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Introduction

1 Introduction

Pharmaceutical companies strive to improve quality of life and increase life expectancy
by developing more effective and safer medication. They are constantly enhancing the
drug development process and investing in research and innovation, which are key in the
discovery and development of safer, more effective therapies. The process of research and
development includes ethical and economic considerations that present additional chal-
lenges. The companies must manage the quality, or efficacy and safety, of the new drugs,
their accessibility to patients in regard to price and timeliness, and their development
costs. To optimally manage costs, quality, and timeliness, the drug development process
must be continually enhanced, adopting both innovative methodological approaches and
new technology.

Drug development is a lengthy process lasting at least 10 years. It involves drug dis-
covery, formulation, laboratory development, animal studies, clinical development, and
regulatory approval. Drug discovery, formulation, and laboratory development consti-
tute the non-clinical/pre-clinical development stages. These involve in-vitro as well as
in-vivo experiments. There are several stages in the pre-clinical development phase that
evaluate the potential efficacy and safety features of the compound. Regulations require
that certain pre-clinical safety assessments are successfully passed before starting the
clinical development. Clinical trials, or studies conducted with humans, are carried out
in three phases (phase I, phase II and phase III).

The safety and efficacy of the new drug must be established and compared with an
eventual standard therapy to earn regulatory approval. Regulatory agencies such as
the Food and Drug Administration (FDA) and European Medicines Agency (EMA) are
responsible for new drug approvals in the USA and in the European Union, respectively.
They examine the results of the studies conducted during the drug development to ensure
that the new drug works and that its health benefits outweigh its known risks. A phase
IV trial tends to be required after drug approval for the investigation of potential long
term side effects.

Drug Development Issues

Drug development is a very costly process. The development costs estimation is complex,
involving out-of-pocket expenditures and capitalization costs due to the long develop-
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Introduction

ment time (DiMasi et al. [2003]). Arriving at an accurate estimate of drug development
costs is difficult because most of the data associated with drug development is confiden-
tial. Published estimates of average development costs from drug discovery to marketing
vary depending on the literature. DiMasi et al. [2003] estimated the average costs per
new drug to be $800 million. Parker et al. [2003] provided estimates between $500 mil-
lon and $2000 millon US Dollars by using a publicly available pharmaceutical projects
data base. Figure 1 displays some estimates of the total development costs as well as
the pre-clinical and clinical development costs in US Dollars. Drug development costs

Figure 1: Capitalized preclinical, clinical, and total costs per new drug in millions of
2000 dollars. Source: Parker et al. [2003]. Others sources: DiMasi et al. [1991], DiMasi
et al. [2003] and Chien [1979].

increase at a rate of about 7% per year, by comparing past estimates with more recent
ones (Parker et al. [2003]). An accurate estimate of pre-approval development costs re-
quires costs evaluation at the projects level and should assist investors in fixing the price
of the new drug. Note that the development costs have a direct impact on drug prices
and general health policy. Whilst the overall development costs have increased over the
years, the number of new drug applications to the FDA’s Center for Drug Evaluation
and Research (CDER) have not risen. Figure 2 represents the number of applications
for drug approval from 1991 to 2011 published by the FDA (Swann [2013]). The de-
creasing trend in the number of applications and newly approved drugs in the last years
could partly be explained by the imposition of stricter approval conditions as well as the
nature of current diseases. Drug development for contemporary genetic diseases such as
cancers and metabolism diseases is more complicated than the infectious diseases of the
past decades. To be competitive, a new drug must treat the disease at its origin, rather
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Figure 2: Number of new drugs submitted to the FDA from 1991 to 2011

than just the symptoms as in the past decades.

No drug has the same results on all patients. Some patients show no significant
effects, or they cannot tolerate even those drugs proven as effective. Because genetic
and/or environmental factors may explain this phenomenon, it may be crucial to find
the biological criterion for the selection of non-responders and develop a more appropriate
therapy for them. Interest in targeted drug development has been increasing during the
last decade. A target patient population is identified in the early drug development
phases as being more likely to benefit from the drug. Trials are conducted to prove the
safety and efficacy of the new drug within this sub-population: This has been called
individualized medicine.

Biomarkers

A biomarker is a characteristic that is objectively measured and evaluated as an indicator
of healthy biological processes, pathological processes, or pharmacological responses to
therapeutic intervention (Atkinson et al. [2001]). Biomarkers are increasingly used in on-
cological research. Brünner [2009] has provided definitions of different types of biomark-
ers used in target drug development and cancer research. A Prognostic biomarker
is one that provides information on the likely course of the disease in an untreated in-
dividual. Predictive biomarkers are those which can be used to select patients most
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likely to respond to a new therapy. With predictive biomarkers, it is possible to select
the therapy with the highest likelihood of efficacy to the individual patient. Predictive
biomarkers are the basis for individualized or tailor-made treatment (Brünner [2009]).
When the initial biomarker cannot be evaluated (e.g. lack of accurate measurement
technique or high costs), a so called surrogate biomarker can be used. These strongly
correlate with the primary markers.

If only a small fraction of those in a patients population responds well to a given drug,
it may be difficult to show the drug effect in the entire population, and the trial may
subsequently fail. This seems often to be the case in cancer research. In targeted drug
development, the research is more focused on patients showing high effect size, who can
be identified through established predictive biomarkers. The identification of predictive
markers is one of the big challenge in the medical research.

Enrichment Designs

In enrichment trials, biomarkers help select a study population with higher percentage
of patients more likely to respond strongly to a new drug. This proportion of high
responders is pre-determined. Though authorities also often want to know what hap-
pens to the biomarker-negative patients, there are some indications in the guideline for
enrichment trials (Temple and Becker [2012]) that drug development for a "target pop-
ulation" is gaining more acceptance from regulators (R. Vonk, personal communication
Bayer Pharma AG). A higher effect within the marker-positive population leads to lower
study sample size. Enrichment strategies in clinical trials may therefore reduce the drug
development time and costs. However, if the prevalence of marker-positive patients is
too low, the recruitment time may become excessively long resulting in very high study
costs.

Issues in Conducting Enrichment Studies

Biomarker identification for disease diagnosis, drug response evaluation, identification
of potential responders to a given therapy, the prediction of the disease progression and
complication appearance is a fundamental to medical research. Enrichment trials used
to develop the right drug for the right patient require established predictive markers.
High-responders are identified (tested) using predictive biomarkers. In this thesis, en-
richment trials refer to those trials for which only patients tested as marker-positive are
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enrolled. However, marker-tests have the misclassification rates typical to any binary
classification problem. The quality of the marker-test in selecting the study population
and later in identifying the patients to be treated is an important factor with ethical
consequences. Rejecting appropriate study candidates due to the lack of sensitivity of
the marker-test may increase the study time and costs. Actual marker-positive patients
who are tested as negative do benefit from the therapy. In addition, the enrollment of
false positive patients for the study decreases the power, since the expected effect size in
the study population is overestimated and the variability is underestimated.

If only a small proportion of patients in the unselected patient population satisfies
the entry criteria, the recruitment time can increase dramatically, possibly becoming
unreasonable even for small study sample sizes. Recruitment time is a very important
factor in planning any clinical trial. For enrichment trials, it needs particular attention,
since there are more factors influencing the time than in an unselected trial. Here, unse-
lected trials refers to normal clinical trials. Enrichment studies tend to require a smaller
sample size than unselected studies due to the larger effect size in the enriched popula-
tion. However, the overall study costs might rise dramatically if an exorbitant number
of patients must be tested to reach the required sample size. This number of patients to
test depends on the marker prevalence, the study sample size, and specific marker-test
characteristics. The study costs can be divided into three categories: screening costs
and marker-test costs, care costs (expenditure incurred post-recruitment) and the time
costs. The overall screening and marker-test costs depend on the prevalence of marker
positive patients in the unselected patients’ population.

In enrichment trials, patients are first screened according to general entry criteria such
as vital signs and eligible ones are additionally submit to a marker-test. Test-positive
patients are then randomized to the treatment groups (see Figure 3). The screening pro-
cedure is assumed to be a deterministic process: of all patients arriving at the recruitment
centers, a fixed proportion (e.g. 90%) is found eligible. The principal concerns with the
use of enrichment strategies relate to the generalizability of the study results. When
considering whether to use an enrichment design, it is important to consider whether
the enrichment strategy can be used in practice to identify the patients the drug should
be given and if the drug might be useful in a broader population than the one studied.
Usually, there is no evidence that the new drug does not work on off-label patients. This
is not specific to enrichment trials, but for all trials with a label restriction. Sometimes,
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Figure 3: Eligible patients are submitted to a marker-test and only the test-positive are
randomized for the trial.

drugs are used for diseases or populations for which they were not developed - this is
called "off-label-use". When the treatment is a critical advance for the enriched group,
it would generally be unreasonable to delay approval for the enriched group (Temple
and Becker [2012]). Extension of the therapy to the marker-negative patient population
is critical and requires information about this group as well as several assessments of
risk-benefit.

It is difficult to pinpoint a single marker to select a study population. Usually, a list
of biomarkers is compiled from a large number of predictors, such as gene expression or
protein levels. These biomarkers are used to build a classification rule, since a marker-
test tends to present a binary classification problem. Traditional methods in building
binary classification rules usually assume equal importance between different classifica-
tion errors. However, in the medical context, it is rare that classification errors have
equal importance. It may be, for example, more important to classify marker-positive
patients as positive, so that they can benefit from the therapy. In some situations, it
might be crucial to guarantee a minimal true classification rate (e.g. 90%) in the most
important class, implying a focus on the sensitivity or the specificity of the test, rather
than on overall accuracy. Although such classification strategies are of great importance
in the medical context, they are often ignored in research. Some techniques in this con-
text try to increase the true classification rate in the most important class, but cannot
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guarantee a pre-determined true classification rate in that class. In enrichment studies,
an entire control of the misclassification rate developed as part of the classification rule
could help minimize false positives who are treated though they will not benefit from
effect the new drug or those rejected when they could benefit from the therapy.

Purposes of this Thesis

The first part of this thesis investigates Poisson processes for modeling patient recruit-
ment in enrichment trials. We propose strategies in predicting patient recruitment time
by deriving recruitment processes that consider the prevalence of marker-positive pa-
tients as well as the marker-test characteristics. Appropriate recruitment processes help
in predicting the trial duration. We suggest costs predictive models which consider pa-
tient screening costs, marker-test costs, patients care costs during the trial, and the costs
of waiting time (e.g. resources and infrastructure costs). We study the impact of misclas-
sification at the marker-test stage. Assignment of patients to the wrong group presents
an ethical burden and affects relevant factors such as the recruitment time, study costs,
and the power of the study results. In the second part, we introduce a new approach
to control entirely the sensitivity at the stage of building binary classifiers. Our method
encourages sparsity through the L1-norm regularization of the model parameters that
enable its applicability to high-dimensional settings.

A major portion of expenditures in drug development come from unnecessary wait-
ing. This waste of time can be lowered through accurate deadline planning, leading to an
optimal use of resources. This requires accurate patient recruitment time and trial du-
ration predictions which pass through appropriate modeling of the recruitment process.
The number of recruited marker-positive patients (e.g. per day, week, month) is mod-
elled as a random variable following a Poisson distribution. Patient recruitment models
in traditional unselected clinical trials are well discussed in the literature. Anisimov and
Fedorov [2007] is one of the best elaborated works in this context. Other interesting
papers on this theme include Carter [2004], Tang et al. [2012], Mijoule et al. [2012],
Anisimov [2008], Anisimov [2009] among others. These authors assumed that the num-
ber of patients recruited follows a Poisson process. Poisson processes are standard in
modeling count data. Here, the number of patients enrolled per time unit is assumed to
follow a Poisson distribution.

Patient recruitment processes allow researchers to predict the recruitment time before
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starting the study. This is important for decision making. Recruitment time prediction
in ongoing stages leads to more accurate estimates, since more information is available.
Patient recruitment processes as count processes may be reasonably modeled through
other processes of counts, such as Poisson autoregressive processes, which are largely
discussed in the literature (Ferland et al. [2006], Fokianos et al. [2009]). Poisson au-
toregressive processes consider past information as the intensity of the Poisson process
depends on past observations. They are relatively flexible in modeling special events in
the process such as level shift and outliers (Fokianos and Fried [2010], Fried et al. [2013],
Fokianos and Fried [2012]). We derive our models for patient recruitment in enrichment
studies based on the existing processes of counts and provide analytic distributions of the
recruitment time in most cases. We follow a Bayesian approach for model parameters
estimation, as well as a Bayesian detection of level-changes within the process.

Most publications on drug development costs estimation focus on the estimation of
the total drug development costs (Parker et al. [2003], DiMasi et al. [1991], DiMasi et al.
[2003], and Chien [1979]). We however, group the expenditures in an enrichment trial
in patient screening costs, marker-test costs, traditional care costs (e.g. visits, drug sup-
ply) and time costs. Marker-test costs, screening costs and waiting time may increase
the overall study costs depending on the nature of the marker-test (e.g. blood pres-
sure, blood glucose, gene profile), the marker prevalence, and indirectly on marker-test
characteristics. Note that erroneously testing actual marker-positive patients as nega-
tive because the tests’ lack of sensitivity increases the number of patients who must be
tested, therefore raising screening costs, test costs, and recruitment time. This is dif-
ficult to control in practice, since we cannot identify the true- and false-positive patients.

In a statistical context, a biomarker test to assign patients into marker-positive and
marker-negative groups is a two-class classification problem. In a broader sense, any
effort to assign patients into subgroups (e.g. diseased and healthy) is a binary classifica-
tion problem with different misclassification costs. Accounting for the costs of incorrect
patient assignment to a group remains a crucial issue in building binary classifiers. In
some, if not most, diagnostic situations, it could be essential to include the control of
the true positive rate in the most important class (sensitivity), and reject the classifiers,
which lead to a sensitivity less than a pre-determined lower bound of admissible values
(for example 90%). The second part of this thesis deals with building binary classifiers
in high-dimensional settings by different importances. Some approaches to this have
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been suggested: The resampling method (Japkowicz and al. [2000]), weighting observa-
tions (Liu and Tan [2008]), thresholding the decision score (Sheng and Ling [2006]) and
cost-sensitive learning (Elkan [2001]). However, while these approaches are designed to
increase sensitivity, they cannot guarantee a pre-determined value. To guarantee a pre-
determined sensitivity value, the corresponding cut-off must be selected after computing
the decision score, as investigated in Jung et al. [2010]. Here, decision scores, like the
probabilities of having a disease, are computed, then a cut-off leading to the specified
sensitivity is selected. That means the important information requiring a high sensitivity
value is not considered in the optimization procedure and the achieved specificity is not
necessarily the largest.

The new technique works by optimizing any loss function of binary classification un-
der the constraint that the sensitivity belongs to a predetermined interval of high values,
e.g. between 90 and 100%. Here the sensitivity denotes the true classification rate in
the most important class. We illustrate this approach by considering the Bernoulli like-
lihood function in the case of logistic regression on the one hand, and the Youden-index
as an objective function of classification on the other hand. Both functions are optimized
subject to the constraint on the sensitivity and the L1-norm of the model parameters to
select simultaneously relevant predictors. This optimization strategy provides the best
classifier with the sensitivity in the pre-determined interval.

The first part of this thesis investigates three issues in conducting enrichment studies.
In section 2.1, we propose appropriate Poisson-based processes for patient recruitment
and a strategy for recruitment time prediction in enrichment trials. Section 2.2 presents
Bayesian techniques for updating the suggested models and identifying change points in
the recruitment process. Techniques for costs and power management are investigated
in section 2.3. The second part of this thesis deals with the problem of classification
with different class importances also faced by researches when conducting enrichment
studies. Section 3.1 and section 3.2 present the data material and backgrounds. In
section 3.3, we propose a new approach for entirely controlling the sensitivity in building
binary classifiers. An overview of techniques in dealing with class importance in building
binary classifiers is given in section 3.4, and the results are presented in section 3.5. We
end with conclusions in section 4 and attach references and an Appendix including R-
codes to the new classification strategies.
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2 Enrichment Trials: Recruitment Time, Costs Man-
agement and Power

We begin by investigating strategies to predict patient recruitment time at the initial
stage of the recruitment process, as well as in the ongoing stage after the recruitment
has started. Accurate prediction of recruitment time requires the definition of stochastic
processes that best describe the recruitment process of marker positive patients. We
then propose and analyse appropriate Poisson processes that consider factors specific to
enrichment studies, such as the prevalence of marker-positive patients in the unselected
patient population, as well as the sensitivity and specificity of the marker-test. In most
cases, we derive an analytical distribution of the recruitment time also used in evaluating
the study costs. For example, if the arrival process of patients at recruitment centers
is assumed to be a Poisson process with a constant or a Gamma distributed rate, the
time needed to enroll a given number of patients follows the Erlang and Pearson type
VI distribution, respectively. Traditional factors affecting recruitment time, such as the
number of study centers and the center capacities, are also considered.

Patient recruitment modeling in clinical trials is largely discussed in the literature.
Almost all suggested models rely on Poisson distributed observations. Carter [2004]
suggested homogeneous Poisson processes, assuming that eligible patients arrive at re-
cruitment centers according to Poisson processes with constant intensity. Homogeneous
Poisson processes assume that the variability in the process is equal to the expecta-
tion. However, patient recruitment processes usually present a larger variability (over-
dispersed) due to additional variability in the intensity. Poisson processes with constant
intensity are then inaccurate in this circumstance (Anisimov and Fedorov [2007], Mijoule
et al. [2012]). To overcome this limitation, Anisimov and Fedorov [2007] suggested Pois-
son processes with a Gamma distributed intensity (Gamma-Poisson processes). Equiv-
alently, the observations of the process are Negative Binomial distributed, which better
models the larger variability in the recruitment process. A comparable approach has
been investigated by Mijoule et al. [2012], who investigated Poisson processes with a
Pareto distributed intensity (Pareto-Poisson). The Pareto distribution is the proba-
bilistic formulation of the well-known fact that around 80% of enrollments are made
by 20% of centers (Mijoule et al. [2012]). Pareto-Poisson processes may apply better
than Gamma-Poisson processes when a large number of centers each have a small capac-
ity, as the authors argued. However, the Pareto distribution is more difficult to handle
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computationally than the Gamma distribution and forces to use Monte Carlo techniques.

In practice, patient recruitment processes can be divided in three different phases
to be considered in modeling the process for more accuracy. In the first phase, centers
are progressively activated, meaning that the overall recruitment rate summed over the
recruitment centers increases as a function of time. The second phase lasts longest, start-
ing after all centers are initialized: the process becomes stable and oscillates randomly.
A large number of models assume stable processes from the beginning of the recruitment
process. In the last phase of the recruitment process, a level shift may occur, when
the investigators are informed of an upcoming closure date (Tang et al. [2012]). They
suggested to model the intensity at the first phase as an increasing function of time, then
constant in the later stages. Patient recruitment processes are count processes and should
benefit more from research advances in this area. Other well-established works in count
process modeling are Poisson-autoregressive models (e.g. Ferland et al. [2006], Fokianos
et al. [2009], Fokianos and Fried [2010]). Here, the intensity of the Poisson process is a
function of the past observations and the past values of the intensity itself. However,
none of these well elaborated works is designed for patient recruitment in enrichment
trials, so the impact of prevalence and marker-test characteristics on recruitment time
cannot be studied.

The suggested Poisson recruitment processes and cost models are explicitly designed
for enrichment studies and can be used for any trial through parametrization. An unse-
lected trial is equivalent to enrichment trials with a marker prevalence of 100%. Poisson
processes offer mathematical and computational flexibility in multi-center enrollment in-
sofar as the sum of independent Poisson processes is also a Poisson process. We assume
that the recruitment centers are independent and the different processes are independent.
This allows us to consider a unique Poisson process representing the sum of the different
processes observed in the different recruitment centers. An estimate of the recruitment
time at the initial stage before starting the study is crucial to investigating the feasibility
of the trial. This requires estimates of center capacities and recruitment rates that may
not be available at the initial stage. Here, information about past and comparable studies
are usually combined with expert knowledge to derive an estimate of the overall recruit-
ment rate. This estimate can be updated after some data are collected by using, for
example, Bayesian methods. In enrichment trials, an estimate of the marker prevalence
must be provided. This may be in the form of point- or interval estimates, or as a prob-
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ability distribution, such as the beta distribution. Updates of the remaining recruitment
time in the ongoing stage are useful in deciding if more centers should be activated to
accomplish the study in time. We propose a Bayesian approach for updating our models.

Enrichment studies require a smaller study sample size since the effect size (stan-
dardized effect difference) is larger. Such trials are then expected to be cheaper than
unselected ones. However, the study costs may be considerably affected by screening and
marker-test procedures. This occurs when the marker-prevalence is very low (e.g. 10%),
which implies that a large number of patients must be screened and tested to obtain
the required sample size. The total test and screening costs may rise considerably for
some types of marker-tests (e.g. gene profile evaluation). The costs may incrementally
increase even if the screening and marker-test costs are very low: waiting and wasting
time is decisive (resources costs). Note that the smaller the marker prevalence, the larger
the uncertainty in the recruitment time, and the more difficult to plan deadlines. En-
richment studies for target drug development are increasingly necessary and popular.
Hence, developing costs prediction modeling is increasingly important. We derive an
analytical distribution of study costs by considering marker-prevalence and marker-test
characteristics. Parker et al. [2003], DiMasi et al. [1991], DiMasi et al. [2003] and Chien
[1979] focused on estimating total development costs. The cost model we suggest is de-
signed for costs evaluation in enrichment studies. It represents the sum of the screening,
marker-test costs, care costs, and duration costs, whereas the recruitment time is derived
from the underlying recruitment process.

Some Practical Considerations

The inclusion of sensitivity and specificity of the marker-test into the prediction of the
study costs and recruitment time helps to visualize the unseen impact of marker-test
characteristics on enrichment studies. The marker-test must have reasonable test char-
acteristics for ethical and economic reasons. In practice, these characteristics are usually
unknown, since it is difficult, if not impossible, to identify the true positive and true neg-
ative patients in a given patient population. This means the marker prevalence is simply
the proportion of marker-test positive patients in a given sample of unselected patients.
The expected effect size in the marker positive group used for sample size calculation is
estimated from a mixed population of marker-test positive patients (true positive and
false positive) and may be underestimated. This dilution effect goes through each stage
of the study (e.g. sample size calculation, observed effect, study results), and there is
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no need of extra consideration of test characteristics in evaluating the time and costs.
However, marker-test characteristics should be considered if a very expensive marker-test
is replaced by a cheaper test to reduce development costs.

Another important factor in planning an enrichment study is the study’s possible loss
of potency due to the enrollment of false positive patients. The impact of the sensitivity
and specificity of the marker-test on the power of the study must be considered to
better adjust the sample size. Note that the study sample size is computed under the
assumption that effect size should be larger in the marker population. If the marker-
test is of poor specificity, a considerable proportion of marker-negative patients may be
enrolled. False positive will not show the expected effect, possibly not benefiting at all
from the new therapy, and this may decrease the power of the study.

2.1 Poisson Processes for Patient Recruitment in Enrichment
Studies

This section presents a new strategy in modeling patient recruitment in enrichment
studies. The main objective is an accurate prediction of the recruitment time at the
initial stage before starting the recruitment process, as well as the remaining time in the
ongoing stage. The simplest way to access prediction of the recruitment time in clinical
trials is to use a deterministic approach.

