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Abstract

We study combinatorial problems with ellipsoidal uncertainty in the objective
function concerning their theoretical and practical solvability. Ellipsoidal uncer-
tainty is a natural model when the coefficients are normally distributed random
variables. Robust versions of typical combinatorial problems can be very hard to
solve compared to their linear versions.

Complexity and approaches differ fundamentally depending on whether uncorre-
lated or correlated uncertainty occurs. We distinguish between these two cases
and consider first the unconstrained binary optimization under uncorrelated ellip-
soidal uncertainty. For this we develop an algorithm which computes an optimal
solution by merely sorting the variables and, correspondingly, has a running time
of O(n log n). The algorithm is based on the diminishing returns-property, which
is characteristic for submodular functions. We introduce a new and a more general
p-norm-uncertainty and show that with only slight modifications the sorting
algorithm can be easily applied. We also extend the algorithm to general integer
variables, which in this case only leads to a pseudo-polynomial time.

The next step to the general case is investigation of problems with arbitrary
combinatorial sets X ⊆ {0, 1}n under uncorrelated ellipsoidal uncertainty. For this
case we embed the O(n log n)-algorithm for the unconstrained binary problems
into a Lagrangean decomposition approach. The approach separates the objective
function from the combinatorial structure applying Lagrangean relaxation to
some artificial connecting constraints. This creates two subproblems, one of which
is the linear version of the combinatorial problem and the other one is just
the unconstrained binary uncorrelated problem, which can be solved using the
O(n log n)-algorithm. The solutions of the subproblems are used to obtain primal
and dual bounds which are used in a branch and bound-approach. The approach
shows an excellent performance in practice.

In the correlated case already the unconstrained binary problem turns out to be
strongly NP-hard. Here we also define a branch and bound-approach, now with
lower bounds determined by underestimation of the given ellipsoid with certainly
defined axis-parallel ellipsoids. We use this idea to extend the decomposition
approach to general combinatorial problems under correlated uncertainty. In
contrast to the uncorrelated case the uncertain subproblem of the decomposition
is here strongly NP-hard in itself. We solve it approximately using the developed
underestimators which are determined in a preprocessing step. The approach
offers room for improvement concerning in the primal extent a faster computation
of the underestimators, which is done by solving semidefinite programs.



Zusammenfassung

Wir untersuchen kombinatorische Probleme unter Annahme ellipsoidaler Unsicher-
heit in der Zielfunktion auf ihre theoretische und praktische Lösbarkeit. Ellipsoidale
Unsicherheit ist ein natürliches Modell wenn die Koeffizienten normalverteilte Zu-
fallsvariablen sind. Die robuste Variante der typischen kombinatorischen Probleme
kann dabei im Vergleich zu ihren linearen Varianten sehr schwer sein.

Die Komplexität und die Ansätze unterscheiden sich grundlegend, je nach dem
ob es sich um die unkorrelierte oder korrelierte Unsicherheit handelt. Zwischen
diesen zwei Fällen differenzieren wir auch und betrachten zunächst den Fall der
unbeschränkten binären Optimierung unter unkorrelierter Unsicherheit. Dazu
entwickeln wir einen Algorithmus, in dem im Wesentlichen das Sortieren der
Variablen die optimale Lösung liefert und dessen Laufzeit entsprechend O(n log n)
ist. Dieser basiert auf der charakteristischen Eigenschaft der submodularen Funk-
tionen, nämlich der der reduzierenden Erträge. Der Algorithmus lässt sich auf
die p-norm-Unsicherheit erweitern, die wir einführen, und auch auf allgemeine
ganzzahlige Variablen, im letzten Fall allerdings nur mit pseudo-polynomieller
Laufzeit.

Der nächste Schritt zum allgemeinen Problem ist die Untersuchung der Prob-
leme mit beliebigen kombinatorischen Mengen X ⊆ {0, 1}n unter unkorrelierter
Unsicherheit. Hierzu bauen wir den O(n log n)-Algorithmus für den unbeschränk-
ten Fall in einen Zerlegungsansatz ein. Dieser trennt die Zielfunktion von den
Nebenbedingungen mittels Lagrange-Relaxierung, angewendet auf künstliche
Verbindungsvariablen. Es entstehen zwei Teilprobleme, von denen eins die lin-
eare Variante des kombinatorischen Problems ist und das andere gerade das
unbeschränkte binäre unkorrelierte Problem, was mit dem O(n log n)-Algorithmus
lösbar ist. Die Lösungen der Teilprobleme benutzen wir zur Aufstellung dualer und
primaler Schranken, die in ein Branch and Bound-Verfahren eingebaut werden. In
der Praxis zeigt der Ansatz eine hervorragende Leistung.

Im korrelierten Fall offenbart sich schon das unbeschränkte binäre Problem als stark
NP-schwer. Wir definieren auch dazu ein Branch and Bound-Verfahren, in dem
untere Schranken durch Unterschätzung des Ellipsoids mit achsen-parallelen Ellip-
soiden ermittelt werden. Diese Idee benutzen wir um den Dekompositionsansatz
nun auf allgemeine kombinatorische Probleme unter korrelierter Unsicherheit zu
erweitern. Im Vergleich zu dem unkorrelierten Fall ist das unsichere Teilproblem
in der Zerlegung schon an sich stark NP-schwer. Dieses lösen wir approximativ
mittels der entwickelten Unterschätzer, die wir in einem Preprocessing Schritt
bestimmen. Der Ansatz zeigt Verbesserungspotenzial, was in erster Linie eine
schnellere Bestimmung der Unterschätzer betrifft, die durch Lösung semidefiniter
Programme geschieht.
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Introduction

Making decisions is a component of life everyone is permanently exposed to. Often
it is a difficult process, as we want to take the best decision, i.e. the one with the
largest benefit. At the end of the day we want to be in a better position than if
we would have decided differently.

Sometimes decision making can be abstracted and formalized, such that a mathe-
matical optimization problem is to be solved. But even then it can be hard to
make a choice as there may exist many different alternatives and the decision must
fulfill certain requirements. In many real life-situations, however, we must decide
even without having a full knowledge of the facts, such that the outcome can only
be speculated about. Obviously, the decision-making process can get a lot harder
when it is subject to uncertainty which may come from diverse directions. Now
we not only have to decide, but perhaps also to take some risk, as uncertainty is
linked to taking risks.

For a motivating example consider the underground coal mining process. In order
to break through the rock, explosives are used in a primary phase. Thereby
the coal layer should not be damaged. The coal miner specialist is facing the
decision, in which sections of the surface to put the explosives in order to minimize
the thickness of the remaining foreign material layers, to minimize in the end
the expense of the subsequent digging. This decision is obviously essentially
complicated by the uncertainty about the strength of the material above and
below the coal layer, the regional geological conditions, topology, climate, ground
water conditions and other environment factors. In addition, the actual coal layer
does not run in a straight plane or in predictable directions in general. On the
other hand different spots clearly correlate concerning the coal placement and
this information should not be abstained from.

Decision making under uncertainty turns out to be a big challenge from mathe-
matical and economical perspectives. The mankind tends to protect itself from any
risk and to ensure guarantees, to become robust against uncertainty. Whatever
certainty under uncertain conditions means, is the subject of robust optimization.

In the robust optimization community many ideas have been proposed, when a
solution to an uncertain optimization problem is considered to be robust. The
probably most obvious criterion for that is to consider the worst-case scenario of
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a solution. The line of reasoning here is to know the performance in the worst
case, such that it only can improve if a different scenario occurs.

But what is the worst-case scenario? The prerequisite to define it is to know
what can happen, i.e. to be able to define the set of all possible scenarios or the
uncertainty set. In robust optimization the information about what can happen is
assumed to be available and the approaches to the arising optimization problem
strongly depend on the shape of the uncertainty set. Among many imaginable
shapes of U a frequent case is that the scenarios are normally distributed, which
leads to the so-called ellipsoidal uncertainty. This special uncertainty afflicts all
optimization problems addressed in this thesis.

In combinatorial optimization, where we want to find an optimal object from
a finite set of certainly defined objects, i.e. from a set of solutions satisfying
certain combinatorial constraints, it is often assumed that only the objective
function coefficients are uncertain. That is, we study in this work combinatorial
optimization problems under ellipsoidal uncertainty in the objective function.

Over the last few decades several results on ellipsoidal uncertainty concerning
complexity and approaches to significant special cases have been published. Some
authors inspected the situation where the objective function coefficients do not cor-
relate, i.e. the uncorrelated ellipsoidal uncertainty case. The research of Bertsimas
and Sim [15] and Nikolova [60] reveals that in the uncorrelated case optimization
over matroids is easy. They establish a connection of the problem to bicriteria
optimization. But this connection does not induce polynomial solvability of the
famous Shortest Path-problem considered under uncorrelated ellipsoidal uncer-
tainty. To this problem Chen et al. [25] apply a different approach: They develop
a labeling algorithm, which though neither leads to a proven polynomiality, but
contributes to a faster practical solvability of the problem.

Among special cases we sometimes find still interesting yet more special cases.
On series-parallel graphs the robust Shortest Path-problem with uncorrelated
ellipsoidal uncertainty is easy: Chassein et al. [24] derived tractability of the
problem using the connection to bicriteria optimization established in [15] and [60].

In contrast to the uncorrelated case, the general correlated case got less attention.
It was immediately classified by Bertsimas and Sim [15] as hard and was since
then not extensively considered in the literature. In fact, the general case is
even strongly NP-hard as we will prove in the thesis. The common approach to
this particularly difficult problem remains the reformulation to a mixed-integer
second-order-cone-program as proposed by Atamtürk and Narayanan [4].

But what makes the general problem so hard? Is it only the correlation or is it
the interaction of combinatorial structure with a non-linear objective function? In
this thesis we want to break down the general combinatorial optimization problem
under ellipsoidal uncertainty and inspect its parts looking for the base of the
difficulty. To this aim we one by one relax particular potential difficulties and
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consider first the corresponding special cases. We use the gained knowledge about
the partial problems to reconnect the difficulties and to generalize the problem
again. One major intention of this thesis is to develop a method to exactly solve
combinatorial problems under general ellipsoidal uncertainty.

On the way there we intend to specify the theoretical complexity of the studied
problems. For that reason we mostly consider combinatorial problems that are
easy to solve if no uncertainty has to be taken into account: We want to observe if
the complexity status changes with appearance of uncertainty. Moreover, we aim
to detect structures in relevant special cases to assign existing or to develop new
algorithms for these, which might later on constitute building blocks for more
general cases. We initiate this research aiming to exactly solve in an alternative
way the general case of combinatorial optimization under ellipsoidal uncertainty.

Contributions

We devise a new fast combinatorial algorithm to solve the unconstrained binary
problem under uncorrelated ellipsoidal uncertainty. This algorithm is developed
from the geometrical illustration of the diminishing returns-property of submodular
functions. We adopt this algorithm for general integer variables and show the
resulting pseudo-polynomial time complexity in this case.

We also introduce the concept of p-norm-uncertainty, not known in the literature
so far, and show that under minimal adjustments it can be solved by the same
combinatorial algorithm, maintaining the time complexity of O(n log n).

Moreover, the combinatorial algorithm for the unconstrained uncorrelated case
is used in a Lagrangean decomposition approach for general constrained binary
problems with uncorrelated ellipsoidal uncertainty. The decomposition approach
disconnects the combinatorial constraints from the mean-risk objective function,
such that one of the arising subproblems is exactly the unconstrained binary
problem with uncorrelated ellipsoidal uncertainty, which can be solved by our
combinatorial algorithm. The decomposition approach shows useful theoretical
properties, such as the transferability of homogenous inequalities from the uncer-
tainty set to the Lagrangean multipliers. Also a big advantage is the oracle-based
idea of the algorithm. In fact we only assume that the underlying combinatorial
problems are defined by a linear optimization oracle, such that it is sufficient to
provide an appropriate combinatorial algorithm for the underlying deterministic
problem. In accordance with the theory the approach also shows a very good
performance on both applications of the uncorrelated case, namely the robust
Shortest Path-problem and the robust Knapsack-problem.

The robust Shortest Path-problem with uncorrelated ellipsoidal uncertainty is still
unclassified from the complexity theoretical perspective. We analyze a labeling
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approach specified for this problem and consider the geometry of the dominance
conditions on the node-labels. We identify a tight bound on the number of the
non-dominated paths over a given node.

The general case of ellipsoidal uncertainty is shown to be strongly NP-hard. We
create a novel method to solve the general unconstrained case, which is based on
a problem-specific underestimation of the covariance matrix by a linear term and
thus reduction to the uncorrelated case, which we can solve quickly. In this way
lower bounds are determined and we can use them in a branch and bound-routine.

Finally, incorporating of the underestimator-approach into the Lagrangean de-
composition we obtain a new algorithm to solve the strongly NP-hard general
case of ellipsoidal uncertainty in combinatorial optimization.

Outline

The thesis is divided into three parts, where the second and third parts provide
our results contributed to the topic and the first part subsumes the knowledge
about combinatorial optimization under ellipsoidal uncertainty in the community.

In the first chapter we repeat the very basic concepts of combinatorial optimization
and give an introduction into complexity theory. Here complexity classes and
pseudo-polynomial time as well as matroids and submodular functions are of
particular importance, as we will refer to these throughout the thesis. Moreover,
we introduce multicriteria optimization and, in particular, the concept of non-
dominance, because some further observations are based on its concepts.

The second chapter is more specialized on our topic and first of all gives an
introduction into the field of robust optimization and motivates its ideas and
approaches. We introduce our notation for robust combinatorial problems and
motivate the concept of ellipsoidal uncertainty. Here we go into more detail, present
the common reformulations and a comprehensive overview to methodology. Com-
plexity results and references are given at the corresponding positions. The second
chapter also reflects the structure of the remaining thesis: Here we distinguish
between the uncorrelated and the general cases of ellipsoidal uncertainty, as well
as between constrained and unconstrained cases.

Part II is exclusively dedicated to the uncorrelated case and is subdivided into
the constrained and unconstrained case.

In Chapter 3 we study the unconstrained uncorrelated case and provide a com-
binatorial algorithm to solve this special case of ellipsoidal uncertainty. We also
provide some extensions of the algorithm, in particular, to integer variables and
to a generalization of uncorrelated ellipsoidal uncertainty, the p-norm-uncertainty.

In Chapter 4 we move over to general combinatorial structures and consider
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first the robust Shortest Path-problem in a context of a labeling approach. An
exact approach for the general constrained uncorrelated case based on Lagrangean
decomposition follows as well as its experimental evaluation. With that the
consideration of the uncorrelated case is closed and we turn our attention to the
correlated case in Part III.

Part III devises the same structure as Part II, i.e. a division into unconstrained and
constrained cases, but concerns general and not necessarily axis-parallel ellipsoids.

First of all in Chapter 5 the unconstrained case is classified as strongly NP-
hard. Motivated by this result we design a branch and bound-approach based on
uncorrelated underestimators and discuss it experimentally.

In Chapter 6 most results of this thesis come together in form of a general approach
to combinatorial optimization under ellipsoidal uncertainty. It is the adjusted
Lagrangean decomposition approach from Chapter 4, where we underestimate the
correlated term like in Chapter 5 and solve the arising uncorrelated unconstrained
problem like in Chapter 3.

In the concluding section we finally summarize our results and findings and point
out interesting directions we yet did not enter on the way to our results or those
arising from the recent considerations and summarize open questions.
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The subject of this thesis – combinatorial optimization under ellipsoidal uncertainty
– is an active research area in optimization, and its understanding requires certain
specific prior knowledge. This part will serve to break down the topic by discussing
its integral components and to show any background necessary for understanding
the approaches, concepts and relationships developed in the following chapters. We
will provide a basis of our research, while describing fundamental structures and
contexts. This includes important topics concerning combinatorial optimization,
theoretical complexity and ellipsoidal uncertainty. The particular aspects are
mostly treated with respect to the actual usage in our results, such that the level
of detail varies depending on relevancy of the subject. Still, a considerable degree
of prior knowledge on mathematical optimization is expected from the reader.

With this part we define a starting point for our research on ellipsoidal uncer-
tainty in combinatorial optimization, in particular, while manifesting the state of
knowledge resulting from the literature.
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Chapter 1

Preliminaries and Mathematical
Background

This chapter is a collection of definitions and concepts, which are used in the thesis.
In addition to the basic combinatorial problems we work on, such as the Shortest
Path-, the Minimum Spanning Tree- or the Knapsack-problem, a conception of
certain structures, such as matroids and submodular functions, is required. Here we
provide information about these and further concepts. Moreover, some approaches
described in the thesis are based on the ideas of multicriteria optimization, which
we quickly discuss in Section 1.3. A significant part is dedicated to complexity
theory, as a basic knowledge on it is required to understand the time complexity
of the introduced algorithms, as well as to classify the investigated problems
from the complexity theoretical point of view. In particular, we highlight the
concepts of the complexity classes and of problems admitting algorithms with
pseudo-polynomial running time and FPTAS.

1.1 Combinatorial Optimization

Problems of combinatorial optimization consist of finding the best object from
a finite set of objects. However, the actual number of feasible objects may grow
exponentially in the description of the objects, such that enumeration is not worth
considering. Usually the set of objects has a certain structure, a property which
combines the elements to feasible solutions and turns the optimization over this
set into a certain combinatorial optimization problem.

Consider for example the following fundamental combinatorial problem:

11



12 CHAPTER 1. PRELIMINARIES

KNAPSACK PROBLEM [47]
Given n items with positive integer weights wi and positive integer prof-
its pi, i = 1, . . . , n, and a capacity value W ,
select a subset of these items that maximizes the total profit without exceeding
the weight limit.

Here, the objects are subsets of items that comply with the capacity constraint.
The set of subsets is the power set of the items, such that the number of feasible
solutions may grow exponentially in the number of items.

A significant part of combinatorial optimization problems is defined on graphs.
This is a structure which allows describing connections between items and is used
to define most basic and important objects in combinatorial optimization. The
definitions in the next section follow the reference [30].

1.1.1 Graphs and Graph Problems

A (directed) graph G is a pair (V,E), consisting of a non-empty finite set V (nodes)
and a set E ⊆ V × V of (ordered) pairs ((directed) edges). Two nodes v, w are
adjacent, or neighbours, if there is an edge e = (v, w) ∈ E or e = (w, v) ∈ E.
Then v and w are also called end nodes of (v, w). A graph is called complete, if
all vertices of G are pairwise adjacent. A subgraph (V ′, E ′) of G is a graph with
V ′ ⊆ V and E ′ ⊆ E. The underlying undirected graph of a directed graph G
is formed from G by replacing each directed edge in E by an undirected edge
and elimination of any resulting double edges. A path between v1 and vk (or a
v1 − vk-path) is a graph P = (V,E) of the form

V = {v1, . . . , vk} , E = {(v1, v2), . . . , (vk−1, vk)} ,

where v1, . . . , vk are all distinct. In this case the node v1 is called the initial-
or source node and the node vk the end- or destination node of the path P .
Occasionally we refer to P as a sequence of nodes or a sequence of edges. A
graph G is called connected if there exists a path between every two nodes in G.
A cycle is a graph C = (V,E) of the form

V = {v1, . . . , vk, v1} , E = {(v1, v2), . . . , (vk−1, vk), (vk, v1)} ,

where v1, . . . , vk are all distinct. If G contains no cycles, it is called a forest. If
G is additionally connected, then it is called a tree. A subgraph T = (V ′, E ′) of
G = (V,E) is called a spanning tree of G if it is a tree and V ′ = V . A graph G =
(V,E) is called bipartite, if V admits a partition into two subsets, such that every
edge e ∈ E has its end nodes in different subsets. A subgraph M = (V ′, E ′) of
G = (V,E) is called a matching in G if no two edges in E ′ have common nodes.

Often edges and/or nodes of a graph are associated with costs and many funda-
mental combinatorial optimization problems consist of finding a subgraph with
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certain properties which minimizes the total costs. This is the case in the following
three well-studied problems:

MINIMUM SPANNING TREE-PROBLEM
Given a graph G = (V,E) and a cost function c : E → R+,
find a spanning tree in G which minimizes the total costs.

SHORTEST PATH-PROBLEM
Given a graph G = (V,E), nodes s, t ∈ V , and a cost function c : E → R+,
find an s− t-path in G with minimal costs.

ASSIGNMENT PROBLEM
Given a bipartite graph G = (V1 ∪ V2, E) and a cost function c : E → R+,
find a matching in G with minimal costs.

In the three problems the costs are linear, i.e. the goal is to optimize the value c>x,
if x is the indicator vector of the corresponding subset of E. These important
problems are extensively studied and also non-linear variants of these problems are
considered in the literature. The basis for our research is, however, combinatorial
problems with linear objective function. We will later consider these problems
under ellipsoidal uncertainty, then the objective functions become non-linear.

1.1.2 Matroids and Submodular Functions

Often certain properties can be found in graphs and other structures, which can
make easier the optimization. For example, some combinatorial problems can
be formulated as optimization problems over matroids. A matroid is a structure
which generalizes the concept of linear independency of a set of vectors:

Definition 1.1. Let E be a finite set and 2E its power set. A tuple (E, I) is
called a matroid over E, if I ⊆ 2E and the following three properties hold:

(M1) ∅ ∈ I;

(M2) if X ⊆ Y ∈ I, then X ∈ I;

(M3) for all X, Y ∈ I with |X| = |Y | − 1 there exists an element j ∈ Y \X such
that X ∪ {j} ∈ I.

The elements of I are called independent sets.

Matroids play an important role in combinatorial optimization and have been
studied widely. There are many equivalent characterizations of matroids.

A classic example of a matroid is the graphic matroid. Its independent sets are
the forests in a given graph, such that the Minimum Spanning Tree-problem is an
optimization problem based on the graphic matroid.
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One reason for a big interest in this structure is that the so-called greedy-algorithm
yields an optimal solution when applied on matroids [62].

GREEDY ALGORITHM FOR MATROIDS (maximization version)
Given: Matroid (E, I), E = {1, . . . , n} , c : E → Rn.

