

ITG Workshop Sound, Vision and Games 2015

Modeling Buffered Video Streaming Startup Delays in Multi-Cellular Wireless Networks

Henrik Klessig and Gerhard Fettweis

Vodafone Chair Mobile Communications Systems,
University of Technology Dresden, Germany

- 1. Motivation and KPIs
- 2. Multi-Cellular Flow Level Model
- 3. Startup Delay Distribution
- 4. Results
- 5. Take-Aways


1. Motivation and KPIs

O vodafone chair

What are the most annoying "features" of video streaming?

- Long initial buffering phase users start abandoning the video if prefetch phase exceeds two seconds [1]
- Many (>1) and long rebuffering phases

QoS metrics such as

- Data rates
- User throughput are not appropriate anymore!

Buffered streaming = elastic traffic:

- Download of a file with variable rate
- Simultaneous playback with constant rate

QoS/QoE metrics [2]:

Startup delay: interval between begin of the streaming session and start of

playback, given by startup threshold q_a [s] and flow throughput

Starvation probability: probability that the playout buffer becomes empty

Rebuffering delay: interval between playout butter starvation and restart of playback,

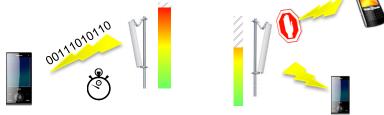
given by rebuffering delay and flow throughput

[1] S. S. Krishnan and R. K. Sitaraman, "Video stream quality impacts viewer behavior: Inferring causality using quasi-experimental designs," in *Proceedings of the 2012 ACM Conference on Internet Measurement Conference*, ser. IMC '12. New York, NY, USA: ACM, 2012, pp. 211–224.

[2] Yuedong Xu; Elayoubi, S.E.; Altman, E.; El-Azouzi, R., "Impact of flow-level dynamics on QoE of video streaming in wireless networks," INFOCOM, 2013 Proceedings IEEE, vol., no., pp.2715,2723, 14-19 April 2013.


2. Multi-Cellular Flow Level Model (1/3)

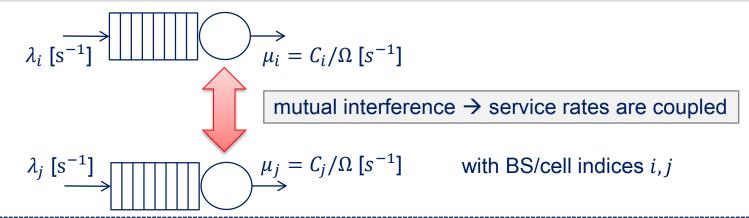
O vodafone chair


Goals:

- Compute user QoS/QoE but avoid extensive Monte-Carlo simulations
- Build a framework that models the user QoS/QoE based on common traffic characteristics
- Use the framework to develop self-organizing network algorithms

- 4. Derive QoS/QoE metrics from BS state probabilities
- Optimize user QoS/QoE

Characterize the BS's state



2. Multi-Cellular Flow Level Model (2/3)

O vodafone chair

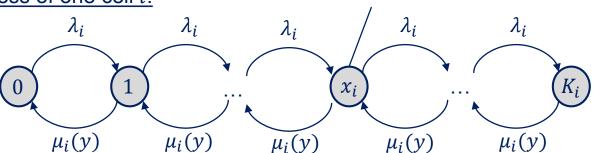
Achievable rate at location u in bps, if flow is connected to BS i, interference scenario y:

$$c_i(u, y) \coloneqq aB \min \left\{ \log_2 \left(1 + b \frac{p_i(u)}{\sum_{j \in \mathcal{N}_1(y) \setminus \{i\}} p_j(u) + N_0} \right), c_{\max} \right\}$$

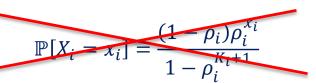
Definition: Interference-dependent cell capacity (harmonic mean of achievable rates):

$$C_i(y) \coloneqq \left(\int_{\mathcal{L}_i} \delta_i(u) c_i(u, y)^{-1} du \right)^{-1} \qquad \delta_i(u) \coloneqq \frac{\delta(u)}{\int_{\mathcal{L}_i} \delta(u) du}$$

$$\delta_i(u) \coloneqq \frac{\delta(u)}{\int_{\mathcal{L}_i} \delta(u) \, \mathrm{d}u}$$


2. Multi-Cellular Flow Level Model (3/3)

O vodafone chair


Continuous time Markov process of one cell *i*:

<u>Def.</u> Random variable X_i describing the number of active flows in cell i, $X_i \in \{0, ..., K_i\}$

