudes. An additional plane not included

in the diagram contains the samples’ signs.

First Decomposition

Level

LL HL

LH HH

recursively decompose LL subband

Source Image

(LL Band of previous

Decomposition Level)

Low Pass and

High Pass Values

L

H

Vertical

Filtering

Horizontal

Filtering

0

0

0

0

1

1

0

1

0

0

0

0

0

1

1

0

1

0

1

1

0

0

0

1

0

7

0

1

1

0

1

1

0

1

0

0

0

1

1

0

0

1

0

0

1

0

0

1

0

1

0

0 0 0 0 1 0 1

0 0 1 0 1 1

0

0 0 0 1 0 0

0

1

0

1

1

0

0

1

0

1

0

0

0 0

1 0 1 0 1 0 1

1 0 1 1 0 1

1

0

0 0 1 0 0 1

0

0

0

0

0

0

0

0

0

0

0

0

0 0

1 1 0 0 0 1 0

1 1 1 1 1 0

2

0

1 0 0 1 1 0

0

0

0

0

0

0

0

0

1

0

0

0

0 0

0 1 1 1 1 0 0

0 1 0 0 0 0

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0

0 0 0 0 0 0

4

bit-plane 4

contains only

zeros

=> K = 4

s
trip

e
s
trip

e

6

2

4

2

3

1

2

1

4

0

4

0

6

5

9

10

3

8

1

5

0

2

0

3

4

7

8

7

11

12

15

13

4

13

6

6

2

5

3

4

2

1

0

2

1

2

0

1

0

1

0

6 12 10 8 11 4 3

6 12 7 6 5 3

8x8 block with 5 bits precision

COMPARISON OF CODE-PASS-SKIPPING STRATEGIES FOR ACCELERATING A JPEG 2000 DECODER 3

Table 1 Code-Pass Histogram, 00077.tif.250mbits.j2c

Bit-
plane

Code-
Pass

Total rlvl 0 rlvl 1 rlvl 2 rlvl 3 rlvl 4 rlvl 5

Σ Σ 48254 180 441 1525 5232 14648 26204

16 46 0 0 0 0 0 0 0

15

45 0 0 0 0 0 0 0

44 0 0 0 0 0 0 0

43 42 0 0 0 0 42 0

14

42 42 0 0 0 0 42 0

41 42 0 0 0 0 42 0

40 273 2 3 11 22 184 51

13

39 273 2 3 11 22 184 51

38 273 2 3 11 22 184 51

37 706 4 5 19 73 319 286

12

36 706 4 5 19 73 319 286

35 706 4 5 19 73 319 286

34 1601 6 7 25 99 598 866

11

33 1601 6 7 25 99 598 866

32 1601 6 7 25 99 598 866

31 3069 6 10 38 153 892 1970

10

30 3053 6 10 38 153 892 1954

29 3052 6 10 38 153 892 1953

28 4183 6 16 55 232 1003 2871

9

27 4130 6 16 55 232 1003 2818

26 4053 6 16 55 232 1003 2741

25 4004 6 16 69 280 1008 2625

8

24 3135 6 16 69 280 1008 1756

23 2893 6 16 69 280 897 1625

22 2661 6 18 72 288 897 1380

7

21 2176 6 18 72 288 896 896

20 947 6 18 72 288 560 3

19 655 6 18 72 288 268 3

6

18 384 6 18 72 288 0 0

17 384 6 18 72 288 0 0

16 384 6 18 72 288 0 0

5

15 384 6 18 72 288 0 0

14 369 6 18 72 273 0 0

13 174 6 18 72 78 0 0

4

12 96 6 18 72 0 0 0

11 96 6 18 72 0 0 0

10 34 6 18 10 0 0 0

3

9 24 6 18 0 0 0 0

8 24 6 18 0 0 0 0

7 24 6 18 0 0 0 0

2

6 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

1

3 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

For Kakadu Software, it has been shown that EBCOT Tier-

1 is the most computationally expensive step of a JPEG

2000 decoder and takes up to two thirds of the entire de-

coding time [6]. This is exactly where Code-Pass-Skipping

takes effect by skipping additional code-passes in the de-

coder. Mathematically, this can be regarded as another

quantization. The more code-passes are dropped, the less

time is required for EBCOT Tier-1, the more the wavelet

coefficients are quantized and the larger the difference

between the reconstructed image and the original becomes.