(1) Sort the elements of E in decreasing order by their weights ci;
X := ∅.

(2) For each i = 1, . . . , n do:

If X ∪ {i} ∈ I and ci ≥ 0, then X := X ∪ {i} .

(3) Return X.

In combinatorial optimization the feasible solutions are usually subsets of a given
ground set. Here we can sometimes also find helpful properties of the objective
function, such as that of a submodular set function.

Definition 1.2. Let E be a finite set. A set function f : 2E → R is called
submodular, if for every X, Y ⊆ E with X ⊆ Y and every i ∈ E \ Y the property

f(X ∪ {i})− f(X) ≥ f(Y ∪ {i})− f(Y )

holds.

The property in Definition 1.2 is called the diminishing returns-property.

Submodularity can also be characterized in different ways. There exists a connec-
tion between submodular set functions and matroids. Submodularity generalizes
the so-called rank function of a matroid, which can be used to give an equivalent
characterization of a matroid (see [39] and [62] for details). We hold down that
detecting such structures in a problem formulation can be useful for optimization.
In particular, minimization of a submodular set function over an unconstrained
binary set {0, 1}n can be done efficiently [39].

1.2 Complexity Theory

One of the essential characteristics of a problem is its solvability. We address
problems which are still not investigated extensively. Since our aim is to find
algorithms for these problems, we could narrow down the search if we knew that
in principal there cannot exist algorithms with certain performance guaranties.

On the other hand the presented approaches have to be analyzed with respect to
their contribution: When is an algorithm for a certain problem a good one?

In this section we aim to introduce some basic concepts related to complexity
theory and to agree on terminology and notation we are going to use in this
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context. Here, the presentation of Sections 1.2.1 and 1.2.2 is based to a large
extent on [48], of Section 1.2.3 on [40] and [48], of Section 1.2.4 on [5] and of
Section 1.2.5 on [40] and [68].

1.2.1 Fundamentals

The complexity of a problem or an algorithm characterizes it with respect to com-
putational resources, such as time and space, required to solve it or, respectively,
to run it until it possibly terminates with the right output.

To formalize this definition we need to be robust against such factors like structural
characteristics of the computing machine or the encoding scheme.

Using an encoding scheme we can describe problem instances or any other objects
in a string of characters over an alphabet:

Definition 1.3. An alphabet is a finite set with at least two elements, not
containing the special symbol t (which is used for blanks). The set of all finite
strings whose symbols are elements of an alphabet A is denoted by A∗. A language
over A is a subset of A∗. The elements of a language are often called words. If
x ∈ An, we write size(x) := n for the length of the string.

Referring to the instances of a problem, which can be seen as certain words of a
language, we refer to the input size as to the length of the input, i.e. the number
of digits needed to present the instance. An encoding system using the alphabet
A = {0, 1}, is called binary encoding and the components of every string (digits)
are called bits. We assume a fixed efficient encoding of the input as a binary string.
An important observation is, that for different natural efficient encoding schemes
the input size does not differ significantly.

To also get rid of the dependency on the computing system, while describing
complexity, we will make use of the deterministic Turing machine. It is a simple
theoretical computational model, which is able to perform a sequence of simple
instructions working on a string (see [48] for a formal definition). The concept
might appear very restrictive. However, it can compute any function and run
any algorithm in polynomial time, if these are computable in polynomial time
on any other computational model, due to Church’s thesis. Another assumption
we make is thus, that the costs of an algorithm on two different computational
models regardless of the input size will differ no more than by a multiplicative
constant [5].

The overall number of elementary steps determines the efficiency of an implemented
algorithm. Obviously this number depends on the input size of the instance. To
quantify the behavior of costs (time) depending on the input size, the running time
of an algorithm or the time required to solve a problem is written as a function of
the input size f(n). Here, the following aspects can be observed. Firstly, even the
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same-sized instances may cause very different runtime. Thus it is convenient to
consider the worst-case instance of each size, to provide a reliable upper bound.
Secondly, the subtleties of implementation, initialization time and computational
model features are to abstract from. Finally, the growth rate of the running time
depending on the input size is of interest.

Among others, these three aspects are dealt with by using the so-called O-notation
or Landau-notation, named after the German mathematician Edmund Landau
who spread its usage. It is used to describe the growth rate or the order of a
function (where the letter choice comes from), i.e. indicates its dominating term.
If it takes, for example, 5n3 + n log n+ 7 steps on a deterministic Turing machine
for an algorithm to run on the worst instance of size n, we say, the algorithm has
complexity O(n3), or has order of n3.

Using the Landau-notation we can formalize the term polynomial time. We say,
an algorithm or a Turing machine is of polynomial time if its running time is
upper-bounded by a polynomial in the input size, i.e. there exists a constant k,
such that the algorithm complexity is O(nk), where n denotes the size of the
input.

For some purposes different approaches might be interesting. Occasionally we
use the notation Ω(f(n)) for the best case complexity, i.e. a lower bound on the
runtime, and Θ(f(n)) for the tight bound, i.e. to express that both O(f(n)) and
Ω(f(n)) are valid.

Using the O-notation one can define complexity classes. If a problem can be solved
within time O(f(n)), it belongs to the class O(f(n)).

1.2.2 Complexity Classes P and NP, NP-Hard Problems

Even though the problems of interest here are optimization problems, i.e. problems
of finding among feasible solutions the best solution with respect to given costs,
to characterize their complexity we need to track back to the so-called decision
problems, which the important classes P and NP consist of and which complexity
theory is based on.

Definition 1.4. A Turing machine or an algorithm decides a language L, if for a
given input string it can determine in finite time, if the string is a word of the
language. If there exists a Turing machine, which can decide a language L in
polynomial time, the language is said to be decidable in polynomial time.

A decision problem is a pair P = (X, Y ), where X is a language decidable in
polynomial time, and Y ⊆ X. The elements of X are called instances of P , the
elements of Y are yes-instances, those of X \ Y are no-instances.
An algorithm for a decision problem (X, Y ) is an algorithm which can decide for
every x ∈ X, if x ∈ Y .
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If additionally the language of the yes-instances is decidable in polynomial time,
the problem is said to be in the class P :

Definition 1.5. The class of all decision problems for which there is a polynomial-
time algorithm is denoted by P .

Thus, to show that a given problem belongs to the class P, it is sufficient to
specify a polynomial-time algorithm for it. For a problem to be in the class NP
it is not required that the language of the yes-instances is decidable in polynomial
time. It is merely required that for each yes-instance there is a certificate, which
can be encoded in polynomial time and which enables to decide in polynomial
time if a given instance is a yes-instance:

Definition 1.6. A decision problem P = (X, Y ) belongs to the class NP if there
is a polynomial p and a decision problem P ′ = (X ′, Y ′) in P , where

X ′ := {x#c | x ∈ X, c ∈ {0, 1}bp(size(x))c},

such that

Y = {y ∈ X | there exists a string c ∈ {0, 1}bp(size(x))c with y#c ∈ Y ′}.

If y#c ∈ Y ′, the string c is called certificate for y.

It is easy to conclude that P ⊆ NP , but whether the inclusion is strict, is still the
most important open question in complexity theory: For many decision problems
in NP no polynomial time algorithm is known. Sometimes it can just be proven
that a given problem is not easier than others.

Definition 1.7. Let P1 = (X1, Y1) and P2 = (X2, Y2) be decision problems. We
say that P1 polynomially transforms to P2 if there is a function f : X1 → X2

computable in polynomial time such that f(x) ∈ Y2 for all x ∈ Y1 and f(x) ∈
X2 \ Y2 for all x ∈ X1 \ Y1. Such a transformation is called Karp-reduction and
we write P1 ≤K P2.

This concept can be used to define NP-complete problems:

Definition 1.8. A decision problem P ∈ NP is called NP-complete if all other
problems in NP polynomially transform to P .

Obviously, polynomial transformation is transitive and to show that a decision
problem P from the class NP is NP-complete, it is sufficient to polynomially
transform one NP-complete problem to P .

However, we are mostly interested in a different kind of problems.
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Definition 1.9. An NP optimization problem is a quadruple

P = (X, (Sx)x∈X , c, goal),

where

• X is a language over {0, 1} decidable in polynomial time. The elements of
X are called instances of P ;

• Sx is a nonempty subset of finite strings for each instance x ∈ X, called
feasible solutions of x; these are polynomially encodable in the input size
and it is decidable in polynomial time, if a given string is a feasible solution
to a given instance;

• c : {(x, y) | x ∈ X, y ∈ Sx} → Q is a function computable in polynomial
time;

• goal ∈ {max,min}.

We write OPT (x) := goal{c(x, y) | y ∈ Sx}. An optimal solution of x is a feasible
solution y ∈ Sx with c(x, y) = OPT (x). An algorithm for an optimization problem
computes a feasible solution for each instance x ∈ X. It is called exact algorithm,
if it computes an optimal solution of the given problem. The set of all NP
optimization problems is called class NPO.

To rank such problems with respect to their complexity and to establish rela-
tions between them to obtain complexity bounds, an extension of polynomial
transformation is required.

Definition 1.10. [5] Let P be a decision- or an optimization problem. An oracle
for problem P is an abstract device which provides an answer, if the given instance
is a yes-instance, or, respectively, returns an optimal solution of P , for any instance
of P .

Definition 1.11. Let P1 and P2 be decision or optimization problems. We say
that P1 polynomially reduces to P2 if there exists an algorithm for P1, that calls an
oracle for P2 and has polynomial runtime provided that each oracle call is counted
as one step. Such reduction is called Turing-reduction and we write P1 ≤T P2.

Obviously, polynomial transformation is a special case of polynomial reduction.

Now NP-hard problems can be defined:

Definition 1.12. An optimization or a decision problem P is called NP-hard if
all problems in NP polynomially reduce to P .
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Polynomial reduction is transitive and to prove that a problem P is NP-hard, it
is sufficient to polynomially reduce to P one NP-complete or NP-hard problem:

Lemma 1.13. If P1 ≤T P2 and P1 is NP-hard, then P2 is NP-hard.

Sometimes we call NP-hard problems intractable, which is equivalent to not
having a polynomial time algorithm, unless P = NP. Tractable in turn means
polynomially solvable, i.e. having a fast or efficient algorithm.

To give an upper bound on complexity, we may sometimes say NP-easy, to
indicate that a problem is at most as hard as some NP-complete problem.

1.2.3 Weakly and Strongly NP-Hard Problems

Unless P = NP, no NP-hard problem can be solved in polynomial time. How-
ever, especially among numerical problems, i.e. problems whose instances can
be represented by lists of integers (for example costs of elements), there exist
problems which are hard to solve only if the input numbers are big. These problems
can possibly be solved in polynomial time if the numerical value of the input is
polynomially bounded, even while being NP-hard.

Definition 1.14. Let P be a decision or an optimization problem. We denote by
largest(x) the numerical value of the largest number in the input instance x. An
algorithm for P is called pseudo-polynomial if there is a polynomial q : R2 → R,
such that the running time is bounded by q (size(x), largest(x)).

This definition is based on the difference between the numerical value of an integer
and its length of encoding: For a numerical value w of an integer log(w) bits
are sufficient to encode it, i.e. w grows exponentially in the length log(w) of the
encoding. But for a pseudo-polynomial algorithm we allow that w appears next
to size(x) as an argument in the running time function, “hiding exponentiality”
due to the relationship largest(x) = O(exp(size(x)). In other words, a pseudo-
polynomial algorithm is polynomial in the numerical value of the input, but might
be exponential in the length of the input. Based on this difference, the following
distinction is made:

Definition 1.15. A decision- or an optimization problem P is called strongly
NP-hard, if there is a polynomial p such that the subset of instances of P with
largest(x) ≤ p(size(x)) is still NP-hard.

As an immediate consequence the following observation can be made:

Lemma 1.16. Unless P = NP, no strongly NP-hard problem can be solved by
a pseudo-polynomial algorithm.
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Accordingly, we call a problem weakly NP-hard, if it can be solved by a pseudo-
polynomial algorithm.

Corollary 1.17. A problem P can be shown to be strongly NP-hard by giving
a polynomial reduction from a strongly NP-hard problem to an instance x of P ,
such that largest(x) ≤ p(size(x)), for some polynomial p. A problem can be shown
to be at most weakly NP-hard by giving a pseudo-polynomial algorithm for this
problem.

To round off this section we give some important examples of strongly- and weakly
NP-hard problems used throughout the thesis.

Example 1.18. The following Subset Sum-problem is weakly NP-hard, due to
the polynomial transformation from the Partition-problem and existence of a
pseudo-polynomial-time algorithm [40].

SUBSET SUM PROBLEM
Instance: A finite set A of positive integers and a positive integer B.
Question: Is there a subset A′ ⊆ A such that the sum of the elements in A′ is
exactly B?

Example 1.19. The following so called Max Cut-problem is strongly NP-hard.

MAXIMUM CUT
Instance: Undirected graph G = (V,E) with edge cost c(e) ∈ Z+ for all e ∈ E.
Goal: Find a partition of nodes into two subsets S and V \ S, such that the sum
of the costs of the edges with one node in each subset is maximized.

Example 1.20. The following problem Integer Linear Programming is strongly
NP-hard [40].

INTEGER LINEAR PROGRAMMING
For given m ∈ N, c ∈ Zn, A ∈ Zm×n, b ∈ Z, find an optimal solution of

min c>x
s.t. Ax ≤ b

x ∈ Zn.

Example 1.21. The Knapsack-problem (see Section 1.1) is weakly NP-hard, it
can be solved in pseudo-polynomial time by dynamic programming [47].
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1.2.4 Approximability

Whenever dealing with NP-hard problems, where it is unlikely to find an efficient
algorithm, it seems useful for practical demands to have an algorithm which
possibly does not provide an optimal solution, but a feasible solution close to the
optimal and in short time. We call such algorithms approximation algorithms and
the corresponding feasible solution approximate solution.

Of course, such algorithms differ in quality of the provided solution, or the
performance ratio:

Definition 1.22. Given an optimization problem P , for any instance x of P and
for any feasible solution y of x, the performance ratio of y with respect to x is
defined as

R(x, y) =


v(x,y)
OPT (x)

if goal = min

OPT (x)
v(x,y)

if goal = max,

where OPT (x) denotes the optimal value of the instance and v(x, y) the value of
the solution y.

Approximation algorithms can be classified by their performance ratio:

Definition 1.23. Given an optimization problem P and an approximation al-
gorithm A for P , we say that A is an r-approximate algorithm for P if, given
any input instance x of P , the performance ratio of the approximate solution is
bounded by r.

These algorithms are also referred to as constant factor approximation algorithms.
Now, taking this definition into account, NP-hard problems can be classified by
the question how closely they can be approximated in polynomial time:

Definition 1.24. An NPO problem P is r-approximable if there exists a poly-
nomial-time r-approximate algorithm for P , for some r ≥ 1. The class APX
consists of all r-approximable optimization problems, for any r.

Note that APX stands for approximable. Often an r-approximation for some
constant r is not enough for practical use and we are willing to find an approximate
solution with a better performance ratio, even though at expense of the running
time.

Definition 1.25. For an NPO problem P an algorithm A is said to be a
polynomial-time approximation scheme (PTAS) if, for any instance x of P and
any rational value r > 1, A with input (x, r) returns an r-approximate solution
in time polynomial in the input size of x. The class PTAS consists of all NPO
problems that admit a polynomial-time approximation scheme.
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Note that the running time of a PTAS may still depend on the performance
ratio (which would be natural) and may grow super-polynomially in 1

r−1
. If this

situation is still unsatisfactory in terms of running time, one might be interested
in the following:

Definition 1.26. For an NPO problem P an algorithm A is said to be a fully
polynomial-time approximation scheme (FPTAS) if, for any instance x of P
and any rational value r > 1, the algorithm A with input (x, r) returns an r-
approximate solution in time polynomial both in the input size of x and in 1

r−1
. The

class FPTAS consists of all NPO problems that admit a fully polynomial-time
approximation scheme.

Note that we are talking about approximation schemes because there is an
algorithm Ar−1 for any precision r − 1.

To admit an FPTAS is the strongest possible polynomial-time approximation
result for an NPO problem. For some NPO problems it can be shown that they
are not r-approximable, unless P = NP , i.e. the class APX is strictly contained
in the class NPO. Under the same assumption one can find problems in APX
that do not admit a PTAS or an FPTAS, such that the following relationship
holds:

Lemma 1.27. If P 6= NP, then P ⊂ FPTAS ⊂ PTAS ⊂ APX ⊂ NP.

Assuming NP 6= P, certain problems are truly harder to approximate than
others. If a problem is at least as hard to approximate as any other problem in
APX, it is called APX-hard and it does not admit a PTAS, unless P = NP.
APX-hard problems can also be defined in analogy to Definition 5.1. However, a
stronger reducibility concept is required, since problems that are only polynomially
reducible to each other often have different approximability properties. Roughly
speaking, it is not enough to map instances of one problem to instances of another
problem. Additionally, good solutions should be mapped to good solutions. To
prove that a given problem is APX-hard, a so-called approximation preserving
reduction from another APX-hard problem is to be performed (see [5] for a formal
definition). An example of an approximation-preserving reduction is the so-called
PTAS-reduction.

1.2.5 FPTAS and Pseudo-Polynomial Algorithms

We have seen that some problems are easier to solve than others in a certain
sense, unless P = NP. Problems of the class FPTAS are easy to approximate;
weakly NP-hard problems are easy to solve if we bound the numerical input
value. An obvious question is if there is a relationship between FPTAS and
pseudo-polynomial algorithms. It is known that most of the FPTAS are derived
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from pseudo-polynomial algorithms, such that the property of weak NP-hardness
seems to be relevant for the existence of an FPTAS. Garey and Johnson [40]
establish the following relationship:

Theorem 1.28. Let P be an optimization problem such that all solution values
are positive integers. If the optimal value of an instance x of P is bounded by a
polynomial in the input size and the largest numerical value of the input, then
the existence of an FPTAS for P implies the existence of a pseudo-polynomial
algorithm for P .

We point out the important contraposition of this theorem.

Corollary 1.29. Under the assumptions of Theorem 1.28, no strongly NP-hard
problem can be solved by an FPTAS.

Inversely, a relevant question is, if we can always derive an FPTAS from a pseudo-
polynomial algorithm. In [68] the authors claim that this is not true and give
several examples.

Example 1.30. The following problem, which is referred to as Two-Dimensional
Knapsack, can be solved in pseudo-polynomial time and does not have an FPTAS.

TWO-DIMENSIONAL KNAPSACK
Instance: n items with positive integer weights wi and positive integer volumes
vi, i = 1, . . . , n, weight capacity W and volume capacity V .
Goal: Maximize the number of items without exceeding the weight and volume
limits.

1.3 Multicriteria Optimization

Multicriteria or multiobjective optimization deals with the optimization of more
than one objective simultaneously and is often referred to as vector optimization.
This is a challenge arising in a wide range of situations, especially in interdis-
ciplinary applications. A multicriteria optimization problem can be formulated
as

min (f1(x), . . . , fk(x))
s.t. x ∈ X ,

(1.1)

with k ≥ 2 being the number of objectives. If k = 2, Problem (1.1) is called
bicriteria optimization problem.

The non-trivial case of multiobjective optimization is the case when a solution that
is optimal for all k objectives does not exist, as the objectives can be conflicting.
Usually, minimization of the production costs does not walk along with the increase
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f1(x)

f2(x)

Figure 1.1: Projection of the feasible set X onto the span of the objectives f1(x)
and f2(x). Pareto-frontier (red).

in quality, and maximizing a tank capacity contradicts the aim for a minimum
weight. Criteria may though be totally unrelated, for example, when a solution
has to comply with the requirements of engineering, logistics, economics and
environment at the same time.

For this reason, it is not the original objective in multicriteria optimization to
find one common optimal solution, which most likely does not exist. Instead a set
of so-called non-dominated solutions is considered.

Definition 1.31. A feasible solution x ∈ X is said to (Pareto-) dominate a
feasible solution y ∈ X, if, assuming minimization,

(1) fi(x) ≤ fi(y) for all i = 1, . . . , k and

(2) fj(x) < fj(y) for at least one j ∈ {1, . . . , k}.

Definition 1.32. A feasible solution x ∈ X is (Pareto-) efficient or (Pareto-) op-
timal, if there does not exist another solution that dominates it. The corresponding
vector f(x) is called a non-dominated point.

The set of all Pareto-efficient solutions constitutes the so-called Pareto-frontier
and by abuse of notation is often referred to as the set of non-dominated points
in the image domain (see Figure 1.1). The concept of efficiency is in most cases
related to the decision space X, while the concept of dominance refers to the
criterion space f(X). The name goes back to Vilfredo Pareto, who introduced and
extensively used this concept in his contributions to the field of microeconomics [63].
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1 20 n− 2 n− 1 n

(1, 0) (2, 0)

(0, 1) (0, 2)

(2n−2, 0) (2n−1, 0)

(0, 2n−2) (0, 2n−1)

. . .

Figure 1.2: A Shortest Path-instance with an exponential number of efficient
solutions.

If no additional subjective preference information is given, the Pareto-efficient
solutions are considered equally good. Hereby, the biggest problem is that there
might exist exponentially many efficient solutions:

Example 1.33. Consider the Shortest Path-problem on the graph in Figure 1.2.
Here, all feasible solutions (all 0− n-paths) are Pareto-efficient: Sorting them in
ascending order by the values of the first function, we get the set of non-dominated
points in the image domain

{(0, 2n − 1), (1, 2n − 2), (2, 2n − 3), . . . , (2n − 3, 2), (2n − 2, 1), (2n − 1, 0)} ,

which is of exponential size.

In this regard, a large variety of goals, philosophies and methods were developed
in multicriteria optimization. To solve a multicriteria optimization problem can
mean

• to find all Pareto-optimal solutions,

• to find a representative set of Pareto-optimal solutions, or

• to find one most preferred solution due to some certain subjective preferences
criteria.

