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Abstract

Research in the field of non-parametric shape constrained regression has been extensive
and there is need for such methods in various application areas, since shape constraints
can reflect prior knowledge about the underlying relationship. This thesis develops semi-
parametric spline regression approaches to unimodal regression.
However, the prior knowledge in different applications is also of increasing complexity
and data shapes may vary from few to plenty of modes and from piecewise unimodal
to accumulations of identically or diversely shaped unimodal functions. Thus, we also
go beyond unimodal regression in this thesis and propose to capture multimodality by
employing piecewise unimodal regression or deconvolution models based on unimodal
peak shapes.
More explicitly, this thesis proposes unimodal spline regression methods that make use
of Bernstein-Schoenberg-splines and their shape preservation property. To achieve uni-
modal and smooth solutions we use penalized splines, and extend the penalized spline
approach towards penalizing against general parametric functions, instead of using just
difference penalties. For tuning parameter selection under a unimodality constraint
a restricted maximum likelihood and an alternative Bayesian approach for unimodal
regression are developed. We compare the proposed methodologies to other common
approaches in a simulation study and apply it to a dose-response data set. All results
suggest that the unimodality constraint or the combination of unimodality and a penalty
can substantially improve estimation of the functional relationship.
A common feature of the approaches to multimodal regression is that the response vari-
able is modelled using several unimodal spline regressions. This thesis examines mixture
models of unimodal regressions, piecewise unimodal regression and deconvolution mod-
els with identical or diverse unimodal peak shapes. The usefulness of these extensions of
unimodal regression is demonstrated by applying them to data sets from three different
application areas: marine biology, astroparticle physics and breath gas analysis.
The proposed methodologies are implemented in the statistical software environment R
and the implementations and their usage are explained in this thesis as well.
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Notations and abbreviations

Notations

1: indicator function, i.e., 1A(x) =

1, x ∈ A

0, x /∈ A

0L: zero-vector of length L

1L: one-vector of length L

IL: identity matrix of dimension L× L

∆q: differencing operator of order q

V: Bernstein-Schoenberg operator

ηk: space of spline functions of degree k

Cq: space of q-times continuously differentiable functions

Pk: space of polynomial functions of degree smaller or equal to k

[a, b]n: n-fold Cartesian product of the interval [a, b]

|M|: Cardinality of the setM

NM(µ,Σ): Multivariate normal distribution with mean µ and covariance matrix Σ

truncated to the setM⊂ Rd

In general, lower-case letters (e.g., y) represent real numbers, that is, constants, obser-
vations or indices, while their bold counterparts (e.g., y) stand for vectors and bold
capital letters (e.g., Y ) for matrices of such numbers. Random variables are indicated
by capital letters (e.g., Y ) and random vectors by bold, calligraphic letters (e.g., Y).
When taking the Bayesian perspective, especially, when parameters or parameter vectors
are considered random, we will not distinguish between the observation and its random
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Notations and abbreviations

counterpart for convenience. In addition, a simplified notation for probability densities,
which is commonly used in Bayesian statistics, will be employed. For example, the nota-
tion p(β|y) stands for the conditional density p(β = β|Y = y), where β is the random
counterpart of β.

Abbreviations

ADF Average daily feed consumption

ADG Average daily gain of weight

AIC Akaike information criterion

ASE Average squared error

BIC Bayesian information criterion

B-S Bernstein-Schoenberg

ed Effective Dimension

FACT First G-APD Cherenkov telescope

G-APD Geiger-mode avalanche photodiods

G/F Gain-to-feed ratio

IMS Ion mobility spectrometry

IRLS Iteratively re-weighted least squares

MCC Multi capillary columns

MCMC Markov Chain Monte Carlo

MCR Multivariate curve resolution

MRL Mean relative loss

PST Porcine somatotropine

REML Restricted maximum likelihood

RSS Residual sum of squares
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TDR Time-depth-recorder
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1 Introduction

1.1 Motivation

In statistical modelling, many approaches aim at describing the way in which some aspect
in life changes depending on one or more variables in its environment. For example,
the diving depth of a marine animal during a dive is first monotone increasing and
then monotone decreasing over time, see Figure 1.1A. In explicit, there is a unimodal
dependence on time.
Establishing a relationship between a dependent variable (response) and one or several
independent variables (predictors) is called regression analysis. Usually, these variables
are observed on the units of a certain population and the interest is in the mean of the
response Y given the values x of the predictors X . In regression analysis the mean is
modelled by a function f of the predictor values:

E(Y |X = x) = f(x),

where f is usually depending on a vector θ of parameters, f(x) = f(x|θ), to be esti-
mated.
How many and which predictors to choose for a multiple regression model, is studied
under the subject of variable selection. In this thesis however, the focus is on univariate
regression.
For chosen variables X and Y there are, of course, still infinitely many possibilities to
specify f : first of all, one can assume a simple linear relationship as well as polynomial
functions, both of which can be estimated from data using linear model theory. If the
function is non-linear in the parameters, non-linear optimization algorithms can be used
to estimate θ (see, e.g., the book by Seber and Wild, 2003, on non-linear regression
techniques). In these cases, there are usually few parameters, since the gain from using
higher polynomial degrees is small and non-linear models with many parameters are
computationally hard to estimate. To sum up, parametric approaches are quite restric-
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1 Introduction

tive regarding the shapes of the function f that can be modelled. In other words, they
pose so many assumptions about the underlying relationship that, if the true relationship
deviates from them, a lot of bias is introduced. On the other hand, if the assumptions
are justified, the variance of the estimated relationship between different samples is quite
low. In pharmaceutical dose-response trials, for example, the functional form f used for
the analysis has to be pre-specified in the study protocol (before data collection). This
is very difficult and practical methods often rely on specification of a candidate set of
parametric dose-response models (see, e.g., Bretz et al., 2005) and on model selection or
model averaging.
Competitors to these procedures are regression approaches which do not specify the func-
tional form of f by a set of parameters and are hence called non-parametric. They often
rely on local estimation approaches, where no closed-form representation of f exists, for
example, kernel smoothers such as nearest neighbour estimators or local polynomial re-
gression (see, e.g., Chapter 6 of Hastie et al., 2009, for an introduction). These methods
are – contradictory to the term "non-parametric" – also said to have infinitely many
parameters. They are very flexible and usually have a low estimation bias, but the
estimated relationships may vary strongly between different samples. Additionally, the
estimated functions f are not necessarily differentiable or even discontinuous.
Semi-parametric approaches can be thought of as a compromise and are often charac-
terized by many parameters. In addition, they usually describe the form of f as a linear
combination of basis functions, for example, radial or B-spline basis functions (see also
Figure 1.1B and C for an illustration of the latter). The coefficients of the linear com-
bination are the parameters to be estimated.
The B-spline basis induces the popular class of polynomial spline functions, which are
smooth piecewise polynomials. Using a large basis (many parameters) yields very flexible
functions, which are continuous and differentiable up to a known degree. The function
itself and its derivatives have a closed-form representation. Nevertheless, f can be esti-
mated in terms of a linear model due to the linear combination of basis functions. Again,
the flexibility reduces bias, but comes at the price of higher variability across samples
from the same population.
The task of reducing the variance of the estimators without increasing the estimation
bias has been tackled in two popular ways:

1. introduction of a smoothness penalty, dating back to the smoothing spline ap-
proaches by Reinsch (1967, 1971),

2
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Figure 1.1: Dive of a marine animal with spline basis and fitted spline.
(A) Scatterplot of the diving depth [in m] of a marine animal versus time
(between 03:21:30 a.m. and 03:25:10 a.m. on January 6th 2002). It is an
excerpt from the data set divesTDR from R package diveMove (version 1.4.1,
cf. Luque, 2007). (B) B-spline basis functions. (C) Data from (A) and a fitted
spline function, which is the sum of the corresponding scaled B-spline basis
functions. In explicit, the spline is a linear combination of the B-spline basis
functions.

3



1 Introduction

2. introduction of a shape constraint, dating back to constrained estimation ap-
proaches from the 1950s (Brunk, 1955; Hildreth, 1954) and to the "pool adjacent
violators algorithm" by Barlow et al. (1972) for pointwise monotone regression.

The first approach penalizes functions that are too variable and aims at finding a com-
promise between over- and underfitting, between small bias and small variance. The
second approach reduces the function space from which f is taken, which also decreases
the variability. Shape constraints such as monotonicity or unimodality do not restrict the
function space as severely as polynomial or non-linear parametric models and, therefore,
the chance of violated assumptions and thus increased bias is smaller in those situa-
tions. In addition, there are many applications in which the assumption of a certain
shape constraint, such as positivity, monotonicity or unimodality, is very plausible and
the incorporation of this prior knowledge into the model can only be advantageous. Re-
garding the diving depth of a marine animal, for example, the assumption of a unimodal
shape with respect to time seems likely, while something like a quadratic relationship is
less easily justified.

1.2 Aims and outline

This thesis will consider the use of smoothness penalties and shape constraints as well
as their combination in univariate regression. The focus will be on the shape constraint
of unimodality, which has received less attention in the literature so far.
Unimodal regression – as a type of non-parametric shape-constrained regression – is a
suitable choice in regression problems when the prior information about the underlying
relationship between predictor and response is vague, but when it is (almost) certain
that the response variable first increases with higher values of the predictor variable up
to a maximum (or mode) and then decreases again.
While there exist a variety of parametric approaches to estimate a unimodal relation-
ship, this thesis introduces a flexible semi-parametric method for estimating a smooth
unimodal function based on spline functions. For this purpose, spline functions will be
shown to be particularly well-suited for shape-constrained function estimation.
A prominent application, which will serve as an example several times during this the-
sis, is dose-response analysis. Here, the (beneficial) effect of a substance increases with
increasing dose up to a saturation point, after which the effect starts to decrease again,
as the substance might cause, for example, interfering toxic effects.
However, the prior knowledge in different applications has various degrees of complexity
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1 Introduction

since data shapes may vary from (piecewise) unimodal relationships to accumulations
of identically or even diversely shaped unimodal functions. This thesis argues that uni-
modal regression is also useful in situations where the relationship between two variables
is not unimodal, but multimodal, in explicit, the function f has several modes (local
maxima). Therefore, this thesis also goes beyond unimodal regression and proposes to
model multimodality using several unimodal functions.

The outline of this thesis is as follows: In Chapter 2 data sets from different areas are
introduced to further motivate the need for unimodal regression and its multimodal
extensions in real applications.The examples stem from dose-response analysis, marine
biology, astroparticle physics and breath gas analysis.
Chapter 3 introduces regression splines and their smoothness-penalized pendants and
highlights the benefits for regression purposes, especially in the presence of a shape con-
straint such as unimodality. A frequentist as well as a Bayesian approach to unimodal
spline regression are developed. The aim of Chapter 4 is to present methodology, which
enables the handling of a broad spectrum of applications with multimodal data. Thus,
several approaches, extending the methodology of Chapter 3, are proposed and recom-
mendations on the method of choice in different situations are given. Both Chapters 3
and 4 provide a literature overview within the respective branch of research.
Chapter 5 introduces an R package which implements the frequentist unimodal regres-
sion approach, and also describes implementational details of the other methods for
unimodal and multimodal regression.
The performance of the proposed unimodal spline regression approaches in comparison
to competing methods is assessed in Chapter 6 with an extensive simulation study in
the dose-response analysis context. The question, if a combination of shape constraint
and penalization is beneficial or if one of them suffices, is addressed there, too.
The usefulness of the methods in practice is demonstrated in Chapter 7 by applying the
methodology to the real data examples from Chapter 2. The applications are increasing
in complexity as they vary from unimodal or piecewise unimodal relationships to con-
volutions of identically or even diversely shaped unimodal functions.
Chapter 8 summarises the thesis and provides an outlook on further extensibility of the
presented methodology and future research objectives.

5



2 Fields of application and data
material

This chapter describes application areas where unimodal regression can be useful and
provides details on the respective data sets that are analysed throughout this thesis.
The fields of application are very diverse as the data sets stem from dose-response trials,
marine biology, astroparticle physics and breath gas analysis.

2.1 Growth hormone dose response data

The first field of application is dose-response analysis, which was also discussed in Köll-
mann et al. (2014).
Characterization of the dose-response relationship for desirable and undesirable effects
of a pharmaceutical compound is the central problem of its clinical development. The
pre-specification of one dose-response model for analysis in the study protocol (before
data collection) is difficult, which is why practical methods often rely on specification of
a candidate set of parametric dose-response models (see, e.g., Bretz et al., 2005) and on
model selection or model averaging. Unimodal regression is a non-parametric competitor
to these techniques.
A typical assumption in parametric as well as non-parametric dose-response analyses
is monotonicity. However, in a variety of cases this assumption can be challenged as
the interference of potential saturation or toxicity effects cannot be excluded. When
considering a clinical utility index that combines efficacy and safety measures (see e.g.
Khan et al., 2009) one explicitly expects a unimodal relationship and a monotonically in-
creasing curve would be surprising to observe. But even when considering efficacy alone
unimodality can occur as in the example to follow. A unimodal shape constraint relaxes
the assumption of monotonicity and is adequate whenever an umbrella dose-response
curve cannot be excluded a priori.
The example data set originates from animal science, where the growth of pigs is eval-
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Figure 2.1: Scatterplots of PST dosage vs. means of the response variables.
The standard errors at each dose are indicated with bars. Data source:
McLaren et al. (1990).

uated in dependence of an increasing dose of a growth hormone. McLaren et al. (1990)
investigated the relationship between administration of porcine somatotropin and several
growth variables in 195 pigs. Details on the experimental procedure and data prepro-
cessing can be found in their article. The (aggregated) data used here are the porcine
somatotropin dosage levels [mg/pig/day] (PST) and the least squares means and stan-
dard deviations of four response variables: Average daily gain of weight [kg/day] (ADG),
age at 103.5 kg [days] (Age), gain-to-feed ratio (G/F) and average daily feed consump-
tion [kg/pig/day] (ADF). The five dosage levels are 0, 1.5, 3, 6, 9 mg/pig/day and the
means and standard errors at the respective levels correspond to 29, 29, 57, 58, and 22
pigs. The data are plotted in Figure 2.1 and the actual data values can be found in
Table 2.1.
While the modes of the means of ADG, Age and ADF are at extreme doses (suggesting
monotone relationships), the means of G/F have their mode in the interior at dose 6.
Since monotonicity is a special case of unimodality, it seems reasonable to relax the
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2 Fields of application and data material

monotonicity assumption and apply unimodal regression to all four variables (inverse
unimodal for the variables Age and ADF). The results are presented in Section 7.1.

Table 2.1: Porcine somatotropin (PST) dosages [mg/pig/day] and least
squares means and standard errors of the four performance vari-
ables. ADG = average daily gain of weight [kg/d], Age = age at 103.5 kg [d],
G/F = gain-to-feed ratio, ADF = average daily feed consumption [kg/pig/d].
Data source: McLaren et al. (1990).

PST dosage
0 1.5 3 6 9

ADG 0.751 (0.038) 0.842 (0.046) 0.881 (0.029) 0.897 (0.029) 0.907 (0.050)
Age 183 (3) 178 (4) 173 (2) 172 (2) 170 (4)
G/F 0.266 (0.009) 0.320 (0.009) 0.341 (0.006) 0.365 (0.006) 0.356 (0.009)
ADF 2.940 (0.050) 2.680 (0.060) 2.570 (0.040) 2.370 (0.040) 2.250 (0.060)

2.2 Analysis of dive phases of marine animals

The second application example is the analysis of diving behaviour of marine animals
(see also Köllmann et al., 2016). Time-depth-recorders (TDRs) measure the diving
depth of marine animals such as seals or whales. The resulting data sets may contain
measurements over several days at regular sampling frequencies. In the case of marine
mammals, the animals repeatedly perform dives from the water surface down to various
depths to find food and for other activities. An excerpt from such a TDR data set, taken
from the R package diveMove (version 1.4.1, cf. Luque, 2007; Luque and Fried, 2011),
is shown in Figure 2.2A.
Marine biologists are interested, among other things, in the detection of phases within a
dive which correspond to different behaviours (see e.g. Halsey et al., 2007). As claimed
by Halsey et al. (2007) there is need for objective and automated categorisation of the
diving behaviour and they develop a Matlab program that classifies diving depth data
using a set of pre-specified criteria. This approach does not consider measurement error,
which can be accounted for by modelling the dives statistically. This is, for example,
realized in version 1.4.1 of the R package diveMove by fitting multiple smoothing splines
to the data. Afterwards, the derivative of the fitted splines is used to divide the dives into
different phases like descent and ascent. In Section 7.2.1 we show that using piecewise
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2 Fields of application and data material

unimodal regression splines is advantageous for this purpose. Since the animal definitely
needs to come back to the surface to draw breath, in explicit, since the dives do not
overlap, the time series can be modelled by piecewise unimodality.

2.3 Astroparticle physics data analysis

The third field of application is astroparticle physics, which was also presented in Köll-
mann et al. (2016). The First G-APD Cherenkov Telescope (FACT; see Anderhub et al.,
2013; Biland et al., 2014) is used by astroparticle physicists to detect cosmic rays. These
cosmic rays induce light flashes in the earth’s atmosphere, which can be used to calculate
the primary particle’s properties. The camera of the telescope has several pixels and
each pixel collects a signal, that is, a time series of measured voltages. See Figure 2.2B
for an example with 250 observations.
Each photon hitting a camera pixel causes a change in the signal, which can be described
by a unimodal loading curve with an amplitude of approximately 10 mV (Anderhub et al.,
2013). The aim is to detect the arrival times and numbers of photons to draw conclu-
sions about the type of the triggering particle (gamma or hadron). A good overall fit
is of interest, too, since the integral over the signal is used in subsequent analyses. The
shape of the signal is similar to that of a loading and unloading condenser and thus,
physicists have suggested a parametric wave form for the change in the voltage due to
the arrival of one or more photons. When np photons arrive at time t0 this wave form
is given by

U(t) = γ + np · U0 ·
(

1− e−
t−t0
ξ1

)
e
− t−t0

ξ2 1[t0,∞)(t), (2.1)

where γ is the baseline voltage shortly before the photons’ arrival (cf. Buß, 2013, for-
mula 6.11). The remaining parameters U0, ξ1, ξ2 specifying the wave form do not have a
concrete physical interpretation.
Since the telescope has been constructed quite recently, standard methods for the evalu-
ation of measured signals are mostly heuristic and only applied on segments of a signal.
Parameter estimates for waves of the form (2.1) from well-distinguished signals of sin-
gle photons (np = 1) were derived in Buß (2013). As photons can arrive anytime, the
measured voltage is a convolution of several loading curves. This suggests using a de-
convolution model with accumulated unimodal parametric waves for the analysis of a
whole time series of one pixel.
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Figure 2.2: Multimodal example data sets used throughout the thesis.
(A) shows an excerpt from data set divesTDR (R package diveMove, version
1.4.1, Luque, 2007). It displays the diving depth [in m] of a marine animal,
which was recorded every five seconds between 02:31:55 a.m. and 03:55:15
a.m. on January 6th 2002. (B) is an example of a FACT time series of length
250. The x-axis is the number of the time slice or sample, where the slices
are about 0.5 ns wide. The y-axis gives the voltages measured in millivolt
[mV]. (C) and (D) show spectrum A and B of the IMS example data set.
The x-axis is inverse reduced mobility [V s cm−2], a transformation of drift
time. The y-axis gives the measured voltages in volt [V]. Both spectra have
2499 observations.
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2 Fields of application and data material

2.4 Breath gas analysis with ion mobility

spectrometry

The last application area presented in this thesis is breath gas analysis (see also Köll-
mann et al., 2016), where ion mobility spectrometry (IMS) coupled with multicapillary
columns (MCCs) is used to measure the amount of certain molecules in the air or in ex-
haled breath. Knowledge about the presence of such molecules and their concentrations
can be used for medical purposes, for example, to diagnose lung cancer (cf. Westhoff
et al., 2009). An IMS-MCC data set is a matrix of measured intensities. Looking only
at one row or one column at a time, the intensities are time series along drift time (rows)
or along retention time (columns). In this thesis we focus only on the observed intensities
along the drift time, which are called spectrum. Typically, the intensities in a spectrum
fluctuate around zero and exhibit few peaks, see also Figures 2.2C and 2.2D. At least one
peak is always present at about 0.5 and does not carry information about the analyte:
the so-called reaction ion peak. The other peak locations and their amplitudes provide
information about the presence of different molecule types. Since the IMS technology is
getting more and more miniaturized and feasible for mobile use, there is also need for
suitable analysis methods, which a) work automatically, in explicit, without an expert,
and b) process the data online (e.g. analysing one spectrum during measurement of the
next).
One of the main steps in IMS analysis is peak extraction, that is, data reduction in
a way that every peak is described by a number of parameters, which reproduce the
characteristics of a spectrum as closely as possible, for example, location and amplitude
of the peaks. Currently, this is done manually by experts using interactive visualization
software (Kopczynski et al., 2012; D’Addario et al., 2014). Subsequent analyses use the
parameters of all spectra to identify different molecules in the analyte or to classify sam-
ples into subgroups like healthy or not (see also Hauschild et al., 2013). In this thesis
we only focus on the peak extraction step and aim at modelling a single spectrum at a
fixed retention time statistically.
For whole IMS-MCC data matrices Kopczynski et al. (2012) used a 2-dimensional mix-
ture model with a background component and several peak components, where each of
the latter ones is based on the product of two shifted inverse Gaussian distributions, one
for drift time and one for retention time. In a more recent approach Kopczynski and
Rahmann (2014) again use shifted inverse Gaussian distributions to model each peak in
one spectrum (row) of IMS-MCC data sets. This means that a peak is modelled with
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2 Fields of application and data material

only a small number of parameters in both cases. Other approaches for modelling IMS
or similar data (see, e.g. Vogtland and Baumbach, 2009; Bödeker and Baumbach, 2009;
Rossoni and Feng, 2006) use different distributions, but also with very few parameters.
Although one of the aims is data reduction and the distributions allow, for example, for
skewness, this representation of the data might be too restrictive regarding the shape of
a peak. Since it is known that each peak is a unimodal function of the drift time, we
propose instead to describe a spectrum with multiple unimodal spline functions. Thus
we will consider piecewise unimodal regression and deconvolution models with unimodal
peak shapes for this application.
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3 Unimodal spline regression

This chapter is one of the two main methodological chapters of this thesis and presents
frequentist and Bayesian spline regression approaches to unimodal regression. Section 3.1
provides an overview of existing approaches to shape-constrained regression, especially
unimodal regression. The methodological part starts in Section 3.2 with an introduction
to spline functions and discusses their approximation power as well as their use in regres-
sion settings. Section 3.3 then describes penalized estimation with different smoothness
penalties. Regarding the form of the penalty, which can also be viewed as prior informa-
tion from the Bayesian perspective, we first introduce the finite difference penalties by
Eilers and Marx (1996). In a second step, we propose a novel approach to incorporate
prior information by penalizing against a parametric model, while still allowing for depar-
tures from it, when the data suggest so. In Section 3.4 the shape-preservation properties
of splines are discussed using the characteristics of Bernstein-Schoenberg splines and it
is shown how to incorporate shape constraints such as unimodality. Sections 3.5 and 3.6
present the main parts of the methodology for unimodal regression: a frequentist and a
Bayesian approach towards estimation of a penalized unimodal spline regression, in ex-
plicit, the combination of penalized and shape-constrained spline regression. Section 3.7
introduces weighted spline regression and its use in iterative algorithms for robust esti-
mation of a unimodal spline regression.
The article Köllmann et al. (2014) is based on parts of the material in this chapter.

3.1 Overview

Most common shape constraints used in the context of splines (and polynomials) are
monotonicity, convexity or concavity and log-concavity, because finite dimensional con-
straints on the spline coefficients ensure the desired shape constraint. See, for example,
Ramsay (1988), Kelly and Rice (1990), Wood (1994), Hazelton and Turlach (2011),
Meyer et al. (2011) and Wang and Ghosh (2012) for different approaches. Essentially,
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3 Unimodal spline regression

these shape constraints induce non-negativity constraints on a derivative which can be
ensured using constrained optimization in non-Bayesian approaches (see e.g. Ramsay
(1988) or Wang and Ghosh (2012)) and by prior specification in Bayesian approaches
(see e.g. Hazelton and Turlach (2011) and Meyer et al. (2011)).
Another alternative to constrained optimization is the use of an asymmetric penalty on
the spline coefficients introduced by Eilers (2005). It penalizes those coefficients that
violate the shape restriction and is iteratively recalculated. The shape constraint of
log-concavity (which also guarantees unimodality), for example, can be achieved by im-
posing concavity on the logarithm of the response with an asymmetric penalty. Yet,
log-concavity is a stronger requirement than unimodality and caution is required if the
underlying shape is unimodal, but not log-concave, for example, if the shape is "heavy-
tailed".
However, the unimodality constraint does not reduce to a single positivity constraint on
a derivative of the modelled function and has received less attention in the spline liter-
ature so far. In an unpublished manuscript, Woodworth (1999) uses B-splines with a
certain hierarchical prior on the coefficients that guarantees unimodality. Unfortunately,
no general suggestions on the choice of the prior parameters and the knot sequence are
given. The incorporation of a smoothness penalty, which could be used to address the
problem of knot placement, is also not straightforward in this model.
Even beyond splines, the literature on non-parametric estimation of a smooth unimodal
function is relatively sparse. The first approaches to unimodal regression date back to
the 1980s (see Frisén and Goteborg (1980), Frisén (1986), Hildenbrand and Hildenbrand
(1986)), where the proposed methods produced pointwise least squares estimates by
successively splitting the data into two possible subsets, applying an isotonic and an
antitonic regression (see e.g. Barlow et al. (1972)) and choosing the split with minimal
sum of squares. Later, several authors proposed algorithms that solve the unimodal least
squares regression problem faster (see e.g. Turner and Wollan (1997), Bro and Sidiropou-
los (1998), Stout (2008)) or that give unimodal regression estimates minimizing other
objective functions such as L1- or L∞-metrics (see e.g. Boyarshinov and Magdon-Ismail
(2006), Stout (2008)). Since all of these algorithms give pointwise estimates, these have
to be interpolated or smoothed in a second step. Similar drawbacks arise in methods
for unimodal density estimation. The approaches of Wegmann (1972), Bickel and Fan
(1996) and Birge (1997) produce unimodal step-functions by combining two monotone
density estimates of Grenander (1956). But even joining two smooth monotone regres-
sion or density estimates will not help, because it yields estimates which are not smooth
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or even discontinuous at the mode. The problem is that the shape constraint is imposed
using two local monotonicity constraints instead of one global constraint.
A different, but very general approach to incorporate shape constraints is data sharp-
ening, where the data points are shifted as little as possible so that the unconstrained
estimate satisfies the constraint. See, for example, Braun and Hall (2001) for an ap-
proach to unimodal density estimation.
In this chapter we present a semi-parametric spline regression approach to unimodal
regression. The method is based on the fact that using the B-spline basis, a spline can
be restricted to be unimodal by choosing a unimodal sequence of B-spline coefficients
with a fixed mode, which in contrast is a global constraint. The use of spline functions
guarantees the continuity of the fit. Smoothness can be achieved by using a penalization
approach.

3.2 Spline functions and curve fitting

The following introduction to spline functions and their use for regression purposes is
based on Dierckx (1993) unless noted otherwise.

3.2.1 The vector space of spline functions and suitable bases

Before discussing the use of spline functions for (shape-constrained) curve fitting, we
review their definition and some characteristics.

Definition 1. A spline function of degree k > 0 with knots τ0 < τ1 < . . . < τg+1 is a
function s(x), defined on a finite interval [a, b], where τ0 = a, τg+1 = b, that satisfies

(i) s(x) is on each knot interval [τj, τj+1] a polynomial of degree ≤ k, that is

s|[τj ,τj+1] ∈ Pk, j = 1, . . . , g.

(ii) s(x) and its (k − 1) first derivatives are continuous on [a, b], that is

s(x) ∈ Ck−1[a, b].

If the knots are not strictly increasing but there exist coincident knots (τj−1 < τj = . . . =

τj+l = c < τj+l+1), Definition 1 can be extended to this case by requiring in condition 2.
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3 Unimodal spline regression

that only the (k − 1− l) first derivatives are continuous at point c.
If the k-th order derivative of a spline is discontinuous at an interior knot τj, j ∈
{1, . . . , g}, then this knot is called active. If a spline s(x) satisfies s(l)(a) = s(l)(b), l =

0, 1, . . . , k−1, then it is called periodic. Furthermore, a natural spline function is a spline
of odd degree k = 2l − 1 (l ≥ 2), which satisfies s(l+j)(a) = s(l+j)(b), j = 0, . . . , l − 2.

A consequence of Definition 1 is that every polynomial on [a, b] of degree ≤ k is also a
spline function of degree k on [a, b]. The other way around, a spline function s(x) can
be written with the help of polynomials as

s(x) := pk,j(x) =
k∑
i=0

ai,j(x− τj)i if τj ≤ x ≤ τj+1, j = 0, . . . , g,

where the restrictions p(l)k,j−1(τj) = p
(l)
k,j(τj), j = 1, . . . , g, l = 0, . . . , k − 1 apply for the

coefficients ai,j because of the continuity conditions.
Let ηk(τ0, τ1, . . . , τg+1) denote the vector space of all spline functions of degree k as
determined by Definition 1. It follows from the g · k conditions on the coefficients ai,j
that the space’s cardinality is given by

d := |ηk(τ0, τ1, . . . , τg+1)| = (g + 1)(k + 1)− gk = g + k + 1.

We are now interested in a basis for this vector space, that is, a set of d basis spline
functions, so that each element of ηk can uniquely be written as their linear combination.

Definition 2. A function f : R 7→ R that is given by

f(x) = (x− φ)k+ =

(x− φ)k, x ≥ φ

0, x < φ,

where φ ∈ R is an arbitrary constant, is called truncated power function (TPF).

