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Chapter 1

Introduction

Modeling the behavior of returns of speculative assets and economic quantities is one

of the major fields in econometric research. Mandelbrot (1963) and Fama (1965) out-

lined that the distribution of these returns is non-normal and can be characterized by

so-called ’stylized facts’, e.g. heteroskedasticity, the ’leverage effect’ and fatter tails

than the normal distribution. These observations are in line with the ongoing finan-

cial crisis as no one would argue that volatility is time constant nor changes randomly

over time. By looking at return series of the past 15-20 years one could easily observe

that the volatility of these returns is dramatically fluctuating within the given time

frame, but still exhibit some special patterns that are worthwhile to explore in detail.

This observation describes the need for using time-varying volatility models instead

of time-constant volatility models.

A time-varying volatility structure can be implemented by one-shock models (Au-

toregressive Conditional Heteroskedastic-models) or two-shock models (Stochastic

Volatility-models). Time-varying volatility models have multiple areas of applica-

tion in (financial) economics. First of all, GARCH- and SV-models are widely used

for volatility forecasting (but not for the returns itself). Due to the special charac-

teristics of the return series (e.g. volatility clustering, ’leverage effect’) it is possible

to forecast future volatilities reasonably well. These forecasts are used mainly by

banks and insurance companies for credit risk management purposes. Compared to

standard models where the conditional and unconditional variance is time-constant

9



CHAPTER 1. INTRODUCTION 10

as for example ARMA-models, risk measures as the value-at-risk or the expected

shortfall are much more accurate when using time-varying volatiliy models and thus

credit risks can be better controlled because these risk measures are a function of

volatility. A second field of application of GARCH- and SV-models is option pricing.

The price of an option is a function of the underlying asset’s volatility. Pricing of

these derivates is much precise by using time-varying volatility models. Other fields

of application for time-varying volatility models are the modeling of the volatility of

inflation (Coulson and Robins, 1985) and the term structure of interest rates (Engle

et al., 1985).

The historical background of time-varying volatility models is outlined in chapter

2. Both models are the main workhorses for modeling time-varying volatility in

economic time series and have a lot of characteristics in common but also some re-

markable differences. There are two main differences that can be identified between

both model classes. On the one hand, the economic interpretation is different for

the two models. Within the one-shock models the conditional variance in period

t is perfectly explained by all information at time t � 1. This does not hold for

the two-shock models as the additional error term reflects the random and uneven

flow of information to financial markets. On the other hand the practical handling

of both models is different with respect to estimation. One-shock models can be

estimated with standard Maximum-Likelihood techniques. Two-shock models are

much harder to estimate due to the additional error term entering the conditional

volatility equation. Typical estimation techniques for two-shock models include both

Bayesian approaches, as e.g. Markov-Chain-Monte-Carlo (MCMC)-methods, and

non-Bayesian approaches, as e.g. Quasi-Maximum-Likelihood estimation (QMLE) or

the expectation-maximization (EM)-algorithm. The estimation techniques used for

my work are explained in chapter 3, focusing on the SV-model estimation. The dif-

ferences of SV- and GARCH-models outlined above motivate the work of chapter 5

and 6 where a non-nested testing procedure is developed for discriminating between

GARCH- and SV-models. Within chapter 5, I introduce a testing procedure that is

capable of discriminating between two different models. It goes back to the popular

J- and C-tests of Davidson and MacKinnon (1981). The focus of chapter 6 lies in the
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extension of the testing procedure of chapter 5 for discriminating not only two but

up to M different models. This type of test goes back to Hagemann (2012).

Another speciality when calibrating GARCH- and SV-models to empirical data is the

fact, that the estimated persistence tends to unity as sample size increases. Chapter

4 shows that this observation can be induced by structural breaks within the data

generating process (DGP) and thus is not necessarily caused by a real large persis-

tence parameter. But for SV-models, estimated persistence does not tend to unity if

the sample size goes to infinity. This is different to GARCH-models where estimated

persistence tends to unity if the structural break becomes more pronounced or sample

size goes to infinity. Chapter 7 concludes and gives an overview how the methods

introduced in chapter 4-6 could be extended for further research.



Chapter 2

Historical background and

motivation

As pointed out in chapter 1, the stylized fact that return series of economic quantities

have fatter tails than the normal distribution were pioneered by Mandelbrot (1963)

and Fama (1965). Both authors suggest the stable Paretian family of distributions

for capturing the statistical properties of these return series. Further suggestions

for the distribution of return series include the t-distribution (Praetz, 1972), the

lognormal-normal model of Clark (1973) and a mixture of normal distributions (Kon,

1984). Boothe and Glassman (1987) compare different distributional assumptions

for exchange rate returns and find out that the t-distribution and a mixture of two

normal distributions provide the best fit. However, there is evidence that (some of)

the distribution parameters are not constant and vary over time. This leads to a

second stylized fact, namely that rates of returns for stock prices and exchange rates

seem to be uncorrelated over time but are not independent. The first one pointing

this certainty out was Mandelbrot (1963), as he mentioned that large changes tend

to be followed by large changes in both directions and small changes tend to be fol-

lowed by small changes, resulting in so-called volatility clusters. To illustrate these

stylized facts, figure 2.1 shows the behavior of the DAX ranging from 05/08/1998

to 05/09/2013 and the daily (absolute) returns. The behavior of the DAX is clearly

nonstationary, but the series of the daily returns exhibits stationarity with a mean

12



CHAPTER 2. HISTORICAL BACKGROUND AND MOTIVATION 13

Table 2.1: The empirical leverage effect for selected stock index returns

Stock Index DowJones DAX CAC FTSE NIKKEI

Correlation 0.029 �0.005 0.029 �0.028 �0.168���

Stock Index BOVESPA HANGSENG KOSPI RTS TAIEX

Correlation �0.008 0.022 �0.161��� �0.124��� �0.148���

Notes. Level of significance: ***:1%

of � 0.00012. There is also a clear tendency for volatility clustering in bear markets

with peaks around March 2000 (dot-com bubble) and September 2008 (recent finan-

cial crisis) which is shown by the bottom figure of 2.1 illustrating the daily absolute

returns of the DAX.

Another typical stylized fact observed when modeling stock (index) returns is the

so-called ’leverage effect’. This stylized fact describes the asymmetric responses to

negative and positive shocks, as negative shocks tend to have a higher impact on fu-

ture volatility than positive shocks. If the leverage effect holds, the returns of period

t � 1 and the squared returns of period t are negatively correlated. This contradicts

the efficient market hypothesis, because even though stock market returns have little

to no serial correlation (Taylor, 1986), they are dependent. This stylized fact is of-

ten called ’Taylor-effect’ in the literature. Speaking in economic terms, information

should affect the price of an asset at the arrival of the particular information. But

if information is clustered for a specific time interval, the distribution of the next

return depends on the previous returns, even though there is no correlation (Ding

et al., 1993). Table 2.1 illustrates the ’empirical leverage effect’ for selected stock

index returns. It turns out that four out of ten return series exhibit significant nega-

tive correlation, indicating that the efficient market hypothesis does not hold because

otherwise if the return series is i.i.d., every transformation of it is also an i.i.d. process

and thus there should be no significant correlation of the transformed return series.

Engle (1982) invented the so called ’Autoregressive Conditional Heteroskedastic’

(ARCH)-model for modeling these types of dependency. Within the framework of
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the ARCH-model, the conditional distribution of the errors is normal, but the condi-

tional variance is a linear function of past squared innovations. Therefore large returns

are more likely to be followed by large returns but the sign of the return is not pre-

dictable because of the squared values. Even though the fit of the ARCH-model is

pretty good, normally a relatively high order of past innovations need to be included in

the conditional variance equation. Bollerslev (1986) extends the ARCH-model to the

’Generalized Autoregressive Conditional Heteroskedastic’ (GARCH)-model including

not only past squared innovations but also past realization of the conditional vari-

ance itself. Within the GARCH-framework a much more parsimonious parametriza-

tion is needed for obtaining the same results as within the ARCH-framework. The

GARCH-model is still the main workhorse in financial econometrics due to its good

fit and simultaneously small parametrization. One major drawback of the GARCH-

framework is the symmetric responses to shocks and thus it is not able to capture

the ’leverage’-effect. Therefore Nelson (1991) introduced the Exponential General-

ized Autoregressive Conditional Heteroskedastic (EGARCH)-model, which is capable

of reproducing the ’leverage’-effect. There are several other models that are also

capable of producing an asymmetric response, as for example the GJR-GARCH by

Glosten et al. (1993) and the APARCH-model by Ding et al. (1993). The estimation

of GARCH-models is straightforward and typically done by conditional Maximimum

Likelihood estimation.

There is a competing model for describing these stylized facts, the Stochastic Volatil-

ity (SV)-model. The SV-model was introduced by Taylor (1982) and differs from the

GARCH-model in such a way that an additional error term enters the conditional

variance equation. The behavior of these models is pretty similar to GARCH-models

but with two distinct differences. On the one hand, the additional error term yields a

different economic interpretation because within the GARCH-framework the volatil-

ity for t � 1 is perfectly described by all information gathered at time t. Due to the

additional error term this does not hold for the SV-model. The second error term

can be interpreted as the random and uneven flow of information into the financial

markets. On the other hand, the estimation of SV-models is not as straightforward as

in the GARCH-case. Even though SV-models are not as highly used in the literature
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for empirical applications as GARCH-models due to the simple estimation techniques

of the latter ones (and thus the implementation in standard software packages), there

are several extensions to the basic SV-model. For example it is also possible to re-

flect the ’leverage effect’ within the framework of Stochastic Volatility or to relax the

normality assumption of the errors (Jaquier et al., 1999; Harvey and Shepard, 1996).

These differences raise interest in discriminating between GARCH- and SV-models.