Example 2.1 Deterministic prediction of patient recruitment time

a) Unselected study: Let us consider a multicenter unselected clinical trial that
requires a sample size of 200 patients. For 10 centers we estimate to recruit 8
eligible patients per week. Then, in the further definition of prevalence we can
include this as well. By using the deterministic approach, the recruitment time is
simply estimated by 200/8 = 25 weeks.

b) Enrichment study: Let us assume now that each eligible patient is tested
according to a given biomarker and only those found as positive are recruited. By
a marker prevalence of 50%, 4 patients are assumed to be marker-positive and then
50 weeks are required to recruit 200 biomarker positive patients.

In the context of patient recruitment for clinical trials, deterministic approaches for
study duration planning are very simple but less realistic than stochastic approaches.
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The number of patients arriving at recruitment centers varies considerably during the
recruitment process. It is well established that the amount of recruited patients per time
unit follows a discrete probability distribution such as the Poisson distribution.

In enrichment trials, it is relevant to establish the impact of the marker prevalence
and the sensitivity and specificity of the marker-test on the recruitment process. As
mentioned in the introduction, an enrichment trial may differ from an unselected trial
by the fact that a larger proportion of marker-positive patients are required. Without
loss of generality, we assumed that only marker-test positive patients are enrolled for
the trial. If the study population must consist of N+ marker-positive and N− marker-
negative patients, with large N+ (enriched), then the process of negative patients is also
to be considered. This process will be obtained by changing the entry probability θ by
1− θ in our models. In practice, eligible patients are tested until both N− negative and
N+ positive patients are recruited. We stop the recruitment of, for example, test-negative
patients once N− is reached. Considering only the process of test-positive (N− = 0) is
not a restriction, since the processes of test-positive and test-negative patients only differ
in the entry probabilities.

Proposition 2.1 Thinning property of Poisson processes
Let {Nt; t ∈ [0,∞)} be a Poisson process with intensity λ(t). If each event or observation
is kept with probability θ and rejected with probability 1− θ independently from event to
event, then the process of selected events (kept events) thus obtained is again a Poisson
process. Its intensity is equal to the intensity of {Nt; t ∈ [0,∞)}, decreased by a factor
equal to the selection probability θ: λ+(t) = θλ(t) is the intensity of the selected process
(Cont and Tankov [2004]).

Marker-positive patients are selected from the population of eligible patients with a prob-
ability equal to the probability of testing a patient as positive. We follow this idea and
use Proposition 2.1 to define appropriate Poisson processes for patient recruitment in
biomarker studies that consider the marker prevalence and the marker-test characteris-
tics.

2.1.1 Formulation of the Recruitment Model

We consider a multi-center enrichment study, where patients are recruited in K > 1
centers. The process of unselected patients is denoted by {Nt, t ∈ [0,∞)} and {N+

t , t ∈
[0,∞)} denotes the process of marker-test positive patients (selected process). Let the
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intensities of these processes in center k = 1, 2, · · · , K be defined by λ
(k)
t > 0 and

λ
(+k)
t > 0, respectively. The overall processes {Nt, t ∈ [0,∞)} and {N+

t , t ∈ [0,∞)} are
Poisson processes with intensities λt = ∑K

k=1 λ
(k)
t and λ+

t = ∑K
k=1 λ

(+k)
t , respectively. This

allows for more visibility in the formulas without loss of generality, since the analysis
methods can be applied to centers separately.

Model without Marker-test Characteristics

Let θ be the marker prevalence and µ the proportion of patients screened as eligible. The
screening and marker-test procedures are assumed to be independent. The probability of
an unselected patient to be screened as eligible and tested as marker-test positive is given
by µθ. Including a patient or not is a Bernoulli experiment with probability of success
µθ. This corresponds to the marker prevalence θ in the absence of screening conditions
(µ = 1). By using the thinning property of Poisson processes, we derive the process of
marker-test positive patients {N+

t , t ∈ [0,∞)} as a Poisson process with intensity µθλt,

N+
t ∼ Pois(µθλt). (1)

For θ = µ = 1, the model (1) reduces to a traditional Poisson process for patient recruit-
ment in an unselected clinical trials. This is only for theoretical considerations, since
an enrichment study with very large prevalence is unnecessary. Very large prevalence
means, there is no relevant difference between the marker-positive population and the
unselected population. Therefore, it would not be worth the trouble to use such a strat-
egy which would increase the study time and costs. Without loss of generality we assume
that µ = 1.

Model with Marker-test Characteristics

Recall that the marker-test characteristics are rarely available. If an estimate of the
sensitivity and specificity of the marker-test is provided, the impact of misclassification
on the recruitment process can be evaluated. The probability of an unselected patient
to be tested as marker positive depends on the sensitivity and specificity of the marker-
test. Let us consider the events: T+ = "an unselected patients is tested as positive"; T−

= "an unselected patients is tested as negative"; P+ = "the patient is actually marker-
positive" and P− be the event "the patient is actually marker-negative." P (T+) represents
the probability of an unselected patient to be enrolled for an enrichment trial. The
probability of a marker-positive patient to be tested as positive (P+ ∩ T+) is given by
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Bayes’ formula
P (P+ ∩ T+) = P (T+|P+) · P (P+),

where P (P+) represents the probability of being marker-positive in the unselected patient
population (prevalence) and P (T+|P+) denotes the sensitivity (Sens) of the marker-
test. We derive the probability P (T+) by using Bayes’ formula and the fact that T+ is
a disjoint union of T+ ∩ P+ and T+ ∩ P−. In other words,

P (T+) = P (T+|P+) · P (P+) + P (T+|P−) · P (P−)

= P (T+|P+) · P (P+) + [1− P (T−|P−)] · [1− P (P+)]

= Sens · θ + (1− Spec) · (1− θ)

Note that P (T−|P−) represents the specificity (Spec) of the marker-test. P (T+) denotes
the entry probability of patients in enrichment trial and corresponds to the marker
prevalence if the sensitivity and specificity of the marker-test is assumed to be equal to
100%. We use the thinning property of Poisson processes given by proposition 2.1 and
formulate the process as follows

N+
t ∼ Pois

([
Sens · θ + (1− Spec) · (1− θ)

]
λt

)
. (2)

This is the general form of Poisson processes for patient recruitment in enrichment studies
and corresponds to the traditional Poisson process through parametrization (θ = Sens =
Spec = 1). Different Poisson processes can be derived for different assumptions on the
distribution of λt and θ. The recruitment process of test-negative patients can be derived
from model (2) by

N−t ∼ Pois

([
1− Sens · θ − (1− Spec) · (1− θ)

]
λt

)
.

We consider the case where λt is constant as suggested by Carter [2004] in modeling
recruitment process of unselected trials. We also investigate the case where λt is as-
sumed to be Gamma distributed as investigated by Anisimov and Fedorov [2007] as
well as when λt is differently defined in the different stages of the process (Tang et al.
[2012]). Poisson processes with intensity depending on past observations may be a good
alternative in modeling patient recruitment processes in clinical trials. The recruitment
rate may not only depends on the randomness but may include information on its past
values or past observations. We consider a Poisson-autoregressive process (Ferland et al.
[2006],Fokianos et al. [2009]). We start by assuming that θ is constant. Then we inves-
tigate the case where θ follows a Beta distribution.
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2.1.2 Model with constant Recruitment Rate

In this section, the arrival process of unselected patients at the recruitment center k is
assumed to be a Poisson process with constant intensity (λk). We assumed that the
centers start at the same time and focus on the impact of the marker prevalence on the
process and the recruitment time. The overall process without considering the sensitivity
and specificity of the marker-test is defined as

N+
t ∼ Pois(λθ), (3)

where ∑K
k=1 λk = λ represents the overall arrival rate of unselected patients and K

the number of centers. At the initial stage, λ should be provided by the experts, for
example, on the basis of past studies. The process (3) is a homogeneous Poisson process
with intensity λθ (see Appendix A.1.1).

Recruitment Time

The recruitment time T+(n+) required to enroll n+ marker-positive patients is a sum of
n+ independent exponentially distributed random variables corresponding to the waiting
time between jumps of the process, which follows an Erlang distribution as given in
Appendix A.1.1. The distribution of T+(n+) is given by

T+(n+) ∼ Erlang(n+, θλ), (4)

with mean E[T+(n+)] = n+/θλ and variance V ar[T+(n+)] = n+/(θλ)2. Let us consider
an unselected trial with sample size n0 ≥ n+ as a reference. The corresponding recruit-
ment process of unselected patients is defined as Nt ∼ Pois(λ), and thus, the recruitment
time needed to enroll n0 patients is T (n0) ∼ Erlang(n0, λ). The comparison of the first
and second moments of the distributions of recruitment time T+(n+) and T (n0) leads
to the following remark.

Remark 2.2
If θ ≥ n+/n0, the recruitment time of the enrichment study is expected to be less than or
equal to that of the unselected study.
If θ < n+/n0, the recruitment time of the enrichment study is expected to be longer.
There is a larger variability in the prediction of recruitment time in an enrichment study
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than in an unselected study, since

V ar[T+(n+)] = n+

[θ∑K
k=1 λk]2

= n+

θ2[∑K
k=1 λk]2

= V ar[T (n+)]
θ2 ≥ V ar[T (n+)]. (θ ≤ 1)

The increasing variability is due to the additional randomness at the marker-test stage
which does not exist in traditional trials. V ar[T (n+)] denotes the variance of the recruit-
ment time needed to recruit n+ unselected patients.

Example 2.3
We consider a large phase III trial with sample size 600 marker-positive patients for
visibility of figures. Let us assume an overall arrival rate of 10 unselected patients in the
recruitment centers (per time unit such as week).

The distributions of the recruitment time required to enroll the 600 marker positive
patients are represented in Figure 4 for different values of the prevalence. Figure 4
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Figure 4: Density of the recruitment time of 600 marker positive patients for difference
values of the marker prevalence given a recruitment rate of 10 patients in the overall
recruitment centers.

illustrates the relationship between patient recruitment time and marker prevalence in an
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enrichment study. The recruitment time increases when the marker prevalence decreases.
The variability in the distribution of the recruitment time increases when the prevalence
decreases as illustrated by the width of these distributions (see Figure 4). That means,
the smaller the prevalence, the larger the uncertainty in predicting the recruitment time
as compared to the unselected trial. Table 1 provides the mean of the recruitment time
for different values of the prevalence and the corresponding 5th and 95th percentiles.
According to Table 1, 300 time units are required to enroll 600 marker-positive patients

prevalence recruitment time (mean) 5th percentile 95th percentile
0.1 600 560.28 640.85
0.2 300 280.14 320.42
0.3 200 186.76 213.61
0.4 150 140.07 160.21
0.5 120 112.057 128.17
0.6 100 93.38 106.80
0.7 86 80.04 91.55
0.8 75 70.03 80.10
0.9 67 62.25 71.20

Table 1: Patient recruitment time for different values of the marker prevalence assuming
a constant arrival rate of unselected patients

if the marker prevalence is equal to 20% while for a marker prevalence of 70%, only 86
time units will be required to enroll the 600 patients. The marker prevalence is a crucial
time component in planning an enrichment trial because one of the objectives of such a
trial is to accelerate the drug development process.

2.1.3 Model with constant Recruitment Rate and Marker-test Characteris-
tics

A Poisson recruitment process with a constant rate for patient recruitment in enrichment
studies can be derived from model (2). The model is defined as

N+
t ∼ Pois

([
Sens · θ + (1− Spec) · (1− θ)

]
λ

)
. (5)

19



Poisson Processes for Patient Recruitment in Enrichment Studies

The form of the distribution of the recruitment time is not affected by the sensitivity
and specificity, which remains an Erlang distribution given by

T+(n+) ∼ Erlang

(
n+, [Sens · θ + (1− Spec) · (1− θ)]λ

)
. (6)

This means E[T+(n+)] = n+/([Sens · θ + (1 − Spec) · (1 − θ)]λ) and the variance
V ar[T+(n+)] = n+/([Sens · θ + (1 − Spec) · (1 − θ)]λ)2. Let us consider example 2.3,
where 600 marker-positive patients must be recruited. Figure 5 shows the variation of
the recruitment time with the sensitivity and specificity of the marker-test. Each line on

●

●

●

●

●

●

0.5 0.6 0.7 0.8 0.9 1.0 1.1

10
00

20
00

30
00

40
00

prevalence=0.6

specificity

re
cr

ui
tm

en
t t

im
e

 0.5

●

●

●

●

●

●  0.6

●

●

●

●

●

●  0.7

●
●

●

●

●

●  0.8

●
●

●
●

●

●  0.9

●
●

●
●

●
●  1

sensitivity

Figure 5: Mean of the recruitment time of 600 marker positive patients for different
values of the sensitivity and specificity of the marker-test given a recruitment rate of 10
patients in the overall recruitment centers.

Figure 5 represents the variation of the recruitment time given one value of the sensitivity
and different values of the specificity. The greater the sensitivity, the lower the recruit-
ment time. However, the recruitment time increases when the specificity increases. Low
sensitivity means some positive patients are erroneously tested as negative. This may
increase the recruitment time. Similarly, for small specificity values, some false positive
patients are recruited and the recruitment time decreases. Formula (5) helps in quan-
tifying and visualizing the impact of the marker-test characteristics on the recruitment
time if they are available. In practice, the entry probability is usually assumed to be
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equal to θ instead of Sens · θ + (1− Spec) · (1− θ), since the unknown misclassification
errors are included in the estimate of θ.

Center Capacities

The importance of a given center can be given by the proportion of patients enrolled in
each center compared to the total number of enrolled patients. The standardized weight
of center k can be estimated as

ωk = [Sens · θ + (1− Spec) · (1− θ)]λk/[Sens · θ + (1− Spec) · (1− θ)]λ = λk/λ

as suggested by Anisimov and Fedorov [2007]. This is an estimate of the probability that
a randomly selected patient comes from the center k. The probability that n+

k of the n+

recruited patients come from center k is given by:

P (N+
k = n+

k |n+) =
(
n+

n+
k

)
ω
n+
k

k (1− ωk)n
+−n+

k .

In other words, the vector (N+1, N
+
2 , · · · , N+

K) follows a Multinomial distribution, where
N+
k denotes a random variable representing the number of patients recruited in center

k. The probability density of (N+
1 , N

+
2 , · · · , N+

K) is given by

P (N+
1 = n+

1 , · · · , N+
k = n+

K) n+!
n+

1 ! · · ·n+
K !

K∏
k=1

ω
n+
k

k ,

where ∑K
i=1N

+
i = n+.

2.1.4 Models with Random Recruitment Rate

Poisson processes with Gamma distributed rates have been suggested by Anisimov and
Fedorov [2007] for modeling of patient recruitment in unselected clinical trials. Mijoule
et al. [2012] used instead the Pareto distribution for the recruitment rate. Pareto-Poisson
may fit better than Gamma-Poisson when a large number of centers is of small capacity,
as argued by the authors. However, the Pareto distribution is computationally harder
to handle, which forces the use of Monte Carlo techniques to drop samples from target
distributions. The authors recommend to use the simpler but very flexible Gamma-
Poisson in most cases. The motivation of choosing the Gamma distribution is that the
recruitment rate is a positive variable and this distribution offers flexibility in analysing
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the model in a Bayesian framework. The process is defined as

N+
t ∼ Pois

(
K∑
k=1

θλ
(k)
t

)
, (7)

λ
(k)
t ∼ Γ(ak, bk).

Without loss of generality, let us assume for simplicity that the scale parameters of the
Gamma distributions are the same (bk = b, k = 1, 2, · · · , K). The overall intensity of
the process sums to

K∑
k=1

θλ
(k)
t ∼ Γ(a, b/θ),

where the shape parameter is given by a = ∑K
k=1 ak. This property of the Gamma distri-

bution shows that model (8) turns to a Gamma-Poisson model as investigated by Anisi-
mov and Fedorov [2007]. The intensity of N+

t can also be written as λ(+k)
t ∼ Γ(ak, b/θ).

The restriction of equal scale parameters does not change the form of the distribution of
the overall intensity, since the sum of independent random Gamma distributed variables
remains Gamma distributed.

Recruitment Time

The recruitment time needed to enroll n+ marker positive patients T+(n+) is Erlang
distributed with a Gamma distributed scale parameter: T+(n+) ∼ Γ[n+,Γ(a, b/θ)].
T+(n+) is then Gamma-Gamma distributed:

T+(n+) ∼ Gg(a, b/θ, n+).

This corresponds to a Pearson type VI distribution with a location parameter equal
to zero Anisimov and Fedorov [2007]. The probability density of a Pearson type VI
distribution PearsonV I(a, b, s, δ) is given by:

f(x) = 1
sB(a, b)

(
x− δ
s

)a−1(
1 + x− δ

s

)−a−b
,
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where a > 0, b > 0, s > 0, δ ≥ 0 and B(a, b) =
∫ 1

0 t
a−1(1 − t)b−1dt. We deduce the

density function of T+(n+) by setting δ = 0.

f(t) = 1
b
θ
B(n+, a)

(
bt

θ

)n+−1(
1 + bt

θ

)−n+−a

,

E[T+(n+)] = n+b

θ(a− 1) for a > 1,

V ar[T+(n+)] = b2n+(n+ + a− 1)
θ2(a− 1)2(a− 2) for a > 2.

We return to the above example 2.3, where the sample size of an enrichment study is
supposed to be 600 marker positive patients. Now assume that the expected total number
of unselected patients in all centers per time unit is Gamma distributed Γ(100, 10) with
mean 100/10 = 10. Figure 6 presents the distribution of the recruitment time for different
values of the prevalence. Figure 6 shows that the recruitment time increases when the
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Figure 6: Density of the distribution of the recruitment time in a marker study of sample
size N+ = 600 given the overall recruitment rate λ ∼ Γ(100, 10).

marker prevalence decreases. It is also important to see that the variability increases
in the distribution of the recruitment time when the prevalence decreases. Figure 6
compared to Figure 4 show a global increase of the variability when the the recruitment
rate is a random variable instead of being a constant. As in the above section, the weight
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of center k is given by : ωk ∼ Γ(ak, b/θ)/Γ(∑K
i=1 ai, b/θ), which can also be written as

ωk ∼ Γ(ak, b/θ)/[Γ(ak, b/θ) + Γ(ak −
∑K
i=1 ai, b/θ)]. ωk is then Beta distributed ωk ∼

Beta(ak, ak−
∑K
i=1 ai). Given n+ recruited patients, the number of patients coming from

center k is binomially distributed with parameter n+ and ωk, where ωk ∼ Beta(ak, ak −∑K
i=1 ai). By factorizing the scale parameter, we can see that the whole vector of the K

weights is Dirichlet distributed:

ωk ∼ Γ(ak, b/θ)/Γ(
K∑
k=1

ak, b/θ)

⇒ ωk ∼ Γ(ak, 1)/Γ(
K∑
k=1

ak, 1)

⇒ (ω1, ω2, · · · , ωK) ∼ Dirich(a1, a2, · · · , aK)

The vector (N+
1 , N

+
2 , · · · , N+

K) is multinomially distributed with parameters n+ and
(ω1, ω2, · · · , ωK).

P (N+
1 = n+

1 , · · · , N+
k = n+

K) = n+!
n+

1 ! · · ·n+
K !

Γ(∑K
k=1 ak)

∏K
k=1 Γ(ak + n+

k )∏K
k=1 Γ(ak)Γ(∑K

k=1 ak + n+)
,

where ∑K
i=1N

+
i = n+.

Models with Random Recruitment Rate and Marker-test Characteristics

Here, only the probability of testing a patient as marker-positive changes in the above
analysis by considering the sensitivity and specificity of the marker-test. The model is
given by

N+
t ∼ Pois

(
K∑
k=1

[Sens · θ + (1− Spec)(1− θ)]λ(k)
t

)
,

λ
(k)
t ∼ Γ(ak, bk).

Additional recruitment time graphics and formulas can obtained by replacing θ by Sens ·
θ+ (1− Spec)(1− θ) in the formulas in Section 2.1.4. For Example 2.3, the recruitment
time is represented by the following graphics for some combinations of the sensitivity and
specificity. The impact of the test characteristics on the distribution of the recruitment
time is illustrated by Figure 7. The two graphs on the top show that a decrease in the
sensitivity for constant specificity leads to an increase in the recruitment time and its
variability. A small specificity value leads to lower recruitment time as illustrated by
the two graphs on the right side. This is due to the fact that many false positive are
recruited.
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Figure 7: Density of the distribution of the recruitment time in the marker study given
by Example 2.3 plotted for Sens = 1 Spec = 1; Sens = 0.7 Spec = 1; Sens = 0.7 Spec =
0.7; Sens = 1 Spec = 0.7, respectively and λt ∼ Γ(100, 10).

2.1.5 Autoregressive Models for Enrichment Studies

This section focuses on the investigation of integer GARCH models (see Appendix A.1.2)
in the context of patient recruitment in enrichment studies. INGARCH models are
special cases of Poisson autoregressive models. Inspired by the GARCHmodel (Bollerslev
[1986]), Ferland et al. [2006] introduced INGARCH models in modeling the number of
new infections from campylobacterosis in Canada as represented in Figure 8. At the
time point 100, there is an outlier in the process. After this outlier, the process does not
turn black immediately to its normal progression. In addition, there is a level change
and then the rate does not vary completely at random. INGARCH models encourage
a feedback mechanism so that the intensity of the process varies not only at random
but also depends on past information. There is growing interest in INGARCH processes
for the modeling of time series of counts. Fokianos et al. [2009] investigated Poisson
linear and non-linear auto-regressive models. In these non-linear cases, the intensity
of the process depends on its past values and the past observations through a non-
linear function. Fokianos and Fried [2010] investigated outliers and level shift in such
processes. However, these models in their original formulation are not designed for
patient recruitment in enrichment studies. We redefine these models by considering the
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Figure 8: Number of cases of campylobacterosis infections from January 1990 to the
end of October 2000. The series was reported every 28 days (13 times a year). Source
Ferland et al. [2006]

marker prevalence and the marker-test characteristics.

N+
t |Ft−1 ∼ Pois

([
Sens · θ + (1− Spec)(1− θ)

]
λt

)
,

λt = β0 +
p∑
i=1

βiB
iNt +

q∑
j=1

αjB
jλt,

whereB denotes the backward shift operator (B1Nt = Nt−1) and β0, β1 · · · βp, α1, · · · , αq ≥
0. The stationarity condition can be deduced from that of the original model as stated
by Ferland et al. [2006] (see Appendix A.1.2):

p∑
i=1

βi +
q∑
j=1

αj < 1/[Sens · θ + (1− Spec)(1− θ)] (8)

We focus on an INGARCH(1,1) process for p = q = 1.

N+
t |Ft−1 ∼ Pois

([
Sens · θ + (1− Spec)(1− θ)

]
λt

)
,

λt = β0 + β1N
+
t−1 + α1λt−1

It is quite complicated to find an analytic distribution for the recruitment time by as-
suming an autoregressive processes. Thus, one approach is to simulate it by starting
with fixed λ0 and N+

0 .

