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Abstract  

Code-Pass-Skipping allows a JPEG 2000 decoder to be accelerated by sacrificing the output precision. This paper pre-

sents an evaluation on how the speed gain can be maximized and the quality loss minimized. In particular, the scenario 

of rendering a 24-bit preview of a Digital Cinema Package (DCP) with the maximum permitted bitrate is examined. A 

comparison shows that a new proposed strategy outperforms the reference implementation from Kakadu Software v6 by 

up to 1 dB. Furthermore, it is shown what speed gain can be achieved for a given acceptable quality loss. 

 

1. Motivation 

JPEG 2000 is a standard for still image compression, pub-

lished jointly by ISO/IEC and ITU-T [1]. It is most promi-

nently used as the compression format in Digital Cinema 

Packages (DCPs) but also finds applications in the fields of 

medical imaging and industrial sensor systems. It performs 

superior to JPEG in most - if not all – aspects, but this ad-

vantage comes at the cost of a significantly higher compu-

tational complexity. The maximum bitrate for the image 

essence of DCPs was specified to be 250 Mbit/s [2]. Cin-

ema servers and also some postproduction workstations are 

equipped with dedicated hardware-boards, that are capable 

of processing video streams in real-time. For quality con-

trol and screenings, however, software-based solutions for 

PC or Mac are being used. The particular hardware-

recommendations vary, but modern CPUs with four or 

more cores are required to guarantee decoding times that 

are sufficiently fast for real-time playback, even at the 

maximum bitrates of 250 Mbit/s. When the currently dis-

cussed amendment for higher frame rates with up to 60 fps 

per eye and a maximum bitrate of 500 Mbit/s is passed, the 

computational requirements will rise even higher. 

 

For applications other than the theatrical playback itself, a 

decoding in full quality is not necessarily required. Smooth 

real-time playback, however, is a must. A simple solution 

would be to utilize the resolution scalability built into 

JPEG 2000 and discard the outermost resolution level. The 

decoding time would decrease noticeably but the spatial 

resolution would be halved both horizontally and vertical-

ly. Especially when viewing a DCP with a consumer-level 

or semi-professional LCD display or projector, this is not 

the smartest trade-off as the devices would in fact be capa-

ble of rendering the full resolution. A better approach 

would be to sacrifice part of the 36-bit precision, taking 

into account that the viewing devices can only render 24-

bit colors anyway. The JPEG 2000 standard does accom-

modate for scalability by quality, but this feature is not 

permitted in the profiles specified by the Digital Cinema 

Initiative (DCI) for use in DCPs. The concept of „Code-

Pass-Skipping“ does not pose any specific requirements on 

the encoded code-stream, however, and can thus be used to 

diminish precision in order to gain speed anyway. This 

way, a finely tunable compromise between quality and 

speed can be realized. It is desirable to implement the con-

cept in a way that maximizes the speed gain and minimizes 

the quality loss. This paper examines several alternative 

strategies. Furthermore, it is evaluated what speed gain can 

be achieved when given a maximally tolerable quality loss 

measured in Peak-Signal-to-Noise-Ratio (PSNR).  

2. Structure 

Figure 1 Block diagram of a JPEG 2000 encoder 

For a better understanding, the relevant image compression 

algorithms used in JPEG 2000 will be presented briefly. 

Then, code-pass skipping will be explained along with an 

exemplary code-pass-histogram. Next, alternative strate-

gies proposed by the authors are presented. Finally, the 

different strategies are compared and the results discussed. 

First, a JPEG 2000 encoder (Figure 1) transforms an un-

compressed input image into a color representation that 

distinguishes between luminance and chrominance. Next, 

each color component individually undergoes a wavelet 

transform. 
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Figure 2 2D Dyadic wavelet decomposition 

In this step, the spectrum is separated into low and high 

frequencies, both in horizontal and vertical direction. Ap-

plying the transform once yields four subbands, denoted as 

LL, HL, LH and HH (Figure 2). Recursively, this proce-

dure can be executed multiple times on the resulting LL 

subbands. For a DCI-compliant JPEG 2000 code-stream 

the transform is typically repeated five times, which yields 

six resolution levels with three subbands in each level, 

respectively four subbands in the lowest level. 