In the last point we can distinguish between upfront and a posteriori preferences.
The a posteriori methods are mostly based on estimations of a human decision
maker, who can assess which solution is a good compromise in a given application.
In the upfront methods, Problem (1.1) is often converted into a single-objective
problem. A famous approach here is, for example, the weighted sum method [56].

An overview of fundamental concepts, methods and results on multicriteria opti-
mization is given in [34].
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Chapter 2

Robust Optimization under
Ellipsoidal Uncertainty

Now we discuss the actual topic of this thesis, namely robust combinatorial
optimization under ellipsoidal uncertainty, in a greater detail. To this aim we will
in Section 2.1 motivate and demarcate the idea of robustness and give an overview
to the existing approaches, with the focus on strict robustness, as it is the central
paradigm in this thesis. In this context we introduce different uncertainty sets
and outline the corresponding complexity results.

As ellipsoidal uncertainty is our basic topic, we go into more detail and dedicate
the Sections 2.2 to 2.4 to this uncertainty set. There we describe in detail the
existing solution approaches and summarize the complexity results known in the
literature. We not only introduce basic definitions but also discuss and prove some
fundamental statements, such that we can build on this prior knowledge in the
following chapters.

2.1 Robust Optimization

An abstract optimization problem

min f(x)
s.t. x ∈ X, (2.1)

with the objective function f and the feasible set X, becomes a real-world situation
as soon as concrete data is given, for example, a specific network with the costs
or duration of proceeding through every edge. But in fact, the data is hardly ever
known precisely, but subject to uncertainty caused by various matters. It can
have a social, ecological or financial character, like uncertainty about the exact
soil conditions while planning new power lines and related costs. It can be caused
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by future and unpredictable events, like political decisions or natural disasters
with associated loss of capacities. Disposal over only inexact or estimated data
or limited access to information, as well as a simple measuring errors, also may
produce uncertainty.

In the following we assume to be given an uncertain optimization problem of the
form

min f(x, c)
s.t. x ∈ Xc,

(2.2)

where the objective function and the feasible set now in some way depend on a
random variable c. For a fixed c Problem (2.2) becomes a certain Problem of the
form (2.1), which we sometimes refer to as the nominal or deterministic problem.

In order to solve an optimization problem, we aim to find a feasible solution having
the best objective value. Now with uncertain data, feasibility and/or optimality of
a solution might be affected. Sometimes even small perturbations may lead to a
complete uselessness of a chosen solution, while the decision-making process does
not allow any changes of the adopted solution after the data reveals itself. What is
the chosen solution worth, if its optimality or even feasibility are not guaranteed
any more? The concept of optimality or even solution must be redefined when
dealing with uncertainty. Uncertainty must be taken into account already in the
problem definition.

The concept of scenario is a common and natural way to structure uncertainty.
Usually it is at least possible to overview all the relevant scenarios, how the data
may behave, and to put these together in a so-called uncertainty set U . While
redefining feasibility and optimality, it makes sense to ask for feasibility in every
possible scenario and for certain guarantee of quality. This is a common thought
in all existing robustness criteria. Many such criteria were proposed in a short
time.

In the following we describe different approaches to define the so-called robust
counterpart of Problem (2.2) and summarize the most important forms of U .

2.1.1 Strict Robustness

The strict robustness was first mentioned by Soyster [70] and was extensively
studied since then [10, 35, 13, 15]. The initial idea to call a solution robust against
uncertainty is to require its feasibility and possibly good quality in every possible
scenario (see Figure 2.1).

Such a perfect solution though may hardly exist. The general way out in robust
optimization is to accept some quality loss against certain immunity to parameter
changes. The idea of strict robustness is to consider the worst-case scenario, to be
sure that the value of the solution would not get any worse in any case. But the
worst-case scenario might vary from solution to solution, such that it might not be
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Figure 2.1: Strict Robustness: The feasible set of a strictly robust problem is the
intersection of the feasible sets in every scenario.

enough to consider one bad scenario. Strict robustness considers for every solution
its value in its worst-case scenario and compares solutions regarding these values,
i.e. it solves the problem

min max
c∈U

f(x, c)

s.t. x ∈ Xc for all c ∈ U .
(2.3)

This criterion is occasionally called min-max -robustness or absolute robustness.
We minimize the maximum value a solution can reach among all possible scenarios
from the uncertainty set U . Problem (2.3) defines the so-called robust counterpart
of the uncertain Problem (2.2) in the case of strict robustness.

Here, the difference to stochastic programming, which is another approach to deal
with data uncertainty, has to be emphasized: We do not consider or estimate any
probability distributions of the scenarios to get a good solution on average, but
we want to be free of risk in every reasonable scenario, no matter how likely or
unlikely it is to occur.

It must be said that this great pessimism also can be seen as a limit of this
approach. Sometimes really improbable bad cases are strongly overestimated,
such that the provided solution is very conservative and can be far away from
the optimum in the realized scenario. This trade-off between risk-aversion and
optimality is often referred to as price of robustness [14].

A related and less conservative approach to define an optimal solution under
uncertainty is min-max-regret [2]. It aims to minimize the regret one might feel
when the data reveals itself and the chosen solution cannot be changed any more,
i.e. the difference between the value of the optimal solution in the realized scenario
and the value of the chosen solution. The corresponding robust formulation is

min max
c∈U

f(x, c)− f(x∗c , c)

s.t. x ∈ Xc for all c ∈ U ,
(2.4)
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Figure 2.2: Uncertainty sets.

where x∗c denotes the optimal solution in scenario c.

In general, Models (2.3) and (2.4) yield different solutions. The usage of one
or another criterion depends on their appropriateness in a given application.
The min-max-regret criterion is preferred in situations, where the importance
of a comparison between the performances of different actions or actions of the
opponent actors is crucial. This can be the case, for example, in the investment
management, where the opportunity costs play a major role.

2.1.2 Uncertainty Sets

The complexity of and approaches to the robust counterparts (2.3) differ funda-
mentally depending on the definition of the uncertainty set U . Clearly, in different
situations the possible scenarios may constitute differently shaped sets. But the
main criterion to consider different forms of U is the tractability of the resulting
counterparts.

2.1.2.1 Boxes

One natural way to describe the set of possible scenarios is to define a lower and
an upper bound on every uncertain coefficient, assuming that the costs may vary
within the corresponding intervals. This leads to a box form of the uncertainty
set (see Figure 2.2(a)) and the uncertainty type is called interval uncertainty [2].
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From the practical point of view this case is rather attractive but theoretically
uninteresting. The coefficients are completely unrelated to each other and the
worst case of every solution is the same, namely the scenario with all coefficients
being on their upper bounds. In this case the robust counterpart preserves the
complexity of the certain Problem (2.1):

Theorem 2.1. [2] The robust counterpart of (2.2) with interval uncertainty is
solved by solving the nominal problem (2.1) with the worst-case scenario.

On the other hand, the optimal solution is over-conservative, given the fact that
the case with all coefficients on their upper bounds is very unlikely to happen,
which makes the user accept an unnecessarily bad value. These two facts make it
worth to consider different forms of uncertainty.

2.1.2.2 Finite Sets

In some situations the set of possible scenarios is explicitly given. Such situations
are called discrete-scenario case (see Figure 2.2(b)). Here, the challenge is to
reduce the cardinality of U as far as possible, due to the following.

Theorem 2.2. [50] In the discrete scenario case the problem

min max
c∈U

c>x

s.t. x ∈ X
(2.5)

is NP-hard, even for |U| = 2 and some X where linear optimization is easy.

Here and in further considerations we assume a linear objective function of the
nominal problem, i.e. f(x, c) = c>x.

This result originates from [50] for the Shortest Path-problem, the Minimum
Spanning Tree-problem, Minimum Cost Assignment and Resource Scheduling and
was shown in [6] for the unconstrained case X = {0, 1}n.

Nevertheless, for a constant number of scenarios many combinatorial problems
can be solved in pseudo-polynomial time. But if the number of scenarios is part
of the input, these problems become strongly NP-hard (see [2] for an overview).

2.1.2.3 Trimmed Boxes

Another uncertainty set is proposed in [13] and allows to adjust the level of
conservatism in contrast to the interval uncertainty. The authors suggest that
it is very unlikely that all coefficients differ from the expected scenario at the
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same time and restrict the number of changing coefficients to at most Γ ≥ 0. The
uncertainty set can be written as

U = {c ∈ [l1, u1]× · · · × [ln, un] | # {I ⊆ {1, . . . n} | |un − c0n| > 0} ≤ Γ} ,

where c0 denotes the vector of the coefficients in the expected scenario, and is
called Γ-uncertainty.

The parameter Γ allows to control the value of conservatism, while the correspond-
ing robust counterpart remains computationally tractable.

Theorem 2.3. [13] The robust counterpart (2.5) with Γ-uncertainty is reduced to
solving n+ 1 corresponding nominal problems (2.1) if n is the number of variables.

Another variant of Γ-uncertainty is to restrict the total deviation from the expected
scenario [18], i.e.

U =

{
c ∈ [l1, u1]× · · · × [ln, un] |

n∑
i=1

|ci −
li + ui

2
| ≤ Γ

}
,

(see Figure 2.2(c)). Also here Problem (2.5) is reduced to solving n+ 1 nominal
problems, which can be shown in analogy to [13].

2.1.2.4 Polytopes

Interval and Γ-uncertainty are special cases of polytopic uncertainty. Here, the
uncertainty set is a general polytope:

U = {c ∈ Rn | Tc ≤ s} ,

with T ∈ Rr×n and s ∈ Rr [18] (see Figure 2.2(d)).

Since U = conv(v1, . . . , vk) for some suitable k due to the Weyl-Minkowski Theo-
rem [58], the following result applies.

Theorem 2.4. The robust Problem (2.5) with polytopic uncertainty is at least as
hard as with discrete uncertainty and a fixed number of scenarios, even for some
X where linear optimization is easy.

Since for a fixed finite number k of points their convex hull, which is a polytope,
can be constructed in linear time, the discrete scenario case for a fixed number of
scenarios, which can be hard due to Theorem 2.2, reduces to Problem (2.5) with
polytopic uncertainty.

We hold down that the polytopic uncertainty is in general hard to treat, while
some easy special cases, such as interval and Γ-uncertainty, exist.
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2.1.2.5 Ellipsoids

In the focus of this thesis is ellipsoidal uncertainty, where U is given by an ellipsoid
in Rn:

U =

{
c ∈ Rn|

√
(c− c0)>A−1 (c− c0) ≤ r

}
,

with c0 ∈ Rn, r > 0 and A ∈ Sn++ (see Figure 2.2(e)). Here Sn++ denotes the set of
all positive definite matrices of order n.

Here the costs are assumed to be caused by some normal distribution with mean
c0 and a covariance matrix A, which relates to many applications (see Section 2.2
for motivation of this notation). This form of uncertainty is less conservative than
interval uncertainty since the very unlikely extreme points of U , where the worst
case is taken in the interval case, is explicitly excluded here. Moreover, it allows
to model correlations between the coefficients, both positive and negative. Finally,
it is practically and theoretically interesting, as it incorporates both tractable and
intractable special cases, as well as some still not specified cases.

2.1.3 Different Approaches

Strict robustness is very conservative and in many cases intractable. Also, in
many applications different conditions apply, such that in the last two decades
alternative robustness approaches have been developed. These define different
criteria of robust optimality. Here, we shortly mention some of these approaches.

2.1.3.1 Recoverable Robustness

The concept of recoverable robustness was formalized in [53]. The idea is to find a
solution which may become infeasible or bad when the data becomes certain, but
which can then be recovered to a feasible or a better solution by means of one of
the given recovery algorithms (see Figure 2.3).

Recoverable robustness hence distinguishes two phases: A planning phase and
a recovery phase. A set A of admissible recovery algorithms is given beforehand
and specifies the recovery possibilities. In the planning phase a solution x and an
algorithm A ∈ A are determined. A specifies how x can be recovered for every
scenario. In the recovery phase (when a scenario is realized), the algorithm A is
used to turn the solution x into a feasible solution for the realized scenario. The
recovery robust problem can be formulated as

min f(x)
s.t. A(x, c) ∈ Xc for all c ∈ U

(x,A) ∈ X ×A,
(2.6)
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Figure 2.3: Recoverable robustness.

where Xc denotes the set of feasible solutions in the scenario c.

Note that the solution of Problem (2.6) is a tupel (x,A). If no recovery is possible
for any solution x by means of the given set of algorithms, Problem (2.6) has
value ∞.

Obviously, the set of recovery algorithms should be limited due to some reasonable
criteria, which mostly concern two main aspects:

• the recovered solution must not be too far from the recoverable solution x
with respect to a certain measure of distance;

• the computational effort of the algorithm A to turn the solution x to a feasible
solution should be restricted, preferably in terms of the computational effort
to compute the solution x in the planning phase.

If A consists of exactly one algorithm A with A(x, c) = x for all c ∈ U , then we
are in the case of strict robustness.

Since its first formalization, recoverable robustness has been applied in the context
of railways, shunting, timetabling and delay management and many other fields
[26, 27]. Clearly, it strongly depends on the underlying problem and on the set A
whether Problem (2.6) is tractable or not.

2.1.3.2 Adjustable or Two-Stage Robustness

In adjustable or two-stage-robustness [11] certain variables are allowed to be
determined after the realization of a scenario. The set of variables is decomposed
into

• the here-and-now variables x ∈ Rn1 , which have to be determined in the
first stage, i.e. before the realization and
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Figure 2.4: Adjustable robustness.

• the wait-and-see variables yc ∈ Rn2 , which have to be determined in the
second stage, i.e. after the realization of a scenario.

The goal is to find an adjustable solution x ∈ Rn1 , i.e. such that for every c ∈ U
there exists a yc ∈ Rn2 such that (x, yc) is feasible for c. The adjustable robust
problem is

min
x∈Rn1

max
c∈U

min f(x, yc, c)

s.t. (x, yc) ∈ Xc

yc ∈ Rn2

(2.7)

(see Figure 2.4). It turns out that even for the uncertainty sets that are tractable
in the strictly robust case, Problem (2.7) cannot be solved efficiently in general,
such that the research in this field is mostly concentrated on approximation of
the adjustable robust problems or considering further restrictions and special
cases [11].

2.1.3.3 K-Adaptability

Due to the computationally challenging treatment of the adjustable robust problem,
a modified approach has been proposed in [43], which provides an approximation
of Problem (2.7). The idea of K-adaptability is to preselect K of the second-stage
decisions in the first stage and to choose among these the best in the second stage,
i.e. after a scenario has been realized. The problem to solve is

min max
c∈U

min
i=1,...,k

f(x, yi, c)

s.t. ∀ c ∈ U ∃ i ∈ {1, . . . , k} such that (x, yi) ∈ Xc

x ∈ Rn1

yi ∈ Rn2 , i = 1, . . . , k.

(2.8)
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A survey on computational complexity and a reformulation to a mixed-integer
linear program is given in [43].

2.1.3.4 Min-Max-Min-Robustness

A special case of K-adaptability and an extension of the strict robustness has
been recently proposed in [52]. Like in the strict robustness, the worst case is
minimized. But now we are not limited to only one solution, but determine here
and now exactly k solutions, among which the best suitable can be chosen in the
second stage. The robust counterpart can be formulated as

min max
c∈U

min
i=1,...,k

f(xi, c)

s.t. x1, . . . , xk ∈ X.
(2.9)

With n1 = 0 and only uncertainty in the objective function this can be seen as
a special case of K-adaptability. On the other hand, for k = 1 Problem (2.9) is
equivalent to the strictly robust problem (2.3).

Problem (2.9) and its complexity were extensively analyzed in [19] and [52]. It
turns out that for convex uncertainty sets and for k ≥ n under additional mild
conditions the robust problem preserves the complexity of the nominal problem.
However, it is NP-hard for any fixed number k < n, even for X = {0, 1}n. For
discrete uncertainty Problem (2.9) is NP-hard, which was explicitly shown for a
number of combinatorial problems.

2.1.3.5 Light Robustness

Light Robustness [36] aims to be a more flexible and less expensive alternative
to strict robustness. In order to obtain less conservative solutions than in the
common strict robustness approach, i.e. solutions that are not too bad for the
expected scenario c0, a bound ρ on the distance to the optimal solution in the
expected scenario is given ensuring certain nominal quality. This in general may
lead to an infeasible task. To restore feasibility, slack variables γ are introduced
which allow violation of the feasibility requirement, but which are minimized
in terms of an auxiliary objective function. In other words, the slack variables
penalize infeasibility. The corresponding problem reads

min ‖γ‖
s.t. f(x, c0) ≤ f ∗c0 + ρ

F (x, c0) ≤ 0
F (x, c) ≤ γ for all c ∈ U
γ ≥ 0,

(2.10)

where the condition F (x, c0) ≤ 0 ensures feasibility in the expected scenario c0.
This concept was introduced in [36] for linear programming and interval uncer-
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tainty. It was generalized in [66] to general optimization problems and arbitrary
uncertainty sets and studied concerning its theoretical complexity. The authors
show that in the case of polytopic uncertainty the lightly-robust counterpart of a
linear program remains linear and in the case of ellipsoidal uncertainty a quadratic
program has to be solved.

2.2 Ellipsoidal Uncertainty

We now address the central topic of this thesis, i.e. ellipsoidal uncertainty in
combinatorial problems. Before stating our main results, we note down the state
of knowledge in this area. For the proofs of the statements we will refer to the
literature given within the text. Thus, in the following we will first present the
model of a combinatorial problem under the assumption of uncertain data, more
precisely, uncertain objective function, in the case of ellipsoidal uncertainty and
then reformulate the problem in the way we will investigate it in this work,
motivating this form in various ways. We will analyze the theoretical complexity
of the problem as well as some of its special cases, as far as it is known in the
literature, and expose the existing handling methods. Here the presence or absence
of correlations between the uncertain objective function coefficients implies an
essential difference in the complexity and methodology.

In particular, in the uncorrelated case we expand on the robust Shortest Path-
problem, with its complexity status being a challenge in the complexity research.

2.2.1 Motivation and Modeling

The following formulation of the robust combinatorial problem

min max
c∈U

c>x

s.t. x ∈ X ,
(2.11)

with X ⊆ {0, 1}n describing the set of feasible solutions having some combinatorial
structure, leaves open the question about the possible scenarios c ∈ Rn. But we
assume this information to be given and structured by specifying the form of the
uncertainty set U which describes the set of possible scenarios. Among all various
forms of U which are motivated by the tractability of the resulting problem (2.11),
the requirements of the application, available information, preferences of the user
and many other factors, we concentrate on ellipsoidal uncertainty. Here, U is given
by an ellipsoid in Rn:

U =

{
c ∈ Rn|

√
(c− c0)>A−1 (c− c0) ≤ r

}
,
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Figure 2.5: Geometry of an ellipse.

see Section 2.1.2.5. The vector c0 ∈ Rn represents the centroid of the ellipsoid
or the mean of the possible costs, and A ∈ Sn++ is a positive definite matrix
containing the following information: The eigenvectors vi of A (or A−1) represent
the orientations of the principal axes of the ellipsoid. The length of a half-axis
in the direction of the eigenvector vi is

√
λi, with λi being the eigenvalue of A

belonging to the eigenvector vi. In particular, the largest eigenvalue corresponds to
the eigenvector pointing to the direction of the largest extent of the ellipsoid [38].

We refer to A as the covariance matrix, defining the deviation of costs from the
mean value and their correlations among each other. The parameter r > 0 is used
to scale the ellipsoid. Its increasing by a factor p is equivalent to decreasing of
every entry of A by a factor p2.

2.2.1.1 Optimality Conditions and Closed Formula

We start by stating Problem (2.11) with ellipsoidal uncertainty in a more man-
ageable form. The objective function of the robust Problem (2.11) consists of
maximizing a linear function over a convex compact set (an ellipsoid). Thus,
we can consider the Karush-Kuhn-Tucker optimality conditions for the inner
maximization problem. Note that a Slater-point is given by c0 [6, 61].

For a non-trivial case of x 6= 0, consider the objective function

max
c∈U

c>x = −min
c∈U
−c>x (2.12)

of (2.11) as an optimization problem in c. We find a Lagrangean multiplier
λ∗ ≥ 0 satisfying the following necessary and sufficient conditions on the optimal
solution c∗ for every fixed x:

(c∗ − c0)A−1(c∗ − c0)− r2 ≤ 0 (Primal feasibility)
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− x+ 2λ∗A−1(c∗ − c0) = 0 (Stationarity)

λ∗
(
(c∗ − c0)>A−1(c∗ − c0)− r2

)
= 0 (Complementary slackness)

Obviously, λ∗ > 0, since otherwise the stationarity would imply x = 0. Thus, due
to non-singularity of A, we can rewrite the stationarity condition to

c∗ − c0 =
1

2λ∗
Ax. (2.13)

Complementary slackness and λ∗ > 0 also yield

(c∗ − c0)>A−1(c∗ − c0)− r2 = 0, (2.14)

where we can insert the equation (2.13) and get(
1

2λ∗
Ax

)>
A−1

(
1

2λ∗
Ax

)
− r2 = 0

⇐⇒ λ∗ =
1

2r

√
x>Ax.

Inserting λ∗ into (2.13) we get a closed formula for the optimal solution

c∗ = c0 + r
Ax√
x>Ax

of (2.12) and the formulation

c>0 x+ r
√
x>Ax

of the objective function of (2.11). Hence, Problem (2.11) can be written in the
form

min c>0 x+ r
√
x>Ax

s.t. x ∈ X .
(MR)

In the trivial case x = 0 the reformulation of the objective function is obviously
valid, too.

Problem (MR) is often referred to as the mean-risk-problem [60] and is mainly
applied and studied in the realm of finance and investment management. The objec-
tive is a convex combination of the mean c>0 x and the standard deviation

√
x>Ax

of a solution x ∈ X with respect to a stochastic cost vector c ∈ Rn, given by an
independent distribution. More precisely, the entries of A contain the information
about the correlations of the cost-coefficients between each other, with the variance
values given by the diagonal of A, and the entries of c0 contain the expected
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Figure 2.6: Reduction of linear optimization over an ellipsoid to linear optimization
over a unit ball.

values of the coefficients. Moreover, the constant r characterizes the level of risk
aversion of the user. Being a convex combination of the mean and the risk part,
the model takes its name.