Recruitment Time

Recall Example 2.3 and assume λ0 = 10; N+
0 = 5. We simulate the recruitment time

for a marker prevalence of 60%, β0 = 2, α1 = 0.3, β1 = 1 and Sens = Spec = 1. Figure
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Figure 9: Simulated recruitment time in a marker study of sample size N+ = 600 under
an INGARCH(1,1) model with parameters β0 = 2, α1 = 0.3 and β1 = 1 and given an
initial rate of λ0 = 10 patients. The marker prevalence is chosen to 60%.

9 shows the simulated recruitment time under model (9). The impact of the sensitivity
and specificity on the distribution of the recruitment time is illustrated by the different
histograms corresponding to various combinations of the sensitivity and specificity of the
marker-test.

2.1.6 Models with Change Points

The patient recruitment process in clinical trials may progress differently during the
recruitment time (Tang et al. [2012]). Three main phases are often identifiable: The
recruitment rate increases continuously at the beginning, since all centers do not start at
the same time, but rather progressively. Another reason is an increase in information and
advertisement. In this recruitment stage, recruitment rate depends on time. After all
centers are initialized, the process reaches a relatively stationarity phase and varies about
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a fixed mean. In the last phase, the recruitment rate may increase or decreases until the
closure date. Figure (10) presents a simulated example of such a recruitment process.
The assumptions on the recruitment rate as proposed Tang et al. [2012] present some
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Figure 10: Overall number of patients arriving at recruitment centers. Three different
phases are considered depending on the intensity of the process

weaknesses as mentioned by Anisimov [2012]: The recruitment rate at the first phase
has not been explicitly proposed and a homogenous Poisson process has been assumed in
the stable phase as suggested previously by Carter [2004], although patient recruitment
process are often over dispersed. We follow the idea of assuming a multi-phase process an
propose a Poisson process for patient recruitment in enrichment studies. The recruitment
rate at the start phase is defined as a monotone increasing function of time. For the re-
maining two phases we investigate two cases: constant rate and Gamma distributed rate.

Let us assume that the first center is initialized and recruits the first patient at t0.
The overall recruitment rate increases from t0 to t1; from t1 on, the process become
stable for a substantial period. Suppose an eventual level shift may occur at t2 > T ,
where T is the closure date. This phenomenon is illustrated as s simulated processes
shown in Figure 10. t1 and t2 have been called change points, where t2 represents the
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point of level shift. The general definition of our model is given by:

N+
t ∼ Pois

([
Sens · θ + (1− Spec)(1− θ)

]
λt

)
(9)

λt = I(t0≤t<t1)λ
(1)
t + I(τ1≤t<τ2)λ

(2)
t + [λ(2)

t + δ]I(t≥t2),

where λ(1)
t denotes the expected number of unselected patients arriving at all centers

at the start phase, λ(2)
t denotes the expected number of unselected patients at stable

phase and δ ∈ [0,∞) is the level shift parameter representing the jump in the recruit-
ment rate at last phase of the process. I is the indicator function taking the value 1 if
the condition inside the brackets is satisfied and 0 otherwise. Model (10) is a general
formulation of a patient recruitment model in an enrichment study under consideration
of a level change in the process. It corresponds to model (1), when t0 = t1 and δ = 0.

Model with Level Change and constant Rate The recruitment process with
change points and constant recruitment rate at stable phase can be defined as:

N+
t ∼ Pois

([
Sens · θ + (1− Spec)(1− θ)

]
λt

)

λt = I(t0≤t<t1)(A+Bt) + I(t1≤t<t2)(A+Bt1) + [A+Bt1 + δ]I(t≥t2)

where A ∈ [0,∞) and B ∈ [0,∞). Here it is assumed that the recruitment rate at the
end of the first (A+Bt1) remains constant in the second phase and increases in δ in the
last phase.

Model with Level Change and Gamma distributed Rate Processes with
Gamma distributed recruitment rate at the stable phase are defined as:

N+
t ∼ Pois

([
Sens · θ + (1− Spec)(1− θ)

]
λt

)

λt = I(t0≤t<t1)(A+Bt) + I(t1≤t<t2)λ
(2)
t + [λ(2)

t + δ]I(t≥t2) (10)

λ
(2)
t ∼ Γ(a, b).

If estimates of t1 and t2 are available at the initial stage of the recruitment, then only
the remaining time from t2 to the end of the recruitment process is to be estimated.
A practical use of these last two models would be to assume the same intensity in the
different time intervals at the initial stage as presented in the previous sections to access
the prediction of the recruitment time. After observing some data t1 and t2 can be
detected and the model adjusted to improve the prediction of the closure time. We
propose a Bayesian approach to detect the change points t1 and t2.
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2.2 Parameters Update in Bayesian Framework

Bayesian methods have been getting more popular for statistical inference in pharma-
ceutical industry and particulary for the statistical analysis of clinical trials. Classical
methods in evaluating the treatment effect of a new drug essentially test the hypothesis
that the treatment effect difference is equal to zero and provide its point and interval
estimates. Bayesian approaches supplement this by focusing on how to change our opin-
ion about the treatment effect (Berry [2006]). Our final opinion (posterior information)
is a summary of the initial information before carrying out the trial (prior information)
and information obtained from the trial results (likelihood). Simon [1999] suggested a
Bayesian approach in designing and analyzing active control clinical trials and estimated
the posteriori probability of the new drug to be superior to the placebo. Bayesian meth-
ods have been used in constructing adaptive and sequential designs (Wathen and Thall
[2008], Chen et al. [2010], Thall and Wathen [2007]). They may offer more flexibility
if information from earlier drug development phases are to be considered in the later
phases.

The drawback of Bayesian methods, to require a huge computational platform has
been remedied with the new generation of high performance computers. Bayesian ap-
proaches offer the possibility of incorporating the expert information, information from
past studies and experience in the form of priors in the inference. This section presents
a way of updating the parameters of the models presented in the previous sections.
Bayesian methods provide a very flexible way of progressively updating the parameters
and the prediction of the recruitment time using the observations up to the evaluation
time. The prior distribution is combined with the distribution of the observed data given
the parameters (likelihood) to obtain the posterior distribution of the parameters and
the whole distribution’s parameters are derived. The literature on Bayesian statistics is
very large (see Hoff [2009] for an introduction to Bayesian methods).

Background

Let N be the set of all possible observations (sample space) and n ∈ N be a samples
vector representing the observed process until τ : n = (n1, n2, · · · , nτ ). Consider a sample
model with parameter vector η which is from the set Θ, the set of all possible parameters
(parameter space). Let the prior distribution of η be denoted by p(η) and the sample
distribution be given by p(n|η) (likelihood). The posterior distribution p(η|n) is given
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by the Bayes’s formula

p(η|n) = p(n|η)p(η)∫
Θ p(n|η̃)p(η̃)dη̃ ∝ p(n|η)p(η).

In some cases, the posterior can be explicitly derived and leads to a known probability
distribution of the same class as the prior distribution. In such cases, the prior is called a
conjugate prior to the sample distribution. The Gamma distribution is a conjugate prior
for a Poisson sample distribution, similar to the beta prior in Binomial model as well as
the Dirichlet prior in the Multinomial model, among others. In the absence of conjugacy,
the posterior distribution cannot be explicitly derived and Markov chain Monte Carlo
methods are used to generate a sequence η(1), η(2), · · · , η(T ) from the posterior. The
moments of the posterior are estimated using the Monte Carlo approximation defined
by

lim
T→∞

1
T

T∑
t=1

g(η(t)) =
∫
g(η)p(η|n)dη,

for many functions g. The Metropolis-Hastings algorithm introduced by Metropolis et al.
[2004] can be used to generate such a sequence. It is often combined with the Gibbs
sampler introduced by Geman and Geman [1993], when η is a vector of many parameters.
The Gibbs sampler generates a vector η(t) sequentially componentwise or a block after
another block. Each complete cycle through the components of the vector constitutes
one step in a Markov chain whose stationary distribution is, under suitable conditions,
the distribution to be simulated see Casella and George [1992] for more details. Raftery
and Lewis [1992] derived the number of iterations required for accurate estimates based
on simulated samples from the posterior distribution.

2.2.1 Analysis of the Model with constant Recruitment Rate

The test of new patients does not provide information that can be used to update the
sensitivity and specificity of the marker-test. Only if the real status of patients to be
tested is known, can a confusion matrix be constructed after the test. That is not
the case in selecting the study population for enrichment studies. Under the model
with constant recruitment rate (see model (5)), if the marker prevalence θ is considered
as constant during the recruitment process, then the posterior distribution of λ is a
Gamma distribution given a Gamma prior. The prevalence may be reasonably kept as
constant if its present estimation is based on a very large sample size compared to the
number patients to be tested in the new study. Let (n+

1 , n
+
2 , · · · , n+

τ ) be the recruited
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biomarker-test-positive patients until τ . We update the recruitment model (5) in a
Bayesian framework as follows:

N+
t ∼ Pois

(
[Sens · θ + (1− Spec) · (1− θ)]λ

)

a priori λ ∼ Γ(aλ, bλ)

Since Sens, Spec and θ are assumed to be constant, the posterior distribution of λ is
given by (λ|n+

1 , n
+
2 , · · · , n+

τ ) ∼ Γ(aλ + n+(τ), (bλ + τ)[Sens · θ + (1 − Spec) · (1 − θ)]).
Although considering the prevalence as constant simplifies the model, it leads to loss
of new information about the model since the marker-test is designed to reflect the
composition (marker-positive and marker-negative) of the unselected patient population
as long as the test characteristics are large enough. We also study the case where θ is
considered as a model parameter following a Beta distributed a priori. Note that the
total number of marker positive patients recruited until τ sums to n+(τ) and follows a
Binomial distribution n+(τ) ∼ Bin(n(τ), [Sens · θ + (1 − Spec) · (1 − θ)]) given n(τ)
(number of tested patients) and θ. The priors of both parameters of model (5) are given
by

a priori λ ∼ Γ(aλ, bλ)

a priori θ ∼ Beta(aθ, bθ).

The likelihood function p(n+
1 , n

+
2 , · · · , n+

τ |θ, λ) is proportional to

τ∏
i=1

(
[Sens · θ + (1− Spec) · (1− θ)]λ

)n+
i

e(−[Sens·θ+(1−Spec)·(1−θ)]λ)

=
(

[Sens · θ + (1− Spec) · (1− θ)]λ
)n+(τ)

e(−τ [Sens·θ+(1−Spec)·(1−θ)]λ).

The two model parameters (θ, λ) can be updated componentwise according to algorithm
2.4. N samples of η = (θ, λ) are generated using Gibbs sampling as briefly described in
the following paragraph:

Algorithm 2.4

1- Choose η(0). Giving η(i) = (θ(i), λ(i)), repeat

2- Generate λ(i+1) ∼ p(λ|θ(i), n+
1 , n

+
2 , · · · , n+

τ ) direct sampling
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3- Generate θ(i+1) ∼ p(θ|λ(i+1), n+
1 , n

+
2 , · · · , n+

τ ) Metropolis-Hastings algorithm (MH)

4- Set η(i+1) = (θ(i+1), λ(i+1))

4- i = i+ 1

Until i = N .

Remark 2.5
The full conditional distribution of θ p(θ|λ, n+

1 , n
+
2 , · · · , n+

τ ) is proportional to
(

[Sens · θ + (1− Spec) · (1− θ)]λ
)n+(τ)

e(−τ [Sens·θ+(1−Spec)·(1−θ)]λ)θaθ(1− θ)bθ−1,

which does not match with a known distribution. Samples can be drooped from this distri-
bution by using the MH algorithm. The full conditional distribution p(λ|θ, n+

1 , n
+
2 , · · · , n+

τ )
of λ is proportional to the Gamma distribution Γ(n+(τ) + aτ , τ [Sens · θ + (1 − Spec) ·
(1− θ)] + bλ).

For visibility of our equations, we concentrate on the analysis of the models without test
characteristics (Sens = Spec = 1), since the sensitivity and specificity remain constant
in the models and do not fundamentally change the analysis methodology. In this case,
full conditional distributions derived in the situations above take the same form if the
Sens and Spec were set to 1.

2.2.2 Gamma-Poisson Model

This section presents a Bayesian analysis of model (8). A Gamma prior is assumed for
a and b and a beta prior for θ. The model with the different priors can be rewritten as
follows:

n+
t ∼ Pois(θλt),

λt ∼ Γ(a, b),

a priori θ ∼ Beta(aθ, bθ),

a priori a ∼ Γ(αa, βa),

a priori b ∼ Γ(αb, βb),

where aθ, bθ, αa, βa, αb, βb are constant in the model. The posteriors for θ, a, b and λt, i =
1, · · · , τ are to be estimated.
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Remark 2.6
The full conditional distribution of λt is

p(λt|n+
1 , n

+
2 , · · · , n+

τ , λ−t, a, b, θ) ∝
τ∏
t=1

(θλt)n
+
t exp(−θλt)λa−1

t exp (−λtb)

∝ λ
n+
t +a−1
t exp [−λt(θ + b)]

= Γ(n+
t + a, θ + b),

where λ−t = (λ1, · · ·λt−1, λt+1, · · ·λτ ).
Full conditional distribution of a can be derived using the sample distribution of λs,
p(λ1, · · · , λτ |a, b) ∝

∏τ
t=1 λ

aλ−1 exp (−λtbλ)

p(a|λ1, λ2, · · · , λτ , b, θ) ∝
τ∏
t=1

λa−1
t exp (−λtb)aαa−1 exp (−aβa)

∝
τ∏
t=1

λαa−1
t exp (−aβa).

The full conditional distribution of b is

p(b|λ1, λ2, · · · , λτ , a, θ) ∝
τ∏
t=1

exp (−λtb)bαb−1 exp (−bβb)

∝
τ∏
t=1

bαb−1 exp−(λt + βb)

= Γ(αb,
τ∑
t=1

λt + βb).

The full conditional distribution of θ is

p(θ|n+
1 , n

+
2 , · · · , n+

τ , λ1, λ2, · · · , λτ , a, b) ∝
τ∏
t=1

(θλi)n
+
i exp (−θλi)θaθ(1− θ)bθ−1

θaθ+
∑τ

i=1 n
+
i exp (−θ

τ∑
i=1

λi)(1− θ)bθ−1.

We could not find known distributions which match the above distributions. The MH
algorithm is used to sample from these distributions.

2.2.3 Integer GARCH Model

In the previous section, the INGARCH(1,1) model has been defined for patient recruit-
ment in enrichment studies,

N+
t |Ft−1 ∼ Pois(θλt)

λt = β0 + β1N
+
t−1 + α1λt−1.
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The traditional INGARCH(1,1) corresponding to θ = 1 has been analyzed in the Bayesian
context by Fried et al. [2013]. We update the model parameters (β0, β1, α1, θ) compo-
nentwise by assuming a Gamma prior for β0, and a beta prior for θ. (β1, α1) should
be updated together to better control the stationarity condition β1 + α1 < 1/θ. We
use a three dimensional Dirichlet (Dirich) distribution for (β1, α1) in which the third
component α2 is a control parameter which ensures that the three components sum up
to 1. That means (β1 + α1) < 1 as first two components and then β1 + α1 < 1/θ, since
1/θ ≥ 1. The full model can be rewritten as follows

N+
t |Ft−1 ∼ Pois(θλt)

λt = β0 + β1N
+
t + α1λt−1

a priori β0 ∼ Γ(aβ0 , bβ0)

a priori (β1, α1, α2) ∼ Dirich(aβ1 , aα1 , aα2)

a priori θ ∼ Beta(aθ, bθ).

The full conditional distribution of β0 is

p(β0|n+
1 , · · · , n+

τ , θ, β1, α1) ∼ β
aβ0−1
0 e−β0bβ0e−θ

∑τ

t=1 λt
τ∏
t=1

(θλt)n
+
t

∝ β
aβ0−1
0 e(−β0bβ0−θ

∑τ

t=1 λt)
τ∏
t=1

λ
n+
t
t .

The full conditional distribution of β1, α1 is

p(β1, α1|n+
1 , · · · , n+

τ , θ, β0) ∼ β
aβ1−1
1 α

aα1−1
1 α

aα2−1
2 e−θ

∑τ

t=1 λt
τ∏
t=1

(θλt)n
+
t

β
aβ1−1
1 α

aα1−1
1 e−θ

∑τ

t=1 λt
τ∏
t=1

(λt)n
+
t .

The full conditional distribution of θ is

p(θ|n+
1 , · · · , n+

τ , θ, β0, β1, α1) ∝ θaθ(1− θ)bθ−1e−θ
∑τ

t=1 λt
τ∏
t=1

(θλt)n
+
t

∝ θaθ+n+(τ)(1− θ)bθ−1e−θ
∑τ

t=1 λt .
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2.2.4 Change Point Detection in Bayesian Framework

This section presents A Bayesian analysis of the two models that explicitly consider the
different phases of the recruitment process in an enrichment study:

N+
t ∼ Pois(θλt)

λt = I(t0≤t<t1)(A+Bt) + I(t1≤t<t2)(A+Bt1) + [A+Bt1 + δ]I(t≥t2),

and

N+
t ∼ Pois(θλt)

λt = I(t0≤t<t1)(A+Bt) + I(t1≤t<t2)λ
(2)
t + [λ(2)

t + δ]I(t≥t2)

λ
(2)
t ∼ Γ(a, b).

Intuitively, informative priors for t1 and t2 can be derived as follows: Estimate the recruit-
ment time T in study planning stage and assume t1 ∼ U(t0, T/4) and t2 ∼ U(3

4T, T )
a priori. The idea behind these assumptions is that all centers will likely initialize
in the first time interval [t0, T/4], which may then contain t1. Similarly, an eventual
level shift would occur around the closure date. We assume the following priors for
the other parameters: A ∼ Γ(αA, βA), B ∼ Γ(αB, βB), a ∼ Γ(αa, βa), b ∼ Γ(αb, βb),
θ ∼ Beta(aθ, bθ) and δ ∼ Γ(aδ, bδ). These models have been implemented in OpenBUGS
3.2.2 (see http://www.openbugs.info/w/). The following example illustrates the change
point detection.

The process with constant rate is simulated by using the parameter t1 = 15, t2 =
90, A = B = 1, θ = 0.6 and δ = 10. Figure 11 represents 100 simulated observations
with changes points at t1 = 15 and t2 = 90. The posterior means of these parameters
are given in Table 2.
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Figure 11: Simulated process with level shift and constant rate at the stable phase.

True parameters mean sd MC error val2.5pc median val97.5pc
t1 15 14.27 2.18 0.0541 10.34 14.24 19.9
t2 90 89.17 3.545 0.09873 79.35 89.59 97.9
θ 0.6 0.6425 0.2386 0.006523 0.196 0.6523 0.985
δ 10 4.771 3.637 0.09387 8.943E-5 4.451 14.39
A 1 0.3515 0.862 0.02261 5.701E-7 0.01237 2.632
B 1 1.305 0.7838 0.02232 0.5848 1.078 3.415

Table 2: Change points detection and parameter estimates in Bayesian framework in a
Poisson multi-phases model with constant rate at the stable phase (time in a time unit
such as day).

As an additional example, let us consider the process with level changes and a Gamma
distributed rate at stable phase. We simulate this process by using the parameter t1 =
15, t2 = 90, A = B = 1, a = 16, b = 5, θ = 0.6 and δ = 10. Figure 12 represents 100
simulated observations. The predicted posterior means are given in Table 3. A larger
variability can be observed, compared to the results on Figure 11. The change points
were set to t1 = 15 and t2 = 90 and the detected values are 17.25 and 87.27, respectively.
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Figure 12: Simulated process with level shift and Gamma distributed rate at the stable
phase.

True parameters mean sd MC error val2.5pc median val97.5pc
t1 15 17.25 5.269 0.1405 8.357 17.31 24.69
t2 90 87.27 5.138 0.136 76.48 88.26 98.23
θ 0.6 0.5919 0.2314 0.006973 0.174 0.5931 0.9867
δ 10 3.34 3.65 0.1011 3.582E-7 2.346 12.3
A 1 0.5025 1.036 0.02813 2.961E-7 0.06586 3.657
B 1 1.331 0.7908 0.02405 0.4846 1.107 3.522
a 16 12.73 2.87 0.03372 7.939 12.44 19.14
b 5 0.7781 0.3642 0.009654 0.2058 0.736 1.581

Table 3: Change points detection and parameter estimates in a Bayesian framework in
a Poisson multi-phases model with a Gamma distributed rate at the stable phase.

2.3 Costs Management in Enrichment Studies

Drug development costs must be kept as low as possible to guarantee the accessibility of
new drugs for all patients in need. This requires techniques for time and cost planning
and optimization at both the project and study level. In this context, Kramer and Schul-
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man [2012] suggested strategies such as an optimal use of new technology to improve data
exchange between researchers and for easier access to data including patient data. New
information and communication technology should improve communication and infor-
mation flux between researchers to reduce waiting time. Waiting time implies additional
personnel, infrastructures and materials costs. In addition, capitalization costs increase
depending on time. At the trial level, the impact of the study sample size on the costs
is often underestimated (Claxton and Posnett [1996])

Enrichment studies are thought to accelerate the drug development process and re-
duce the development costs while improving the chance of positive study results (Temple
[2005], Temple and Becker [2012], Wassmer [2013]). However, several factors may consid-
erably affect the study costs in enrichment studies. Small marker prevalence may raise
the patient recruitment time with impact on the costs. The prevalence may significantly
increase the number of patients that must be screened and tested until achieving the
study sample size. Another factor affecting the screening and marker-test process and
the recruitment time is the marker-test characteristics. Since enrichment studies have
been getting more and more popular in drug development, it is relevant to explicitly
investigate the impact of specific factors of enrichment studies on the study costs for
better planning and decision making.

The marker-test and screening costs may seriously increase the total study costs,
depending on the screening conditions to be met by patients and the type of the marker-
test as well as the number of patients to be screened and tested. The number of patients
passing through the screening and marker-test procedures until achieving the required
study sample size depends on the study sample size, but also on the marker-prevalence.
To the best of our knowledge, there is no work which explicitly investigates the cost of
enrichment studies. DiMasi et al. [2003] and DiMasi et al. [1991] focused on the estima-
tion of the average costs of drug development. Cline et al. [1998] studied the impact of
patient management and education on the care costs using an example study on patients
with heart failure.

In this section, we suggest a simple technique for cost prediction in enrichment stud-
ies. The studies costs are summarized in four main categories: The screening costs, the
marker-test costs, the care costs and the duration costs. The care costs represent all
expenditures after patients have entered into the trial (drug supply, visits, indemnity,
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personnel costs, ...). The care costs depend essentially on the number of patients in
the study and are thus expected to be lower than in unselected trials, since the sample
size of enrichment studies tend to be smaller. The duration costs represent the total
expenditure related to the overall duration of the trial. This depends on several factors.
An increasing number of centers activated for the trial decreases the recruitment time
but may increase the costs per time unit. More recruitment centers implies more infras-
tructure and more personnel. The screening costs and marker-test costs per patient and
the cost per time unit depend on the trial and should be provided by researchers.