It is easily verified that a truncated power function is a spline with an active knot at
the point φ and it can be proven that each member of ηk can uniquely be written in the
form

s(x) =
k∑
i=0

bix
i +

g∑
i=1

ci(x− τi)k+,

where bi ∈ R, i = 0, . . . , k and ci ∈ R, i = 1, . . . , g.
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For the polynomials in each knot interval it follows that

pk,j(x) =
k∑
i=0

bix
i+

g∑
i=1

ci(x−τi)k+ =
k∑
i=0

bix
i+

j∑
i=1

ci(x−τi)k, x ∈ [τj, τj+1], j = 0, . . . , g.

The d = g+k+1 functions 1, x, . . . , xk, (x−τ1)k+, . . . , (x−τg)k+ form a basis of the spline
space ηk. However, this TPF basis is numerically ill-conditioned. Thus, the so-called
B-spline basis is introduced in the following.

Definition 3. The k-th divided difference of a function f at (distinct) points τ0, . . . , τk
is the leading coefficient (coefficient of xk) of the unique polynomial pk(x) which satisfies
pk(τj) = f(τj), j = 0, . . . , k. It is denoted by [τ0, . . . , τk]f or ∆k

x(τ0, . . . , τk)f(x).

It directly follows that if f itself is a polynomial of degree ≤ k−1 (f ∈ Pk−1) through the
points f(τj), then the coefficient of xk is 0 and thus [τ0, . . . , τk]f = 0. Other interesting
properties of the divided difference are the following:

Symmetry The order of the numbers τ0, . . . , τk does not matter, so they are assumed
to be in increasing order.

Linearity If f(x) = αg(x) + βh(x) then, [τ0, . . . , τk]f = α[τ0, . . . , τk]g + β[τ0, . . . , τk]h.

Recursion The following recursion relation holds for the divided differences:

[τj, . . . , τj+l]f =
[τj+1, . . . , τj+l]f − [τj, . . . , τj+l−1]f

τj+l − τj
and [τj]f = f(τj).

Figure 3.1 gives a corresponding scheme useful for calculating divided differences.

Newton form The polynomial pk(x) which satisfies pk(τj) = f(τj), j = 0, . . . , k, can
be written with the help of the diagonal elements from Figure 3.1 in the following
form:

pk(x) = [τ0]f +
k∑
j=1

(x− τ0) · · · (x− τj−1)[τ0, . . . , τj]f.

Explicit expression The divided differences can also be calculated using the explicit
expression [τ0, . . . , τk]f =

∑k
j=0

f(τj)∏k
l=0,l 6=j(τj−τl)

.

Definition 4. The (normalized) B-spline Nj,k+1 of degree k with knots τj, . . . , τj+k+1 is
defined as

Nj,k+1(x) = (τj+k+1 − τj)∆k+1
t (τj, . . . , τj+k+1)(t− x)k+.
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[τ0]f = f(τ0)

[τ1]f = f(τ1)

[τ2]f = f(τ2)

...

[τk−1]f = f(τk−1)

[τk]f = f(τk)

· · ·

...

[τ1, τ2]f

[τ0, τ1]f

[τk−1, τk]f

[τ0, τ1, τ2]f

...

· · ·

· · ·

. . .

[τ0, . . . , τk−1]f

[τ1, . . . , τk]f [τ0, . . . , τk]f

Figure 3.1: Triangular scheme for the calculation of divided differences.

With the help of the explicit expression of divided differences this can be written as

Nj,k+1(x) = (τj+k+1 − τj)
k+1∑
i=0

(τj+i − x)k+∏k+1
l=0,l 6=i(τj+i − τj+l)

.

Some resultant properties of the B-splines are:

Positivity Nj,k+1(x) ≥ 0 ∀x.

Local support Nj,k+1(x) = 0 ∀x /∈ [τj, τj+k+1].

Boundary values N (l)
j,k+1(τj) = N

(l)
j,k+1(τj+k+1) = 0, l = 0, . . . , k − 1.

Recursion Nj,l+1(x) =
x−τj
τj+l−τj

Nj,l(x)+
τj+l+1−x

τj+l+1−τj+1
Nj+1,l(x), Nj,1(x) =

1, x ∈ [τj, τj+1)

0, x /∈ [τj, τj+1)
.

Derivative N ′j,k+1(x) = k
(
Nj,k(x)

τj+k−τj
− Nj+1,k(x)

τj+k+1−τj+1

)
.

Suppose a spline s(x) ∈ ηk(τ0, . . . , τg+1) should be characterized by a linear combination
of B-splines. There exist g − k + 1 linearly independent B-splines of degree k for the
knots a = τ0, . . . , τg+1 = b, namely N0,k+1, N1,k+1, . . . , Ng−k,k+1. Another 2k linearly
independent B-splines are needed for a basis of the d = g + k + 1-dimensional vector
space ηk. If 2k additional knots τ−k ≤ τ−k+1 ≤ . . . ≤ τ−1 ≤ a and b ≤ τg+2 ≤ . . . ≤
τg+k ≤ τg+k+1 are arbitrarily chosen, the corresponding B-splines N−k,k+1, . . . , N−1,k+1

and Ng−k+1,k+1, . . . , Ng,k+1 make the B-spline basis complete. See Figure 3.2B for an
example of a B-spline basis. The full sequence of knots is denoted by T = (τj)

g+k+1
−k in
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3 Unimodal spline regression

the following. The knots τ1, . . . , τg are called inner knots, while the remaining ones to
the left and to the right are called boundary knots.
Each spline function s(x) has a unique representation as linear combination of the basis
functions of the form

s(x) =

g∑
j=−k

βjNj,k+1(x).

The constants βj are called B-spline coefficients of s(x). For x ∈ [τl, τl+1) it follows from
the local support property of B-splines that s(x) =

∑l
j=l−k βjNj,k+1(x).

The basis {N−k,k+1, . . . , Ng,k+1} forms a partition of unity on [a, b], that is

g∑
j=−k

Nj,k+1(x) = 1 ∀x ∈ [a, b]

while Nj,k+1 ≥ 0 ∀x ∈ [a, b], ∀j. This is why the B-splines are also called normalized
(de Boor, 1978).
Another interesting characteristic of splines with respect to the B-spline basis is the vari-
ation diminishing property, which says that a spline s(x) =

∑g
j=−k βjNj,k+1(x) changes

its sign at most as often as the corresponding sequence of B-spline coefficients β−k, . . . , βg
does (de Boor, 1978). This property allows to easily impose shape constraints. For
example, the usage of cubic splines under convexity constraints leads to a quadratic
programming problem. In Section 3.4 we exploit the variation diminishing property to
show that splines are well-suited for unimodal regression.
There exist several algorithms for the calculation of spline function values or values of
derivatives. The algorithms are based on the recursion formulae for B-splines (see above)
or the following recursion relation based on the B-spline coefficients βj:
For the spline itself, it is true that

s(x) = β
[k]
j (x), with β[i]

j (x) =

βj, i = 0

(x−τj)β
[i−1]
j (x)+(τj+k+1−i−x)β

[i−1]
j−1 (x)

τj+k+1−i−τj
, i > 0

and for a spline’s derivatives it holds that

s(ν)(x) =
ν∏
i=1

(k + 1− i)
g∑

j=−(k−ν)

β
(ν)
j Nj,k+1−ν(x) with β(ν)

j =

βj, ν = 0

β
(ν−1)
j −β(ν−1)

j−1

τj+k+1−ν−τj
, ν > 0

.

(3.1)
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If x ∈ [τl, τl+1), some summands in the derivative are known to be zero and the reduced
formula is s(ν)(x) =

∏ν
i=1(k + 1− i)

∑l
j=l−k+ν β

(ν)
j Nj,k+1−ν(x).

The above recursive computations are numerically stable. In addition, the local support
and partition of unity properties induce sparsity and boundedness and thus, the B-spline
basis is better suited for numerical computations than the TPF basis.

3.2.2 Suitability of B-splines for curve fitting

Besides its numerical stability, the B-spline basis is also sufficiently flexible and therefore
suitable for curve fitting. To see this, we review some basic properties of Bernstein-
Schoenberg splines (see, for example, Goodman, 1995), which are a particular choice of
B-splines. Let [a, b] = [0, 1] and let the sequence of knots be restricted to τ−k = . . . =

τ0 = 0, τg+1 = . . . = τg+k+1 = 1 (so-called coincident boundary knots).
The Bernstein-Schoenberg spline (B-S spline) or Bernstein-Schoenberg operator of a
function f has specific B-spline coefficients and is defined for x ∈ [0, 1] as

VTk f(x) =

g∑
j=−k

f(τ ∗j )Nj,k+1(x),

where τ ∗j =
1

k

k∑
i=1

τj+i, j = −k, . . . , g, are the so-called knot averages.

For the B-S spline it holds that, if f ∈ Cω[0, 1], then lim
k→∞

(VTk f)(ω) = f (ω) uniformly on
[0, 1] for ω = 0, 1.
For g = 0 the B-spline basis functions Nj,k+1(x) (j = −k, . . . , 0) reduce to the binomial
probabilities

(
k
`

)
x`(1 − x)k−` (` = 0, . . . , k) (see also Figure 3.2A) and the B-S splines

reduce to the Bernstein polynomials, Bkf(x) =
∑k

`=0 f
(
`
k

) (
k
`

)
x`(1 − x)k−`, which have

been increasingly employed for shape-constrained regression, see, for example, Chang
et al. (2005) or more recently Wang and Ghosh (2012). Here, we prefer B-S splines since
they are a straightforward, more flexible generalization of Bernstein polynomials and
converge faster than the latter for suitably chosen knot sequences (cf. Marsden, 1970).
In summary, a function f ∈ Cω[0, 1] (ω = 0, 1) can be approximated by a spline

s(x) =
∑g

j=−k βjNj,k+1(x) with βj = f(τ ∗j ) with uniform convergence properties. The
same is true for functions on arbitrary intervals [a, b] since their support can always
be transformed to [0, 1]. B-S splines are a tool in approximation theory problems, but
will be used here for regression purposes. Since the functional relationship f between
predictor and response is unknown, we cannot choose βj = f(τ ∗j ), but have to estimate
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Figure 3.2: Comparison of Bernstein and B-spline basis.
(A) Bernstein basis / binomial probabilities with k = 3 (identical with cubic
B-splines on the interval [0, 1] without inner knots (g = 0) and with coinci-
dent outer knots on 0 and 1). (B) Cubic B-spline basis functions with g = 3
equidistant inner knots in the interval [0, 1] and coincident outer knots on 0
and 1.
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the B-spline coefficients β = (β−k, . . . , βg) ∈ Rd from data. However, the properties of
B-S splines give an idea of the flexibility of the B-splines in the context of curve fitting.

3.2.3 Criteria for curve fitting with spline functions

Curve fitting with splines is based on the following approximation problem:
given n pairs of observations (x1, y1), . . . , (xn, yn) (sorted according to the x-values) of
an independent variable X and a dependent variable Y it is desired to fit a function
f(x) = f(x|θ) to the y-values which satisfies some kind of approximation criterion so
that f(xi) ≈ yi.
The parameters in θ that have to be estimated (or fixed) when splines are used for curve
fitting, that is, when f(x|θ) = s(x) =

∑g
j=−k βjNj,k+1(x), are

(i) the degree k of the spline,

(ii) the number and the positions of the knots τj,

(iii) the B-spline coefficients βj.

Curve fitting may have several objectives. One of those is data smoothing: as the mea-
surement of the values yi is subjected with errors, one may hope to find a function f

so that f(xi) is more accurate than yi. Such a function would be supposed to look
smooth. Another objective of curve fitting is to obtain a functional representation of
the underlying relationship for the data. It enables to predict y-values at any point x
in the observed range or to calculate derivatives, integral values etc. A third objective
is data reduction. The parameters θi will usually require much less storage space than
the data.
It is common to use splines of odd degree, explicitly cubic splines (k = 3). Recommen-
dations for the determination of the other parameters are linked to particular approxi-
mation criteria, two of which will be discussed here: the least squares criterion and the
criterion of the natural smoothing spline.

Applying the least squares criterion one is looking for the spline function s(x) that
minimizes the sum of squared deviations

∑n
i=1(yi − s(xi))2.

With fixed spline degree and fixed number and positions of the knots, the above least
squares problem is linear in the B-spline coefficients βi and can therefore be solved as
an overdetermined and sparse (local support property) linear system. This can be seen
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as follows.
Let

B :=


N−k,k+1(x1) · · · Ng,k+1(x1)

...
...

N−k,k+1(xn) · · · Ng,k+1(xn)

 ∈ Rn×d

be the matrix of B-spline basis functions evaluated at the observation points x1, . . . , xn.
y = (y1, . . . , yn)′ is the vector of observed responses and β := (β−k, . . . , βg)

′ ∈ Rd the
vector of B-Spline coefficients, so that

Bβ =


∑g

j=−k βjNj,k+1(x1)
...∑g

j=−k βjNj,k+1(xn)

 =


s(x1)
...

s(xn)

 .

We can rewrite the minimization problem as arg min
β
‖y −Bβ‖22. If the number of

distinct x-values is greater than or equal to the number of B-spline coefficients d, the
matrix B′B is invertible and the unique solution is simply β̂ = (B′B)−1B′y.
When assuming homoscedastic normally distributed errors, that is, when the data stem
from the model

Y = s(x) + E with E ∼ N (0, σ2),

minimization of the least squares criterion is equivalent to maximization of the likelihood.
Since the log-likelihood is proportional to − 1

σ2 ||y − Bβ||22, the maximum likelihood
approach leads to the same estimate β̂ as above. Thus, we will use this weighted form
of the least squares criterion in the following, which will also help to unify upcoming
approaches.
Unfortunately, choosing the number and positions of the knots properly is not trivial.
Too many knots may lead to a very flexible and thus overfitted spline, while too few
knots might cause underfitting. However, treating these parameters as variable and
optimizing over, e.g., the knot positions is not trivial either since this requires solving a
non-linear and constrained least squares problem.
The criterion of the natural smoothing spline gives a compromise between an
approximation with a smooth behaviour (no overfitting) and an approximation with a
close fit to the data values (no underfitting). This is achieved by minimizing the term∫ xn
x1

(s(l)(x))2dx subject to the condition
∑n

i=1(yi−s(xi))2 ≤ h, where h is a non-negative
value called smoothing factor, which controls the compromise between smoothness and
goodness of fit. The solution of this conditional minimization problem is a natural
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spline of degree k = 2l − 1 with knots at the observation points, that is τi = xi+1, i =

0, 1, . . . , g + 1 = n − 1. There exist several procedures and algorithms for the exact
determination of this spline. The parameter l is often chosen as two, resulting in a cubic
smoothing spline.
The conditional minimization problem can be rewritten (here only for k = 3) as a
penalized least squares problem of the form

arg min
s

n∑
i=1

(yi − s(xi))2 + λ

∫ xn

x1

(s′′(x))2dx,

where now the choice of the parameter λ gives the compromise between closeness to the
data and smoothness in terms of curvature of the function f (cf. Hastie et al., 2009,
ch. 5.4). So in contrast to the least squares criterion, the number and positions of the
knots can be fixed, but the solution will be both reasonably smooth and reasonably
close to the data. According to Eilers and Marx (1996) this advantage comes again at
the cost of high complexity of the optimization problem and they propose to replace the
smoothness penalty

∫ xn
x1

(s′′(x))2dx by a penalty based on finite differences of the B-spline
coefficients. Such penalties enable the same compromise as the smoothness penalty, but
are much easier to handle computationally. The concept of penalized spline regression
is described in more detail in the following section.

3.3 Penalized spline regression

As already mentioned, the combination of the least squares criterion with a suitable
penalty term can be used to solve the knot placing problem in the spline regression
context. This section will discuss different penalization strategies.

3.3.1 Penalized least squares estimation

Eilers and Marx (1996) propose to use a relatively large number of knot positions (com-
pared to the number of the predictor values and the variation in the data) and a penalty
term based on finite differences of the B-spline coefficients to find a compromise between
over- and underfitting. In their approach the term

λ

g∑
j=−k+q

(∆qβj)
2
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is added to the objective function, where ∆βj = βj − βj−1, ∆2βj = ∆(∆βj) = βj −
2βj−1 + βj−2 and so on.
The parameter λ > 0 enables the tuning of the penalization. In matrix notation the

objective function is thus given by
1

σ2
‖y −Bβ‖22 + λ ‖Dqβ‖22 , where Dq ∈ R(d−q)×d is

the matrix representation of the finite differences of order q, for example,

D2 =


1 −2 1 0

1 −2 1

0
. . . . . . . . .

1 −2 1

 ∈ R(d−2)×d.

Eilers and Marx (1996) propose to use second order differences (q = 2) and a knot
sequence that is equidistant (also the boundary knots), that is, τj = a + j b−a

g+1
∀ j =

−k, . . . , g + k + 1. In this case the penalty term is zero for linear in- or decreasing
coefficient sequences and thus, one penalizes against linear functions.
To enable inclusion of other penalties (see also next paragraph) we will use a generalized
penalty term in the following, i.e., the objective function is the penalized residual sum
of squares

1

σ2
‖y −Bβ‖22 + λ

∥∥∥Ω 1
2 (β − β0)

∥∥∥2
2
.

In the case of the difference penalty we thus have β0 = 0 and Ω = D′qDq.
For fixed λ the penalized objective function is minimized by

β̂ =

(
1

σ2
B′B + λΩ

)−1(
1

σ2
B′y + λΩβ0

)
. (3.2)

The question of how to determine a suitable value for the tuning parameter λ will be dis-
cussed in Section 3.5 after the introduction to shape-constrained splines in Section 3.4,
so that it is possible to derive a universal approach for spline regression both with and
without shape constraint.

For the penalized weighted residual sum of squares criterion holds a similar statement
as for the least squares approach. Suppose that λ is fix and the coefficient vector has
a (possibly improper) prior distribution β ∼ N (β0, λ

−1Ω−), where Ω− ∈ Rd×d is the
pseudo-inverse of Ω if r := rank(Ω) < d, and the regular inverse otherwise. Then, the
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posterior is given by

p(β|y) ∝ p(β,y) = p(y|β)p(β) ∝ exp

{
− 1

2σ2
‖y −Bβ‖22

}
exp

{
−1

2
λ
∥∥∥Ω 1

2 (β − β0)
∥∥∥2
2

}

and the negative log-posterior of β is proportional to 1
σ2 ‖y −Bβ‖22 +λ

∥∥∥Ω 1
2 (β − β0)

∥∥∥2
2
.

Thus, the penalized least squares estimation results in the same estimator of β as the
maximum a posteriori approach.

3.3.2 Penalization against parametric functions

There are situations in which prior information about the functional relationship exists
from preceding experiments, as, for example, in dose-response trials. Thus, one might
have a particular parametric function in mind to estimate the relationship, but one
would like to safeguard against mis-specification of this function (as discussed in Yuan
and Yin (2011), for example). We now present how to integrate this information in form
of a penalty.
Suppose we want to penalize against a function h. The linear interpolant of the points
(τ ∗−k, β−k), . . . , (τ

∗
g , βg), which Dierckx (1993) calls the "control polygon" of a spline,

mimics the form of a spline. Thus, it seems natural to penalize against this form, in
explicit to penalize the differences in the B-spline coefficients against the differences in
the values of the fitted function ĥ at the knot averages. Explicitly, the penalty term is

∥∥∥Ω 1
2 (β − β0)

∥∥∥2
2

=

g∑
j=−k

{
∆qβj −∆qĥ(τ ∗j )

}2

=

g∑
j=−k

{
∆q(βj − ĥ(τ ∗j ))

}2

, (3.3)

that is, Ω and β0 are given by D′qDq and
(
ĥ(τ ∗−k), . . . , ĥ(τ ∗g )

)′
. The fit ĥ can stem from

previous analyses on similar (historical) data or on the data at hand. Since we have
already seen that a penalty term can be formulated as prior distribution of the B-spline
coefficients, estimation of the penalty from the same data resembles an empirical Bayes
approach.
In dose-response applications a possible choice of the parametric model is the sigmoid
Emax model (implemented, e.g., in the R package DoseFinding, Bornkamp et al. (2016)).
One characteristic of this model is that it allows for a steep increase in the response.
Thus, if prior information suggests such a steep increase, it is possible to incorporate this
knowledge by penalizing the spline against the fitted sigmoid Emax function. Explicitly,

26



3 Unimodal spline regression

the function hsigE(x) = E0 + E1
xζ

ED ζ
50 + xζ

with parameters E0, E1, ED50 and ζ and

Ω = Id ("zero order differences", q = 0) are employed in Equation (3.3). Another idea
would be to penalize against the increase in a sigmoid-Emax fit, that is, using the first
order (q = 1) differences matrix Ω = D′1D1. An overview of penalization possibilities
will be given in the next section.

3.3.3 Possible penalties

As already seen, the choice of Ω and β0 determines the nature of the penalty. Apart
from second order differences of the B-spline coefficients as proposed in Eilers and Marx
(1996) or penalization against parametric functions, which are summarised in Table 3.1,
plenty of other possibilities are imaginable.

Table 3.1: Possibilities to define the penalty term.

penalty β0 Ω
difference penalty of order q = 0 (ridge) 0 Id

difference penalty of order q = 1 0 D′1D1

difference penalty of order q = 2 0 D′2D2

difference penalty of general order q 0 D′qDq

sigmoid Emax penalty
(
ĥsigE(τ ∗−k), . . . , ĥsigE(τ ∗g )

)′
Id

sigmoid Emax increase penalty
(
ĥsigE(τ ∗−k), . . . , ĥsigE(τ ∗g )

)′
D′1D1

general functional penalty
(
ĥ(τ ∗−k), . . . , ĥ(τ ∗g )

)′
Id

A very common penalty, also used for variable selection, is the so-called ridge penalty
which has the sum of squared B-spline coefficients as penalty term. The first row of
Table 3.1, a zero order difference penalty, corresponds to it. Thus it can be interpreted
in the spline regression context as a penalty against a function, which is constantly zero.
It makes sense for the IMS data sets, for example, where the intensities are very small
over most of the x-axis. This penalty is obtained when Ω is the d × d identity matrix
and β0 = 0.

3.4 Shape-constrained splines

In this section we revert to the variation diminishing property of B-splines from Sec-
tion 3.2 to illustrate that they are well-suited for shape-constrained modelling, as a
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simple constraint on the B-spline coefficients ensures unimodality of a spline.
The characteristics of the control polygon (cf. Section 3.3.2) already indicate that the
shape of the B-spline coefficients influences the shape of the spline function. A more
formal argument is the variation diminishing property introduced by Schoenberg (1967).
It says that the number of sign changes of a spline

∑g
j=−k βjNj,k+1(x) is not larger than

the number of sign changes of the B-spline coefficient sequence (β−k, . . . , βg). Carnicer
and Pena (1994) even found that the B-spline basis is optimally shape preserving for
the space of spline functions. This property makes B-splines very interesting for shape-
constrained regression. Concerning unimodality we derive the following lemma and proof
on the basis of Lemma 1 in Köllmann et al. (2014):

Lemma 1. Let s(x) =
∑g

j=−k βjNj,k+1(x) be a spline function on [a, b] with knot se-
quence T = (τj)

g+k+1
−k . If ∃ m ∈ {−k, . . . , g} : β−k ≤ . . . ≤ βm−1 ≤ βm ≥ βm+1 ≥ . . . ≥

βg then s is a unimodal spline function.

Proof of Lemma 1. Let s(x) =
∑g

j=−k βjNj,k+1(x) be a spline function on [a, b] with
knot sequence T = (τj)

g+k+1
−k and ∃ m ∈ {−k, . . . , g} : β−k ≤ . . . ≤ βm−1 ≤ βm ≥

βm+1 ≥ . . . ≥ βg. We have to prove that s is a unimodal function, or equivalently, that
the derivative s′ has at most one sign change.
According to Equation (3.1), the first derivative of s is given by

s(1)(x) =
1∏
i=1

(k + 1− i)
g∑

j=−(k−1)

β
(1)
j Nj,k+1−1(x)

= k ·
g∑

−k+1

βj − βj−1
τj+k+1−1 − τj

Nj,k(x)

=

g∑
j=−k+1

k(βj − βj−1)
τj+k − τj︸ ︷︷ ︸

:=αj

Nj,k(x),

which is a spline function of degree k−1 with B-spline coefficients αj, j = −k+1, . . . , g.
From Definition 1 we know that the inner knots of a spline all have to be distinct, so
that τj+k − τj > 0 for j = −k + 1, . . . , g. Thus, the sign of αj depends only on the sign
of βj − βj−1.
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We have that ∃ m ∈ {−k, . . . , g}: β−k ≤ . . . ≤ βm−1 ≤ βm ≥ βm+1 ≥ . . . ≥ βg,

⇒


αj ≤ 0 ∀ j, m = −k

αj ≥ 0 ∀ j ≤ m ∧ αj ≤ 0 ∀ j ≥ m+ 1, m /∈ {−k, g}

αj ≥ 0 ∀ j, m = g

.

Explicitly, this means that the coefficient sequence of the derivative has at most one
sign change from negative to positive. Hence, according to the variation diminishing
property, the derivative itself has at most one sign change and s is unimodal (including
the special cases monotone increasing/decreasing or constant).

The reverse implication does not necessarily hold, as can be seen from the following
counterexample: Let s1 ∈ η4(τ0 = 0, τ1 = 1) (g = 0, k = 4) be the spline function
with functional equation s1(x) = −8(x − 0.5)4 + 0.5. For coincident boundary knots
τ−4 = . . . = τ0 = 0, τ1 = . . . = τ4 = 1 the unique representation as linear combination
of B-splines is given by the coefficients β1 = (0, 1, 0, 1, 0)′ (see Figure 3.3 for a graphical
display of the spline and the B-spline basis). This can be seen as follows:
As mentioned in 3.2.2, the B-spline basis functions reduce to binomial probabilities for
g = 0. Thus, we have that

s(x) =
0∑

j=−4

βjNj,5(x)

= N−3,5(x) +N−1,5(x)

=

(
4

1

)
x1(1− x)4−1 +

(
4

3

)
x3(1− x)4−3

= 4x(1− x)3 + 4x3(1− x)

= −8

[
x4 − 2x3 +

3

2
x2 − 1

2
x

]
= −8

[
x4 − 2x3 +

3

2
x2 − 1

2
x+

1

16
− 1

16

]
= −8

[(
x− 1

2

)4

− 1

16

]
= −8(x− 0.5)4 + 0.5

Thus, s is a unimodal function, as it has only a single maximum at 0.5, but the coeffi-
cient sequence is clearly not unimodal.
However, due to the flexibility of spline functions this lack of equivalence is judged as
unproblematic. Figure 3.3 shows that a spline function s2 from the same spline space
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but with unimodal coefficient sequence β2 = (0.08, 0.65, 0.58, 0.58, 0.11)′ is quite sim-
ilar to spline s1 (top) and that a spline function s3 from the spline space with only
one knot more (g = 1 inner knot τ1 = 0.5) and with unimodal coefficient sequence
β3 = (0, 0.5, 0.5, 0.5, 0.5, 0)′ is already indistinguishable from spline s1 (bottom). In fact,
spline functions s1 and s3 are identical.
Thus, when choosing a large number of knots (and placing a penalty on the coefficients
for smoothness as described in Section 3.3), we can suppose that an arbitrary spline,
whether it has a unimodal coefficient sequence or not, can be described by a spline func-
tion with unimodal coefficients. This combination of penalization and shape constraint
will be discussed in Section 3.5. Prior to this, we address the question of how to fit a
unimodal, or more generally, a shape-constrained spline to data.

As follows from Lemma 1, it is sufficient to restrict the B-spline coefficients to form a
unimodal sequence to ensure unimodality of the fitted spline. In addition, the proof of
Lemma 1 also revealed two special cases of unimodality: Firstly, if m = −k, i.e., the
mode of the coefficient sequence is its first element, then the spline has a non-positive
derivative and is thus monotone decreasing. Secondly, if m = g, i.e., the mode of the
coefficient sequence is its last element, then the spline has a non-negative derivative and
is thus monotone increasing. It is also trivial to note that a B-spline coefficient sequence
that is first decreasing and then increasing leads to an inverse unimodal (or also called
"U-shaped") spline function.
More precisely, all those shape constraints can be written as the linear inequalityCβ ≥ 0

with suitably chosen matrix C ∈ R(d−1)×d. For unimodality with fixed mode m of the
B-spline coefficients this constraint matrix is given by

C = Cm =



−1 1
. . . . . . 0−1 1

1 −1

0 . . . . . .

1 −1


← m-th row.

(3.4)
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Figure 3.3: Example of a unimodal spline function with non-unimodal coeffi-
cient sequence.
Top: Spline functions s1 and s2 with coefficients β1 = (0, 1, 0, 1, 0)′ and
β2 = (0.08, 0.65, 0.58, 0.58, 0.11)′ corresponding to the depicted B-spline ba-
sis with g = 0 inner knots. Bottom: Spline functions s1 (as before) and s3
with coefficient sequence β3 = (0, 0.5, 0.5, 0.5, 0.5, 0)′ corresponding to the
depicted B-spline basis with g = 1 inner knot.
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For the special case of increasing monotonicity we have

C = Cg =


−1 1 0−1 1

0
. . . . . .

−1 1

 .

For decreasing monotonicity and inverse unimodality with "mode" m the negative forms
of the aforementioned matrices can be used: C = C−k = −Cg and C = −Cm, respec-
tively.
In summary, a shape-constrained spline can be fitted by minimizing the (weighted) least
squares criterion

1

σ2
‖y −Bβ‖22 subject the constraints Cβ ≥ 0.