The standard model selection procedure relies on nested hypothesis testing. Nested

means that one of the models can be obtained from the other models by imposing

parameter restrictions or by a limiting process (Pesaran and Weeks, 1999). The major

disadvantage of nested hypothesis testing is that these procedures implicitly assume

that one of the models is the true data generating process (DGP), because nesting

two models, a representative test just checks whether a specific restriction holds or

not. This approach is the traditional way of testing of two models under consideration

and goes back to Kim et al. (1998). Because in most applications the SV-model is the

more sophisticated one, it is often assumed that the GARCH-model is nested within

the SV-model. Other popular examples are Kobayashi and Shi (2005) and Franses

et al. (2008). But as stressed out by Hansen (2005), (econometric) models are just

approximations to the true data generating process and thus will never fit the DGP

exactly. Given this fact, the goal of a researcher is to find a good approximation to

the true DGP but not finding the true DGP and hence a nested testing procedure is

not appropriate and thus a specification test should be able to reject all models or

accept more than one model. The problem described above can be circumvented by

not asking the question ’which model is the correct one’ (nested testing) but asking

’is one of the models under consideration a good approximation to the true model’

by using a nonnested testing procedure. By doing so, the possible outcome is the

following:

a) All models are good approximations to the true DGP.

b) One or more models are good approximations to the true DGP.

c) None of the models is a good approximation to the true DGP.
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This approach is especially fruitful for time-varying volatility models because there

are countless different GARCH- and SV-models proposed in the literature and pick-

ing an appropriate one is a challenging task. Bollerslev (2008) lists more than 100

different GARCH-models in his glossary and the amount of different SV-models is

not even remotely comprehensible. This confirms the need for a well working model

selection technique in the field of time-varying volatility models and motivates the

proposed testing procedures in section 5 and 6.

When applying GARCH-models to return series it is a well known fact that per-

sistence in these types of models tends to unity if sample size increases. From a

theoretical point of view, this high persistence can be induced by structural breaks

within the model parameters. Thus it is shown (Krämer et al., 2011, among others)

that persistence tends to unity if the sample size goes to infinity or if the structural

breaks become more pronounced. Within chapter 4 I analyze if these findings also

hold for SV-models or if there are differences for these type of models.
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Figure 2.1: DAX daily returns 05/08/1998 - 05/09/2013



Chapter 3

Estimation of the proposed models

This chapter derives important properties of the models used in the following chapters

and explains techniques for estimating the different models. For all models, there are

different estimation techniques than the proposed ones available with different benefits

and drawbacks, but I will focus on the ones that were actually applied for estimating

the models used in the following chapters.

3.1 Estimation of the GARCH-model

A stochastic process is called GARCH(p,q) if for yt � µt�εt with εt � ztσt the following

holds:

E�ytSϕt�1� � µt

Var�ytSϕt�1� � σ2
t

� α0 �

p

Q
i�1

αiy
2
t�1 �

q

Q
j�1

βjσ
2
t�j

with αi C 0, ¦ i � 1, ..., p � 1,

αp A 0, βj C 0, ¦ j � 1, ..., q � 1 and βq A 0.

18



CHAPTER 3. ESTIMATION OF THE PROPOSED MODELS 19

ϕt�1 describes all information available at time t � 1. For weak stationarity
p

P
i�1
αi �

q

P
j�1
βj @ 1 must hold and if the disturbances are weakly stationary, then the uncondi-

tional variance does not change over time and reads

Var�yt� � α0

1 �
p

P
i�1
αi �

q

P
j�1
βj

.

Even though we assume that zt � NID�0,1� we cannot give an explicit expression of

the pdf of yt because the distribution of σ1, ..., σT is not known. To circumvent this

problem we make use of a conditional Gaussian distribution and define

εtSϕt�1 � N�0, σ2
t � (3.1)

f�εtSϕt�1� � 1º
2πσt

exp��0.5 ε2t
σ2
t

�. (3.2)

The parameter vector of the GARCH-model is traditionally estimated by Maximum-

Likelihood-techniques. The conditional likelihood of ym�1, ..., yT given ϕm with m �

max�p, q� and θ � �α0, ..., αp, β1, ..., βq�� reads (assuming µt � 0)

L�θ� � T

M
t�m�1

fθ�εtSϕt�1�,
where fθ�εtSϕt�1� is the density specified in (3.2). By taking logarithms, we end up

at the conditional log-likelihood (Franke et al., 2001):

l�θ� � �T � 1

2
log�2π� � 1

2

T

Q
t�2

log σ2
t �

1

2

T

Q
t�q�1

εqt � 1

σ2
t

, (3.3)

where we assume σ2
0 � 0. By maximizing (3.3) we obtain estimates

p

P
i�0
α̂i,

q

P
j�1
β̂j.

These estimates are consistent, asymptotically normal distributed and asymptotically

efficient (Schmid and Trede, 2006). Optimization is traditionally done by applying a

numerical method as for example the BFGS-algorithm.
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It is worth noting that the likelihood tends to be flat and thus one needs a rather

large T to circumvent this problem.

A straightforward extension to the (standard) GARCH(p,q)-model with normally dis-

tributed innovations is to allow for conditionally t-distributed errors. Even though in

the GARCH-model with conditionally normal innovations the unconditional distri-

bution is leptokurtic (Bollerslev, 1987), empirical data is even more leptokurtic than

the traditional GARCH-model can capture. So there is a need to account for this

by allowing the conditional distribution of the innovations to be student’s-t. If the

conditional distribution of εt ¦ t � 1, ..., T given ϕt�1 is student’s-t with v the degrees

of freedom

εtSϕt�1 � tv�0, σ2
t �,

then the estimation is as straightforward as before by using Maximum Likelihood

with the following conditional density according to Bollerslev (1987)

εtSϕt�1 � fv�εtSϕt�1�
� Γ�v � 1

2
�Γ�v

2
��1��v � 2�σ2

t ��0.5 � �1 � ε2t σ�2t �v � 2��1�� v�1
2 �,

v A 2.

3.2 Estimation of the APARCH-model

Another popular extension to the GARCH-model is the APARCH(p,q)-model pio-

neered by Ding et al. (1993). Within the APARCH framework the conditional vari-

ance can respond differently to positive and negative shocks of the same magnitude.

Speaking in economic terms, positive and negative information regarding an asset

lead to different levels of conditional variance. This pattern is called the ’leverage-

effect’ and the GARCH-model is not capable of reproducing this stylized fact.

As already mentioned in chapter 1, return series of economic quantities are often serial

uncorrelated but not independent, because some kind of (non-linear) transformation

of the return series exhibits correlation. In the literature this observation is often
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called ’Taylor effect’ because Taylor (1986) was the first one describing this economic

pattern.

To account for both stylized facts, the APARCH(1,1)-model has two additional pa-

rameters compared to the GARCH(1,1)-model:

yt � µt � ξt (3.4)

ξt � εt σt (3.5)

σϱ
t � χ � α1 �Sξt�1S � ω ξt�1�ϱ � β1 σϱ

t�1 (3.6)

χ A 0, ϱ C 0 , α1 C 0, �1 @ ω @ 1, β1 C 0. (3.7)

The ’leverage effect’ is introduced into the model via ω. A positive ω means that

negative information has a stronger impact on volatility than positive information.

ϱ reflects the ’Taylor effect’. The APARCH-model nests seven other GARCH-type

models:

� ARCH: ϱ � 2, ω � 0 and β1 � 0.

� GARCH: ϱ � 2, ω � 0.

� Taylor/Schwert GARCH: ϱ � 1, ω � 0.

� GJR-GARCH: ϱ � 2.

� TARCH: ϱ � 1, β1 � 0.

� NARCH: ω � 0, β1 � 0.

� log-ARCH: ϱ� 0.

The unconditional variance of εt is explained by
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σ2
t �

χ

1 � α1�1 � ω�2 � β1 .
By assuming that the conditional distribution of ξt is normal ξtSϕt�1 � N�0, σ2

t �,
Maximum-Likelihood techniques can be applied for estimating the parameter vec-

tor Λ � �χ, α1, ω, ϱ, β1�� and the log-likelihood reads (assuming ϱ � 2)(Laurent,

2004)

l�Λ� � �1
2
�T log�2π� � T

Q
t�1

log�σ2
t � � T

Q
t�1

ξ2t
σ2
t

�.

3.3 Estimation of the ARSV-model

Due to the additional error term, estimation of the SV-model is not as straightforward

as for the class of GARCH-models. The ARSV(1)-model is defined as

yt � ztσt (3.8)

ht � ln σ2
t � γ �Ξht�1 � ξt, (3.9)

If SΞS @ 1, then ht is strictly stationary with mean γ
1�Ξ and variance

σ2
ξ

1�Ξ2 . Furthermore

it is assmued that ξt � N�0, σ2
ξ�. To fully capture and understand the dynamics of

the model, one may rewrite it in the form of

rt � log �y2t � � ht � log z2t (3.10)

since yt � zt � exp�0.5ht�. By using this transformation, the model is in its state-

space form: (3.10) is the observation equation and ht is the unobserved state process.

Because the state process ht is not directly observable, you want to estimate the

’signal’ of ht given the data set r1, ..., rt. The estimation in this kind of models

is normally done by using Kalman filtration. The Kalman Filter is a particular

algorithm that is used to solve state space models in the linear case with normally

distributed errors. This was first derived by Kalman (1960). If zt � NID�0,1�, then



CHAPTER 3. ESTIMATION OF THE PROPOSED MODELS 23

w � log �z2t � is log-χ2 distributed with one degree of freedom and the density is given

by

f�w� � 1º
2π

exp ��0.5�exp�w� �w�� ,�ª @ w @ª. (3.11)

The mean of log �z2t � is -1.27 and the variance is 0.5 π2 � 4.93. Harvey et al. (1994)

estimate the parameter vector ψ � �γ,Ξ, σ2
ξ�� by maximizing the log-likelihood

log LQ�ψ� � �T
2

log�2π� � 0.5
T

Q
t�1

log Ft � 0.5
T

Q
t�1

v2t
Ft

.

vt describes the one-step-ahead prediction error for the best linear estimator of log�y2t �,
Ft stands for the corresponding mean squared error and y � �y1, ..., yt��. Kim et al.