2.3.1 Costs Estimates without Marker-test Characteristics

Let us consider an enrichment trial and an unselected trial with sample size N+ and N0

respectively. The total costs of the unselected study consists of screening costs, the care
costs and the costs due to the recruitment time. They can be defined as

Z = κcN0 + κsM0 + κtT (N0),

where κs, κc and κt represent the screening and care costs per patient and the expendi-
ture per time unit, respectively. The number of patients to be screened until achieving
N0 unselected patients is modelled by a Negative Binomial distributed random variable
M0 ∼ NBin(N0, µ), where µ represents the probability of screening an unselected patient
as unselected. T (N0) denotes the time required to accomplish the recruitment process.
It follows an Erlang or Pearson type VI distribution depending on the underlying re-
cruitment process. More generally, the distribution of T (N0) can be gathered through
the strategies proposed in the above section and included in the costs prediction. For
example T (N0) ∼ Erlang(N0, λ) if a total number of patients equal to λ arrive at the
recruitment centers per time unit under a Poisson recruitment process with constant
intensity.

In an enrichment study, the cost per patient due to both the screening and test
procedure is given by κs+κm, where κm represents the marker-test costs for one patient.
The probability of an unselected patient to successfully pass through the screening and
test procedure and being classified as marker-positive is equal to θµ, where θ denotes
the marker prevalence. We use this probability to derive the number X of patients to be
screened and tested until achieving the enrichment study sample size N+. This number
follows the distribution X ∼ NBin(N+, θµ). We define the total expenditures in an
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enrichment study as

Y = (κs + κm)X + κcN
+ + κtT

+(N+). (11)

This definition of the costs explicitly considers factors affecting enrichment trials such
as the marker prevalence, through X and T+(N+). The impact of the probability of
screening a patient as unselected is not of great interest here as the screening procedure
is common to any clinical trial. We keep it constant and focus on the impact of the
marker prevalence and marker-test characteristics on the total costs

E(Y ) = (κs + κm)N+/θµ+ κcN
+ + κtE(T+(N+))

V ar(Y ) = (κs + κm)2N+(1− θµ)/µ2θ2 + κ2
tV ar(T+(N+)).

Example 2.2 Let the sample size of an unselected study be N0 = 800 patients. Assume
there is a marker group of patients in which a higher effect size is expected. The sample
size is reassessed to conduct the study in this marker population, and the new sample size
is estimated as N+ = 600 to achieve the same power. The eligibility rate in the overall
patients population is µ = 70%. Finally it is assumed, that the care costs κc = 20κs and
κs = κm = κt.

We investigate example 2.2 by estimating the total cost of the unselected study and
particulary the total cost of the enrichment study for different values of the marker
prevalence. Figure 13 shows the variation of the number of patients to screen and test
until recruiting 600 marker-test positive patients. For the results represented in Figure
14, we assume a Poisson recruitment process with constant intensity λ = 10. For Figure
15, λ ∼ Γ(10, 1) is assumed with the mean equal to 10 patients and variance equal to 10.
Figure 14 and Figure 15 show that the total enrichment study costs decrease when the
marker prevalence increases regardless of the assumed recruitment process. That can
be easily explained by the fact that the number of patients to screen and test decreases
when the prevalence increases and the study time varies in the same direction. The
prevalence is a crucial factor in planning the enrichment study costs. For Example (2.2)
and under the Gamma-Poisson recruitment process, the enrichment study costs are equal
to 18038 for a marker prevalence of 60% and increase to 30092 for the prevalence of 20%.
In addition, the present example shows how fast the marker study costs can exceed the
costs of an unselected trial.
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Figure 13: Patients to be tested until N+ = 600 marker positive patients are recruited
as a function of the prevalence.

2.3.2 Studies Costs and Marker-test Characteristics

The sensitivity and specificity of the marker-test may significantly affect the probability
of testing an unselected patient as marker-positive. For Sens ≤ 1 and Spec ≤ 1,
this probability is given by Sens · θ + (1 − Spec) · (1 − θ) instead of simply θ. The
probability of an unselected patient to be screened and tested as marker-positive is given
by µ[Sens · θ + (1− Spec) · (1− θ)], where µ represents the probability of screening an
unselected patients as unselected. Analogously to Section 2.3.1 we derive analytically
the impact of the sensitivity and specificity of the marker-test as well as the marker
prevalence on the marker study costs. Then the figures in that section correspond to
Sens = Spec = 1. The costs of an enrichment study under consideration of the marker-
test characteristics are given by

Ỹ = (κs + κm)X + κcN
+ + κtT

+(N+) (12)

X̃ ∼ NBin(N+, µ[Sens · θ + (1− Spec)(1− θ)]),
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Figure 14: Variation of enrichment
study costs depending on the marker
prevalence. The recruitment is assumed
to be a Poisson process with constant
intensity λ = 10 and the study sample
is N+ = 600.
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Figure 15: Variation of enrichment
study costs depending on the marker
prevalence. The recruitment process is
assumed to be a Poisson process with in-
tensity λ ∼ Γ(10, 1) and the study sam-
ple size is N+ = 600.

where

E(Ỹ ) = (κs + κm)N+/[Sens · θ + (1− Spec)(1− θ)]µ+ κcN
+ + κtE(T+(N+))

V ar(Ỹ ) = (κs + κm)2N+(1− [Sens · θ + (1− Spec)(1− θ)]µ)/

µ2[Sens · θ + (1− Spec)(1− θ)]2 + κ2
tV ar(T+(N+)).

To illustrate this relationship between the enrichment study costs and the marker-test
characteristics, we consider Example 2.2 and keep all other parameters constant except
the test characteristics. Figure 16 shows the change in the study costs as the sensitiv-
ity and specificity of the test vary. The marker prevalence is assumed to be equal to
60%. In addition, we assume a recruitment process with arrival rate of λ ∼ Γ(10, 1),
so that the recruitment time needed to enroll the 600 marker positive patients follows a
Pearson type VI distribution Gg(600, 10, 1/(0.6 ∗ 0.7)). Figure 16 shows that the costs
vary depending on the sensitivity, specificity and the marker prevalence and range from
about 16000km to 24000km for the same value of the marker prevalence (60%). The black
square represents the cost of 18000km, when the Sens = Spec = 1. It corresponds to
the value of the cost in Figure 15 for the marker prevalence of 60%. Each line represents
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Figure 16: Costs of an enrichment study as a function of the sensitivity and specificity
of the marker-test. Here, κc = 20κm = κt and κm = κs and the costs are in the unit of
κm.

different values of the study costs for one value of the sensitivity and different values of
the specificity. The larger the specificity, the higher the costs. However, the specificity
must be large enough to allow for a reasonable number of false positive patients to enter
into the trial. Such patients would receive the therapy although they are not supposed
to benefit from it and this may decrease the power of the study. When the sensitivity
increases, the chance of testing a marker-positive patient as positive increases and thus
the costs decreases.

Let us now consider the population of patients tested as positive. The distribution
of the true-positive patients in a sample of N+ selected patients is given by

TP ∼ Bin(N+, PPV ),

where TP represents the number of the true-positive patients and PPV represents the
positive predictive value of the marker-test (see Appendix A.2). Then the expected
number of true positive patients is given by E(TP ) = N+PPV ≤ N+. That means, the
selected study population consists in expectation ofN+PPV marker-positive andN+(1−
PPV ) marker-negative patients. To ensure, for example, that the study population
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contains an expected number of marker-positive patients equal to the study sample size
N+, more patients must be recruited. By enrolling N+/PPV test-positive patients
instead of N+, we obtain a study population with E(TP ) = N+PPV/PPV = N+

marker-positive patients. In this case, the number of patients to be screened and tested
is given by Xa ∼ NBin(N+PPV, µ[Sens ·θ+(1−Spec)(1−θ)]) and the adjusted marker
study costs is defined as

Ya = (κs + κm)Xa + κcN
+/PPV + κtT

+(N+/PPV )

Xa ∼ NBin(N+/PPV, µ[Sens · θ + (1− Spec)(1− θ)])

E(Ya) = N+(κs + κm)
PPV [Sens · θ + (1− Spec)(1− θ)] +N+κc/PPV + κtE(T+(N+/PPV ))

V ar(Ya) = (κs + κm)2(N+/PPV )(1− [Sens · θ + (1− Spec)(1− θ)]µ)/

µ2[Sens · θ + (1− Spec)(1− θ)]2 + κ2
tV ar(T+(N+/PPV )).

The sample size adjustment to increase the number of true positive patients may consid-
erably increase the study costs. The expected additional costs are given by E(Ya)−E(Ỹ ).

2.3.3 Costs by random Marker-Prevalence

If the information about the marker-prevalence is in form of a beta distribution, then
the distribution of the number of patients passing through the screening and marker-test
until the study sample size is achieved follows a Negative binomial distribution as follows

X ∼ NegB(N+, µθ)

θ ∼ Beta(ω1, ω2).

Note that µθ also follows a Beta distribution with mean and variance E(µθ) = µω1/(ω1+
ω2), V ar(µθ) = µ2ω1ω2/(ω1 + ω2)2(ω1 + ω2 + 1), respectively. This implies X is Beta
Negative Binomial distributed X ∼ BNB(N+, ω1, ω2) and thus the distribution of the
total expenditure at the screening and marker-test stage can be derived as ((κs+κm)X).
The care costs κcN+ do not depend on the marker prevalence. The time component
κtT (N+) of the total costs must be simulated from the following distribution:

T (N+) ∼ Erlang(N+, µθλ)

θ ∼ Beta(ω1, ω2),
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when λ is constant and

T (N+) ∼ Erlang(N+, µθλ)

θ ∼ Beta(ω1, ω2)

λ ∼ Γ(a, b)

for a Gamma distributed recruitment rate.

2.3.4 Power and Marker-test Characteristics

It is difficult if not impossible the find a perfect marker-test. The study population
(test-positive) is a mixed population of marker-positive patients (true positive) and some
marker-negative patients (false positive). This mixed population is randomized in the
treatment groups as illustrated by Figure 17. The power of the marker study may de-

Figure 17: Enrichment Design considering the Marker-test Characteristics

crease, when a considerable number of marker-negative patients are erroneously enrolled.
This may be due to the fact that the effect size provided by the study population is less
than that used in estimating the study sample size. The relationship between the power
(1−β) of a marker study, its sample size (N+) and the effect size in the marker positive
population δ+ is well known for several types of study designs (non-inferiority, equiva-
lence,...). This relationship provides the answer to the following questions in planning a
trial with a type I error α: What sample size is required to ensure a power of 1 − β in
detecting an effect difference δ+? What is the power of the trial in detecting an effect
difference δ+, when N+ patients are recruited for the study? What effect size can be
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detected with power 1 − β if the study sample size is N+? The relationship between
power, sample size and effect size has been described in Lachin [1981] for many study
designs. The sample size should be high enough, the samples representatively selected
and randomized in the study groups to maintain the power.

In this section we investigate the impact of marker-test characteristics and marker
prevalence on the power of an enrichment study. To derive the relationship between
the power and these parameters, we consider a trial in which the decision is based on
the hypothesis H0 : δ(+) > 0 vs H1 : δ(+) ≤ 0. For simplicity, we assume balanced
study groups (new drug and control) and equal effect variability in both study groups.
Let δ(+) and δ(−) be the standardized effect difference in the marker positive population
and the marker negative population respectively, where δ(+) > 0. Then, the number of
marker-positive patients needed can be written as

N+ = 2(Z1−α + Z1−β)2

δ(+)2 , (13)

where Z1−α denotes the 100α% percentile of the standard normal distribution (Lachin
[1981]). N+ is the amount of test-positive patients consisting of TP true positive and
N+ − TP false positive patients. TP ∼ Bin(N+, PPV ), where PPV denotes the pro-
portion of positive patients in the population of test-positive ones. The power 1 − β is
a random variable given by the number of true positive patients in the sample size N+.
Its mean and variance can be approximated using the ∆-Rule (Lehmann and Casella
[1998]) as follows

2(Z1−α + Z1−β)2 = TPδ(+)2 + (N+ − TP )δ(−)2,

and then

E(Z1−β) =
√
δ(−)2(1− PPV )N+ + δ(+)2PPV ·N+

2 − Z1−α and

V ar(Z1−β) ≈ [(δ(+)2 − δ(−)2) ·N+PPV (1− PPV )]2
2[δ(+)2PPV N+ + δ(−)2(1− PPV )N+] . (14)

An estimate of the expected power can thus be derived from E(Z1−β). Figure 16 shows
the variation of the power of a marker study for different values of the sensitivity and
specificity of the marker-test. We assume an initial power of 90% used in estimating the
study sample size. By a specificity of 100%, which means no negative patient is expected
to be tested as positive, a sensitivity different from zero is enough to maintain the desired
power. Of course a reasonable sensitivity is required to ensure that positive samples are
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Figure 18: Power versus sensitivity and specificity of the marker-test

not rejected all the time. The second factor affecting the power is the marker prevalence
(see Figure 18). The smaller the marker prevalence the lower the power. Using the
decomposition of the sample size in TP and N+ − TP , we derive the adjusted sample
size expected to maintain the initial power. To avoid a decrease in power, the sample
size can be defined as follows:

Nc = δ(+)2N+

δ(+)2PPV + (1− PPV )δ(−)2

where Nc ≥ N+ is the number of test-positive patients to be enrolled instead of N+

patients.

Example 2.3 Let us assume that the effect size in the marker positive population is
twice than that of the negative group. Let the marker prevalence be equal to 40% and the
sensitivity and the specificity of the marker-test 80%. For an initial estimated sample
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size of N+ = 600 marker positive patients, the compensated sample size is Nc = 672.
That means 72 more patients must be recruited to avoid a loss in the power due to the
enrollment of false positive patients.

This way of reassessing the sample size depends on the study design. In the previous
section, we suggested recruiting patients so that expected number of true positives is
equal to the given sample size. That means for the above example, that N+/PPV

patients equal to Nc = 700 should be enrolled. This is slightly inaccurate compared to
the present strategy, but seems to be faster and does not depend on the study design.
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2.4 Outlook

The recruitment model should be as simple possible to reduce the variability in the
predictions. However, it may be relevant to add some additional levels of randomness to
the model to better reflect the process. The following models may be used in modeling
the recruitment process in enrichment studies.

2.4.1 Models with Beta distributed Marker Prevalence

An estimate of the distribution of the marker prevalence may be available in the form
of a Beta distribution. In this case, the recruitment model is given by

N+
t ∼ Pois

(
K∑
k=1

θλ
(k)
t

)
(15)

θ ∼ Beta(ω1, ω2),

where the recruitment rate λt = ∑K
k=1 λ

(k)
t may take different forms as investigated in the

previous sections. If λt is constant, the recruitment time needed to enroll N+ patients
follows the Erlang(N+, θλt) distribution, where θ ∼ Beta(ω1, ω2). In addition, if λt
is Gamma distributed then the shape parameter in the distribution of the recruitment
time is the product of Gamma and Beta distributions. The difficulty remains to connect
the distribution of the recruitment in these cases to a known distribution. However, an
estimate of the recruitment time can be obtained through simulation and the models
can be updated in OpenBUGS by assuming a Gamma prior for ω1 and ω2.

2.4.2 Hierarchical Modeling

Patient recruitment models in enrichment trials can be defined hierarchically by assuming
that the recruitment rate of test-positive patients given the arrival rate of unselected
patients is a binomially distributed random variable:

λ+
t |λt ∼ Bin

(
λt, θ · Sens+ (1− θ)(1− Spec)

)
. This leads to the following hierarchical

model of patient recruitment in enrichment trials:

N+
t ∼ Pois(λ+

t )

λ+
t ∼ Bin(λt, θ · Sens+ (1− θ)(1− Spec)) (16)

θ ∼ Beta(ω1, ω2),

where λt follows, for example, a Gamma distribution.
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Remark 2.7 The above model is equal to the model (2) investigated in the previous
section, when the mean of the distribution Bin(λt, θ · Sens + (1 − θ)(1 − Spec)) of λ+

t

is considered instead of the distribution itself. That means, it is assumed that λ+
t =

[θ · Sens+ (1− θ)(1− Spec)]λt instead of λ+
t ∼ Bin(λt, θ · Sens+ (1− θ)(1− Spec)).

We consider a deterministic screening procedure: A fixed proportion of patients arriving
at the recruitment centers, such as 90%, are screened as unselected. It may be relevant to
also consider the variability in the number of patients screened as positive. An alternative
could be to consider the screening procedure as a Bernoulli experiment with parameter
0.9 assumed for the marker-test procedure. That would lead to the following model:

N+ ∼ Pois(λ+
t )

λ+
t ∼ Bin(λt, θ · Sens+ (1− θ)(1− Spec))

λt ∼ Bin(λ0
t , µ)

θ ∼ Beta(ω1, ω2),

where λ0
t represents the total arrival rate of actually unselected patients that are screened

and eventually tested. µ denotes the probability of screening a patient as unselected.
This hierarchical modeling of patient recruitment processes in enrichment studies will
be looked at closer. The impact of this additional level of randomness on the accuracy
of predictions should be studied. Note that each additional random level in the model
usually increases the variability of the estimates.
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3 Sensitivity-preferred Classification Rules

A marker-test procedure used in selecting the study population for an enrichment trial
is a binary classification problem. In conducting an enrichment trial for target develop-
ment of a new drug for a life-threatening disease without standard treatment, it is more
important not to misclassify a diseased patient as healthy, so that he can benefit from the
new therapy. In building binary classification rules, one tries to identify a rule that best
assigns new observations to the correct classes. Usually, the quality label "best" refers to
the maximization of the total rate of correctly classified observations which is equivalent
to the minimization of the total misclassification errors. However, this definition of the
quality "best" is not always appropriate because the impact of misclassification costs may
differ between both classes. An incorrect assignment to one class can be more harmful
in comparison to a misclassification in the other class.

A medical diagnosis (diseased versus healthy) is a typical example of the binary classi-
fication problem where one class is usually more important than the other. For example,
in classifying moles into malignant and benign, the impact of removing a harmless mole
can be less severe than overlooking a malignant mole that can develop into a melanoma.
In such cases, the researcher is primarily interested in minimizing the error rate in clas-
sifying malignant moles so as not to misclassify them as benign. In some situations the
error rate will not be allowed to exceed a certain level in that class. Throughout this
thesis, the class of diseased patients will be assumed as more important.

Classification techniques that guarantee a minimal pre-specified true classification
rate into the most important class are required. Such techniques should favor the more
important class while building classifiers and thus lead to an acceptable true classifica-
tion rate in that class. A minimal true classification rate in the important class could be
fixed by researchers according to the consequences of misclassification on the patient’s
health and economic situation. Often, patient’s diagnosis is based on biomarkers. Thus
classification or diagnosis methods must have the ability to simultaneously pinpoint the
relevant markers from a list of potential candidates (gene expression for example).

Our contribution in this part of the thesis is the introduction of a new approach
for building binary classification rules that meet the above requirements. We suggest a
new approach for entirely controlling the true classification rate in the most important
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class with respect to the sensitivity while at the same time maximizing the specificity.
The new classification strategy is designed to guarantee a pre-determined sensitivity (e.g.
sensitivity ≥ 90%), to provide the highest specificity and to select the relevant predictors
for this purpose.

For this purpose, we suggest building classification rules by optimizing loss or utility
functions of binary classification such as the log-likelihood function, subject to the con-
straint that the sensitivity belongs to a pre-determined interval (of high values). In other
words, the optimization algorithm runs only in the admissible region. To deal with the
high-dimensionality of the data, we add a L1-norm penalty to the model parameters for
simultaneous selection of relevant predictors. L1-norm penalized regression was intro-
duced by Tibshirani [1996] for variable selection in regression models. Here, the predictor
selection procedure is connected to the model and optimization procedure through the
L1-norm penalization of the model parameters, unlike in filter methods such as "p-values
screening". Liu et al. [2007] has suggested the use of the Lq-norm 0 < q < 1 for more
sparsity which presents more optimization burdens (non convexity of the Lq-norm). The
new approach is also applicable to unpenalized problems by optimizing the loss-function
of classification subject to the constraint on the sensitivity.

In the following sections, we describe two cases of optimization of loss-functions under
constrained sensitivity. The first one is the optimization of the likelihood (log-likelihood)
function of a binary logistic regression subject to a constraint on the sensitivity and the
L1-norm penalization of the model parameters. Penalized logistic regression for simul-
taneous feature selection in computing a logistic regression model has been investigated
by many authors (Meier et al. [2008], Shevade and Keerthi [2003],Koh et al. [2007]).
The second illustration is the optimization of specificity, again subject to a constraint on
the sensitivity. The L1-norm penalization of the model parameters will be used for the
feature selection. The sensitivity and specificity have been used by Liu and Tan [2008]
as loss functions of binary classification. They suggested to optimize the objective func-
tion of the weighted sum of the sensitivity and specificity in dealing with classification
problems with different class importance.

A very simplistic classification rule which guarantees high sensitivity can be formu-
lated as follows: Assigning all patients with symptoms into the diseased class may lead
to 100% sensitivity. However, such a trivial classification rule is unreasonable, since a
healthy patient would receive therapy with the disadvantages of experiencing adverse
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effects of therapy, which may include psychological and physiological stress as well as
incurring treatment costs.

A reasonable and commonly used strategy which guarantees a certain sensitivity has
been investigated by Jung et al. [2010]: First compute the decision score (such as dis-
ease probability) and then find the cut-off that leads to the desired sensitivity instead of
trying to optimize the balance between the sensitivity and specificity. However, a small
gain in the sensitivity may lead to a large loss in specificity. All information pertaining
to the research question should be included to the optimization equation and procedure
in order to guarantee an optimal solution.

Simple solutions as described above do not meet real world requirements and classi-
fication by different class importance remains a challenging issue in biomarker research.
Other methods have been suggested for dealing with this issue which try to increase the
sensitivity without guaranteeing a specific value. The improvement of the sensitivity
leads to a loss in specificity. One of these methods, for example, is arrived at by weight-
ing the observations (patients) in the training procedure (Yi [2005] and Liu and Tan
[2008]): higher weights are assigned to the observations from the most important class.
Thus they introduced the different weights early by the definition of the loss-function of
classification.

Weighting has also been used in the later stages of classification rules construction.
Elkan [2001] suggested computing the cut-off value of the estimated decision scores by
considering different weights for the different classes. In practice, it is difficult to find
interpretable weights. Affecting any number as weight only for mathematical and op-
timization convenience may be unacceptable. Misclassification costs represent ethically
and economically interpretable weights. Sheng and Ling [2006] and Ling and Sheng [2008]
used the misclassification costs to weight the classes differently in building classification
rules. Some authors tried to increase the number of observations of the most important
class in the training procedure to favor it (Japkowicz and al. [2000],cha). However, these
approaches are not designed to guarantee a pre-determined value of the sensitivity while
providing the largest specificity. Our strategy is to perform the optimization in the sub-
region of ethically and economically acceptable sensitivity values fixed by experts and
then no classification rule should be better under the given constraint.
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3.1 Data Material and Background

We use endometriosis data as examples in implementing our approach. Endometriosis,
the presence of endometrial-like tissue outside the uterus, is a disease associated with
pelvic pain and infertility. It essentially affects women at childbearing age with a preva-
lence of 10% (May et al. [2010]). A higher prevalence of endometriosis is reported in
the population of women with subfertility. One of the most common symptoms related
to endometriosis is pelvic pain, but in most cases it progresses asymptomatically. The
etiology of endometriosis as well as the relationship between the disease stages and the
severity of its symptoms remains unclear. It can take several years or decades for symp-
toms to present themselves after the disease appears. Up to now, endometriosis has
only been effectively diagnosed through invasive procedures such as a laparoscopy (May
et al. [2011]). Laparoscopy is a surgical technique in which small incisions are done in
the abdomen to access the organ on which the surgical operation is performed under
assistance of cameras and monitors (Arai [2012]).