As already mentioned in Section 3.2, such shape constraints result in a quadratic pro-
gramming problem (defined by a quadratic objective function with linear constraint),
which do not have an explicit solution, but can be solved efficiently and reliably, see for
example the R package quadprog (Turlach and Weingessel, 2013).
Usually the mode of the coefficient vector will be unknown and must be learned from
data. We propose to fit a unimodal (or an inverse unimodal) regression for each possible
choice ofm ∈ {−k, . . . , g} and then select the regression coefficient β̂m with lowest resid-

ual sum of squares
∥∥∥y −Bβ̂m∥∥∥2

2
. This idea is similar to the one in Frisén (1986), but a

global shape constraint is used instead of two local ones. On the one hand, this selection
mechanism increases computation time, but on the other hand, the possibility to fix the
mode at a certain value can also be advantageous (cf. the deconvolution model with
varying peak shapes in Section 4.3.4). An alternative is to take a (Bayesian) average
over different choices of the mode, which is done in Section 3.6. But prior to this we
intend to combine shape-constrained and smoothness-penalized splines in a frequentist
setting.

3.5 Frequentist penalized unimodal spline regression

This section aims at bringing the penalized spline regression from Section 3.3 and the
shape-constrained spline regression from Section 3.4 together. We will first discuss how
to estimate a regression spline for fixed λ within this combined framework before tackling
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the problem of how to choose the tuning parameter.

3.5.1 Combining shape constraint and penalty

In this subsection the underlying model is

Y |β ∼ N (Bβ, σ2In),

and it is desired to find the best fitting unimodal spline that is also appropriately smooth.
In explicit, the aim is a combination of unimodal spline regression and penalized spline
regression. For the time being suppose that the standard deviation σ is known. This
assumption will be relaxed in the further course.
The combination of unimodal and penalized spline regression is quite straightforward.
In explicit, for a fixed tuning parameter λ the penalized objective function

1

σ2
‖y −Bβ‖22 + λ

∥∥∥Ω 1
2 (β − β0)

∥∥∥2
2

is now minimized over the set Sm of all unimodal coefficient vectors β with mode m,
that is, Sm := {β ∈ Rd : Cmβ ≥ 0}.
Again, the constrained problem cannot be solved explicitly, but for each mode m the
estimate β̂m can be found using quadratic programming algorithms and the best fitting
mode is found by minimizing the residual sum of squares criterion over all possible
choices from −k to g.

3.5.2 REML estimation of the tuning parameter

Before estimating β in the above described manner, a value for the tuning parameter
λ has to be chosen, which gives a compromise between overfitting and underfitting. In
simple regression problems the method of choice is often leave-one-out cross-validation,
where the hat matrixH for which ŷ = Hy can be used as a shortcut for the estimation of
the tuning parameter. But when estimating β (and calculating ŷ) under the unimodality
constraint, such a matrix and thus a similar simple way of calculating the cross-validated
tuning parameter is not available. In what follows we will describe a restricted maximum-
likelihood (REML) procedure for estimating λ, as this can relatively straightforwardly be
extended to the constrained case. We follow an approach, for example, taken by Wood
(2011) in other penalized likelihood problems, where no shape constraint is present, and
assume that β and λ are random. The restricted likelihood of λ is the marginal posterior
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density p(λ|y) which can be found by integrating β out of the joint posterior p(β, λ|y), in
explicit, p(λ|y) =

∫
p(β, λ|y)dβ. An automatic choice of the tuning parameter λ based

on REML estimation is then λ̂ = arg max
λ

p(λ|y). The following Lemma 2 specifies the

form of the marginal likelihood:

Lemma 2. Assuming the model

Y |β ∼ N (Bβ, σ2In), σ2 > 0

β|λ ∼ NM(β0, λ
−1Ω−1), λ > 0,Ω pd,M⊆ Rd

λ ∼ p(λ), a prior density on (0,∞),

the marginal posterior density of λ is given by

p(λ|y) ∝ p(λ) |λΩ|
1
2 |Eλ|

1
2
cpostλ

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
λβ′0Ωβ0

)
,

where Eλ :=

(
1

σ2
B′B + λΩ

)−1
, e′λ :=

(
1

σ2
y′B + λβ′0Ω

)
Eλ and cpriorλ is the proba-

bility of the truncation set M under N (β0, λ
−1Ω−1) and cpostλ is its probability under

N (eλ,Eλ).

A proof is given in Appendix B.
The notation NM(µ,Σ) in Lemma 2 stands for a multivariate normal distribution with
mean µ and covariance matrix Σ truncated to the setM ⊆ Rd. ForM = Sm we have
the unimodality constraint with mode m of the B-spline coefficients and for M = Rd

there is no shape constraint. In the unconstrained case both normalizing constants,
cpriorλ and cpostλ , are the probability of Rd under multivariate normal distributions and
thus, equal to one. Under the unimodality shape constraint the normalizing constants
are the respective probabilities of Sm, which can be approximated numerically (see, for
example, the R package mvtnorm by Genz et al. (2012)).
If Ω is positive definite as required in Lemma 2 the factor |λΩ| 12 in the marginal pos-
terior can be simplified to λ

d
2 |Ω| 12 ∝ λ

d
2 . If one is interested in a model, where Ω is

not positive definite (in explicit, the prior is improper), as, for example, when using a
difference penalty, Lemma 2 does not hold, but we propose to use the specified formula
nevertheless, though with two variations: First, we have that |λΩ| 12 = λ

r
2 |Ω|

1
2
+ ∝ λ

r
2 ,

where r = rank(Ω) and | · |+ denotes the pseudo-determinant, which is the product of
all non-zero eigenvalues of a square matrix (cp. Wood, 2011). Second, the normalizing
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constant of the prior does not exist in these cases and we propose to calculate cpriorλ as
the normalizing constant of a slightly modified proper prior: If Ω is determined by a
general difference matrix Dq, the modified covariance matrix of the prior is given by
Ω̃λ = 1

σ2
v
Id + λD′qDq. This can be interpreted as a combination of ridge and difference

penalty, where we propose to keep the "tuning parameter" σ2
v of the ridge penalty fixed,

so that the influence of the difference penalty still increases with higher λ.

To sum up, we propose to choose the tuning parameter as λ̂ = arg max
λ

w1(λ) with

w1(λ) = p(λ) λ
r
2 |Eλ|

1
2
cpostλ

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
λβ′0Ωβ0

)
, (3.5)

where r = rank(Ω) and cpriorλ and cpostλ as specified above. The function w1 is propor-
tional to the marginal posterior (if rank(Ω) < d only approximately) and therefore has
the same maximum. The estimate of λ can be found using optimization algorithms and
is then used in the estimation procedure for β described in Section 3.5.1.
Since we also consider models for multimodal data in Chapter 4, where the unimodal
regression has to be applied repeatedly, we propose to choose λ by approximate REML
to reduce the computational burden in those approaches. This means that the uni-
modality constraint is not accounted for during tuning parameter optimization and the
normalizing constants in w1 are set to one, resulting in the same tuning parameter as
for the respective unconstrained model.
The described procedure is not invariant to scaling of the data, thus, we propose to scale
the observations y into [−1, 1] and transform the fitted values back. For the simulation
study in Chapter 6 and the applications in Chapter 7 we choose σ2

v = 5, which can be
thought of as uninformative since the B-spline coefficients βi, which mimic the functional
relationship, approximately also lie in [−1, 1].
In real applications the standard deviation σ is usually unknown and has to be estimated
as well. If it is possible to attain an accurate estimate from preceding trials or from the
data itself, as, for example, in dose-response trials with repeated measurements, then the
above process works fine. In other cases, it is still possible to iterate between estimation
of σ given an interim estimate of β and estimation of β given an interim estimate of σ
until some defined convergence.
When replacing the maximization in the above procedure by averaging, we arrive at the
Bayesian approach that will be discussed in the next section.
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3 Unimodal spline regression

3.6 Bayesian unimodal spline regression

In contrast to performing model selection over a grid of possible values for the mode and
maximizing the restricted likelihood over λ, one can also think of model averaging based
on a Bayesian approach. Then, besides β and λ, the mode is random, too. In explicit,
the model is given by

Y |β ∼ N (Bβ, σ2In), σ2 > 0,

β|λ,m ∼ NSm(β0, Ω̃
−1
λ ), Ω̃λ with full rank, (3.6)

(λ,m) ∼ p(λ,m),

where p(λ,m) is a prior density on (0,∞) × {−k, . . . , g}. A simple choice of this joint
prior for tuning parameter and mode will be discussed at the end of this section.
For the prior of β we directly use the full-rank precision matrix Ω̃λ = 1

σ2
v
Id + λD′qDq.

The variance σ2 of the responses and the penalty components β0 and Ω̃λ are assumed
to be fixed, since they are either known from preceding experiments or can be estimated
from the data leading to an empirical Bayes approach (cf. Section 3.3.2).

For model (3.6) the joint posterior distribution factorizes as

p(β, λ,m|y) = p(β|λ,m,y)p(λ|m,y)p(m|y). (3.7)

Thus, we can generate a Monte Carlo random sample from the posterior distribution
by sampling successively from p(m|y), p(λ|m,y) and p(β|λ,m,y). Estimators for β, λ
and m are obtained by posterior averages, in explicit, means or medians of the posterior
samples.
The following Lemma 3 states two marginal posterior densities which are essential for
the proposed random sampling scheme.

Lemma 3. Assume model (3.6), then

(i) the marginal posterior density of β is given by

p(β|λ,m,y) ∝ |Eλ|−
1
2 exp

{
−1

2
(β − eλ)

′E−1λ (β − eλ)

}
1Sm(β),

that is
β|λ,m,y ∼ NSm(eλ,Eλ),
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3 Unimodal spline regression

(ii) the marginal posterior density of (λ,m)′ is given by

p(λ,m|y) ∝ p(λ,m) |Ω̃λ|
1
2 |Eλ|

1
2
cpostλ

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0Ω̃λβ0

)
,

where Eλ :=

(
1

σ2
B′B + Ω̃λ

)−1
, e′λ :=

(
1

σ2
y′B + β′0Ω̃λ

)
Eλ and cpriorλ is the probability

of the truncation set Sm under N (β0, Ω̃
−1
λ ) and cpostλ is its probability under N (eλ,Eλ).

The proof can be found in Appendix B.

Define w2(λ,m) as the right hand side of (ii) in Lemma 3. The posterior density of the
mode is given by p(m|y) =

∫
p(λ,m|y)dλ ∝

∫
w2(λ,m)dλ. A regular distribution is

obtained by the following normalization step:

p(m = m∗|y) =

∫
w2(λ,m

∗)dλ∑g
j=−k

∫
w2(λ, j)dλ

, (3.8)

where the integration of w2(λ,m) can be done numerically as will be explained in Sec-
tion 5.2.
Furthermore, the marginal posterior density of the tuning parameter, p(λ|m,y) =
p(λ,m|y)

p(m|y)
, is a univariate continuous density proportional to w2(λ,m).

We propose the following random sampling scheme:

1. Draw a random number m from {−k, . . . , g} according to the discrete distribution
p(m|y) in (3.8).

2. Given m, draw a random number λ from p(λ|m,y) ∝ w2(λ,m) using, for example,
the slice sampler introduced by Neal (2003).

3. Given m and λ, draw a random vector β from NSm(eλ,Eλ), for example, using the
inverse Bayes formulae sampler proposed by Yu and Tian (2011) (cf. Appendix C).

Because of factorization (3.7) this successive sampling scheme yields a Monte Carlo
random sample with uncorrelated draws from the joint posterior. Markov Chain Monte
Carlo (MCMC) methods (inverse Bayes formulae and slice sampler) are only necessary
for generating a single draw from p(β|λ,m,y) and p(λ|m,y) for each joint posterior
sample.
In the same way as for the REML approach in Section 3.5.2, we recommend to transform
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3 Unimodal spline regression

the observations y onto [−1, 1] before fitting the model, to achieve a scale invariant
procedure. For the simulations and applications in Chapters 6 and 7 we use independent
priors for the tuning parameter and the mode, that is p(λ,m) = p(λ)p(m), where p(λ) ∝
1
λ
1[e−3,e10](λ), since λ can also be interpreted as a scale parameter, and p(m) = 1

d
∀ m ∈

{−k, . . . , g}. Both priors are uninformative when considered individually, but their joint
distribution might be informative for the model at hand. Thus, a joint Jeffreys prior
will be derived in the next section.

3.7 Robust unimodal spline regression

Up to now all observations contributed equally to the estimation of the spline regres-
sion functions, but since the spline regression model can be written in the form of a
standard linear model, weights can easily by incorporated. Strictly speaking, we already
used weighted fitting criteria, but all observations received the same weight, namely the
inverse of the standard deviation. It is often desirable to down-weight certain observa-
tions compared to others, for example in case of heteroscedasticity or in the presence of
outliers. In this section we first address weighted spline regression. Afterwards, robust
estimation procedures are presented which use iterative re-weighting schemes.

3.7.1 Weighted spline regression

Suppose our data stem from the model

Y = Bβ + E , E ∼ N (0,Σ),

where Σ is usually a diagonal matrix with entries σ2

wi
, i = 1, . . . , n, though the case of

correlated errors can also be expressed by using a suitable covariance matrix.
In this scenario, the penalized objective function for (constrained or unconstrained)
spline regression is given by

(y −Bβ)′Σ−1(y −Bβ)︸ ︷︷ ︸
= 1
σ2

∑n
i=1 wi(yi−s(xi))2for uncorrelated errors

+λ(β − β0)
′Ω(β − β0).

For a fixed value λ the minimizer of this objective function is given by

β̂ =

(
1

σ2
B′Σ−1B + λΩ

)−1(
1

σ2
B′Σ−

1
2y + λΩβ0

)
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3 Unimodal spline regression

in the unconstrained case or can be found with quadratic programming subject to the
desired constraint. When estimating the tuning parameter λ via REML in this set-
ting, the matrix Eλ and vector eλ in the restricted likelihood of λ have to be changed

accordingly: Eλ :=

(
1

σ2
B′Σ−1B + λΩ

)−1
and e′λ :=

(
1

σ2
y′Σ−

1
2B + λβ′0Ω

)
Eλ.

3.7.2 Robust estimation: iteratively re-weighted least squares

Many robust linear regression estimators can be obtained by repeatedly using weighted
least squares regression. The estimation algorithm iterates between updating the re-
gression coefficients and updating the weights and thus, this procedure is also called
iteratively re-weighted least squares (IRLS).
Again, since the spline regression model can be written in the form of a standard linear
model, it suggests itself to adapt this algorithm for (shape-constrained) penalized spline
regression. For unconstrained cases, robust penalized spline regression approaches were
proposed in the literature. For example, Lee and Oh (2007) introduce M-estimation for
penalized regression splines and Tharmaratnam et al. (2010) provide an S-type estima-
tion procedure. The Master’s thesis of Vanessa Baumann (Baumann, 2014) addresses
possibilities to robustify the penalized unimodal spline regression proposed in Section 3.5.
This Master’s thesis was co-supervised by the author of this Ph.D. thesis, who also pro-
posed the statistical methodology used therein. The basic ideas are explained in the
following.
In general the objective function for robust penalized spline regression is given by

n∑
i=1

ρ

(
yi − b′iβ

σ

)
+ λ(β − β0)

′Ω(β − β0),

where bi is the i-th row of the B-spline basis matrixB, σ is the previously estimated scale
and ρ : R 7→ R+

0 is a loss function. When defining the weight function w(r) = ρ′(r)
r

and
given a start estimate for the coefficient vector, the minimizer of the objective function
is found by iteratively calculating

W = diag(w1, . . . , wn) with wi = w

(
yi − b′iβ̂

σ

)
and

β̂ =

(
1

σ2
B′W−1B + λΩ

)−1(
1

σ2
B′W− 1

2y + λΩβ0

)
,
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3 Unimodal spline regression

compare also Holland and Welsch (1977).
For shape-constrained estimation, it seems obvious to replace the weighted least squares
estimator by its shape-constrained counterpart, which is estimated by optimizing the
weighted objective function subject to the desired constraint. In each step, the tuning
parameter can be chosen via REML.
Typical choices for the loss function are, for example,

ρ(r) = |r|

for median regression or

ρc(r) =

r2 |r| ≤ c

2c|r| − c |r| > c

for Huber-M-regression.
For the first choice, the optimal β can be found with linear programming algorithms
more efficiently, though. For example, median regression models, as a special case of
quantile regression, can be fitted in R with function rq from package quantreg (Koenker,
2016). The optimization can also be done subject to linear constraints on β when choos-
ing method="fnc" and thus, unpenalized median unimodal spline regression can easily
be done using this package. This approach can be used to find a start estimate β̂0

and an estimate of the scale, σ̂2 = median(|r1|, . . . , |rn|)/0.675, where ri = yi − biβ̂0,
i = 1, . . . , n.
The second choice, Huber’s ρ-function, was also used in Lee and Oh (2007), though their
fitting algorithm is not based on IRLS, but uses iteratively re-computed pseudo-data.
Baumann (2014) uses a version of their algorithm adapted for shape-constrained esti-
mation as well as the above shape-constrained IRLS algorithm in a simulation study.
Further estimation methods included in the comparison are least squares, the uncon-
strained original estimation procedures of Lee and Oh (2007) as well as Tharmaratnam
et al. (2010) and the non-robust unimodal regression from Section 3.5. The results will
be shortly summarised in Section 7.3.
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4 Multimodal regression

4.1 Overview

The different approaches to unimodal spline regression presented in Section 3 cannot
only be seen as methodology on its own, but also as a building block for more complex
models. This chapter aims at presenting methodology which enables the handling of
a broad spectrum of applications with multimodal data. Such multimodality can have
different reasons and thus, one can take different approaches when modelling multimodal
data.
First of all, the observed multiple modes can arise due to an inhomogeneous population.
In explicit, two or more subpopulations are present to which the observed entities belong
with certain probabilities. Thus, Section 4.2 deals with the task of modelling data
observed from several subpopulations, where the predictor-response-relationship exhibits
different shapes, especially unimodal shapes with different modes, in the subpopulations.
Another source of multimodality are series of non-overlapping or overlapping unimodal
pieces in the predictor-response-relationship of a homogeneous population. The focus of
this chapter is on the latter type of populations and several modelling approaches are
presented in Section 4.3.
A common feature of the presented methods is that the response variable is modelled
using several unimodal functions, which will also be referred to as "peaks". There are
applications where knowledge about the shape of those individual peaks exists. The
shape might either be known exactly or can be described by a parametric function.
If this is not the case, more sophisticated estimation methods for the peak shape are
required, for example the unimodal spline regression approaches proposed in Chapter 3.
The article Köllmann et al. (2016) is based in parts on the following material.
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4 Multimodal regression

4.2 Inhomogeneous population

In this section, we briefly tackle the problem of an inhomogeneous population in which
predictor and response variable have been observed. To be more precise, we assume the
presence of two or more subpopulations to whom the observed units belong with certain
probabilities and where the response variable follows different unimodal relationships
in each of the subpopulations. In the whole population the relationship between pre-
dictor and response appears multimodal. An example of unimodal functions in three
subpopulations and multimodal data simulated from it are depicted in the third row of
Figure 4.1.

A modelling approach for such data is a mixture model of regressions, where each com-
ponent of the mixture is a unimodal regression and each observation stems from the
different components with a certain probability. In this model the random variable Y
has the conditional density

p(Y = y|x,θ) =
L∑
`=1

π` ϕ
(
y|s`(x), σ2

`

)
, (4.1)

where ϕ (y|s`(x), σ2
` ) is the density of a normal distribution with variance σ2

` and the
mean s`(x) is given by a unimodal spline function s`(x) =

∑g
j=−k β`,jNj,k+1(x) with

coefficients β`,−k ≤ . . . ≤ β`,m`−1 ≤ β`,m` ≥ β`,m`+1 ≥ . . . ≥ β`,g. That is, the param-
eter vector θ is given by θ = (π1, . . . , πL, β1,−k, . . . , βL,g, σ1, . . . , σL). This model does
not only yield regression functions for all components, but can also classify each data
point into the subgroups specified by the components. Mixture regression models can
be fitted with the Expectation-Maximization algorithm (see, e.g., Dempster et al., 1977;
Grün and Leisch, 2008) and are, for example, implemented in the R package flexmix

(see Grün and Leisch, 2008). The number of components, L, can be determined with
the help of a model selection criterion, for example, Akaike information criterion (see
also Section 4.3.5).

A special case of this model has been investigated by Hannah Bürger in her Bachelor’s
thesis (Bürger, 2012), which comprises a simulation study to assess the performance
of this modelling approach. The statistical methodology was proposed by the author
of this Ph.D. thesis, who co-supervised the Bachelor’s thesis. The model is designed
for situations where the population consist of two subpopulations, one with a constant
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Figure 4.1: Simulated examples.
Mean function(s) (left column) and simulated data (right column) of the fol-
lowing models: unimodal spline, piecewise unimodal splines, mixture model
with unimodal splines and convolution model with unimodal splines. We
use three different coefficient sequences: β1. = (2, 4.5, 2, 0.2, 0.2, 0.2, 0.2)′

(green), β2. = (0, 0, 0, 4, 3, 0.5, 0.5)′ (black), β3. = (0, 0, 0, 0, 0, 4, 4)′ (orange).
The first row corresponds to a spline with coefficient sequence β2.. For the
mixture model in row three we employed mixing weights π1 = 0.2, π2 = 0.4,
π3 = 0.4 (cf. Equation (4.1)) and the parameter α of the additive model (cf.
Equation (4.5)) in row four was set to 0. For each model 100 data points
were simulated from normal distributions with the respective mean functions
and standard deviation σ = 0.1.
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4 Multimodal regression

predictor-response-relationship and one exhibiting a unimodal relationship. Such a sce-
nario might occur, if a population is exposed to a sudden event and some entities react
to it with an increase in the variable of interest and some do not. When the effect of
the event wears off, the response falls back to a normal level.
Thus, the mixture model has two components and its conditional density is given by

p(Y = y|x,θ) = π1 ϕ
(
y|s1(x), σ2

1

)
+ π2 ϕ

(
y|s2(x), σ2

2

)
, (4.2)

where the first regression function, s1(x) ≡ β1,0, comprises only an intercept (namely, a
spline of degree 0 with 0 inner knots) and the second one is a unimodal spline s2(x) =∑g

j=−k β2,jNj,k+1(x), that is, θ = (π1, β1,0, β2,−k, . . . , β2,g, σ1, σ2). The findings of the
Bachelor’s thesis will be briefly summarised in Section 7.3.

4.3 Homogeneous population

For the case of a homogeneous study population there are several approaches to model
multimodality. In general, the situation can be described as follows: Let (xi, yi) ∈
[a, b]× R be pairs of observations that may be modelled by

Y = f(x) + E . (4.3)

In contrast to the above model for inhomogeneous populations, the conditional density of
the random variable Y in this model is not a mixture of normal densities with unimodal
mean functions but a single normal density with a multimodal mean function f , that
is, p(Y = y|x,θ) = ϕ(f(x|θ), σ2). The mean function f will be specified in more detail
by the different methods in the following subsections, which present piecewise unimodal
regression and several deconvolution models. Recommendations on the method of choice
are given in Section 4.3.6.

While the application of unimodal regression to several pieces of a data set is quite
straightforward and will be briefly described in Section 4.3.1, representatives of the class
of deconvolution models are very diverse and numerous. This statement still remains
valid, if we make the assumption of linear convolution, that is, confining to cases where
the observed global response is a linear combination of an unknown number of unob-
served input processes (henceforth referred to as "peaks"). In explicit, the observed
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4 Multimodal regression

response vector y can be written as

y = Sa+ ε, (4.4)

where ε are the measurement errors, a are the coefficients of the linear combination and
the columns of S describe the shapes of the peaks. The task is then to deconvolve the
observed multimodal signal into the unobserved single peaks, that is, to estimate both
the matrix S and the vector a.
This deconvolution problem mathematically belongs to the class of inverse problems.
Since numerous different combinations of S and a can explain the output equally well,
the problem is ill-conditioned and the respective models are under-determined. To ar-
rive at reasonable solutions nevertheless, various deconvolution algorithms have been
proposed in the literature, which mostly use iterative schemes such as the Expectation-
Maximization (EM) algorithm (see de Rooi and Eilers, 2011, for an overview).
In signal processing or chemometrics such approaches are often called blind source sep-
aration techniques. A widely used one is MCR, multivariate curve resolution, where
“multivariate” refers to the fact that usually several contiguous output vectors are ob-
tained and the algorithms are designed for direct application to the composite data
matrix with model equation Y = SA + E. Different MCR methods are, for example,
given in Tauler (1995), Pomareda et al. (2010) and Oller-Moreno et al. (2015). A draw-
back of those approaches is that the number of peaks is not estimated within the model,
but by other methods previous to the actual analysis.
Bad conditioning and under-determination can generally be addressed by regularization
and the use of constraints. Using positivity constraints in MCR, for example, leads
to an approach called non-negative matrix factorization (cf. Pomareda et al., 2010).
Other examples of constraints are unimodality or sparsity, the latter one being imposed
by regularization in form of a LASSO/L1-penalty (see, for example MCR-LASSO by
Pomareda et al., 2010) or by an L0-penalty (see de Rooi and Eilers, 2011). We fol-
low de Rooi and Eilers (2011) in using the L0-penalty, which allows for estimation of
the number of peaks simultaneous to the other model parameters. Since their original
model is restricted to the pointwise estimation of identically shaped peaks, we make
some enhancements, for example, enabling the estimation of a functional description of
identically shaped peaks. The most interesting development, however, is our combina-
tion of the deconvolution model using L0-penalty with the "additive unimodal regression
model" (see Equation (4.5)). The combined approach enables sparse deconvolution of
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multimodal data using differently shaped unimodal spline components.

Apart from using penalties for regularization, the unimodality constraint is of great
importance here. We will impose unimodality on spline functions throughout the next
sections by using the penalized unimodal spline regression from Section 3.5. In many
situations log-concave spline smoothing by Eilers (2005) can be used as well, but regard-
ing the deconvolution model with varying peak shapes in Section 4.3.4 our approach is
advantageous.

For the remainder of this chapter we suppose that an adequate estimate of the error
variance σ2 > 0 is available prior to model fitting.

4.3.1 Piecewise unimodal regression

A simple approach for modelling multimodal data is piecewise unimodal regression, that
is, dividing the x-axis (heuristically) between each pair of modes and fitting separate
unimodal splines. The function f from model (4.3) can be written as

f(x) =
L∑
`=1

s`(x)1I`(x),

where I1, . . . , IL ⊂ [a, b] are L intervals corresponding to the x-axis’ pieces and s` are
unimodal spline functions on the respective intervals. Depending on the application,
there are different ways to determine these intervals, for example, using a threshold.
This model implies the assumption that the underlying process generating the obser-
vations is also divisible in some respects. We will refer to this modelling approach as
pUniReg.
An example of a mean model function with three unimodal pieces and data simulated
from this model is given in the second row of Figure 4.1.

4.3.2 Deconvolution with identical peak shapes using the

L0-penalty

Other multimodal regression approaches, so-called deconvolution models, describe the
observations as a convolution of peaks. As opposed to the former approach, they allow
modelling of overlapping peaks which accumulate at the overlap to the observed values,
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but can also be applied, when no overlap is present. In this thesis, we examine only
linear convolution. See row 4 of Figure 4.1 for an example of overlapping, unimodal
functions and data simulated from their linear convolution.
Let us first assume that all peaks have the same basic shape and each peak is a scaled
version of this shape. This can be expressed by writing the function f from model (4.3)
as

f(xi) =
ns∑
k=1

skai−k, i = 1, . . . , n,

where s = (s1, . . . , sns)
′ is the vector describing the known (pointwise) peak shape and

a = (a−ns+1, . . . , an−1)
′ ∈ Rn+ns−1 is the vector of the so-called input pulses, which de-

scribe the number of peaks (given by the number of values aj 6= 0), their locations (given
by index j) and heights (given by the actual value of aj). The number ns of x-points, for
which the peak shape is given, is usually smaller than n and thus, the individual peaks
do not span over the whole range of x-values. This model was introduced by de Rooi
and Eilers (2011) and it was shown that it can also be reformulated as a typical linear
regression model:

y = Sa+ ε,

where the convolution matrix S ∈ Rn×(n+ns−1) holds shifted copies of the same peak
shape s in its columns (compare also to the general linear deconvolution model in Equa-
tion (4.4)).
If the peak shape s is known, the least squares estimate of a is given by â = (S′S)−1Sy,
but the columns of S are highly correlated, which leads to ill-posedness. This problem
was already described in de Rooi and Eilers (2011) and the authors propose to use
regularization with an L0-penalty on a, that is, using the objective function

‖y − Sa‖22 + κ
∑
k

|ak|0.

The regularized estimate for a is found by minimizing the objective function using an it-
erative procedure (see the description of the implementation in Section 5.3.1 for details).
Since the penalty factor

∑
j |aj|0 is essentially the number of peaks, the regularized es-

timation favours sparse models with only few peaks. The higher the tuning parameter
κ, the fewer the peaks. de Rooi and Eilers (2011) propose to choose the tuning param-
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eter κ by visual inspection. They also describe an additional, asymmetric penalty on a
that renders the estimated input pulses positive. Altogether, the procedure is able to
estimate the number of peaks, their locations and heights simultaneously. We will refer
to this modelling approach as L0-deco.
de Rooi and Eilers (2011) additionally present an approach for cases where the peak
shape s is unknown, which is called "blind deconvolution". The idea is, starting with
an initial pointwise peak shape s(0), to iterate between estimation of a and s. Given an
(interim) estimate of a a new estimate of s can be found in three different ways. The
first one is described in de Rooi and Eilers (2011) and produces a pointwise estimate of
s. It can be found using the reformulated model

y = As+ ε.