So more precisely the research question is what strategy to

employ in a decoder to decide which code-passes to drop.

This task is very similar to that of the PCRD-Optimization

algorithm in the encoder, but with the significant differ-

ence, that the decoder does not have rate-distortion values

at its hand to base its decision on.

Table 2 Code-Pass Histogram, 00077.tif.75mbits.j2c

Bit-
plane

Code-
Pass

Total rlvl 0 rlvl 1 rlvl 2 rlvl 3 rlvl 4 rlvl 5

Σ Σ 20792 164 379 1268 3971 8495 6515

[…] […] […] […] […] […] […] […] […]

9

27 1001 6 16 55 232 541 151

26 715 6 16 55 232 401 5

25 708 6 16 69 280 337 0

8

24 707 6 16 69 280 336 0

23 516 6 16 69 280 145 0

22 521 6 18 72 288 137 0

7

21 384 6 18 72 288 0 0

20 373 6 18 72 277 0 0

19 366 6 18 72 270 0 0

6

18 201 6 18 72 105 0 0

17 192 6 18 72 96 0 0

16 163 6 18 72 67 0 0

5

15 99 6 18 72 3 0 0

14 50 6 18 26 0 0 0

13 36 6 18 12 0 0 0

4

12 27 6 18 3 0 0 0

11 12 6 6 0 0 0 0

10 3 1 2 0 0 0 0

3

9 3 1 2 0 0 0 0

8 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0

2

6 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

1

3 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

4. Code-Pass-Histogram

In order to gain an overview of the code-passes present in

a test image and infer strategies from it, it is helpful to

create a code-pass-histogram [Table 1]. Every possible

code-pass-index is regarded as a bin and it is counted for

how many code-blocks this particular pass (type and bit-

plane) has to be executed. The code-block count is addi-

tionally subdivided by resolution-levels. In this particular

example, the decoder reconstructs wavelet coefficients

with 16 bits precision. Thus, the highest pass index is

3x16-2 = 46. Initially, a coefficient is zero and then it’s

precision is successively improved by processing more and

more code-passes, beginning with the most significant

non-zero bit-plane and moving towards the lower bit-

planes. Every code-pass may contain the information to

toggle the appropriate bit from 0 to 1. When employing

code-pass-skipping, some code-passes are truncated, which

effectively leads to the less significant bits staying zero.

Consequently, the difference between the reconstructed

coefficient and the coded coefficient may grow with every

additional ignored code-pass.

It is visible (and highlighted by the horizontal bold border)

that subbands in the various resolution levels from lowest

(rlvl 0) to highest (rlvl 5) frequencies have been coded

with decreasing bit-depths of 14,14,13,12,10, respectively

10 bits. Any bit planes lower than these bit-depths will stay

zero. For all code-blocks except a few from rlvl 4 the top-

most two bit-planes consist entirely of zero bits, so that

COMPARISON OF CODE-PASS-SKIPPING STRATEGIES FOR ACCELERATING A JPEG 2000 DECODER 4

they have not been processed in code-passes but instead

been flagged as zero-bit-planes in the packet header.

In the example shown in Table 1, the lowest resolution

level (rlvl 0) consists of six code-blocks all of which uti-

lize the maximum available precision of 14 bits (bit-planes

3-16). Apparently the encoder did not strip any code-

passes for these blocks because the target bitrate was met

to begin with.

Table 2 shows the code-passes of the same image com-

pressed at only 75 Mbit/s (at 24 fps). Now, the encoder had

to drop numerous code-passes in order to meet the bitrate

limit. This can be inferred from the lower code-pass-counts

in the less significant bit-planes.