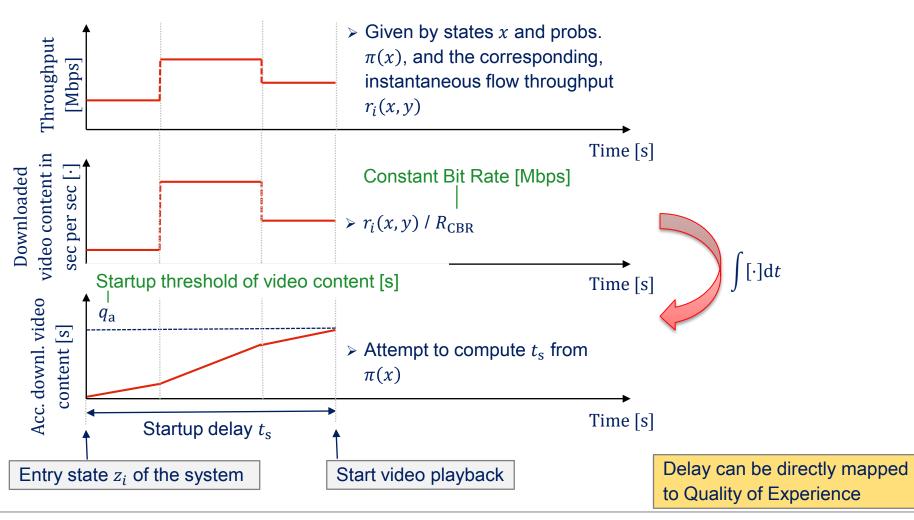
$$\rho_i(y) = \frac{\lambda_i}{\mu_i(y)}$$

- y varies on the same time scale of flow dynamics!
- ➤ No M/M/1/*K* model applicable!
- No closed (product) form!

 $\mathbb{P}\{X_i=x_i\}$

- Build a multi-dimensional Markov process to
- Account for the variation of the interference y
- (2.2) Compute state probabilities $\pi(x) := \mathbb{P}\{X = x\}$
- (2.3) Compute performance metrics from $\pi(x)$

<u>Def.</u> Random vector X with elements X_i . $X \in \mathcal{X} := \{0, ..., K_1\} \times \cdots \times \{0, ..., K_N\}$.


<u>Def.</u> Random vector $Y := \operatorname{sgn}(X)$ with realizations $y : Y \in \mathcal{Y} := \{0,1\}^N$.

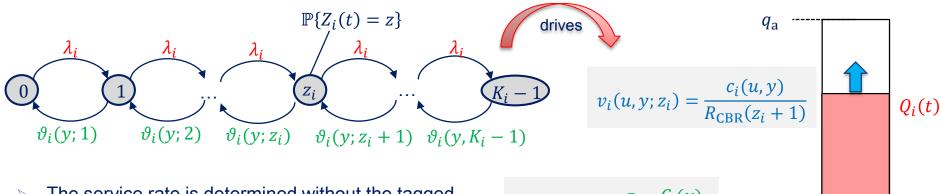
3. Startup Delay Distribution (1/4)

O vodafone chair

Prefetching phase:

3. Startup Delay Distribution (2/4)

vodafone chair


<u>1st step:</u> Entry state distribution π_z and probability of interference $\zeta_i(y)$

2nd step: Evolution of the buffer fill status for static (fixed) interference y

- We assume that the "tagged" flow observes the external interference process in the quasi-stationary (QS) regime.
- Well supported if startup delay is much smaller than the average flow sojourn time.

Approach (from [2]): We model the system as two queues "in tandem".

- 1. Markov chain describing the process $Z_i(t)$, i.e. the number of other concurrent data flows in the cell.
- 2. A queue describing the buffer fill status $Q_i(t)$ in seconds of video content.

The service rate is determined without the tagged flow and, therefore, is state-dependent.

$$\vartheta_i(y; z_i) = \frac{z_i}{z_i + 1} \frac{C_i(y)}{\Omega}$$
 Video buffer fill status

[2] Yuedong Xu; Elayoubi, S.E.; Altman, E.; El-Azouzi, R., "Impact of flow-level dynamics on QoE of video streaming in wireless networks," INFOCOM, 2013 Proceedings IEEE, vol., no., pp.2715,2723, 14-19 April 2013.

3. Startup Delay Distribution (3/4)

O vodafone chair

 $U_i(u, y, t; z_i, q)$... probability that the prefetching process finishes until time t

- Flow at location $u \in \mathcal{L}_i$
- Under interference y
- With entry state z_i
- With prefetch content q

In the interval $[t, t + \Delta t]$ four possible events can occur:

- No change of number of flows,
- Arrival of one flow,
- Departure of one flow (not the "tagged"), or
- More than one event.