Here, A holds shifted copies of â in its columns and the pointwise least squares estimate
is given by ŝ = (A′A)−1Ay (cf. de Rooi and Eilers, 2011). It is also possible to use a
smoothness penalty (differences penalty or unimodal smoother) on the entries of s (cf.
de Rooi et al., 2014). We will refer to this approach as pointwise L0-deco.
In this thesis we want to estimate not only a smooth pointwise description of each
peak, but also a continuous functional peak shape. de Rooi and Eilers (2011) already
mentioned the possibility to use spline functions for this purpose. Here, we give details
for a slightly more general approach, where the peak shape is given by a function s(x|β)

parameterized by vector β. Either the peak shape is known to (approximately) follow
a unimodal parametric function, where the parameters in β are usually few and nicely
interpretable. Or the function s can be a semi-parametric unimodal spline function,
if there is no prior information about the peak shape. In both cases, function f from
model (4.3) can be written as

f(xi) =
ns∑
j=1

s(xj|β)ai−j, i = 1, . . . , n,

and the following estimation procedure can be applied:
With an initial parameter vector β(0) and the respective initial peak shape S(0) =

(s(x1|β(0)), . . . , s(xns|β(0)))′ it is again possible to iterate between estimation of a and
β. In the k-th iteration, estimation of a is done as described above using the peak shape
ŝ(k−1) = (s(x1|β̂(k−1)), . . . , s(xns|β̂(k−1)))′, where β̂(k−1) the current estimate of β. The
parameter vector β can be estimated using the least squares method, that is, minimiz-
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ing ||y−As||2 = ||y−A(s(x1|β), . . . , s(xns|β))′||2 with respect to β, or with unimodal
regression. These two blind deconvolution approaches will be referred to as parametric
L0-deco and unimodal L0-deco. Except for the initial guess, no information about the
basic peak shape is needed for the unimodal L0-deco approach. All blind deconvolution
approaches simultaneously obtain estimates of a basic peak shape, the number, locations
and heights of the peaks. The parametric and unimodal L0-deco have the advantage of
a functional shape description in contrast to the pointwise L0-deco approach.

4.3.3 Deconvolution with diverse peak shapes: additive

unimodal regression

While there are several applications in which the assumption of the same shape for all
peaks is very plausible (for example, the FACT data), there are also situations where
the observed signal is a convolution of peaks with different shapes (for example, in IMS
data). Eilers (2005) used sums of log-concave smoothing splines for such a deconvolution
task. More generally speaking, an appropriate representative of deconvolution models
in this situation is an additive model, that describes the observations as convolution of
L different peak shapes. In this model the function f from Equation (4.3) is given by

f(xi) = α +
L∑
`=1

s`(xi), (4.5)

where α is an intercept and each s`(x) is a unimodal function describing one of the
peaks and can be evaluated over the whole range of the x-observations. Eilers (2005)
used log-concave smoothing splines for each s`, but of course each of these functions can
be described by a parametric model (with different parameter values) or by unimodal
spline regression (with different parameters and modes) as well. For the latter choice
we have s`(x) =

∑g
j=−k β`,jNj,k+1(x) with coefficients β`,−k ≤ . . . ≤ β`,m`−1 ≤ β`,m` ≥

β`,m`+1 ≥ . . . ≥ β`,g.
Additive models can be fitted using the so-called backfitting algorithm (cf. Hastie et al.,
2009), which is given by

1. Initialize α̂ = 1
n

∑n
i=1 yi and ŝ`(x) ≡ 0 ∀`.

2. For ` = 1, . . . , L: calculate ŝ` from data (xi, ỹi) with ỹi = yi−α̂−
∑

K 6=` ŝK(xi), i =

1, . . . , n.

3. Centre the function estimates around zero: Set ŝ` := ŝ` − 1
n

∑n
i=1 ŝ`(xi).
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4. Repeat steps 2 and 3 until convergence.

In contrast to commonly applied additive models (see e.g. Hastie et al., 2009) we have
only one regressor that is used in all components. Thus, the number L of components is
not simply the number of regressors. Sometimes the specific application might enforce a
fixed number of components or it can be determined with the help of a model selection
criterion, for example, the Akaike information criterion (AIC; cf. Section 4.3.5). We will
refer to this modelling approach as addUniReg.
The proposed methodology was also used in the Master’s thesis of Laura Lange (Lange,
2015), which was co-supervised by the author of this Ph.D. thesis. The results of the Mas-
ter’s thesis obtained on 119 IMS measurements are shortly summarised in Section 7.3.

4.3.4 Deconvolution with diverse peak shapes: combining

additive unimodal regression and L0-deconvolution

In principle, the addUniReg model is applicable in all (linear) deconvolution tasks since
it is the most general model. This flexibility comes, for example, at the cost of higher
computation times, because each component is estimated with unimodal regression (in-
volving determination of the mode by trying all possibilities) and the number of com-
ponents can only be determined by fitting several models and making a choice based on
AIC. Thus, the L0-deconvolution model is preferable, since it simultaneously estimates
the number, the locations and heights of peaks. Yet, it cannot cope with different peak
shapes.
de Rooi et al. (2014) already discussed the fact that the peak shape might vary over time,
or more generally speaking, that the peaks might have different shapes. Two concepts
were proposed to tackle such problems with L0-deconvolution: finding a transformation
of the x-axis such that the peak shape is constant or estimating the matrix S (holding
the varying peak shapes in its columns) as a smooth two-dimensional surface. For the
first proposal, knowledge about the way in which the peak shape changes over time
would be required and this is not the case for the applications we have in mind (for
example, IMS data). The here presented approach is in line with the second suggestion,
although the surface will only be smooth in one of its directions (each column holds
a smooth peak shape). It can be seen as a combination of unimodal L0-deco and the
additive unimodal regression.
Suppose we have response values y with a baseline close to zero (more explicit, with
minimal value equal to zero) and several peaks with maximum peak height equal to one
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(data can easily be transformed to fulfil these criteria). For this model the function f
from Equation (4.3) can be written as follows:

f(xi) =
d∑
j=1

sj(xi)aj,

where sj(.) is a spline function with d B-spline coefficients, which have a fixed mode
at j, and aj is the input pulse corresponding to the j − th peak, j ∈ {1, . . . , d}. In
explicit, this is an additive model with d spline components that have different mode
locations and are scaled by the input pulses. The matrix of varying peak shapes S then
consists of the values sij = sj(xi), i = 1 . . . , n, j = 1, . . . , d. The input pulses a have a
slightly different role in this model compared to the original deconvolution model. Each
input pulse corresponds to one of at most d peaks, where d is the number of B-spline
coefficients which is usually much smaller than n, but also larger than the number of
existent peaks. Thereby the index j does not correspond to observation xj and the peak
locations cannot be derived directly, but the model still provides simultaneous estima-
tion of number and heights of the peaks and additionally estimates the different peak
shapes. The ability to estimate spline functions with a fixed mode is very essential here.
This could not be achieved as easily with other unimodal regression approaches like, for
example, log-concave smoothing by Eilers (2005).
The model can be fitted by iteratively estimating the sj with steps similar to the back-
fitting algorithm for the additive model and estimating the input pulses a using the
L0-penalty. The estimation procedure is described in Section 5.3.4. The alternating
estimation of matrix S and input pulses a is repeated until the position and the height
of the positive input pulses stabilizes. In our applications we found that 10 repetitions
typically result in sufficiently converged models. We will refer to this model as varying
L0-deco.

4.3.5 Model selection and effective degrees of freedom

As indicated in 4.2 and 4.3.3, a choice has to be made regarding the number of compo-
nents in both the mixture and the additive model. This is a model selection problem.
There exist a number of different model selection criteria that compare different models
on the same data and take, for example, different numbers of parameters into account.
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For example, the commonly used Akaike information criterion is given by

AIC = n log

(
RSS

n

)
+ 2K,

where RSS =
∑n

i=1 ε̂i
2 =

∑n
i=1(yi − ŷi)

2 is the residual sum of squares and K is the
effective dimension of the model (see e.g. Fahrmeir et al., 2013, ch. 3.6). If each compo-
nent is estimated with a parametric approach, K is just the total number of parameters.
If each component is estimated with a penalized spline regression, K is the sum of all
individual effective dimensions.
The effective dimension of a penalized spline regression is obtained as follows:

Lemma 4. Suppose that spline regression is performed according to the penalized least
squares objective function

1

σ2
‖y −Bβ‖22 + λ

∥∥∥Ω 1
2 (β − β0)

∥∥∥2
2

as in Section 3.3 with fixed values of λ, β0 and a positive definite matrix Ω.
Then the effective dimension of the regression model is given by

ed = tr

(
1

σ2
B′B

(
1

σ2
B′B + λΩ

)−1)
.

Proof of Lemma 4. Following Ye (1998) the effective dimension of a regression model is
given by ed =

∑n
i=1

∂ŷi
∂yi

, which is equal to tr(H) if ŷ = Hy (e.g. in linear regression).
For unconstrained penalized spline regression with penalty vector β0 = 0, the hat matrix
is given by H̃ = 1

σ2B
(

1
σ2B

′B + λΩ
)−1

B′ and thus, ed = tr(H̃).
Suppose now we conduct an unconstrained penalized spline regression with penalty
vector β0 6= 0. Then

ŷ = Bβ̂ =
(3.2)

B

(
1

σ2
B′B + λΩ

)−1(
1

σ2
B′y + λΩβ0

)
=

1

σ2
B

(
1

σ2
B′B + λΩ

)−1
B′y + λB

(
1

σ2
B′B + λΩ

)−1
Ωβ0︸ ︷︷ ︸

constant w.r.t. y

= H̃y + c.

52



4 Multimodal regression

We can conclude that

ed =
n∑
i=1

∂ŷi
∂yi

=
n∑
i=1

∂(H̃y + c)i
∂yi

=
n∑
i=1

(
∂(H̃y)i
∂yi

+
∂ci
∂yi

)

=
n∑
i=1

(
∂(H̃y)i
∂yi

+ 0

)
= tr(H̃),

which is the effective dimension of the corresponding regression problem with β0 = 0.
From properties of the matrix rank it follows that

ed = tr(H̃) = tr
(

1
σ2B( 1

σ2B
′B + λΩ)−1B′

)
= tr

(
1
σ2B

′B( 1
σ2B

′B + λΩ)−1
)
,

which is the trace of a matrix of dimension d × d instead of n × n and thus faster
computable (cf. Fahrmeir et al., 2013, ch. 8.1.8).

For constrained regression there is no explicit expression for ŷ and thus a similarly easy
way of calculating the effective dimension is not available. Hence, we propose to approxi-
mate the effective dimension of a unimodal spline regression with the effective dimension
of the corresponding unconstrained problem given in Lemma 4. We think that for our
purposes this approximation does not influence the model choice dramatically since all
compared models contain solely unimodal components.
If the penalty matrix Ω is not positive definite, λΩ has to be replaced by the alternative
penalty matrix Ω̃λ as described in Section 3.5.2.

Now let ed ` be the (approximated) effective dimension of the spline of component `.
Then the AIC of the mixture or additive model is given by

n log

(
RSS

n

)
+ 2

L∑
`=1

ed `

and can be used to determine an appropriate number of components.
A similar model selection criterion derived in the Bayesian context is

n log

(
RSS

n

)
+ log(n)K,
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the Bayesian information criterion (BIC; cf. Fahrmeir et al., 2013, ch. 3.6). Here, K
is again the effective model dimension. In comparison to AIC, the BIC usually favours
sparser models since high effective dimensions are penalized stronger as soon as n > 7.

4.3.6 Applicability of the model types

The following Table 4.1 gives an overview of the different data situations with homo-
geneous population, where the proposed approaches to multimodal regression are ap-
plicable. Depending on the shape of the peaks and their overlap the table states the
recommended model. In principle, the addUniReg and varying L0-deco models are ap-
plicable in all mentioned situations since they cope with the most general situation of
overlapping peaks with diverse peak shapes. For this flexibility one has to pay the prize of
high computation times (each peak is estimated over the whole range of the x-values),
especially for the addUniReg model, because the number of components can only be
determined by fitting several models and making a choice based on AIC. Thus, both
approaches should only be considered, when there are overlapping peaks with diverse
shapes. The varying L0-deco model is to be preferred, if the number of peaks is un-
known. If there are differently shaped, but non-overlapping peaks, the simpler pUniReg
approach is sufficient, which is in principle also "downwards compatible" to situations
with identical peak shapes. Nevertheless, the method of choice when all peaks have the
same shape and regardless if there is overlap or not, is the L0-deconvolution model, since
it simultaneously estimates the number, the locations and heights of peaks. When the
peak shape is unknown, blind deconvolution can be used and we propose to apply the
advanced versions, parametric and unimodal L0-deco, instead of pointwise L0-deco to
obtain smooth function estimates.
As the derivatives of the fitted peaks are also of interest in some applications (see, for
example, the diving depth data analysis in Section 7.2.1), it is important to note that
derivatives are easily obtained with all approaches that use (unimodal) splines.
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Table 4.1: Overview of the proposed multimodal regression approaches and in
which situation to use them.
The recommended model is marked by boldface. The abbreviations are as
follows: L0-deco: L0-deconvolution model with fixed peak shape, pointwise
L0-deco: blind L0-deconvolution model with pointwise peak shape, paramet-
ric L0-deco: blind L0-deconvolution model with parametric peak shape, uni-
modal L0-deco: blind L0-deconvolution model with unimodal peak shape,
pUniReg: piecewise unimodal regression, addUniReg: additive unimodal re-
gression, varying L0-deco: blind L0-deconvolution model with diverse uni-
modal peak shapes.

no overlap overlap

peak
shapes

identical, known L0-deco L0-deco

identical, unknown pointwise L0-deco
or
parametric L0-deco
or
unimodal L0-deco

pointwise L0-deco
or
parametric L0-deco
or
unimodal L0-deco

diverse, unknown pUniReg addUniReg
or
varying L0-deco
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This chapter presents computational aspects for the methods proposed in Chapters 3
and 4. All functions used for the simulation study in Chapter 6 and the applications
in Chapter 7 are implemented in the statistical software environment R (R Core Team,
2016). We concentrate here on the main functions, which perform the actual model
fitting. The implementational details of auxiliary functions can be found in Appendix D
of this thesis. The descriptions are provided in a style similar to that of the R help
system, though with more details than usual.

5.1 The R package uniReg

The frequentist approaches presented in Sections 3.3 to 3.5 are implemented in the R
package uniReg (Köllmann, 2016). The package in version 1.1 is freely available under
the GPLv3 license on CRAN:

http://cran.r-project.org/web/packages/uniReg/index.html.

The package can be installed and loaded in a running R session by execution of

install.packages("uniReg")

library(uniReg)

The functions of the package that are directly accessible for users, unireg, equiknots,
unimat, plot.unireg points.unireg, predict.unireg and print.unireg, are docu-
mented in the reference manual of the package available at the above web page and can
be retrieved within R’s help system via

help(package="uniReg")

Additionally, the main function unireg will be described in the following and the remain-
ing (auxiliary) functions are presented in Appendix D. The functions negloglikFREQ,
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unimatind and unisplinem of the R package are internal and no corresponding help
pages are included in the reference manual. Their documentation can also be found in
Appendix D.

unireg Fitting a unimodal penalized spline regression.

Description
Function for fitting spline regressions to data. The fit can be constrained to be
unimodal, inverse-unimodal, isotonic or antitonic and an arbitrary penalty on the
B-spline coefficients can be used.

Usage

unireg(x, y, w=NULL, sigmasq=NULL, a=min(x), b=max(x), g=10, k=3,

constr=c("unimodal","none","invuni","isotonic","antitonic"),

penalty=c("diff", "none", "sigEmax", "self", "diag"), Om=NULL,

beta0=NULL, coinc=NULL, tuning=TRUE, abstol=0.01, vari=5, ordpen=2,

m=1:(g+k+1), allfits=FALSE, nCores=1)

Arguments

x A numeric vector of x-values, length n. Contains at least d =

g + k + 1 ≤ n distinct values.
y A numeric vector of observed y-values of length n.
w A positive numeric weight vector of length n. The weights

do not have to sum to n, but will be transformed to do so
internally. If sigmasq is given, w should be NULL (default).

sigmasq Estimate(s) of the residual variance(s). Can be a positive nu-
meric vector of length n, giving estimates for the variance at
each of the x-values. If it is a vector of length 1, equal vari-
ances across all x-values are assumed.
If sigmasq=NULL (default), each x-value has to be appear at
least twice and a global variance (same for all x-values) is es-
timated internally.
If sigmasq is given, w should be NULL.
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a The left numeric boundary of the interval, on which the spline
is defined. If coinc=TRUE, the spline is zero to the left of this
value. By default a is equal to the minimal x-value.

b The numeric right boundary of the interval, on which the spline
is defined. If coinc=TRUE, the spline is zero to the right of this
value. By default b is equal to the maximal x-value.

g A non-negative integer giving the number of inner knots of the
spline (default: 10).

k A non-negative integer specifying the degree of the spline. By
default a cubic spline (k=3) is fitted.

constr A character string specifying the shape constraint for the
fit. Can be one of "unimodal" (default), "none", "invuni"
(inverse-unimodal),
"isotonic", "antitonic".

penalty A character string specifying, which penalty on the B-spline
coefficients should be used. Possible choices are "diff" (de-
fault) for the differences penalty of order ordpen, "none" for
no penalty, "sigEmax" for the sigmoid Emax penalty, "self"
for a self-defined penalty and "diag" for a ridge penalty (see
also Table 3.1). For a self-defined penalty Om and beta0 have
to be provided.

Om If a self-defined penalty on the B-spline coefficients is used,
Om is the penalty matrix of dimension d × d and full rank d.
Otherwise Om should be NULL (default).

beta0 If a self-defined penalty on the B-spline coefficients is used,
beta0 is the penalty vector of length d. Otherwise beta0

should be NULL (default).
coinc Logical indicating, if the outer knots of the knot sequence

should be coincident with the boundary knots or not. De-
fault is NULL and altering has no effect, if a pre-defined penalty
is used. If penalty="self", it has to be specified.
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tuning Logical indicating, if the tuning parameter lambda should
be optimized with (tuning=TRUE, default, computationally
expensive) or without (tuning=FALSE) consideration of the
shape constraint. Changing tuning has no effect, when
constr="none" or penalty="none".

abstol The iterative estimation of the residual variance σ2 and the
coefficient vector β stops after iteration ς, when |σ̂(ς) − σ̂(ς−1)|
is less than a positive numeric value abstol (default: 0.01) or
when ς = 10. If sigmasq is not NULL, the supplied value is used
as starting value in this iteration scheme. There is no iterative
estimation, if abstol is set to NULL.

vari Variance parameter σ2
v > 0 (default 5) in the full-rank penalty

matrix Ω̃λ for cases rank(Ω) < d.
ordpen Order of the difference penalty (integer ≥ 0, default 2). Only

effective, if penalty="diff".
m An integer vector specifying the modes of the coefficient

vector which should be used for fitting, in explicit, a sub-
set of {1, . . . , d}. This argument only has an effect if
constr="unimodal" or "invuni".

allfits Logical indicating if the estimated coefficient vectors for all
modes in m should be returned (TRUE) or only the one with
minimal residual sum of squares (FALSE).

nCores The integer number of cores used for parallelization. If
nCores=1, there is no parallelization (default).

Details
The function unireg is the main function of the package and implements the
different frequentist spline regression approaches described in Chapter 3. Different
shape constraints are possible and an arbitrary penalty on the B-spline coefficients
can be used.
The vectors x and y of length n hold the observed x- and y-values, for which the
spline regression is to be calculated. A weighted regression is possible by specifying
a length n vector w of non-negative weights. If a variance estimate is available
prior to model fitting, this estimate can be supplied. If sigmasq is provided, w
should be NULL and the other way round since the variances are internally used

59



5 Implementation

to create a vector of weights. Thus, if weighted regression with inverse variances
is desired, sigmasq should be supplied instead of w.
The procedure starts with sorting x, y, w and (where required) sigmasq according
to x. If sigmasq = NULL, an initial estimate of the variance is obtained as follows:
Let u be the number of distinct x-values, x̃1, . . . , x̃u, and let It = {i : xi = x̃t} ⊂
{1, . . . , n}, t = 1, . . . , u, be the sets of the corresponding indices. We determine a
variance estimate according to the weighted formula,

σ̂2 =
1∑n
i=1wi

u∑
t=1

WSS t,

where WSS t =
∑

i∈It wi (yi − ȳt)
2 is the weighted sum of squared deviations from

the weighted mean ȳt =
∑
i∈It

wiyi∑
i∈It

wi
in set It.

Afterwards, the y-values are transformed to lie in [−1, 1] by y−shift
scale

, where scale =

0.5 ∗ (max(y)−min(y)) and shift = min(y) + scale. The (provided or estimated)
variance parameter sigmasq is multiplied accordingly by 1

scale2
.

When penalty is not "self", the penalty matrix Ω and vector β0 have to be cre-
ated. The ridge penalty matrix ("diag") is given by Ω = Id. If penalty = "diff"

the finite differences matrixDq, where Ω = D′qDq, can be calculated from an iden-
tity matrix with the help of the function diff (package base R Core Team, 2016)
with respective order q = ordpen. For the sigmoid Emax increase penalty ordpen is
set to one. The penalty vector β0 is just a vector of zeros for all predefined penalties
except the sigmoid Emax increase penalty, where it is determined by fitting a sig-
moid Emax model to the data via the function fitMod from package DoseFinding
(Bornkamp et al., 2016). The model predictions at the knot averages (calculated
with function knotave from package SEL Bornkamp, 2010) are used as entries of
β0 according to Equation (3.3). Additionally, a d × d matrix D̃ is created, from
which the full-rank matrix Ω̃λ can be calculated as Ω̃λ = D̃ + λΩ. Thus, D̃ is a
zero matrix, if Ω already has full rank, and D̃ = 1

σ2
v
Id otherwise.

If a self-defined penalty is used, the penalty vector β0 is transformed in the same
way as the observations: β0−shift

scale
.

The argument coinc is automatically set to TRUE except for penalty = "diff"

and penalty = "self".
The values of a, b, g, k and coinc are used to create the knot sequence with the
function equiknots (cf. Appendix D). The matrix B of B-spline basis functions of
degree k on the interval [a, b] with g inner knots, evaluated at the observed values
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x, is determined with the function splineDesign from package splines (R Core
Team, 2016).
The different constraints are realized by the choice of the constraint matrix C
during the procedure. A new variable inverse, which is set to 1 for isotonic
and unimodal fits and -1 for antitonic and inverse unimodal fits is created and
the variable constr is re-set to "unimodal" or "isotonic", respectively. Then,
for constr = "isotonic" the constraint matrix is given by C = inverse · Cg

and for constr = "unimodal" we cycle through each possible mode with C =

inverse · C−k, . . . , inverse · Cg, where the matrices Cm are determined with
the help of the function unimat (cf. Appendix D). In explicit, the constraints
"antitonic" and "invuni" are realized by using the negative of the isotonic and
unimodal constraint matrices.

Before entering a repeat-loop for the iteration between estimation of β and σ2, the
matrices and vectors β′0Ωβ0, β′0Ω, B′diag(w)B, y′diag(w)B and the rank of Ω

are calculated to avoid their repeated computation. Inside the loop, B′diag(w)B

and y′diag(w)B are then divided by the current variance estimate.
If the constraint is "unimodal" either a cluster for parallel calculations is set up (if
nCores > 1) and parLapply from package parallel (R Core Team, 2016) is used
or the standard lapply function is used to cycle through all possibilities of the
mode in m ⊂ {1, . . . , d = g+ k+ 1}. For each mode, the corresponding unimodal
regression is conducted with the help of the function unisplinem (cf. Appendix D),
which estimates the B-spline coefficients with a fixed mode m, and the regression
with minimal weighted residual sum of squares (wRSS) is determined.
For the monotone constraints or no shape constraint, the function unisplinem is
only applied with mode m = g.
The estimated coefficients, fitted values and tuning parameter are stored and the
effective degrees of freedom are calculated according to Section 4.3.5.
If abstol = NULL, the repeat-loop is stopped. Otherwise a new estimate of σ2

is calculated from the residuals ri = yi − ŷi, i = 1, . . . , n, using the weighted
estimator

σ̂2 =
1∑n
i=1wi

n∑
i=1

wi

(
ri −

1

n

n∑
i=1

wiri

)2

before a new estimate of β is obtained in the above manner. The iterative proce-
dure stops after iteration ς, when |σ̂(ς) − σ̂(ς−1)| < abstol or when ς = 10.
If allfits = TRUE the estimated coefficient vectors for all modes inm are scaled
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back the original scale of the data by multiplying with scale and adding shift and
are stored in a matrix allcoefs. Otherwise allcoefs=NULL.
The function returns an object of class "unireg", where the estimated coefficients
and fitted values have also been scaled back to the original data scale as above.

Value
Returns an object of class "unireg", that is, a list containing the following compo-
nents:

x The (sorted) vector of x-values.
y The input vector of y-values (sorted according to x).
w The vector of weights used for fitting (sorted according to x).
a The left boundary of the domain [a, b].
b The right boundary of the domain [a, b].
g The number g of inner knots.
degree The degree k of the spline.
knotsequence The sequence of knots (length g+2k+2) used for spline fitting.
constr The constraint on the coefficients.
penalty The type of penalty used.
Om The penalty matrix.
beta0 The penalty vector.
coinc The input parameter coinc.
tuning The input parameter tuning.
abstol The input value of abstol.
vari The input variance parameter σ2

v .
ordpen The order of the difference penalty.
coef The vector of estimated B-spline coefficients (corresponding to

the mode with minimal RSS).
fitted.values The fitted values at each x-value (corresponding to the mode

with minimal RSS).
lambdaopt The optimal tuning parameter found via REML (correspond-

ing to the mode with minimal RSS).
sigmasq The estimated residual variance. If the input for abstol was

NULL, sigmasq equals its input value.
variter The number ς of iterations used to estimate the spline coeffi-

cients and the variance.
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ed The effective degrees of freedom (corresponding to the mode
with minimal RSS).

modes The input vector m of modes.
allcoefs The object allcoefs (either a matrix of coefficient vectors or

NULL).

Example

# generate some data

x <- sort(rep(c(0,0.5,1,3,5),20))

set.seed(41333)

func <- function(mu){rnorm(1,mu,0.02)}

y <- sapply(dchisq(x,3),func)

# fit with default settings

fit <- unireg(x, y)

# plot of true function and fitted spline

plot(jitter(x), y, xlab="x (jittered)")

curve(dchisq(x,3), 0, 5, type="l", col="grey", add=TRUE, lwd=2)

points(fit, lwd=2, col="orange")

legend("topright", legend = c("true mean function", "difference

penalized unimodal fit"), col=c("grey","orange"), lwd=c(2,2))
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# estimated standard deviation

sqrt(fit$sigmasq) #[1] 0.02025133

5.2 Bayesian unimodal spline regression

The Bayesian approach to unimodal regression presented in Section 3.6 is implemented
in the following R function unibayes.

unibayes Fitting a Bayesian unimodal regression spline.

Description
Fitting a Bayesian unimodal regression spline. Penalization is realized using a
suitable covariance matrix for the prior of the B-spline coefficients and the shape
constraint is induced by truncation of this prior. Posterior estimates are obtained
using a Monte Carlo random sample from the posterior.

Usage

unibayes(x, y, sigmasq=NULL, N=100, a=min(x), b=max(x), g=10, k=3,

penalty=c("diff","sigEmax"), ordpen=2, vari=5, nCores=1)

Arguments

x A numeric vector of n x-values. Contains at least d ≤ n distinct values.
y A numeric vector of n observed y-values.
sigmasq Positive numeric value of the residual variance. If sigmasq=NULL (de-

fault), each x-value has to be appear at least twice and sigmasq is
estimated internally.

N Number of Monte Carlo samples.
a The left numeric boundary of the interval, on which the spline is defined.

By default a is equal to the minimal x-value.
b The numeric right boundary of the interval, on which the spline is de-

fined. By default b is equal to the maximal x-value.
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g A non-negative integer giving the number of inner knots of the spline
(default: 10).

k A non-negative integer choosing the degree of the spline. By Default a
cubic spline (k=3) is fitted.

penalty A character specifying, which penalty on the B-spline coefficients should
be used. Possible choices are "diff" (default) for the differences penalty
of order ordpen and "sigEmax" for the sigmoid Emax increase penalty
(cf. Table 3.1).

ordpen Order of the difference penalty (integer ≥ 0, default 2). Only effective
if penalty="diff".

vari Variance parameter σ2
v > 0 (default 5) in the full-rank penalty matrix

Ω̃λ.
nCores The integer number of cores used for parallelization. If nCores=1, there

is no parallelization (default).

Details
The function unibayes implements the Bayesian approach to unimodal spline
regression as described in Section 3.6. The procedure starts with sorting x and y
according to the values in x. If sigmasq = NULL, an initial estimate of the variance
is obtained as follows: Let u be the number of distinct x-values, x̃1, . . . , x̃u, and
let It = {i : xi = x̃t} ⊂ {1, . . . , n}, t = 1, . . . , u, be the sets of the corresponding
indices. We determine a variance estimate according to the formula,

σ̂2 =
1

n

u∑
t=1

∑
i∈It

(yi − ȳt)2 ,

where ȳt is the mean in set It.
Afterwards, the y-values are transformed to lie in [−1, 1] by y−shift

scale
, where scale =

0.5 · (max(y) − min(y)) and shift = min(y) + scale. The variance parameter
sigmasq is multiplied accordingly by 1

scale2
.