A small value of r > 0 corresponds to an ellipsoid with a small volume. In this
case the costs may only vary in a small range around the mean value. That is, the
user is optimistic and willing to accept risk. However, if the parameter r is big,
the corresponding ellipsoid is large, containing and covering more scenarios. By
considering these additional and usually more unrealistic scenarios the user wants
to be secured in more cases – although they may appear very unlikely. Choosing
a huge value of r thus characterizes a risk-averse user and leads to a conservative
and more pessimistic solution. Hence, parametrizing the size of the ellipsoidal
uncertainty set, the user is able to control the trade-off between robustness and
performance.

Note that the reformulation of the objective function in (MR) can also be repro-
duced in a more elementary way. In particular, the objective function

max
c∈U

c>x

is a linear maximization problem over an ellipsoid for every fixed x (see Figure 2.6).

Since A is positive definite, there exists a regular matrix A
1
2 such that A =

A
1
2 (A

1
2 )>. By means of the substitution

z = (A−1)
1
2 (c− c0)⇐⇒ c = A

1
2 z + c0

for all z ∈ Rn, this task can be reduced to a linear maximization problem over a
ball [17] (see Figure 2.6), which can be solved straightforward since the optimal
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solution is given by the normalized vector of the objective function itself:

max c>x
s.t. (c− c0)>A−1(c− c0) ≤ r2 =

c>0 x+ max (A
1
2x)>z

s.t. ‖z‖ ≤ r

= c>0 x+ (A
1
2x)>

A
1
2x

‖A 1
2x‖

r

= c>0 x+ r
√
x>Ax.

With this we arrive at the same formulation of Problem (2.11).

2.2.1.2 Value-At-Risk Model

An interesting fact is that we obtain the same formulation (MR) of the robust
problem having originally an apparently different objective. In the financial
sector [21] as well as in industrial- and trading companies [57, 45] the so-called
value-at-risk is applied as a standard measure for quantification of different
risks [64].

Using the standard value-at-risk model [17]

min t
s.t. Pr(c>x ≤ t) ≥ λ

x ∈ X,
(2.15)

we assume that the costs c ∈ Rn in a given application follow some normal
distribution with mean c0 ∈ Rn and a covariance matrix A ∈ Sn++. The aim is to
minimize the budget t (or total costs), such that the probability of not exceeding
it reaches at least a given confidence level λ ∈ [0.5, 1].

Example 2.5 (The Businessman-Problem [60]). A businessman needs to find a
fastest track to the airport in the light of uncertain traffic conditions, to catch a
flight. He thus needs to allocate sufficient time t to ensure on-time arrival with
the confidence of 98%. The time needed for every street can be modeled by the
stochastic cost vector c and the probability of not exceeding the allocated time t
is then given by Pr(c>x ≤ t). With the goal of minimizing the time budget the
situation is exactly described by Problem (2.15). In this example X is the set of
all possible routes and λ = 0.98.

In this case we deal with the so-called reliable (robust) Shortest Path-problem
[25], which asks for the fastest track that ensures certain guarantee regarding the
degree of risk.

The value-at-risk optimization is also known as optimization under probabilistic
constraint or chance constraint, as the inequality in Problem (2.15) is called [59].
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Assuming normally distributed costs, i.e. c ∼ N(c0, A), a fixed feasible solution
x also implies a normally distributed random variable c>x with mean c>0 x and
covariance x>Ax. That means that the random variable

Z =
c>x− c>0 x
x>Ax

∼ N(0, 1)

is standard normally-distributed [65] and that Pr(Z ≤ z) = Φ(z), for Φ(·) being
a cumulative distribution function of a standard normal random variable N(0, 1).
Hence, the chance-constraint can be transformed as follows [60]:

Pr(c>x ≤ t) ≥ λ⇐⇒ Pr(
c>x− c>0 x√

x>Ax
≤ t− c>0 x√

x>Ax
) ≥ λ

⇐⇒ Φ(
t− c>0 x√
x>Ax

) ≥ λ

⇐⇒ t− c>0 x√
x>Ax

≥ Φ−1(λ)

⇐⇒ t ≥ c>0 x+ Φ−1(λ)
√
x>Ax.

Thus in Problem (2.15) we can minimize the function c>0 x+ Φ−1(λ)
√
x>Ax over x

instead of minimizing t and the value-at-risk model reduces to the mean-risk model,
but with a special risk-coefficient r = Φ−1(λ), which establishes the connection
between the volume of the uncertainty ellipsoid and the risk attitude of the user.

Note the conceptual analogy between the two reformulations: Starting with the
robust min-max problem an arbitrary ellipsoid is transformed into a unit ball.
Starting with the chance-constraint we transform an arbitrary normally distributed
random variable to a standard normally distributed random variable.

In the following, if not stated explicitly, we assume r = 1, as we can include
it into the covariance matrix anyway. Consequently, it is sufficient to deal with
the following formulation of the robust combinatorial problem with ellipsoidal
uncertainty in the remainder of this thesis:

min c>0 x+
√
x>Ax

s.t. x ∈ X .
(2.16)

2.2.2 Correlated and Uncorrelated Case

When considering ellipsoidal uncertainty in robust optimization, an important
special case can be distinguished from the general case, namely the assumption
of a diagonal covariance matrix A = Diag(a), a ∈ Rn+. Technically, A is then no
longer a covariance matrix, but a variance matrix, modeling the situation without
correlations between unique variable weights. In geometric terms this means that
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Figure 2.7: General and axis-parallel ellipsoids.

the ellipsoid is parallel to the axis (see Figure 2.7). Due to the binarity of x,
Problem (2.16) then reduces to

min c>0 x+
√
a>x

s.t. x ∈ X .
(2.17)

Both cases (the general case and the uncorrelated case) are differently and widely
applied.

Example 2.6 (The Correlated Businessman-Problem). To the situation of Ex-
ample 2.5, which, as we have seen, can be formulated in form (2.16), we add
the information that the flight is taking place on Monday morning. We may
suppose the traffic on certain roads to be correlated to the traffic on some other
roads. Besides from a similar occupation of adjacent roads, a familiar situation
is a similar occupation of “parallel” streets during the morning or evening rush
hours, i.e. the streets leading to or out of the metropolitan centers. This tendency
of the traffic to deviate from its expected value Monday mornings and Friday
afternoons in a similar way on different roads (to covariate) can be expressed in
covariances.

The uncorrelated case, however, seems to be a significant restriction. Nevertheless,
the huge variety of applications underpins the importance of this special case for
users. The probably most widespread application is portfolio selection given a
limited budget and expecting uncertain outcomes.

Example 2.7 (The Risk-Averse Capital Budgeting Problem [9]). An objective
of an investor choosing a set of investments is to maximize their expected return.
But he also has to take into account the risk associated with investments. The
investment decisions are represented by binary variables xi, i = 1, . . . , n, with
associated expected return values c0i and variance values ai. The variance values
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model the risk that the realized return deviates from the expected return. The
costs of investments are given by wi > 0 and the available budget is b > 0. This
leads to the following non-linear integer program

max c>0 x−
√
a>x

s.t. w>x ≤ b
x ∈ {0, 1}n ,

(2.18)

which can easily be transformed to a minimization problem of the form (2.17).
Here the underlying deterministic problem is the classical Knapsack-problem (see
Section 1.1).

The portfolio theory goes back to Harry Markowitz [55] and covers a big range
of applications primarily on capital markets and in investment management, but
can also be found in very different areas, as we can see in the following example.

Example 2.8 (The Skydiver-Problem). The objective of a skydiver planning
the next season is to maximize experience and fun while attending different
skydiving events. For the next year a set I = {1, . . . , n} of events is announced.
The exact experience and fun-outcomes for every event are not known, but can
be characterized by an expected fun-value c0 (structuring the known aspects such
as aircraft and invited load organizers) and a variance vector a (summing up the
uncertain factors such as weather and the skills level of other attending skydivers).

Moreover, the choice of the skydiver has to comply with the following restrictions:

1. The number of vacation days of the skydiver is limited to D and the event i
lasts di working days.

2. The overall cost bi for every event i (including the travel expenses, accom-
modation, registration fee and costs for the jump tickets) should not exceed
the limited budget B for all events taken together.

3. Due to overlapping, the skydiver should attend to at most one event from
certain subsets Mj ⊆ I, j ∈ {1, . . . , k}, of events.

This leads to the following Multi-Knapsack-problem with uncorrelated ellipsoidal
uncertainty

max c>0 x−
√
a>x

s.t. d>x ≤ D
b>x ≤ B∑

i∈Mj
xi ≤ 1 for all j ∈ {1, . . . , k}

x ∈ {0, 1}n .
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Being still relevant in practice, the uncorrelated case differs fundamentally in its
structural properties and theoretical complexity from the general case (with A
being an arbitrary positive definite matrix). The objective function of (2.16) is a
sum of a linear function in x and a norm induced by A [46], which means it is
convex on Rn. On contrary, the reformulation to (2.17) due to the binarity of x
makes the objective function of (2.17) concave.

While the general case is known to beNP-hard even with no additional constraints
(with X = {0, 1}n), there are relevant non-trivial sets X ⊆ {0, 1}n leading to a
polynomially solvable problem in the uncorrelated ellipsoidal uncertainty case [60].
Moreover, there are some non-classified cases with unknown complexity-status,
like the highly relevant case of the robust Shortest Path-problem, which we will
also address later.

In this work we will also distinguish between the general and the uncorrelated
cases. In the following we will give an overview over known facts from the literature
on both of these problems.

2.3 General Case of Ellipsoidal Uncertainty

In this section we consider the general Problem (2.16) with an arbitrary positive
definite matrix A ∈ Sn++ and various combinatorial sets X ⊆ {0, 1}n. We will
classify the problem from the complexity-theoretical perspective and show some
possible approaches discussed in the literature.

2.3.1 Complexity

As figured out in the previous section, there are numerous applications of Prob-
lem (2.16) with correlations. Being highly relevant in practice this problem turns
out to be hard to solve theoretically according to the following theorem:

Theorem 2.9. Problem (2.16) is NP-hard, even for X = {0, 1}n.

Proof. The unrestricted binary Problem (2.11) with U consisting of two scenarios
is NP-hard due to the reduction from the NP-hard Subset Sum-problem [9].
Bertsimas and Sim [15] have introduced the following polynomial transformation
of the objective max{c>1 x, c>2 x} of the two scenarios-problem to a special objective
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of (2.16):

max{c>1 x, c>2 x} = max
{c>1 x+ c>2 x

2
+
c>1 x− c>2 x

2
,
c>1 x+ c>2 x

2
− c>1 x− c>2 x

2

}
=
c>1 x+ c>2 x

2
+ max

{c>1 x− c>2 x
2

,−c
>
1 x− c>2 x

2

}
=
c>1 x+ c>2 x

2
+
∣∣∣c>1 x− c>2 x

2

∣∣∣
=

1

2
(c1 + c2)>x+

1

2

√
x>(c1 − c2)(c1 − c2)>x.

Thus, solving Problem (2.16) with the mean 1
2
(c1 + c2)> and the covariance matrix

1
4
(c1 − c2)(c1 − c2)> yields a solution of the NP-hard two scenarios-problem.

However, the covariance matrix such defined is not positive definite but only
positive semidefinite, if n ≥ 2. As we required positive definiteness in our definition
of the ellipsoidal uncertainty set, we extend this proof now for explicitly positive
definite matrices.

We scale c1 and c2 to c′1 and c′2 such that c′1, c
′
2 ∈ Zn. Let ε ∈ (0, 1) and consider

A′ =
1

4
(c′1 − c′2)(c′1 − c′2)> +

ε2

n
I ∈ Sn++,

with I being the identity matrix.

We show that the minimizer of

f ′(x) =
1

2
(c′1 − c′2)>x+

1

2

√
x>
(

(c′1 − c′2)(c′1 − c′2)> +
4ε2

n
I

)
x,

which is a well-defined instance of (2.16), is a minimizer of

f(x) =
1

2
(c′1 − c′2)>x+

1

2

√
x>(c′1 − c′2)(c′1 − c′2)>x,

which in turn is a minimizer of max{c>1 x, c>2 x}, as we have seen above (scaling
obviously does not affect the optimal solution in this case).

For all x ∈ {0, 1}n the inequalities

f(x) ≤ f ′(x) ≤ f(x) +
ε√
n

√
x>x ≤ f(x) + ε < f(x) + 1 (2.19)

hold, due to binarity of x and concavity of the square root. Then for a minimizer
x∗ of f ′ and an arbitrary x ∈ {0, 1}n follows

f(x)
(2.19)
> f ′(x)− 1 ≥ f ′(x∗)− 1

(2.19)

≥ f(x∗)− 1. (2.20)

Due to scaling and the special form of the square root argument, f is integer-valued
on {0, 1}n, such that the optimality of x∗ for f follows with (2.20).
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Since the transformation only acts on the objective function, arbitrary binary
sets X which lead to an NP-hard problem while combined with the objective
max{c>1 x, c>2 x}, also lead to an NP-hard problem while combined with the

objective c>0 x+
√
x>Ax. This applies in particular to the robust Shortest Path-

problem, the robust Minimum Spanning Tree-problem, the robust Assignment-
problem and many other classical combinatorial problems being polynomial in
the standard version [50]:

Corollary 2.10. The Shortest Path-problem under ellipsoidal uncertainty is
NP-hard.

Corollary 2.11. The Minimum Spanning Tree-problem under ellipsoidal uncer-
tainty is NP-hard.

Corollary 2.12. The Assignment-problem under ellipsoidal uncertainty is NP-
hard.

This follows from the fact that the corresponding problems are NP-hard for two
scenarios by [50].

Note that Theorem 2.9 does not provide any information about strong NP-
hardness of Problem (2.16), since the proof is based on the reduction of a weakly
NP-hard problem (see Chapter 1) [40].

We will show later that Problem (2.16) is in fact strongly NP-hard, even with
X = {0, 1}n (see Section 4.1). Therefore, assuming P 6= NP, we cannot even
hope to have a pseudo-polynomial algorithm for this problem.

However, this still does not exclude the existence of approximation algorithms for
Problem (2.16). A non-approximability result was shown though for the robust
Shortest Path-problem by Chassein et al. [24]. They use the fact that the problem
Independent Set on Degree Three Graphs is APX-hard [12] and give a PTAS
reduction of it to the Quadratic Shortest Path-problem (QSP). This proves the
APX-hardness of the problem QSP. This fact is then used to show the non-
approximability by a PTAS of the robust Shortest Path-problem on series-parallel
graphs. More generally, they show that an APX-hard problem with objective
function f > 0 implies that a problem over the same feasible set and with objective
function

√
f is APX-hard as well.

In particular, this applies for the Minimum Quadratic Assignment-problem, which
is not even in APX [5]:

Corollary 2.13. The Minimum Assignment-problem with correlated ellipsoidal
uncertainty is not approximable.

In the next section we show some approaches potentially appropriate or effectively
used in the literature to handle the general Problem (2.16).
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2.3.2 Second Order Cone Programming Formulation

We consider a different formulation of Problem (2.16) to suggest a spectrum of
existing algorithms to solve it. Due to the non-linearity of the set U there is no
straight-forward mixed-binary linear formulation of Problem (2.16) in the general
ellipsoidal uncertainty case [8]. However, the problem can be formulated as a
mixed-binary second-order cone program (SOCP), which is, of course, more general
than a mixed-binary linear program [17].

Modeling the objective function by a second-order cone constraint, we get

min c>0 x+
√
x>Ax

s.t. x ∈ X ⊆ {0, 1}n

⇐⇒ min c>0 x+

√
x>A

1
2 (A

1
2 )>x

s.t. x ∈ X ⊆ {0, 1}n

⇐⇒
min c>0 x+

√
y>y

s.t. y = (A
1
2 )>x

x ∈ X ⊆ {0, 1}n, y ∈ Rn

⇐⇒

min c>0 x+ z
s.t. ‖y‖2 ≤ z

y = (A
1
2 )>x

x ∈ X ⊆ {0, 1}n, y ∈ Rn, z ∈ R+

⇐⇒

min c>0 x+ z
s.t. (y, z)> ∈ Kn+1

y = (A
1
2 )>x

x ∈ X ⊆ {0, 1}n, y ∈ Rn, z ∈ R+,

with Kn+1 = {x ∈ Rn+1 | ‖(x1, ..., xn)>‖2 ≤ xn+1} being a second-order cone.

That implies already a common approach to the robust Problem (2.16), namely
the use of algorithms for general mixed-integer SOCPs [17, 54].

Continuous SOCPs are computationally tractable and can be solved in polynomial
time (up to arbitrary precision), for example by interior point methods [3]. These
provide a lower bound on Problem (2.16), which can be used in a branch and
bound-approach. However, the general integer linear programming is a special
case of the general mixed-binary SOCPs. The mixed-binary domain causes NP-
hardness for general mixed-integer SOCPs (which also follows from Theorem 2.9).
Accordingly, the algorithms for general mixed-integer SOCPs are only partially
satisfying, especially since relevant polynomial special cases of Problem (2.16)
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exist. Nevertheless, this property already provides us a tool to solve Problem (2.16),
which is in particular useful for an experimental evaluation of our algorithms later
on.

2.4 Uncorrelated case

We have seen that the robust combinatorial Problem (2.16) with ellipsoidal
uncertainty is hard to deal with in general. It is thus natural to study first the
special case of the uncorrelated ellipsoidal uncertainty, i.e. Problem (2.17), in
more detail. Moreover, there are numerous applications, some of which we have
seen in the previous sections, as well as many open theoretical questions referring
to it. To begin with, in this section we present the results on this problem known
in the literature.

2.4.1 Unconstrained Case: Tractability

As in the correlated case in Chapter 2.2 we start our studies about the uncorrelated
ellipsoidal uncertainty with the probably easiest case in combinatorial optimization
– the unrestricted case, i.e. with X = {0, 1}n:

min c>0 x+
√
a>x

s.t. x ∈ {0, 1}n. (2.21)

First we agree within this case on the assumption c0 < 0, as we can directly fix all
the variables i with c0i ≥ 0 and ai > 0 to 0: It can easily be verified that assigning
a value 1 to a variable i with c0i ≥ 0 and ai > 0 will increase the value of the
objective function, which cannot lead to an optimal solution.

Theorem 2.14. Problem (2.21) is solvable in polynomial time.

Proof. The objective function f of Problem (2.21) is submodular, since for x, y ∈
{0, 1}n with x ≤ y and ei being the i-th unit vector, the following calculation
holds:

f(x+ ei)− f(x) = c>0 (x+ ei) +
√
a>(x+ ei)− c>0 x−

√
a>x

= c0i +
√
a>x+ ai −

√
a>x

≥ c0i +
√
a>y + ai −

√
a>y

= f(y + ei)− f(y).

The inequality holds due to the concavity of the square root function. Since
unconstrained minimization of submodular functions over a binary domain is
known to be polynomial [39], the assertion of the theorem follows.
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With that the unrestricted uncorrelated case is apparently dealt with, but we
have to have in mind that the running time O(n5) of the best known polynomial
algorithm for general submodular functions makes those hardly applicable in
practice [39].

Thus, to solve Problem (2.21) in an adequate time, we will present a new approach,
exploiting the specificity of the objective function, in Section 3.1. For now we keep
in mind the theoretical efficiency of the unrestricted case and turn our attention
to the general set X ⊆ {0, 1}n.

2.4.2 Constrained Case: Connection to Bicriteria Opti-
mization

For many classical combinatorial sets X ⊂ {0, 1}n it is unknown if Problem (2.17)
can be solved in polynomial time. Since we may consider ellipsoids consisting of
exactly one scenario, this can obviously only be expected if the underlying linear
combinatorial Problem

min c>x
s.t. x ∈ X (2.22)

is polynomially solvable. On the other hand, to the best of our knowledge, no
tractable linear combinatorial problem has been found still with the corresponding
robust version (2.17) being NP-hard. In other words, the open question is, if
every easy combinatorial linear problem remains easy, when considered under
uncorrelated ellipsoidal uncertainty.

2.4.2.1 Bertsimas and Sim-Approach

A general result of Bertsimas and Sim [15] states that for general sets X, solving
the robust Problem (2.17) can be reduced to solving a number of underlying linear
optimization problems over X.

Consider the set W =
{
a>x | x ∈ {0, 1}n

}
and the function

g(w) =


1

2
√
w

if w ∈ W \ {0}

1√
amin

if w = 0,

where amin = min{i|ai>0} ai, as well as the optimization problem

Z(w) = min (c0 + g(w)a)>x+
√
w − wg(w)

s.t. x ∈ X, (2.23)
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for w ∈ W . The idea is to choose from all solutions x ∈ X, implied by every
w ∈ W , the one belonging to the w ∈ W optimizing

min Z(w)
s.t. w ∈ W. (2.24)

So, effectively we go through every possible value of a>x (which are finitely but
not necessarily polynomially many) and search for such a feasible solution xw ∈ X,
that

1. yields the value w, i.e. a>xw = w (we will see in the proof of the next
theorem, that if an x∗w optimal for a Z(w) does not fulfill a>x∗ = w, then
this w is not optimal for (2.24)) and

2. minimizes the original objective function (note, that if 1 holds, the value
of the objective function of (2.23) is equal to the value of the objective
function of (2.17)).

This approach admits the following theorem.

Theorem 2.15. [15] Let w be an optimal solution of (2.24) and x∗w ∈ X an opti-
mal solution of Problem (2.23) corresponding to w. Then x∗w is optimal for (2.17).

Proof. It is enough to show that the optimal value of (2.17) coincides with the
optimal value of (2.24).

To this end let first x∗ be an optimal solution of (2.17) and w∗ = a>x∗ ∈ W . Then

min
x∈X

c>0 x+
√
a>x = c>0 x

∗ +
√
a>x∗

= c>0 x
∗ +
√
w∗

= c>0 x
∗ +
√
w∗ + g(w∗)a>x∗ − g(w∗)w∗

≥ min c>0 x+
√
w∗ + g(w∗)a>x− g(w∗)w∗

= Z(w∗)

≥ min
w∈W

Z(w).