(1998) point out that this Quasi Maximum Likelihood Estimator is consistent and

asymptotically normal distributed but as it turns out (and is shown in figure 3.1)

log�z2t � is poorly approximated by a normal distribution. As a consequence even

though the asymptotic theory holds, this QMLE has poor finite sample properties.

Figure 3.1 shows that both densities differ quite substantially and the difference is

becoming more extreme for greater values. Shumway and Stoffer (2011) recommend

to approximate log�z2t � by a mixture of two normal distributed variables, where one

is centered at zero. (3.10) then reads

log �y2t � � Ψ � ht �Θt

Θt � Itzt0 � �1 � It�zt1
with zt0 � N�0, σ2

0� and zt1 � N�µ1, σ2
1�. It describes an IID Bernoulli distributed

variable with P�It � 0� � π0 and P�It � 1� � π1 and π0 � π1 � 1. Figure 3.2 shows the

comparison of Θt estimated given the data of the DAX from chapter 2 and the log

of a χ2
1 (formula (3.11)). Comparing graphic 3.1 and 3.2 one observes that the fit of

the mixture of two normals to the log-χ2 density is enhanced dramatically and this

model is also easy to fit due to the normality assumptions (Shumway and Stoffer,

2011). The filter equations for the proposed models are
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htt�1 � γ �Ξht�1t �

1

Q
j�0

πtj Ktj ϵtj (3.12)

P t
t�1 � Ξ2 P t�1

t � σ2
ξ �

1

Q
j�0

πtj K
2
tj Σtj (3.13)

zt0 � log �y2t � �Ψ � ht�1t (3.14)

zt1 � log �y2t � �Ψ � ht�1t � µ1 (3.15)

Σt0 � P t�1
t � σ2

0 (3.16)

Σt1 � P t�1
t � σ2

1 (3.17)

Kt0 �
ΞP t�1

t

Σt0

(3.18)

Kt1 �
ΞP t�1

t

Σt1

(3.19)

where hst � E�htSr1, ..., rs�, P s
t � E��ht �hst��ht �hst���, something similar to the mean

squared error (MSE) and Ktj the Kalman gain. Equation (3.12) and (3.13) are called

the prediction equations and (3.14) and (3.15) are called the prediction errors. The

corresponding variance-covariance matrices of the errors are defined in (3.16) and

(3.17). The advantage of Kalman filtering is, that it specifies how to update the filter

from ht�1t�1 to htt once a new observation rt is obtained, without having to reprocess

the entire data set r1, ..., rt (Shumway and Stoffer, 2011).

For applying the filter one need to determine πt0 and πt1 � 1 � πt0, t � 1, ..., T , with

πt0 � P�It � 0Sr1, ..., rt� and πt1 � P�It � 1Sr1, ..., rt�. Let fIt�tSt � 1� describe the

conditional density of yt given the past observations y1, ..., yt�1, then we can define

πt1 �
π1 f1�tSt � 1�

π0 f0�tSt � 1� � π1 f1�tSt � 1� .
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It is reasonable to assume that π0 � π1 � 0.5 and fIt�tSt � 1� is approximated well

enough by N�ht�1t � µ1,Ptj� (Shumway and Stoffer, 2011). The likelihood for esti-

mating the parameter vector Λ � �γ, Ξ, σξ, Ψ, σ0, µ1, σ1�� reads
log Lr1,...,rt�Λ� � T

Q
t�1

log� 1

Q
j�0

πj fj�tSt � 1��. (3.20)

With the specification of the Kalman filter and the log-likelihood, the estimation

procedure can be summarized in four steps:

1.) Initial parameters need to be chosen. The initial parameter vector I used for

the estimation looks like the following: Λ0 � �γ � 0, Ξ � 0.95, σξ � 0.2, Ψ �

r, σ0 � 1, µ1 � �3, σ1 � 2��.
2.) The Kalman filter in (3.12)-(3.19) is applied by using the initial parameter

values Λ0. By doing so, errors and covariances of the errors are obtained.

3.) Apply a Quasi-Newton-Raphson algorithm, e.g. the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method, by using (3.20) as criterion function and obtain a new

set of parameter estimates Λ1.

4.) Repeat step 2 using the new set of parameter estimates and obtain new errors

and covariances of the errors. Then repeat step 3 and stop, if the difference

between L�Λj� and L�Λj�1� is small enough.

In practice, it can be quite difficult to minimize (3.20) by standard optimization

methods (as for example the BFGS-algorithm of ’optim’ of the programming lan-

guage ’R’ mentioned above) as these methods fail to converge. If this problem occurs

one need to carry out the minimization of (3.20) with more sophisticated optimization

techniques as for example ’evolutionary algorithm’ based on the package ’DEoptim’

for ’R’ programming language. ’DEoptim’ is an global optimization method which

uses differential evolution. Differential evolution belongs to the class of genetic algo-

rithms which use biology-inspired operations of crossover, mutation, and selection on

a population in order to minimize an objective function over the course of successive

generations. This stochastic global optimization algorithm is more apt of finding a



CHAPTER 3. ESTIMATION OF THE PROPOSED MODELS 26

global solution as gradient based methods often do not converge or converge to local

minima.
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1 and the normal density (dashed); Right:

Logarithm of the ratio of both densities



CHAPTER 3. ESTIMATION OF THE PROPOSED MODELS 28

−20 −10 −5 0 5

0.
0

0.
1

0.
2

0.
3

0.
4

−20 −10 −5 0 5

−
60

−
40

−
20

0

Figure 3.2: Comparison of the log of a χ2
1 density and the fitted normal mixture

(dashed); Right: Logarithm of the ratio of both densities



Chapter 4

Structural Change and Spurious

Persistence in Stochastic Volatility1

Abstract

We show that structural changes in stochastic volatility models induce spurious per-

sistence, as measured by the estimated parameters. In particular, whenever structural

changes increase the empirical autocorrelations of the squares of the underlying time

series, the persistence in volatility implied by the estimated model parameters follows

suit. This explains why stochastic volatility often appears to be more persistent in a

larger sample as then the likelihood increases that there might have been some struc-

tural changes in between. However, other than in GARCH-type models of conditional

volatility, implied persistence does not tend to unity with given size of the structural

change and increasing sample size.

1A shortened version of this chapter is published as Krämer and Messow (2013).
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4.1 Introduction and summary

It is a well established stylized fact that the persistence of volatility in financial time

series tends to increase with the length of the sample – in calender time – that is used

for the estimation of the model parameters (Lamoureux and Lastrapes, 1990; Krämer

and Tameze, 2007, and many others). As probably first observed by Diebold (1993),

this upward tendency is often due to a switch in regime somewhere in the sample,

and the likelihood of such a switch increases with increasing calender time.

Mikosch and Starica (2004), Hillebrand (2005) or Krämer et al. (2011) explore the

mechanics of this relationship between changes in volatility and estimated persistence

for various stochastic and nonstochastic types of structural change in the context of

GARCH-type models of volatility. The present paper considers stochastic volatility

(SV) models and shows that, in spite of quite different parameterizations, analogous

mechanisms are at work here as well. We find that the persistence of volatility as

implied by the estimated model parameters increases with the length of the sample

in most empirical applications, and we show analytically how this can be induced

by structural changes in the model parameters. In particular, we show for certain

types of structural change that the spurious persistence introduced by them tend to

its limiting value of unity when the size of the structural change increases. Other

than in GARCH-type models of volatility, however, estimated persistence does not,

for a given size of a structural change, increase with increasing sample size.

4.2 Sample size and estimated persistence

We consider the popular stochastic volatility model

yt �
»
htξt � µ, �t � 1, . . . , T � (4.1)

log�y2t � �� rt (4.2)

log ht � ϕ � δ log ht�1 � σεt, (4.3)



CHAPTER 4. SPURIOUS PERSISTENCE IN STOCHASTIC VOLATILITY 31

where µ � E�yt�, SδS @ 1 and ξt and εt are iid N�0, I2�. This model is also known as

the ARSV(1)-model. Our results extend in a straightforward manner to models with

higher order lags for volatility in equation (4.3) or to more sophisticated models, e.g.

the asymmetric SV-model of Asai and McAleer (2011).

The autocorrelations of the squared observations y2t in the model above are given by

ρ�τ� � exp � 1
1�δ2 δ

τ� � 1

3 exp � 1
1�δ2 � � 1

, τ C 1. (4.4)

(see Taylor, 1986). It follows from simple rules of calculus that, as τ �ª,

ρ�τ� � exp � 1
1�δ2 � � 1

3 exp � 1
1�δ2 � � 1

δτ , (4.5)

so the autocorrelation parameter δ from equation (4.3) can be viewed as a measure

of persistence here: the closer δ is to unity, the slower the movement towards 0 of the

correlations of y2t and y2t�τ .

When model (4.1)-(4.3) is fitted to empirical data, the estimates δ̂ of the persistence

parameter δ are usually close to, but less than 1. What is of interest here is that they

tend to increase with sample size. Figure 4.1 summarizes papers by various authors

from the empirical literature where the above ARSV(1)-model has been fitted to data

(mostly exchange rates and stock returns). It is seen that estimated persistence, as

measured by δ, is rapidly approaching unity as sample size increases, irrespective

of the historical time period and the type of data used. In figure 4.2 we add some

independent estimates of our own, using returns of the French CAC 40 stock index

from 09/2004 to 07/2012. The reported estimates differ from figure 4.1 insofar as

we use the same time series throughout, only increasing the interval employed for

estimation. Again, it is seen that estimated persistence is almost always monotoni-

cally increasing with sample size and rapidly approaching its limiting value of unity

as sample sizes extends beyond 1000 observations. Figure 4.3 reports rolling window

estimates of the persistence parameter ranging from a sample size of 250 up to 2000.