For penalty = "diff" the penalty matrix is Ω = D′qDq, where Dq is the matrix
of differences of order q = ordpen, and β0 is just a vector of zeros. The variable
coinc is set to FALSE. For the sigmoid Emax increase penalty ordpen is set to one
to create Ω. The penalty vector β0 is determined by fitting a sigmoid Emax model
to the data via the function fitMod from package DoseFinding (Bornkamp et al.,
2016). The model predictions at the knot averages are calculated with function
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knotave from package SEL (Bornkamp, 2010) and are used as entries of β0 accord-
ing to Equation (3.3). The variable coinc is set to TRUE.
Additionally, a d × d matrix D̃ = 1

σ2
v
Id is created in both cases, from which the

full-rank matrix Ω̃λ can be calculated as Ω̃λ = D̃+λΩ. The variance σ2
v is chosen

to be 5 per default, which can be thought of as uninformative since the βi ap-
proximately also lie in [−1, 1] (cf. control polygon characteristic in Section 3.3.2),
which is the range of the transformed y-values.
The values of a, b, g, k and coinc are used to create the knot sequence with func-
tion equiknots (cf. Appendix D). The matrix B of B-spline basis functions of
degree k on the interval [a, b] with g inner knots, evaluated at the observed values
x, is determined with the function splineDesign from package splines (R Core
Team, 2016).
The matrices and vectors β′0D̃β0, β′0D̃, β′0Ωβ0, β′0Ω, 1

σ2B
′B and 1

σ2y
′B are cal-

culated to avoid their repeated computation during the sampling procedure.
We use independent priors for the tuning parameter and the mode, that is p(λ,m) =

p(λ)p(m). The prior for λ is the Jeffreys prior p(λ) ∝ 1
λ
, which is restricted to the

interval [e−3, e10] ≈ [0.05, 22026.47] due to numerical problems that occur for very
small or large values of λ and because an improper prior on the interval (0,∞)

might result in an improper posterior. The prior distribution of the mode is simply
the uniform distribution on all possible values, p(m) = 1

d
∀m ∈ {−k, . . . , g}.

The sampling scheme described in Section 3.6 is implemented as follows:

Approximating the posterior mode distribution and sampling from it

The integrals
∫
w2(λ|j)dλ, j ∈ {−k, . . . , g} required for determining the posterior

mode distribution, p(m|y), are approximated by a Riemann sum using a grid of
200 tuning parameter values between λ1 = e−3 and λ200 = e10 (exponentials of
an equidistant sequence between -3 and 10). For each mode and each tuning
parameter, we do the following:
The function negloglikBayes (cf. Appendix D), which computes the value of
w2(λ|m) for given λ and m, is applied and the values term12 and term3 from the
resulting object are retained in matrices T12 and T3 ∈ Rd×200 (the mode varying
in the rows and the tuning parameter varying in the columns). It turned out to
produce better results, when term3 is brought to a value range that is typical
of negative log-likelihood values, namely R+

0 . Then, the back-transformation to
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likelihood-level with exp(−(·)) ends up in [0, 1]. Such values are achieved for term3
by adding t3,max = max(T3). Adding the same value to all negative log-likelihood
values does not change the relationships between the likelihoods for different modes
nor does it influence the slice sampling used below.
The repeated execution of negloglikBayes is done with the help of sapply across
the grid of tuning parameters and across the different mode values with the help
of lapply (if nCores=1) or parLapply (if nCores > 1).
The Riemann sum has to be calculated on the level of the likelihood function. So
in the end, a matrix of likelihood values is calculated as L = exp(−T12 − T3 −
t3,max · 1n×n). For very small values, that is lij

max(L)
< 10−4, we suppose that the

corresponding values of λ are outside the support and set the likelihood to zero.
The Riemann sum for mode m is then computed as

199∑
k=1

(λk+1 − λk)
lm,k+1 + lm,k

2
.

The posterior mode distribution is obtained by dividing each Riemann sum by the
sum of all Riemann sums.
A random sample of size N is drawn (with replacement) from the posterior dis-
tribution of the mode, which is a discrete distribution on {−k, . . . , g} and the
absolute frequency Nm of each mode m = −k, . . . , g is retained.

Sampling from the marginal posterior of the tuning parameter
For each mode with Nm > 0, a sample of size Nm is drawn from the marginal
posterior of λ given mode m and y, or more precisely from w2(λ,m). This is
done using an R implementation of the slice sampler introduced by Neal (2003),
a Markov Chain Monte Carlo (MCMC) algorithm, which was kindly provided by
Björn Bornkamp. The sampler works on the log-likelihood level and for compu-
tational efficiency updating is performed on log(λ)-scale. In addition, samples
are drawn from an approximation of the log-likelihood. In explicit, a smoothing
spline is fitted with the R function smooth.spline (package stats, R Core Team,
2016) with argument control.spar=list(low=-0.1) to the rows of the matrix
L̃ = −T12 − T3 − t3,max · 1n×n (that is, using the same grid of tuning parameters
as before). We construct a function glog with a tuning parameter value as its ar-
gument, which returns the predicted log-likelihood value according to the fitted
spline at the argument, if the argument falls into the above calculated support of
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the likelihood, and -.Machine$double.xmax otherwise.
To enable updating on log(λ)-scale, another function g̃log has to be created. This
is due to the following notion about the density of a transformed random variable
(also called "change of variable"):

Let X ∼ g and Y = φ(X). Then, Y ∼ g̃ with g̃(y) = g
(
φ−1(y)

)
·
∣∣∣∣dφ−1dy

∣∣∣∣
(cf. Härdle and Simar, 2007, p.106f).
Here, we have Y = φ(X) = log(X) and g̃(y) = g(exp(y)) · exp(y). For the log-
likelihood it holds that g̃log(y) = log(g̃(y)) = log(g(exp(y)) + y = glog(exp(y)) + y.
Therefore, the function g̃log evaluates glog at the exp of its own argument and re-
turns the resulting value plus its argument.
The slice sampler draws from g̃log using a burn-in phase of 25 iterations and a
thinning of two. The initial value of the MCMC chain is chosen as the tuning pa-
rameter value which maximizes g̃log (the maximizer is found with function optim

in package stats). As opposed to the statement in Section 3.6, we do not generate
only one random tuning parameter value for each posterior sample, but directly
draw Nm times to reduce the computational burden. Determining g̃log and sam-
pling from it for each mode is realized using lapply (if nCores=1) or parLapply
(if nCores > 1).
The generated random values on log-level are back-transformed with exp(·) to the
original scale of the tuning parameter values and allocated to the respective mode
samples.

Sampling from the marginal posterior of the B-spline coefficients
For each sampled mode and tuning parameter value, one sample from p(β|λ,m,y),
that is, from the truncated multivariate normal distribution NSm(eλ,Eλ), is ob-
tained using the R implementation sampleTMVNIBF (cf. Appendix D) of the inverse
Bayes formulae sampler introduced by Yu and Tian (2011), which is described in
Appendix C. The number of initial samples J is set to 50 and the starting point
r(0) for the EM-algorithm is chosen as follows: If Cmeλ ≥ 0, that is, if the mean
is already a unimodal vector, r(0) := eλ. If eλ is not unimodal, r(0) equals its
projection into the space Sm using formula 2.2 in Gunn and Dunson (2005) (see
also Appendix E).
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The sampled coefficient vectors are back-transformed to the original scale of the
data via scale ·β+ shift ·1d and a median coefficient vector β̂med (by components)
is calculated afterwards.
A new estimate of σ2 is calculated as the sample variance of the residuals ri =

yi −Bβ̂med , i = 1, . . . , n.

Value
A list of

fitted.values The fitted values Bβ̂med .
betamed The median (by components) of the B-spline coefficient vector.
betamean The mean (by components) of the B-spline coefficient vector.
lambdamed The median tuning parameter.
lambdamean The mean tuning parameter.
modemed The median mode location.
modemean The mean mode location.
sigmasq The estimated residual variance.

Example

# generate some data

x <- sort(rep(c(0,0.2,1,3,5),20))

set.seed(41333)

func <- function(mu){rnorm(1,mu,0.02)}

y <- sapply(dchisq(x,3),func)

# fit with default settings

fit <- unibayes(x=x,y=y)
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# plot of true function, fitted spline and credible intervals

plot(jitter(x), y, xlab="x (jittered)")

curve(dchisq(x,3), 0, 5, type="l", col="grey", add=TRUE, lwd=2)

z <- seq(min(x), max(x), length.out=100)

Bz <- splineDesign(fit$knotsequence, z, ord=4, outer.ok=TRUE)

matpoints(z,Bz%*%fit$coef, type="l", lwd=2)

matpoints(z,Bz%*%t(fit$betaquant), type="l", lwd=1, col="orange")

legend("topright", legend = c("true mean function", "difference

penalized unimodal fit", "pointwise credible regions"),

col=c("grey", "black", "orange"), lwd=c(2,2,1))
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# estimated standard deviation

sqrt(fit$sigmasq) #[1] 0.01989864

5.3 Multimodal regression

This section describes the implementations of the multimodal regression models for ho-
mogeneous populations from Section 4.3. The implementations of all L0-deconvolution
models are based on the original implementation of the pointwise L0 deconvolution model
by de Rooi and Eilers (2011), which was kindly provided by the authors. The described
extensions and combinations can be applied to data using the functions parL0deco,
uniL0deco, varL0deco (cf. Sections 5.3.1, 5.3.2, 5.3.4).
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The additive unimodal regression model is implemented in function addUnireg, see Sec-
tion 5.3.3.
The unimodal penalized spline regressions used in the algorithms are performed using
function unireg (cf. Section 5.1) with approximate REML to reduce the computational
burden that arises from (repeatedly) estimating several unimodal regression functions.
A repeated step of the implementations is to transform numeric vectors so that their en-
tries lie in [0, 1] (with minimum value usually zero and maximum value one), which is de-

scribed by the function u : Rn → [0, 1]n with u(z) =


z−min(z)

max(z)−min(z)
, min(z) < max(z)

z
max(z)

, min(z) = max(z).

5.3.1 Deconvolution with a parametric peak shape

parL0deco Fitting a parametric L0-deconvolution model.

Description
Fitting a deconvolution model with identical peak shapes using the L0-penalty.
The peak shape can be specified by a parametric function.

Usage

parL0deco(x, y, n_s, fpar, initvec, kappa=0.01, blind=FALSE,

zero.con=TRUE, nloop=50)

Arguments

x Numeric vector of n x-observations.
y Numeric vector of n y-observations.
n_s Width of the peak shape measured as number of x-points (pos-

itive integer value).
fpar Parametric function fpar(x,parvec) describing the peak

shape. Its arguments are a vector x of ns x-values and a vector
parvec of length npar specifying the function parameters.

initvec An initial parameter vector of length npar.
kappa Positive tuning parameter value of the L0-penalty, default 0.01.
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blind Logical indicating if blind deconvolution should be applied,
i.e., if the peak shape should be optimized during estimation.
If FALSE (default), L0-deconvolution with fixed pointwise peak
shape according to the parameters in initvec is applied.

zero.con Logical indicating if the input pulses should be constrained to
be positive (default: TRUE).

nloop Number of iteration steps, 50 per default.

Details
This function fits a (blind) deconvolution model with identical peak shapes to data
using the L0-penalty as described in Section 4.3.2. The peak shape can be specified
by a parametric function.
The implementation starts with transforming the n observed y-values to the in-
terval [0, 1]n with the help of function u(·). The parameter % is initialized as 10−4

and the input pulses as a(0) := 0n+ns−1. If zero.con=TRUE, a variable η is set to
exp(10), and 0 otherwise. The pointwise peak shape s is initialized as function
fpar evaluated at x1, . . . , xns using the parameters in initvec and transformed
with function u(·) to the interval [0, 1].
The vector a of input pulses can be estimated according to the L0-penalty for a
fixed convolution matrix S (holding shifted copies of s in its columns) using an
iterative penalized least squares approach with re-weighted penalty matrix:
The function iterates nloop times between the (re-)calculation of

W (t) := diag

 1(
a
(t−1)
1

)2
+ %

, . . . ,
1(

a
(t−1)
n+ns−1

)2
+ %

 ,

V (t) := diag
(
1(−∞,0)

(
a
(t−1)
1

)
, . . . ,1(−∞,0)

(
a
(t−1)
n+ns−1

))
,

and the estimation of a(t) := (S′S + κW (t) + ηV (t))−1S′y to arrive at the L0-
penalized estimate of a. If η = exp(10), there is a strong penalty on negative
entries of a towards zero, otherwise there is no penalization. Additionally, aj is
set to zero, if aj < 0.0001, which leads to faster convergence and avoids numerical
problems, when aj approaches zero.
If blind=TRUE, there is an additional step in every iteration that estimates an
updated peak shape or, respectively, updates the parameters of function fpar. To
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do this, a new R function is specified, which calculates the residual sum of squares,
||y−A(t−1)(s(x1|β), . . . , s(xns|β))′||2, where s(·|β) is the function fpar evaluated
at a corresponding parameter vector and A(t−1) holds shifted copies of a(t−1) in
its columns. This R function is optimized using optim() (package stats; R Core
Team, 2016) and the updated peak shape s(t) is obtained by evaluating fpar at
the optimizing parameter vector and projecting it with function u(·) to [0, 1]ns .
Restricting the peak shape to the same value range as the observations guarantees
the identifiability of the model parameters.
Subsequent to the iteration, some back-transformation steps are performed. The
estimated input pulses a are scaled by the factor max(y−miny) (original y). An
object const is created to which the minimal value of the original observations
y is assigned. It can be interpreted as an intercept of the estimated model since
s ∈ [0, 1]ns and thus min(Sa) = 0, if zero.con=TRUE. The fitted values ŷ can then
be calculated as Sa+ const on the original scale.

Value
A list of

yhat The fitted values.
a The estimated vector of input pulses.
const Intercept.
s The estimated peak shape (evaluated at the grid specified by

the input) in [0, 1]ns .
S The estimated convolution matrix with vector s in its columns.
parvec The estimated parameter vector of the peak shape function.

Caution is required when interpreting those estimated param-
eters, because s is estimated between 0 and 1, which might not
be its “natural” range! Rescaling might be required for some
(especially multiplicative) parameters.

Example
For the analysis of the FACT time series in Section 7.2.2 we use the following
parametric function wave to describe the peak shapes and call function parL0deco

with the following arguments (assuming that the measured voltages are stored in
vector y). The result is displayed in Figure 7.3.
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wave <- function(x,parvec){

U0=parvec[1]

tau1=parvec[2]

tau2=parvec[3]

return(U0*(x>=0)*(1-exp(-x/tau1))*exp(-x/tau2))

}

parL0deco(x=seq_along(y), y, n_s=150, fpar=wave,

initvec=c(17.41,4.745,31.81), kappa=0.01, blind=TRUE,

zero.con=TRUE, nloop=50)

5.3.2 Deconvolution with a unimodal peak shape

uniL0deco Fitting a unimodal L0-deconvolution model.

Description
Fitting a deconvolution model with identical peak shapes using the L0-penalty.
The peak shape is described by a unimodal spline function.

Usage

uniL0deco(x, y, g, k=3, n_s, sigmasq, beta0, kappa=0.01, blind=FALSE,

zero.con=TRUE, nloop=30)

Arguments

x Numeric vector of n x-observations.
y Numeric vector of n y-observations.
g A non-negative integer giving the number of inner knots of the

spline (default: 10).
k A non-negative integer choosing the degree of the spline. By

default a cubic spline (k=3) is fitted.
n_s Width of the peak shape measured as number of x-points (pos-

itive integer value).
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sigmasq A positive numeric value providing an estimate of the model
variance.

beta0 A numeric vector of d = g + k+ 1 B-spline coefficients against
which the spline is penalized. For example, a parametric
function evaluated at the knot averages as described in Sec-
tion 3.3.2.

kappa Positive tuning parameter value of the L0-penalty, default 0.01.
blind Logical indicating if blind deconvolution should be applied,

i.e., if the peak shape should be optimized during estimation.
If FALSE (default), L0-deconvolution with fixed peak shape ac-
cording to the B-spline coefficients in beta0 is applied.

zero.con Logical indicating if the input pulses should be constrained to
be positive (default: TRUE).

nloop Number of iteration steps, 50 per default.

Details
This function fits a (blind) deconvolution model with identical peak shapes to data
using the L0-penalty as described in Section 4.3.2. The peak shape is modelled by
a unimodal spline function, which can be penalized against a parametric function
fit as presented in Section 3.3.2.
The implementation starts with transforming the n observed y-values with function
u(·) to the interval [0, 1]n. The variance estimate sigmasq and penalty vector
beta0 are transformed accordingly. The parameter % is initialized as 10−4 and the
input pulses as a(0) := 0n+ns−1. If zero.con=TRUE, a variable η is set to exp(10),
and 0 otherwise. A knot sequence with g inner knots and degree k as well as the
corresponding B-spline basis matrix B evaluated at x1, . . . , xns are created. The
peak shape is initialized as s(0) := Bβ0 and transformed with function u(·) to the
interval [0, 1].
The vector a of input pulses can again be estimated according to the L0-penalty
for a fixed convolution matrix S (holding shifted copies of s in its columns) using
an iterative penalized least squares approach with re-weighted penalty matrix:
The function iterates nloop times between the (re-)calculation of

W (t) := diag

 1(
a
(t−1)
1

)2
+ %

, . . . ,
1(

a
(t−1)
n+ns−1

)2
+ %

 ,
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V (t) := diag
(
1(−∞,0)

(
a
(t−1)
1

)
, . . . ,1(−∞,0)

(
a
(t−1)
n+ns−1

))
,

and the estimation of a(t) := (S′S + κW (t) + ηV (t))−1S′y to arrive at the L0-
penalized estimate of a. If η = exp(10) there is a strong penalty on negative
entries of a towards zero, otherwise there is no penalization. Additionally, aj is
set to zero, if aj < 0.0001, which leads to faster convergence and avoids numerical
problems, when aj approaches zero.
If blind=TRUE there is an additional step in every iteration that estimates an up-
dated peak shape by updating the B-spline coefficients. This is done with the
help of a small modification of function unireg, which estimates a unimodal B-
spline coefficient vector penalized against β0 (the penalty matrix is Ω = Id) us-
ing the product matrix AB as design matrix instead of only B, where A holds
shifted copies of a in its columns. The spline estimated in this way is evaluated
at x1, . . . , xns and the resulting peak shape is projected to the interval [0, 1]ns .
Restricting the peak shape to this value range guarantees the identifiability of the
model parameters.
Subsequent to the iterations, some back-transformation steps are performed. The
input pulses a are scaled by the factor max(y − min(y)) (original y). An ob-
ject const is created to which the minimal value of the original observations y
is assigned. It can be interpreted as an intercept of the estimated model since
s ∈ [0, 1]n and thus min(Sa) ≥ 0, if zero.con=TRUE. The fitted values ŷ can then
be calculated as Sa+ const.

Value
A list of

yhat The fitted values.
a The estimated vector of input pulses.
const Intercept.
s The estimated peak shape (evaluated at the grid specified by

the input) within [0, 1]ns .
S The estimated convolution matrix with vector s in its columns.
parvec The estimated vector of B-spline coefficients.

76



5 Implementation

5.3.3 Deconvolution with additive unimodal regression

addUnireg Fitting an additive unimodal regression model.

Description
Deconvolution with diverse peak shapes by fitting an additive unimodal regression,
that is, an additive model with unimodal spline components.

Usage

addUnireg(x, y, g, k=3, sigmasq, Lvec)

Arguments

x Numeric vector of n x-observations.
y Numeric vector of n y-observations.
g A non-negative integer giving the number of inner knots of the

spline (default: 10).
k A non-negative integer choosing the degree of the spline. By

default a cubic spline (k=3) is fitted.
sigmasq A positive numeric value providing an estimate of the model

variance.
Lvec Integer vector specifying the numbers of components with

which to fit the model.

Details
This function fits an additive unimodal regression model as described in Sec-
tion 4.3.3 to data. As pointed out before, this additive model can be estimated
with the backfitting algorithm. This is done for all numbers of components speci-
fied in Lvec. For a model with L components the implementation carries out the
following steps:

The procedure starts with estimating the intercept α using the mean of the supplied
y-observations and initializing a matrix of fitted valuesMf = (s`(xi))`=1,...,L,i=1,...,n

with zeros.
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The following steps are repeated at most 20 times:
For all ` = 1, . . . , L a unimodal regression is performed on the observations
(x, ỹ) using the function unireg with arguments g, k, sigmasq, tuning=FALSE,
abstol=NULL and ordpen=0 (cf. Section 5.1). The fitted values are afterwards cen-
tred around zero and the value 1

n

∑n
i=1 ŝ`(xi) used for centring is also subtracted

from the estimated coefficient vector β̂`. The fitted values (stored in the columns
of matrix Mf ), coefficient vectors (stored in the columns of a matrix Mβ) and
the effective dimension of the fit (cf. Section 4.3.5; stored in a vector ved) of all
components are retained. The iteration is stopped early if the maximum relative
change in the estimated coefficient vectors of all components is less than or equal

to 5%, that is, if max

(
|M (t)

β −M
(t−1)
β |

M
(t−1)
β

)
≤ 0.05, where the maximum is taken over

all matrix entries.
Subsequent to the iterations, the values of the information criteria AIC and BIC
are calculated for the estimated model (cf. Section 4.3.5). The matrices Mf and
Mβ are written into lists and the values of AIC, BIC and the number of iterations
used are written into vectors.
The aforementioned steps are performed for all numbers of components L specified
in Lvec and the model with lowest AIC value is determined. For this model, the
vector of fitted values is calculated according to formula (4.5) as the sum of α and
the fitted values in each component. The function returns the intercept α, the
fitted values, the estimated coefficient vectors, AIC and BIC values and the num-
bers of performed backfitting iterations for all estimated models with component
numbers specified by Lvec. Additionally, the knot sequence used for the unimodal
regressions is returned, so that each fitted spline and therefore each model can be
easily evaluated at desired predictor values.

Value
A list of

alpha Estimate of intercept α.
Lvec Vector specifying the numbers of components of all fitted mod-

els.
L_aic Number of components resulting in smallest AIC value (out of

all entries in Lvec ).
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yhat_aic Fitted values of the model with L_aic components and smallest
AIC.

aics Vector of AIC values (one for each entry in Lvec).
bics Vector of BIC values (one for each entry in Lvec).
coeflist List of coefficient matrices Mβ, one for each L in Lvec. Each

matrix ((g+k+1)×L) contains estimated B-spline coefficients
for the L spline components in its rows.

knotseq The knot sequence used for spline fitting.
n_it Vector informing about the number of backfitting iterations

used for each model.

5.3.4 Deconvolution with diverse unimodal peak shapes

varL0deco Fitting an L0-deconvolution model with diverse peak shapes.

Description
Deconvolution with diverse peak shapes using the L0-penalty. Each peak shape is
described by a unimodal regression spline.

Usage

varL0deco(x, y, sigmasq, g, k=3, kappa=0.002)

Arguments

x Numeric vector of n x-observations.
y Numeric vector of n y-observations.
g A non-negative integer giving the number of inner knots of the

spline (default: 10).
k A non-negative integer choosing the degree of the spline. By

Default a cubic spline (k=3) is fitted.
sigmasq A positive numeric value providing an estimate of the model

variance.
kappa Positive tuning parameter value of the L0-penalty, default

0.002.

79



5 Implementation

Details
The L0-deconvolution model with diverse unimodal peak shapes (cf. Section 4.3.4)
can be fitted by iteratively estimating the peak shapes sj with steps similar to the
backfitting algorithm for the additive model and estimating the input pulses a
using the L0-penalty.
The implementation starts with transforming the n observed y-values with func-
tion u(·) to the interval [0, 1]n and transforming the variance estimate sigmasq

accordingly. The parameter % is initialized as 10−5 and a variable η is created
with value exp(10). Initial peak shapes are estimated by applying the function
unireg with tuning=FALSE, abstol=NULL, penalty="diag" and allfits=TRUE

(cf. Section 5.1). These spline fits, evaluated at the observation points x and
projected to [0, 1]n, are used as columns of the convolution matrix S(0) ∈ Rn×d.
All diagonal entries of the weight matrix W (0) are set to κ. An initial estimate
of the input pulses is given by a(0) := (S(0)′S(0) + W )−1S(0)′y. To get a more
stable initial estimate a(0) we re-calculate W (0) := diag

(
1

a21+%
2 , . . . ,

1
a2d+%

2

)
and

a(0) := (S(0)′S(0) +W (0))−1S(0)′y. Afterwards, a(0)j is set to zero, if a(0)j < 0.0001,
j = 1, . . . , d. This operation is replicated in later steps of the procedure, since it
leads to faster convergence and avoids numerical problems, when the input pulses
approach zero.
For t = 1 to 80 (outer loop), the function iteratively updates S(t) from a(t−1) and
a(t) from S(t). The superscript (t) indicating the iteration is omitted for simplicity
in the following unless it is essential.
To speed up the estimation process, the `-th peak shape (`-th column of S) is only
updated, if ` ∈ L :=

⋃
{j:aj>0}{j − 2, . . . , j + 2} ∩ {1, . . . , d}, that is, if there exists

a truly positive input pulse in its direct neighbourhood.
In each step t the set L is determined. Let `(1), . . . , `(L) be its L elements, sorted
such that the corresponding input pulses are in descending order: a`(1) ≥ a`(2) ≥
. . . ≥ a`(L)

.
For ` = `(1), . . . , `(L) (inner loop) we compute ã := (a1, . . . , a`−1, 0, a`+1, . . . , ad)

and ỹ := y−Sã similar to the backfitting algorithm. Then we fit a spline s` with
fixed mode ` to ỹ using function unireg with argument m=`. After each spline
estimation the fitted values are transformed to the interval [0, 1]n to ensure iden-
tifiability and interpretability (the input pulses describe the heights of the peaks).
The fitted values are retained in a column of the matrix Mf . The spline coef-
ficients are transformed accordingly and stored in a column of matrix Mβ. The
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fitted spline values are then used to update the `-th column of the convolution
matrix: S.` := u(s`(x1), . . . , s`(xn)).
For each `, that is, with the convolution matrix S updated in column `, the fol-
lowing steps are repeated:

• W := diag
(

1
a21+%

2 , . . . ,
1

a2d+%
2

)
• V := diag

(
1(−∞,0)(a1), . . . ,1(−∞,0)(ad)

)
• a := (S′S + κW + ηV )−1 S′y.

This is done five times with fixed matrix S in order to make both penalties on a
work, the L0-penalty κW as well as the positivity-penalty ηV . The latter one is
induced by putting a strong penalty (η = exp(10)) on negative entries of a towards
zero.
The last operation in each iteration of the inner loop is setting aj to zero, if
aj < 0.001, j = 1, . . . , d.
In the outer loop, the alternating estimation of columns of the convolution matrix
S and input pulses a is stopped early if the position and the height of the positive
input pulses has stabilized, that is, if max(|a(t) − a(t−1)|) < 0.001.
Subsequent to the iteration, some back-transformation steps are performed. The
input pulses a are scaled by the factor max(y −min(y)) (original y). An object
const is created to which the minimal value of the original observations y is
assigned. It can be interpreted as an intercept of the model since all estimated
peak shapes lie in [0, 1]n and a ≥ 0, so that min(Sa) ≥ 0. The fitted values ŷ
can then be calculated as Sa + const. The matrix Mβ is reduced to L̃ columns
corresponding to those input pulses that are truly positive in the end.

Value
A list of

yhat The fitted values.
a The estimated vector of input pulses.
const Intercept.
S The estimated convolution matrix.
betamat A matrix ((g + k + 1) ×L̃) that contains estimated B-spline

coefficients for the L̃ splines corresponding to aj 6= 0 in its
columns.

knotseq The knot sequence used for spline fitting.
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Example
For the analysis of the IMS spectra A and B in Section 7.2.3 we use the following
call to function varL0deco (assuming that the respective measured inverse reduced
mobilities and voltages are stored in vectors x and y). The results are displayed
in Figures 7.5 and 7.6 .

sigmasq <- var(y[35:700])

x <- x[-(1:700)]

y <- y[-(1:700)]

varL0deco(x, y, g=200, k=3, sigmasq=sigmasq, kappa=0.002)
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6 Simulation study for unimodal
regression

In this chapter the proposed unimodal regression methods from Section 3 are evalu-
ated and compared to existing methodologies. A simulation study is performed, which
is motivated by the data situation typically observed in pharmaceutical dose-response
clinical trials, where increasing levels of a pharmaceutical compound are administered
in parallel to a large number of patients to investigate the dose-response relationship.
First, the data generation process is described. Then, details follow on the settings, the
fitting process and the way that the results are evaluated. All calculations are carried
out using R, version 3.2.5 (R Core Team, 2016).
The article Köllmann et al. (2014) is based on parts of the material in this chapter.

6.1 Data generation process

The evaluation of the proposed methods primarily follows Bornkamp et al. (2007), where
the simulation scenarios were selected so that they are realistic for Phase II trials (for
example, in terms of the dose-response shape, the number of doses and the signal to
noise ratio), but also tries to generalize to other applications.
The data generation process always yields two data vectors: the vector x = (x1, . . . , xn)′

of observed predictor values (for example, doses) and the vector y = (y1, . . . , yn)′ of
observed response values. The predictor values range from 0 to 8 and it is assumed
that the same predictor value is observed several times, as is typical in dose-response
data. Thus the vector x is restricted to take values from one of the two equally spaced
sequences a) (0, 2, 4, 6, 8) or b) (0, 1, 2, 3, 4, 5, 6, 7, 8). Each value is observed with the
same frequency, namely n

5
or n

9
times.

Given the predictor values, the responses are generated according to nine function pro-
files, which are shown in Figure 6.1.
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Figure 6.1: The nine function profiles used in the simulation study.

In comparison with Bornkamp et al. (2007) the logistic profile is left out as it is very
similar to sigmoid Emax, and four additional profiles are included, three of which have
a more pronounced unimodal shape (the two beta profiles and the peak profile) and an
exponential function, which is monotone, but convex. The actual values yi are simulated
by yi = f(xi) + εi, where εi ∼

i.i.d.
N (0, σ2) and the exact functional forms f are given in

Table 6.1.
The overall sample size and the standard deviation of the errors are set to n = 250 and
σ =
√

4.5, taken from Bornkamp et al. (2007). In the case of repeated measurements at
sequence (b), the samples size differs slightly: n = 252.
Altogether there are 18 combinations of those settings, see also Table A.1 in the Ap-
pendix. For each of those 18 scenarios 500 data sets are generated.
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Table 6.1: Functional forms of the nine function profiles used in the sim-
ulation study. Be(γ1, γ2) = (γ1+γ2)γ1+γ2

γ
γ1
1 γ

γ2
2

for γ1, γ2 > 0, ϕ(x|µ, σ) =

1√
2πσ

exp
{
− (x−µ)2

2σ2

}
for x, µ ∈ R, σ > 0.