 

Following, wavelet coefficients are quantized, with the 

quantization factor being dependent on the subband level.  

This way, higher frequencies can be quantized more heavi-

ly than lower frequencies. Subsequently, each subband is 

split into independent code-blocks, which are specified to 

be 32x32 pixels in the DCI profiles. Each code-block is 

then entropy coded. 

 

JPEG 2000’s entropy coder is named Embedded Block 

Coder with Optimized Truncation (EBCOT). The wavelet 

coefficients are first converted into a sign/magnitude rep-

resentation and then processed bit-plane by bit-plane, start-

ing with the most significant one (Figure 3). Each plane is 

traversed in a zigzag pattern in three passes. In exactly one 

of the three pass types a bit is passed to the context-

adaptive arithmetic coder, which successively generates a 

bit-stream for the code-block. Additionally, a rate-

distortion value pair is calculated after every completed 

code-pass. This value allows making a statement on how 

much the inclusion of this code-pass’s information would 

raise the final code-stream’s size (cost) and decrease the 

difference of the compressed image to the original one 

(benefit). Based on these values, the subsequent Post-

Compression Rate-Distortion Optimization (PCRD-

Optimization) algorithm decides which passes to remove 

in order to meet a user-defined target bit-rate, e.g. 250 

Mbit/s. Consequently, it is not unordinary that more code-

passes are spent for one code-block than for another, even 

if they stem from the same subband and are thus coded 

with the same nominal bit depth. 

3. Code-Pass-Skipping 

Since a JPEG 2000 code-stream is constructed in a way 

that it can be processed sequentially, it is assumed that the 

decoder will not load the entire code-stream into memory 

and therefore cannot access all packets at once. Each code-

block is decoded independently. A code-stream packet’s 

header contains the information how many code-passes 

have been included for the current code-block as well as 

the bit-depth that was used to store the wavelet coeffi-

cients. Without code-pass-skipping, a decoder would simp-

ly process all code-passes in order to reconstruct the coef-

ficients as precisely as possible. Only after the wavelet 

synthesis and inverse color transform during the de-

normalization would the superfluous precision be truncat-

ed, when only a 24-bit presentation of the image is recon-

structed.   

 

 

 

Figure 3 Bit-plane representation of an 8 x 8 block of quantization index magnitudes. An additional plane not included 

in the diagram contains the samples’ signs. 
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Table 1 Code-Pass Histogram, 00077.tif.250mbits.j2c 