Dynamics of the probability U_i :

$$U_{i}(u,y,t;z_{i},q) = (1-\lambda_{i}\Delta t - \vartheta_{i}(y;z_{i})\Delta t) \cdot U_{i}(u,y,t-\Delta t;z_{i}, \qquad q-v_{i}(u,y;z_{i})\Delta t) \quad \text{(no change)}$$

$$+\lambda_{i}\Delta t \cdot U_{i}(u,y,t-\Delta t;z_{i}+1,q-v_{i}(u,y;z_{i})\Delta t) \quad \text{(arrival)}$$

$$+\vartheta_{i}(y;z_{i})\Delta t \cdot U_{i}(u,y,t-\Delta t;z_{i}-1,q-v_{i}(u,y;z_{i})\Delta t) \quad \text{(departure)}$$

$$+\delta(\Delta t) \quad \text{(multiple events)}$$

Let $\Delta t \rightarrow 0$:

$$\frac{\partial \textbf{\textit{U}}_i(u,y,t;q)}{\partial t} = -\textbf{\textit{M}}_i(y) \textbf{\textit{U}}_i(u,y,t;q)$$
 with $\textbf{\textit{M}}_i(y) = \begin{pmatrix} \lambda_i + \vartheta_i(y;0) & -\lambda_i & 0 & \dots & 0 \\ -\vartheta_i(y;1) & \lambda_i + \vartheta_i(y;1) & -\lambda_i & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \vartheta_i(y;K_i-1) \end{pmatrix}$

with
$$U_i(u, y, t; q) := (U_i(u, y, t; 0, q), ..., U_i(u, y, t; K_i - 1, q))^T$$
.

3. Startup Delay Distribution (4/4)

O vodafone chair

Efficient solution:

$$\boldsymbol{U}_{i}(u,y,t;q) = (\boldsymbol{D}_{i}\exp(-\boldsymbol{\Lambda}_{i}t)\boldsymbol{D}_{i}^{-1}\boldsymbol{G}_{i})(u,y,t;q)$$

where $\mathbf{M}_i(y) = (\mathbf{D}_i \mathbf{\Lambda}_i \mathbf{D}_i^{-1})(y)$, \mathbf{D}_i is invertible, and $\mathbf{\Lambda}_i$ is diagonal containing the eigenvalues of \mathbf{M}_i

with
$$G_i(q - v_i(u, y; z_i)t) = \begin{cases} 0 \text{ for } q - v_i(u, y; z_i)t \ge 0 \\ 1 \text{ for } q - v_i(u, y; z_i)t < 0 \end{cases}$$
 and $G_i(u, y, t; q) \coloneqq (G_i(q - v_i(u, y; 0)t), \dots, G_i(q - v_i(u, y; K_i - 1)t))^T$

So far, we have the startup delay distribution $U_i(u, y, t; z_i, q)|_{q=q_a}$ for

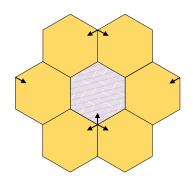
- a specific location $u \in \mathcal{L}_i$ (we know $\delta_i(u)$),
- a specific entry state z_i (we know π_{z_i}), and
- a specific interference scenario y (we know $\zeta_i(y)$).

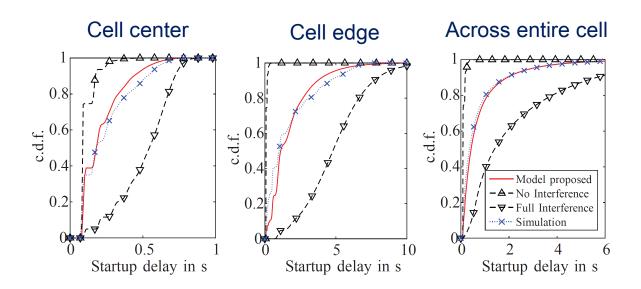
Startup delay distribution independent of z_i and y: Compound startup delay distribution in cell i:

$$U_i(u,t;q_a) = \sum_{y \in \mathcal{Y}} \pi_{z_i} \mathbf{U}_i(u,y,t;q_a) \zeta_i(y)$$

$$U_i(t; q_a) = \int_{\mathcal{L}_i} U_i(u, t; q_a) \delta_i(u) du$$

Scenario:


- 7 cells in a hexagonal layout
- 3GPP-compliant configuration
- Central cell under consideration


- State aggregation
- Full and no interference (lower and upper performance bounds)

- Compare model results with simulations + full and no interference
- Admission control: $K_i = 7, \forall i$
- Startup threshold: $q_a = 3 \text{ s}$
- Arrival intensity: $\lambda_i = 0.0375 \text{ s}^{-1}$
- Mean video length: 480 s
- Video bitrate: $R_{CBR} = 2 \text{ Mbps}$

O vodafone chair

- Remarkable accuracy
- Much higher startup delays at cell edge due to strong inter-cell interference (~ factor 10)
- Interference affects cell center users, since low performance data flows "steel" radio resources.

Published in:

H. Klessig and G. Fettweis, "Short Paper: Impact of Inter-Cell Interference on Buffered Video Streaming Startup Delays" in Proceedings of the 82nd IEEE Vehicular Technology Conference (VTC Fall'15), Boston, USA, 6.9. - 9.9.2015

- 1. Buffered streaming = elastic traffic
- 2. Mathematical model with a few assumptions:
 - a) Constant bitrate
 - b) Poisson arrivals and exponentially distr. flow sizes
 - c) Resource fair scheduler
- 3. Predominant effects:
 - a) Concurrent flows
 - b) Inter-cell interference
 - c) Heterogeneous rate distribution
- 4. Variable bitrates and fast fading have minor effects

THANK YOU