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Abstract 
A life table for the feral camel population in central Australia is constructed, using an 
extension of the Gompertz distribution, which was first proposed in a note by the famous 
mathematician Gauss. It is shown that under certain conditions some important life table 
parameters can be represented by simple formulae. The derived life table is then used to 
formulate both a continuous and a discrete model of the camel population. The models 
yield an annual growth rate of about 7%, a net reproduction rate of about 2.3, and a mean 
age of population of only 7 years. 
 
Key Words: Life table, stable model, life expectancy, Leslie matrix, Gompertz 
distribution 
 
1. Introduction 
 
The number of feral camels in central Australia has increased significantly since their 
release. In this paper, different quantitative methods are proposed to analyze the 
demographic characteristics of the camel population. From limited data, a life table is 
constructed using an extension of the Gompertz distribution (Gauss life table 
distribution). The life table model provides a good approximation of the mortality in 
these populations. It can be used to estimate and forecast many parameters of the life 
table and of the corresponding stationary population, e.g., the average and median 
remaining life expectancies can be calculated. For a given life table, the concept of the 
stable population model can be applied to the camel population, whereas a stable 
population is a population with an unvarying age distribution where fertility and mortality 
are constant. By using the stable model, it is possible to estimate the mean age and other 
important parameters of the camel population. Finally, a discrete, age-structured model of 
the population growth is proposed that uses the Leslie-matrix, which is well known in 
demography. 
 
2. Gauss´s Mortality Formula 
 
2.1 Formulation of the Model 
In the bequest of the famous mathematician C.F. Gauss (1777-1855) is a note1 about an 
analytical mortality formula: 

x xlog l(x) b c= α +β⋅ + γ ⋅ , 

                                                 
1 Königliche Gesellschaft der Wissenschaften zu Göttingen (1900), Hrsg.: Carl Friedrich Gauss, 
Werke, Band 8, 161-162:  Eine Ausgleichformel für Mortalitätsdaten, (http://gdz.sub.uni-
goettingen.de). 
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which he fitted to life data for ages x 3≥ . From a current demographic view, his formula 
is called a cumulative force of mortality function, or a cumulative hazard rate function. 
An early discussion of the Gauss mortality formula is found in Loewy (1906). 
 
Gauss published the following estimates of the parameters: 
 
     0.48213α =  
log 3.33769β = −  
log 0.32075γ = −  
log b = 0.039097 
log c = -0.0042225 
 
The antilogs are easily obtained:  
 

0.00045953β =  
0.47780424γ =  

b = 1.0942 
c = 0.9903 
 
Consequently, the survivor function of the life table distribution of Gauss is given by: 

( )x xb cl(x) 10− α+β⋅ +γ⋅
=  

An alternative formulation of the cumulative force of mortality function (cumulative 
hazard rate) is given by: 

kx gxA BH(x) c e e
k g

−= + ⋅ − ⋅ , where 

 
ln10c = α  

A ln b ln10= β⋅ ⋅  
B ln c ln10= γ ⋅ ⋅  
g ln c= −  
k ln b=  
 

If 
B Ac
g k

= − , then l(0) = 1. 

 
The survivor function is: 

H(x)l(x) e−= , 

and the force of mortality is calculated by: 
 

kx gx

dl(x)
dH(x) dx(x) A e B e

dx l(x)
−= μ = − = ⋅ + ⋅ , where 
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dl(x)
dx

−  is the death density function. 

 
Special cases of the Gauss mortality law are the well-known laws of: 
 
1. Gompertz : B = 0, (B. Gompertz, 1779-1865): kx(x) A eμ = ⋅  

and  

2. Makeham: g = 0 (W. Makeham, +1892): kx(x) A e Bμ = ⋅ +  
 
On the other hand, the Gauss formula is a special case of the mortality law of Lazarus 
(1867, p 33):  

kx gx(x) A e h B e−μ = ⋅ + + ⋅ , if h = 0. 

This model has been proposed and applied to primates by Siler (1979). An extension can 
be found in Thiele (1871), where h is replaced by h(x).  
 