Now, for arbitrary w ∈ W , let xw be an optimal solution of the corresponding
Problem (2.23). In the case w 6= 0, the inequality

a>xw
2
√
w

+
w

2
≥
√
a>xw,

which is always true since

a>xw
2
√
w

+
w

2
≥
√
a>xw

⇐⇒a>xw + w ≥ 2
√
w
√
a>xw

⇐⇒(
√
a>xw +

√
w)2 ≥ 0,
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yields

Z(w) = min
x∈X

c>0 x+
1

2
√
w
a>x+

1

2

√
w

= c>0 xw +
1

2
√
w
a>xw +

1

2

√
w

≥ c>0 xw +
√
a>xw

≥ min
x∈X

c>0 x+
√
a>x.

In the case w = 0, we obtain

1
√
amin

a>xw ≥
n∑
i=1

√
ai(xw)i =

n∑
i=1

√
ai(xw)i ≥

√
a>xw

due to the concavity of the square root function, and, hence, deduce

Z(w) = c>0 xw +
1

√
amin

a>xw ≥ c>0 xw +
√
a>xw ≥ min

x∈X
c>0 x+

√
a>x.

Based on the enumeration of all possible values under the square-root (all possible
elements of W ), this approach immediately implies the polynomial solvability of
Problem (2.17) for some specific assignments of c0 and a, for example:

Corollary 2.16. Let ai = s for all i = 1, . . . , n, for some s > 0. Then Prob-
lem (2.17) can be solved by solving n+ 1 linear problems over X.

This result does not involve the specific choice of the set X ⊆ {0, 1}n. But a
further corollary of Theorem 2.15 becomes important for particular structures of
the feasible set.

Corollary 2.17. There exists a λ ∈
[
g(e>a), g(0)

]
such that every optimal solu-

tion of the problem
min c>0 x+ λa>x
s.t. x ∈ X (2.25)

is an optimal solution of Problem (2.17).

We point out the obvious connection between robust optimization with uncorre-
lated ellipsoidal uncertainty and parametric optimization, which we describe more
closely in the next section.

At this stage we can recognize that this implication of Theorem 2.15 is of particular
importance for matroids.
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Corollary 2.18. If (2.17) is an optimization problem over a matroid, then it
reduces to solving an at most quadratic number of underlying linear problems.

Proof. For matroids, the optimal solutions with respect to linear costs depend
only on the order of the elements with respect to the costs [33]. When passing
through all possible values of λ monotonously, the order of every pair of elements
with respect to the cost function c>0 x+ λa>x can change only once, yielding that
at most

(
n
2

)
+1 different orderings of elements are possible. The interval borders of

λ leading to the same ordering can be computed easily by solving the equations

(c0 + λa)i = (c0 + λa)j

for every pair (i, j) of variables.

Corollary 2.18 yields a complexity bound for Problem (2.17) with some important
sets X ⊆ {0, 1}n.

Corollary 2.19. The robust Minimum Spanning Tree-problem (2.17) is solvable
in time O(n2 log2(n)).

Corollary 2.20. Problem (2.21) is solvable in time O(n2).

The first claim rests on the upper bound of O(n log n) on the time complexity
of Kruskal’s algorithm [51]. The second claim uses that a linear instance of
Problem (2.21) can be solved in linear time.

2.4.2.2 Nikolova-Approach

We observe an obvious trade-off between the parts c>0 x and
√
a>x in the objective

function of Problem (2.17), which in particular becomes evident in the theory of
Bertsimas and Sim [15].

This feature is getting even clearer and more essential in the approach of Nikolova
[60]. Here, the author mainly focuses on finding general approximation algorithms
for Problem (2.17), but by unfolding an important connection to bicriteria and
parametric optimization also provides as a by-product an exact algorithm to
solve this problem. This connection forms the base of further research in this
area [24, 23, 67].

In bicriteria optimization we aim to optimize two independent and sometimes
conflicting objectives – lets say c>0 x and a>x – over the same feasible set, searching
for all solutions with the property that the costs of one of the objectives cannot
be decreased without increasing the costs of the other objective, see Section 1.3.
Lets take a look on the projection

Projc0,a(X) =

{(
c>0 x
a>x

) ∣∣∣∣x ∈ X} ⊆ R2
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c>0 x

a>x

Figure 2.8: Projection of the feasible set X onto the span of the objectives c>0 x
and a>x. Efficient solutions (red), extreme efficient solutions (connected by blue
lines).

of the feasible set X onto the span of both objectives c>0 x and a>x (see Figure 2.8).
Among these so-called efficient solutions, constituting the Pareto-frontier

pfc0,a(X) =

{(
c>0 x
a>x

) ∣∣∣∣x ∈ X, @y ∈ X : c>0 y < c>0 x, a
>y ≤ a>x

or c>0 y ≤ c>0 x, a
>y < a>x

}
,

we find some points of particular importance – the extreme efficient solutions–
solutions corresponding to the extreme points of conv(pfc0,a(X)) (see Figure (2.8)).

In parametric optimization we aim to solve Problem (2.25) for every value λ ∈
[0,∞). Here, of particular importance are the so-called break points – the values
of λ in which the optimal solution of Problem (2.25) changes.

It is easy to see that every extreme point of conv(pfc0,a(X)) corresponds to an
optimal solution of the parametric Problem (2.25) for some values of λ [42, 22].
Conversely, every value of λ ∈ [0,∞) obviously leads to an optimal solution
located in an extreme point of conv(pfc0,a(X)). Thus, finding the break points of
the parametric Problem (2.25) corresponds exactly to finding the extreme efficient
solutions of the bicriteria problem.

There is an important connection between robust optimization under uncorrelated
ellipsoidal uncertainty and both bicriteria and parametric optimization:

Theorem 2.21. Every optimal solution of the robust Problem (2.17) is an extreme
efficient solution of the corresponding bicriteria problem, i.e. an extreme point of
the set conv(pfc0,a(X)).
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Proof. [18] Clearly the smallest combination of the mean and the variance is
located at one of the extreme points of the boundary of the Pareto-frontier due to
the monotony of the objective function of Problem (2.17) in its mean and variance
parts and due to concavity of the square-root.

More precisely, let x∗ ∈ X be an optimal solution of the robust Problem (2.17).
Consider

Dc0,a(X) =
{
z ∈ R2 | ∃y ∈ conv(Projc0,a(X)) : z ≥ y

}
,

the so-called dominant of conv(Projc0,a(X)), i.e. the set of points that are
coordinate-wise bigger or equal to the points in conv(Projc0,a(X)). Note that the
extreme points of Dc0,a(X) coincide with the extreme points of conv(pfc0,a(X)).

We have (
c>0 x
a>x

)
∈ Projc0,a(X) ⊆ Dc0,a(X),

and for some x1, x2 ∈ X with

(
c>0 x1

a>x1

)
and

(
c>0 x2

a>x2

)
being extreme points of

Dc0,a(X) we can write(
c>0 x

∗

a>x∗

)
= λ

(
c>0 x1

a>x1

)
+ (1− λ)

(
c>0 x2

a>x2

)
+ µ1e1 + µ2e2,

for some λ ∈ [0, 1] and µ1, µ2 ≥ 0. Hence,

f(x∗) = c>0 x
∗ +
√
a>x∗

= λc>0 x1 + (1− λ)c>0 x2 + µ1 +
√
λa>x1 + (1− λ)a>x2 + µ2

≥ λc>0 x1 + (1− λ)c>0 x2 + λ
√
a>x1 + (1− λ)

√
a>x2

= λf(x1) + (1− λ)f(x2).

This implies f(x1) ≤ f(x∗) or f(x2) ≤ f(x∗). So, x1 or x2 are optimal for
Problem (2.17) as well.

With these considerations the same result to Corollary 2.17 can be observed. Let

x∗ be an optimal solution of Problem (2.17). Due to Theorem 2.21,
(
c>0 x

∗, a>x∗
)>

is then an extreme point of Dc0,a(X). As
(
c>0 x

∗, a>x∗
)>

is an extreme point of

a convex set, there exists a λ∗ > 0 such that
(
c>0 x

∗, a>x∗
)>

is a unique optimal
solution of the problem

min z1 + λ∗z2

s.t. z ∈ Dc0,a(X)
(2.26)

and thus of the problem
min z1 + λ∗z2

s.t. z ∈ Projc0,a(X) ,
(2.27)
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since Projc0,a(X) ⊆ Dc0,a(X) and
(
c>0 x

∗, a>x∗
)> ∈ Projc0,a(X). Going back to

the inverse image of Projc0,a(X) we conclude, due to the uniqueness of the solution,
that every optimal solution of the parametric Problem (2.25) has the same values

c>0 x
∗ and a>x∗, i.e. the same value c>0 x

∗ +
√
a>x∗ in Problem (2.17) and thus,

every optimal solution of (2.25) is also optimal for (2.17), since x∗ was optimal
for (2.17). This implies that a λ ∈ (0,∞) exists such that every optimal solution
of the parametric problem (2.25) is an optimal solution of Problem (2.17) [18].

With the equivalence between finding the extreme efficient solutions and finding
the break points, Corollary 2.17 and Theorem 2.21 state about the same – Prob-
lem (2.17) can be solved by computing and comparing of all the extreme points
of the Pareto-frontier, as well as by computing and comparing of one optimal
solution implied by every pair of consecutive break points.

Especially for matroids, due to the definition of a break point, the implication of
polynomial solvability of Problem (2.17) mentioned in Corollary 2.18 is straight-
forward and based on the same argument. Defined as the values of λ where the
optimal solution changes, the break points in this case are exactly the values
where the ordering of the costs changes. Thus there are at most quadratically
many break points.

Computing all the break points in the case of matroids is very easy, as we have
seen in the previous section, due to the specificity of the problem. But in general,
it is not always clear for which values of λ the optimal solution of (2.25) changes.
In particular, the number of these values might not be polynomial, as the following
Lemma shows.

Lemma 2.22. The number of break points in the parametric Shortest Path-problem
is nO(logn) [22].

As the number of break points in the parametric problem corresponding to
Problem (2.17) defines the complexity of the suggested exact algorithm of Nikolova
[60], it is called parametric complexity of Problem (2.17), which we will occasionally
refer to.

The connection to the extreme efficient solutions yields an opportunity to enumer-
ate the break points efficiently (with respect to the number of the break points
and provided an efficient oracle for the underlying linear problem) and thus to
solve Problem (2.17) exactly [60].

The extreme efficient solutions can be enumerated as follows. Every extreme
efficient solution minimizes a linear function c>0 x+ λa>x over the set X for some
value λ. It is easy to find the two extreme efficient solutions minimizing c>0 x and
a>x and the corresponding projections B and A, respectively (see Figure (2.9)).
The slope of the connection line between A and B induces the new optimization
direction, i.e. a new linear objective function c>0 x+λa>x for some λ. Optimizing it
over the feasible set X yields a new extreme efficient solution and the corresponding
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c>0 x

a>x

A

B

C

Figure 2.9: Enumerating extreme efficient solutions.

projection C (see Figure (2.9)). The procedure is continued considering every
two neighboring extreme points found so far. If an optimal solution for some λ
corresponds to an extreme point which is already found, then there are no more
extreme points between the corresponding endpoints. The procedure takes 2k
oracle calls to the deterministic problem if k is the number of extreme points [60].

2.4.2.3 FPTAS and Pseudo-Polynomial Algorithm

As there are still combinatorial problems under uncorrelated ellipsoidal uncertainty
which are unclassified from the complexity-theoretical point of view, efficient
algorithms to solve them might not exist. We sketch an approach how to handle
these problems anyway, presented by Nikolova [60]. It is an FPTAS based on the
connection between the considered problems and bicriteria optimization outlined in
Section 2.4.2.2 and it requires the existence of a linear oracle for the corresponding
deterministic problem.

We consider again the projection of the feasible set of Problem (2.17) onto the
mean-variance span. We recall that the optimal solution of (2.17) is one of
the extreme points of the non-dominated set. The corresponding projections
Projc0,a(Lλ) of the level sets

Lλ :=
{
x ∈ Rn | c>0 x+

√
a>x = λ

}
to values λ ∈ R of the objective function are parabolas, described by

a>x = (c>x)2 + λ2 − 2λc>x.



58 CHAPTER 2. ROBUST OPTIMIZATION

a>x

c>0 x

L(1+ε)λ0

Lλ0

Figure 2.10: Insciribing a polygon between the two level sets Lλ0 and L(1+ε)λ0 of

c>0 x+
√
a>x in the mean-variance-span.

Starting from some lower bound flb =: λ0 on Problem (2.17), consider two
level sets Lλ0 and L(1+ε)λ0 for a given precision ε ∈ (0, 1). The approximate
nonlinear separation oracle provided in [60] returns a feasible solution x′ ∈ X
with f(x′) ≤ (1 + ε)λ0 or determines that in the entire feasible set there is no
solution with the function value better than λ0, i.e. that f(x) > λ0 for all x ∈ X.

To this aim it first inscribes a polygon between the two level sets (parabolas)
such that the extreme points of it are on the level set Lλ0 and its sides are
tangent to the level set L(1+ε)λ0 (see Figure 2.10). The sides of the polygon
induce linear functions, which are optimized over the feasible set using the linear
oracle for the corresponding deterministic problem. If none of the sides (or
rather the corresponding objectives) yields a feasible solution x′ ∈ X such that
f(x′) ≤ (1 + ε)λ0, the oracle returns the answer that f(x) > λ0 for all x ∈ X and
the procedure goes on considering level sets to values (1 + ε)λ0 and (1 + ε)2λ0 etc.

To ensure that the number of the oracle calls to the linear algorithm for the
deterministic problem is small (in particular, it is polynomial in 1

ε
and indepen-

dent on the problem size) for every level set, i.e. that the number of segments
approximating each level set is small, Nikolova [60] proves that the segments are
sufficiently long. For the exact characterization of the segment-endpoints and a
more formal definition of the oracle and details see [60].

The existence of an FPTAS for all combinatorial problems under uncorrelated
ellipsoidal uncertainty provided an efficient linear oracle is a very strong result.

Unfortunately, the requirements of Theorem 1.28 are not valid for Problem (2.17),



2.4. UNCORRELATED CASE 59

in particular, the output of Problem (2.17) is not integrally-valued. That means, at
this point we cannot deduce weak NP-hardness of Problem (2.17) from existence
of an FPTAS.

Nevertheless, a stronger complexity bound follows from the approach presented
in [15] and outlined in Section 2.4.2.1:

Corollary 2.23. Problem (2.17) is at most weakly NP-hard, if the underlying
deterministic problem is tractable.

Proof. Bertsimas and Sim [15] provide an exact approach with the running time
O(|W |np), where |W | is the cardinality of the set

W =
{
a>x | x ∈ {0, 1}n

}
and O(np) the polynomial upper bound on the running time of the linear oracle
for the corresponding deterministic problem (2.22). Due to the obvious bound

|W | ≤ amaxn+ 1

a conservative upper bound on the overall running time of the approach is
O((amaxn + 1)np) = O(amaxn

p+1), which is polynomial if we assume amax ≤ nq

for a fixed q ∈ N. Due to Definition 1.25 the approach is then pseudo-polynomial
and Problem (2.17) is at most weakly NP-hard.

2.4.3 Robust Multicriteria Optimization

The reduction of the robust Problem (2.17) to a bicriteria problem, as shown in
Section 2.4.2, makes it possible to naturally generalize this approach for multi-
objective combinatorial problems under uncorrelated ellipsoidal uncertainty. So
we now take a look at the problem

min

(
f1(x), . . . , fk(x),max

c∈U1
c>x, . . . ,max

c∈U l
c>x

)>
s.t. x ∈ X ,

with certain functions f1(x), . . . , fk(x) und robust functions

max
c∈U1

c>x, . . . ,max
c∈U l

c>x.

If U1, . . . ,Ul are axis-parallel ellipsoids, the problem obviously reduces to

min
(
f1(x), . . . , fk(x), (c1

0)>x+
√

(a1)>x, . . . , (cl0)>x+
√

(al)>x
)>

s.t. x ∈ X .
(2.28)
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Example 2.24. Within the enforcing energy revolution in Europe and especially
in Germany new power supply grids have to be identified to transport electricity
over long distances [1]. The power paths (vectors x ∈ X ⊆ {0, 1}n, with X
modeling a set of paths) are evaluated regarding several objectives:

1. A minimal distance to residential areas should be maintained, so that the
edges of the underlying graph are weighted by their compliance;

2. bundling on highways is highly desirable;

3. nature-, ground- and resources policies should be complied with.

These three objectives can be structured to functions f 1, f 2, and f 3. However, aside
from the given highways networks as well as the nature- and ground constitution,
the long-term distance to the residential areas is subject to uncertainty: The
populated areas are growing or shrinking and as the minimal distance by the time
of construction should still be maintained, the expansion risk should be taken
into account.

The now-distance can be quantified to the mean vector c0 ∈ Rn. It is natural to
structure the mentioned risk by means of a variance vector a ∈ Rn+, which can be
defined, for example, in proportion to density of the settlements. The task then
reduces to the following problem:

min
(
c>0 x+

√
a>x, f2(x), f3(x)

)>
s.t. x ∈ X .

Theorem 2.21 implies that Problem (2.28) can be solved in the following three
steps:

ALGORITHM FOR THE ROBUST MULTIOBJECTIVE PROBLEM (2.28)

(1) Find the Pareto set Pm of the multiobjective problem

min
(
f1(x), . . . , fk(x), (c1

0)>x, (a1)>x, . . . , (cl0)>x, (al)>x
)>

s.t. x ∈ X
(2.29)

using the methods of multiobjective optimization;

(2) for every x ∈ Pm compute the corresponding objective values of (2.28);

(3) obtain the Pareto set Pr of (2.28) by eliminating the solutions that are now
dominated by others in Pm, if such exist.
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Corollary 2.25. The Pareto set P ∗ of (2.28) is Pr.

Proof. Since Pm is a Pareto set of (2.29), for every y ∈ X \Pm there is an x ∈ Pm
which satisfies

f 1(x) ≤ f 1(y)
...

fk(x) ≤ fk(y)
(c1

0)>x ≤ (c1
0)>y

(a1)>x ≤ (a1)>y
...

(cl0)>x ≤ (cl0)>y
(al)>x ≤ (al)>y.

This implies that for every y ∈ X \ Pm there is an x ∈ Pm which satisfies

f 1(x) ≤ f 1(y)
...

fk(x) ≤ fk(y)

(c1
0)>x+

√
(a1)>x ≤ (c1

0)>y +
√

(a1)>y
...

(cl0)>x+
√

(al)>x ≤ (cl0)>y +
√

(al)>y,

such that P ∗ ⊆ Pm holds. After the second step the equality P ∗ = Pr is established.

Obviously, P ∗ might be a proper subset of Pm:

Example 2.26. Consider two elements x, y ∈ Pm with
f 1(x)
f 2(x)
c>0 x
a>x

 =


1
2
1
4

 and


f 1(y)
f 2(y)
c>0 y
a>y

 =


1
2
4
1

 .

We obtain  f 1(x)
f 2(x)

c>0 x+
√
a>x

 =

1
2
3

 and

 f 1(y)
f 2(y)

c>0 y +
√
a>y

 =

1
2
5

 ,

i.e. x dominates y with respect to Problem (2.28).
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Part II

Uncorrelated Case
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In robust optimization with ellipsoidal uncertainty sets, usually defined by a
mean c0 ∈ Rn and a covariance matrix A ∈ Sn++, the theoretically most interesting
special case is defined by means of a diagonal matrix A – the case where we assume
to not have any covariances between the costs of the variables. This case leads to
Model (2.17), which we focus on in this section. Although, due to diagonality, the
problem is considerably simplified compared to the general model, the difficulty of
a trade-off between the linear and the square-root term remains in the objective
function. The objective function keeps being non-separable on account of the
square-root operator and therefore still not trivial. A need for investigation arises
also due to the fact that the complexity status of Problem (2.17) for a wide
range of underlying combinatorial sets X ⊆ {0, 1}n (including the important
robust Shortest Path-problem) is still unknown. Exact solution methods, even
when not polynomial in theory, are therefore in demand. For matroids, where the
polynomial solvability has been shown in the uncorrelated case, the algorithms
found so far lead to the runtime of O(l2), if l is the time needed for one oracle call
to a corresponding deterministic algorithm. This is still too long for a practical
use. For the set X = {0, 1}n we mentioned two approaches in Chapter 2, both
with polynomial running time. Firstly, solving Problem (2.21), we minimize a
submodular function over an unrestricted binary domain, which is possible in
time O(n5). Secondly, solving Problem (2.21), we minimize a mean-risk objective
function over a matroid, which in this case leads to a running time of O(n2). Still
for a practical use faster algorithms are required, even in these special cases.

In this part we introduce our results of the research on the uncorrelated case. We
will pay a particular attention to two special subsets of X ⊆ {0, 1}n: In Chapter 3
we will take a closer look at the set X = {0, 1}n and aim at an improvement of
the runtime of the known algorithms for general submodular functions as well
as of the runtime of the approach for matroids given in [60]. We will also give a
glimpse on the case of integer variables combined with ellipsoidal uncertainty, for
which we provide a pseudo-polynomial algorithm.

In Chapter 4 the set X of all s− t-paths in a graph is in the center of attention.
This set in combination with uncorrelated ellipsoidal uncertainty is currently
very popular, since in the light of a high degree of relevance there is still no
polynomial algorithm for the corresponding robust Shortest Path-problem. We
will also describe an exact algorithm for general robust combinatorial problems,
which is in essence suitable for any type of uncertainty combined with any type of
constraints. It is a branch and bound-algorithm that uses lower bounds obtained
from Lagrangean decomposition.
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Chapter 3

Unconstrained Uncorrelated Case

Dealing with uncorrelated ellipsoidal uncertainty in combinatorial optimization,
i.e. Problem (2.17), where we have seen the importance of the exact form of the
underlying combinatorial set X ⊆ {0, 1}n for the problem complexity, it appears
natural to consider first the unrestricted case X = {0, 1}n.