The used time series is the return of the US-$ to British Pound exchange rate ranging

from 09/2004 to 07/2012. The persistence is estimated for different subsamples. The
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grey line reflects the average persistence of the different subsamples. The average

persistence is clearly upward sloping, supporting our previous postulated relationship

of sample size and estimated persistence. But it is worth noting that for different

subsamples of a specific sample size, the estimated persistence can fluctuate pretty

heavily. For all sample sizes ranging from 250 to 1000, there is at least one specific

window where the estimated persistence is lower than 0.25. This indicates that the

estimated persistence is quite volatile for smaller samples sizes.

Psaradakis and Tzavalis (1999) already observe that the increase in estimated persis-

tence obtained in applications as sample size increases might be caused by structural

changes in the model parameters, no matter which estimator for δ is used. Below we

consider two estimators in detail. The first one is the closed-form estimator

δ̂T �
ρ̂2,T
ρ̂1,T

, (4.6)

where ρ̂1,T and ρ̂2,T are the first and second order empirical autocorrelations of rt ��

log�y2t � from a sample of size T. It can be shown (Hafner and Preminger, 2010,

Theorem 1) that δ̂T is consistent and asymptotically normal when the data generating

process is as described in (4.1)-(4.3). The second estimator δ̃T for δ which we consider

here is obtained by applying the Quasi-Maximum Likelihood estimation technique

of Harvey et al. (1994). This estimator is easy to compute and therefore widely

used in applications. It is also implemented in well-known software packages such as

S+FinMetrics for SPlus.

Next we consider the behavior of δ̂T and δ̃T when there is a change in the values

of certain model parameters somewhere in the sample. Extending Psaradakis and

Tzavalis (1999), we show analytically for δ̂T and by Monte Carlo simulations for both

δ̂T and δ̃T that these estimators can be made arbitrarily close to 1 if the structural

change is large enough.
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4.3 Structural change and empiricial

autocorrelation of the logs

From formula (4.6) above, it is evident that in the case of δ̂T the estimated persistence

is a function of the empirical autocorrelations of rt � logs of the squares of the under-

lying time series yt. Now it is well known (see e.g. Hassler, 1997) that the empirical

autocorrelations of rt tend to one in probability whenever rt exhibits nonstationary

long memory. To the extent therefore that (seemingly) nonstationary long memory

in log�y2t � is induced by structural changes in the model parameters, the estimator

δ̂T from (4.6) will likewise tend to one. Krämer et al. (2011) discuss various ways in

which such (seeming) nonstationary long memory can be produced.

For any given sample size, Krämer and Tameze (2007) show that the empirical auto-

correlations of y2t will also tend to one in probability if µ� µ�∆ at some fraction of

the sample as ∆ increases, and it is easily seen that the same applies to rt �� log�y2t �.
More generally, consider the sample autocorrelation function in a situation where

there are r�1 structural breaks in any of the parameters ϕ, δ, σ or µ at �Tq1�, �Tq2�,
..., �Tqr�1�, q0 �� 0 @ q1 @ q2 @ ... @ qr�1 @ 1 �� qr. The only condition is that this

change must affect E�rt�. There are then r regimes, of duration Tpj each, where

pj � qj � qj�1 �j � 1, ..., r�. Let E�j� be the expectation of rt and γ
�j�
k be the k-th

order autocovariance of rt in regime j (assuming that second moments of rt exist in

each regime). (Mikosch and Starica, 2004, formula 5) show that these regime-specific

sample autocovariances then obey the limiting relationship

γ̂
�j�
T,h

p
�

r

Q
j�1

pjγ
�j�
h � Q

1Bi@jBr

pipj�E�j�
�E�i��2, (4.7)

As the variances cancel out when taking ratios of autocovariances, we therefore have

δ̂T
p
�

r

P
j�1
pjγ

�j�
2 � P

1Bi@jBr
pipj�E�j� �E�i��2

r

P
j�1
pjγ

�j�
1 � P

1Bi@jBr
pipj�E�j� �E�i��2 (4.8)



CHAPTER 4. SPURIOUS PERSISTENCE IN STOCHASTIC VOLATILITY 34

as T � ª. Now, assuming that T is large enough, both the numerator and the

denominator of this ratio are dominated by the respective second term when structural

changes become large, so the ratio must then tend to 1.

Things are different when the size of the structural change in the implied differences

E�j� �E�i� are fixed. Then (4.7) directly gives the limiting persistence for increasing

sample size. This distinguishes SV from GARCH-models of conditional volatility.

In GARCH-type models, implied persistence also tends to unity for given size of

structural changes as the size of the sample tends to infinity.

4.4 Structural changes and estimated

persistence

Next we check the behavior of the estimators for δ and the finite sample relevance

of the above result by some Monte Carlo experiments. Table 4.1 and 4.2 report the

expected value of δ̂T (from (4.6)) and δ̃T as obtained from a Monte Carlo simulation,

for ϕ � 0.3, δ � 0.6, σ � 0.5, µ � 0, T � 1000,3000,5000 and a single structural break

in µ or ϕ at 0.5T . This in line with e.g. Sensier and van Dijk (2004) who argue that

structural change is better characterized as an instantaneous break rather than as

gradual changes. The impact of a similar change in µ onto E�rt� is much higher than

a change in ϕ in absolute terms because of the logarithm and square root in 4.1. This

is reflected in the results, as a structural break in µ of 0.01 already results in a much

higher persistence estimate as a change in ϕ of 0.1 for both estimation techniques.

It is also seen that δ is estimated unbiasedly when there is no structural change, but

that the estimator tends to 1 as the structural change increases, no matter which

estimator is used. However, and other than in GARCH-type-models, the sample size

has no influence on the estimated persistence for both estimators. Also, the impact

of the structural break is less pronounced (but with only small differences) for δ̂T .
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A change in ϕ seems to have a smaller impact on the estimated persistence than

a change in µ regardless which estimator is used even if the implied change in E�rt�
is the same. Results are reported in table 4.2. Again the sample size has no impact

on the persistence as estimated by δ̂T or δ̃T .

Similar results, were also obtained for other parameter combinations and other sample

sizes T.

4.5 Conclusion

We show that large persistence estimates in SV-models need not to be due to true

persistence but can be induced by structural changes somewhere in the sample. The

only condition is that such changes must affect the expected value of the squared ob-

servations. The larger this change, the larger the increases in estimated persistence.

However, unlike GARCH-type-models, given some structural change at a fixed quan-

tile of the sample, estimated persistence does not tend to unity as with increasing

sample size.
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Figure 4.1: Estimated persistence and sample size in the ARSV(1)-model
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Figure 4.2: Estimated persistence of the CAC 40 returns
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Table 4.1: Impact of a structural break (0.5T) in µ on estimated persistence

∆µ
T 0 0.01 0.03 0.5 2 10

Hafner & Preminger (δ̂T )

δ � 0.4

1000 0.3887 0.4736 0.7690 0.9660 0.9794 0.9864

3000 0.4199 0.4897 0.7661 0.9676 0.9811 0.9883

5000 0.4085 0.4961 0.7637 0.9676 0.9813 0.9885

δ � 0.6

1000 0.5994 0.6090 0.7395 0.9536 0.9726 0.9824

3000 0.6027 0.6170 0.7425 0.9546 0.9739 0.9840

5000 0.5973 0.6212 0.7402 0.9545 0.9741 0.9843

δ � 0.8

1000 0.7943 0.7891 0.8050 0.9350 0.9623 0.9768

3000 0.7992 0.7988 0.8075 0.9345 0.9631 0.9780

5000 0.8007 0.7989 0.8108 0.9348 0.9632 0.9783

Harvey, Ruiz & Shepard (δ̃T )

δ � 0.4

1000 0.3980 0.4936 0.9647 0.9969 0.9972 0.9975

3000 0.4004 0.4950 0.9732 0.9978 0.9988 0.9989

5000 0.4012 0.4971 0.9755 0.9992 0.9993 0.9993

δ � 0.6

1000 0.5974 0.6433 0.8458 0.9922 0.9947 0.9959

3000 0.5978 0.6395 0.8321 0.9936 0.9961 0.9973

5000 0.6011 0.6401 0.8310 0.9940 0.9961 0.9977

δ � 0.8

1000 0.7957 0.8026 0.8333 0.9706 0.9848 0.9907

3000 0.8025 0.8043 0.8339 0.9683 0.9843 0.9910

5000 0.8001 0.8060 0.8343 0.9681 0.9843 0.9911
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Table 4.2: Impact of a structural break (0.5T) in ϕ on estimated persistence

∆ϕ
T 0 0.1 0.2 0.3 0.4 0.5

Hafner & Preminger (δ̂T )

1000 0.5927 0.5998 0.6181 0.6455 0.6774 0.7109

3000 0.6090 0.6154 0.6332 0.6595 0.6905 0.7229

5000 0.6036 0.6112 0.6304 0.6579 0.6898 0.7229

Harvey, Ruiz & Shepard (δ̃T )

1000 0.5964 0.6022 0.6183 0.6422 0.6722 0.7052

3000 0.6002 0.6058 0.6217 0.6460 0.6762 0.7094

5000 0.6011 0.6077 0.6245 0.6498 0.6806 0.7143



Chapter 5

Discriminating between GARCH

and Stochastic Volatility via

nonnested hypotheses testing

Abstract

GARCH- and Stochastic Volatility (SV)-models are the main workhorses for describ-

ing unobserved volatility in asset returns. Because economic theory behind these

models is not the same and estimating SV-models is much more difficult, discrimi-

nating between these two rival models is of interest. This paper suggests a nonnested

testing procedure dating back to Davidson and MacKinnon (1981) that does not im-

plicitly assume that one of the models is the correct one. We illustrate the proposed

test by applying it to ten daily stock index return series and five exchange rate return

series.