5. Strategies

Next, the strategy implemented by Kakadu Software v6

will be described and alternative algorithms proposed by

the authors will be presented. Last, all strategies will be

evaluated and compared against each other.

5.1. Strategy kdu standard

Kakadu Software offers the possibility to enable code-

pass-skipping and configure it by specifying a truncation

factor. For a factor of 0, no passes are skipped. For every

multiple of 256 one additional code-pass in each code-

block is skipped. For intermediate values, only some of the

code-blocks, starting with the high frequencies, loose an

additional code-pass. The flaw of this strategy might be

that the number of existing code-passes is not taken into

consideration. Regardless of this number, all code-blocks

are truncated equally strong for every multiple of 256.

5.2. Strategy Block-Pass-Count-Relative

The number of skipped code-passes depends on the total

number of passes present for a code-block. By specifying a

quality index, the quality-to-speed trade-off can be config-

ured. A range of 0-100 quality points is mapped linearly to

0% – 70% of the total number of passes present for a code-

block. In effect, a code-block with 30 passes loses more

passes than a code-block for which only 10 passes exist. It

is not expected that this strategy will deliver the best re-

sults, because in this example the encoder must have had a

good reason to spend 30 passes on one block and only 10

on the other. Apparently, the former block contains very

important information. However, according to this strate-

gy, the more important code-block will be truncated more

heavily than the less important one.

5.3. Strategy Subband-Relative

The number of skipped code-passes depends solely on the

bit-depth of the subband the code-block belongs to. If a

subband has Kmax bits, a code-block within this band can

have 3 x Kmax - 2 passes at most. This maximum number is

decreased and only those blocks affected by the lower limit

are truncated. A range of 0-100 quality points is

Table 3 PSNR-values without code-pass-skipping (Data-

rates with respect to 24 fps)

 250 Mbit/s 150 Mbit/s 75 Mbit/s

Image 3837 41,8 dB 37,7 dB 35,4 dB

Image 1278 39,0 dB 35,7 dB 33,9 dB

Image 0077 40,2 dB 37,0 dB 34,5 dB

Table 4 PSNR-values of the intersection points in Figure

5 (Data-rates with respect to 24 fps)

 250 Mbit/s 150 Mbit/s 75 Mbit/s

Image 3837 36,3 dB 35,2 dB 34,3 dB

Image 1278 34,8 dB 33,9 dB 32,8 dB

Image 0077 35,5 dB 33,4 dB 32,7 dB

mapped to the passes between a deliberate minimum index

(3 x Kmax – 2 – 17) and the maximum index possible for

the subband (3 x Kmax – 2). Decreasing the quality index

equally affects all code-blocks. In this strategy, the relation

between the numbers of code-passes for blocks from the

same subband will be maintained. Hence, the encoder’s

PCRD-Optimization algorithm’s decisions are not over-

ruled, but rather maintained. Furthermore, code-passes are

stripped in equal amounts from all resolution levels.

5.4. Strategy Image-Relative

The number of skipped code-passes is calculated with re-

spect to maximum bit-depth of all subbands. Usually the

maximum bit-depth should be that of the lowest resolution

level, which contains the image’s important low frequen-

cies. A precision of 14 bits yields a maximum number of

code-passes of 3 x 14 – 2. This maximum is now de-

creased so that only those code-blocks affected by the low-

er maximum will be affected. Again, a deliberate mini-

mum number of 3 x Kmax
max

– 2 – 17 is introduced to pre-

vent the quality from deteriorating too much. This strategy

leads to low-frequency code-blocks being truncated more

significantly than high-frequency code-blocks and there-

fore it is not expected that it will deliver very good results.

5.5. Modified Strategies

Any of the strategies can easily be modified by preventing

that code-blocks from certain subbands will be truncated.

This way, high or low frequencies can be spared.

6. Test Setup

All strategies were implemented in Kakadu Software v6

and can be selected to replace the original strategy. They

were applied to a set of three test images (Figure 4), each

encoded with 75 Mbit/s, 150 Mbit/s and 250 Mbit/s (with

respect to 24 fps).