To imagine some real world situation, which can be modeled by this apparently very
special case, one can think again about portfolio selection (like in Example 2.7),
but without any budget- or other restrictions. Aiming to maximize the return
of stocks and if the budget allows to invest in all the given n items, we still do
not want to make a loss of our invested funds. This is though possible due to the
uncertain economical developments and the associated variances of the expected
return values.

So we focus on the Problem (2.21), which we already know to be polynomially
solvable due to submodularity of the objective function (see Section 2.4).

In this section we devise a faster algorithm to solve this problem. This is an
important step in our research in the area of robust optimization, since the
unrestricted binary Problem (2.21) appears as a subproblem in the decomposition
approach for Problem (2.17) with arbitrary combinatorial sets X ⊆ {0, 1}n and
later also with arbitrary A, which we describe in Chapters 4 and 6. We discuss its
properties and generalizability.

3.1 Combinatorial O(n log n)-Algorithm

We deduce now the new combinatorial algorithm to solve Problem (2.21) efficiently
in time O(n log n) and prove its correctness and runtime. These results have been
published in our paper [8] and in our technical report [9]. After that we will
analyze the properties of the algorithm and apply it to general p-norms.
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3.1.1 The Algorithm

The unrestricted binary Problem (2.21) with uncorrelated ellipsoidal uncertainty
only deals with the question for every variable if it is worthwhile for the objective
function to set the variable to 1 or not, since there is no further constraint on
solutions to be satisfied. If the cost contribution of a variable to the value of
the objective function is negative, then the variable should be set to 1, if it is
non-negative, the variable should be set to 0. Besides from the cost coefficient
c0i which influences explicitly the value of the objective function, this decision
depends also on the effect of the other variables on the impact of the coefficient ai,
which varies due to concavity of the square-root. Submodularity of the objective
function, documented in Section 2.4, reveals that setting a variable to 1 has a
decreasing effect on the contributions of other variables. We analyze in more detail
the contribution of a variable to the objective function value depending on the
values of other variables.

To this purpose, we consider two solutions of Problem (2.21) which differ in exactly
one variable i. The difference between the corresponding objective values is

∆if(J) = c0i +

√∑
j∈J

aj + ai −
√∑

j∈J

aj, (3.1)

where J denotes the set of variables which are 1 in both solutions. This value is
also known as the discrete derivative of variable i [71]. It describes the contribution
of setting variable i to 1 and clearly depends on the set J or, more precisely, on the
value

∑
j∈J aj. We abstract this dependency by replacing the quantity

∑
j∈J aj

through a continuous variable z > 0 and define for each variable i its contribution
function by

Ci(z) = c0i +
√
z + ai −

√
z

(see Figure 3.1). The contribution functions Ci are strictly decreasing and therefore
have at most one root each. The root ri of Ci indicates the value which

∑
j∈J aj

must reach such that setting variable i to 1 becomes profitable. We use the fact
that setting a variable to 1 never has a negative effect on the contributions of
other variables, due to submodularity of the objective function of (2.21). Our
basic idea for the construction of an optimal solution of (2.21) is that, due to the
definition of ri, a variable i cannot be 1 in the optimal solution while another
variable having a smaller root is 0. This is due to the fact that, if a variable i
has the value 1 in the optimal solution, its contribution to the solution value is
necessarily negative due to the unrestricted minimization sense. In other words,
the value ri > 0, necessary for the contribution of this variable to be negative, is
reached by the sum of the a-coefficients of the other variables with the value 1
in this solution. But that means that the contribution of the variables having a
smaller root than ri and which are assumed to be 0 in the optimal solution would



3.1. COMBINATORIAL O(N LOGN)-ALGORITHM 69

Ci(z)

z

C1(z)
C2(z)

C6(z)

C4(z)

C3(z)

C5(z)

r1

r2

r6r4

Figure 3.1: Contribution functions.

be negative and would strictly improve the value of the solution. This observation
leads to a sorting-based algorithm. However, in a first step we have to eliminate
variables i for which Ci has no root, using the following lemma.

Lemma 3.1. There exists an optimal solution x∗ of Problem (2.21) with the
following properties:

(i) If c0i ≥ 0, then x∗i = 0.

(ii) If c0i ≤ −
√
ai, then x∗i = 1.

Proof. The condition in (i) implies that the function Ci is positive everywhere,
as ai > 0. This implies that any solution with xi = 1 can be improved by
setting xi = 0. The condition in (ii) implies that Ci is non-positive everywhere, as

c0i +
√
z + ai −

√
z ≤ c0i +

√
ai ≤ 0

by concavity of the square root function. The contribution of the variable i to the
value of an arbitrary solution is therefore non-positive, so that it may be fixed
to 1 without loss of generality.

The two cases of Lemma 3.1, in which the contribution functions have no roots,
are illustrated by the dashed functions in Figure 3.1. For the remaining variables,
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Algorithm 1 To solve the uncorrelated binary mean-risk problem
Input: c0 ∈ Rn, a ∈ Rn+
Output: Vector x∗ ∈ {0, 1}n minimizing c>0 x+

√
a>x

. Preprocessing
k = 0, A = 0, C = 0
for i ∈ {1, ..., n} do

if c0i ≥ 0 then
x∗i = 0 . this element cannot improve the solution

else if c0i ≤ −
√
ai then

x∗i = 1 . this element will always improve the solution
A = A+ ai, C = C + c0i

else

ri ←
(
ai−c20i

2c0i

)2

k ← k + 1
end if

end for

sort the variables such that x1, . . . , xk are unfixed with r1 ≤ r2 ≤ · · · ≤ rk

f ∗ = C +
√
A, i∗ = 0

for i ∈ {1, ..., k} do . determining the objective value
A = A+ ai, C = C + c0i

if C +
√
A < f ∗ then

f ∗ = C +
√
A, i∗ = i

end if
end for

for i ∈ {1, ..., i∗} do . defining the solution
x∗i = 1

end for
for i ∈ {i∗ + 1, ..., k} do

x∗i = 0
end for

return x∗
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i.e. the variables with 0 > c0i > −
√
ai, the functions Ci have exactly one positive

root each. The entire algorithm is stated in Algorithm 1.

Theorem 3.2. Algorithm 1 solves Problem (2.21) in time O(n log n).

Proof. The algorithm runs in linear time except for the sorting of variables which
takes O(n log n) time. It thus remains to prove the correctness of Algorithm 1.

We first assume k = n, i.e. that no variable is fixed by Lemma 3.1. Then it suffices
to show that (after sorting) every optimal solution x∗ satisfies x∗1 ≥ x∗2 ≥ · · · ≥ x∗n.

Assume on contrary that x∗ is an optimal solution with x∗j = 0 and x∗j+1 = 1 for
some j < n. Consider the two solutions x0 and x1 defined by

x0
i =

{
0 for i = j + 1

x∗i otherwise,
x1
i =

{
1 for i = j

x∗i otherwise.

By optimality of x∗ we have

0 ≥ f(x∗)− f(x0) = Cj+1

(∑
i∈I ai

)
,

for I = {i ∈ {1, ..., n} \ {j + 1} | x∗i = 1} and hence, by definition of rj+1 and rj,∑
i∈I

ai ≥ rj+1 ≥ rj . (3.2)

Then, using the concavity of the square-root function we have

f(x1)− f(x∗) = c0j +

√∑
i∈I

ai + aj+1 + aj −
√∑

i∈I

ai + aj+1

< c0j +

√∑
i∈I

ai + aj −
√∑

i∈I

ai

(3.2)

≤ c0j +
√
rj + aj −

√
rj = 0,

which contradicts the optimality of x∗.

Now assume k < n, i.e. some variables were fixed according to Lemma 3.1. Fixing
a variable to 0 (case (i)) causes a trivial dimension reduction. Fixing a variable to 1
(case (ii)) yields a constant C < 0 in the linear part of the objective function and
a constant A > 0 in the square root term. In this case the roots can be computed
using the same formula, because an additional constant in the square root term
does not affect the order of the roots (the constant C is subtracted anyway).
It merely causes a shift of the roots to the left by the same amount for each
variable. Thus, fixing variables does not affect the strategy and the correctness of
the algorithm in the presence of fixings is easily verified.
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In the procedure only the order of the roots matters. Due to the equivalence

− ai
c0i

+ c0i ≤ −
aj
c0j

+ c0j ⇐⇒
(
ai − c2

0i

2c0i

)2

≤
(
aj − c2

0j

2c0j

)2

for i and j with c0i, c0j < 0 and c0i > −
√
ai and c0j > −

√
aj , one can save several

monotonous operations in the calculation of the roots and sort the variables by

− ai
c0i

+ c0i instead of by
(
ai−c20i

2c0i

)2

.

3.1.2 Theoretical Properties

As mentioned above, the most costly part of the algorithm is sorting the variables,
which is possible in O(n log n) runtime (for example with merge sort). All of the
n+1 (or with notation of Algorithm 1, k+1) uprising solutions need to be evaluated
since we have not found any structure (monotony, (quasi) concavity/convexity) in
the arising sequence of values.

Shen et al. in their article “A Joint Location Inventory Model” [69] provide a
different sorting rule on variables, which leads to a subset of feasible solutions
containing the optimal solution of Problem (2.21). They sort the variables by c0i

ai
(which is the same as sorting by − ai

c0i
). It is interesting to note that both sorting

rules yield in general different subsets of feasible solutions both containing the
optimal solution:

Example 3.3. Consider the instance of Problem (2.21) with

c0 =
(
−2,−10,−1

2
,−1

5
,−3,−1

)>
and a = (10, 2, 5, 1, 16, 25)>.

By both rules, x2 has to be fixed to 1. Algorithm 1 yields the order

x2, x5, x4, x1, x3, x6

of the variables. Hence, the solutions to be compared are
0
1
0
0
0
0

 ,


0
1
0
0
1
0

 ,


0
1
0
1
1
0

 ,


1
1
0
1
1
0

 ,


1
1
1
1
1
0

 and


1
1
1
1
1
1

 .

The sorting rule from [69] leads to the solutions
0
1
0
0
0
0

 ,


0
1
0
1
0
0

 ,


1
1
0
1
0
0

 ,


1
1
0
1
1
0

 ,


1
1
1
1
1
0

 and


1
1
1
1
1
1

 .
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The optimal solution (1, 1, 0, 1, 1, 0)> is contained in both subsets.

3.2 Generalization to p-Norm-Uncertainty

As analysed in detail above, the principal uncertainty sets discussed in the literature
are ellipsoidal-, discrete scenarios-, interval uncertainty, as well as general polytope-
and Γ-uncertainty. Most of the continuous uncertainty sets can be defined by a
mean and a range of deviation, i.e. most of them are based on a norm. For example,
the Γ-uncertainty is based on the 1-norm, the uncorrelated ellipsoidal uncertainty
on the Euclidian norm and the interval uncertainty on the ∞-norm. Taking a
closer look on the connection between these three uncertainty types, we realize
that their considering is not primary caused by the frequency of application in
the real life, but by their simplicity. However, in some applications not only these
three special cases might be the best models of uncertain reality, but sometimes
rather the in-between cases are conceivable.

3.2.1 The Model

We consider now the general p-norm, with p ∈ (1,∞), characterizing the uncer-
tainty set

Up =

{
c ∈ Rn | p

√
1

ap−1
1

(c− c0)p1 + · · ·+ 1

ap−1
n

(c− c0)pn ≤ r

}
,

with c0 being the center of the set and a1, . . . , an an analogue of the variances in
the case of ellipsoids (see Figure 3.2).

The parameter r acts again like a volume-describing constant, which against the
background of robust optimization parametrizes the level of risk-aversion of the
user. So, now we aim to solve the robust problem

min max
c∈Up

c>x

s.t. x ∈ {0, 1}n .
(3.3)

Further on we refer to this uncertainty as to p-norm-uncertainty. The case p = 2,
i.e. the uncorrelated ellipsoidal uncertainty, is still contained in this formulation.

Like in the uncorrelated ellipsoidal uncertainty case, we can reformulate the
objective function of Problem (3.3) for general 1 < p < ∞ to a closed formula
in x.

Theorem 3.4. Problem (3.3) can be formulated as

min c>0 x+ r
(
a>x

) p−1
p

s.t. x ∈ {0, 1}n .
(3.4)
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Figure 3.2: p-norm-uncertainty sets for different p > 1.

Proof. Like in Section 2.2.1.1 we can use, for example, the Karush-Kuhn-Tucker
optimality conditions for the maximization problem: For the considered values
of p the set Up is described by a norm, i.e. the corresponding unit ball is a
convex compact set; a Slater point is given by c0 and the objective function of
the maximization problem is linear for every fixed x.

For the non-trivial case of x 6= 0 and for the optimal solution c∗ of

max
c∈Up

c>x = −min
c∈Up
−c>x (3.5)

we find a Lagrangean multiplier λ∗ ≥ 0 satisfying the following conditions:

p

√
1

ap−1
1

(c∗ − c0)p1 + · · ·+ 1

ap−1
n

(c∗ − c0)pn − r ≤ 0 (Primal feasibility)

− x+
λ∗(

1

ap−1
1

(c∗ − c0)p1 + · · ·+ 1

ap−1
n

(c∗ − c0)pn

) p−1
p


1

ap−1
1

(c∗ − c0)p−1
1

...
1

ap−1
n

(c∗ − c0)p−1
n

 = 0

(Stationarity)

λ∗

(
p

√
1

ap−1
1

(c∗ − c0)p1 + · · ·+ 1

ap−1
n

(c∗ − c0)pn − r

)
= 0

(Complementary slackness)

Obviously λ∗ > 0, since otherwise the stationarity would imply x = 0. Comple-
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mentary slackness yields then

1

ap−1
1

(c∗ − c0)p1 + · · ·+ 1

ap−1
n

(c∗ − c0)pn = rp. (3.6)

Inserting (3.6) into the stationarity condition implies

−x+ λ∗
1

rp−1


1

ap−1
1

(c∗ − c0)p−1
1

...
1

ap−1
n

(c∗ − c0)p−1
n

 = 0

and finally

c∗ − c0 =
r

p−1
√
λ∗

a1x1
...

anxn

 , (3.7)

where we used the binarity of x.

Substituting c∗ − c0 in the constraint of the problem and using again the binarity
of x gives

rp = ε1

(
ra1x1

p−1
√
λ∗

)p
+ · · ·+ εn

(
ranxn
p−1
√
λ∗

)p
⇐⇒

λ∗ = (a1x1 + · · ·+ anxn)
p−1
p .

Inserting λ∗ into (3.7) we get a closed formula for the optimal solution

c∗ = c0 +
r

p
√
a1x1 + · · ·+ anxn

a1x1
...

a1x1


of the maximization problem and using once again the binarity of x the objective
function of (3.3) turns to

c>0 x+ r
(
a>x

) p−1
p .

In the trivial case x = 0 the reformulation of the objective function is obviously
valid, too.

The robust binary problem under p-norm-uncertainty can thus be stated as Prob-
lem (3.4).

An interesting observation is that

lim
p→∞

c>0 x+ r(a>x)
p−1
p = (c0 + ra)>x.

This is in fact the objective function of (2.11) with interval uncertainty, which in
turn is based on the ∞-norm.
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3.2.2 Solution Approach

We now show that the idea of Algorithm 1 can be applied to solve Problem (3.4).

Lemma 3.5. The objective function of (3.4) is submodular for p ≥ 1.

Proof. The concavity of the root function f : R→ R, z 7→ z
p−1
p is easy to verify

using the second derivative

f ′′(z) =
1− p
p2z

1+p
p

,

which is non-positive for all p ≥ 1 and z > 0. The objective function of (3.4) is
then a sum of a modular function c>0 x and a composition of a modular function
a>x, for a ≥ 0, with a concave function, and thus submodular [6].

Also here, due to submodularity, fixing a variable to 1 can only be profitable for
contributions of the other variables and we get, in analogy to the case p = 2, the
following result.

Lemma 3.6. There exists an optimal solution x∗ of Problem (3.4) with the
following properties:

(i) If c0i ≥ 0, then x∗i = 0.

(ii) If c0i ≤ −a
p−1
p

i , then x∗i = 1.

Proof. In analogy to the proof of Lemma 3.1.

Corollary 3.7. Problem (3.4) can be solved in time O(n log n).

Proof. In analogy to the proof of Theorem 3.2.

Thus, a slight modification of Algorithm 1 concerning computation of the roots
(which can easily be done using Newton’s method [37]) and the preprocessing in
the sense of Lemma 3.6 is enough to solve the unrestricted binary problem (3.3)
with general p-norm-uncertainty. As a final motivation to this concept we give
the following example:

Example 3.8. Consider the 2×3 grid graph on Figure 3.3 and the corresponding
values (c0ij, aij) for every edge (i, j). Only a slight modification of the uncertainty
set from the ellipsoidal uncertainty over the more conservative 3- and 4-norm-
uncertainty to the 5-norm- and the interval-uncertainty already changes the
optimal solution from the path a− b− c− f over the path a− b− e− f to the
path a− d− e− f (see Table 3.1).

This example illustrates the concept of p-norm-uncertainty as an intermediate
case between the ellipsoidal- and the interval uncertainty.
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a b c

d e f

(7, 2) (5, 11) (3, 20)

(4, 9) (3, 20)

(8, 2) (5, 5)

Figure 3.3: Different uncertainty sets yield different robust solutions.

Uncertainty a− b− c− f a− b− e− f a− d− e− f
ellipsoidal 17 19 23

3-norm 23.39 22.55 24.33
4-norm 28.52 25.18 25.20
5-norm 32.50 27.13 25.80
interval 59 39 29

Table 3.1: Objective values of different paths in Figure 3.3 evaluated with respect
to different norm-based uncertainty sets.

3.3 Generalization to Integer Optimization

A natural generalization of the unrestricted version of Problem (2.11) deals with
integer variables with upper bounds being any integer numbers instead of 1, i.e.

min max
c∈U

c>x

s.t. 0 ≤ x ≤ u
x ∈ Zn,

(IP)

with u ∈ Zn and U =
{
c ∈ Rn| (c− c0)>A−1 (c− c0) ≤ r2

}
.

Even though this problem is not a typical representative of the problem set covered
by this thesis, its consideration can be seen as a byproduct of the investigation of
the binary case which is motivated by the same field of applications. Thinking of
the portfolio theory where investment decisions have to be made, represented by
independent random variables (see Example 2.18), we might not only restrict to
the binary question, whether the investment should be made or not. The amount
of items to each investment might be also asked for, which leads to general integer
variables.

For r = 1 and in complete analogy to the binary case, Problem (IP) can be
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reduced to

min c>0 x+

√√√√ n∑
i=1

aix2
i

s.t. 0 ≤ x ≤ u
x ∈ Zn.

(IUE)

In contrast to the binary case, however, the objective function still contains
quadratic terms. Like in the binary case, without loss of generality we assume
a ∈ Rn+ and c0 ∈ Rn−, since for positive coefficients c0i the corresponding variable
can directly be fixed to 0.

Due to similarity to the binary Problem (2.21) one might suppose that in the
optimal solution each variable xi is set to 0 or to its upper bound ui, such that
Problem (IUE) could be easily reduced to the binary Problem (2.21). But this
supposition is wrong as the following example shows.

Example 3.9. Consider Problem (IUE) with n = 2, c0 = (−2,−3)>, a = (10, 6)>

and u = (2, 2)>. By means of enumeration we can see that the optimal solution
is (1, 2)>, such that not all variables are set to their bounds.

Nevertheless, we can reduce Problem (IUE) to Problem (2.21). We will now
introduce a pseudo-polynomial algorithm for Problem (IUE) based on the idea
of the algorithm in the binary case and conclude that Problem (IP) is at most
weakly NP-hard.

We consider two solutions x0 and x1 which differ by one at exactly one variable i,
i.e. x0

i = k − 1 and x1
i = k with k ∈ {1, . . . , ui} and x0

j = x1
j for j 6= i. The

difference between the corresponding objective values is

f(x1)− f(x0) =
∑
j 6=i

c0jx
1
j + c0ik +

√∑
j 6=i

aj(x1
j)

2 + aik2

−
∑
j 6=i

c0jx
0
j − c0i(k − 1)−

√∑
j 6=i

aj(x0
j)

2 + ai(k − 1)2

= c0i +

√√√√ n∑
j=1

aj(x0
j)

2 + ai(2k − 1)−

√√√√ n∑
j=1

aj(x0
j)

2.

Based on this observation and similar to the binary case, we introduce contribution
functions for each value increase from k − 1 to k of each variable i:

Ci,k(z) := c0i +
√
z + ai(2k − 1)−

√
z.

The analytical properties of the contribution functions are equivalent to those in
the binary case, so that after the same preprocessing (with respect to ai(2k − 1)
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instead of ai) only the functions having exactly one root each remain. It is easy
to see that

Ci,k(z) < Ci,k+1(z) for all z > 0,

which implies ri,k < ri,k+1, i.e. the set (ri,1, . . . , ri,ui) of the roots of one variable
is monotonous. We sort all roots (of all variables and their possible values) in a
non-decreasing order. We define at most

∑n
i=1 ui + 1 solutions xi,k by means of

increasing of the variable values by one in each step in the order of the roots. In
the solution xi,k the variable i has the value k. The other variables j are set to the
values corresponding to the largest root rj,l, which is smaller than the root ri,k,
i.e.

(xi,k)j = arg max
l
rj,l

s.t. rj,l ≤ ri,k.
(3.8)

Due to monotony of the roots for one variable these solutions are well-defined.
Comparing the objective values of these solutions yields an optimal solution
of Problem (IUE). Before we formally prove this claim, let us demonstrate the
approach on a short example.