Figure 1 shows the survivor-, the death density-, and the force of mortality functions of 
the Gauss mortality formula, using his parameter estimates. Some important demographic 
parameters have been calculated for ages x 0≥  with numerical methods: 
 

Expectation of life:                                       51.4 years 
Normal or modal age:                                  74.6 years 
Median age:                                                  58.5 years 
Average age of the stationary population:    32.7 years
Keyfitz entropy:                                            0.417 
Gumbel measure:                                          0.786 

 
 

 
 

Fig. 1: Survivor-, death density- (has been multiplied by a factor of 20), and force of 
mortality- functions of the Gauss mortality distribution. 

 
 
2.2 A Simplified Model and its Parameters 
Important demographic parameters of the Gauss mortality distribution 
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kx gxA B A BF(x) 1 l(x) 1 exp e e
k g k g

−⎛ ⎞
= − = − − − ⋅ + ⋅⎜ ⎟

⎝ ⎠
 

cannot be determined analytically; some parameters may be calculated approximately for 
a special case. For this reason, we regard the force of mortality function, which comprises 
two parts. The first part is a decreasing function of x, whereas the second part is an 
increasing function of x. If we assume that the growth rate g is high, such that gxe 0− ≈ , 
then l(x) is mainly determined by the increasing part of the force of mortality function, 
and we can approximate the survivor function after a certain age x by:  
 

B B
kx kxg g

S Go
A B A A Al (x) exp e e exp e e l (x)
k g k k k

− −⎛ ⎞ ⎛ ⎞= − − ⋅ = ⋅ − ⋅ = ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

, 

 
where Gol (x) is the survivor function of the Gompertz distribution. 
 
Now it is easy to calculate the modal value for adult ages by differentiating Sl (x) twice. 
We get the same formula as in the Gompertz distribution, viz. 

ln A
km

k

⎛ ⎞
⎜ ⎟
⎝ ⎠= −  (see, e.g., Pflaumer, 2011). 

 
The median survival time at age x is the time at which half of the survivors l(x) will have 
died. Formally, the median survival time can be computed by: 
 
( )l x e(x)

0.5
l(x)
+

=
�

. 

Substituting for l(x), the survivor function of Sl (x) leads to 

( )k x e(x)

kx

A B Aexp e
k g k

0.5
A B Aexp e
k g k

+⎛ ⎞
− − ⋅⎜ ⎟

⎝ ⎠ =
⎛ ⎞

− − ⋅⎜ ⎟
⎝ ⎠

�

. 

Solving this equation for the median survival time at age x yields 

ln 2ln
( )

⋅⎛ ⎞⋅ + ⋅
⎜ ⎟
⎝ ⎠= −�

k xA e k
A

e x x
k

 for x > a, where a is an age with gae 0− ≈ . The same 

formula applies to the median survival time of the Gompertz distribution (see, e.g., 
Pflaumer, 2011). 

 

Solving kxA B A e 0.5
k g k

⎛ ⎞
− − ⋅ =⎜ ⎟

⎝ ⎠
 yields the median survival time at age 0,  
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ln 2ln 1
(0)

⎛ ⎞⋅ ⋅
+ −⎜ ⎟⋅⎝ ⎠=�

k B k
A A g

e
k

, 

provided 
B
ge 0.5

−
> . 

 
The maximum life span can be estimated as the age of the last and single survivor of a 
population of size N, according to a suggestion of Gumbel (1937) and Finch & Pike 
(1996). Assuming the simplification Sl (x) , one gets from  

 1( ) =l Nω , 

the maximum life span as 

lnln 1
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⋅ ⋅+ − ⋅
=

k N B k
A A g
kω . 

 
3. Estimation of a Life Table for the Feral Camel Population of Central 
Australia 
 
3.1. General Remarks 
The camels in central Australia are mostly dromedaries and are descendants of animals 
imported during the second part of the 19th century. Most of the more than 10,000 
animals imported originally came from the northwest region of the former British India 
(see, e.g., Heucke, 1995). Dromedaries were necessary for the exploration and 
development of the central arid regions of Australia. They were used for transport, 
supply, and construction. They became useless with the appearance of motorized 
transportation in the early 20th century, and many were released into the wild. The size of 
their population increased quickly. The camel population was estimated at just under one 
million in 2008. This number of camels was found to cause significant environmental 
damage and in 2010, the government approved a control plan. The Australian Feral 
Camel Management Project aims to reduce the overabundance of feral camels through 
culling and mustering for sale. Because of recent culling and drought, the number of 
camels has dropped. The current population is estimated to be around 750,000 (see 
Australian Feral Camel Management Project, 2012). 
 