Bit- 
plane 

Code- 
Pass 

Total rlvl 0 rlvl 1 rlvl 2 rlvl 3 rlvl 4 rlvl 5 

Σ Σ 48254 180 441 1525 5232 14648 26204 

16 46 0 0 0 0 0 0 0 

15 

45 0 0 0 0 0 0 0 

44 0 0 0 0 0 0 0 

43 42 0 0 0 0 42 0 

14 

42 42 0 0 0 0 42 0 

41 42 0 0 0 0 42 0 

40 273 2 3 11 22 184 51 

13 

39 273 2 3 11 22 184 51 

38 273 2 3 11 22 184 51 

37 706 4 5 19 73 319 286 

12 

36 706 4 5 19 73 319 286 

35 706 4 5 19 73 319 286 

34 1601 6 7 25 99 598 866 

11 

33 1601 6 7 25 99 598 866 

32 1601 6 7 25 99 598 866 

31 3069 6 10 38 153 892 1970 

10 

30 3053 6 10 38 153 892 1954 

29 3052 6 10 38 153 892 1953 

28 4183 6 16 55 232 1003 2871 

9 

27 4130 6 16 55 232 1003 2818 

26 4053 6 16 55 232 1003 2741 

25 4004 6 16 69 280 1008 2625 

8 

24 3135 6 16 69 280 1008 1756 

23 2893 6 16 69 280 897 1625 

22 2661 6 18 72 288 897 1380 

7 

21 2176 6 18 72 288 896 896 

20 947 6 18 72 288 560 3 

19 655 6 18 72 288 268 3 

6 

18 384 6 18 72 288 0 0 

17 384 6 18 72 288 0 0 

16 384 6 18 72 288 0 0 

5 

15 384 6 18 72 288 0 0 

14 369 6 18 72 273 0 0 

13 174 6 18 72 78 0 0 

4 

12 96 6 18 72 0 0 0 

11 96 6 18 72 0 0 0 

10 34 6 18 10 0 0 0 

3 

9 24 6 18 0 0 0 0 

8 24 6 18 0 0 0 0 

7 24 6 18 0 0 0 0 

2 

6 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 

1 

3 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

 

For Kakadu Software, it has been shown that EBCOT Tier-

1 is the most computationally expensive step of a JPEG 

2000 decoder and takes up to two thirds of the entire de-

coding time [6]. This is exactly where Code-Pass-Skipping 

takes effect by skipping additional code-passes in the de-

coder. Mathematically, this can be regarded as another 

quantization. The more code-passes are dropped, the less 

time is required for EBCOT Tier-1, the more the wavelet 

coefficients are quantized and the larger the difference 

between the reconstructed image and the original becomes. 

So more precisely the research question is what strategy to 

employ in a decoder to decide which code-passes to drop. 

This task is very similar to that of the PCRD-Optimization 

algorithm in the encoder, but with the significant differ-

ence, that the decoder does not have rate-distortion values 

at its hand to base its decision on. 

Table 2 Code-Pass Histogram, 00077.tif.75mbits.j2c 

Bit- 
plane 

Code-
Pass 

Total rlvl 0 rlvl 1 rlvl 2 rlvl 3 rlvl 4 rlvl 5 

Σ Σ 20792 164 379 1268 3971 8495 6515 

[…] […] […] […] […] […] […] […] […] 

9 

27 1001 6 16 55 232 541 151 

26 715 6 16 55 232 401 5 

25 708 6 16 69 280 337 0 

8 

24 707 6 16 69 280 336 0 

23 516 6 16 69 280 145 0 

22 521 6 18 72 288 137 0 

7 

21 384 6 18 72 288 0 0 

20 373 6 18 72 277 0 0 

19 366 6 18 72 270 0 0 

6 

18 201 6 18 72 105 0 0 

17 192 6 18 72 96 0 0 

16 163 6 18 72 67 0 0 

5 

15 99 6 18 72 3 0 0 

14 50 6 18 26 0 0 0 

13 36 6 18 12 0 0 0 

4 

12 27 6 18 3 0 0 0 

11 12 6 6 0 0 0 0 

10 3 1 2 0 0 0 0 

3 

9 3 1 2 0 0 0 0 

8 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 

2 

6 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 

1 

3 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

 

4. Code-Pass-Histogram 

In order to gain an overview of the code-passes present in 

a test image and infer strategies from it, it is helpful to 

create a code-pass-histogram [Table 1]. Every possible 

code-pass-index is regarded as a bin and it is counted for 

how many code-blocks this particular pass (type and bit-

plane) has to be executed. The code-block count is addi-

tionally subdivided by resolution-levels. In this particular 

example, the decoder reconstructs wavelet coefficients 

with 16 bits precision. Thus, the highest pass index is 

3x16-2 = 46. Initially, a coefficient is zero and then it’s 

precision is successively improved by processing more and 

more code-passes, beginning with the most significant 

non-zero bit-plane and moving towards the lower bit-

planes. Every code-pass may contain the information to 

toggle the appropriate bit from 0 to 1. When employing 

code-pass-skipping, some code-passes are truncated, which 

effectively leads to the less significant bits staying zero. 

Consequently, the difference between the reconstructed 

coefficient and the coded coefficient may grow with every 

additional ignored code-pass. 