41
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5.1 Introduction

Modeling conditional volatility is among the most important tasks of financial econo-

metrics. Since the popular articles of Engle (1982) and Bollerslev (1986) an exten-

sive literature on modeling conditional heteroskedasticity has been published. Two

competing model classes, with a different economic interpretation, are the main

workhorses in this field, the GARCH-models, where the conditional volatility is de-

scribed by past observations and the class of SV-models, where additional uncer-

tainty enters via some extra error term. These competing models look quite similar

in continuous time, but dissimilar in discrete time (Fleming and Kirby, 2003). While

GARCH-models are much easier to estimate, SV-models need fewer restrictions on

conditional moments than GARCH-models (Meddahi and Renault, 2004). From a

practitioner’s point of view it would be good to know if the estimation of a much

more difficult model is worth the effort. Furthermore, GARCH- and SV-models

yield different economic interpretations. Due to the second innovation within the

framework of the SV-model, the conditional variance process is a function of latent

variables, which can be interpreted as the random and uneven flow of information

(e.g. information about other assets and markets, volume of transactions or the order

book). The GARCH-model in lieu thereof assumes that the conditional variance is

perfectly explained by past observations. This economic aspect as well as the practi-

cal handling raises interest in discriminating between these both classes.

Tests to decide whether a GARCH- or a SV-model is appropriate go back to Kim

et al. (1998) and normally rely on nested hypothesis testing. Popular examples are

Kobayashi and Shi (2005) and Franses et al. (2008). One major disadvantage of this

type of model selection technique is that these tests implicity assume that one of the

models is the true data generating process (DGP). But, as pointed out by Hansen

(2005), models are just approximations to the true DGP. The goal of a model selec-

tion technique should be to find a good approximation of the true DGP. That would

include that neither the specific (nested) GARCH- nor the specific SV-model is a

good approximation to the true DGP. In this paper we circumvent this problem by

applying the popular C-test of Davidson and MacKinnon (1981) to the problem of
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discriminating between GARCH- and SV-models. Using this method it is possible

that both, none or just one of the models is rejected. Because this kind of test tradi-

tionally suffers from size distortion in the form of overrejection for finite samples, we

use a bootstrapped version of the test and compare the performance of the normal

and the bootstrapped test.

5.2 The models

Bollerslev (2008) lists more than 100 different GARCH-type models in his glossary.

This raises interest into the question of picking an appropriate model out of the infinite

universe of GARCH-models. There are several empirical studies that shed light on

the question if there are specific parametrizations that outperform the (standard)

GARCH(p,q)-model. Hansen and Lunde (2005) compare 330 ARCH-type models and

find no evidence that more sophisticated ARCH-models outperform the GARCH(1,1)-

model, even though the GARCH(1,1) cannot capture the asymmetric response to

shocks. The GARCH(1,1)-model includes one lag of the conditional variance within

the standard ARCH(1)-framework

yt � εtσt (5.1)

σ2
t � ϕ � αy2t�1 � βσ

2
t�1. (5.2)

εt is an IID process with zero mean and variance of unity. In most applications εt

is assumed to be NID(0,1). To ensure the existence of the conditional variance and

for avoiding the degeneration of the process ϕ A 0 and α,β C 0 must hold (Carnero

et al., 2004), although small negative values for specific parameter constellations are

also possible (Bougerol and Picard, 1992). Moreover α�β @ 1 must hold for (weakly)

covariance stationarity of yt. The model can be estimated by a standard Maximum-

Likelihood (ML)-procedure.
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For the class of stochastic volatility models we follow Harvey et al. (1994) and

define a (simple) SV-model as

yt � ϵtσt (5.3)

ht � ln σ2
t � γ � πht�1 � ξt, (5.4)

where ϵt � NID�0,1� and ξt � NID�0, σ2
ξ�. Formula (5.4) can be seen as the discrete-

time approximation to the continuous-time Orstein-Uhlenbeck process used in finan-

cial econometrics mostly for modeling short term interest rates. Because yt is a

product of two processes, both of these processes must be stationary to ensure the

stationary of yt, that is SπS @ 1 for ensuring the stationarity of ht. This simple model

has excess kurtosis with exp�σ2
ξ�, so that the tails are fatter than the tails of the

corresponding normal distribution, because 3 exp�σ2
ξ� is always greater than 3 if σ2

ξ

is positive. Estimation of the SV-model is a little bit more difficult than the estima-

tion of the GARCH-model due to the additional error term. By using a state space

representation of (5.3)-(5.4) and approximate log�ε2t � by a mixture of two normally

distributed random variables, one centered at zero, a Quasi-Newton-Raphson-method

can be used to maximize the resulting ML-function.

5.3 Testing nonnested hypotheses

This chapter focuses on hypotheses testing when the considered hypotheses are non-

nested, which means that one of the models cannot be obtained from the other models

by imposing parameter restrictions or by a limiting process (Pesaran and Weeks,

1999). For a good introduction of several aspects of nonnested hypotheses testing

that goes beyond this chapter see Gourieroux and Monfort (1994).

In the following we will introduce the C-test proposed by Davidson and MacKinnon

(1981) for discriminating between two rival (nonlinear) models and we will make

use of this test for selecting a GARCH- or SV-model from section 5.2. Suppose a

researcher wants to find out if economic theory behind these models is supported by

empirical data.
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Using (5.1)-(5.2) and (5.3)-(5.4) one may want to test if one of the following

hypotheses holds

H0 � yt � ft�θ1� � η1t (5.5)

H1 � yt � gt�θ2� � η2t, (5.6)

where θ1 and θ2 describe the parameter vector of the proposed models. By forming

the (possibly) nonlinear regression

yt � ft�θ̂1� � αgt�θ̂2� � ηt (5.7)

with both θ̂1 and θ̂2 the estimated parameter vectors, one can test H0. α is esti-

mated conditional on these estimates using a standard least squares procedure and

the test statistic then reads Ĉ �
α̂

sd�α̂� . It would also be possible to estimate θ2 and α

jointly, but the proposed procedure is preferred for nonlinear models (Davidson and

MacKinnon, 1981).

If H1 is true, α̂
p
� 1. But to test H1 one needs to carry out a second regression, substi-

tuting H0 and H1. This is needed, because the test for H0 is not valid for testing H1

(Davidson and MacKinnon, 1981). Because of this sequential testing, it is possible

that both models are rejected, neither is rejected or that one but not the other is

rejected. This accounts for the possible outcome that neither the proposed GARCH-

nor the SV-model is a good approximation to the true data generating process, or

that the true DGP is sufficiently close to both models.

5.3.1 Bootstrapped based testing

The test often overrejects in finite samples and the extent of this overrejection depends

on the level of significance (Davidson and MacKinnon, 2002). One way to deal with

this problem is using a bootstrapped test statistic. By doing so, the finite sample

performance of the tests can be enhanced dramatically (Fan and Li, 1995; Davidson

and MacKinnon, 2002; Godfrey, 1998). To deal with autocorrelation we use the

moving block bootstrap with a block length of T
1
4 for the simulation based testing
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(Hall et al., 1995). For the empirical application we combine the ideas of the wild- and

blockbootstrap to account for dependent and heteroskedastic data. An alternative for

an appropriate bootstrap procedure robust to underlying heteroskedasticity would be

the pairs bootstrap, but Flachaire (2003) compares different heteroskedasticity-robust

bootstrap procedures and finds that the wild bootstrap of Davidson and Flachaire

(2008) outperforms other wild and pairs bootstrap methods. The bootstrap procedure

accounting for both heteroskedastic and autocorrelated observations looks like this:

1.) Estimate both models and calculate the test statistic Ĉ.

2.) Estimation of the model under H0 yields unbiased parameter estimates and thus

provides the bootstrap data-generating process (DGP) and provide residuals η̂t.

y�t � ft�θ1� � η̂t ξt at, (5.8)

where at �
»

n
n�k and ξt �

¢̈̈̈
¦̈̈̈
¤
1, with probability 0.5

�1, with probability 0.5
. After the rescaling is

done, the residuals are blocked using the moving block procedure mentioned

above with a block length of T 1~4.

3.) B bootstrap samples are drawn from (6.13).

4.) For each B, the bootstrapped test statistic C� is computed similar to the original

test statistic.

5.) The bootstrap p-value is computed by

p��Ĉ� � 1

B

B

Q
j�1

1�C�

j CĈ�, (5.9)

where 1�.� is an indicator function.

The bootstrap p-value converges faster to the true p-value than the asymptotic p-

value does, given that the bootstrap test statistic’s distribution converges to the

true distribution as sample size is increasing and thus the bootstrap test statistic is
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asymptotic pivotal (Beran, 1988). As shown by Davidson and MacKinnon (2002),

the test statistic for the standard linear regression model is asymptotically pivotal

except one special case (θ1 � 0). Therefore we assume for the time being that this

property holds for this (more complicated) model, too.

5.3.2 Finite sample properties

This section compares the performance of the test with its bootstrapped counterpart.

We use both models as data generating processes with the following parameteriza-

tions that are typical for returns of stock indices:

GARCH: ϕ � 0.0001, α � 0.09, β � 0.9

SV: γ � �0.005, ϕ � 0.98, σξ � 0.01.

Table 5.1 and 5.2 report the results of a Monte Carlo Simulation with 1000 replications

for the empirical size. The corresponding null hypothesis for table 5.1 is H0 � GARCH

andH0 � SV for table 5.2. As mentioned above, it is often assumed that the test statis-

tic follows a tn�k�1 distribution even though it is well known that the distribution can

be quite different. Because the sample size is really large (T=1000 up to 5000) the

corresponding t-distribution is (almost) similar to the N(0,1)-distribution and we as-

sume that Ĉ � N�0,1�. The sample sizes were chosen to reflect typical sample sizes

of empirical studies, because the proposed models are normally calibrated to daily

data of at least three years. The purpose of the simulation is to test whether the

the assumed distribution of the test statistic is viable and if by using a bootstrapped

based test statistic the empirical size bias can be reduced.