3.2. Construction of the Life Table 
We use the data given by Heucke (1995) for the construction of the life table, which 
according to Pople & McLeod (2010), is the most complete dataset on camel 
demographics. Heucke (1995), who studied together with Dörges (1995) a captive feral 
camel population in a large enclosure in central Australia, estimated that 29% of newborn 
camels died soon after birth. He observed a yearly mortality rate of about 4% from 
external influences. In order to consider the age influence of the mortality, he made a 
rather heuristic approach and finally concluded that the total mortality rate is about 7% 
per year (see Heucke (1995), p. 97 f.). With these assumptions, he calculated a life table. 
Apart from his heuristic approach, this procedure is open to criticism because he obtained 
a life table with constant hazard rates after the age x = 1. However, hazard rates should 
increase at a certain age. His life table function follows an exponential distribution 
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l(x) exp( 0.07 x)= − ⋅  for x 1≥ . Pople & McLeod (2010) estimated that camels can live for 
40 years, and that about 2% of camels are older than 30 years of age. 
 
With this additional information, we make the following basic assumptions for the life 
table: 
 

1. l(1) 0.71=   
2. A survivor rate of 96% between the ages from 1 to 20 
3. l(30) 0.02=  
4. l(40) 0=  
5. Linear interpolation between the ages 20 and 30, and 30 and 40. 

 
After fitting the Gauss life table distribution2 
 

k x g xA B A Bl(x) exp e e
k g k g

⋅ − ⋅⎛ ⎞⎛ ⎞
= − − +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
 to the data (x = 0, 1, 2,…40), we finally obtain:  
 
A 0.0197=  
k 0.0836=  
B 0.6637=  
g 1.661=  
 
Because the growth rate g is high, we can use the following approximation for older ages: 

B
kxg

S
A Al (x) e exp e
k k

− ⎛ ⎞= ⋅ − ⋅⎜ ⎟
⎝ ⎠

 

In Figures 2 and 3 important life table functions are illustrated. Demographic key 
parameters, life expectancies and median survival times at age x are shown in Table 1. A 
complete abbreviated life table is given in Table 2. The life expectancies at age x have been 
calculated by numerical integration. 
 

                                                 
2 Fitting the Lazarus-Siler model to the data did not yield satisfactory results. 
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Fig. 2: Survivor functions l(x) and Sl (x) . 

 
 

Fig. 3: Death density function 
dl(x) 20
dx

− ⋅  and the force of mortality function (x)μ . 

 
 

Table 1: Demographic key parameters. 
 

Parameter Exact values 
(numerical integration)

Formula values 

Life expectancy 0e  11.25 - 

Median survival time 0e�  9.68 9.68 
Normal or modal age m 17.29 17.29 

Keyfitz entropy H 0.86 - 

Mean age of the stationary pop. Sμ 10.48 - 

Maximum age ω  ( 6N 10= ) 48.56 48.56 

Maximum age ω  ( 5N 10= ) 46.35 46.35 
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Table 2: Abbreviated life table of the feral camel population. 
 

Age  
x 

Proportion  
surviving to 

age x 
 

Probability 
of dying  
Between 

 ages x to x+1 

Force of mortality 
at age x 

Life  
expectancy 

 at age x 
 

Median  
Survival 

 time 
at age x 

exact 

Median  
survival time 

at age x 
formula 

x l(x)  q(x) (x)μ  e(x)  e(x)�  e(x)�  
0 1.0000 0.2912 0.683 11.25 9.68 16.41 
5 0.5935 0.0308 0.030 13.32 12.89 12.89 
10 0.4928 0.0463 0.045 10.51 9.83 9.83 
15 0.3717 0.0695 0.069 8.10 7.29 7.29 
20 0.2421 0.1036 0.105 6.10 5.26 5.26 
25 0.1263 0.1531 0.159 4.49 3.71 3.71 
30 0.0470 0.2230 0.242 3.23 2.57 2.57 
35 0.0105 0.3184 0.367 2.28 1.75 1.75 
40 0.0011 0.4413 0.558 1.58 1.18 1.18 

 
 