Profile name Functional form
Flat f(x) ≡ 0

Linear f(x) =
1.65

8
x · 1[0,8](x)

Umbrella f(x) = 1.65

(
1

3
x− 1

36
x2
)
· 1[0,8](x)

Emax f(x) =
1.81x

0.79 + x
· 1[0,8](x)

sigmoid Emax f(x) =
1.7x5

45 + x5
· 1[0,8](x)

Beta 1 f(x) = 1.7 · Be(0.8, 2.5)
( x

9.6

)0.8 (
1− x

9.6

)2.5
· 1[0,8](x)

Beta 2 f(x) = 1.7 · Be(2, 1.8)
( x

9.6

)2 (
1− x

9.6

)1.8
· 1[0,8](x)

Exponential f(x) = 0.123 · (exp(
x

3
)− 1) · 1[0,8](x)

Peak f(x) = 1.7 · ϕ(x|3.3, 0.25)

ϕ(0|0, 0.25)
· 1[0,8](x),

6.2 Compared methods and fitting process

Several parametric and non-parametric methods are compared using the above spec-
ified simulation scheme. In comparison to the article Köllmann et al. (2014), the 24
approaches therein are appended here by the log-concave spline regression by Eilers
(2005).
The methods can be divided into one non-parametric method, three methods based on
parametric models and 21 semi-parametric methods, 17 of which are based on B-splines
and 4 on Bernstein polynomials.
Regarding the proposed spline methods we compare methods with and without shape
constraint and with and without penalization. We use cubic splines and the knot se-
quences are chosen as follows: By default, there are g = 10 equidistant inner knots in
[0, 8], which is already large compared to the number of distinct x-values (5 or 9, respec-
tively). There are four coincident knots at each boundary, which yields a knot sequence
of length g+ 2k+ 2 = 18 and a parameter vector of length d = g+ k+ 1 = 14. Only for
the difference penalized methods the knots are equidistant also beyond the boundaries.
In the case of the unpenalized splines (models "un" and "cn") the number of estimable
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parameters (including σ) is bounded by the number u of distinct x-values in the partic-
ular data set, which is 5 or 9, respectively. Thus, the knot sequence is shorter here, the
number of inner knots equals g = u− 5, which is 0 or 4, respectively.
The 11 frequentist spline regression methods are fitted using the function unireg in R
package uniReg (Köllmann, 2016, version 1.1). We fit two unpenalized spline models,
one unconstrained (model "un") and one constrained (model "cn"). The same is done
for second and third order difference (models "ud2", "cd2", "ud3", "cd3") and sigmoid
Emax penalized splines (models "us" and "cs"). When the unimodality constraint is
active, we additionally vary the way of choosing the tuning parameter. The models
"cd2", "cd3" and "cs" follow the REML approach, while the models "cda2", "cda3" and
"csa" choose λ by approximate REML (argument tuning=FALSE), which means that
the unimodality constraint is not accounted for during tuning parameter optimization,
resulting in the same tuning parameter as for the unconstrained models.
Another spline method is the log-concave spline regression by Eilers (2005) (model "log-
Con"), which uses an iteratively penalized generalized linear model approach to impose
concavity on the exp of the response. The shape penalty is combined with a third order
differences penalty for smoothness. We use the same knot sequence as for the other
difference penalized spline methods. The tuning parameter of the shape penalty is set
to 106 to ensure a log-concave result and the tuning parameter of the difference penalty
is optimized with cross-validation carried out via the function cvTuning from package
cvTools (Alfons, 2012).
We also fit four models based on Bernstein polynomials (as used, for example, in Wang
and Ghosh (2012)) by applying our penalized procedure with g = 0 inner knots and
degree k = 13 (which results in the same number of parameters as for the other spline
methods). This allows to evaluate the impact of a different selection of the spline basis
and to provide a direct comparison of cubic splines and polynomials. Again, an un-
constrained and a constrained model is fitted, each combined with the sigmoid Emax

penalty (models "uBPs" and "cBPs") and, since the difference penalty does not make
sense for the coincident boundary knots of Bernstein polynomials, with the ridge penalty∑g

j=−k β
2
j (models "uBPr" and "cBPr").

Altogether there are 16 non-Bayesian procedures, 12 based on B-splines and 4 based
on Bernstein polynomials. Moreover, we consider three Bayesian methods applying the
proposed methodology with second and third order difference and sigmoid Emax increase
penalty (methods "cdb2", "cdb3" and "csb") to enable comparison between maximiza-
tion and averaging approaches. A fourth Bayesian method, "trafo", uses the second
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order difference penalty and generates samples of the tuning parameter and the spline
coefficients from the unconstrained spline model. The sampled coefficient vectors are
subsequently mapped onto the space of unimodal vectors in Rd using the transformation
procedure described in Gunn and Dunson (2005) (see also Appendix E). The uncon-
strained samples (before transformation) are also used as the fifth Bayesian method
(model "udb") in the evaluation as well. For all Bayesian methods the resulting Monte
Carlo sample from the joint posterior is of size 1000 and the parameters are estimated
by their posterior means.
In addition to those 21 approaches, we include the following four models that do not
make use of splines:
The model averaging method "modAve" takes a weighted average of the dose-response
models "linear", "quadratic", "emax", "sigEmax", "betaMod" and "exponential",
fitted with the R function fitMod in R package DoseFinding (Bornkamp et al., 2016).
The weights for averaging are the models’ relative likelihood factors as described in
Buckland et al. (1997). The functional forms of those models are as follows:

1. linear: f(x) = E0 + γx,

2. quadratic: f(x) = E0 + γ1x+ γ2x
2,

3. Emax : f(x) = E0 + E1
x

ED50 + x
,

4. sigmoid Emax : f(x) = E0 + E1
xh

EDh
50 + xh

,

5. beta: f(x) = E0 + Emax · Be(γ1, γ2)
(

x
scal

)γ1 (1− x
scal

)γ2 ,
6. exponential: f(x) = E0 + E1 ·

(
exp

(
x
γ

)
− 1
)
,

where Be(γ1, γ2) =
(γ1 + γ2)

γ1+γ2

γγ11 γ
γ2
2

for γ1, γ2 > 0 and scal = 9.6 is a fixed dose scaling

parameter.
The models "sigE" and "beta" are the stand-alone parametric sigmoid Emax and the
beta model and are also fitted using function fitMod.
The non-parametric method by Frisén (1986) (model "frisen") is a unimodal transfor-
mation of the response means at each dose, connected with straight lines. It is fitted by
calculating the means of y-values with same x-value and applying the R function ufit()

in R package Iso (Turner, 2015) to this sequence of means.
A short overview of all 25 methods including their abbreviations is given in Table A.2.
All models are fitted to the 500 generated data sets of each scenario.
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6.3 Evaluation methods

To compare the applied methods, four measures of mean relative loss (MRL), similar to
the ones in Morell et al. (2013), are computed. Here, the loss of one method in a certain
simulation scenario is related to the loss of the best method in that scenario and a mean
value of the relative loss is obtained by averaging over a specified subset of scenarios.
The closer the MRL is to zero, the less we lose on average by applying this method
instead of the respective best methods. The losses are based on certain performance
metrics.
The first metric is the average squared error (ASE) in function prediction, that is, the
mean of the squared differences between the predicted and the true function values at

specified points z = (z1, . . . , zη) on the x-axis: ASE(f̂ρ,ν ; z) =
1

η

η∑
i=1

(f̂ρ,ν(zi) − fρ(zi))2,

where fρ is the function of scenario ρ ∈ {1, . . . , 18} and f̂ρ,ν its estimate using method
ν ∈ {1, . . . , 25}.
We obtain one value ASEκ(f̂ρ,ν ; z) of this measure for each data set κ = 1, . . . , 500. To
summarise the performance of method ν over all data sets of scenario ρ, we calculate
the mean ASE-value and define a first measure of loss as follows:

L1(ρ, ν) =
1

500

500∑
κ=1

ASEκ(f̂ρ,ν ; z = (0, 0.01, . . . , 8)), ν = 1, . . . , 25, ρ = 1, . . . , 18.

Other aspects for comparison of the methods are the modal value max
x∈[0,8]

f̂ρ,ν(x) and the

location mod(f̂ρ,ν) = arg max
x∈[0,8]

f̂ρ,ν(x) of the mode, which are interesting, for example, in

dose-response analysis as they describe the maximum effect of a drug and the dose level
which yields it.
Both values are determined with the help of the function optimize() in R package stats
(R Core Team, 2016) and for both characteristics we can define a mean performance over
all data sets of one scenario as above. In the case of the modal value we execute the
above calculation steps of the mean ASE with z = (z1) = mod(f̂ρ,ν) and define the loss

L2(ρ, ν) =
1

500

500∑
κ=1

ASEκ(f̂ρ,ν ;mod(f̂ρ,ν)) ν = 1, . . . , 25, ρ = 1, . . . , 18.
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In the case of the mode location we also calculate the mean of a squared error as a
measure of loss, namely

L3(ρ, ν) =
1

500

500∑
κ=1

(mod(f̂ρ,ν)−mod(fρ))
2, ν = 1, . . . , 25, ρ = 3, . . . , 18.

For scenarios ρ = 1, 2 this loss is not defined, because a true mode location mod(fρ)

does not exist for the flat function profile.
For dose-response applications, another important characteristic is the minimum effec-
tive dose (MED), that is, the smallest (observed) predictor value that yields a response
of at least f(0) + δ for a given δ ≥ 0. Here δ = 1.3 as in Bornkamp et al. (2007) is
used. The loss L4(ρ, ν) in this context is chosen to be the percentage of data sets of sce-
nario ρ, in which the MED was incorrectly estimated with method ν (which is already a
summary of all data sets of one scenario). In scenarios, where an MED exists, incorrect
estimation means that it is not detected or that the estimate has a wrong value, while
in scenarios, where no MED exists, it means that an MED is wrongly detected.
Since comparing the 25 methods over 18 data scenarios is still quite unmanageable, we
follow Morell et al. (2013) by defining a relative loss (RL) of method ν in scenario ρ:

RL`(ρ, ν) =
L`(ρ, ν)− L`(ρ, ∗)

ψ`(ρ)
, ` = 1, . . . , 4, ρ = 1, . . . , 18, ν = 1, . . . , 25,

where L`(ρ, ∗) = min
ν=1,...,25

L`(ρ, ν) is the minimal loss value achieved in scenario ρ by one

of the compared methods. The standardization factor ψ`(ρ) equals L`(ρ, ∗) for ` = 1, 2.
Regarding the losses L3 and L4 we face the problem that there are scenarios for which the
best method has zero loss. To avoid the problem of division by zero the standardization
factor is chosen to be ψ3(ρ) = max{mod(fρ), 8−mod(fρ)} for ` = 3, which is the maximal
possible error since mod(f̂ρ,ν) and mod(fρ) both lie in [0, 8]. The standardization factor
for ` = 4 is chosen as ψ4(ρ) = 1, which is also the maximal possible error.
The closer RL`(ρ, ν) is to zero, the less we lose when applying method ν instead of the
best method in scenario ρ.
Finally we obtain an even more aggregated performance measure for all four criteria
when we take the mean of the relative loss of method ν over all scenarios or a specified
subset R of scenarios:

MRL`(ν) =
1

|R|
∑
ρ∈R

RL`(ρ, ν), ` = 1, . . . , 4, ν = 1, . . . , 25.
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In the next subsection we will show the mean relative loss for the scenario subsets

R1 := {all scenarios with 5 doses} = {1, 3, . . . , 17} and

R2 := {all scenarios with 9 doses} = {2, 4, . . . , 18}.

Notice again that the flat scenarios (ρ = 1, 2) have to be left out in the case of loss L3.

6.4 Results

The MRL values of the 25 methods are plotted in Figure 6.2. The subfigures in each
row correspond to the scenario subsets with 5 doses (R1) and with 9 doses (R2).
Since the results for the mean relative loss in estimation of the minimum effective dose
(MRL4) are quite different from the others, we will start with discussing only the first
three measures of loss. For these, always one of the constrained spline methods yields
the smallest value. More explicitly, the constrained Bayesian splines with second or third
order penalty perform best.
Obviously the inclusion of the constraint mostly reduces the loss measures for unpenal-
ized and penalized splines as well as for Bayesian splines. Only in case of the mean
relative loss in estimation of the mode location (MRL3) the order is reversed for unpe-
nalized and third order differences penalized frequentist splines.
The constrained Bayesian approach mostly yields smaller values than the frequentist
ones, especially with regard to mean relative loss in estimation of the mode location
and for the difference penalized splines with regard to mean relative loss in function
estimation (MRL1).
The approximate REML approach is most of the time better than the corresponding
unconstrained spline and worse than the exact REML constrained spline or the three of
them perform similarly. An exception are the spline methods with third order difference
penalty in case of MRL3.
The Bayesian unimodal transformation method (Gunn and Dunson, 2005) has higher
loss MRL3 compared to our proposed Bayesian method and comparable loss MRL1 and
MRL2 (in case of the latter measure of loss even smaller).
The log-concave restricted splines with third order difference penalty perform similar
to the other difference penalized splines, but with regard to MRL1 and MRL2, the uni-
modality constrained splines seem more suitable.
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For the mean relative loss in estimation of the MED (MRL4) the results are very different.
Here, the beta model performs best (followed by the unpenalized constrained spline)
and among the penalized splines the performances of the unconstrained, the constrained
(exact and approximate REML) and the Bayesian versions are in reverse order. The
Bayesian transformation approach yields smaller values than the proposed Bayesian
method. But regarding this fourth measure of loss, we should remark that in some
scenarios even the minimal relative frequency of incorrect detection (minimal loss) is
very high, once as high as 0.79. The methods presumably all produce a smooth overall
fit that is less beneficial for estimation of the MED.
The best of the non-spline-methods for the performance measures MRL1 and MRL2 is
the model averaging technique and for MRL3 and MRL4 the beta model.
Increasing the number of observed doses does not seem to make much difference for
the performance of the methods, except that the loss in estimation of the modal value
slightly grows for all models and MRL4 declines for the difference penalized models.
While the sigmoid Emax model itself is always one of the worst methods, the sigmoid Emax

penalized splines have smaller MRL, the latter ones performing very similar among each
other, especially regarding MRL1 and MRL2. This indicates that the penalty against a
parametric function indeed safeguards against model mis-specification. Regarding the
Bernstein polynomials the sigmoid Emax penalty even performs mostly better than the
ridge penalty and comparably to the sigmoid Emax penalized B-spline methods, the loss
in estimation of the modal value is even slightly smaller.
Altogether, the simulation study demonstrates a good performance of the proposed
unimodal spline regression approaches compared to several competitors, in particular
in terms of estimating the dose-response function. Especially for the estimation of the
MED, other approaches are more favourable.
Additional insight in the performance of unimodal spline regression in the dose-response
context can be found in the diploma thesis of Jan Rekowski (Rekowski, 2013), where the
frequentist unimodal spline regression with second order difference penalty is compared
to three other methods in terms of proof of concept (probability of establishing the
dose-response), clinical relevance, MED estimation and average prediction error. This
simulation study also examines different dose allocation strategies.
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Figure 6.2: Simulation results.
Mean relative loss of the 25 methods in estimation of the function values at
the grid (0, 0.01, 0.02, . . . , 7.99, 8) (MRL1), of the modal value (MRL2), of
the mode location (MRL3) and of the minimum effective dose (MRL4). The
rows correspond to the four performance measures and the columns to the
two subsets of the scenarios, R1 and R2, over which the mean is taken. The
values are spaced on log10-scale.
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7 Applications

In this chapter we describe the application of unimodal and multimodal regression mod-
els to different real data sets. First, the proposed unimodal regression methods are
applied to the growth hormone data set introduced in Section 2.1. Afterwards, the
methods for multimodal regression from Section 4 are applied to data sets from three
application areas: marine biology, breath gas analysis and astroparticle physics (see Sec-
tions 2.2 to 2.3). Section 7.3 gives an overview of research work by others, who applied
the proposed methodologies for their purposes.

7.1 Unimodality: growth hormone dose-response

analysis

The first application example analyses the four response variables ADG, Age, G/F and
ADF in dependence of the dose of the growth hormone somatotropin (cf. Section 2.1),
that is, we look at four univariate regression tasks:

yij = fj(xi) + εij, i = 1, . . . , 5,

where j = 1, . . . , 4, indicates the j-th response variable and i indicates the i-th dose
level of x1 = 0, . . . , x5 = 9. The observed means, yij, are given in Table 2.1 and εij

are observations of Eij ∼ N (0, se2ij), where seij are the standard errors at the respective
doses (also given in Table 2.1).
We compare four different regression approaches:

1. the frequentist unimodal regression approach with difference penalty (cf. Sec-
tion 3.5.1), where each fj is a unimodal spline function,

2. the Bayesian unimodal regression approach with difference penalty (cf. Section 3.6),
where each fj is a unimodal spline function,
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3. the frequentist unimodal spline regression with penalization against an exponential
function fit (cf. Section 3.3.2), where each fj is a unimodal spline function,

4. an exponential regression, which was found in McLaren et al. (1990) to fit the
data best in terms of the coefficient of determination, where each fj has the form
fj(x) = u+ v · (1− ewx) with parameters u, v, w.

McLaren et al. (1990) estimated the following exponential relationships in dependence
of the dosage x for the four different response variables:

ADG(x) = 0.7509 + 0.1523
(
1− e−0.6204x

)
,

Age(x) = 183.2− 12.27
(
1− e−0.5x

)
,

G/F (x) = 0.2655 + 0.09982
(
1− e−0.5036x

)
,

ADF (x) = 2.932− 0.7913
(
1− e−0.2097x

)
.

Those functions are evaluated at the knot averages to calculate the vector β0 for the
penalty in approach 3 (cf. Equation (3.3)).
All calculations are carried out using R, version 3.2.5 (R Core Team, 2016). For approach
1 and 3 we use function unireg from R package uniReg in version 1.1, where for the
argument sigmasq the standard errors from Table 2.1 are used and kept fix (argument
abstol=NULL). For approach 2 we use the function unibayes (cf. Section 5.2) and
N=1000 samples are drawn from the posterior and averaged. In addition, we retain the
pointwise 2.5%- and 97.5%-quantiles of the fitted functions to determine a 95% credible
region. For all three fits, we use g = 10 equidistant inner knots on the interval [0, 9]. In
the case of Age and ADF an inverse unimodal regression is applied.
For all four response variables, the three fitted unimodal regressions and the exponential
fit are plotted in Figure 7.1 and the weighted residual sums of squares (wRSS) are given
in Table 7.1.
From the plotted functions we can see that both fits with difference penalty do not
differ very much (except for ADG), yet there are clear differences in their weighted
residual sums of squares. The Bayesian method yields higher wRSS values and seems to
oversmooth the data, but the credible regions lie close around the fitted curves and stay
within the normal confidence intervals defined by the standard errors at the observed
doses. For the variables ADG, Age and ADF the unimodal regression with exponential
penalty and the exponential fit are nearly identical, but in the case of G/F they differ
more clearly. For this variable the exponential model seems to be a mis-specification,
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Figure 7.1: Dose-response data with fitted spline functions.
Scatterplots of PST dosage vs. means of the response variables ADG, Age,
G/F and ADF. The bars indicate 95% confidence intervals of a normal dis-
tribution with the input means and standard errors. The rows correspond
to the response variables and the columns to the fitted unimodal functions:
frequentist and Bayesian spline with difference penalty and frequentist spline
with exponential penalty. For the Bayesian method the 95% credible regions
of the fitted functions are also shown.
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Table 7.1: Goodness of fit of the regression models. Weighted residual sums of
squares of the exponential fit by McLaren et al. (1990) and the three fitted
unimodal regressions for all four response variables.

Difference penalty Bayes (Difference) Exponential fit Exponential penalty
ADG 0.486 1.844 0.018 0.023
Age 0.629 1.802 0.341 0.340
G/F 1.003 1.480 1.592 0.864
ADF 0.836 1.088 0.514 0.554

because all unimodal regressions, also the Bayesian one, have smaller wRSS. McLaren
et al. (1990) used the exponential fits to determine optimal dosages. For the G/F variable
such subsequent analyses would clearly yield different, presumably more appropriate
results using the unimodal fit.
Since we do not know the true underlying relationship we can only asses the different
results in terms of wRSS, from which we can derive that the frequentist unimodal spline
with penalty against the preferred parametric function is more useful than just fitting the
parametric model: the difference in wRSS is small, when the parametric model already
yields a good fit, but the benefit can be substantial as in the case of the G/F variable.

7.2 Multimodality

In the following three subsections the methods presented in Chapter 4 are applied to
multimodal data sets from marine biology, astroparticle physics and breath gas analysis
(cf. Köllmann et al., 2016).
All analyses are performed using R (version 3.2.5; R Core Team, 2016). The unimodal
penalized spline regressions are fitted using function unireg in R package uniReg (ver-
sion 1.1; Köllmann, 2016). We use approximate REML to reduce the computational
burden that arises from (repeatedly) estimating several unimodal regression functions.

7.2.1 Analysis of dive phases of marine animals

As already mentioned during the description in Section 2.2 diving depth data sets are, for
example, used to detect dive phases (descent and ascent) of marine animals. An approach
to determine such phases in TDR data is implemented in the R package diveMove (cf.
Luque, 2007; Luque and Fried, 2011). In the current version (1.4.1) the procedure
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starts with heuristically splitting the diving depth time series into dives using a depth
threshold of three meters and fitting a smoothing spline to each dive (cf. Figure 7.2A).
Therefore, in this step, the diving depth is the response variable modelled over time with
a piecewise spline regression, that is, we are in the situation described in Section 4.3.1
and the regression function is given by

f(x) =
L∑
`=1

s`(x)1I`(x),

where I1, . . . , IL ⊂ [a, b] are L intervals corresponding to the pieces of the time axis found
with the depth threshold and s` are the spline functions on the respective intervals.
Afterwards the derivative of the smoothing spline is used to identify the descent and
ascent phase of each dive. This determination can be problematic since the uniqueness
of the turning point depends on the choice of the smoothing parameter. This can be seen
in Figure 7.2B, which shows derivatives of splines fitted to the dive second from right
in Figure 7.2A with 33 observations. For a smoothing parameter chosen via data-driven
cross-validation the derivative of the smoothing spline is quite wiggly and crosses the in-
teresting region around the zero derivative several times. For a manually chosen (larger)
smoothing parameter the derivative gets smoother and the zero line is only crossed once.
However, such a manual choice is subjective and might be a difficult task for users.
If we replace the smoothing spline in the first analysis step and estimate each s` as
a unimodal spline, in explicit, using piecewise unimodal regression (cf. Section 4.3.1),
the derivative has only one sign change and the turning point from descent to ascent
is unique, irrespective of the tuning parameter value. We fit a second order differ-
ence penalized spline with g = 25 inner knots. When applying the function unireg

(see Section 5.1), the argument abstol is set to 0.01, so that the model coefficients
and the variance are estimated iteratively, starting with an initial variance estimate of
sigmasq=2. The derivative of the resulting unimodal spline is also shown in Figure 7.2B.
An obvious and welcome side effect of the unimodality constraint is that in contrast to
the smoothing spline approach the choice of the tuning parameter has per construction
no influence on the uniqueness of the turning point. Tuning can be done via data-driven
REML estimation and the user is not confronted with this task.
Since the animal needs to come back to the surface to breathe and the time series is
divisible into the individual diversely shaped dives, piecewise unimodal regression is a
suitable approach for this example. On the one hand, the different shapes of the dives
make the application of L0-deco impossible, while there is on the other hand no need to
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employ a more complex deconvolution model with varying peak shapes since there is no
overlap of the unimodal curves.
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Figure 7.2: Spline regression for the diving depth example.
(A) shows an excerpt from data set divesTDR and the smoothing splines
fitted with R package diveMove (version 1.4.1, Luque, 2007). (B) shows
derivatives of two fitted smoothing splines (smoothing parameter chosen via
cross-validation (CV) and manually) and a unimodal spline (tuning param-
eter chosen via REML) for the dive second from right in (A). The x-axis is
time of day on January 6th 2002.
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7.2.2 Astroparticle physics data analysis

The application example from astroparticle physics deals with data recorded by the
FACT telescope as described in Section 2.3. The loading curves caused by each photon
hitting a FACT camera pixel are known to have a unimodal shape. As already noted,
single and multiple photons can arrive at any time. Employing a deconvolution model
is suitable since divisibility into unimodal pieces can be excluded and the measured
voltage is an accumulation of several peaks (loading curves). It is known that each
photon induces the same peak in the voltage, which can roughly be described by the
parametric wave of the form in Equation (2.1). For our purpose the parameters γ, np
and t0 can be fixed at certain values. In explicit, the baseline γ can be set to 0 since
the deconvolution model already takes care of the fact that the individual waves start at
a higher baseline voltage due to the convolution. In addition, the deconvolution model
estimates implicitly the arrival time and the number of photons, so that t0 and np can
be set to 0 and 1, respectively, and each single wave is described by

Usingle(t) = U0 · 1[0,∞)(t) ·
(

1− e−
t
ξ1

)
e
− t
ξ2 . (7.1)

Thus, we model the data set from Figure 2.2B with the parametric L0-deconvolution
model from Section 4.3.2 with regression function

f(xi) =
ns∑
k=1

skai−k, i = 1, . . . , 250,

using s(x|β) = U0

(
1− e−

x
ξ1

)
e
− x
ξ2 as the parametric peak shape. We estimate β =

(U0, ξ1, ξ2)
′ during the iterative algorithm in function parL0deco (cf. Section 5.3.1), start-

ing with the parameter estimates derived in Buß (2013): β(0) = (17.41, 4.745, 31.81)′. In
iteration k the current peak shape s(k) is obtained via interim evaluations of s(x|β̂(k−1))

at x1 = 0, . . . , x151 = 150 (that is, ns = 151), which is roughly the region with non-zero
voltage of the wave.
By visual inspection we choose a tuning parameter value for the L0-penalty of κ = 0.01.
The result is shown in Figure 7.3. Seven input pulses are estimated clearly different
from zero and the model represents the data quite well. The parameters of the wave
form are estimated slightly different from the starting values as Û0 = 19.08, ξ̂1 = 5.66,
ξ̂2 = 28.79. The resulting wave form is a little higher in the increasing and a little lower
in the decreasing part of the peak than the initial peak shape.
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Again, there is no need to employ the more complex varying L0-deco model. Compared
to the diving depth analysis, convolution is certainly present in this application, but the
individual peaks all have the same shape so that the simpler deconvolution model with
identical peaks suffices to describe such kind of data. If no information about the wave
form had been present, unimodal L0-deco could have been used.
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Figure 7.3: FACT time series of length 250 and fitted deconvolution model.
The individual peaks of the fitted L0-deconvolution model with parametric
shapes are given by the dashed green lines and the accumulated signal by the
solid green line. The input pulses and their heights are marked with vertical
blue bars. The peak shape is modelled with the parametric wave function of
form (7.1) and each of the seven peaks is a scaled version of it.

7.2.3 Breath gas analysis with ion mobility spectrometry

In breath gas analysis each spectrum of an IMS-MCC measurement consists of only a
few peaks, which are mostly well-separated (see spectrum A and B in Figure 2.2C and
D). The here analysed spectra both have 2499 observations.
Our first approach to model this kind of data is piecewise unimodal regression, that is,
the regression function f from model (4.3) is given by

f(x) =
L∑
`=1

s`(x)1I`(x).

First, we obtain an estimate of the error variance from the measurements y36, . . . , y700,
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since it is known that these will definitely contain no peak. The first 35 observations
are discarded because the movements of the ion shutter induce some fluctuations in the
signal that do not correspond to the usual measurement error of the device. We fix σ2

at the estimated value prior to model fitting. The first 700 of the 2499 observations are
then discarded for further analyses.
For spectrum A, we determine L = 3 unimodal pieces using a threshold of 50 on
the measured voltages and fit separate cubic unimodal splines with ridge penalty and
g = 100 inner knots (function unireg with arguments tuning=FALSE, penalty="diag",
abstol=NULL). In Figure 7.4A we see that each of the three peaks is reproduced nicely
using this procedure.
Problems can occur when the peaks from different molecules are close to each other as
seen, for example, when applying the same procedure to spectrum B (see Figure 7.4B).
The third and fourth peak are so close that their tails overlap. Thus, the intensity
measured in between them results from both types of molecules and reflects the accu-
mulation of both concentrations. This cannot be modelled appropriately with piecewise
unimodal regression.
One might think of employing deconvolution models instead, which are able to handle
overlapping as well as non-overlapping peaks. The peaks in IMS data cannot be said
to have the same peak shape. Kopczynski et al. (2012), for example, apply a mixture
model of inverse Gaussian distributions and thus, describe each peak with a different set
of distribution parameters. Therefore, we propose fitting a deconvolution model with
varying peak shapes. This reflects the accumulated intensities of the overlapping peaks
as well as the diverse shapes of the peaks. Since the number of peaks is not known a
priori, varying L0-deco (cf. Section 4.3.4) is preferred to the additive unimodal regres-
sion.
The variance of the measurement error is estimated as described above and the first 700
observations are again discarded afterwards. The regression function f from model (4.3)
is described by

f(xi) =
d∑
j=1

sj(xi)aj,

and is estimated with R function varL0deco (cp. Section 5.3.4) with g = 200 inner
knots, spline degree k = 3 and tuning parameter κ = 0.002. We choose a higher number
of inner knots, here, since the spline functions span the whole x-range in contrast to the
piecewise splines above.
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Figure 7.5 shows the estimated peaks in spectrum A and the fitted global function.
Figure 7.6 shows the analogous plots for spectrum B of the IMS data set. As expected,
three, respectively four peaks are modelled with one unimodal spline each. Comparing
the convolution model to the piecewise model it is obvious that the two close peaks of
spectrum B are much better represented by the deconvolution model.
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Figure 7.4: Close-ups of IMS spectra A and B with fitted piecewise unimodal
regressions.
In both cases, the x-axis was divided into pieces according to a threshold of
50 volt on the intensities. The breaks between the pieces are indicated by
vertical lines. A unimodal ridge-penalized spline was fitted to each of the
pieces.
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Figure 7.5: Close-up of IMS spectrum A and L0-deconvolution model fit with
different peak shapes.
Top: deconvolved peaks of different shapes. Each of the peaks (marked with
different colours) is a unimodal spline regression with ridge penalty. Bottom:
fitted global function, i.e., the convolution of the above peaks.
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Figure 7.6: Close-up of IMS spectrum B and L0-deconvolution model fit with
different peak shapes.
Top: deconvolved peaks of different shapes. Each of the peaks (marked with
different colours) is a unimodal spline regression with ridge penalty. Bottom:
fitted global function, i.e., the convolution of the above peaks.
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7.3 Further utilization of the proposed methodology

Parts of the methodology proposed in Chapters 3 and 4 were used in three final theses,
which were co-supervised by the author of this PhD thesis. The results will be briefly
summarised in the following subsections.