The quality index is varied between 100 (highest quality)

and 0 (lowest quality) in incremental steps of 10 points.

The decoding time (mean of three repetitions) is measured

COMPARISON OF CODE-PASS-SKIPPING STRATEGIES FOR ACCELERATING A JPEG 2000 DECODER 5

Figure 4 Images 0077, 1278, 3837 (top to bottom)

for each of the nine source code-streams. Kakadu Soft-

ware’s multi-threading engine was disabled. Additionally,

the PSNR-value between the 24-bit reconstructed image

and the 48-bit original is calculated. For this, the Mean-

Square-Error (MSE) is calculated based on the normalized

floating-point representations (value range 0.0 – 1.0) of the

images. Subsequently, a maximum value of 28-1 = 255 is

used for calculating the PSNR-value.

7. Evaluation

Figure 5 shows the results for a 1.24 MB large test image.

The PSNR-value for the completely decoded 24-bit image

compared to the 48-bit original is 41.8 dB. On an Intel i7

3960x CPU, the decoding time (with multi-threading disa-

bled) is 234 msecs. Up to a decoding time of only 100

msecs, the PSNR-value decreases fairly linearly to 36.5

dB. In other words, a speed-up of 25 msecs costs about 1

dB quality.

Two of the strategies proposed by the authors slightly out-

perform the reference from Kakadu Software v6, but only

up to a deterioration of 5 dB. They achieve a higher quality

while providing the same speed-up.

Up to a deterioration of 4 dB the graphs have a fairly con-

stant offset and after that they approximate each other until

they cross. This offset is 0.4 – 0.5 dB for the “Block-Pass-

Count-Relative“-strategy. For the “Subband-Relative“-

strategy the PSNR-value is even 0.9 – 1.1 dB higher than

that of the reference implementation. By modifying the

latter strategy to spare code-blocks from the lowest three

resolution levels, the deterioration of the PSNR-value for

high speedups can be further decreased. However, at a

speed-up of 100 msecs and a PSNR-value of 36.2 dB the

curve falls below that of the reference implementation. The

“Image-Relative“-strategy performs constantly poorer than

all other strategies, except for the one, which spares not the

lower, but the higher frequencies. As expected, this strate-

gy is a negative example and proves that the lower fre-

quency wavelet coefficients have a very strong influence

on the PSNR-value and should be advantaged rather than

dis-advantaged.

Figure 5 Quality-vs.-Performance trade-off for successively increasing Code-Pass-Skipping configurations for image

3837 (DCI-compliant, 250 Mbit/s with respect to 24 fps, 24-bit decode)

28

30

32

34

36

38

40

42

44

050100150200

PSNR [dB]

t [msecs]

kdu standard

Block-Pass-Count-Relative

Subband-Relative

Image-Relative

Subband-Relative (high 3 rlvls)

Subband-Relative (high 4 rlvls)

Subband-Relative (low 4 rlvls)

15. ITG-FACHTAGUNG FÜR ELEKTRONISCHE MEDIEN, 26. – 27. FEBRUAR 2013, DORTMUND

The graph depicted in figure 5 looks very similar for the

other two test images, encoded at the same bitrate. They

are merely shifted on the y-axis as not all compressed im-

ages achieve the same maximum PSNR-value. At full

quality, the PSNR-values of the 24-bit reconstructed imag-

es compared to the original ones are 41.8 dB, 39.0 dB, and

40.2 dB (refer table 3).

The strategies’ ranking list looks identical for the more

heavily compressed test images. Due to the lower data-

rate, the overall achieved PSNR-values and execution

times are lower, which was expected. The points at which

the proposed strategies “Subband-relative” and “Image-

relative” intersect with the reference strategy from Kakadu

Software are located at 4.2 – 5.5 dB (250 Mbit/s), 1.8 – 3.6

dB (150 Mbit/s), respectively 1.0 – 1.8 dB (75 Mbit/s)

below the maximum PSNR-values. This equals absolute

values of 32.7 – 36.3 dB for the different bitrates (refer

table 4). For test images encoded at 250 Mbit/s, this trans-

lates to skipping more than half of all the code-passes and

for 75 Mbit/s still one third of all code-passes are skipped.