 

It is visible (and highlighted by the horizontal bold border) 

that subbands in the various resolution levels from lowest 

(rlvl 0) to highest (rlvl 5) frequencies have been coded 

with decreasing bit-depths of 14,14,13,12,10, respectively 

10 bits. Any bit planes lower than these bit-depths will stay 

zero. For all code-blocks except a few from rlvl 4 the top-

most two bit-planes consist entirely of zero bits, so that 
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they have not been processed in code-passes but instead 

been flagged as zero-bit-planes in the packet header.  

In the example shown in Table 1, the lowest resolution 

level (rlvl 0) consists of six code-blocks all of which uti-

lize the maximum available precision of 14 bits (bit-planes 

3-16). Apparently the encoder did not strip any code-

passes for these blocks because the target bitrate was met 

to begin with. 

 

Table 2 shows the code-passes of the same image com-

pressed at only 75 Mbit/s (at 24 fps). Now, the encoder had 

to drop numerous code-passes in order to meet the bitrate 

limit. This can be inferred from the lower code-pass-counts 

in the less significant bit-planes. 

5. Strategies 

Next, the strategy implemented by Kakadu Software v6 

will be described and alternative algorithms proposed by 

the authors will be presented. Last, all strategies will be 

evaluated and compared against each other.  

5.1. Strategy kdu standard 

Kakadu Software offers the possibility to enable code-

pass-skipping and configure it by specifying a truncation 

factor. For a factor of 0, no passes are skipped. For every 

multiple of 256 one additional code-pass in each code-

block is skipped. For intermediate values, only some of the 

code-blocks, starting with the high frequencies, loose an 

additional code-pass. The flaw of this strategy might be 

that the number of existing code-passes is not taken into 

consideration. Regardless of this number, all code-blocks 

are truncated equally strong for every multiple of 256.  

5.2. Strategy Block-Pass-Count-Relative 

The number of skipped code-passes depends on the total 

number of passes present for a code-block. By specifying a 

quality index, the quality-to-speed trade-off can be config-

ured. A range of 0-100 quality points is mapped linearly to 

0% – 70% of the total number of passes present for a code-

block. In effect, a code-block with 30 passes loses more 

passes than a code-block for which only 10 passes exist. It 

is not expected that this strategy will deliver the best re-

sults, because in this example the encoder must have had a 

good reason to spend 30 passes on one block and only 10 

on the other. Apparently, the former block contains very 

important information. However, according to this strate-

gy, the more important code-block will be truncated more 

heavily than the less important one.  

5.3. Strategy Subband-Relative 

The number of skipped code-passes depends solely on the 

bit-depth of the subband the code-block belongs to. If a 

subband has Kmax bits, a code-block within this band can 

have 3 x Kmax - 2 passes at most. This maximum number is 

decreased and only those blocks affected by the lower limit 

are truncated. A range of 0-100 quality points is  

Table 3 PSNR-values without code-pass-skipping (Data-

rates with respect to 24 fps) 

 250 Mbit/s 150  Mbit/s 75  Mbit/s 

Image 3837 41,8 dB 37,7 dB 35,4 dB 

Image 1278 39,0 dB 35,7 dB 33,9 dB 

Image 0077 40,2 dB 37,0 dB 34,5 dB 

 

Table 4 PSNR-values of the intersection points in Figure 

5 (Data-rates with respect to 24 fps) 

 250 Mbit/s 150  Mbit/s 75  Mbit/s 

Image 3837 36,3 dB 35,2 dB 34,3 dB 

Image 1278 34,8 dB 33,9 dB 32,8 dB 

Image 0077 35,5 dB 33,4 dB 32,7 dB 

 

mapped to the passes between a deliberate minimum index 

( 3 x Kmax – 2 – 17) and the maximum index possible for 

the subband ( 3 x Kmax – 2 ). Decreasing the quality index 

equally affects all code-blocks. In this strategy, the relation 

between the numbers of code-passes for blocks from the 

same subband will be maintained. Hence, the encoder’s 

PCRD-Optimization algorithm’s decisions are not over-

ruled, but rather maintained. Furthermore, code-passes are 

stripped in equal amounts from all resolution levels.  