7.3.1 Robust unimodal spline regression

In her Master’s thesis Vanessa Baumann conducts a simulation study to compare sev-
eral non-robust and robust as well as unimodal and non-unimodal spline regression
approaches (Baumann, 2014). The datasets are simulated in the style of Cantoni and
Ronchetti (2001) with three sample sizes, two different true mean functions (one of them
unimodal), five error distributions and five probabilities for outliers ranging from 0% to
30%. The performance of the regression approaches is assessed in terms of mean squared
error.
The simulation results show that the unimodal regression clearly benefits from the ro-
bustifications described in Section 3.7.2. For small to moderate outlier probabilities the
robust unimodal regression estimation procedures perform similar to the non-unimodal
M-estimator by Lee and Oh (2007) for the unimodal true mean function. For high out-
lier probabilities the S-estimator of Tharmaratnam et al. (2010) outperforms the latter
approaches. Thus, for applications with high expected outlier percentage, it would be
interesting to develop a unimodal regression approach based on S-estimation.

7.3.2 Mixture of constant and unimodal regression

Hannah Bürger’s Bachelor’s thesis (Bürger, 2012) comprises a simulation study on the
performance of the mixture model of regressions in Equation (4.2). The simulated
datasets are intended to reflect experiments from systems biology, where a stimulus
is given to populations of cells and the fraction of phosphorylated proteins in the cells
is measured at several time points after the stimulus. It is known that the cell popula-
tions are inhomogeneous in the sense that there are cells, which react to the stimulus by
phosphorylation of the cell proteins, and cells, which do not react or only very weakly.
The fraction of phosphorylated proteins in the reacting cells will most probably have
a unimodal course over time since proteins are dephosphorylated once the effect of the
stimulus wears off. Thus, the mixture model of constant and unimodal regression seems
appropriate in this context.
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The simulation study by Hannah Bürger varies the shape of the unimodal mean function,
the maximum distance between constant and unimodal mean function, the standard de-
viations in each subpopulation, the mixture weights and the observed time points. The
simulation results are evaluated with respect to bias, mean squared error and misclassi-
fication rate. In general, the true shape of the unimodal component is recovered quite
well and the standard deviations are estimated more accurately than the level of the
constant component and the mixture weights. The shape of the unimodal mean func-
tion, the maximum distance between constant and unimodal mean function (the higher
the better) and the observed time points (the more the better) are found to influence
the quality of the estimated unimodal component, while varying the other parameters
does not alter the results much.
Though this Bachelor’s thesis only examines a special case of the mixture model of
unimodal regressions, it indicates the usefulness of the methodology for inhomogeneous
population scenarios.

7.3.3 Additive unimodal regression as an intermediate step for

classification of IMS data sets

Laura Lange uses the additive unimodal regression model (4.5) presented in Section 4.3.3
in her Master’s thesis (Lange, 2015) as a pre-step for classification of IMS datasets. The
119 data sets are known to fall into 12 different classes.
For each spectrum of a data set, the number L of peaks is first estimated using a heuristic
algorithm. Then, the spectrum is deconvolved with additive unimodal regression using
L− 1, L and L + 1 unimodal components. The fit with minimal AIC is chosen for the
subsequent analyses, which turns out to be the model with L − 1 components in most
of the cases. The data matrices are smoothed with this procedure and the smoothed
intensities are used in several clustering steps to generate a list of peaks present in at least
one of the data sets. The intensities of these peaks in each data set are used as feature
values for the classification of the IMS data sets via support vector machines. Tuning
of the support vector machine is done using leave-one-out cross validation and results
in a misclassification rate of about nine percent, namely, eleven out of 119 data sets are
misclassified. This is a very satisfactory result, especially when reflecting that there are
a lot of dependent steps in the analysis chain, each of which could also be conducted
with a competing approach (for example classification trees instead of support vector
machines).
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Regarding the modelling step Lange (2015) discovers from extensive visual comparisons
of observed and fitted intensities that the additive unimodal regression model fits the
structures in the data well in most cases, but that it also sometimes fails to model a
distinct peak, which is found by the heuristic. She suggests to modify the backfitting
algorithm in a way that the components are constrained to have their peaks, where
the heuristic finds them, for example, with the help of suitable penalties. This is an
interesting topic for future research. A comparison to the varying L0-deco approach,
which estimates the number of peaks simultaneously to the peaks themselves, might
also provide additional insights.
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This Ph.D. thesis addressed non-parametric shape-constrained regression, in particu-
lar unimodal regression and possible extensions. We discussed the usefulness of this
approach for different fields of application, where the predictor-response relationship
ranged from shapes with a single mode, over piecewise unimodality to accumulations
of identically or diversely shaped unimodal functions. Chapter 2 introduced real data
examples from four such applications areas, namely dose-response analysis, marine bi-
ology, astroparticle physics and breath gas analysis.
As a feasible realization of the non-parametric concept of unimodal regression we pro-
posed a range of semi-parametric shape-constrained spline regression techniques. To
motivate this choice, Chapter 3 gave an introduction to spline functions and illustrated
their approximation power using the characteristics of Bernstein-Schoenberg splines. In
addition, we showed that unimodality of a spline function is guaranteed by the shape-
preservation property of B-splines when placing a linear constraint on the vector of
regression coefficients. Thus, least squares estimates can be found with quadratic pro-
gramming algorithms.
The problem of knot placement was addressed by choosing a large number of knots
and putting a penalty on the B-spline coefficients to avoid overfitting. As an automatic
choice of the tuning parameter for arbitrary penalties we developed a restricted maxi-
mum likelihood (REML) estimate. Here, the second and third order difference penalties
were used, which implicitly penalize against a linear and a quadratic model. We gen-
eralized this approach to allow for penalization against arbitrary parametric functions
(for example, a sigmoid Emax model in dose-response applications). All penalties favour
some parametric model, but allow for departures from this model, when the data suggest
so.
We also proposed a Bayesian approach to unimodal spline regression which relies on
Monte Carlo random sampling. Since the joint posterior distribution of the B-spline
coefficients, the tuning parameter and the mode can be factorized into the marginal
posteriors, samples can be drawn by successively sampling from the marginals. Thus,
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the samples from the joint posterior are uncorrelated.
By using iteratively re-weighted least squares estimation, it is also possible to robustify
the frequentist unimodal spline regression approaches for applications where outliers
might occur.
In Chapter 4 we further developed the unimodal regression approaches and made them
a building block in regression models for multimodal applications. For multimodality
arising from an inhomogeneous population it is possible to use a mixture model of uni-
modal regressions, while there are several approaches for estimating a multimodal mean
predictor-response relationship in a homogeneous population. Table 4.1 summarizes the
different data situations and gives recommendations for the model choice for the homoge-
neous case. If there is only one mode, the unimodal regression approach from Chapter 3
is directly applicable. Piecewise unimodal regression can be used whenever the underly-
ing process is divisible, in explicit, when there is no overlap between adjacent peaks as,
for example, in diving depth data. On the contrary, a deconvolution model is preferable
when there is overlap between the unimodal functions and they accumulate to the ob-
served values. Deconvolution with L0-penalty is applicable whenever the peaks have the
same shape across the whole data set, as, for example, in the astroparticle physics exam-
ple. If this is not the case, for example, in breath gas analysis data, the deconvolution
models with varying peak shapes should be be used. Due to an increased computational
burden for the additive model we recommend it only in applications where the number
of peaks is known. In all other cases the varying L0-deco approach is the method of
choice and provides estimates of the number of peaks, their heights and shapes.
Chapter 5 was dedicated to the implementation of the proposed methodology. The
unimodal spline regression approaches from Chapter 3 are implemented in R package
uniReg, freely available on CRAN. Its main function for model fitting as well as the
implementations of the Bayesian Monte Carlo sampling and the deconvolution models
from Chapter 4.3 were described to give a picture of the numerical and implementational
challenges (and our solutions), but also to introduce the usage.
The presented R package was also used for an extensive simulation study to compare
the proposed unimodal regression methods among themselves and to other frequently
used regression models in the dose-response analysis context. The results, summarized
in Chapter 6, showed that the combination of unimodal shape constraint and a penalty
is quite promising, since adding the constraint improves the fit. Averaging over the pos-
terior mode distribution as in the Bayesian approach can improve the reproduction of
the true function characteristics even further.
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When applying our methods to a real dose-response data set of McLaren et al. (1990)
in Chapter 7, we obtained evidence that penalized unimodal spline regression is to some
extent able to safeguard against model mis-specification. The development of the pro-
posed methods was initially motivated by dose-response analysis, but the methodology
is very general and can be used in many other areas of application. We analysed data
from three different multimodal applications – marine biology, astroparticle physics and
breath gas analysis – to illustrate that unimodal regression is not only useful when a
unimodal relationship between dependent and independent variable is likely, but also
as a building block in situations where the relationship is multimodal and has increas-
ing complexity: from piecewise unimodality to accumulations of identically or diversely
shaped unimodal functions.

In comparison to parametric models as, for example, in dose-response analysis or the
wave form in Section 7.2.2, spline regression is a very flexible tool. Prior knowledge
about the shape of the underlying relationship can be incorporated by using a shape
constraint (here: unimodality) and/or by a penalty (ridge penalty or penalizing against
a parametric function). Another nice characteristic of splines is the simplicity of cal-
culating derivatives and that the derivatives of shape-constrained splines also "inherit"
shape properties. In the case of the marine biology data the monotonicity of the first
derivative simplifies the subsequent analyses, namely the detection of descent and ascent
phase of the dive by finding the zero of the derivative.
The analyses provide an indication for the usefulness of unimodal regression in the pre-
sented and in further applications. Of course there are situations where unimodality is
not as likely as, for example, in the case of the peaks in IMS data or the FACT load-
ing curves. Actually, one could argue that the dive of a marine animal is not strictly
unimodal since the animal might also descend to a certain depth, make some smaller
upward and downward movements and then ascend to the surface again. Those wiggles
at the bottom are flattened out by the unimodal spline approach and the turning point
that fits the data best divides the dive into descent and ascent. Thus, the unimodal
model may be regarded as a simplification of a dive, but it is a suitable one and provides
an automated estimation process for biological scientists. Adaptations of the method to
aims other than the division into the two phases are also possible.
The results of this thesis indicate that the two approaches for increasing the efficiency
of non- or semi-parametric regression approaches mentioned in the introduction, namely
penalization and shape constraints, can be reasonably combined and yield proper esti-
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mations in standard regression tasks as well as in deconvolution problems.

An interesting aspect for future research are confidence regions for unimodal spline
regression. In the Bayesian approach, credible regions are straightforward to obtain
(and have been included in the analysis of the dose-response data set, see Figure 7.1),
but for the frequentist methods the derivation of the estimator’s distribution under the
shape constraint is not. Thus, bootstrapping suggests itself, but there will be need to
investigate its theoretical properties in the presence of the shape constraint and its com-
putational feasibility. Bootstrap techniques would also be suitable for the derivation of
statistical tests. One might, for example, be interested in testing for unimodality versus
monotonicity.
Furthermore, we expect the unimodal penalized spline regression to be large sample
consistent. The considerations regarding the approximation power of spline functions in
Section 3.2.2 and regarding the flexibility of unimodality-constrained splines shown in
Section 3.4 (cf. Figure 3.3) are good indicators. A proof is beyond the scope of this work,
but might be performed along the lines of Meyer (2012). The author shows therein that
the convergence rate for monotonicity constrained penalized splines is at least that for
unconstrained penalized splines, which were shown to be consistent regression function
estimators in Claeskens et al. (2009).
So far, all L0-deconvolution models have been tuned manually and there is still need to
explore methods for automated choices of the tuning parameter. Due to the iterative
estimation of the peak shapes and the input pulses, it is not straightforward to define a
measure of the effective number of model parameters for calculating a model selection cri-
terion like AIC. The same holds for the existence of a hat matrix, which would provide
a short-cut for calculating a cross-validated tuning parameter. Thus, cross-validation
would actually have to be performed, making the already computationally demanding
deconvolution models even more so. This is why we think that a Bayesian formulation of
the deconvolution models might be more suitable. Here, sparsity of the input pulses can
be achieved using spike-and-slab priors. First results are quite promising and encourage
future research in this direction. This is also the reason why we did not further pursue
the cross-validation option and did not conduct a simulation study for the multimodal
regression models, but settled in this thesis for demonstrating the performance of the
proposed models on real data.
Additionally, subsequent analysis steps like classification or integration are often com-
mon in the described multimodal situations. Hence, systematic evaluations of the impact
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of the modelling step on the final outcome are needed. Such performance studies could
be conducted, for example, along the lines of Hauschild et al. (2013).
Throughout this thesis, we mentioned at many places that the proposed unimodal regres-
sion approaches are computationally demanding, the burden obviously growing with the
number of possible modes of the coefficient vector and even multiplying with repeated
execution for the multimodal regression models and when performing model selection
via AIC or tuning via cross-validation. Version 1.1 of R package uniReg already enables
the use of parallelization, exploiting that the coefficient vectors with different modes can
be estimated independently. Other ideas for speeding up the estimation process are, for
example, locally defined unimodal splines for the deconvolution models with divers peak
shapes (as are already used for those with identically shaped peaks) or using some kind
of shape-penalty instead of a strict shape constraint.
The shape penalty approach eases tuning of the smoothness penalty. We already men-
tioned the asymmetric penalty used by Eilers (2005) to induce log-concavity. Our sim-
ulation study indicated that the unimodal shape constraint performs better on average
over a wide range of true unimodal relationships. This might be due to function shapes
like convex-monotonicity which log-concave splines cannot fit. In other scenarios with
strictly unimodal or even truly log-concave relationships, the approach of Eilers (2005)
might perform better than unimodal regression. In addition, it is computationally much
less demanding. A combination of both approaches is a unimodal asymmetric penalty.
We suggest a thorough comparison of the three approaches with regard to statistical
and computational aspects.
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A Additional tables

Table A.1: Settings for data generation in the simulation study.
no. x-values sample size σ profile
1 (0,2,4,6,8) 250

√
4.5 Flat

2 (0,1,2,3,4,5,6,7,8) 252
√

4.5 Flat
3 0,2,4,6,8) 250

√
4.5 Linear

4 (0,1,2,3,4,5,6,7,8) 252
√

4.5 Linear
5 (0,2,4,6,8) 250

√
4.5 Quadratic

6 (0,1,2,3,4,5,6,7,8) 252
√

4.5 Quadratic
7 (0,2,4,6,8) 250

√
4.5 Emax

8 (0,1,2,3,4,5,6,7,8) 252
√

4.5 Emax
9 (0,2,4,6,8) 250

√
4.5 sigmoid Emax

10 (0,1,2,3,4,5,6,7,8) 252
√

4.5 sigmoid Emax
11 (0,2,4,6,8) 250

√
4.5 Beta 1

12 (0,1,2,3,4,5,6,7,8) 252
√

4.5 Beta 1
13 (0,2,4,6,8) 250

√
4.5 Beta 2

14 (0,1,2,3,4,5,6,7,8) 252
√

4.5 Beta 2
15 (0,2,4,6,8) 250

√
4.5 Exponential

16 (0,1,2,3,4,5,6,7,8) 252
√

4.5 Exponential
17 (0,2,4,6,8) 250

√
4.5 Peak

18 (0,1,2,3,4,5,6,7,8) 252
√

4.5 Peak
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A
A

dditionaltables

Table A.2: The 25 models used in the simulation study. The table gives an abbreviation for each model and a short
description of it. Additionally - depending on the model type - information is given about the number of inner
knots, if the unimodality constraint is active or not, the type of the penalty, and the way of determining the
tuning parameter and the mode location.

Abbr. Model type Inner knots Constraint Penalty Estimation of λ Mode estimation

un cubic spline g = u− 5 no no – –
cn cubic spline g = u− 5 yes no – minimizing RSS

ud2 cubic spline g = 10 no difference (2nd) REML –
cd2 cubic spline g = 10 yes difference (2nd) REML minimizing RSS
cda2 cubic spline g = 10 yes difference (2nd) approx. REML minimizing RSS

ud3 cubic spline g = 10 no difference (3rd) REML –
cd3 cubic spline g = 10 yes difference (3rd) REML minimizing RSS
cda3 cubic spline g = 10 yes difference (3rd) approx. REML minimizing RSS

logCon cubic spline g = 10 yes difference (3rd) cross-validation –

us cubic spline g = 10 no sigmoid Emax REML –
cs cubic spline g = 10 yes sigmoid Emax REML minimizing RSS
csa cubic spline g = 10 yes sigmoid Emax approx. REML minimizing RSS

udb cubic spline (Bayes) g = 10 no difference (2nd) posterior mean –
cdb2 cubic spline (Bayes) g = 10 yes difference (2nd) posterior mean posterior mean
cdb3 cubic spline (Bayes) g = 10 yes difference (3rd) posterior mean posterior mean
csb cubic spline (Bayes) g = 10 yes sigmoid Emax posterior mean posterior mean
trafo cubic spline (Bayes) g = 10 yes difference (2nd) posterior mean transformation

uBPr Bernstein polyn. (k = 13) g = 0 no ridge REML –
cBPr Bernstein polyn. (k = 13) g = 0 yes ridge REML minimizing RSS
uBPs Bernstein polyn. (k = 13) g = 0 no sigmoid Emax REML –
cBPs Bernstein polyn. (k = 13) g = 0 yes sigmoid Emax REML minimizing RSS

sigE sigmoid Emax – – – – –
beta beta – – – – –

modAve model averaging – – – – –
frisen Frisén (1986) – yes – – minimizing RSS
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B Proofs

Recall

Lemma 2. Assuming the model

Y |β ∼ N (Bβ, σ2In), σ2 > 0

β|λ ∼ NM(β0, λ
−1Ω−1), λ > 0,Ω pd,M⊆ Rd

λ ∼ p(λ), a prior density on (0,∞),

the marginal posterior density of λ is given by

p(λ|y) ∝ p(λ) |λΩ|
1
2 |Eλ|

1
2
cpostλ

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
λβ′0Ωβ0

)
,

where Eλ :=

(
1

σ2
B′B + λΩ

)−1
, e′λ :=

(
1

σ2
y′B + λβ′0Ω

)
Eλ and cpriorλ is the proba-

bility of the truncation set M under N (β0, λ
−1Ω−1) and cpostλ is its probability under

N (eλ,Eλ).

Proof.
From the model specification we know that the likelihood function is given by

p(y|β, λ) ∝ exp

{
− 1

2σ2
(y −Bβ)′(y −Bβ)

}
and the prior density of β is

p(β|λ) ∝ |λΩ| 12
cpriorλ

exp

{
−1

2
(β − β0)

′λΩ(β − β0)

}
1M(β),

where cpriorλ is the normalizing constant of the prior, that is, the probability of the
truncation setM under the N (β0, λ

−1Ω−1)-distribution.
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B Proofs

Then we derive the following for the joint posterior of β and λ:

p(β, λ|y)

=
p(β, λ,y)

p(y)

∝ p(β, λ,y)

= p(y|β, λ)p(β|λ)p(λ)

∝ exp
{
− 1

2σ2 (y −Bβ)′(y −Bβ)
} |λΩ|

1
2

cpriorλ

exp
{
−1

2
(β − β0)

′λΩ(β − β0)
}
1M(β) p(λ)

=
p(λ) |λΩ| 12

cpriorλ

exp

{
−1

2

(
1

σ2
(y −Bβ)′(y −Bβ) + (β − β0)

′λΩ(β − β0)

)}
1M(β)

=
p(λ) |λΩ| 12

cpriorλ

exp

{
−1

2

(
(β − eλ)

′E−1λ (β − eλ)− e′λE
−1
λ eλ + β′0λΩβ0

)}
1M(β)

The last equality holds with Eλ =
(

1
σ2B

′B + λΩ
)−1 and e′λ = ( 1

σ2y
′B+λβ′0Ω)Eλ. This

can be seen as follows:

1

σ2
(y − Bβ)′(y −Bβ) + (β − β0)

′λΩ(β − β0)

=
1

σ2
y′y − 2

σ2
y′Bβ +

1

σ2
β′B′Bβ + β′λΩβ − 2β′0λΩβ + β′0λΩβ0

∝ β′
(

1

σ2
B′B + λΩ

)
︸ ︷︷ ︸

=:E−1
λ

β − 2

(
1

σ2
y′B + λβ′0Ω

)
β + β′0λΩβ0

= β′E−1λ β − 2

(
1

σ2
y′B + λβ′0Ω

)
Eλ︸ ︷︷ ︸

=:e′λ

E−1λ β + β′0λΩβ0

= β′E−1λ β − 2e′λE
−1
λ β + e′λE

−1
λ eλ − e′λE

−1
λ eλ + β′0λΩβ0

= (β − eλ)
′E−1λ (β − eλ)− e′λE

−1
λ eλ + β′0λΩβ0

Thus we have

p(β, λ|y) ∝ p(λ) |λΩ|
1
2

cpriorλ

exp
(
1
2
e′λE

−1
λ eλ − 1

2
β′0λΩβ0

)
exp

{
−1

2
(β − eλ)

′E−1λ (β − eλ)
}
1M(β).
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Now Lemma 2 follows by integration over β:

p(λ|y)

=

∫
p(β, λ|y)dβ

∝
∫
M

p(λ) |λΩ| 12
cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0λΩβ0

)
exp

{
−1

2
(β − eλ)

′E−1λ (β − eλ)

}
dβ

=
p(λ) |λΩ| 12

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0λΩβ0

)∫
M

exp

{
−1

2
(β − eλ)

′E−1λ (β − eλ)

}
dβ

∝ p(λ) |λΩ| 12
cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0λΩβ0

)
× |Eλ|

1
2

∫
M

(2π)−
d
2 |Eλ|−

1
2 exp

{
−1

2
(β − eλ)

′E−1λ (β − eλ)

}
dβ︸ ︷︷ ︸

:=cpostλ

=
p(λ) |λΩ| 12

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0λΩβ0

)
|Eλ|

1
2 cpostλ

= p(λ) |λΩ|
1
2 |Eλ|

1
2
cpostλ

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
λβ′0Ωβ0

)
,

where cpostλ is the probability of the truncation setM under the N (eλ,Eλ)-distribution.
More explicit, cpostλ is the normalizing constant of the posterior of β since

p(β|λ,y)

=
p(β, λ|y)

p(λ|y)

∝
p(λ) |λΩ|

1
2

cpriorλ

exp
(
1
2
e′λE

−1
λ eλ − 1

2
β′0λΩβ0

)
exp

{
−1

2
(β − eλ)

′E−1λ (β − eλ)
}
1M(β)

p(λ) |λΩ| 12 |Eλ|
1
2
cpostλ

cpriorλ

exp
(
1
2
e′λE

−1
λ eλ − 1

2
λβ′0Ωβ0

)
∝
|Eλ|−

1
2 exp

{
−1

2
(β − eλ)

′E−1λ (β − eλ)
}
1M(β)

cpostλ

,

which is proportional to the density of theN (eλ,Eλ)-distribution truncated ontoM.
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Recall

Lemma 3. Assume model (3.6), then

(i) the marginal posterior density of β is given by

p(β|λ,m,y) ∝ |Eλ|−
1
2 exp

{
−1

2
(β − eλ)

′E−1λ (β − eλ)

}
1Sm(β),

that is
β|λ,m,y ∼ NSm(eλ,Eλ),

(ii) the marginal posterior density of (λ,m)′ is given by

p(λ,m|y) ∝ p(λ,m) |Ω̃λ|
1
2 |Eλ|

1
2
cpostλ

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0Ω̃λβ0

)
,

where Eλ :=

(
1

σ2
B′B + Ω̃λ

)−1
, e′λ :=

(
1

σ2
y′B + β′0Ω̃λ

)
Eλ and cpriorλ is the probability

of the truncation set Sm under N (β0, Ω̃
−1
λ ) and cpostλ is its probability under N (eλ,Eλ).

Proof.
In model (3.6) the likelihood and prior density for β have the following form:

p(y|β, λ,m) ∝ exp

{
− 1

2σ2
(y −Bβ)′(y −Bβ)

}
p(β|λ,m) ∝ |Ω̃λ|

1
2

cpriorλ

exp

{
−1

2
(β − β0)

′Ω̃λ(β − β0)

}
1Sm(β),

where cpriorλ is the normalizing constant of the prior, that is, the probability of the
truncation set Sm under the N (β0, Ω̃

−1
λ )-distribution.

Then we derive the following for the joint posterior of β and λ and m:

p(β, λ,m|y)

=
p(β, λ,m,y)

p(y)

∝ p(β, λ,m,y)

= p(y|β, λ,m)p(β|λ,m)p(λ,m)

∝ exp
{
− 1

2σ2 (y −Bβ)′(y −Bβ)
} |Ω̃λ|

1
2

cpriorλ

exp
{
−1

2
(β − β0)

′Ω̃λ(β − β0)
}
1Sm(β) p(λ,m)

=
p(λ,m) |Ω̃λ|

1
2

cpriorλ

exp

{
−1

2

(
1

σ2
(y −Bβ)′(y −Bβ) + (β − β0)

′Ω̃λ(β − β0)

)}
1Sm(β)

=
p(λ,m) |Ω̃λ|

1
2

cpriorλ

exp

{
−1

2

(
(β − eλ)

′E−1λ (β − eλ)− e′λE
−1
λ eλ + β′0Ω̃λβ0

)}
1Sm(β)
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The last equality holds with Eλ :=
(

1
σ2B

′B + Ω̃λ

)−1
and e′λ := ( 1

σ2y
′B + β′0Ω̃λ)Eλ

analogous to the proof of Lemma 2.
Thus we have

p(β, λ,m|y)

∝ p(λ,m) |Ω̃λ|
1
2

cpriorλ

exp
(

1
2
e′λE

−1
λ eλ − 1

2
β′0Ω̃λβ0

)
exp

{
−1

2
(β − eλ)

′E−1λ (β − eλ)
}
1Sm(β).

Now (ii) of Lemma 3 follows by integration over β:

p(λ,m|y) =

∫
p(β, λ,m|y)dβ

∝
∫
Sm

p(λ,m) |Ω̃λ|
1
2

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0Ω̃λβ0

)
exp

{
−1

2
(β − eλ)

′E−1λ (β − eλ)

}
dβ

=
p(λ,m) |Ω̃λ|

1
2

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0Ω̃λβ0

)∫
Sm

exp

{
−1

2
(β − eλ)

′E−1λ (β − eλ)

}
dβ

∝ p(λ,m) |Ω̃λ|
1
2

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0Ω̃λβ0

)
× |Eλ|

1
2

∫
Sm

(2π)−
d
2 |Eλ|−

1
2 exp

{
−1

2
(β − eλ)

′E−1λ (β − eλ)

}
dβ

=
p(λ,m) |Ω̃λ|

1
2

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0Ω̃λβ0

)
|Eλ|

1
2 cpostλ

= p(λ,m) |Ω̃λ|
1
2 |Eλ|

1
2
cpostλ

cpriorλ

exp

(
1

2
e′λE

−1
λ eλ −

1

2
β′0Ω̃λβ0

)
=: w2(λ,m),

where cpostλ is the probability of the truncation set Sm under the N (eλ,Eλ)-distribution.

Furthermore, (i) of Lemma 3 can be seen as follows:

p(β|λ,m,y) =
p(β, λ,m|y)

p(λ,m|y)

∝
p(λ,m) |Ω̃λ|

1
2

cpriorλ

exp
(

1
2
e′λE

−1
λ eλ − 1

2
β′0Ω̃λβ0

)
exp

{
−1

2
(β − eλ)

′E−1λ (β − eλ)
}
1Sm(β)

p(λ,m) |Ω̃λ|
1
2 |Eλ|

1
2
cpostλ

cpriorλ

exp
(

1
2
e′λE

−1
λ eλ − 1

2
β′0Ω̃λβ0

)
∝
|Eλ|−

1
2 exp

{
−1

2
(β − eλ)

′E−1λ (β − eλ)
}
1Sm(β)

cpostλ

which is proportional to the density of the N (eλ,Eλ)-distribution truncated onto Sm
and thus β|λ,m,y ∼ NSm(eλ,Eλ).
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sampler for truncated
multivariate normal random
sampling

Yu and Tian (2011) proposed two novel approaches for sampling from a multivariate nor-
mal distribution which is truncated onto a set defined by linear inequality constraints.
Here, we present the inverse Bayes formulae sampler, which is used in the Monte Carlo
random sampling scheme for the Bayesian unimodal regression described in Section 3.6.