Several studies have been conducted on the identification of markers that can be
used in diagnosis and monitoring of the treatment of endometriosis to prevent women
having to undergo unnecessary surgical procedures. May et al. [2010] reviewed 189 pub-
lications for endometriosis in urine, serum and plasma. These papers presented a large
number (more than 100) of markers that are elevated in endometriosis patients (e.g.
Interleukin 6 and 8, Interferon gamma, Cancer antigen CA125 and CA19-9). None of
these markers were demonstrated as unequivocally useful in the clinical practice (May
et al. [2010]). Other markers such as endometrial biopsy, endometrial fluid aspirates
and menstrual effluent have been investigated (May et al. [2011]). Finding a panel of
markers (list of genes or proteins) with clear clinical benefit for diagnosis and monitor-
ing of endometriosis remains of great interest. We apply the suggested technique on
data from a research project conducted by Bayer Schering Pharma in finding diagnostic
markers for endometriosis screening and monitoring. Women aged from 18 to 45 years,
scheduled for therapeutic laparoscopy, either for confirmation of endometriosis or diag-
nostic laparoscopy because of subfertility or tubal ligation, were enrolled for the trial
(Walzer et al.). The coordinating investigator for this study was Prof. Dr. med. Dr.
phil. A. D. Ebert, Director of the Clinic for Gynaecology and maternity at Vivantes
Humboldt-Clinic.
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3.1.1 Endometriosis Gene Expression Data

Messenger RNA expression profiling of blood samples was collected from 113 women
with symptoms of endometriosis (pain) and women without symptoms undergoing la-
paroscopy due to subfertility, or tubal ligation. From these two categories of patients, four
different groups could be identified through laparoscopy: women having pain without
having endometrial lesions, women having pain and endometrial lesions, women without
pain and without endometrial lesions and women without pain but with endometrial
lesions. The data are be summarized in Table 4 and does not have any missing values.
We are interested in different data sets that can be used to construct binary classifiers.

Blood RNA endometriosis data (45861 predictors)
Study group No pain & no endo. No pain & endo. pain & endo. pain& no endo.
Sample size 10 14 63 26

Table 4: Study groups and sample sizes of a RNA data for the identification of diagnosis
and monitoring markers of endometriosis.

Each data set has binary outcomes (two groups). The four subgroups presented in Table
(4) coded by patients with pain and confirmed endometriosis lesions (G11), patients with
pain but without lesions (G12), patients without pain but with lesions (G21) and finally
patients without pain and no lesions (G22) represent possible classes. These classes can
also be combined and analyzed according to the research question. For example, a clas-
sification rule built by using only the classes G11 and G12 provides diagnostic biomarkers
and a rule for the identification of patients who have endometriosis lesions, from the pop-
ulation of patients having pain. We build five such data sets and five different classifiers
using our new approach. There are no missing values in the data.

3.1.2 Protein Data

For earlier diagnosis and monitoring of endometriosis, a protein study has been con-
ducted (Henze et al. [2013]). Here, protein levels of 191 proteins in the peritoneum fluid
were measured from a population of 34 women aged between 21 and 47 years suffering
from endometriosis in three different stages and 16 women aged between 21 and 48 with-
out endometriosis. There are no missing values in this data set but 35 proteins have
the same level of protein in all patients regardless of their disease status. Such pro-
teins, viewed as constant, were discarded from the analysis. Two endometriosis patients
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Peritoneum fluid endometriosis proteins (191)
Study group No endo. endometriosis in grad 1 endo. in grad 2 endo. in grad 3
Sample size 16 5 5 12

Table 5: Study groups and sample sizes of a protein data for the identification of diagnosis
and monitoring markers of endometriosis

of grade 3 presented extremely high levels of the proteins CA-125 (20000 and 40000),
which was about 38 and 76 times higher than the highest level without considering these
two patients. There was one patient with an outlier level of CA-19-9. Henze et al. [2013]
focused particularly on Trefoil Factor 3 (TFF3) and found out that TFF3 is significantly
higher in women with endometriosis and correlated with known biomarkers related to
endometriosis such as CA-125, CA-19-9, inflammatory mediators (IL-8, MCP-1) and
Matrix Metalloproteinase 7 (MMP-7, Matrilysin). Other proteins investigated for en-
dometriosis diagnosis and monitoring have been listed in May et al. [2010] and May et al.
[2011]. Our approach will be used in building a multi-dimensional classification rule with
given constraints based on these protein data.

3.2 Classification

A two-class classification problem is considered (diseased versus healthy). Classification
methods (e.g. logistic regression, Support Vector Machine, classification tree) try to find
a rule for correct assignment of observations to the right class using predictors. These
predictors are used to compute a single decision score such as a disease probability. The
computed decision score vector is used as a surrogate marker similar to the classification
procedure in one dimensional settings.

The distributions of the decision score in both classes usually overlap. It is then
relevant to select a cut-off that leads to the minimal misclassification. A cut-off is a
value where observations whose decision score exceeds this value are assigned to one
class and to the other class if lower than this value. Figure 19 presents an example of
the distributions of a decision score in the diseased and healthy class, respectively. This
example has been simulated under the assumption of higher regulation in the diseased
class. A reasonable cut-off is 2 on the x-axis. This cut-off leads to four possible results
as usual: True Positive (TP ) representing the number of diseased patients predicted as
diseased, True Negative (TN) representing the amount of healthy patients classified as

57



Data Material and Background

Figure 19: Distributions of a decision score in the disease (grey) and healthy (black)
class. The cut-off is assumed to be equal to 2.

healthy. FP and FN denote, respectively, the False Positive and False Negative patients.

3.2.1 Logistic Regression

We implement our strategy of optimization under constrained sensitivity in the context of
logistic regression. The logistic regression is one of the most used classification methods,
where the outcome variable is the probability of the observations to be from the reference
class (here the disease class). Here, the logistic regression is presented in the context of
binary classification. Consider a training set denoted by (X, y), where X represents a
n × (k + 1) predictor matrix and y the n− dimensional binary outcome vector usually
coded as 1 =̂ diseased and 0 =̂ healthy. Each component of y is viewed as a realization of
a Bernoulli random variable with mean P (Y = 1|X) = p, which is defined as a function
of the model parameters as

logit(p) = log( p

1− p) = Xβ,
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where β represents the (k+1)-dimensional parameter vector including the intercept. The
logistic regression belongs to the generalized linear models introduced by McCullagh and
Nelder [1989] with a logit link function. The likelihood function can be derived as

n∏
i=1

pyii (1− pi)1−yi , i ∈ {1, · · · , n}

and then the model parameters are estimated by solving the optimization equation

β̂ = argmin
β

n∑
i=1

{
−yi log(pi)− (1− yi) log(1− pi)

}
.

This optimization of the log− likelihood function does not have an explicit solution and
is usually solved using numeric algorithms such as Newton-Raphson (Ben-Israel [1966]).

3.2.2 Penalized Logistic Regression

The analysis of high-dimensional data such as gene expression data requires statistical
methods that enable feature selection. Sparse models are easier to compute and to inter-
pret and have many ethical and economic advantages. For example, a patient diagnosis
based on the evaluation of the level of only one protein may be easier to perform and to
interpret than a diagnosis based on a multidimensional evaluation of ten proteins. Most
high-dimensional data contains only a few relevant predictors and the others are just
noise. Furthermore, when the number of predictors is far larger than the observations,
the logistic regression may lead to over-fitting: The model performs well on the present
data, but poorly on new observations.

Classification methods are often combined with filter methods. The predictors are
evaluated separately in their capacity for distinguishing between the two classes (p-value
of two-tailed t-test, AUC). However, these methods do not consider the properties of the
model and do not take into account the group effect that an ostensibly irrelevant predictor
could show a relevant effect, when it is combined with other predictors. Penalized logistic
regression includes feature selection in the optimization algorithm.

LASSO for Logistic Regression

The Least Absolute Shrinkage and Selection Operator (LASSO) in the context of logis-
tic regression consists of the optimization of the log−likelihood function subject to a
constrained L1-norm of the model parameters. It was originally introduced by Tibshi-
rani [1996] to simultaneously perform feature selection in linear regression models. This
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strategy belongs to one of the most frequently used methods for the analysis of high-
dimensional data such as gene expression data (Shevade and Keerthi [2003], Liu et al.
[2007]). The LASSO penalization of model parameters has been extended to generalized
linear models (Park and Hastie [2007]).

The L1-norm penalization shrinks irrelevant predictors to zero and provides sparse
classifiers. The logistic regression model with LASSO penalty is computed by solving
the optimization problem

[β̂, β̂0] = argmin
β0,β

n∑
i=1

{
−yi log(pi)− (1− yi) log(1− pi)

}
+λ‖β‖1, (17)

where ‖β‖1 = ∑k
j=1 |βj| denotes the L1-norm of the parameter vector β and λ > 0 is a

penalty parameter. The optimal λ is specified using a cross-validation methodology.

Equation 17 is a convex optimization problem since the log-likelihood is concave
and ‖β‖1 convex. However ‖β‖1 is non-differentiable at 0. Generic methods for non-
differentiable convex problems can be used, such as the ellipsoid method or sub-gradient
methods Shor et al. [1985]. These methods are usually very slow in practice (Koh et al.
[2007]). The SmoothL1 uses a smooth approximation of the L1-norm such as ∑p

i=1 |βi| ≈∑p
i=1(β2

i + ε)1/2 (Whittle [1971]) and solves the problem with traditional gradient based
methods. The LASSO estimates can be interpreted as posterior estimates, when the
βis have independent identical Laplace priors (Tibshirani [1996]). The parameters are
updated using the prior distribution

P (β|λ) =
p∏
i=1

λ

2 exp (−λ|βi|)

and likelihood as defined above (Genkin et al. [2007]).
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3.3 Classification under Constrained Sensitivity

In this section, we investigate a new approach in building binary classification rules, while
entirely controlling the sensitivity. The main idea is to incorporate into the optimization
equation the information that only classifiers with at least a pre-determined sensitivity
are acceptable. Specifically, the objective function of classification is optimized subject
to the constraint that the sensitivity belongs to the pre-determined interval of admissi-
ble values. This results in explicitly searching for the largest specificity in the interval
of ethically and economically acceptable values of the sensitivity value. The L1-norm
penalization of the model parameters is added to the optimization equation for simul-
taneous selection of relevant predictors which encourage large sensitivity values. This
technique is applied to the optimization of two objective functions of classification: The
log-likelihood function of the logistic regression with LASSO penalty and a Youden-
index based objective function of the sum of the sensitivity and specificity. We start this
section with some basic terminologies about the appraisal of classification rules.

3.3.1 Classifiers Evaluation

Consider a complete data set of n observations (patients with known status). Assume
these observations consist of n+ positive (diseased) and n− negative (healthy) patients.
The standard procedure in evaluating classifier performance is cross-validation: The data
set is randomly divided into M equal sub-data sets. M − 1 parts are used to construct
a classifier and the remaining data set is used to test that classifier. In the test stage,
the known disease status is assumed as unknown and is predicted by using the built
classification rule. This procedure is repeated M times, so that each observation is used
once in the training and once in the test stages. This procedure is repeated M times, so
that each observation is used once in the training and test stages. This is called M−fold
cross-validation, where M is usually set to 10. The true labels and the corresponding
predictions constitute raw materials for the classifier evaluation.

Often, classification methods do not directly estimate the class label but predict
a decision score such as disease probabilities. To turn back to class labels, a cut-off
is required for the dichotomization of such decision scores. Figure 20 is an example
of a cross-validated data set of patients with known diseased status. A cut-off (δ) is
selected between the minimum and the maximum of the decision score. Here, δ ∈
[0, 1] and patients with disease probability greater than δ are labelled as diseased and
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Figure 20: Graphical 2 x 2 confusion matrix representing diseased patients (left) and
healthy patients (right) with their predicted disease probability.

healthy otherwise. In the example presented in Figure 20, δ is set to 0.5 corresponding
to the dotted line leading to the four possible results (TP, TN, FP and FN). The
success of classification in each class as well as the overall accuracy of the classifier
depends on the cut-off used. A wide range of performance measurements as defined in
Appendix (A.2) have been used for the evaluation of the goodness of fit of classifiers. This
includes: the Sensitivity and Specificity, the Accuracy, Positive predictive value (PPV)
and Negative predictive values (NPV). The use of sensitivity and specificity instead of
accuracy facilitates the selection of the best threshold between the misclassification in
the two classes.

Receiver Operating Characteristic

The Receiver Operating Characteristic (ROC) curve is the most commonly used graph-
ical tool for the visualization and comparison of classifiers. Each cut-off value leads to
one value of sensitivity and specificity. A ROC curve is plotting the sensitivity versus
1-specificity. For example, a ROC curve will be obtained by moving the dotted line from
the deepest position to the highest (Figure 20) and by representing the results graph-
ically, since each position corresponds the one value of the sensitivity and specificity.
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Figure 21 represents an example of a ROC curve. The expected curve for a random
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Figure 21: Example of ROC curve.

assignments of classes corresponds to the first bisector (grey line).

Classifiers can be compared through their ROC curves. The best will provide the
ROC with the largest AUC (Area Under the Curve). In one-dimensional settings, where
the predictor is used as the decision score, the greater the AUC is is, the better that
predictor is as a diagnostic marker. The AUC has been used to rank predictors in high-
dimensional data analysis. It corresponds to the probability that the predicted disease
probability of a randomly selected diseased patient is higher than that of a randomly
selected healthy patient. It is computed by

AUC =
∑
i∈n+

∑
j∈n−

n+n−
I(f(x+

i ) > f(x−j )),

where I denotes the indicator function and f the score function in ranking positive (x+
i )

and negative samples (x−i ).

Optimal Cut-off Selection

Each cut-off value leads to one classification result. To select the best cut-off that can
be used for new patients, many techniques have been used. The cut-off that maximizes
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the Youden-index given by
TP

n+ + TN

n−
− 1 = sensitivity + specificity - 1

is the most popular optimal cut-off. It leads to the point on the ROC curve most distant
from the first bisector. Another technique is to select the cut-off leading to the point on
the ROC curve closest to the point with coordinates (0, 1). It minimizes the distance to
(0, 1) defined by

D =

√√√√(TP
n+ − 1

)2

+
(
TN

n−
− 1

)2

.

In the best situation, the ROC curve passes through the upper left corner (point with co-
ordinates (0,1)) and leads to 100% sensitivity and 100% specificity. All these approaches
seek to find the balance between the true classification rate in the different classes while
keeping the accuracy as high as possible.

3.3.2 Sensitivity and Specificity Approximation

The following approximation of the sensitivity and specificity are important for the next
section. Let us consider a training data set with n samples (n+ positive and n− negative
samples).

Definition 3.1 The sensitivity is defined as

Sens(β0, β) = 1
n+

∑
i∈n+

I(pi > δ),

where I represents the indicator function taking the value one, if pi > δ and zero other-
wise and δ denotes a probability cut-off. The sensitivity as defined above is a function of
the model parameters through pi = 1/[1 + exp(−β0 −Xβ)]. Analogously, the specificity
is given by

Spec(β0, β) = 1
n−

∑
i∈n−

I(pi ≤ δ).

The sensitivity and specificity as defined above are non-differentiable functions of the
model parameters due to the indicator function. Liu and Tan [2008] suggested to use
the generalized logistic function to approximate the indicator function.

I(z > 0) ≈ g(ηz) = 1
1 + exp(−ηz) ,

where η ≥ 1 is a constant that controls the trade-off between the smoothness of the
approximation and the convergence to the indicator function. The function 1

1+exp(−ηz)
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Figure 22: Indicator function approximation through the generalized logistic function.

converges to I(z > 0) as η tends to infinity (see Figure 22 for different values of η). The
indicator function is represented by the blue lines. A differentiable approximation of the
sensitivity can be derived as

Sens(β0, β) ≈ 1
n+

∑
i∈n+

g[η(pi − δ)], (18)

where lim
η−→∞

g[η(pi − δ)] = I(pi − δ > 0). This is equivalent in the linear predictor space
to using the cut-off log ( δ

1−δ ) ∈ R instead of δ in the probability space. In other words,
the sensitivity can be defined in terms of the linear predictor by

Sens(β0, β) ≈ 1
n+

∑
i∈n+

g[η(β0 +Xiβ − log ( δ

1− δ ))]. (19)

This last definition of the sensitivity corresponds to the approximation used by Liu and
Tan [2008] for δ = 0.5.
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Similarly, the specificity is approximated by

Spec(β0, β) ≈ 1
n−

∑
i∈n−

g[−η(pi − δ)]

= 1− 1
n−

∑
i∈n−

g[η(β0 + βXi − log( δ

1− δ ))]. (20)

3.3.3 Sensitivity-preferred Logistic Regression with LASSO Penalty

The log-likelihood function of the logistic regression model can be denoted by

L(β0, β) = yi log(pi) + (1− yi) log(1− pi). (21)

The new strategy is to solve the logistic regression with LASSO penalty subject to
the constraint that the sensitivity belongs to the interval of admissible values. The
optimization equation is given by

argmin
β0,β

− L(β0, β) + λ‖β‖1 subject to

Sens(β0, β) ≥ θ, (22)

where θ denotes the lower boundary of the interval of acceptable sensitivity values for
example, 90% if the sensitivity must be greater than 90%, λ > 0 denotes the LASSO
parameter and Sens(β0, β) the sensitivity. The L1-norm of the parameter vector is given
by ‖β‖1 = ∑k

j=1 |β|j. L(β0, β) denotes the likelihood function as given by equation 21.

The functions ‖β‖1 and Sens(β0, β) are non-differentiable functions of the models
parameters. The optimization of the problem 22 using gradient based algorithms requires
differentiable approximation of these functions. The L1−norm is approximated by

‖β‖1 ≈
k∑
j=1

(β2 + ε)1/2,

where ε > 0 controls the trade-off between the differentiability and the convergence to
the L1−norm. The sensitivity is approximated as given in equation 19. A differentiable
optimization of the problem 22 is given by:

argmin
β0,β

− L(β0, β) + λ
k∑
j=1

(β2 + ε)1/2 subject to

1
n+

∑
i∈n+

g[η(β0 +Xiβ − log ( δ

1− δ ))] ≥ θ. (23)

The problem (23) is a non-linear constrained optimization problem. The gradient of the
objective function is given by
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∂−L(β0,β)+λ
∑k

j=1(β2+ε)1/2

∂βj
=


−∑i∈nXij(yi − p) if j = 0

−∑i∈nXij(yi − p) + λβj(β2
j + ε)−1/2 if j > 0.

and the Jacobian matrix of the vector of inequality functions is the one-row matrix
defined as

∂Sens(β0, β)
∂β

= 1
n+

(
XTp(1− p)(1− g[η(p− δ)])g[η(p− δ)]

)T
.

We use the logarithmic-barrier (log-barrier) methods optimization method.

3.3.4 Log-barrier for the Sensitivity-preferred Problem

The log-barrier method is an interior point method that forces the solution path of the
optimization algorithm to be in the feasible region (where constraints are satisfied) (see
Wright [1992]). The logarithmic barrier will force S(β0, β) − θ to always be positive
through the log-function and thus the inequality Sens(β0, β) > θ will be satisfied.
The log-barrier function is defined as

B(β0, β) = − log
[
Sens(β0, β)− θ

]
.

This function is used as a penalty term in the optimization equation 22. The barrier
function B(β0, β) will grow very fast when the solution approaches the boundary of the
feasible region. The unconstrained version of the optimization problem 22 is given by

argmin
β0,β

− L(β0, β) + λ
k∑
j=1

(β2 + ε)1/2 + νB(β0, β), (24)

where ν > 0 denotes the barrier parameter and λ > 0 the LASSO parameter. The
solution of this problem (β, β0)(ν) is a function of the barrier parameter and converges
to the solution of the problem 22 for ν → 0 (Whittle [1971]).

Theorem 3.2 The optimization problem (24) is convex for all cut-off δ, so that pi ≥ δ

for i ∈ n+.

Proof 3.3 It is sufficient to prove that each of the three parts of the equation is convex
since a linear combination with non-negative coefficients of convex functions is convex.

• The log-likelihood function L of the logistic regression is known to be a concave
function. It can be verified that the Hessian matrix is negative semi-definite. This
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matrix is given by

Lij = ∂2L(β0, β)
∂βi∂βj

= −
n∑

m=1
XmiXmk

exp (−β0 −Xmβ)
(1 + exp (−β0 −Xmβ))2

= −
n∑

m=1
XmiXmkpm(1− pm),

where pm = 1
1+exp(−β0−Xmβ) and Xm denotes the vector of predictor values of the

mth observation and Xmj the jth component of the vector Xm. The matrix L ∈
R(k+1)x(k+1) is negative semi definite, since for each vector a ∈ R(k+1),

aLa = −
n∑

m=1

k∑
j=0

k∑
i=0

aiajXmiXmjpm(1− pm)

= −
n∑

m=1

k∑
j=0

k∑
i=0

aiXmi

√
pm(1− pm)ajXmj

√
pm(1− pm)

= −
n∑

m=1
aTπmπ

T
ma

= −
n∑

m=1
(aTπm)2 ≤ 0,

where πm = (pm(1− pm))1/2Xm.
Hence, −L(β0, β) is convex.

• The function ∑k
j=1(β2

j + ε)1/2 is also convex. The Hessian matrix is given by

Nij = ∂2

∂βi∂βj

[∑k
m=1(β2

m + ε)1/2
]
=


0 if i 6= j

[(β2
j + ε)2 − β2

j ](β2
j + ε)−3/2 if i = j

and
aNa =

k∑
j=1

a2
j [(β2

j + ε)2 − β2
j ](β2

j + ε)−3/2 ≥ 0.

Thus, this differentiable approximation of the L1-norm of the model parameters is
convex.

• Also B(β0, β) = − log ( 1
n+
∑
i∈n+ g[η(β0 +Xiβ − log ( δ

1−δ ))]− θ) is convex. Since
the log is monotone non-decreasing, it remains to show that the functionG(β0, β) =
( 1
n+
∑
i∈n+ g[η(β0 +Xiβ− log ( δ

1−δ ))]− θ) is concave. The Hessian matrix is defined
as

Gij = ∂2G(β0, β)
∂βj∂βj

= η2

n+

∑
m∈n+

XmiXmjgm(1− gm)(1− 2gm)
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where gm = g[η(β0 + Xmβ − log δ
1−δ )]. Similar to the matrix L, the sign of aGa is

determined as follows

aGa = η2

n+

∑
m∈n+

k∑
i=0

k∑
j=0

aiajXmiXmjgm(1− gm)(1− 2gm),

= − η
2

n+

∑
m∈n+

(aTπm)2,

where a ∈ R(k+1) and πij = Xij

√
gm(1− gm)(1− 2gm). aGa is positive for 1 −

2gm ≥ 0. This is the case when gm ≥ 0.5 which is equivalent to pi ≥ δ. In this
case, G(β0, β) is concave and since − log function is convex, B(β0, β) is convex �

The convexity of equation (24) is not guaranteed, when there are some pi < δ for i ∈ n+.
However, aGa consists of a true positive and a false negative part and can be written as

aGa = η2

n+

∑
m∈n+∩gm≥0.5

k∑
i=0

k∑
j=0

aiajXmiXmjgm(1− gm)(1− 2gm)
︸ ︷︷ ︸

True positive

+ η2

n+

∑
m∈n+∩gm<0.5

k∑
i=0

k∑
j=0

aiajXmiXmjgm(1− gm)(1− 2gm).
︸ ︷︷ ︸

False positive

,

The convexity will be obtained when the true positive part exceeds the false negative
one. This could easily be achieved by selecting a small cut-off value and when the two
classes are relatively well separable in the training data.