 
3.3 Discussion 
The most frequently used life table parameter is the life expectancy at age x, which is the 
average number of years of life remaining for persons who have attained a given age x. 
The median survival time at age x is the time at which half of the survivors l(x) will have 
died. The key parameters of the life table: life expectancy and median survival at birth are 
very low because of the high mortality at young ages. The Keyfitz entropy H, is very high 
at H = 0.86. A proportional increase of the force of mortality function at all ages of 1% 
leads to a decrease of the life expectancy at birth of 0.86%. The modal or normal age is 
about 17 year, i.e., most camels die at the age of about 17. With the proposed model, it is 
possible to estimate the maximum age, which, when a population of 1 million camels is 
assumed, is nearly 50. A life table can also be interpreted as a stationary population 
where the number of births equals the number of deaths per year. The function l(x) in this 
case is not a survival function, but must be regarded as the age structure of a population. 
The density of the age structure is obtained by: 
 

0

0

( ) ( )

( )

l x l x
e

l x dx
ω =

∫
.  

 
The mean age of the stationary population is 10.5 years, which is also very low because 
of the high mortality at young ages. 
 
The approximation formulae for the median, the normal age, and the maximum age are 
very good in this case, because the absolute value of the growth rate g of the force of 
mortality function is high.  
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4. Stable Camel Population Model 
 
4.1 Theory 
Now it is possible to formulate a population model for the camels. We use the continuous 
stable model, which is well known in demography. Only a brief overview of the stable 
theory in demography is given here. Detailed explanations and interpretations of the 
parameters are found elsewhere, e.g., Keyfitz (1968, 1977). 
 
A population with an invariable age structure and a fixed rate of increase is called a stable 
population. The stable age structure is given by: 
 

rxc(x)dx e l(x)dx−= ⋅ . 
 
The stable intrinsic growth rate r, can be determined by solving the characteristic 
equation: 

rx1 (r) e l(x)m(x)dx
β

−

α

= ϕ = ∫ , 

where m(x) is the maternity function, and l(x)m(x) is the net maternity function. The 
limits of the integral are the youngest fertile age α  and the highest β . The function 

(r)ϕ crosses the vertical axis at 
 

0(0) l(x)m(x)dx R
β

α

ϕ = =∫  

the net reproduction rate. The extent to which women of given age x, on average 
contribute to the births of future generations is expressed by Fisher´s reproductive value: 
 

ra
rx

x

1(x) e l(a)m(a)da
e l(x)

β
−

−ν = ∫ . 

 
Keyfitz (1977) showed that the population momentum can be estimated by: 
 

( )0 0

0

b e R 1
M

r R
⋅ ⋅ −

=
⋅μ ⋅

 

 
where b is the birth rate and μ  is the mean age of child bearing in the stationary 
population. 
 
4.2 Results 
Following Heucke (1995), we will first estimate the maternity function m(x). The birth 
interval of most females was 1.85 years, but for females who lost their newborns, the 
birth interval was only 1.2 years. The weighted average birth interval was 1.662 years. 
With the lowest fertile age 5α = and the highest fertile age 30β = , we obtain a total 

fertility rate of 
25 15.04

1.662
= . If the sex ratio is 1, then the reproduction rate is 7.52. 
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Assuming a rectangular distribution between the limits, we get the continuous maternity 
function: 
 

7.52m(x) 0.3008
25

= =  for 5 x 30≤ ≤  

 
With the estimated survivor function the relevant parameters can be determined by 
numerical integration (see Table 3). The population momentum is calculated by using the 
formula, whereby the birth rate of the stable population is given by: 
 

rx

0

1b(r)
e l(x)dx

∞
−

=

∫
 

 
 
 

 
 
 

Fig. 4: Stationary and stable age structure (r = 0.0684). 
 
 

Table 3: Relevant parameters of the stable population. 
 