Table 5.1 shows that the test almost always keeps its theoretical level of significance

for all sample sizes. The bias seems to diminish as sample size increases. The boot-

strapped version of the test enhances the performance to some extent given that the

performance was already good. Especially the overrejection at small sample sizes for

a level of significance of 0.1 is reduced within the bootstrap framework (see table

5.3). Things change if we exchange the model under H0 from GARCH to SV. If the

DGP is the SV-model, the test overrejects for all levels of significance and all sample
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Table 5.1: Empirical size of the C-test (DGP=GARCH-model)

T
Level of significance 1000 2000 3000 4000 5000

0.01 0.009 0.006 0.009 0.008 0.012

0.05 0.050 0.053 0.045 0.048 0.049

0.10 0.107 0.115 0.094 0.094 0.098

Table 5.2: Empirical size of the C-test (DGP=SV-model)

T
Level of significance 1000 2000 3000 4000 5000

0.01 0.025 0.023 0.018 0.020 0.022

0.05 0.090 0.085 0.097 0.084 0.088

0.10 0.168 0.169 0.154 0.155 0.149

sizes. Using the bootstrapped version of the test the performance is enhanced dra-

matically. The empirical size meets the theoretical level of significance and thus the

bootstrapped version of the test is able to discriminate between the proposed models.

Table 5.5 and 5.6 reports the empirical power of the bootstrapped version of the test.

The power of the test is evaluated for different values of α and the difference from 0

of the true parameter value is displayed by ∆ α. The power results are very encour-

aging, especially for the empirically most crucial sample sizes. If the sample size is

increased, the power increases too in a rapid fashion. By increasing ∆ α, the test is

able to detect the false null hypothesis much faster.

5.4 Empirical application

This section uses the proposed test to discriminate between GARCH and SV-models

for modeling return series of economic quantities. We apply the test to stock index

return series and to exchange rate return series. From a theoretical point of view,

one could argue that for stock index return series the additional error term in the
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Table 5.3: Empirical size of the bootstrapped C-test (DGP=GARCH-model)

T
Level of significance 1000 2000 3000 4000 5000

0.01 0.010 0.008 0.013 0.012 0.008

0.05 0.045 0.049 0.039 0.045 0.046

0.10 0.097 0.098 0.089 0.106 0.095

Table 5.4: Empirical size of the bootstrapped C-test (DGP=SV-model)

T
Level of significance 1000 2000 3000 4000 5000

0.01 0.010 0.008 0.012 0.013 0.007

0.05 0.049 0.044 0.055 0.051 0.050

0.10 0.104 0.098 0.095 0.093 0.106

Table 5.5: Empirical power of the bootstrapped C-test (DGP=SV-model)

T
∆ α 1000 2000 3000 4000 5000

0.01 0.27 0.44 0.48 0.58 0.63

0.02 0.50 0.73 0.82 0.86 0.95

0.03 0.72 0.91 0.94 0.96 1.00

0.04 0.84 0.99 0.99 0.99 1.00

0.05 0.92 0.99 0.99 1.00 1.00
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Table 5.6: Empirical power of the bootstrapped C-test (DGP=GARCH-model)

T
∆ α 1000 2000 3000 4000 5000

0.01 0.45 0.76 0.92 0.98 0.99

0.02 0.52 0.86 0.97 0.99 1.00

0.03 0.66 0.95 0.99 1.00 1.00

0.04 0.72 0.96 0.99 1.00 1.00

0.05 0.77 0.98 1.00 1.00 1.00

SV-model can be used to reproduce the more pronounced uncertainty in emerging

markets compared to the G8-countries. Hence we want to shed light on the question

whether our proposed test confirm these theoretical considerations. We use ten years

of daily data ranging from 11/27/2002 to 11/27/2012 for the following countries:

USA, Germany, France, Great Britian, Japan, Russia, Brasil, China, Taiwan and

South Korea. The first five countries are considered to be among the most developed

countries in the world, the latter five have the highest weighting within the MSCI

Emerging Markets index. Figure 5.1 shows four selected stock index return series.

For all return series the typical volatility clusters are observable, with the most pro-

nounced clustering for the Russian stock index. Furthermore, the volatility for the

emerging countries is more pronounced than for the developed countries. Because the

sample size for all ten time series is roughly 2500, we use a blocklength of 7 for the

bootstrap. For each index we run our proposed test two times substituting the null

hypothesis H01 � GARCH to H02 � SV for the second run.

Figure 5.2 shows the distribution of the bootstrapped test statistic for the HANGSENG

return series. The left hand side corresponds to H01 � SV and the right hand side

corresponds to H02 � GARCH. The added lines reflect appropriate density functions

of a normal distribution for both null hypotheses.

Table 5.7 summarizes the results for both null hypotheses. It turns out that for

H01 � GARCH, the null is rejected for all ten stock index return series, indicating

that the GARCH(1,1)-model seems not to be a good model for describing the returns
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Table 5.7: Test statistics for selected stock index returns

Stock Index H0 � GARCH H0 � SV

DOWJONES 6.30��� �0.60

DAX 4.36��� 1.80

CAC 4.06��� �6.18���

FTSE 3.26��� 1.18

NIKKEI 2.73�� 4.43���

BOV ESPA 4.43��� 0.17

HANGSENG 6.36��� �2.24��

KOSPI 5.19��� �0.02

RTS 4.93��� 1.48

TAIEX 5.40��� 4.30���

Notes. Level of significance: *:10%; **:5%; ***:1%

of the last ten years. Four out of ten times the SV-model is also rejected. The level

of industrialization seems not to matter as both models are rejected for two more

developed countries and also for two emergent countries. But for three among four

asian countries both models are rejected, indicating that one needs special care for

modeling these return series.

On the one hand the results are an indication that the pretty simple model specifi-

cations we used here are not able to mimic the behavior of the return series observed

in the real world and more sophisticated model specifications should be used. On the

other hand one could interpret the results as the need for an additional error term

during turbulent times at the financial markets as the sample includes the financial

crisis from 2007 up to today.

Another field of application of the proposed models are exchange rate returns. We

apply the test to five different exchange rate return series: US-Dollar to Euro, British

Pound to Euro, Yen to Euro, British Pound to US-Dollar and Swiss Franc to Euro.

Figure 5.3 shows the corresponding time series. For all time series the typical volatil-

ity clustering is observable. Worth noting is the peak of the Swiss Franc to Euro series
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Table 5.8: Test statistics for selected exchange rate returns

Exchange Rate H0 � GARCH H0 � SV

US Dollar to Euro �38.10��� �1.42

British Pound to Euro �36.63��� �1.16

Japanese Y en to Euro �31.62��� �2.88���

British Pound to US Dollar �37.62��� �6.27���

Swiss Franc to Euro �32.15��� 0.11

Notes. Level of significance: *:10%; **:5%; ***:1%

at 09/06/2011. On this day, the Swiss central bank introduced a minimum level for

the exchange rate of Swiss Franc to Euro of 1.20 and the exchange rate on 09/05/2011

was 1.1122. Due to the announcement the exchange rate climbed up to the minimum

level and resulted in an artificially high one-day return. Table 5.8 shows the results for

the incorporated exchange rates. As for the stock index returns it stands out that the

GARCH-model is always rejected in presence of the SV-model. For the Japanese Yen

to Euro and Swiss Franc to Euro time series both models are rejected. This results

are in line with the previous results as both models were rejected for the stock index

return series of selected Asian countries (TAIEX, HANGSENG, NIKKEI), indicating

that the pretty simple models used for the empirical application are not capable of

describing the dynamics of Asian financial markets. In lieu thereof the SV-model

adequately describes the dynamics of three out of five exchange rate returns. It is

possible that the turbolent last years increase the need for more sophisticated models

also for exchange rate returns.

As for the stock index return application, figure 5.4 shows the distribution of the boot-

strapped test statistic for the Swiss Franc to Euro series. As before, the left hand side

corresponds to H01 � SV and the right hand side corresponds to H02 � GARCH and

the shape of the bootstrapped distribution is close to that of the normal distribution.
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5.5 Possible extensions

Using empirical data it is not clear which null hypothesis is the natural one. From

a practitioners point of view there is a continuum of competing models that need to

be tested to pick an appropriate one. One possible extension for testing M different

models at once that are all capable of explaining some (economic) variable y, y �

fm�θm��um ¦ m >M �� �1, ...,M�, and is robust to the sequential testing problem, is

the MJ-test introduced by Hagemann (2012). The general procedure works like this:

1.) For each model, run the regression

y � �1 � P
l>M��m�

al,m� fm�θm� � P
l>M��m�

al,m fl�θl� � µ
and compute the test statistic Cn,m. Let Ξn �� �Cn,m ¦ m > M� and MCn ��

min Ξn.

2.) Test H0 � m� > M against H1 � m� ~> M and reject the hypothesis, if MCn A

χ2
M�1,1�α, where m

� stands for the correct model.

This type of test is an intersection-union test of Berger (1982). It tries to determine if

m� >M and if this hypothesis is not rejected, m̄ � argmin Ξn is the natural candidate

due to the fact that only the model with the smallest test statistic can possibly be

the correct model.

Using this idea, we can compare in a fairly simple way more than just two different

competing SV/GARCH-models at the same time.
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5.6 Conclusion

This paper has proposed a simple test for discriminating between nonnested GARCH-

and SV-models. Within this framework it is possible to reject or accept both model

types and thus the test does not implicitly assume that one of the models has to be

the correct one. This respects the fact that all models are just approximations to the

unknown true data generating process.

Applying the test to exchange rate and stock index returns, the SV-model is preferred

to the GARCH-model. But for some time series both models are rejected, indicating

that these rather simple models may not be adequate for describing the turbulent

recent years reasonably well.

Extending the proposed test to compare more than just two models out of the infinite

universe of GARCH- and SV-models is a topic for further research.
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Figure 5.1: Returns of selected stock indices from 11/2002 - 11/2012
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Figure 5.2: Distribution of the bootstrapped test statistic for the HANGSENG return
series
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Figure 5.3: Returns of selected exchange rates from 05/2003 - 05/2013
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Figure 5.4: Distribution of the bootstrapped test statistic for the Swiss Franc to Euro
return series



Chapter 6

Discriminating between multiple

models for describing unobserved

volatility in asset returns

Abstract

GARCH-models and Stochastic Volatility (SV)-models are the main workhorses for

describing unobserved volatility in asset returns, but picking an appropriate one out

of the seemingly infinite universe of these models is rather difficult. We propose a test

dating back to Hagemann (2012), that can discriminate between up to M different

models. We illustrate the test by applying it to various stock index returns.