5.4. Strategy Image-Relative 

The number of skipped code-passes is calculated with re-

spect to maximum bit-depth of all subbands. Usually the 

maximum bit-depth should be that of the lowest resolution 

level, which contains the image’s important low frequen-

cies. A precision of 14 bits yields a maximum number of 

code-passes of 3 x 14 – 2.  This maximum is now de-

creased so that only those code-blocks affected by the low-

er maximum will be affected. Again, a deliberate mini-

mum number of 3 x Kmax
max

– 2 – 17 is introduced to pre-

vent the quality from deteriorating too much. This strategy 

leads to low-frequency code-blocks being truncated more 

significantly than high-frequency code-blocks and there-

fore it is not expected that it will deliver very good results. 

5.5. Modified Strategies 

Any of the strategies can easily be modified by preventing 

that code-blocks from certain subbands will be truncated. 

This way, high or low frequencies can be spared. 

6. Test Setup 

All strategies were implemented in Kakadu Software v6 

and can be selected to replace the original strategy. They 

were applied to a set of three test images (Figure 4), each 

encoded with 75 Mbit/s, 150 Mbit/s and 250 Mbit/s (with 

respect to 24 fps). 

  

The quality index is varied between 100 (highest quality) 

and 0 (lowest quality) in incremental steps of 10 points.  

The decoding time (mean of three repetitions) is measured  
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Figure 4 Images 0077, 1278, 3837 (top to bottom) 

for each of the nine source code-streams. Kakadu Soft-

ware’s multi-threading engine was disabled. Additionally, 

the PSNR-value between the 24-bit reconstructed image 

and the 48-bit original is calculated. For this, the Mean-

Square-Error (MSE) is calculated based on the normalized 

floating-point representations (value range 0.0 – 1.0) of the 

images. Subsequently, a maximum value of 28-1 = 255 is 

used for calculating the PSNR-value. 

7. Evaluation 

Figure 5 shows the results for a 1.24 MB large test image. 

The PSNR-value for the completely decoded 24-bit image 

compared to the 48-bit original is 41.8 dB. On an Intel i7 

3960x CPU, the decoding time (with multi-threading disa-

bled) is 234 msecs. Up to a decoding time of only 100 

msecs, the PSNR-value decreases fairly linearly to 36.5 

dB. In other words, a speed-up of 25 msecs costs about 1 

dB quality.  

 

Two of the strategies proposed by the authors slightly out-

perform the reference from Kakadu Software v6, but only 

up to a deterioration of 5 dB. They achieve a higher quality 

while providing the same speed-up.  

 

Up to a deterioration of 4 dB the graphs have a fairly con-

stant offset and after that they approximate each other until 

they cross. This offset is 0.4 – 0.5 dB for the “Block-Pass-

Count-Relative“-strategy. For the “Subband-Relative“-

strategy the PSNR-value is even 0.9 – 1.1 dB higher than 

that of the reference implementation. By modifying the 

latter strategy to spare code-blocks from the lowest three 

resolution levels, the deterioration of the PSNR-value for 

high speedups can be further decreased. However, at a 

speed-up of 100 msecs and a PSNR-value of 36.2 dB the 

curve falls below that of the reference implementation. The 

“Image-Relative“-strategy performs constantly poorer than 

all other strategies, except for the one, which spares not the 

lower, but the higher frequencies. As expected, this strate-

gy is a negative example and proves that the lower fre-

quency wavelet coefficients have a very strong influence 

on the PSNR-value and should be advantaged rather than 

dis-advantaged. 