The optimization problem (24) requires a very large computational capacity in high-
dimensional settings such as gene expression data. Tibshirani et al. [2012] and Ghaoui
et al. [2012] proposed the way to derive conditions for pre-selection of relevant predictors
in LASSO type problems. We derive rules for the identification of irrelevant predictors,
in our model, that should be ignored in the optimization procedure to save computation
time based on the strongrule as suggested by Tibshirani et al. [2012]. Let us consider the
following model with the original definition of the L1-norm to fully exploit its property
of setting some predictors to zero.

argmin
β0,β

− f(β0, β) + λ‖β‖1,

where L(β0, β)+ν log
(

1
n+
∑
i∈n+ g[η(pi−δ)]−θ

)
= f(β0, β). The solution to this optimiza-

tion problem β̂(λ) = (β̂0(λ), β̂1(λ), · · · , β̂k(λ)) depends on the tuning parameter λ. The
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optimal λ is provided by a cross validation in a grid search in the interval [λmin, λmax].
λmax denotes the smallest λ for which all model parameters are set to zero except the
intercept. That means, the solution at λmax has the form β̂(λmax) = (β̂0, 0, · · · , 0) and
the corresponding estimated probability vector is given by p(β̂(λmax)) = p̄ = 1nȳ, where
ȳ = 1

n

∑n
i=1 yi. On the other hand, λmin is the largest positive number for which no

predictor is set to zero. Let us consider the sequence of λ values λ1, λ2 · · ·λm.

Theorem 3.4 Given the solution at λk−1 (β̂(λk−1)), the irrelevant predictors to be dis-
carded at λk must satisfy the inequality∣∣∣∣∣ ∂f∂βj (β̂(λk−1))

∣∣∣∣∣< 2λk−1 − λk.

This provides the solution path in varying λ from λ1 to λm. ∂
∂βj
f [β̂(λk−1)] denotes the

partial derivative of f with respect to βj evaluated at β̂(λk−1). Theorem 3.4 was stated
by Tibshirani et al. [2012], who called it sequential strong rule for discarding predictors.

Proof 3.5 See Tibshirani et al. [2012].

Note that the Karush-Kuhn-Tucker (KKT) first order conditions for the above optimiza-
tion problem are given by

∂[−f(β0, β) + λ‖β‖1]
∂βj

= 0

=⇒ ∂f(β0, βj)
∂βj

= λ
∂|βj|
∂βj

, (25)

where

∂(|βj |)
∂βj
∈


{+1} if βj > 0

{−1} if βj < 0

[−1,+1] if βj = 0.

This condition must be satisfied by each optimal solution. We derive the condition given
in Theorem 3.4 for the optimization problem 24.

∂

∂βj
log

[
Sens(β0, β)− θ

]
=

η
n+X

T
j p(1− p)(1− g[η(p− δ)])g[η(p− δ)]

1
n+
∑
i∈n+ g[η(pi − δ)]− θ

∂

∂βj
L(β0, β) = XT

j (y − p).
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The partial derivative of f(β0, β) as defined above is given by

∂

∂βj
f(β0, β) = ∂

∂βj
L(β0, β) + ν

∂

∂βj
log

[
Sens(β0, β)− θ

]

and then∣∣∣∣∣ ∂∂βj f(β0, β)
∣∣∣∣∣=
∣∣∣∣∣XT

j (y − p) + ν
η
n+X

T
j p(1− p)(1− g[η(p− δ)])g[η(p− δ)]

1
n+
∑
i∈n+ g[η(pi − δ)]− θ

∣∣∣∣∣.
This last equation provides the sequence strong rule for the optimization problem (24)
as given by Theorem 3.4. In the special case where k − 1 is set to a constant equal to
λmax, at which all parameters are set to zero, the conditions for discarding irrelevant
predictors are given by∣∣∣∣∣XT

j (y − p̄) + ν
η
n+X

T
j p̄(1− p̄)(1− g[η(p̄− δ)])g[η(p̄− δ)]

1
n+
∑
i∈n+ g[η(p̄i − δ)]− θ

∣∣∣∣∣< 2λ− λmax, (26)

where

λmax = max
j

(∣∣∣∣∣XT
j (y − p̄) + ν

η
n+X

T
j p̄(1− p̄)(1− g[η(p̄− δ)])g[η(p̄− δ)]

1
n+
∑
i∈n+ g[η(p̄i − δ)]− θ

∣∣∣∣∣
)
.

Note that the first part XT
j (y− p̄) is computed using the complete data matrix, while the

second part comes from the definition of the sensitivity and should be computed using
only the positive samples. Inequality 26 represents the condition satisfied by irrelevant
predictors under model 22. The feature selection stage is connected to the model. The
selected predictors lead to classifiers with sensitivity larger than θ, while maximizing the
likelihood function.

3.3.5 Specificity Maximization under Constrained Sensitivity

In this section, we investigate a new classification method based on the optimization of
the specificity subject to the constraint that the sensitivity belongs to a pre-determined
interval of large values such as [90%, 100%]. The loss-function of sens + spec has been
suggested by Liu and Tan [2008]. The consideration of the sensitivity and specificity in
defining loss-functions of classification is motivated by the fact, that the goal in building
binary classifiers is to achieve the largest Youden index (sens + Spec + 1). Thus this
can be directly considered as a loss-function to be optimized instead of considering
the likelihood function. Here, we optimize only the specificity since the sensitivity is
already constrained to the admissible interval. This optimization problem provides the
largest specificity regardless of the value of the sensitivity belonging to the pre-specified
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interval. The L1-norm penalization of the model parameters is used to perform the
feature selection simultaneously. The model is defined as

argmin
β0,β

{
−Spec(β0, β) + λ‖β‖1

}
subject to

Sens(β0, β) ≥ θ, (27)

where θ denotes the lower bound of the sensitivity, β ∈ Rk, β0 ∈ R the model parameters
and λ the LASSO parameter.

The gradient of the objective function is given by
∂−Spec(β0,β)+λ‖β‖1

∂βj
=

1
n−ηX

T
j p̄n−(1− p̄n−)g[−η(p̄n− − δ)](1− g[−η(p̄n− − δ)]) if j = 0

1
n−ηX

T
j p̄n−(1− p̄n−)g[−η(p̄n− − δ)](1− g[−η(p̄n− − δ)]) + λβj(β2

j + ε)−1/2 if j > 0.
The sensitivity and specificity are functions of the model parameters as given by equation
19 and equation 20 respectively. Maximizing the specificity subject to the constraint that
the sensitivity is large is comparable to the maximization of the sum of sensitivity and
specificity subject to the same constraint. This last optimization problem under LASSO
penalty is given by

argmin
β0,β

{
−Sens(β0, β)− Spec(β0, β) + λ‖β‖1

}
subject to

S(β0, β) ≥ θ.

The above equations are optimization problems with a non-linear constraint. These can
be solved similarly to the optimization of the likelihood as presented in the previous
section. We use the log-barrier method as described in the previous section. Note that
these are non-convex problems and that the algorithm should be started at many dif-
ferent points to increase the likelihood of convergence. In solving problem 27, irrelevant
predictors satisfy the conditions∣∣∣∣∣ 1

n−
ηXT

j p̄n−(1− p̄n−)g[−η(p̄n− − δ)](1− g[−η(p̄n− − δ)])

+
ν
n+ηX

T
j p̄n+(1− p̄n+)g[η(p̄n+ − δ)](1− g[η(p̄n+ − δ)])

1
n+
∑
i∈n+ g[η(p̄n+ − δ)]− θ

∣∣∣∣∣≤ 2λ− λmax,

where p̄n− = 1n− ȳn− , p̄n+ = 1n+ ȳn+ , ȳn+ = 1
n+
∑
i∈n+ yi and ȳn− = 1

n−
∑
i∈n− yi,

λmax = max
j

∣∣∣∣∣ 1
n−

ηXT
j p̄n−(1− p̄n−)g[−η(p̄n− − δ)](1− g[−η(p̄n− − δ)])

+
ν
n+ηX

T
j p̄n+(1− p̄n+)g[η(p̄n+ − δ)](1− g[η(p̄n+ − δ)])

1
n+
∑
i∈n+ g[η(p̄n+ − δ)]− θ

∣∣∣∣∣.
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The standard approach in finding classifiers with a pre-specified sensitivity value is to
move the ROC curve up to the point that leads to that sensitivity. That means, the cut-
off is varied until the pre-determined sensitivity is achieved regardless of the specificity.
If there are many cut-offs that provide the same sensitivity, the optimal one leads to the
highest specificity. An illustration of this approach is given by the following example.
We simulate 30 values from the Gamma distributions Γ(10, 2) and Γ(15, 2), respectively.
These values can be viewed as protein levels of a specific protein measured on 30 healthy
patients (Γ(10, 2)) and 30 diseased patients (Γ(15, 2)). To evaluate how well this protein
can discriminate between the two classes, the following ROC-curve is plotted by varying
the cut-off on the whole values. Assume that a 95% sensitivity is required for the results

Figure 23: Sensitivity-preferred cut-off represented by the green dot and the cut-off
maximizing the Youden-index represented by the black triangle.

presented in Figure 23. To achieve this objective, the cut-off leading to the green point
is selected and corresponds to 95% sensitivity and 58% specificity, while the black point
corresponding to the maximization of the Youden-index provides 74% sensitivity and
87% specificity. The interpretation of these results depends on the class importance.
The gain of 21 percentage points in sensitivity provided by this technique may be more
beneficial than the 29 percentage points decline in the specificity.
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3.4 Overview of Classification Strategies by Different Class Im-
portance

This section presents a literature overview of some techniques that have been used to
improve the true classification rate in the most important class in building binary clas-
sifiers. These techniques favor the sensitivity, which leads to a decrease in specificity.
Unlike the strategy of constrained optimization presented above, these methods cannot
guarantee the achievement of a pre-determined sensitivity, while guaranteeing the opti-
mal specificity.

Cost-sensitive methods take in to account the different misclassification costs in build-
ing classifiers. They can be applied to find the best cut-off on the already computed
decision score vector or earlier during the definition of the objective function of classifi-
cation. Consider the following cost matrix: c(i|j) = cij represents the cost of classifying

Prediction Really positive = 1 Really negative = 0
Positive =1 c(1|1) = c11 c(1|0) = c10

Negative =0 c(0|1) = c01 c(0|0) = c00

Table 6: Cost matrix of binary classification.

a sample in class i given its true class is j. The expected costs of classifying a sample x
in the positive and negative class are given respectively by

E(X, 1) =p(y = 1|X = x)c11 + p(y = 0|X = x)c10

E(X, 0) =p(y = 0|X = x)c01 + p(y = 1|X = x)c00,

where p(y = i|X = x) denotes the probability of class i to be the true class of the sample
x. Elkan [2001] suggested selecting the optimal cut-off by minimizing the expected costs.
A sample x is classified as positive if E(X, 1) ≤ E(X, 0). By solving this inequality in
p(y = 1|X = x) and by replacing p(y = 0|X = x) with 1 − p(y = 1|X = x), the
cost-sensitive cut-off δsc is obtained and takes the form:

δsc = c10 − c00

c10 − c00 + c01 − c11
.

Usually, c00 = c11 = 0 and then δ = c10
c10+c01

. The probability cut-off for equal misclassi-
fication costs is 0.5 regardless of the class-frequencies. This may be problematic in the
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case of strongly unbalanced data and could severely disadvantage the smaller of the two
classes.

Misclassification costs can also be considered by using the thresholding strategy as
investigated by Sheng and Ling [2006]. It consists of minimizing the total misclassi-
fication costs instead of the expected costs. Each cut-off results in TP, TN, FP , FN
and a total misclassification cost denoted by Mc = c11TP + c00TN + c01FN + c10FP .
The optimal cut-off which yields to the minimal value of Mc is determined empirically.
However, misclassification costs are rarely available and a cost sensitive cut-off cannot
guarantee the achievement of a pre-determined sensitivity value.

Weighting of the likelihood function belongs to the so called direct cost-sensitive
learning procedures. Each sample is weighted proportionally to the misclassification costs
in its class before being introduced into the optimization algorithm. Often, numbers are
chosen arbitrarily to weight samples. However, the misclassification costs remain the
most interpretable weights in this context. Weighting samples before introducing them
to the learning algorithm has been applied to many classification and regression methods.
The weighted likelihood function in the case of the logistic regression is given by

Lω(β|X) =
n∏
i=1

pyiωi(1− pωi)
1−yi , (28)

where
pyiωi = 1

1 + exp (−β0 − ωiXiβ)
and ωi > 0 denotes the weight assigned to the ith sample. Weighting does not affect the
convexity of the original problem (when ωi = 1, for i = 1 · · ·n). This technique can also
be used to favor the minority class if training sets are strongly imbalanced.

Weighting the Youden-index utility function of classification offers the possibility of
directly weighting the sensitivity and specificity as suggested by Liu and Tan [2008]. The
weighted objective function of the Youden-index is defined by

T (β) = ω1S(β) + ω0Sp(β)
1
n+

∑
i∈n+

ω+
i I(pi > δ) + 1

n−
∑
i∈n−

ω−i I(pi ≤ δ)

≈ 1
n+

∑
i∈n+

ω+
i g[η(pi − δ)] + 1

n−
∑
i∈n−

ω−i (1− g[η(pi − δ)]).
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This optimization problem is convex only under the condition that the data are perfectly
separable through δ. That means pi > δ for i ∈ n+ and pi ≤ δ for i ∈ n− (Liu and Tan
[2008]).

Using misclassification costs in any way to weight samples during building of classi-
fiers is a reasonable approach for the purpose of considering different class importance.
However, an objective and accurate evaluation of misclassification costs in the medical
context is a very difficult task. For example, misclassification cost evaluation in the
context of patient diagnostic involves the quantification of the impact of the classifica-
tion results on patient health, life quality, and life expectancy, in addition to economical
considerations. In the same context of classification with different class importance, Jap-
kowicz and al. [2000] and Seiffert et al. [2008] suggested to adjust the class frequencies
by changing the baseline frequencies of the training set to favor the most important class
(Sampling methods). However, none of these methods explicitly considers the relevant
information that a pre-determined lower bound of the sensitivity value must hold and
thus cannot guarantee the achievement of such a pre-determined acceptable sensitivity.
The cut-off variation to find the acceptable sensitivity remains the unique technique that
guarantees pre-specified sensitivity values and will be compared to the new strategy of
constrained optimization of loss functions of binary classification as presented above.
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3.5 Results

We implement the optimization equations (22) and (27) in the freeware software R
(R Core Team [2013]). The package alabama (Augmented Lagrangian and Adaptive
Barrier Minimization Algorithm) consists of functions for optimizing smooth non- linear
objective functions with constraints. Here, linear and non-linear constraints are allowed
(Ravi [2011]). The sensitivity is a non-linear function of the model parameters. We
optimize the likelihood function and the specificity with LASSO penalty, subject to the
constraint that the sensitivity is larger than 90%. The achieved specificity is compared
to the specificity provided by the method described in Jung et al. [2010] which is to
compute the disease probability, then search for the cut-off leading to 90% sensitivity
and finally to derive the corresponding specificity (specificity L1). Here, the disease
probabilities are computed by using a 10 fold cross-validation of the logistic regression
model with LASSO penalty. To the best of our knowledge, this method is the unique
method that guarantees a sensitivity value in a pre-determined interval, aside from the
trivial method of assigning all samples to the disease class. Functions in alabama require
as input the objective function and its gradient as well as the inequality function and
its Jacobian matrix as derived by the definition of the optimization equation. We use a
10-fold cross-validation to predict the class-probabilities and focus on the classification
performance of sensitivity and specificity.

Gene expression data

We build 5 different classifiers from the gene expression data of endometriosis patients
as described in the data material section by using the same number of predictors as the
corresponding LASSO. The new technique is designed to return the largest specificity
given that the sensitivity is larger than 90%, since the optimization is performed in that
interval. The results presented in Table 7 meet this requirement. The new strategy,
compared to the ROC based decision making, shows a clear gain in specificity in almost
all cases (see columns specificity and specificity L1). For example, in classifying the group
of patients with pain (G11∪G21) versus the patient population without pain (G12∪G22),
the specificity improved from 16.2% to 40.4%. There is no significant difference between
the results of the likelihood optimization and the specificity optimization as evident
by comparing Table 7 and Table 8. Both methods did not outperform the traditional
method in the data set with G11 and G22. This can be explained by the non-convexity
of the constraint in some data situations. In this case, the algorithm must be started
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Likelihood Optimization under constrained Sensitivity
Data sensitivity specificity predictors specificity L1 δ

G11vs.G12 0.904 0.407 20 0.216 0.68
(G11 ∪G21)vs.(G12 ∪G22) 0.922 0.324 20 0.162 0.66
G11vs.(G12 ∪G21 ∪G22) 0.920 0.372 20 0.117 0.62

(G11 ∪G12)vs.(G21 ∪G22) 0.922 0.333 25 0.0833 0.58
G11vs.G22 0.921 0.5 10 0.571 0.7

Table 7: This table presents the specificity of the logistic regression with LASSO penalty
at 90% sensitivity denoted by specificity L1 and the value of the sensitivity and specificity
provided by the new approach of constrained optimization of the likelihood function
subject to the constraint that the sensitivity is larger than 90%. δ denotes the probability
cut-off used in defining the sensitivity.

Specificity Optimization under constrained Sensitivity
Data sensitivity specificity predictors specificity L1 δ

G11vs.G12 0.904 0.370 20 0.216 0.65
(G11 ∪G21)vs.(G12 ∪G22) 0.900 0.351 25 0.162 0.45
G11vs.(G12 ∪G21 ∪G22) 0.904 0.372 25 0.117 0.55

(G11 ∪G12)vs.(G21 ∪G22) 0.933 0.333 30 0.0833 0.5
G11vs.G22 0.900 0.5 20 0.571 0.7

Table 8: This table presents the specificity of the logistic regression with LASSO penalty
at 90% sensitivity denoted by specificity L1 and the new value of the sensitivity and
specificity when the specificity function is optimized subject to the constraint that the
sensitivity is greater than 90%.

at multiple points. No classification rule should outperform the new classifiers based on
the way they are designed.
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Protein data

We apply the new strategy to the protein data described in the data material section.
To evaluate the results of the new method, the traditional LASSO is also applied and
the corresponding ROC curve is plotted. We compute the specificity at 90% sensitivity
and compare this with the specificity provided by the new method.
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Figure 24: ROC curve representing the results of the optimization of the likelihood
function subject to the constraint that the sensitivity is larger than 90%. The curve
represents the results provided by LASSO and is obtained by varying the cut-off value.
The new classifier is represented by the triangle.

The new strategy leads to 93.9% sensitivity and 57.1% specificity while the traditional
method leads to 42.8% specificity at 90% sensitivity.
The specificity optimization provides lower classification performance compared to that
of the likelihood optimization. The specificity at 90% is 50% which is larger than the
42% specificity provided by LASSO and cut-off variation.
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Figure 25: ROC curve representing the results of the optimization of the specificity
function subject to the constraint that the sensitivity is larger than 90%. The curve
represents the results provided by LASSO and is obtained by varying the cut-off value.
The new classifier is represented by the triangle.

3.5.1 Outlook

The general formulation of the classification rules bases on constrained optimization of
the objective function is giving by

β̂Bridge = argmin
β0,β

f(β0, β) + λ‖β‖ν subject to (29)

Sens(β0, β) ≥ θ,

where ‖β‖ν corresponds to the Lν-norm of the model parameters with ν > 0, f(β0, β) is
a smooth objective function of classification, S(β0, β) denotes the sensitivity as a func-
tion of the model parameters and θ represents the lower bound of acceptable sensitivity
values. We are interested in finding a convex approximation of S(β0, β) in the context
of logistic regression and will investigate this strategy for other objective functions of
classification.

The Bridge regression introduced by Frank and Friedman [1993] in the context of
linear regression is the generalization of the LASSO regression involving the Lµ-norm
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penalty of the model’s parameters, where µ > 0. We have investigated the Bridge
estimates in the case of logistic regression subject to a constraint on the sensitivity. The
optimization equation is defined as

β̂Bridge = argmin
β0,β

n∑
i=1

{
−yi log(pi)− (1− yi) log(1− pi)

}
+λ‖β‖µ, subject to (30)

Sens(β0, β) ≥ θ,

where ‖β‖µ = ∑k
j=1 |βj|µ. It contains the Ridge estimates (µ = 2) which are usually

used to deal with correlation between predictors (Hoerl and Kennard [1970]) as well as
the more sparse logistic regression model that has been studied by Liu et al. [2007] for
0 < µ < 1.
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4 Conclusions

The main contribution of this thesis starts in section 2, where we investigate strate-
gies to predict patient recruitment time, study costs and power variation in enrichment
studies. We assume that only patients who are classified as marker-test positive after
passing the screening and marker-test procedures are enrolled for the trial. In section
2.1, we develop Poisson processes for modeling patient recruitment in enrichment trials.
These processes consider the prevalence of biomarker-positive patients in the unselected
patient population, the number of active clinical trial centers and their capacities, as
well as the marker-test characteristics. Based on the suggested models, we derive the
distributions of recruitment time analytically. Estimates of the recruitment time are
relevant in determining the feasibility of a study and in planning deadlines. We examine
the suggested Poisson processes under different assumptions about the recruitment rate
(constant, Gamma distributed,...). Marker prevalence is one of the most relevant fac-
tors in evaluating recruitment time. The larger the marker prevalence, the shorter the
recruitment time.

In section 2.2, we propose a Bayesian approach for progressively updating study
components like marker prevalence and overall recruitment rate. Updates of model pa-
rameters in ongoing stage allow a more accurate prediction of the remaining time until
the end of the recruitment process. Updated estimates of the remaining time may help
in deciding whether to add more centers to accelerate the recruitment process. We pro-
pose appropriate priors for the change points, which can be detected by subsequently
computing their posterior distributions. In section 2.3, we suggest a model for study
costs evaluation that considers the screening and marker-test costs, the care costs af-
ter recruitment, and a time component. Time is a crucial cost factor which includes
personnel, infrastructure, etc. We derive the distribution of patients passing through
the screening and test phases, then the corresponding total expenditures as a function
of the marker prevalence. The lower the marker prevalence, the longer the study time,
thus the higher the costs. Some of our cost and time models consider the sensitivity
and specificity of the marker-test to be set to one if they are not available. We find the
impact of enrolling false positive patients may decrease the study’s power.