Therefore, applications in which qualities as low as that

are still acceptable should employ a hybrid strategy.

Both the “Subband-Relative“ and “Image-Relative“ strate-

gies calculate the number of skipped passes independently

of the total number of existing passes and thus take less

effect at high quality indices for the test images com-

pressed at 150 Mbit/s and 75 Mbit/s. This behavior is de-

sirable since it allows parameterizing code-pass-skipping

in a way that only high-data code-streams are truncated.

Low-data scenes, on the other hand, take less decoding-

time anyway and are not further diminished unnecessarily.

A DCP-Player can utilize the a-priori knowledge that all

sources have the same bit-depth, i.e. 36-bit. Even if this

assumption could not be made, the strategies could easily

be modified to work with a global Kmax value, specified by

the application instead of the source. This way, a source

with a lower bit-depth would only be truncated, if a very

low quality index were configured. The quality parameter

would be independent of the source’s bit-depth, which

again is a desirable behavior as the user should not have to

adjust the quality-vs.-speed trade-off for every source.

Rather, the trade-off should be dependent on the available

computational power, which stays constant.

8. Conclusion and Outlook

It has been shown, that code-pass-skipping provides a sig-

nificant speed-up at quality losses that are tolerable in

many applications. While providing the same speed-up, the

"Subband-Relative“-strategy diminishes the quality-loss

significantly, compared to the reference implementation

from Kakadu Software v6. For DCI-compliant JPEG 2000

code-streams that fully utilize the maximum permitted

bitrate of 250 Mbit/s (with respect to 24 fps) the reference

is outperformed by up to 1.1 dB. When skipping more than

half of the existing code-passes, however, the reference

implementation delivers best results, which is why a hy-

brid strategy should be pursued, when skipping that many

code-passes can still be tolerated.

Furthermore, the test results show what speed-up can be

achieved for a given tolerable quality loss (measured in

PSNR). The decision on what quality loss is still tolerable

can be forwarded to the user, e.g. in the form of a quality-

vs.-performance slider. For the proposed strategies no

knowledge of the source’s bit-depth is required, so that the

user only needs to adjust the code-pass-skipping configura-

tion once to the available computation power. The fact that

the best-performing strategy’s curve initially stays level

shows that when reconstructing only a 24-bit preview from

a 36-bit source, e.g. a DCP, code-pass-skipping can be

utilized to achieve a significant speed-up at almost no cost.

In combination with a high-performance decoder like Ka-

kadu Software the hardware requirements for real-time

playback of DCPs can be decreased. Alternatively, a pow-

erful hardware enables real-time playback of bitrates be-

yond 250 Mbit/s or frame-rates higher than 24 fps.

9. References

[1] ISO/IEC 15444-1, Information technology - JPEG

2000 image coding system - Part 1: Core coding sys-

tem, 2000

[2] Digital Cinema Initiatives (DCI), Digital Cinema

System Specification V1.2, 7th March 2008

[3] Kakadu Software, http://www.kakadusoftware.com/

[4] Morgan Multimedia M-JPE2000 Codec,

http://www.morgan-

multime-

dia.com/morgan/php/products.php?sProductId=5&sP

roductSub=screenshots

[5] MainConcept JPEG2000 Codec,

http://www.mainconcept.com/products/sdks/video/jp

eg-2000.html

[6] Dyer, M., Gupta, A., Galin, N., Nooshabadi, S., Case

Study: Hardware Acceleration of the JPEG2000 Ka-

kadu Library, 49th IEEE International Midwest

Symposium on Circuits and Systems, 2006

[7] Taubman, D. S., Marcellin, M. W., JPEG2000: Im-

age compression fundamentals, standard and practice,

Kluwer, Boston, 2002