Example 3.10. Consider again the instance of Example 3.9. As

c02 = −3 < −
√

6(2− 1) = −
√
a2(2k − 1),

the value of the variable x2 is at least 1, such that we do not need to consider the
contribution function C2,1. For the other functions we have:

The contribution function of the variable x1 for the value increase from 0 to 1 is

C1,1(z) = −2 +
√
z + 10−

√
z,

the contribution function of the variable x1 for the value increase from 1 to 2 is

C1,2(z) = −2 +
√
z + 30−

√
z,

the contribution function of the variable x2 for the value increase from 1 to 2 is

C2,2(z) = −3 +
√
z + 18−

√
z,

see Figure 3.4. Note, that C1,1(z) < C1,2(z) and C2,1(z) < C2,2(z) for all z ∈ [0,∞).
For the roots we have:

r1,1 = 9
4
, r1,2 = 169

4
and r2,2 = 9

4
,

such that r1,1 = r2,2 < r1,2. As the value of x2 is at least 1, the first solution we
obtain is the “zero solution” (0, 1)>. The smallest roots are r1,1 = r2,2, such that
we next increase the value of the variable x1 to 1 and the value of the variable x2

to 2 and obtain the solution (1, 2)>. Finally, the next larger root is r1,2, such that
we increase the value of the variable x1 to 2 and obtain the solution (2, 2)>. The
comparison of the objective values of the three solutions shows that (1, 2)> is
optimal.



80 CHAPTER 3. UNCONSTRAINED UNCORRELATED CASE

Cik(z)

z

C11(z)

C12(z)

C21(z)

C22(z)

r1,1 and r2,2

Figure 3.4: The function C2,1 runs underneath the z-axis and has no root. The
optimal value of the variable x2 will be at least 1.

Theorem 3.11. Let

(xi,k)j = arg max
l
rj,l

s.t. rj,l ≤ ri,k,

with ri,k and rj,l, i, j ∈ {1, . . . , n} , k ∈ {1, . . . , ui} , l ∈ {1, . . . , uj}, being the roots
of the contribution functions Ci,k and Cj,l, respectively. Then an optimal solution
of problem (IUE) is given by

arg min
xi,k

c>0 xi,k +

√√√√ n∑
j=1

aj(xi,k)2
j ,

i.e., comparing the at most
∑n

i=1 ui+ 1 solutions xi,k w.r.t. their objective function
values yields an optimal solution of Problem (IUE).

Proof. Let x∗ be an optimal solution of (IUE) with x∗i = k and x∗j = l. Assume
on contrary rj,l+1 < ri,k for some i, j ≤ n, i 6= j and 0 ≤ l < uj, 0 < k ≤ ui (the
case ri,k+1 < rj,l is analogous). This would mean that the optimal solution x∗ is
not one of the

∑n
i=1 ui + 1 solutions we consider in the procedure above. Consider

the two solutions x0 and x1 defined by

x0
t =

{
k − 1 for t = i
x∗t otherwise

and x1
t =

{
l + 1 for t = j
x∗t otherwise.
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By optimality of x∗ we have

0 ≥ f(x∗)− f(x0) =
∑
t6=i,j

c0tx
∗
t + c0ik + c0jl +

√∑
t6=i,j

atx∗2t + aik2 + ajl2

−
∑
t6=i,j

c0tx
∗
t − c0i(k − l)− c0jl −

√∑
t6=i,j

atx∗2t + ai(k − 1)2 + ajl2

= c0i +

√∑
t6=i,j

atx∗2t + aik2 + ajl2 −
√∑

t6=i,j

atx∗2t + ai(k − 1)2 + ajl2

= c0i +

√∑
t6=i,j

atx∗2t + ai(k − 1)2 + ajl2 + ai(2k − 1)

−
√∑

t6=i,j

atx∗2t + ai(k − 1)2 + ajl2

= Ci,k

(∑
t6=i,j

atx
∗2
t + ai(k − 1)2 + ajl

2

)

and hence by definition of ri,k and our assumption

∑
t6=i,j

atx
∗2
t + ai(k − 1)2 + ajl

2 ≥ ri,k > rj,l+1. (3.9)
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Then, using the concavity of the square-root function we have

f(x1)− f(x∗) =
∑
t6=i,j

c0tx
∗
t + c0ik + c0j(l + 1) +

√∑
t6=i,j

atx∗2t + aik2 + aj(l + 1)2

−
∑
t6=i,j

c0tx
∗
t − c0ik − c0jl −

√∑
t6=i,j

atx∗2t + aik2 + ajl2

= c0j +

√∑
t6=i,j

atx∗2t + aik2 + aj(l + 1)2 −
√∑

t6=i,j

atx∗2t + aik2 + ajl2

< c0j +

√∑
t6=i,j

atx∗2t + ai(k − 1)2 + aj(l + 1)2

−
√∑

t6=i,j

atx∗2t + ai(k − 1)2 + ajl2

= c0j +

√∑
t6=i,j

atx∗2t + ai(k − 1)2 + ajl2 + ai(2(l + 1)− 1)

−
√∑

t6=i,j

atx∗2t + ai(k − 1)2 + ajl2

= Cj,l+1

(∑
t6=i,j

atx
∗2
t + ai(k − 1)2 + ajl

2

)
< 0.

The last inequality is due to (3.9) and yields a contradiction to the optimality
of x∗.

The entire procedure is stated in Algorithm 2.

Corollary 3.12. Problem (IUE) is solvable in pseudo-polynomial time.

Corollary 3.12 is based on Definition 1.25. In fact, if the values of the parameters
ui, i = 1, . . . , n, are polynomially bounded, Algorithm 2 takes polynomial time,
namely O(

∑n
i=1 ui log

∑n
i=1 ui).
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Algorithm 2 To solve the uncorrelated integer mean-risk problem
Input: c0 ∈ R, a ∈ Rn+, u ∈ Zn

+

Output: Vector x∗ ∈ Zn
+ minimizing c>0 x+

√∑n
i=1 aix

2
i

. Preprocessing
k∗i = 0 for all i ∈ {1, . . . , n}, A = 0, C = 0
for i ∈ {1, ..., n} do

if c0i ≥ 0 then
x∗i = 0 . this element cannot improve the solution

else if
c20i+ai

2ai
∈ [1, ui] then . if c0i ≤ −

√
ai(2k − 1) for some k ∈ [1, ui]

k∗i = b c
2
0i+ai
2ai
c . value of x∗i is at least k∗i

A = A+ ai(k
∗
i )

2, C = C + k∗i c0i

else
for k ∈ {k∗i + 1, ..., ui} do

ri,k ←
(
ai(2k−1)−c20i

2c0i

)2

k ← k + 1
end for

end if
end for

Sort the roots ri,k for i ∈ {1, ..., n} and k ∈ {k∗i + 1, ..., ui} in a non-descending
order and obtain the list L with |L| ≤

∑n
i=1 ui of the corresponding indices.

f ∗ = C +
√
A

for (i, k) ∈ L do
A = A+ ai(2k − 1), C = C + c0i

if C +
√
A < f ∗ then

f ∗ = C +
√
A, k∗i = k∗i + 1

end if
end for

for i ∈ {1, ..., n} do
x∗i = k∗i

end for

return x∗
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Chapter 4

Constrained Uncorrelated Case

We now address Problem (2.17) with an arbitrary combinatorial set X ⊆ {0, 1}n.
We have seen that the specificity of X causes differences in the complexity: While
some forms of X lead to proven polynomial solvability, for others, like the robust
Shortest Path-problem, the complexity status is yet unclear.

In the first part of this chapter the robust Shortest Path-problem with diagonal
covariance matrix A obtains particular attention. We specify the implications of
the Nikolova-approach (see Section 2.4.2.2) for this problem and analyze in more
detail a labeling approach proposed in [25]. We discuss this approach from the
complexity-theoretical perspective and extract a property which might lead to
polynomial solvability of problems with certain graph structures.

The second part is dedicated to general combinatorial sets X ⊆ {0, 1}n. We
describe an exact algorithm to solve Problem (2.17). It is a branch and bound-
approach based on Lagrangean decomposition, which uses our results for the
unconstrained case and computes lower bounds using Algorithm 1 described
in Section 3.1. We discuss its theoretical properties and evaluate it afterwards
experimentally. One of the applications we address in our tests is again the robust
Shortest Path-problem.

4.1 Shortest Path under Ellipsoidal Uncertainty

One of the best-known combinatorial problems with many real-world applications
is the Shortest Path-problem. As we have taken a deeper interest in combinatorial
optimization under ellipsoidal uncertainty, a particular investigation of the robust
Shortest Path-problem, known in the literature as the reliable Shortest Path-
problem [25, 24], is required. We want to examine how the tractability of this special
problem behaves under the robust objective function and – no less important –
how easy it is to solve it in practice.

85
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Thus, the combinatorial structure we consider in this section is a directed graph
G = (V,E) with a node set V and an edge set E and two special nodes s, t ∈ V ,
being the start node and the terminal node, respectively. We aim to find the
shortest s− t-path with respect to randomly distributed costs on edges, i.e. we
specialize on the problem

min c>0 x+
√
x>Ax

s.t. x ∈ Xst
(RSP)

with Xst defining the set of s − t-paths in G. Here we consider the case of
uncorrelated edge costs, i.e. the objective function consisting of a linear part c>0 x
and a non-linear part

√
a>x, assuming A to be a diagonal matrix. Also, we make

the assumption of a graph with non-negative weights.

The standard Shortest Path-problem is known to be solvable in polynomial time
using for example Dijkstra’s algorithm [31]. We now discuss what causes the
difficulty in the reliable Shortest Path-problem in comparison to the linear case.

The most widely applied algorithms for the deterministic problem make use of
Bellman’s principal of optimality [49], the foundation of dynamic programming.
The principal states that the optimal solution of some problems is composed of
optimal solutions of partial problems. For the Shortest Path-problem it holds
in the case of a linear objective function: The shortest path from the node s to
the node t is composed of subpaths which in turn are shortest paths between
their initial and terminal nodes. Based on that observation, it is sufficient to
successively store the shortest path and its value from the source node s to every
other node until we get to the terminal node t.

When considering ellipsoidal uncertainty in the edge costs, Bellman’s principal
of optimality is obviously not valid any more. As we can see in Figure 4.1, the
shortest s − t-path with respect to the mean-risk costs might even consist of
longest subpaths. The non-validity of this fundamental property in the case of
the mean-risk objective function makes the algorithms for the standard Shortest
Path-problem unsuitable for Problem (RSP).

4.1.1 Nikolova-Approach

Referring to the theory of Nikolova [60] and Bertsimas and Sim [15] from Sec-
tion 2.4, we observe that the strategy of merely finding all extreme efficient
solutions and choosing the best one with respect to the mean-risk objective
function does not lead right away to a proven tractability of Problem (RSP) in
the uncorrelated case. More precisely, from Section 2.4 we know that there is
a bound nΘ(logn) [60] on the number of break points in the parametric Shortest
Path-problem, i.e. the break points-based approach has a running time of nO(logn),
which is super-polynomial.
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Figure 4.1: In this graph with values (c0i, ai) for every edge i the longest subpaths
(both upper edges), with respect to the mean-risk costs, constitute the shortest
s− t-path.

However, polynomial techniques have been developed to strongly reduce the
number of extreme efficient solutions considered in the process of finding a reliable
shortest path with the exact break points-approach, such as List of Unexplored
Triangles and Linear Approximation [24]. We recall that in the break points-
approach we aim to find the value of λ ∈ [0,∞) for which the optimal solution of
the deterministic problem

min c>0 x+ λa>x
s.t. x ∈ Xsp

(4.1)

corresponds to the optimal solution of Problem (RSP). In both techniques, similar
to the branch and bound-idea, some parts of the λ-domain are excluded from
consideration due to certain observations mostly based on the concavity of the
function f : R2

+ → R+, f((x, y)) = x+
√
y. Unfortunately, the mentioned acceler-

ating strategies do not lead to a theoretically proven polynomial running time,
although the practical running time is drastically reduced. Also, these scanning
techniques do not use the specificity of a path set, but can be applied for other
underlying combinatorial problems.

While the theoretical complexity of the general uncorrelated Problem (RSP) is still
an open question, the presence of certain special structures in a graph presumably
implies though a polynomial number of extreme efficient paths in the corresponding
parametrical problem, so that the break points-approach solves these special cases
of Problem (RSP) efficiently. This is the case with the series-parallel graphs.

Definition 4.1. A multigraph is called series-parallel if it can be constructed
recursively from a complete graph with two nodes by the operations of subdividing
and of doubling edges.

For this special graph type Chassein et al. [24] proved a polynomial number of
break points:

Theorem 4.2. [24] If G = (V,E) is a series-parallel graph with |V | = n and
|E| = m, the number of extreme efficient solutions of the bicriteria shortest path
problem is bounded by m− n+ 2.
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For the proof we refer to [24].

Corollary 4.3. The robust Shortest Path-problem (RSP) with uncorrelated ellip-
soidal uncertainty on series-parallel graphs is polynomially solvable.

4.1.2 Labeling Approach

A different approach to the uncorrelated Problem (RSP) is based on the node-
labeling algorithms for the bicriteria Shortest Path-problem [25]. The idea of the
labeling approaches is to successively proceed through the nodes, similarly to
Dijkstra’s algorithm, but instead of storing one single path in every node, to
store all non-dominated paths in the sense of Definition 1.32. The tuples of both
objective function values of a path from the source node to the current node are
called labels. While proceeding with respect to certain priority conditions (we
refer to Chen et al. [25] for the details) the labeling approach leads to a running
time O(mp+ n log n), where n and m are the numbers of nodes and edges in the
graph, respectively, and p is the maximum number of labels stored at a single
node during the procedure. Therefore, the complexity of the labeling approach
depends on the quality of the dominance conditions used to eliminate stored labels
in the nodes.

As we know that the set of the non-dominated solutions is a superset of the extreme
efficient solutions, this approach also solves Problem (RSP) exactly. However, we
also know that the number of non-dominated solutions in the sense of bicriteria
optimization is exponential in general (see Section 1.3).

Nevertheless, Chen et al. [25] devise stronger dominance conditions specified for
the uncorrelated Problem (RSP) which allow to cut significantly more labels in
every node than in the standard labeling algorithms for the bicriteria shortest
path problem.

Definition 4.4. [25] A v −w-path p dominates a v −w-path q, q 6= p, if p and q
satisfy

Cp ≤ Cq and Cp +
√
Ap < Cq +

√
Aq,

where Cp :=
∑

i∈p c0i, Cq :=
∑

i∈q c0i, Ap :=
∑

i∈p ai and Aq :=
∑

i∈q ai.

It is easy to see that if a v−w-path q is dominated by a v−w-path p in the sense
of Definition 4.4, it then can be excluded from further consideration as part of an
optimal solution of the uncorrelated Problem (RSP):

Theorem 4.5. [25] Every subpath of an optimal s− t-path is a non-dominated
path between its initial and end nodes.

The proof is straightforward and can be found in [25].
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The claim of Theorem 4.5 can be seen as a substitute for Bellman’s principal of
optimality for the case of the mean-risk objective function. Further on, from the
fact that only one optimal solution of Problem (RSP) is required, it is sufficient
to store a single representative for every non-dominated tuple of values (Cp, Ap).
For the same reason, we can also exclude the case

Cp < Cq and Cp +
√
Ap = Cq +

√
Aq

from consideration, since in this case Ap > Aq holds and by adding to both labels
further positive edge values (if we are not considering labels in the destination node)
the paths p and q would straight away satisfy the initial dominance conditions of
Definition 4.4 due to submodularity of the function c>0 x +

√
a>x. Thus we can

assume that for a set of non-dominated labels in a node a proper inequality in
both conditions holds:

Definition 4.6 (Mean-risk-dominance). A set P of v − w-paths is called non-
dominated in the sense of a mean-risk objective function, if every pair p, q ∈ P
satisfies one of the following conditions:

(i) Cp < Cq and Cp +
√
Ap > Cq +

√
Aq;

(ii) Cp > Cq and Cp +
√
Ap < Cq +

√
Aq.

From now on we will call a set described in Definition 4.6 a non-dominated set.

So far a significant reduction of the number of stored labels when using the
dominance-conditions of Definition 4.6 is shown experimentally [25]. Unfortunately,
no proven polynomial upper bound on the number of labels stored using the
conditions is still found.

We examined the mean-risk-dominance w.r.t. the cardinality of the non-dominated
sets and regarding possible additional elimination criteria. To this aim we consid-
ered the capability of a subpath to be part of an optimal path depending on the
upcoming coefficients, which supposed to be added to the given subpath, when
proceeding with the algorithm.

Let (Cp, Ap) and (Cq, Aq) be two non-dominated labels in a given node v, and p
and q the corresponding s− v-paths. We may assume

Cp < Cq and Cp +
√
Ap > Cq +

√
Aq. (4.2)

The subpath q is better than p with respect to the objective function in (RSP).
Still, the path p cannot be excluded from consideration, since, if the variance
value of a v − t-path, that we can add to both subpaths to obtain s− t-paths, is
big enough, the relation might reverse. In a given graph a tuple (x, z) of the mean
and variance values of a v − t-path might exist, such that

Cp + x+
√
Ap + z < Cq + x+

√
Aq + z. (4.3)
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Figure 4.2: Label functions.

We consider the behavior of the two functions Lp and Lq with Li(z) : R[−Ai,∞] → R+

and
Li(z) = Ci +

√
Ai + z,

for i = p, q, which we refer to as the label function of the path i (see Figure 4.2).

Obviously, only the non-negative domain is interesting due to the assumption
a ≥ 0 and since z is modeling the sum of variances.

Label functions are normal square root functions beginning at (−Ai, Ci), for
i = p, q. Two such functions intersect with each other in the positive domain
exactly once at the point z∗, due to the condition (4.2). Indeed, if the label
functions beginning at (−Ap, Cp) and (−Aq, Cq) intersect in the negative domain,
then

Cp < Cq and Cp +
√
Ap < Cq +

√
Aq (4.4)

holds. If they do not intersect, then

Cp ≥ Cq and Cp +
√
Ap > Cq +

√
Aq (4.5)

holds. Both cases imply that one path dominates the other one with respect to
Definition 4.6.

Clearly, for z ∈ [0, z∗) the path q yields a better objective value than p, and for
z ∈ (z∗,∞) vice versa. We call the corresponding pointwise minimum function,
i.e. the function Dv : [0,∞)→ [0,∞), with

Dv(z) = min
p∈Xsv

Lp(z),

the dominance function of the set of subpaths in v.

One possibility to exclude some non-dominated subpaths from further consid-
eration is to find bounds amin and amax on the possible variance values of the
upcoming v− t-paths, such that the intersection point is outside the corresponding
interval [amin, amax]. That would mean that one path has a better objective value
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on the whole interesting domain and there are no v − t subpaths which would
improve the value compared to the other subpaths within the given graph. Simple
bounds are given for example by

amin = min
x∈Xvt

a>x,

and

amax = a>xc with xc = arg min
x∈Xvt

c>x.

It remains a subject of further research to find stronger bounds and to investigate
whether these lead to a polynomial number of relevant labels.

The consideration of the dominance functions leads to a further interesting observa-
tion. Let p1, . . . , pk be the non-dominated s−v-paths, (Cp1 , Ap1), . . . , (Cpk , Apk) the
corresponding labels and Cp1 +

√
Ap1 , . . . , Cpk +

√
Apk the corresponding objective

function values. As well, consider the non-dominated v−t-paths q1, . . . , ql. Compos-
ing the path pi with the path qj leads to the label (Cpi +Cqj , Api +Aqj ) in the node
t. The corresponding label function Lpi+qj results from moving the graph of the la-
bel function Lpi by the vector (−Aqj , Cqj )>. The same translation by (−Aqj , Cqj )>
occurs while composing every subpath pi, i = 1, . . . k, with a fixed subpath qj , such
that the whole dominance function of the set of paths {p1 + qj, . . . , pk + qj} is the
dominance function of the set of paths {p1, . . . , pk} translated by (−Aqj , Cqj)>.
That means that for every set of paths {p1 + qj, . . . , pk + qj}, j = 1, . . . , l, we
obtain the same graphs of the dominance functions, merely translated by different
vectors and consisting of k pieces each. In particular, these have the same break
points and the same slopes.

This observation is the base of the following property:

Theorem 4.7. Let k be the number of non-dominated s − v-paths and l the
number of non-dominated v − t-paths. The number of non-dominated s− t-paths
containing v is not greater than k + l − 1.

Proof. Let D̃v ⊆ R2 be the graph of the dominance function Dv of the k non-
dominated s − v-paths in the node v. It consists of exactly k sections and has
k − 1 break points. Furthermore, it is concave and monotonous as the point-wise
minimum of k translated square-root functions of the form Ci +

√
Ai + z.

We now add the l non-dominated v − t-paths and consider the dominance func-
tion Dt of the set of s− t-paths containing v in the node t. The graph D̃t ⊆ R2

results from D̃v by translating the graph D̃v l-times and considering the new
point-wise minimum. Two identical but translated concave monotonous functions
intersect at most once or coincide (have infinitely many intersection points, but
this case can be excluded from consideration since we are interested in the non-
dominated paths in the sense of Definition 4.6). This leads to at most

(
l
2

)
= l(l−1)

2
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Figure 4.3: Formation of the s− v − t-dominance function.

intersection points. All but l − 1 of these are dominated by the new minimum
function, i.e. only l − 1 of these define a section of D̃t (see Figure 4.3).

Thus, the arising dominance function has at most k + l − 1 sections, which
correspond to a non-dominated s− t-path containing v each.

The bound in Theorem 4.7 is a significant reduction compared with the number kl
of the possible s − t-paths consisting of the k non-dominated s − v- and l non-
dominated v − t-subpaths.

Due to the non-negativity of the variance values, the dominance graph is always
shifted to the left when adding subpaths. That means that in the course of the
procedure the interesting domain shrinks, which causes exclusion of paths.

With the property of Theorem 4.7 polynomial solvability of the reliable Shortest
Path-problem may result for certain graph structures. This is the case for the
series-parallel graphs (see Definition 4.1). The bound m− n+ 2 on the number of
non-dominated paths in the destination node in a graph with n nodes and m edges
can easily be shown. This is the same bound provided in [24] (see Theorem 4.2)
on the number of the extreme efficient solutions.