Section 3 investigates another problem met not only in conducting enrichment stud-
ies, but more generally in dealing with binary classification. In this section, we introduce
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a new approach to building binary classifiers while controlling the sensitivity as the true
classification rate in the most important class. To assess binary classification rules, one
must consider the difference in misclassification costs between the two classes. In some,
if not most, diagnostic situations, it is crucial to include the control of the sensitivity in
the classification building stage and to reject the classifiers which lead to a sensitivity
under a pre-determined threshold (for example 90%). Our new strategy is based on
optimizing the objective function of classification, under the constraint that the sensi-
tivity belongs to an interval of admissible values such as [90, 100]%. A traditional issue
when using high-dimensional data, such as microarray gene expression data, is to reduce
the number of predictors and provide classifiers based on a reasonable number of predic-
tors. We add a LASSO penalty to the optimization equation to select relevant predictors.

Our new strategy is illustrated in section 3.3 within the context of logistic regression.
Here we investigate the optimization of two different objective functions of binary clas-
sification: the likelihood function and an objective function based on the Youden-index
(sensitivity+specificity-1). The sensitivity and specificity in their original form are dis-
crete functions of the model parameters, which are then approximated to a differentiable
function through the generalized logistic function. The two objective functions are op-
timized subject to both the constraint that the sensitivity is greater than 90% and a
constraint on the L1-norm of the model parameters. This two-constraint-optimization
problem is resolved using an internal point method (log-barrier), which searches for the
optimal solution exclusively in the feasible region.

Optimizing objective functions with constrained sensitivity when building classifica-
tion rules in the context of disparate class importance has its advantages. It does not,
for example, require the misclassification costs, which are rarely available, although it
is often clear that they are different between classes. In addition, classification methods
that consider the misclassification costs as an indicator of the difference in importance
between the classes do not guarantee the achievement of pre-determined sensitivity val-
ues. Our approach finds classifiers with the largest specificity and the desired clinical
acceptable sensitivity. This information is relevant and is therefore considered earlier in
defining the optimization equation rather than later.

A traditional way of selecting classifiers with pre-determined sensitivity is to vary the
cut-off on the predicted decision score vector and select the one that leads to the desired
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sensitivity. In other words, the optimization is performed in classes thought to equal
importance, although they do not. The optimization equations in the new approach are
designed to provide the best classifier with a clinically admissible sensitivity value. This
objective is supported by the real world examples detailed in the results section.
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A Poisson Processes

In deterministic processes the number of observations changes over time t according to
a known function (e.g., 3t2 − 1) and not a probability distribution. This is rarely the
case in real life, where almost all processes have a certain degree of randomness.

Definition A.1 Stochastic process
{N(t); t ∈ [0,∞)} is a family of random variables describing an empirical process whose
development is governed by probabilistic laws. The parameter t often describes the time
and may be either discrete or continuous. N(t) represents the cumulated observations
from 0 to t and is a random variable, which can be real valued or complex (t ∈ C) and
may take the form of a vector.

This thesis focuses on discrete processes such as the process of patient recruitment in
clinical trials which is observed at discrete times. Discrete process have observations in
the set of non-negative integers. It assumed that the observation time space is divided in
equispaced intervals of time (day, week, month,...). The observations at the tth time unit
are given by Nt = N(t)−N(t− 1). The main task in dealing with stochastic processes
is to use available data points N1, N2, · · · , Nτ to forecast the future observations of the
process (Nτ+1, Nτ+2, · · · ). Many classes of stochastic processes have been developed and
describe well a wide range of real life processes. Empirical processes with a given stability
called stationarity usually require less parameters by the modeling than non-stationary
processes whose expectation and variability change over time.

Definition A.2 Stationary processes
A stochastic process is stationary if it varies around a fixed mean. It is called strictly sta-
tionary if the joint distribution of τ = 1, 2, 3, · · · successive observations does not depend
on the time interval of selection. For example, for k = 1, 2, · · · the joint distribution of
N1, N2, · · · , Nτ is equal to that of N1+k, N2+k, · · · , Nτ+k (Box et al. [2013]).

If the probability distribution of Nt is the same for all t, the samples N1, N2, · · · , Nτ can
be used to estimate the mean and variance of the process
µ̄N = 1

τ

∑τ
t=1Nt and σ̂2

N = 1
τ

∑τ
t=1(Nt − N̄)2. The covariance of Nt and Nt+k defined as

Γk = cov(Nt, Nt−k) = E[(Nt − µ)(Nt+k − µ)]
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is called the autocovariance at lag k and then the autocorrelation at lag k is given by:

corr(Nt, Nt+k) = E[(Nt − µN)(Nt+k − µN)]√
E[(Nt − µN)2]E[(Nt+k − µN)2]

= E[(Nt − µN)(Nt+k − µN)]
σ2
N

.

The representation of the autocorrelation as a function of lag is called the autocorrela-
tion function. For any stationary process, the autocovariance cov(Ni, Nj)i,j∈{1,2,···τ} and
autocorrelation matrix corr(Ni, Nj)i,j∈{1,2,···τ} of τ successive observations are positive-
definite (Box et al. [2013]).

A.1 Definitions

Let {N(t); t ∈ [0,∞)} be a stochastic process so that the observations in two different
time intervals are independent and the probability of observing more than one event in
a very small time interval tends to zero: P [N(t + h) − N(t) ≥ 2] = P [N(h) ≥ 2] =
o(h) for h→ 0, where o(h) denotes a function of h that tends to zero faster than h itself.
Such a process is called a Poisson process. Poisson processes have been used in modeling
count data which take non-negative integer values (For example, the birth process or the
patient recruitment process in a clinical trials). It is assumed that N(0) = 0 and N(t)
is nondecreasing in t, where N(t) denotes the total number of events observed from 0 to
t (King and Zeng [2001]).

Definition A.3 Homogeneous Poisson process
A Poisson process is called homogeneous if there is a constant λ > 0 called intensity, so
that the probability to observe k events in a time interval (0, t) is given by:

P (N(t) = k) = e−λt(λt)k
k! k = 0, 1, · · · .

In homogeneous Poisson processes the mean and the variance are equal: E(N(t)) =
V ar(N(t)) = λt.

The intensity λ may be a continuous function of the observation time. In this case,
the mean between two positive numbers a and b is the integral of the intensity in that
interval λ(t) =

∫ b
a λ(τ), and the probability density P (N(t) = k) is given by:

P (N(t) = k) =
exp

{
−
∫ t

0 λ(τ)dτ
}[∫ t

0 λ(τ)dτ
]k

k! .
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E[N(t)] =
∫ t
0 λ(τ)dτ and the variance is defined by:

V ar[N(t)] =
∞∑
k=0

k2
exp

{
−
∫ t

0 λ(τ)dτ
}[∫ t

0 λ(τ)dτ
]k

k!

= E[N(t)]
∫ t

0
λ(τ)dτ +

∫ t

0
λ(τ)dτ.

Remark A.4 The generalization of λ to λ(t) does not affect the form of the distribution,
but the mean and variance are now different (E[N(t)] 6= V ar[N(t)]).

The following property of Poisson processes is important when a unique process is con-
sidered that consists of the sum of a given number of parallel Poisson processes.

Proposition A.5 Sum of independent Poisson processes
Let {N1(t); t ∈ [0,∞)} and {N2(t); t ∈ [0,∞)} be two independent Poisson processes
with expectations λ1(t) and λ2(t), respectively. The process {N1(t) + N2(t); t ∈ [0,∞)}
is also a Poisson process with intensity λ1(t) + λ2(t) (King and Zeng [2001]).

This property states that a multi-center recruitment process can be investigated under
weak conditions as a unique Poisson process. This is particulary relevant for a large
number of centers, where some centers are likely to recruit zero patients (Anisimov
and Fedorov [2007],Mijoule et al. [2012]). It can be extended to any finite sum using
induction. The resulting process for an infinite sum of Poisson processes is given by the
countable additive theorem.

Theorem A.6 Countable additive theorem
Let Nt, t = 0, 1, 2, · · · be independent random variables, and assume Nt is Poisson
distributed with density p(λt) for each t.
If Λ = ∑∞

t=1 λt converges, then N = ∑∞
t=1Nt converges with probability 1, and N is

Poisson distributed with intensity Λ and density p(Λ). If, on the other hand, Λ diverges,
then N diverges with probability 1.

Proof A.7 See King and Zeng [2001].

A.1.1 Some Connections to other Distributions

Let Ti be the waiting time between the (i−1)st and the ith events of a count process and
T (n) be the waiting time until observing the nth event. That means T (n) = ∑n

i=1 Ti. If
the event times Ti, i = 1, 2, · · · are independent exponentially distributed with parameter
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λ > 0 constant, then {N(t); t ∈ [0,∞)} is a homogenous Poisson process with parameter
λ. Conversely, if {N(t); t ∈ [0,∞)} is a homogenous Poisson process with intensity λ, the
waiting time between events are independent exponentially distributed with parameter
λ. Note that the probability density of an exponentially distributed random variable T
is defined as

P (T = t) = λe−λt,

for t > 0 and λ > 0.
The waiting time until n events occur T (n) is a sum of independent exponentially dis-
tributed variables, which corresponds to the Erlang distribution. The Erlang distri-
bution is a Gamma distribution where the shape parameter is a non-negative integer:
T (n) ∼ Erlang(n, λ). Homogenous Poisson processes are relative simple to manage, but
may lead to poor predictions when they are used for the modeling of an over-dispersed
process. Over-dispersion occurs when the sample variance is greater than the theoretical
variance.

Definition A.8 Poisson process with Gamma distributed intensity
The Poisson process with Gamma distributed intensity has been investigated by Anisimov
and Fedorov [2007] for modeling of the patient recruitment process in clinical trials.
{N(t); t ∈ [0,∞)} is a Poisson process with parameter λ that varies randomly according
to a Gamma distribution. The probability density f(λ) of a Gamma distributed variable
λ ∼ Gamma(α, β) is given by:

f(λ) =


βα

Γ(α)λ
α−1e−βλ if λ > 0, α > 0, β > 0

0 if λ ≤ 0,

where Γ(α) denotes the Gamma function defined as
Γ(α) =

∫∞
0 yα−1e−ydy (Γ(α + 1) = αΓ(α)).

Remark A.9 Let {N(t); t ∈ [0,∞)} be a Poisson process with Gamma distributed in-
tensity λ. The conditional distribution of N(t) given a value of λ is a Poisson distribution
with density defined as

P (N(t) = k|λ) = e−λt(λt)k
k! , k = 1, 2, · · ·

=
(
k + α− 1

k

)(
t

β + t

)k(
β

β + t

)α
.
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N(t) is Negative Binomial distributed with parameters

r = α, p = β

β + t

The mean and the variance are given by

E[N(t)] = α
t

β
,

and
V ar(N(t)) = α

t

β

(
1 + t

β

)
.

The variance is greater than the mean, since

V ar(N(t)) = α
t

β
+ α

t2

β2

= E[N(t)] + α
t2

β2 ≥ E[N(t)].

The Negative Binomial distribution is over-dispersed compared to the Poisson distribu-
tion. It provides an additional parameter that can be useful in modeling the variance.

A.1.2 Poisson Autoregressive Process

Poisson autoregressive processes are Poisson processes with intensity defined as a function
its past observations and the past values of the intensity. Such processes have been
investigated by Ferland et al. [2006] and Fokianos et al. [2009] and have the advantage
of taking into account the past information about process progression. The mean and
variance not only depend on the randomness, but there is also a feedback mechanism.

Definition A.10 Poisson linear autoregressive models
Let Ft−1 be a σ-field generated from {λ0, N0, N1, · · · , Nt−1}. A Poisson linear autore-
gressive model of order p, q, where p = 1, 2 · · · and q = 1, 2, · · · is defined as:

Nt|Ft−1 ∼ Pois(λt)

λt = β0 +
p∑
i=1

βiB
iNt +

q∑
j=1

αjB
jλt, (31)

where B denotes the backward shift operator (B1Nt = Nt−1) and λ0, N0 are fixed and
positive constants (Ferland et al. [2006]). The parameters of the models are assumed
to be positive, i.e. β0, β1 · · · βp, α1, · · · , αq ≥ 0. A necessary condition that the model
parameters must satisfy for stationary has been derived by Ferland et al. [2006]:

p∑
i=1

βi +
q∑
j=1

αj < 1 (32)

Stationarity means the expectation does not change over time.
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Remark A.11
This model is a discrete version of GARCH (Generalized Autoregressive Conditional Het-
eroscedasticity) models investigated by Bollerslev [1986] and has been called INGARCH
for integer-GARCH.

The sparsest INGARCH process corresponds to p = q = 1 and is defined by

Nt|Ft−1 ∼ Pois(λt)

λt = β0 + β1Nt−1 + α1λt−1. (33)

The mean of a stationary process is obtained by solving the equation λ = β0+β1λ+α1λ⇒
λ = β0/(1− β1 − α1).
The auto-covariance to lag k and the variance of this process have been derived in Ferland
et al. [2006]:

Cov(Nt, Nt+k) =


[1−(β1+α1)2+β2

1 ]λ
1−(β1+α1)2 if k = 0

β1[1−α1(β1+α1)](β1+α1)k−1λ
1−(β1+α1)2 if k ≥ 1.

The variance is given by

σ2 = λ

(
1 + β2

1
1− (β1 + α1)2

)
.

Similar to the Poisson process with Gamma distributed intensity, the variance of the
INGARCH process is greater than its mean. The general form of Poisson autoregressive
models is obtained by λt = f(λ0, λ1, · · · , λt−1) + g(N0, N1, · · · , Nt−1), where f and g are
given functions with values in R+ (Fokianos et al. [2009]).

A.2 Other Definitions

Let us consider a population of n unselected patients. Let us assume that n+ of them
are marker-positive and n− = n− n+ are marker-negative. Consider a marker-test that
classifies TP ≤ n+ of the marker-positive patients as positive and TN of the marker-
negative patients as negative.
The prevalence of marker positive patients in the unselected patient population is es-
timated by N+

N
= prevalence.

Accuracy: Represents the proportion of the overall true classified samples (TP+TN
n

).
Here, the best classifier leads to maximal accuracy. The accuracy depends on the class
frequencies and its interpretation may be misleading if the classes are strongly imbal-
anced. For example, if n+ = 95 and n− = 5, a trivial classifier that assigns all patients
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to the diseased class will have 95% accuracy.
Sensitivity: Is defined as TP

n+ and denotes the proportion of diseased patients correctly
classified as diseased.
Specificity: Is given by TN

n− and represents the proportion of healthy patients correctly
classified as healthy.
The positive predictive value (PPV) is defined as the proportion of positive samples
in the subpopulation of test positive samples. The PPV depends on the sensitivity,
the specificity and the prevalence

PPV = Sens Prevalence

Sens Prevalence+ (1− Spec)(1− Prevalence) .

The negative predictive value (NPV) is defined as the proportion of negative samples
in the subpopulation of test negative samples. The NPV depends on the sensitivity,
the specificity and the prevalence

NPV = Spec (1− Prevalence)
Spec (1− Prevalence) + (1− Sens) Prevalence.
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A.3 R-Code to the constrained Optimization of the Likelihood

require(alabama)

#************************************************************************

# Generalized logistic function

#************************************************************************

glog <- function(x){

return(1/(1+exp(-10*x)))

}

#************************************************************************

# Data standardazation

#************************************************************************

standardata <- function(dat){

.standard <- function(column){

column <- (column-mean(column))/sd(column)

}

daten <- dat

newdata<- cbind(apply(daten[,-ncol(daten)],2,.standard),

daten[,ncol(daten)])

return(newdata)

}

#************************************************************************

# T Test screening for verification of the strong rules

#************************************************************************

ttest <- function(dat){

te <- numeric()

for(i in 1:(ncol(dat)-1)){

te[i] <- t.test(dat[,i][dat[,ncol(dat)]==1],

dat[,i][dat[,ncol(dat)]==0])$p.value

}

orders <- order(te)

signifdat <- cbind(dat[,which(te < 0.05)],dat[,ncol(dat)])

return(signifdat)

}
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#************************************************************************

# Max lambda for which all predictors are setting to zero

#************************************************************************

maxlambda <- function(cutof,minsen=0.9,data,eta=10,bpar=0.01){

nc <- ncol(data); nr <- nrow(data); dat <- data

y <- dat[,nc]; pbar <- rep(mean(y),nr)

lambdas <- numeric()

matdata <- as.matrix(dat[,-nc])

datone <- dat[dat[,ncol(dat)]==1,]

datcond <- datone[,-ncol(datone)]

datenf <- as.matrix(datcond)

pbarsens <- pbar[1:nrow(datone)]

a <- glog(eta*(pbarsens-cutof))

inter <- t(matdata)%*%(y-pbar)

grads <- eta*bpar*t(datenf)%*%(pbarsens*(1-pbarsens)*

(1-a)*a)/((mean(a)-minsen)*sum(y))

return(max(drop(abs(-inter-grads))))

}

#************************************************************************

# Strong rules (See Tibshirani 2001)

#************************************************************************

strulesign <- function(lambda, cutof,minsen,data,eta, bpar=0.01){

nc <- ncol(data); nr <- nrow(data); dat <- data

y <- dat[,nc]; pbar <- rep(mean(y),nr); lambdas <- numeric()

matdata <- as.matrix(dat[,-nc])

datone <- dat[dat[,ncol(dat)]==1,]

datcond <- datone[,-ncol(datone)]

datenf <- as.matrix(datcond)

pbarsens <- rep(mean(y),nrow(datone))

a <- glog(eta*(pbarsens-cutof))

inter <- t(matdata)%*%(y-pbar)

grads <- eta*bpar*t(datenf)%*%(pbarsens*(1-pbarsens)*

(1-a)*a)/((mean(a)-minsen)*sum(y))

lambdas <- drop(abs(-inter-grads))

signdata <- dat[,which(lambdas >= 2*lambda - max(lambdas))]
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datasign <- cbind(signdata,study_group=dat[,nc])

return(datasign)

}

#**********************************************************************

# This function compute the crossvalidtion of the likelihood function

# optimization subject to the constraint that the sensitivity is larger

# than theta. *********************************************************

cv_lik<-function(data, barrier=0.001, theta=0.9, sigmoid=10, cutoff=0.5,

fold=10, it=10, np=10, standard=TRUE, method="auglag"){

if(standard==TRUE){

data <- standardata(data)

} else{

data <- data

}

sdata <- data

set.seed(6)

n <- trunc(nrow(data)/fold); index <- sample(nrow(data))

t.labels <- as.numeric(data[,ncol(data)][index])

prediction <- numeric(); parameters <- numeric()

# CV

for(k in 1:fold){

train <- data[-index[(n*(k-1)+1):(k*n)],]

if (ncol(train) < 3){

train <- train

test <- sdata[index[(n*(k-1)+1):(k*n)],]

colnames(test)[ncol(test)] <- "study_group"

test <- test[,colnames(train)]

test <- as.matrix(cbind(rep(1,n),test[,-ncol(test)]))

}else{

maxl <- maxlambda(cutof=cutoff,minsen=theta,data=train,eta=sigmoid,
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bpar=barrier)# maxlambda

lamb <- seq(from = maxl, to = maxl/2, length.out=50)

pred <- 1; j <- 1

while(pred < np){

lambda <- lamb[j]

tr <- strulesign(lambda=lambda, cutof=cutoff, minsen=theta,

data=train, eta=sigmoid, bpar=barrier)

pred <- ncol(tr)

j <- j + 1

}

lambda <- lamb[j-1]

train <- strulesign(lambda=lambda, cutof=cutoff, minsen=theta,

data=train, eta=sigmoid, bpar=barrier)

test <- sdata[index[(n*(k-1)+1):(k*n)],]

colnames(test)[ncol(test)] <- "study_group"

test <- test[,colnames(train)]

test <- as.matrix(cbind(rep(1,n),test[,-ncol(test)]))

}

if(ncol(train)==1){

probapred <- rep(1,nrow(test))

}else{

star <- c(1,rep(0.001,(ncol(train)-1)))

# likelihood function

loglik <- function(para){

lambda <- lambda

daten <- train

nr <- nrow(daten)

nc <- ncol(daten)

datenf <- as.matrix(cbind(rep(1,nr),daten[,-nc]))

y <- daten[,nc]

x <- datenf%*%para

lih <- t(x)%*%(y-1) - sum(log(1+exp(-x)))

return(-lih + lambda*sum((para[-1]^2 + 0.001)^0.5))
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}

# gradient of the likelihood function

gradien <- function(para){

lambda <- lambda

daten <- train

nr <- nrow(daten)

nc <- ncol(daten)

datenf <- as.matrix(cbind(rep(1,nr),daten[,-nc]))

y <- daten[,nc]

p <- 1/(1 + exp(-datenf%*%para))

return(as.numeric(-t(datenf)%*%(y-p) + lambda*

c(0, para[-1]/sqrt(para^2[-1] + 0.0001))))

}

# Constraint on the sensitivity

constr <- function(para){

daten <- train; sigmoid <- sigmoid; cutoff <- cutoff

lambda1 <- lambda; minsens <- theta; h <- rep(NA, 1)

datone <- daten[daten[,ncol(daten)]==1,]

datcond <- datone[,-ncol(datone)]

datenf <- as.matrix(cbind(rep(1,nrow(datone)),datcond))

predictor <- drop(datenf%*%para)

sens <- sum(1/1+exp(-sigmoid*(predictor-log(cutoff/(1-cutoff)))))

sens <- sens/nrow(datone)

h[1] <- sens - minsens

return(h)

}

# Jacobien matrix of the constraint

jacob <- function(para){

daten <- train

sigmoid <- sigmoid

cutoff <- cutoff

lambda <- lambda

datone <- daten[daten[,ncol(daten)]==1,]

ncl <- ncol(datone)

datcond <- datone[,-ncl]
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datenf <- as.matrix(cbind(rep(1,nrow(datcond)),datcond))

jac <- matrix(nrow=1,ncol=ncol(datenf))

x <- drop(datenf%*%para)

ge <- 1/(1 + exp(-sigmoid*(x - cutoff)))

jac[1,] <- sigmoid*(1/nrow(datcond))*t(datenf)%*%(ge*(1-ge))

return(jac)

}

inn <- auglag(par=star, fn=loglik, gr = gradien,hin = constr,

hin.jac = jacob)

#inn <- constrOptim.nl(par=star, fn=loglik, gr = gradien,

#hin = constr, hin.jac = jacob)

probapred <- 1/(1+exp(-test%*%inn$par))

}

prediction <- c(prediction,as.numeric(probapred))

}

if(n*fold==nrow(data)){

sensitivity <- sum(ifelse(prediction >= cutoff &

t.labels == 1,1,0))/sum(t.labels)

specificity <- sum(ifelse(prediction < cutoff &

t.labels == 0,1,0))/sum((1-t.labels))

} else{

train <- data[index[1:(n*fold)],]

if (ncol(train) < 3){

train <- train

test <- sdata[index[(n*(k-1)+1):(k*n)],]

colnames(test)[ncol(test)] <- "study_group"

test <- test[,colnames(train)]

test <- as.matrix(cbind(rep(1,n),test[,-ncol(test)]))

}else{

maxl <- maxlambda(cutof=cutoff,minsen=theta,data=train,

eta=sigmoid,bpar=barrier)

lamb <- seq(from = maxl, to = maxl/2, length.out=50)

pred <- 1; j <- 1

while(pred < np){

lambda <- lamb[j]
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tr <- strulesign(lambda=lambda, cutof=cutoff, minsen=theta, data=train,

eta=sigmoid, bpar=barrier)

pred <- ncol(tr)

j <- j + 1

}

lambda <- lamb[j-1]

train <- strulesign(lambda=lambda, cutof=cutoff, minsen=theta, data=train,

eta=sigmoid, bpar=barrier)

test <- sdata[index[(n*fold+1):nrow(data)],]

colnames(test)[ncol(test)] <- "study_group"

test <- test[,colnames(train)]

test <- as.matrix(cbind(rep(1,nrow(test)),test[,-ncol(test)]))