59
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6.1 Introduction

When analyzing stock index returns and exchange rates special interest lies in mod-

eling the second moment of these financial returns. Within the last two decades

two different types of models have been proven to be the most successful ones, the

GARCH-class of models that go back to Engle (1982) and Bollerslev (1986) and the

Stochastic Volatility (SV)-models introduced by Taylor (1986). The main difference

of these models is an additional error term entering the conditional variance equation.

This error term creates not only a computational burden but also yields a different

economic interpretation for the models. These differences raise interest into discrim-

inating between the models. For empiricial applications a researcher often has to

choose a model out of the seemingly infinite universe of (G)ARCH- and SV-models

and picking an appropriate one can be really challenging. To find out which model

provides a good fit to a specific return series several nested and nonnested specifica-

tion tests have been proposed. The main disadvantage of these tests is that only two

models are selected and evaluated. But given the fact that there are so many different

models for describing the volatility of a financial time series it is interesting to not

only evaluate two but M models at once. By just selecting two models, the researcher

needs a ’good guess’ which models could be the correct one. We propose a test dating

back to Hagemann (2012), that is capable of discriminating between M models. We

use a nonnested framework, so that it is possible that all models are rejected, if the

true data generating process (DGP) is not included among the M models. This is

also one major drawback of nested tests because these tests implicitly assume that

one of the chosen models is the true DGP.

The rest of the paper is organized in the following way: Section 2 describes the pro-

posed test and the model selection procedure. Section 3 describes the models used for

the simulation analysis and the empirical application, while section 4 and 5 report the

results a simulation study and the empirical application, and section 6 concludes.
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6.2 The model selection procedure

A researcher often has a variety of models available, when modeling a given data set

y of some specific asset return. Let M denote the collection of each single model m.

Each of these models describes a probability distribution for the given data set,

m � �Pθ � θ >H�, (6.1)

where Pθ represents a probability distribution for y and H describes the parameter

space (Leeb and Pötscher, 2009). Based on an estimator θm for each model, the re-

searcher wants to select a model m̂ in such a way that the selected model is capable

of describing the given data set y. It is possible that the true model m� is not one of

the candidate models in M , i.e., that the true probability distribution of y does not

belong to any of the models in M.

We introduce a test that is capable of determining if one of the models under consid-

eration is the true model m�. This testing procedure goes back to Hagemann (2012)

and is an extension to the well known J- and C-tests of Davidson and MacKinnon

(1981).

Suppose we have M C 2 different competing models for describing our observed data

set y,

y � fm�θm� � εm, m >M �� �1, ...,M�. (6.2)

We now want to determine if one of these models is the true model m�. With the

C-test one may test H0 � m̂ � m� against H1 � m̂ x m� by nesting all the alternative

models k >M��m̂�,
y �

�
�1 � Q

k>M��m̂�

ak,m̂
�
� fm̂�θm̂� � Q

k>M��m̂�

al,m̂ fk�θk� � µ (6.3)

By testing αm̂ �� �αk,m̂�k>M��m̂� � 0, one checks the trueness of model m̂ in the presence

of all the other models M��m̂�. If one of the models in M is the correct model m�,

then the test statistic of this particular model does have an asymptotic distribution
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towards it will converge and all the other test statistics will diverge. This motivates

the work of Hagemann (2012) and his testing procedure. Because of the convergence

of the test statistic, only the model with the smallest C-test statistic could possibly

be the true model m� and this motivates the following testing procedure:

1.) For each model, run regression (2) and compute the test statistic Cn,m. Let

Ξn �� �Cn,m ¦ m >M� and MCn ��min Ξn.

2.) Test H0 � m� > M against H1 � m� ~> M and reject the hypothesis, if MCn A

χ2
M�1,1�α.

If m� > M then MCn � χ2
M�1,1�α. If m� ~> M, then lim

n�ª
P�MCn AK� � 1 ¦ K > R

(see Hagemann, 2012). Define m̂s as the model with the smallest test statistic m̂s �

argmin Ξn. A good test should be able to determine if m� > M and if so, P�m̂s �

m�� � 1 for n�ª.

This test is an intersection union test of Berger (1982), in such a way that H0 �m� >M
is the union of the different null hypotheses H0 � m̂ � m�. Because it doesn’t matter

which of the models is the correct one, each of the (single) null hypotheses must be

rejected.

Tests that rely on the procedure of Davidson and MacKinnon (1981) traditionally

suffer from size-distortion in the form of overrejection. Therefore we will make use of

a bootstrapped variant of the test to circumvent this problem.

6.3 Models used for the simulation and empirical

analysis

Even though the test is capable of dealing with M different models, we limit our

analysis to discriminate between three models because the simulation becomes pretty

time consuming the more models are included. But the testing procedure could be

easily extended to more than three models. We will center our application around

the ARSV-, APARCH- and t-GARCH-model.

The GARCH(1,1)-model is still the main workhorse in financial econometrics. To
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account for more pronounced shocks, assuming t-distributed errors is one of the most

common extensions to the standard framework and the empirical usefulness of this

extension is shown by e.g. Bollerslev (1987). We make use of an ARMA(1,1)-t-

GARCH(2,2)-model which is specified in the following way with εt � tν :

yt � γ1 yt�1 � γ2 ξt�1 � ξt (6.4)

ξt � εt σt (6.5)

σ2
t � ϕ �

2

Q
i�1

αiy
2
t�i �

2

Q
j�1

βjσ
2
t�j. (6.6)

Ding et al. (1993) proposed the so-called APARCH-model to account for asymmet-

ric responses to negative and positive shocks to conditional variance. Within this

framework an equally sized positive or negative shock can have a different impact

on volatility, which is not possible within the standard GARCH-framework. The

AR(1)-APARCH(1,1)-model reads

yt � γ1yt�1 � ξt (6.7)

ξt � εt σt (6.8)

σϱ
t � ϕ � α1 �Sξt�1S � ω ξt�1�ϱ � β1 σϱ

t�1 (6.9)

(6.10)

with ϱ A 0 and �1 @ ω @ 1. Due to the fact that the exponent is not limited to

ϱ � 2 the APARCH-model is much more flexible than the traditional GARCH-models

and thus can reproduce the leverage-effect. For stationarity, ϕ A 0 and α1 κ � β1 @ 1

with κ � E�SξS �ω ξ�ϱ must hold. This means that the distributional assumptions on

the innovation process are taken into account for stationarity if ω x 0 and/or ϱ x 2.

Several models are nested within the APARCH-framework, e.g. the GARCH-model

(ϱ � 2, ω � 0) or GJR-GARCH-model by Glosten et al. (1993) (ϱ � 2).
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As for the SV-model we follow Harvey et al. (1994) and define the ARSV(1)-model

as

yt � εtσt (6.11)

ht � ln σ2
t � γ �Ξht�1 � ξt, (6.12)

where εt � NID�0,1� and ξt � NID�0, σ2
ξ�. The major difference of (6.11)-(6.12) to

GARCH-type models is the second innovation ξ, and this additional innovation leads

to the fact that normal ML methods cannot be applied to estimate the model. For

estimation purposes (6.11) is transformed to a state space representation by squaring

and logarithmizing both sides. If εt � NID, then log�ε2t � is log-χ2 distributed with one

degree of freedom. By approximating log�ε2t � by a mixture of two normally distributed

random variables, one centered at zero, a Quasi-Newton-Raphson-method can be used

to maximize the resulting ML-function.

The ARSV(1)- and the t-GARCH(2,2)-model are closely related as they both have

excess kurtosis and thus behave in a similar way, but still maintain differences which

is important because the models need to diverge to some extent. Otherwise the test

might not be able to reject a false model in presence of a false but similar looking

one.

6.4 Simulation study

This section sheds light onto the question whether the test is capable of discrimi-

nating between the proposed models while maintaining its level of significance. A

common problem of this type of test is that it suffers from overrejection for finite

samples (Hagemann, 2012). The empirical size is analyzed in section 6.4.1 and it is

seen that we also have to deal with the overrejection bias for this testing procedure.

To deal with this bias, we use a bootstrapped version of the test, where the idea is

to replace the smallest test statistic Cm̂ within Ξn with its bootstrapped counterpart

and thus mimic the behavior of MCn. To deal with autocorrelation we use the mov-

ing block bootstrap with a block length of T
1
4 (Hall et al., 1995). To overcome the
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problem of heteroskedastic errors, we use the wild bootstrap procedure of Davidson

and Flachaire (2008) where the residuals εt are rescaled as εt ϖt at with at �
»

n
n�k

and ϖt �

¢̈̈̈
¦̈̈̈
¤
1, with probability 0.5

�1, with probability 0.5
. The ARSV(1)-model is used as the data gen-

erating process. The general bootstrapped testing procedure, accounting for both

heteroskedasticity and autocorrelation, looks like the following:

1.) Obtain the residuals ε̂t � y � f�θm̂�
2.) Generate the bootstrap DGP by rescaling the residuals

y�t � f�θm̂� � ε̂t ϖt at, (6.13)

where at �
»

n
n�k and ϖt �

¢̈̈̈
¦̈̈̈
¤
1, with probability 0.5

�1, with probability 0.5
. After the rescaling is

done, the residuals are blocked using the moving block procedure mentioned

above with a block length of T 1~4.

3.) B bootstrap samples are drawn from (6.13).

4.) For each B, the bootstrapped test statistic C�

b,m̂ is computed in the same way

as the original test statistic is computed.

5.) Unify the original mass of test statistics with the bootstrapped one

J �� �C�

b,m̂� � Ξn��Cm̂� and calculate MC�

b ��min J.