Parameter Value 

Intrinsic rate of growth r 0.0684

Net reproduction rate 0R  2.34 

Mean age of child bearingμ  11.36 

Stable birth rate b 0.1606

Mean age of the stable population (r)μ 7.22 

Population momentum M 1.117 
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Important demographic parameters of the camel population are summarized in Table 3. 
The net reproduction rate is 2.34, which is not very high. It means that one female camel 
is replaced by a little more than two female calves. This or even a higher size of the net 
reproduction rate can also be observed in human populations. However, because the 
mean age of child bearing of 13.6 years is low, the net reproduction rate of 2.34 leads to 
an annual growth rate of nearly 7%. This growth rate was also obtained by Pople & 
McLeoad (2010), who applied a discrete model of only three classes (0-1, 2-5, 6-40), and 
who also used the vital data from Heucke (1995). The population momentum of M = 
1.117 means that the population would continue to grow around another 12%, even if 
fertility dropped suddenly to replacement levels (R0 = 1). 
 
Figure 4 illustrates the age structures of the stable growing (r = 0.0684) and the stationary 
(r = 0) camel population. The high growth rates produce a young age structure, which is 
reflected by the young mean age of around 7 years. Table 4 shows the population 
proportions in different age classes. Less than 5% of the camels are over 20 years old.  
 

Table 4: Stable age structure. 
 
 

 
The reproductive value in Table 5 is the total number of female offspring, discounted 
with the intrinsic population growth rate, who can expect an x-year old female camel. 
The reproductive value is especially high at ages between 5 and 15 because of the high 
mortality at young ages. Harvesting or culling young adult camels is more than twice as 
effective as harvesting or culling the newborn offspring. 
 

Table 5: Reproductive values at age x. 
 

x 0 1 2 3 4 5 15 20 25 30 
(x)ν  1 1.51 1.76 1.95 2.15 2.37 2.03 1.67 1.3 0 

 
The impact of relative changes of fertility and mortality on the intrinsic growth rate is 
illustrated in Table 6. A doubling of mortality (proportional change of the force of 
mortality function in all age classes) finally leads to a stationary population, if fertility is 
kept constant. Fertility has to be reduced in all age classes by 60% in order to achieve a 
stationary population, if mortality is unchanged. Other combinations of percentage 
increases in mortality and percentage reductions in fertility, and their impact on the 
growth rate, can be seen in Table 6. The effect on the life table of doubling the force of 
mortality function and the death probability function is presented in Figures 5 and 6, 
respectively, where the death probability is l(x 1)q(x) 1

l(x)
+

= − . 

 

Age class Proportion 
0-5 0.460 

5-10 0.266 
10-15 0.151 
15-20 0.077 
20-25 0.033 
25-30 0.011 
30-35 0.002 
35-40 0.000 
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Table 6: Intrinsic growth rate dependent on relative chances of fertility (f) and mortality 
(h). 

 
h\ f 0% -10% -20% -30% -40% -50% -60% 
0% 0.068 0.059 0.049 0.038 0.026 0.012 -0.005 
10% 0.061 0.052 0.042 0.031 0.019 0.004  
20% 0.054 0.045 0.035 0.024 0.011 -0.003  
30% 0.046 0.037 0.027 0.016 0.004   
40% 0.039 0.030 0.020 0.009 -0.004   
50% 0.032 0.022 0.013 0.002    
60% 0.024 0.015 0.005 -0.006    
70% 0.017 0.008 -0.002     
80% 0.010 0.001      
90% 0.002 -0.007      
100% -0.005       

 

 
 

Fig. 5: Effect of doubling of (x)μ on the survivor function. 
 

 
 
 

Fig 6 : Effect of doubling of (x)μ on the death probability function. 
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5. A discrete camel population model 

A discrete model is required in order to make projections and any type of sensitivity 
analyzes. A population projection model (for females and without migration) that is 
generally used, is based on the well-known cohort-component method, and leads to a 
population projection that is broken down into categories of age and sex (c.f., e.g., Land, 
1986). This model is based on a projection of the population through its components, 
fertility, and mortality. The initial population that is broken down into categories of age 
and sex is taken as the basis for the model. It is reduced by the number of deaths for each 
interval in the projection time frame by means of age- and sex-specific death rates. The 
number of births will be determined with help from age-specific birth rates for surviving 
women. The entire birth figure will then become the new birth-cohort in the projection 
model. The following representation of the cohort-component method refers back to 
Leslie (1945). The projection model for the female population is represented by the 
following recurrence equation: 

t 1 t tn L n+ = ⋅  for t=0,1,2,...  
 