}

if(ncol(train)==1){

probapred <- rep(1,nrow(test))

}else{

star <- c(0,rep(0.001,(ncol(train)-1)))

loglik <- function(para){

lambda <- lambda; daten <- train

nr <- nrow(daten); nc <- ncol(daten)

datenf <- as.matrix(cbind(rep(1,nr),daten[,-nc]))

y <- daten[,nc]; x <- datenf%*%para

lih <- t(x)%*%(y-1) - sum(log(1+exp(-x)))

return(-lih + lambda*sum((para[-1]^2 + 0.001)^0.5))

}

gradien <- function(para){

lambda <- lambda; daten <- train

nr <- nrow(daten); nc <- ncol(daten)

datenf <- as.matrix(cbind(rep(1,nr),daten[,-nc]))

y <- daten[,nc]

p <- 1/(1 + exp(-datenf%*%para))

return(as.numeric(-t(datenf)%*%(y-p) +

lambda*c(0, para[-1]/sqrt(para^2[-1] + 0.0001))))
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}

constr <- function(para){

daten <- train; sigmoid <- sigmoid

cutoff <- cutoff; lambda1 <- lambda

minsens <- theta; h <- rep(NA, 1)

datone <- daten[daten[,ncol(daten)]==1,]

datcond <- datone[,-ncol(datone)]

datenf <- as.matrix(cbind(rep(1,nrow(datone)),datcond))

predictor <- drop(datenf%*%para)

sens <- sum(1/1+exp(-sigmoid*(predictor-log(cutoff/(1-cutoff)))))

sens <- sens/nrow(datone)

h[1] <- sens - minsens

return(h)

}

jacob <- function(para){

daten <- train; sigmoid <- sigmoid

cutoff <- cutoff; lambda <- lambda

datone <- daten[daten[,ncol(daten)]==1,]

ncl <- ncol(datone); datcond <- datone[,-ncl]

datenf <- as.matrix(cbind(rep(1,nrow(datcond)),datcond))

jac <- matrix(nrow=1,ncol=ncol(datenf))

x <- drop(datenf%*%para)

ge <- 1/(1 + exp(-sigmoid*(x - cutoff)))

jac[1,] <- sigmoid*(1/nrow(datcond))*t(datenf)%*%(ge*(1-ge))

return(jac)

}

inn <- auglag(par=star, fn=loglik, gr = gradien, hin = constr,

hin.jac = jacob)

#inn <- constrOptim.nl(par=star, fn=loglik, gr = gradien, hin = constr,

#hin.jac = jacob)

probapred <- 1/(1+exp(-test%*%inn$par))
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}

prediction <- c(prediction,as.numeric(probapred))

sensitivity <- sum(ifelse(prediction >=cutoff &

t.labels == 1,1,0))/sum(t.labels)

specificity <- sum(ifelse(prediction < cutoff &

t.labels == 0,1,0))/sum((1-t.labels))

}

allpred <- list(sensitivity=sensitivity,specificity=specificity,

prediction=prediction,t.labels=t.labels,parameters=parameters)

return(allpred)

}

#result1 <- cv_lik(data=daten,theta=0.9,sigmoid = 15,

#cutoff=0.62,standard=TRUE)

# Find optimal cut-off and evt. other parameters such as sigmoid parameter

optimr <- function(data = daten, theta = 0.9, sig = 10, cutf,

npreds = c(10,20,30)){

res <- numeric()

for(i in 1:length(sig))

{

a <- sig[i]

for(j in 1:length(npreds))

{

b <- npreds[j]

for(k in 1:length(theta))

{

d <- theta[k]

for(l in 1:length(cutf))

{

cu <- cutf[l]

result1 <- cv_lik(data = daten,theta = d, sigmoid = a,

cutoff = cu, standard = TRUE, np = b)

if(result1$sensitivity > 0.89 & result1$specificity > 0.1)

{
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vec <- c(result1$sensitivity, result1$specificity, a, b, d,cu)

res <- rbind(res, vec)

true_labels <- result1$t.labels

predicted_prob <- result1$prediction

}

else

{

vec <- c(1, 0, a, b, d,cu)

res <- rbind(res, vec)

predicted_prob <- rep(1,nrow(data))

true_labels <- daten[,ncol(data)]

}

}

}

}

}

best1 <- res[which(res[,2] == max(res[,2]))[1],]

return(list(SensSpec=best1,true_labels=true_labels,

predicted_prob=predicted_prob))

}

npreds <- c(15,20,24)

cutf <- seq(0.4,0.7,by=0.02)

#***************************************************************

# Load the full data set and save it in daten as data frame.

#***************************************************************

bestr <- optimr(data = daten, theta = 0.9, sig = 10,

cutf=cutf, npreds = npreds)

A.4 R-Code to constrained Optimization of the Specificity

#*******************************************************************

# This programs computes the specificity optimization subject to the

# constraint that the sensitivity is larger than theta = 90% *******

# The main package is alabama **************************************
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require(alabama)

# generalized logistic function ************************************

glog <- function(x){

return(1/(1+exp(-x)))

}

# Function for data standardization, similar to scale **************

standardata <- function(dat){

.standard <- function(column){

column <- (column-mean(column))/sd(column)

}

daten <- dat

newdata<- cbind(apply(daten[,-ncol(daten)],2,.standard),

daten[,ncol(daten)])

colnames(newdata)[ncol(newdata)] <- "study_group"

return(newdata)

}

# This function selects only significant variables (t-test level of 0.05)

ttest <- function(dat){

te <- numeric()

for(i in 1:(ncol(dat)-1)){

te[i] <- t.test(dat[,i][dat[,ncol(dat)]==1],dat[,i]

[dat[,ncol(dat)]==0])$p.value

}

orders <- order(te)

signifdat <- cbind(dat[,which(te<0.05)],dat[,ncol(dat)])

return(signifdat)

}

# This function computes the minimal value of lambda from

# which all predictor are set to ****

# zero in lasso type problem***************************************

maxlambda <- function(cutof,minsen=0.9,data,eta=10,bpar=0.01){

#data <- as.matrix(cbind(rep(1,nrow(data)),data))

dat <- data

109



R-Code

y <- dat[,ncol(data)]

pbar <- rep(mean(y),nrow(data))

lambdas <- numeric()

matdata <- as.matrix(dat[,-ncol(data)])

datone <- dat[dat[,ncol(dat)]==1,]

datcond <- datone[,-ncol(datone)]

datenf <- as.matrix(datcond)

pbarsens <- pbar[1:nrow(datone)]

datzero <- data[data[,ncol(data)]==0,]

datcondzero <- datzero[,-ncol(datzero)]

datenfzero <- as.matrix(datcondzero)

pbarspe <- pbar[1:nrow(datzero)]

a <- glog(eta*(pbarsens-cutof))

#predictorzero <- drop(datenfzero%*%para)

p <- pbarspe

g <- 1/(1 + exp(eta*(p - cutof)))

grad0 <- (1/nrow(datzero))*t(datenfzero)%*%(eta*p*(1-p)*g*(1-g))

gradbar <- - eta*bpar*t(datenf)%*%(pbarsens*(1-pbarsens)*(1-a)*a)/

((mean(a)-minsen)*sum(y))

#grad1 <- - eta*t(datenf)%*%(pbarsens*(1-pbarsens)*(1-a)*a)/sum(y)

return(max(abs(grad0 + gradbar)))

}

# *****************************************************************

# This function selects relevant predictors using the strong rule *

strulesign <- function(lambda, cutof,minsen,data,eta, bpar=0.01){

#data <-standardata(data)

#data <- as.matrix(cbind(rep(1,nrow(data)),data))

nc <- ncol(data); nr <- nrow(data)

dat <- data

y <- dat[,ncol(data)]

pbar <- rep(mean(y),nr)

lambdas <- numeric()

matdata <- as.matrix(data[,-ncol(data)])

datone <- dat[dat[,ncol(dat)]==1,]
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datcond <- datone[,-ncol(datone)]

datenf <- as.matrix(datcond)

pbarsens <- pbar[1:nrow(datone)]

datzero <- data[data[,ncol(data)]==0,]

datcondzero <- datzero[,-ncol(datzero)]

datenfzero <- as.matrix(datcondzero)

pbarspe <- pbar[1:nrow(datzero)]

a <- glog(eta*(pbarsens-cutof))

#predictorzero <- drop(datenfzero%*%para)

p <- pbarspe

g <- 1/(1 + exp(eta*(p - cutof)))

grad0 <- (1/nrow(datzero))*t(datenfzero)%*%(eta*p*(1-p)*g*(1-g))

gradbar <- - eta*bpar*t(datenf)%*%(pbarsens*(1-pbarsens)*(1-a)*a)/

((mean(a)-minsen)*sum(y))

# grad1 <- - eta*t(datenf)%*%(pbarsens*(1-pbarsens)*(1-a)*a)/sum(y)

lambdas <- abs(grad0 + gradbar)

signdata <- dat[,which(lambdas >= 2*lambda - max(lambdas))]

datasign <- cbind(signdata,study_group=dat[,ncol(data)])

return(datasign)

}

# This function provides a feasible start value, when constrOptim.nl

is used for the optimization

start <- function(data,sigmoid=10,cutoff=0.5,lambda=10,theta=0.9,

barrier=0.001){

data <- cbind(rep(1,nrow(data)), data)

para <- runif((ncol(data)-1),min=-lambda/ncol(data),

max=lambda/ncol(data))

datone <- data[data[,ncol(data)]==1,]

#datone <- as.matrix(cbind(rep(1,nrow(datone)),datone[,-ncol(datone)]))

datone <- as.matrix(datone[,-ncol(datone)])

x <- drop(datone%*%para)

dif <- x - log(cutoff/(1-cutoff))

se <- sum(1/(1 + exp(-sigmoid*dif)))/nrow(datone)

c1 <- se - theta
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n <- 1

#c2 <- lambda - sum((para^2 + 0.0001)^0.5)

while(c1 < 0 & n < 200){

para <- runif((ncol(data)-1),min=-lambda/ncol(data),

max=lambda/ncol(data))

x <- drop(datone%*%para)

dif <- 10*(x - log(cutoff/(1-cutoff+0.0001)))

se <- sum(1/(1 + exp(-sigmoid*dif)))/nrow(datone)

c1 <- se - theta

n <- n + 1

#c2 <- lambda - sum((para^2 + 0.0001)^0.5)

}

return(para)

}

# Constrained optimization ****************************************

cv_sp <- function(data,barrier=0.001,theta=0.9,sigmoid=10,cutoff=0.5,

fold=10,it=10, np=15,standard=TRUE,method="auglag"){

if(standard==TRUE){

data <- standardata(data)

} else{

data <- data

}

sdata <- data

set.seed(3)

n <- trunc(nrow(data)/fold);index <- sample(nrow(data))

t.labels <- as.numeric(data[,ncol(data)][index])

prediction <- numeric(); parameters <- numeric()

for(k in 1:fold){

train <- data[-index[(n*(k-1)+1):(k*n)],]

if (ncol(train) < 3){

train <- train

test <- sdata[index[(n*(k-1)+1):(k*n)],]
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colnames(test)[ncol(test)] <- "study_group"

test <- test[,colnames(train)]

test <- as.matrix(cbind(rep(1,n),test[,-ncol(test)]))

}else{

maxl <- maxlambda(cutof=cutoff,minsen=theta,data=train,eta=sigmoid,

bpar=barrier)

lamb <- seq(from = maxl, to = maxl/2, length.out=50)

pred <- 1; j <- 1

while(pred < np){

lambda <- lamb[j]

tr <- strulesign(lambda=lambda, cutof=cutoff, minsen=theta,

data=train, eta=sigmoid, bpar=barrier)

pred <- ncol(tr)

j <- j + 1

}

lambda <- lamb[j-1]

train <- strulesign(lambda=lambda, cutof=cutoff, minsen=theta,

data=train, eta=sigmoid, bpar=barrier)

test <- sdata[index[(n*(k-1)+1):(k*n)],]

colnames(test)[ncol(test)] <- "study_group"

test <- test[,colnames(train)]

test <- as.matrix(cbind(rep(1,n),test[,-ncol(test)]))

#test <- as.matrix(test[,-ncol(test)])

}

if(ncol(train)==1){

probapred <- rep(1,nrow(test))

}else{

#star <- start(data=train,sigmoid=sigmoid,cutoff=cutoff,

#lambda=lambda,theta=theta,barrier=barrier)

star <- c(0,rep(0.001,(ncol(train)-1)))

fn <- function(para){

daten <- train

sigmoid <- sigmoid

cutoff <- cutoff
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lambda <- lambda

datzero <- daten[daten[,ncol(daten)]==0,]

datcondzero <- datzero[,-ncol(datzero)]

datenfzero <- as.matrix(cbind(rep(1,nrow(datzero)),datcondzero))

#datenfzero <- as.matrix(datcondzero)

predictorzero <- drop(datenfzero%*%para)

probazero <- 1/(1 + exp(-predictorzero))

senszero <- sum(1/(1 + exp(sigmoid*(probazero - cutoff))))

senszero <- senszero/nrow(datzero)

return(-senszero)

}

gradien <- function(para){

daten <- train

sigmoid <- sigmoid

cutoff <- cutoff

lambda1 <- lambda

datzero <- daten[daten[,ncol(daten)]==0,]

datcondzero <- datzero[,-ncol(datzero)]

datenfzero <- as.matrix(cbind(rep(1,nrow(datzero)),datcondzero))

#datenfzero <- as.matrix(datcondzero)

predictorzero <- drop(datenfzero%*%para)

p <- 1/(1 + exp(-predictorzero))

g <- 1/(1 + exp(sigmoid*(p - cutoff)))

grad<- (1/nrow(datzero))*t(datenfzero)%*%(sigmoid*p*(1-p)*g*(1-g))

return(as.numeric(t(grad)))

}

constr <- function(para){

daten <- train

sigmoid <- sigmoid

cutoff <- cutoff

lambda1 <- lambda

minsens <- theta

h <- rep(NA, 2)
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datone <- daten[daten[,ncol(daten)]==1,]

datcond <- datone[,-ncol(datone)]

datenf <- as.matrix(cbind(rep(1,nrow(datone)),datcond))

#datenf <- as.matrix(datcond)

predictor <- drop(datenf%*%para)

proba <- 1/(1 + exp(-predictor))

sens <- sum(1/(1 + exp(-sigmoid*(proba - cutoff))))

sens <- sens/nrow(datone)

h[1] <- sens - minsens

h[2] <- lambda - sum((para^2[-1] + 0.0001)^0.5)

return(h)

}

jacob <- function(para){

daten <- train

sigmoid <- sigmoid

cutoff <- cutoff

lambda <- lambda

datone <- daten[daten[,ncol(daten)]==1,]

ncl <- ncol(datone)

datcond <- datone[,-ncl]

datenf <- as.matrix(cbind(rep(1,nrow(datcond)),datcond))

#datenf <- as.matrix(datcond)

jac <- matrix(nrow=2,ncol=ncol(datenf))

x <- drop(datenf%*%para)

p <- 1/(1 + exp(-x))

ge <- 1/(1 + exp(-sigmoid*(p - cutoff)))

jac[1,] <- (1/nrow(datcond))*t(datenf)%*%(sigmoid*p*(1-p)*ge*(1-ge))

norm <- - c(0, para[-1]/sqrt(para^2[-1] + 0.0001))

jac[2,] <- norm

return(jac)

}

inn <- auglag(par=star, fn=fn, gr = gradien,hin = constr,

hin.jac = jacob)

#inn <- constrOptim.nl(par=star, fn=fn, gr = gradien,hin = constr,

#hin.jac = jacob)
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probapred <- 1/(1+exp(-test%*%inn$par))

}

prediction <- c(prediction,as.numeric(probapred))

parameters <- c(parameters,inn$par)

}

if(n*fold==nrow(data)){

sensitivity <- sum(ifelse(prediction >= cutoff &

t.labels == 1,1,0))/sum(t.labels)

specificity <- sum(ifelse(prediction < cutoff &

t.labels == 0,1,0))/sum((1-t.labels))

} else{

train <- data[index[1:(n*fold)],]

if (ncol(train) < 3){

train <- train

test <- sdata[index[(n*(k-1)+1):(k*n)],]

colnames(test)[ncol(test)] <- "study_group"

test <- test[,colnames(train)]

test <- as.matrix(cbind(rep(1,n),test[,-ncol(test)]))

}else{

maxl <- maxlambda(cutof=cutoff,minsen=theta,data=train,eta=sigmoid,

bpar=barrier)

lamb <- seq(from = maxl, to = maxl/2, length.out=50)

pred <- 1; j <- 1

while(pred < np){

lambda <- lamb[j]

tr <- strulesign(lambda=lambda, cutof=cutoff, minsen=theta,

data=train, eta=sigmoid, bpar=barrier)

pred <- ncol(tr)

j <- j + 1

}

lambda <- lamb[j-1]

train <- strulesign(lambda=lambda, cutof=cutoff, minsen=theta,

data=train, eta=sigmoid, bpar=barrier)

test <- sdata[index[(n*fold+1):nrow(data)],]

colnames(test)[ncol(test)] <- "study_group"
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test <- test[,colnames(train)]

test <- as.matrix(cbind(rep(1,nrow(test)),test[,-ncol(test)]))

#test <- as.matrix(test[,-ncol(test)])

}

if(ncol(train)==1){

probapred <- rep(1,nrow(test))

}else{

star <- c(0,rep(0.001,(ncol(train)-1)))

# star <- start(data=train,sigmoid=sigmoid,cutoff=cutoff,lambda=lambda,

#theta=theta,barrier=barrier)

fn <- function(para){

daten <- train

sigmoid <- sigmoid

cutoff <- cutoff

lambda <- lambda

datzero <- daten[daten[,ncol(daten)]==0,]

datcondzero <- datzero[,-ncol(datzero)]

datenfzero <- as.matrix(cbind(rep(1,nrow(datzero)),datcondzero))

#datenfzero <- as.matrix(datcondzero)

predictorzero <- drop(datenfzero%*%para)

probazero <- 1/(1 + exp(-predictorzero))

senszero <- sum(1/(1 + exp(sigmoid*(probazero - cutoff))))

senszero <- senszero/nrow(datzero)

return(-senszero)

}

gradien <- function(para){

daten <- train

sigmoid <- sigmoid

cutoff <- cutoff

lambda1 <- lambda

datzero <- daten[daten[,ncol(daten)]==0,]

datcondzero <- datzero[,-ncol(datzero)]
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datenfzero <- as.matrix(cbind(rep(1,nrow(datzero)),datcondzero))

#datenfzero <- as.matrix(datcondzero)

predictorzero <- drop(datenfzero%*%para)

p <- 1/(1 + exp(-predictorzero))

g <- 1/(1 + exp(sigmoid*(p - cutoff)))

grad<- (1/nrow(datzero))*t(datenfzero)%*%(sigmoid*p*(1-p)*g*(1-g))

return(as.numeric(t(grad)))

}

constr <- function(para){

daten <- train

sigmoid <- sigmoid

cutoff <- cutoff

lambda1 <- lambda

minsens <- theta

h <- rep(NA, 2)

datone <- daten[daten[,ncol(daten)]==1,]

datcond <- datone[,-ncol(datone)]

datenf <- as.matrix(cbind(rep(1,nrow(datone)),datcond))

#datenf <- as.matrix(datcond)

predictor <- drop(datenf%*%para)

proba <- 1/(1 + exp(-predictor))

sens <- sum(1/(1 + exp(-sigmoid*(proba - cutoff))))

sens <- sens/nrow(datone)

h[1] <- sens - minsens

h[2] <- lambda - sum((para^2[-1] + 0.0001)^0.5)

return(h)

}

jacob <- function(para){

daten <- train

sigmoid <- sigmoid

cutoff <- cutoff

lambda <- lambda

datone <- daten[daten[,ncol(daten)]==1,]

ncl <- ncol(datone)
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datcond <- datone[,-ncl]

datenf <- as.matrix(cbind(rep(1,nrow(datcond)),datcond))

#datenf <- as.matrix(datcond)

jac <- matrix(nrow=2,ncol=ncol(datenf))

x <- drop(datenf%*%para)

p <- 1/(1 + exp(-x))

ge <- 1/(1 + exp(-sigmoid*(p - cutoff)))

jac[1,] <- (1/nrow(datcond))*t(datenf)%*%(sigmoid*p*(1-p)*ge*(1-ge))

norm <- - c(0, para[-1]/sqrt(para^2[-1] + 0.0001))

jac[2,] <- norm

return(jac)

}

inn <- auglag(par=star, fn=fn, gr = gradien, hin = constr, hin.jac = jacob)

#inn <- constrOptim.nl(par=star, fn=fn, gr = gradien,hin = constr,

# hin.jac = jacob)

probapred <- 1/(1+exp(-test%*%inn$par))

}

prediction <- c(prediction,as.numeric(probapred))

parameters <- c(parameters,inn$par)

sensitivity <- sum(ifelse(prediction >=cutoff & t.labels == 1,1,0))/

sum(t.labels)

specificity <- sum(ifelse(prediction < cutoff & t.labels == 0,1,0))/

sum((1-t.labels))

}

allpred <- list(sensitivity=sensitivity,specificity=specificity,

prediction=prediction,t.labels=t.labels,parameters=parameters)

return(allpred)

}

#result1 <- cv_sp(data=daten,theta=0.9,sigmoid = 15,cutoff=0.55,

#standard=TRUE,np=15)

#specoptimgenes <- result1
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bestr <- optimr(data = daten, theta = 0.9, sig = 10,

cutf=cutf, npreds = npreds)

optimr <- function(data = daten, theta = 0.9, sig = 10, cutf,

npreds = c(10,20,30)){

res <- numeric()

for(i in 1:length(sig))

{

a <- sig[i]

for(j in 1:length(npreds))

{

b <- npreds[j]

for(k in 1:length(theta))

{

d <- theta[k]

for(l in 1:length(cutf))

{

cu <- cutf[l]

result1 <- cv_sp(data = daten,theta = d, sigmoid = a,

cutoff = cu, standard = TRUE, np = b)

if(result1$sensitivity > 0.89 & result1$specificity > 0.1)

{

vec <- c(result1$sensitivity, result1$specificity, a, b, d,cu)

res <- rbind(res, vec)

true_labels <- result1$t.labels

predicted_prob <- result1$prediction

}

else

{

vec <- c(1, 0, a, b, d,cu)

res <- rbind(res, vec)

predicted_prob <- rep(1,nrow(data))

true_labels <- daten[,ncol(data)]

}

}

}
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}

}

best1 <- res[which(res[,2] == max(res[,2]))[1],]

return(list(SensSpec=best1,true_labels=true_labels,

predicted_prob=predicted_prob))

}

# Load data and save it as dataframe

cutf <- seq(0.3,0.7,by=0.02)

npreds <- c(5,10,15,20,25,30)

result <- optimr(data = daten,cutf = cutf, npreds = npreds)
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