Suppose first, that a sample from the d-dimensional distribution NM1(µ,Σ) is desired,
where the truncation set is defined byM1 = {r ∈ Rd|l ≤ r ≤ u} with l and u ∈ Rd.
The procedure starts with finding an approximation r̃ of the mode of this truncated
distribution by an EM algorithm. Let Γ = (γik)i,k=1,...,d be the upper triangular matrix
of the Cholesky decomposition such that Σ = Γ′Γ and v := Γµ. According to Yu and
Tian (2011) the steps are given as follows:

E-step: ϑ(t)
k =

1∑d
i=1 γ

2
ik

d∑
i=1

γik

[
γikr̃

(t)
k +

vi −
∑d

`=1 γi`r̃
(t)
`

d

]
, k = 1, . . . , d.

M-step: r̃(t+1)
k = min{max{lk, ϑ(t)

k }, uk}, , k = 1, . . . , d.

Yu and Tian (2011) do not address the question on how to choose a starting point
r̃(0) ∈ M1, though it will surely influence the number of iterations necessary to obtain
a good approximation of the mode. We address this issue for the special case of sam-
pling unimodal spline coefficients when describing the implementation of the Bayesian
unimodal regression in Section 5.2.

The approximated mode r̃ can now be used in the sampling scheme, which is based on
an augmented data setting with d(d − 1) independent latent variables Z = {Zik, i =
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C The inverse Bayes formulae sampler for truncated multivariate normal random sampling

1, . . . , d, k = 1, . . . , d − 1} and observed data v from distribution NM1(Γr, Id). By
defining Zid := vi −

∑d−1
k=1 Zik, the complete data is given by {Zik, i = 1, . . . , d, k =

1, . . . , d}. Yu and Tian (2011) assume the following distributions,

Zik ∼
ind.
N
(
γikrk,

1

d

)
, i = 1, . . . , d, k = 1, . . . , d, lk ≤ rk ≤ uk,

and they show that the d(d−1)-dimensional conditional predictive distribution fZ(z|v, r)

of the random vector Z is given by a product of d multivariate normal distributions of
dimension d− 1:

d∏
i=1

N (E(Z i|v, r),Fd),

where Z i = (Zi1, . . . , Zi,d−1)
′, E(Z i|v, r) = (Γi1r1, . . . ,Γi,d−1rd−1)

′ + 1d−1
vi−

∑d
k=1 γikrk
d

,
i = 1, . . . , d, and Fd = 1

d
(Id−1 − 1

d
1d−11

′
d−1).

Yu and Tian (2011) state that using a diffuse prior on r, the complete-data posterior
f(r|v, z) is given by the product of d univariate truncated normal distributions:

d∏
k=1

N{rk∈R|lk≤rk≤uk}

(∑d
i=1 γikzik∑d
i=1 γ

2
ik

,
1

n
∑d

i=1 γ
2
ik

)
.

By defining z0 := E(Z|v, r̃) and using the observed posterior density f(r|v) ∝ f(r|v,z0)
fZ (z0|v,r) ,

a sample of size N approximately from NM1(µ,Σ) can be obtained by the following
sampling/importance resampling procedure:

• Draw J > N samples r1, . . . , rJ from f(r|v, z0).

• Calculate weights wj =
f−1
Z (z0|v,rj)∑J

l=1 f
−1
Z (z0|v,rl)

, j = 1, . . . , J .

• Resample a subset of size N without replacement according to the weights.

The higher J , the better the approximation (cf. Yu and Tian, 2011).

Suppose now that a sample from the d-dimensional distribution NM2(µ,Σ) is desired,
where the truncation setM2 is defined by d∗ ≤ d linear inequality constraints, that is,
M2 = {r ∈ Rd|l ≤ Cr ≤ u} with l,u ∈ Rd∗ , C ∈ Rd∗×d. This is exactly the situation
in Section 3.6, where a random B-spline coefficient vector has to be drawn from the
multivariate normal marginal posterior NSm(eλ,Eλ). The set Sm of unimodal vectors
with mode m is obtained with l = −∞ · 1d−1, u = 0d−1 and C = −Cm ∈ R(d−1)×d as
defined in Equation (3.4).
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C The inverse Bayes formulae sampler for truncated multivariate normal random sampling

The key idea for sampling from distributions truncated in form of M2 is to draw a
random sample {r1, . . . , rN} from NM1(Cµ,CΣC ′), whereM1 = {r ∈ Rd|l ≤ r ≤ u}
as above. This can be done with the procedure described in the preceding paragraph. If
d∗ = d and C is invertible, the transformations C−1r1, . . . , C−1rN will form a random
sample from the desired distribution NM2(µ,Σ). If d∗ < d, it is possible to find l∗ ∈
Rd,u∗ ∈ Rd,C∗ ∈ Rd×d such thatM2 = {r ∈ Rd|l ≤ Cr ≤ u} = {r ∈ Rd|l∗ ≤ C∗r ≤
u∗}, for example, by adding d − d∗ rows to matrix C∗ that “constrain” the last d − d∗

components between −∞ and ∞. This ensures that C∗ is invertible. Thus,M2 can be
written in the manner ofM1 and random sampling as described is possible (cf. Yu and
Tian, 2011).
The case of d∗ > d is also treated in Yu and Tian (2011), but is not presented here, since
this case does not appear for the shape constraints examined in this thesis.
For the matrix Cm of the unimodal shape constraint we have d∗ = d − 1 and we can

choose l∗ = −∞ · 1d, u∗ =

(
0d−1

∞

)
and C∗ =

(
Cm

0d−1 1

)
.
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D Documentations of auxiliary R
functions

The functions are listed in alphabetical order.

Function equiknots

equiknots Determine the knot sequence.

Description
Determines g + 2k + 2 knots for a spline basis of degree k on the interval [a, b].

Usage

equiknots(a, b, g, k, coinc)

Arguments

a The left numeric boundary of the interval [a, b].
b The numeric right boundary of the interval [a, b].
g A non-negative integer giving the number of inner knots.
k A non-negative integer specifying the degree of the spline basis.
coinc Logical indicating, if the outer knots should be coincident with the

boundary knots or not. If coinc=TRUE, there are k coincident outer
knots at a as well as at b.

Details
The function equiknots determines a knot sequence, where the g inner knots lie
equidistant in [a, b]. If coinc=TRUE, the outer knots (k on each side of the interval)
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are placed coincident with a and b, otherwise the outer knots are also equidistant
beyond [a, b]

Value
A numeric vector of length g + 2k + 2 with knot locations.

Examples

equiknots(0,5,3,3,TRUE)
# [1] 0.00 0.00 0.00 0.00 1.25 2.50 3.75 5.00 5.00 5.00 5.00
equiknots(0,5,3,3,FALSE)
# [1] -3.75 -2.50 -1.25 0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75

Function negloglik

negloglikBayes Evaluate the negative marginal log-posterior of λ.

Description
This function implements the negative of the marginal log-posterior of the tuning
parameter λ in the Bayesian unimodal spline regression model.

Usage

negloglikBayes(lambda, prior, tBSB, tySB, sigmaest, tbetaO,
tbetaObeta, tbetaDtildebeta, tbetaDtilde, Dtilde, beta0, Om, Cm, m)

Arguments

lambda Positive tuning parameter value at which to evaluate the neg-
ative marginal log-posterior.

prior A function returning the value of the prior density p(λ,m).
tBSB The value of B′diag(w)B (passed over from function

unibayes, cf. Section 5.2).
tySB The value of y′diag(w)B (passed over from function

unibayes).
sigmaest The estimate of σ2.
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tbetaO The value of β′0Ω (passed over from function unibayes).
tbetaObeta The value of β′0Ωβ0 (passed over from function unibayes).
tbetaDtildebeta The value of β′0D̃β0 (passed over from function unibayes).
tbetaDtilde The value of β′0D̃ (passed over from function unibayes).
Dtilde D̃ ∈ Rd×d = 1

σ2
v
Id.

beta0 The penalty vector β0, a length d numeric vector.
Om The penalty matrix Ω, a numeric d× d matrix.
m The mode location.
Cm Constraint matrix Cm.

Details
The function negloglikBayes determines the negative of the marginal log-posterior
of the tuning parameter up to an additive constant according to Lemma 3 (ii).
The implementation starts with the calculation of matrices Ω̃λ, β′0Ω̃λβ0, Eλ :=(

1

σ2
B′B + Ω̃λ

)−1
and vector e′λ =

(
1

σ2
y′B + β′0Ω̃λ

)
Eλ from the arguments

tBSB, tySB, Dtilde, Om, tbetaDtildebeta, tbetaObeta, tbetaO and tbetaOtilde
and lambda.
The normalizing constants are computed as

cpriorλ = P (ψ1 ≥ 0) with ψ1 = Cmβ ∼ N (Cmβ0,CmΩ̃λC
′
m)

and cpostλ = P (ψ2 ≥ 0) with ψ2 ∼ N (Cmeλ,CmEλC
′
m).

Both probabilities can be computed with function pmvnorm from package mvtnorm
(Genz et al., 2012).
The function value is then calculated as minus the logarithm of w2(λ,m):

− log(p(λ,m))−1

2
log(|Ω̃λ|)+

1

2
log(|E−1λ |)−log(c

post
λ )+log(cpriorλ )−1

2
e′λE

−1
λ eλ+

1

2
β′0Ω̃λβ0.

This is done using three sub-terms: term1 = log(cpriorλ ), term2 = − log(cpostλ ) and
term3 is the remainder. The first two are again combined to term12. If term2 =∞,
that is, if the posterior normalizing constant is zero, then term12 is set to ∞. If
term1 = −∞, that is, if the prior normalizing constant is zero or close to zero
(≤ 5 · 10−6), leading to division by zero in the likelihood, then term12 is set to ∞
as well, since zero prior probability will also result in zero posterior probability. In
all other cases, term12 is just the sum of term1 and term2.
If p(λ,m) = 0, term3 is directly set to ∞ without calculating the remaining sum-
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mands.
To avoid numerical problems, the determinant |E−1λ | in term3 is replaced by |σ̂E−1λ |,
which only changes the value of − log(w2(λ,m)) by an additive constant.

Value
A list of

term12 The sum of term1 and term2.
term3 term3 / the remaining summands of w2(λ,m).

Function negloglikFREQ

negloglikFREQ Evaluate the negative restricted log-likelihood.

Description
This function implements the negative of the restricted log-likelihood of the tuning
parameter in a (shape-constrained) spline regression model.

Usage

negloglikFREQ(lambda, tBSB, tySB, sigmaest, tbetaV, tbetaVbeta,

Dtilde, beta0, Om, rangV, Cm, constr)

Arguments

lambda Positive tuning parameter value at which to evaluate the neg-
ative restricted log-likelihood.

tBSB The value of B′diag(w)B (passed over from function unireg,
cf. Section 5.1).

tySB The value of y′diag(w)B (passed over from unireg).
sigmaest The estimate of σ2 (passed over from unireg).
tbetaV The value of β′0Ω (passed over from unireg).
tbetaVbeta The value of β′0Ωβ0 (passed over from unireg).
Dtilde D̃ ∈ Rd×d = 1

σ2
v
Id if rank(Ω) < d and a zero matrix else (passed

over from unireg).
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beta0 The penalty vector β0, a length d numeric vector.
Om The penalty matrix Ω, a numeric d× d matrix.
rangV Rank r of Ω, integer between 1 and d.
Cm Constraint matrix Cm corresponding to constr.
constr A character string specifying the shape constraint for the fit.

Can be one of "unimodal", "none" and "isotonic".

Details
The function negloglikFREQ is an internal function of R package unireg (Köll-
mann, 2016, see also Section 5.1). It determines the negative logarithm of the
function w1(·) from Equation (3.5):

− log(p(λ))+
r

2
log(λ)+

1

2
log(|E−1λ |)−log(cpostλ )+log(cpriorλ )−1

2
e′λE

−1
λ eλ+

1

2
λβ′0Ωβ0.

To avoid numerical problems the determinant |E−1λ | is replaced by |σ̂E−1λ |, which
only changes the function value by an additive constant.
The function starts with calculation of matrix Eλ = ( 1

σ2B
′B + λΩ)−1 and vector

eλ =
(

1
σ2y

′B + λβ′0Ω
)
Eλ from the arguments tBSB, lambda, Om, tySB and tbetaV.

In case of a shape constraint, the normalizing constants cpriorλ and cpostλ are com-
puted. For the former one, the full-rank matrix Ω̃λ has to be determined in case
that Ω = D′qDq for some q, that is, Ω̃λ = D̃+λD′qDq. The constant cpriorλ is then
equal to P (β ∈ Sm), Sm = {β ∈ Rd|Cmβ ≥ 0}, where β ∼ N (β0, Ω̃λ), or equiva-
lently P (ψ1 ≥ 0) with ψ1 = Cmβ ∼ N (Cmβ0,CmΩ̃λC

′
m). The slightly modified

penalty matrix Ω̃λ is used only in this step. Analogously, cpostλ = P (ψ2 ≥ 0) with
ψ2 ∼ N (Cmeλ,CmEλC

′
m). Both probabilities can be computed with the function

pmvnorm from package mvtnorm (Genz et al., 2012). If there is no shape constraint
(constr="none"), the normalizing constants are set to one.
This function can minimized to find the optimal tuning parameter value according
to REML (which is done in function unisplinem, see next Section). For this pur-
pose, it is necessary that negloglikFREQ returns a single numeric value. So if the
resulting log-likelihood value is ±Inf, it is set to the largest normalized floating-
point number, .Machine$double.xmax, instead. All calculations are performed
on log(λ) level so that optimization of the tuning parameter can be done more
efficiently.
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Function points.unireg

points.unireg Points method for unireg objects.

Description
Plotting a unimodal regression object into an existing plot.

Usage

## S3 method for class ’unireg’

points(x, type="l", ...)

Arguments

x Object of class "unireg", a result of function unireg.
type Per default plotting type "l" is used for the fitted spline.
... Other parameters to be passed through to the generic points function.

Details
This is a points method for unimodal regression objects, in explicit, objects of
class "unireg" obtained as a result of function unireg (cf. Section 5.1). The
spline function is plotted using a grid of x-values equally spaced across the interval
on which the spline is defined. The distance between the grid values is given by
min(x)

10
, where x is the observed predictor vector originally used for fitting.

Value
NULL

Examples

# generate some data

x <- sort(rep(c(0,0.5,1,3,5),20))

set.seed(41333)

func <- function(mu){rnorm(1,mu,0.02)}

y <- sapply(dchisq(x,3),func)
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# fit with default settings

fit <- unireg(x, y)

# plot of true and fitted function

plot(jitter(x), y, xlab="x (jittered)")

curve(dchisq(x,3), 0, 5, type="l", col="grey", lwd=2, add=TRUE)

points(fit, lwd=2, col="orange")

legend("topright", legend = c("true mean function",

"difference penalized unimodal fit"),

col=c("grey","orange"),lwd=c(2,2))
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Function plot.unireg

plot.unireg Plot method for unireg objects.

Description
Plotting a unimodal regression object.
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Usage

## S3 method for class ’unireg’

plot(x, onlySpline=FALSE, type="l", xlab="x", ylab=NULL,

col="black", ...)

Arguments

x Object of class "unireg", a result of function unireg.
onlySpline Logical indicating whether only the fitted spline or also the original

data points should be plotted. Defaults to FALSE (plotting both).
type Per default plotting type "l" is used for the fitted spline.
xlab Per default the x-axis is labelled with "x".
ylab If the user does not specify a label for the y-axis, that is, if

ylab=NULL (default), pre-specified labels like "Fitted unimodal
spline function" (depending on the constraint) are used.

col Colour of the spline function to be plotted (default: black).
... Other parameters to be passed through to the generic plot func-

tion.

Details
This is a plotmethod for unimodal regression objects, i.e., objects of class "unireg"
obtained as a result of function unireg (cf. Section 5.1). The spline function is
plotted using a grid of x-values spaced equally between in the interval on which the
spline is defined. The distance between the grid values is given by min(x)

10
, where x

is the observed predictor vector originally used for fitting.

Value
NULL
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Examples

# generate some data

x <- sort(rep(c(0,0.5,1,3,5),20))

set.seed(41333)

func <- function(mu){rnorm(1,mu,0.02)}

y <- sapply(dchisq(x,3),func)

# fit with default settings

fit <- unireg(x, y)

# plot of fitted spline with data

plot(fit, col="orange")
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Function predict.unireg

predict.unireg Predict method for unireg objects.

Description
Predict values based on a unimodal regression object.
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Usage

## S3 method for class ’unireg’

predict(object, newdata, ...)

Arguments

object Object of class "unireg", a result of function unireg.
newdata A numeric vector of values at which to evaluate the fitted spline func-

tion.
... Further arguments (currently not used).

Details
This is a predict method for unimodal regression objects, i.e., objects of class
"unireg" obtained as a result of function unireg (cf. Section 5.1).
predict.unireg produces predicted values by evaluating the fitted regression
spline function at the values in newdata.

Value
A numeric vector of predicted function values.

Examples

# generate some data

x <- sort(rep(c(0,0.5,1,3,5),20))

set.seed(41333)

func <- function(mu){rnorm(1,mu,0.02)}

y <- sapply(dchisq(x,3),func)

# fit with default settings

fit <- unireg(x, y)

# prediction at interim values

predict(fit, c(1.5,2.5,3.5,4.5))

# [1] 0.22016487 0.17213029 0.13166340 0.09113394
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Function print.unireg

print.unireg Print method for unireg objects.

Description
Prints unimodal regression objects.

Usage

## S3 method for class ’unireg’

print(x, ...)

Arguments

x Object of class "unireg", a result of function unireg.
... Further arguments (currently not used).

Details
This is a print method for unimodal regression objects, i.e., objects of class
"unireg" obtained as a result of function unireg (cf. Section 5.1).
print.unireg prints a short overview of a fitted unimodal regression object to
the console, namely, the type of the fitted model (including degree of the spline
and type of constraint and penalty), the coefficients and their mode location, the
tuning parameter and the variance estimate.

Value
Invisibly returns the input x.

Examples

# generate some data

x <- sort(rep(c(0,0.5,1,3,5),20))

set.seed(41333)

func <- function(mu){rnorm(1,mu,0.02)}

y <- sapply(dchisq(x,3),func)
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# fit with default settings

fit <- unireg(x, y)

# short overview of the fitted spline

fit

#Fitted unimodal spline of degree 3 with difference penalty of order 2

#

#Coefficients -0.24 0.01 0.22 0.26 0.23 0.2 0.18 0.16 0.14 ...

#Mode of coefficients 4

#Tuning parameter 20.09

#Variance estimate 0

Function sampleTMVNIBF

sampleTMVNIBF Sampling from a truncated multivariate normal distribution.

Description
Sampling from a d-dimensional truncated multivariate normal distribution using
inverse Bayes formulae (IBF). The truncation set is given by

{r ∈ Rd|l ≤ Cr ≤ u}.

Usage

sampleTMVNIBF(N=1000, J=3000, mu=c(0,0,0), sigma=diag(1,3),

l=c(-10,-10,-10), u=c(10,10,10), C, r0=c(0,0,0))

Arguments

N Positive integer specifying the number of samples to be drawn.
J Positive integer (≥ N) giving the size of an initial sample, from which

a subset of size N is resampled.
mu Numeric mean vector (length d) of the multivariate normal distribution.
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sigma Numeric covariance matrix (d× d) of the MVN distribution.
l Numeric vector of lower truncation limits (length d∗ ≤ d).
u Numeric vector of upper truncation limits (length d∗ ≤ d).
C Numeric matrix of constraint coefficients of Dimension d∗× d (d∗ ≤ d).
r0 Numeric vector (length d) specifying a starting point for iterative esti-

mation of the mode of the MVN distribution.

Details
This function samples from a d-dimensional truncated multivariate normal (TMVN)
distribution using the inverse Bayes formulae sampler introduced by Yu and Tian
(2011) (cf. Appendix C). The truncation set is given by d∗ linear inequality con-
straints of the form

{r ∈ Rd|l ≤ Cr ≤ u},

where l,u ∈ Rd∗ , C ∈ Rd∗×d. Choosing C = Id results in “typical” truncation of
the form {r ∈ Rd|l ≤ r ≤ u}.
If d∗ < d, the truncation limits l,u and the constraint matrix C are replaced with
appropriately chosen l∗ ∈ Rd,u∗ ∈ Rd,C∗ ∈ Rd×d (cf. Appendix C) prior to the
actual sampling procedure. So the following description is only for d∗ = d:
If d = 1, the implementation simply calls the function rtruncnorm from package
truncnorm (Trautmann et al., 2014). For d > 1, the function samples N times
from the TMVN N{l≤r≤u}(Cµ,CΣC ′) as described in Section C. The main steps
are a Cholesky decomposition, estimation of the mode r̃ with EM-algorithm and
calculation of Z0. A first sample of size J is drawn, again with the help of function
rtruncnorm for one-dimensional sampling from a truncated normal. After calcu-
lating weights according to inverse Bayes formulae, a subset of size N is resampled
without replacement, yielding a sample from N{r∈Rd|l≤r≤u}(Cµ,CΣC ′).
After back-transformation with the inverseC−1 (or (C∗)−1, respectively) the draws
form a random sample from the originally desired N{r∈Rd|l≤Cr≤u}(µ,Σ) distribu-
tion.

Value
A numeric matrix (N × d) with N samples from the d-dimensional truncated
multivariate normal distribution in its rows.

143



D Documentations of auxiliary R functions

Examples

mu <- c(0, 0)

sigma <- matrix(c(10, 0, 0, 1), 2, 2)

# "typical" truncation

C <- diag(1, length(mu))

l <- rep(-Inf, length(mu))

u <- rep(0, length(mu))

R <- sampleTMVNIBF(N=1000, J=3000, mu, sigma, l, u, C, r0=c(0, 0))

plot(R, xlab=expression(r[1]), ylab=expression(r[2]), xlim=c(-8, 8),

ylim=c(-5, 5))
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# truncation with linear inequality constraints and dstar < d

C <- rbind(c(1, -1))

l <- -Inf

u <- 0

R <- sampleTMVNIBF(N=1000, J=3000, mu, sigma, l, u, C, r0=c(0, 0))

plot(R, xlab=expression(r[1]), ylab=expression(r[2]), xlim=c(-8, 8),

ylim=c(-5, 5))
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Function unimat

unimat Create the matrix of unimodality constraints.

Description
Returns a matrix Cm that can be used to specify linear constraints Cmb ≥ 0 to
impose unimodality with mode m on a numeric vector b ∈ Rp.

Usage

unimat(p, m)

Arguments

p Integer (≥ 2) giving the length of the vector b.
m Location of the mode within the vector b. Should be an integer between

1 and p.

Details
The function unimat determines the matrix Cm ∈ R(p−1)×p from Section 3.4, which
can be used to specify linear constraints of the form Cmb ≥ 0 to impose unimodal-
ity with mode at the m-th element on a numeric vector b ∈ Rp.
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Value
Matrix Cm with coefficients for the linear constraints.

Examples

unimat(4,2)

# [,1] [,2] [,3] [,4]

#[1,] -1 1 0 0

#[2,] 0 1 -1 0

#[3,] 0 0 1 -1

unimat(5,3)

# [,1] [,2] [,3] [,4] [,5]

#[1,] -1 1 0 0 0

#[2,] 0 -1 1 0 0

#[3,] 0 0 1 -1 0

#[4,] 0 0 0 1 -1

Function unimatind

unimatind Specify the matrix of unimodality constraints by two matrices.

Description
Returns two matrices which specify the constraint matrix Cm in a special way.
Those can be used as arguments in solve.QP.compact to specify linear constraints
Cmb ≥ 0 to impose unimodality with mode m on a numeric vector b ∈ Rp

Usage

unimatind(p, m)
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Arguments

p Integer (≥ 2) giving the length of the vector b.
m Location of the mode within the vector b. Should be an integer between

1 and p.

Details
The function unimatind determines the matrix Cm ∈ R(p−1)×p from Section 3.4
in terms of two matrices required by function solve.QP.compact (used inside
function unisplinem, see below).
The first matrix, Amat, holds column-wise all non-zero elements of Cm. The second
matrix, Aind, specifies how many non-zero elements each column of Cm has and
indicates their positions.

Value
A list of

Amat The first matrix.
Aind The second matrix.

Examples

unimatind(4,2)

#$Amat

# [,1] [,2] [,3]

#[1,] -1 1 1

#[2,] 1 -1 -1

$Aind

# [,1] [,2] [,3]

#[1,] 2 2 2

#[2,] 1 2 3

#[3,] 2 3 4
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Function unisplinem

unisplinem Penalized unimodal regression with fixed mode m.

Description
Perform tuning parameter optimization and estimation of regression coefficients
for a fixed mode m in a (shape-constrained) spline regression model.

Usage

unisplinem(m, tBSB, tySB, sigmaest, tbetaV, tbetaVbeta, Dtilde,

rangV, B, beta0, Om, constr, inverse, penalty, tuning)

Arguments

m The specified mode m of the B-spline coefficients.
tBSB The value of B′diag(w)B (passed over from function unireg,

cf. Section 5.1).
tySB The value of y′diag(w)B (passed over from function unireg).
sigmaest The estimate of σ2 (passed over from function unireg).
tbetaV The value of β′0Ω (passed over from function unireg).
tbetaVbeta The value of β′0Ωβ0 (passed over from function unireg).
Dtilde D̃ ∈ Rd×d = 1

σ2
v
Id if rank(Ω) < d and a zero matrix else (passed

over from function unireg).
rangV Rank r of Ω, integer between 1 and d.
B The matrix of B-spline basis functions evaluated at the values

in x. B ∈ Rn×d.
beta0 The penalty vector β0, a length d numeric vector.
Om The penalty matrix Ω, a numeric d× d matrix.
constr A character string specifying the shape constraint for the fit.

Can be one of "unimodal", "none" and "isotonic".
inverse Either -1 or 1. In case of -1, the shape constraint is “reversed”

from unimodal to inverse unimodal or from isotonic to anti-
tonic.
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penalty A character specifying the penalty of the model. Can be one
of "diff", "none", "sigEmax" or "self".

tuning Logical indicating, if the tuning parameter lambda should be
optimized with (tuning=TRUE, default, computationally expen-
sive) or without (tuning=FALSE) consideration of the shape
constraint.

Details
The function unisplinem is an internal function of R package unireg (Köllmann,
2016, see also Section 5.1). It performs tuning parameter optimization and esti-
mation of B-spline coefficients with fixed mode m in a given (shape-constrained)
spline regression model.
First of all, the constraint matrixCm is calculated with the help of function unimat

(see above) as inverse*unimat(d,m).
If there is no penalty, the optimal tuning parameter lambdaopt is set to zero.
Otherwise the function negloglikFREQ (see above) is optimized over the inter-
val [3, 10]. Due to the log(λ)-level in negloglikFREQ, this corresponds to tuning
parameter values ranging from exp(3) to exp(10). This range turned out to be
sufficiently wide when the observed y-values are transformed to the interval [−1, 1]

as is done in function unireg (cf. Section 5.1). The results of the simulation
study and applications (cf. Chapters6 and 7) give no hints at a to small tuning
parameter range.
If tuning = FALSE, the optimization is done with constr = "none" , correspond-
ing to approximate REML (both normalizing constants are set to one).
The optimized tuning parameter value λopt is then used to calculate β̂. In the
unconstrained case, we have β̂ =

(
1
σ2B

′B + λoptΩ
)−1

( 1
σ2B

′y + λoptΩβ0) = eλopt .
In presence of a shape constraint, the function solve.QP.compact (faster than
solve.QP) from package quadprog (Turlach and Weingessel, 2013) is used to min-

imize the objective function 1
σ2 ‖y −Bβ‖22+λ

∥∥∥Ω 1
2 (β − β0)

∥∥∥2
2
subject toCmβ ≥ 0.

For the function solve.QP.compact the constraint matrix has to be specified by
two matrices: the first holds all non-zero elements of Cm and the second specifies
how many non-zero elements each column of Cm has and indicates their positions.
The function unimatind (see above) calculates those matrices.
In rare cases the function solve.QP.compact returns coefficient vectors with NaN-
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entries.1 To avoid continuation of NaN-values, the coefficient vector is tested for
such entries and if they exist, the execution of solve.QP.compact is repeated with
the argument factorized=TRUE requiring a preceding Cholesky decomposition of
E−1λ . This approach is slower but does not fail in those situations.
At last, the fitted values are calculated as ŷ = Bβ̂. and

Value
A list of

coef The estimated B-spline coefficients with mode m.
fitted.values The fitted values.
lambdaopt The optimized tuning parameter value.

1It was not yet possible to explain when and why this behaviour occurs. The package maintainer was
contacted, but has not yet responded.
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E Projecting vectors into the space
of unimodal vectors with fixed
mode

Let β ∼ N (µ,Σ) with mean vector µ ∈ Rd, covariance matrix Σ ∈ Rd×d and let
β̃ ∈ Rd be a random draw from this distribution, which we wish to project into the
space Sm ⊂ Rd of unimodal vectors with mode m. According to Gunn and Dunson
(2005) this can be done using their formula 2.2, that is, each element of the constrained
vector can be calculated as follows:

β∗,mj = min
t∈Umj

max
s∈Lmj

{
1′|t−s|+1Σ

−1
[s:t]β̃[s:t]

1′|t−s|+1Σ
−1
[s:t]1|t−s|+1

}
,

with the subscript [s : t] representing the respective sub-matrices or sub-vectors. The
set Lmj contains all indices j′ ∈ {1, . . . , d} for which the ordering β∗,mj′ ≤ β∗,mj is known
and the set Um

j contains analogously all indices j′ ∈ {1, . . . , d} for which the ordering
β∗,mj′ ≥ β∗,mj is known (cf. Gunn and Dunson, 2005).
Let j < m. Then Lmj = {1, . . . , j} and Um

j = {j, . . . ,m}. Analogously Lmj = {j, . . . , d}
and Um

j = {m, . . . , j} for j > m. If j = m, we have Lmj = {1, . . . , d} and Um
j = {m}.

Each element of this projection can be interpreted as a weighted average of elements in
β̃. The weights are chosen with respect to the covariances in Σ and the elements of β̃
contributing to the sub-vector are chosen with respect to the constraint (cf. Dunson and
Neelon, 2003).
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