The vector nt represents the number of women in the different age classes at time t. After 
one projection interval, the population nt+1, broken down into age, can be obtained by 
multiplying nt with the projection matrix Lt. The projection or the Leslie matrix contains 
in the first row, age-specific maternity rates and in the subdiagonal, the age-specific 
survivor rates. Otherwise, it contains only zeros (c.f., Keyfitz, 1977) 
 

1

2

3

n 1

10 0 m 0

s 0 0 0

0 s 0 0
L

0 0 s 0

0 0 s 0−

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

…

…

"

…

# # #

…

. 

 
These age-specific survivor rates are calculated for five-year age groups as follows: 
 

5 x 5
i

5 x

Ls
L

+=  for x = 0, 5, 10,…. and i = 1, 2, 3,… 

5 0 5 x 5
i x x 5

0 5 x

L Lm F F
2l L

+
+

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 for x = 0, 5, 10,…. and i = 1, 2, 3,… 

 

with 
x 5

5 x
x

L l(x)dx
+

= ∫  and 
x 5

x
x

F m(x)dx
+

= ∫ . 

 
 
Further details about the calculation of the elements of the vector and matrices of the 
projection model are found elsewhere, e.g., in Keyfitz (1977) or Pflaumer (1988). 

. 
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The growth factor is represented by λ , which is the dominant eigenvalue of the matrix. If 

1λ > , then the population grows; if 1λ <  it shrinks; in the case of a stationary 
population, the growth factor is 1λ = . 
 
 
The elements of the Leslie matrix are given in Table 7. 
 

Table 7: Elements of the Leslie matrix for the camel population. 
 

 0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40
0-5 0.41 0.904 0.86 0.802 0.733 0.503 0 0 

5-10 0.814 0 0 0 0 0 0 0 
10-15 0 0.796 0 0 0 0 0 0 
15-20 0 0 0.708 0 0 0 0 0 
20-25 0 0 0 0.593 0 0 0 0 
25-30 0 0 0 0 0.456 0 0 0 
30-35 0 0 0 0 0 0.308 0 0 
35-40 0 0 0 0 0 0 0.173 0 

 
 
The results of the discrete model are similar to those of the continuous model. 
The stable eigenvalue is 1.408λ = , which means a yearly growth rate of 7.1%, 
because: 

5r 1.408 1 0.071= − = .  
 
The net reproduction rate is calculated as 0R 2.332= . The population momentum of 
M = 1.13 is determined by projecting the population 100 projection steps, which equals 
500 years. 
 
The age structure and the reproductive values of the discrete model are shown in Table 8. 
The original stable eigenvector has been multiplied by a scalar so that the sum of the 
elements yields one. There is no real difference between the continuous and the discrete 
age structures. 
 

Table 8: Stable age structure (Leslie model) and reproductive values. 
 

Age 
class 

Proportion Reproductive 
Value* 

Reproductive 
Value** 

0-5 0.460 1.821 1.821 
5-10 0.266 2.200 2.232 

10-15 0.151 1.849 1.880 
15-20 0.077 1.487 1.526 
20-25 0.033 1.094 1.159 
25-30 0.011 0.508 0.650 
30-35 0.002 0 0 
35-40 0.000 0 0 

*) Calculated by numerical integration of the continuous reproductive value function; 
**) left eigenvector of the Leslie matrix with an arbitrarily chosen v(0-5)=1.821. 
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6. Conclusion 
 
Gauss´s mortality formula has the potential to describe the behavior of mortality rather 
accurately in all ages unlike Gompertz´s law, which is only valid for more advanced ages. 
The basis of an effective camel population control is a reliable life table and the resulting 
stable population model. The premises of a stable model are constant growth rates in the 
past. In this case, the actual age structure is more or less identical with the model age 
structure. Therefore, the influence of the changes of vital rates on important demographic 
parameters can be analyzed with the model. The model is also suitable for the estimation 
of parameters that could otherwise not be observed empirically, e.g., the mean age of the 
population. However, the models are only as good as their assumptions. Further research 
is necessary, and two approaches should be pursued. Biologists need to provide data on 
the vital rates that are more specific. Demographers and statisticians need to perform 
sensitivity analyzes with their models, in order to examine the impact of different 
assumptions on the results. For example, one has to answer the question; How important 
is the chosen mortality law? Additionally, the uncertainty in modeling the vital rates as 
stochastic variables needs to be considered. 
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