 

Figure 5 Quality-vs.-Performance trade-off for successively increasing Code-Pass-Skipping configurations for image 

3837 (DCI-compliant, 250 Mbit/s with respect to 24 fps, 24-bit decode) 
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The graph depicted in figure 5 looks very similar for the 

other two test images, encoded at the same bitrate. They 

are merely shifted on the y-axis as not all compressed im-

ages achieve the same maximum PSNR-value. At full 

quality, the PSNR-values of the 24-bit reconstructed imag-

es compared to the original ones are 41.8 dB, 39.0 dB, and 

40.2 dB (refer table 3). 

 

The strategies’ ranking list looks identical for the more 

heavily compressed test images. Due to the lower data-

rate, the overall achieved PSNR-values and execution 

times are lower, which was expected.  The points at which 

the proposed strategies “Subband-relative” and “Image-

relative” intersect with the reference strategy from Kakadu 

Software are located at 4.2 – 5.5 dB (250 Mbit/s), 1.8 – 3.6 

dB (150 Mbit/s), respectively 1.0 – 1.8 dB (75 Mbit/s) 

below the maximum PSNR-values. This equals absolute 

values of 32.7 – 36.3 dB for the different bitrates (refer 

table 4). For test images encoded at 250 Mbit/s, this trans-

lates to skipping more than half of all the code-passes and 

for 75 Mbit/s still one third of all code-passes are skipped. 

Therefore, applications in which qualities as low as that 

are still acceptable should employ a hybrid strategy.  

 

Both the “Subband-Relative“ and “Image-Relative“ strate-

gies calculate the number of skipped passes independently 

of the total number of existing passes and thus take less 

effect at high quality indices for the test images com-

pressed at 150 Mbit/s and 75 Mbit/s. This behavior is de-

sirable since it allows parameterizing code-pass-skipping 

in a way that only high-data code-streams are truncated. 

Low-data scenes, on the other hand, take less decoding-

time anyway and are not further diminished unnecessarily. 

A DCP-Player can utilize the a-priori knowledge that all 

sources have the same bit-depth, i.e. 36-bit. Even if this 

assumption could not be made, the strategies could easily 

be modified to work with a global Kmax value, specified by 

the application instead of the source. This way, a source 

with a lower bit-depth would only be truncated, if a very 

low quality index were configured. The quality parameter 

would be independent of the source’s bit-depth, which 

again is a desirable behavior as the user should not have to 

adjust the quality-vs.-speed trade-off for every source. 

Rather, the trade-off should be dependent on the available 

computational power, which stays constant. 

8. Conclusion and Outlook 

It has been shown, that code-pass-skipping provides a sig-

nificant speed-up at quality losses that are tolerable in 

many applications. While providing the same speed-up, the 

"Subband-Relative“-strategy diminishes the quality-loss 

significantly, compared to the reference implementation 

from Kakadu Software v6. For DCI-compliant JPEG 2000 

code-streams that fully utilize the maximum permitted 

bitrate of 250 Mbit/s (with respect to 24 fps) the reference 

is outperformed by up to 1.1 dB. When skipping more than 

half of the existing code-passes, however, the reference 

implementation delivers best results, which is why a hy-

brid strategy should be pursued, when skipping that many 

code-passes can still be tolerated.  

 

Furthermore, the test results show what speed-up can be 

achieved for a given tolerable quality loss (measured in 

PSNR). The decision on what quality loss is still tolerable 

can be forwarded to the user, e.g. in the form of a quality-

vs.-performance slider. For the proposed strategies no 

knowledge of the source’s bit-depth is required, so that the 

user only needs to adjust the code-pass-skipping configura-

tion once to the available computation power. The fact that 

the best-performing strategy’s curve initially stays level 

shows that when reconstructing only a 24-bit preview from 

a 36-bit source, e.g. a DCP, code-pass-skipping can be 

utilized to achieve a significant speed-up at almost no cost. 

In combination with a high-performance decoder like Ka-

kadu Software the hardware requirements for real-time 

playback of DCPs can be decreased. Alternatively, a pow-

erful hardware enables real-time playback of bitrates be-

yond 250 Mbit/s or frame-rates higher than 24 fps. 
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