5.) The bootstrap p-value is computed by

p��Cm̂� � 1

B

B

Q
j�1

1�Cm̂CMC�

b
�, (6.14)

where 1�.� is an indicator function.
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Table 6.1: Empirical size of the MC-test (DGP=SV-model)

T
Level of significance 1000 2000 3000 4000 5000

0.01 0.022 0.018 0.016 0.016 0.012

0.05 0.128 0.108 0.094 0.072 0.066

0.10 0.190 0.178 0.138 0.106 0.096

6.4.1 Finite sample properties

Table 6.1 reports the results of a Monte Carlo simulation with 500 replications. The

underlying data generating process is the SV-model with parameters chosen in such a

way that they reflect typical values obtained in empirical studies (γ � 0.006, π � 0.99,

σξ � 0.01). As it is seen, the test suffers dramatically from size distortion as for all

levels of significance for smaller sample sizes the test overrejects heavily. For larger

sample sizes the bias is diminishing but still pronounced and only for the 0.1-level and

sample sizes of 4000 and 5000 the test keeps its theoretical level of significance. The

percentage deviation from the true value for the different levels of significance is more

pronounced the smaller the level of significance. These results support the general

problems of this type of test found in the literature in the from of overrejection and

emphasize the need for a bootstrapped version. This need is enlarged due to the fact

that in empirical studies typical sample sizes range from 1500 up to 3000 and the test

is not capable of keeping its theoretical level of significance for these sample sizes. A

possible explanation for the overrejection bias in smaller samples can be found in the

greater standard errors of the SV parameter estimates. These are much larger for the

smaller sample sizes. This enhances the probability that the model is misspecified

and could lead to worse results compared to larger samples, because if the model is

not correctly specified the test is not able to discriminate between the models used.

This could lead in an overrejection bias because even though the model under the

null is true, the model is misspecified and then the test is not capable of detecting

the ’trueness’ of the model under H0.

Therefore table 6.2 and table 6.3 report the results of the bootstrapped version of



CHAPTER 6. TESTING MULTIPLE VOLATILITY MODELS 67

Table 6.2: Empirical size of the bootstrapped MC-test (DGP=SV-model)

T
Level of significance 1000 2000 3000 4000 5000

0.01 0.014 0.008 0.008 0.008 0.012

0.05 0.056 0.054 0.048 0.048 0.050

0.10 0.114 0.110 0.094 0.100 0.100

Table 6.3: Empirical power of the bootstrapped C-test (DGP=SV-model)

T
∆ α 1000 2000 3000 4000 5000

0.01 0.23 0.44 0.48 0.58 0.63

0.02 0.49 0.75 0.81 0.86 0.95

0.03 0.66 0.93 0.94 0.96 1.00

0.04 0.84 0.99 0.99 0.99 1.00

0.05 0.92 0.99 0.99 1.00 1.00

the test. The general framework is the same as before, we use the SV-model as

the data generating process with identical parameter values (γ � 0.006, π � 0.99,

σξ � 0.01). The number of bootstrap replications is B � 250. As it is seen in table

6.2, the bootstrapped version of the test maintains its theoretical level of significance.

Especially the overrejection bias for the smaller sample sizes diminishes and the test

maintains its theoretical level of significance. The empirical power of the bootstrapped

variant is reported in table 6.3. One can observe typical power properties. As the

sample size or the difference from the true value (∆α) becomes greater, the probability

for rejecting a false hypotheses tends to 1. Table 6.3 reports the empirical power of

the bootstrapped version. Under the alternative, the power rapidly approaches unity.
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6.5 Empirical application

This section investigates which models are chosen by the MC-test when applied to

’real’ return series. We use the bootstrapped version of the test and apply it to ten

different stock indices. The reason for just choosing stock index and not also exchange

rate returns is motivated by the fact that one of the models under consideration is

able to reproduce the leverage-effect. From a theoretical point of view exchange

rate returns should not be featuring this stylized fact because one could define the

exchange rate in two different ways (e.g. US-$ to Euro or Euro to US-$) and if one

finds this stylized fact in these return series, the leverage-effect should be observable

for both definitions, which is not the case. We use ten different stock index return

series from different emerging and developed countries ranging from 11/2002 up to

11/2012. Figure 6.5 shows selected return series which display the typical stylized

facts. Volatility clusters are spiking in late 2008 which reflects the peak of the ongoing

financial crisis due to the crash of Lehman Brothers. As it is also seen, higher volatility

in emerging markets goes along with both higher risk and higher dynamics compared

to developed countries.

Table 6.4 reports the results of the empirical application of the bootstrapped MC-

test. For the NIKKEI return series all three models are rejected, indicating that this

return series needs special treatment.

For the rest of the return series the APARCH-model is selected five times, whereas

the t-GARCH-model is only selected once and the SV-model is selected three times.

The three countries where the SV-model is selected are emerging countries, whereas

for the developed countries GARCH-models are selected. This raises interest into the

question whether emerging countries are better modelled with the additional error

term within the conditional variance equation as this parameter better reflects the

higher risks and higher dynamics in these financial markets.
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Table 6.4: Selected models for the considered stock index returns

Stock Index MCn Selected model

DOWJONES 1.30 APARCH

DAX 1.37 APARCH

CAC 0.46 APARCH

FTSE 2.56 t �GARCH

NIKKEI 12.75��� SV

BOV ESPA 0.87 SV

HANGSENG 2.55 SV

KOSPI 1.19 SV

RTS 1.99 APARCH

TAIEX 2.49 APARCH

Notes. Level of significance: *:10%; **:5%; ***:1%

6.6 Conclusion

This paper proposed a test for discriminating among up to M different time-varying

volatility models which goes back to Hagemann (2012). The test is capable of rejecting

all models under consideration if neither of them is correct. The MC-test suffers

from size distortion in the form of overrejection for empirical relevant sample sizes

(T=1000-3000). This problem is solved by using a bootstrapped variant of the test.

By doing so, the overrjection bias is significantly reduced.

Applying the bootstrapped version to empirical data, only for the NIKKEI return

series no model is selected. There is a tendency that the SV-model is selected more

for emerging than for developed countries and vice versa for the GARCH-model.

A comparison with traditional information criteria should be carried out for further

research.
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Figure 6.1: Returns of selected stock indices from 11/2002 - 11/2012



Chapter 7

Conclusion

Within this dissertation I have described several statistical problems that occur when

modeling return series of economic quantities with time-varying volatility models.

Both the one-shock and two-shock models have their pros and cons and picking an

appropriate one is a rather challenging task. Therefore I presented two different model

selection techniques, one for discriminating between two different models (going back

to Davidson and MacKinnon (1981)) and one that is capable of discriminating be-

tween up to M different models (going back to Hagemann (2012)). As it is seen, the

capability of rejecting all models is necessary because for both tests there exist return

series where none of the models under consideration is selected. This shows the need

of a nonnested testing framework in contrast to the nested testing framework that is

still the main workhorse in the literature.

On the one hand comparing one SV-model with one GARCH-model, the GARCH-

model is always rejected in presence of the SV-model. On the other hand the SV-

model is rejected only four out of ten times in presence of the GARCH-model, indicat-

ing the superiority of the SV-model. In contrast to the GARCH-model, the SV-model

allows both the conditional mean and the conditional variance to be driven by two

different stochastic processes. This additional flexibility is one of the reasons why the

two-shock models are superior to the one-shock models, referring to chapter 5.

The test in chapter 6 describes how to compare more than just two models at the

same time. Looking at the results of the empirical applications, it is seen that for

71
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all time series except the NIKKEI returns a model is selected. The APARCH- and

the SV-model are selected five respectively three times, while the t-GARCH-model is

only selected once.

Both tests in chapter 5 and 6 suffer from size distortions in the form of overrejection,

but as it is shown by using bootstrapped techniques this bias is reduced dramatically

and the bootstrapped version of the test maintains its theoretical level of significance.

One major drawback of the tests is that one needs to estimate the models beforehand.

Especially the estimation of the SV-model is challenging and the technique used here

tends to produce parameter estimates with a rather large variance for smaller sample

sizes. This is one possible explanation for the observable size distortions if the SV-

model is the data generating process.

Chapter 4 shows that the persistence within SV-models can be estimated arbitrarily

close to 1, if structural breaks occur within the sample. But different to GARCH-

models the sample size does not affect the estimated persistence.

The previous chapters provide an explicit contribution to statistical problems occur-

ing while modeling economic time series with time-varying volatility models. But

there still remain problems and important questions in this context, which I want to

outline in the following.

Include more time series and more models

I limit my empirical application to only three models and only ten stock index returns

/ five exchange rate returns. For a broader understanding which model is appropri-

ate for which type of time series, the application should be extended to more than

just three models and to more than just the time series used here. By doing so, the

general understanding which model is appropriate for which type of return series can

be enhanced.

Another interesting aspect rises, if we switch from daily data to different time spans,

especially if we use high frequency data. Models used for describing high-frequency

data often assumes non-stationarity of the conditional variance. Extending the test

to these models is subject to further research.

Enhance the finite sample properties

Because traditional estimation techniques are not appropriate for the SV-model,
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rather advanced techniques need to be used. Even though the approach I used (and

outlined in chapter 3.3) has several benefits, one drawback is the comparatively high

variance of the parameter estimates for smaller sample sizes. This leads to inaccuracy

and is one explanation for the inferior results in chapter 5 and 6 of the finite sample

properties if the SV-model is used as the data generating process. Trying to use an

alternative estimation technique, as for example a Bayesian approach, might reduce

the variation and thus are worthwile exploring.

Extend the work to multivariate models

The analysis done in chapter 4 is limited to the ARSV(1)-model. This work needs

to be extended to multivariate time-varying volatility models with two shocks. By

doing so, the relationship of a structural break within the covariance structure of the

error terms on the estimated persistence can be explored, whereas I assume that these

shifts also affect the estimated persistence.
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