One may wonder if the set of extreme efficient solutions coincides with the set
of non-dominated solutions in the destination node. In the following example we
observe that this is not the case.

Example 4.8. Consider the graph in Figure 4.4. Here, using e.g. the break points-
approach from Section 2.4.2.2, one can calculate the extreme efficient s− t-paths.
These are

s− b− d− f − h− t with label (0, 64),

s− b− c− f − h− t with label (1, 49),

s− b− d− e− h− t with label (4, 36),
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Figure 4.4: The set of extreme efficient solutions differs from the set of non-
dominated paths.

s− b− c− e− h− t with label (9, 25),

s− b− c− e− g − t with label (16, 16),

s− a− c− e− g − t with label (25, 9),

s− a− d− e− g − t with label (36, 4),

s− a− c− f − g − t with label (49, 1) and

s− a− d− f − g − t with label (64, 0).

But only the path s−b−d−f−h−t with label (0, 64) is non-dominated.

Even though the property in Theorem 4.7 might lead to a proven bound on
the number of labels in graphs with some special structures, still, neither the
labeling approach is a response to the question about the complexity of the general
uncorrelated problem (RSP).

We summarize that the complexity status of the uncorrelated Problem (RSP) is
still unknown. There are instances of the parametric Shortest Path-problem with
a super-exponential number of break points. There is no proven polynomial upper
bound on the number of labels stored using the non-dominance conditions of
Definition 4.6. Nevertheless, in general graphs the number of labels in the nodes
is now bounded more tightly with respect to the number of labels in the previous
nodes. With additional upper bounding of the values of remaining subpaths
we expect a significant restriction of the relevant intervals of the corresponding
dominance functions. The actual number of labels in the nodes would thus reduce
significantly in practice.

We did not evaluate this approach experimentally, instead we consider and evaluate
a more general approach for arbitrary combinatorial structures X ⊆ {0, 1}n.
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4.2 General Exact Solution Method

As we have seen, there are robust combinatorial problems with no polynomial
algorithm still at hand. Even for matroids the fastest algorithm applicable to
Problem (2.17) to the best of our knowledge runs in O(p2) (if the corresponding
linear problem can be solved in time O(p)), which is slow for a practical use.
Therefore it is desirable to have a faster general tool for both matroids and other
combinatorial problems.

There are two aspects of Problem (2.17) to deal with in the search for such a
tool – the combinatorial structure of the feasible set and the non-linearity of the
objective function resulting from ellipsoidal uncertainty in the cost coefficients.
In this regard we implemented the idea to apply Lagrangean decomposition [41]
to problems with uncertain objective function and combinatorial structure, i.e.
to separate the objective from the constraints. The initiative was to address the
combinatorial problems with discrete scenario uncertainty. However, the basic
idea of Lagrangean decomposition is applicable to any other objective provided
that the corresponding unconstrained version can be solved in an appropriate
time. The Lagrangean decomposition approach fits in so far to the requirements
on the tool we are looking for, as it is exact and general, i.e. applicable for any
objective function and any type of constraints provided that we can solve the
arising subproblems.

We investigated the suitability of the approach for the ellipsoidal uncertainty
case. The difficulty was to ensure a quick handling of the unconstrained uncertain
subproblem, as at the time we only had at our disposal the general algorithms
for submodular function minimization. This was an actual motivation for finding
a fast algorithm for the unconstrained uncorrelated problem, which then was
developed and introduced in the previous chapter.

In the following we will describe the Lagrangean decomposition approach for
uncertain combinatorial problems, provided in [6] in all detail, and specify it for
the case of uncorrelated ellipsoidal uncertainty. After that the idea of applying
Lagrangean decomposition to the uncorrelated ellipsoidal uncertainty case will be
evaluated experimentally. Most results of this section have been published in [9].

4.2.1 Lagrangean Decomposition Approach

For the general Problem (2.17)

min c>0 x+
√
a>x

s.t. x ∈ X ⊆ {0, 1}n

we hold down to have
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1. a submodular objective function c>0 x+
√
a>x, which is known to be minimized

efficiently, if there are no additional constraints. Here, however, the feasible
set has a combinatorial structure;

2. and the combinatorial domain X, over which we assume the linear mini-
mization to be polynomial. Here, however, it is combined with a non-linear
objective function, so that the complexity status in the general case is not
known.

There are thus two components, which are easy to deal with, if taken separately,
but which might cause a potential difficulty, if considered together. Hence, the
idea is to decompose Problem (2.17), i.e. to separate non-linearity from the
combinatorial structure.

To this aim in [7] we used Lagrangean decomposition [41], which can be seen as
Lagrangean relaxation applied to some artificial constraints coupling two different
parts of the model.

Applied to Problem (2.17) the Lagrangean decomposition works as follows. New
variables yi, i = 1, . . . , n, are added to the problem formulation and, by means of
artificial linking constraints, Problem (2.17) is equivalently formulated as

min c>0 x+
√
a>x

s.t. x = y
y ∈ X
x ∈ {0, 1}n,

(4.6)

with satisfying of the combinatorial constraints now being the task of the vari-
ables y. In this formulation the variables xi, i = 1, . . . , n, can be required to stem
from any superset of X and the problem remains equivalent to (2.17). We will
see that in the context of ellipsoidal uncertainty the requirement x ∈ {0, 1}n is
most suitable. Now we build the Lagrangean relaxation applied to the artificial
constraints x = y, using Lagrangean multipliers λ ∈ Rn, which results in

min c>0 x+
√
a>x+ λ>(y − x)

s.t. y ∈ X
x ∈ {0, 1}n.

(4.7)

According to the Lagrangean theory, this problem yields a lower bound on Prob-
lem (2.17) for every λ ∈ Rn. Indeed, for an arbitrary function f and an arbi-
trary λ ∈ Rn we have:

min f(x) = min f(x) + λ>(Ax− b) ≥ min f(x) + λ>(Ax− b)
s.t. Ax = b s.t. Ax = b s.t. x ∈ X.

x ∈ X x ∈ X
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In Problem (4.7) the variables x and y are not connected with each other any
more – neither in the objective function, nor in the constraints, so the problem
decomposes to

min c>0 x+
√
a>x− λ>x + min λ>y

s.t. x ∈ {0, 1}n s.t. y ∈ X .
(LD(λ))

Both subproblems in (LD(λ)) can be minimized independently and have a benefi-
cial nature. The left-hand side problem

min (c0 − λ)>x+
√
a>x

s.t. x ∈ {0, 1}n (LDmr(λ))

is the familiar unconstrained binary mean-risk problem which is quickly solved in
time O(n log n) by Algorithm 1 (see Section 3.1). The right-hand side problem

min λ>y
s.t. y ∈ X (LDlin(λ))

is the corresponding linear instance of the original robust problem for which we
assumed to have a polynomial oracle. We will see in the next subsection that
every homogeneous inequality which is valid for the objective function coefficients
in (2.17), such as non-negativity or triangle inequality, can be assumed to be valid
for the objective function of (LDlin(λ)) as well. This ensures the applicability of
the given oracle to the linear instance of (2.17) with the new cost coefficients λ.

All in all, by solving (LD(λ)) we obtain on the one hand a primal bound on Prob-
lem (2.17), as a side benefit: An optimal solution of the linear Problem (LDlin(λ))
is feasible for Problem (2.17) and, evaluated in the original objective function, it
yields an upper bound. On the other hand we obtain a dual bound, since (LD(λ))
is a relaxation of (2.17) and induces a lower bound on it, for every λ ∈ Rn. These
bounds are used in a branch and bound-algorithm for Problem (2.17), which we
now specify in more detail.

To get the tightest possible dual bound for (2.17) from the Lagrangean decompo-
sition we compute the Lagrangean dual

max
λ∈Rn

LD(λ). (L-Dual)

Being a pointwise infimum of affine functions in λ, the objective function LD(λ)
of (L-Dual) is concave and the maximization can be done for example with the
subgradient method [17]. In each iteration of the subgradient method computing a
search direction is easily done:
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Lemma 4.9. [7]: For a given point λ̄ ∈ Rn let x∗ and y∗ be minimizers of
(LDmr(λ̄)) and (LDlin(λ̄)), respectively. Then y∗−x∗ is a supergradient of (LD(λ))
in λ̄.

Proof. Let λ ∈ Rn. By definition of (LD(λ)) we have

LD(λ̄) + (y∗ − x∗)>(λ− λ̄) = LD(λ̄)− λ̄>(y∗ − x∗) + λ>(y∗ − x∗)
= c>0 x

∗ +
√
a>x∗ + λ>(y∗ − x∗)

≥ LD(λ).

The last inequality holds since the tuple (x∗, y∗) is feasible for Problem (LD(λ))
defined by λ.

Hence, the two subproblems of (LD(λ)) have to be solved in each iteration of
the subgradient method for a given λ. Here we can see the huge benefit of a fast
algorithm for the unrestricted binary mean-risk problem (2.21). The high efficiency
is crucial in regards to repeated solving of a slightly modified Problem (LDmr(λ))
in the course of the subgradient method embedded into a branch and bound-
method.

Once the optimal λ ∈ Rn in a given node of the branch and bound-tree is found,
we have an upper and a lower bounds for this node. If the node is still not pruned,
the feasible solution given by problem (LDlin(λ)) will in general differ from the
solution of (LDmr(λ)) in the given node. This suggests a very natural branching
rule of choosing the variable in which both solutions differ.

Within a branch and bound-scheme, we can significantly improve the approach by
means of warmstart and reoptimization. A good choice of the initial multipliers λ
is crucial in order to compute the Lagrangean dual (L-Dual) fast. This choice
should depend on the objective function, i.e. on the considered uncertainty set U .
A good starting guess in the case of ellipsoidal uncertainty could presumably
be λ = c0, i.e. the center of the ellipsoid. In the following nodes of the branch and
bound-tree, the optimal multipliers of the parent node can be used to warmstart
the subgradient algorithm.

The whole procedure is stated in Algorithm 3. At the beginning, the feasibility of
the given problem is tested and in the affirmative case, a feasible solution and an
upper bound are stored. Then we can see the essential structure of the algorithm –
a while-loop of the subgradient method is embedded into a while-loop of a branch
and bound-algorithm.

Embedding the computation of the Lagrangean dual into a branch and bound-
routine, the problem to be solved in the root node of the branch and bound-tree
is (L-Dual). In deeper levels of the tree, however, we have to respect variable
fixings. This means that the algorithms for both parts of the decomposition
have to be adapted to handle fixed variables. For the subproblem (LDmr(λ))
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Algorithm 3 Branch and bound-algorithm for combinatorial problems under
uncorrelated ellipsoidal uncertainty

Input: Set X ⊆ {0, 1}n, linear optimization oracle for X, c0 ∈ Rn, a ∈ Rn+
Output: Vector x∗ ∈ X minimizing c>0 x+

√
a>x =: f(x)

Initialization: Let λ := c0, List := {LD(λ0)}, ub :=∞

Solve LDlin(λ) using linear oracle → x0

if LDlin(λ) infeasible then
break
return infeasible!

else
x∗ := x0, ub := f(x0)

end if

while List 6= ∅ do
choose P (λ) ∈ List, List := List \ P (λ)
solve LDP

mr(λ) using Algorithm 1 → x∗1 . the left-hand part of P (λ)
solve LDP

lin(λ) using linear oracle → x∗2 . the right-hand part of P (λ)
let lb := c>0 x

∗
1 +

√
a>x∗1 + λ (x∗2 − x∗1) . lower bound on the current node

if LDP
lin(λ) not feasible or lb ≥ ub then

prune, continue
else if f(x∗2) < ub then

x∗ := x∗2, ub := f(x∗2)
end if
s := x∗2 − x∗1 . supergradient

while s 6= 0 do
update λ using subgradient method and supergradient s
solve LDP

mr(λ) using Algorithm 1 → x∗1
solve LDP

lin(λ) using linear oracle → x∗2
s := x∗2 − x∗1
if f(x∗2) ≤ ub then

x∗ := x∗2, ub := f(x∗2)
end if

end while

let lb := c>0 x
∗
1 +

√
a>x∗1 + λ (x∗2 − x∗1)

if lb ≥ ub then
prune, continue

end if
choose i with x∗1i 6= x∗2i . branching
let List := List ∪

{
LDP

i0(λ), LDP
i1(λ)

}
end while
return x∗, f(x∗)
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additional fixings do not cause any problem, as we have seen in Section 3, and
do not affect the running time of the combinatorial sorting algorithm. For the
subproblem (LDlin(λ)) adaptation of the used algorithm is also straight-forward
in some cases.

For some applications, however, adapting combinatorial algorithms is more com-
plicated and causes sometimes the necessity to use another appropriate algorithm,
which can handle fixed variables. Consider, for example, the Shortest Path-problem.
The most common approach to its linear non-negative version is Dijkstra’s algo-
rithm [31]. We do not know any possible modification of this algorithm to handle
fixed edges. However, for λ ≥ 0 we have the following integer linear formulation
of the standard Shortest Path-problem:

min λ>x

s.t.
∑

j∈V xij −
∑

j∈V xji =


1, if i = s
−1, if i = t
0, otherwise

∀ i ∈ V

x ∈ {0, 1}n .

(4.8)

The constraint matrix is totally unimodular, such that the explicit requirement of
integrality can be dropped in this formulation. Fixing certain variables to 0 or 1
merely causes an extension of the constraint matrix with the corresponding rows
of the identity matrix and the corresponding rows of the negative identity matrix.
The submatrices of such an extension are contained in the set of submatrices
of the extension with a whole identity or a negative identity matrix. We know
that extending a total unimodular matrix with a whole identity or a negative
identity matrix does not affect total unimodularity, such that the submatrices of
our extension have also the determinants -1, 0 or 1. Thus per definition of total
unimodularity fixing variables does not affect total unimodularity and Problem
(4.8) can be solved efficiently.

However, Problem (4.8) with fixed variables is no longer equivalent to the Shortest
Path-problem with the same fixed variables. In particular, its solution might
contain loops or separate circles, i.e. be not feasible for the Shortest Path-problem.
Nevertheless, the feasible set of the Shortest Path-problem is always contained in
the feasible set of Problem (4.8) with the corresponding fixings, such that solving
Problem (4.8) yields a lower bound on the right-hand side subproblem of the
decomposition, which is sufficient to obtain a lower bound from the decomposed
problem.

Hence the idea is to replace the set X through the feasible set of Problem (4.8),
since we can assume a non-negative λ, as we will see in the next section. For
this special case of the Minimum Cost Flow-problem there exists a particularly
efficient kind of simplex algorithm, the network simplex algorithm [49].
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4.2.2 Theoretical Properties

The Lagrangean decomposition approach is one possibility to solve Problem (2.17).
For this type of problems no general polynomial algorithm is known, although we
still could not find any problem tractable in linear case that would become proven
NP-hard, if considered under uncorrelated ellipsoidal uncertainty. Nevertheless,
the theoretical benefits of the non-polynomial branch and bound-approach de-
scribed in the previous section, as well as its particularities and the difference
compared to the usual Lagrangean relaxation or common convexifying of the
feasible set, should be discussed.

For a start, in comparison to standard relaxations like the normal Lagrangean
relaxation or convexifying of the feasible set, the Lagrangean decomposition
approach does not require any polyhedral description of the feasible set X or of
its convex hull. This is a big advantage since for many considered sets X such a
description does not exist or is exponentially large, like for the Minimum Spanning
Tree-problem.

The feasible set X in this approach is treated by using an existing oracle for the
linear version. The oracle, however, is applied to the linear problem (LDlin(λ)) with
special coefficients λ, which raises the question whether the problem properties
required for the functioning of the oracle are maintained also with these coefficients.
In the following we argue that any homogeneous inequality that is valid for all
scenarios c ∈ U can be assumed to be valid also for each λ defining the objective
function of the right-hand side (LDlin(λ)) of the decomposition.

The crucial point for this observation is that due to the following theorem the
equality x = y in the formulation of Problem (4.6) can be replaced by the
restriction x− y ∈ cone(U) which is a much weaker requirement, and the arising
problem remains equivalent to Problem (2.17).

Theorem 4.10. Let cone(U) denote the closed convex cone generated by U and
let cone(U)∗ be its dual cone. Then

min max
c∈U

c>x

s.t. x ∈ X
=

min max
c∈U

c>x

s.t. x ∈ {0, 1}n
y ∈ X
x− y ∈ cone(U)∗.

Proof. By definition of a dual cone we have x − y ∈ cone(U)∗ if and only if
d>(x− y) ≥ 0 for all d ∈ U , i.e. d>y ≤ d>x for all d ∈ U for every feasible solution
(x, y) of the right-hand side problem. In particular,

max
c∈U

c>x ≥ max
c∈U

c>y

is always true, and due to the minimization sense we can even assume equality
in the optimal solution (x, y). Hence, replacing maxc∈U c

>x by maxc∈U c
>y, we
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obtain the equivalent problem

min max
c∈U

c>y

s.t. x ∈ {0, 1}n
y ∈ X
x− y ∈ cone(U)∗.

(4.9)

As for x only binarity is required and since X ⊆ {0, 1}n, Problem (4.9) can be
solved by first choosing y ∈ X that minimizes maxc∈U c

>y, i.e. solving

min max
c∈U

c>y

s.t. y ∈ X,

and then setting x := y, as 0 ∈ cone(U)∗ is always true. This shows the equivalence
of the latter problem to

min max
c∈U

c>x

s.t. x ∈ X

and finally proves the statement.

The Lagrangean relaxation approach can thus be directly applied to the problem

min max
c∈U

c>x

s.t. x ∈ {0, 1}n
y ∈ X
x− y ∈ cone(U)∗,

i.e. the dual multipliers have to be chosen from cone(U) instead of Rn which is a
dual cone to {0}. Therefore, all the assumptions on cone(U) can now be assumed
for λ. The remaining question is whether this restriction on λ yields the same
bound as (L-Dual) does. As we now maximize over a smaller set the quality of
the dual bound might be affected. Nevertheless, the following considerations show
that the bound remains the same.

Lemma 4.11. Let C ⊆ Rn be any closed convex cone and assume that the problem

min z
s.t. (z, x) ∈ conv(F )

y ∈ conv(X)
x− y ∈ C∗,

(4.10)

with F := {(z, x) | x ∈ {0, 1}n, z ≥ maxc∈U c
>x}, satisfies Slater’s condition.

Then (4.10) agrees with maxλ∈C LD(λ).
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Proof. First note that

LD(λ) =

{
min z − λ>x
s.t. (z, x) ∈ conv(F )

+
min λ>y
s.t. y ∈ conv(X).

By construction, maxλ∈C LD(λ) is then the partial Lagrangean dual of (4.10) with
respect to the last constraints. As this problem is convex, strong duality follows
from Slater’s condition.

From Lemma 4.11 we derive, in particular, that the bound we get from (L-Dual)
is at least as good as the one we would get from convexifying the set X:

Corollary 4.12.

max
λ∈Rn

LD(λ) =

{ min z
s.t. (z, x) ∈ conv(F )

x ∈ conv(X).

Proof. The claim follows from Lemma 4.11 with C = Rn, for which C∗ = {0}.

In the following we can finally see that, under mild conditions, we may assume
λ ∈ cone(U) without weakening the Lagrangean bound.

Theorem 4.13. Assume that (4.10) satisfies Slater’s condition for C = cone(U).
Then

max
λ∈cone(U)

LD(λ) = max
λ∈Rn

LD(λ).

Proof. In analogy to the proof of Theorem 4.10, one can show that

min z
s.t. (z, x) ∈ conv(F )

y ∈ conv(X)
x− y ∈ cone(U)∗

=

min z
s.t. (z, x) ∈ conv(F )

y ∈ conv(X)
x− y = 0.

Applying Lemma 4.11 to both sides, the result follows.

With that we can transfer the validity of all relevant inequalities from the set U
to λ:

Corollary 4.14. Let A ∈ Rm×n, such that Ac ≤ 0 for all c ∈ U . Then

max
Aλ≤0

LD(λ) = max
λ∈Rn

LD(λ).
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Proof. If C from Lemma 4.11 is described by finitely many linear inequalities, i.e.
C = {Aλ ≤ 0}, Problem (4.10) satisfies Slater’s condition and the result follows
with Theorem 4.13.

In particular, this shows that any finite set of such conditions as non-negativity
or non-positivity of given objective function coefficients, triangle inequality, non-
negativity of the total cost of a given cycle (if variables correspond to edges of a
graph), valid for every c ∈ U , can be assumed to be valid for λ. E.g., if no scenario
in U induces a negative cycle for an instance of the Shortest Path-problem, we may
assume that the same holds for all λ produced in the course of the subgradient
algorithm.

We presented an exact algorithm to solve general combinatorial problems with
uncorrelated ellipsoidal uncertainty. In the next section the algorithm is applied
to the Shortest Path- and the Knapsack-problem under uncorrelated ellipsoidal
uncertainty and evaluated from the practical point of view.

4.2.3 Experiments

The flexibility of the decomposition approach allows to use it in a wide range
of applications. We present the results for the robust Shortest Path- and robust
Knapsack-problem. These experiments were run on SUSE Linux, on an Intel
Xeon CPU E5-2640 2.6 GHz processor. For the subproblem (LDmr(λ)) of the
decomposition Algorithm 1 for the unconstrained binary mean-risk problem in
all applications was directly applicable. To implement the subgradient method
the conic bundle solver [44] was embedded. We used the mean values c0 as initial
values of the Lagrangean multipliers, to warmstart the subgradient algorithm.

4.2.3.1 Robust Shortest Path-Problem

The first application we consider is the robust Shortest Path-problem (see Sec-
tion 1.1). We are thus given a graph and two special nodes between which a
shortest path with respect to certain costs has to be found. For our experiments we
generated n×n grid graphs, i.e. graphs with 2n(n−1) edges, for n ∈ {100, . . . , 500}.
In the uncorrelated case each edge of the graph is associated with a mean value
c0i and a variance value ai. We generated the objective function in accordance to
[4], i.e. as follows. The coefficients of the ellipsoid center c0 were randomly chosen
from the interval [0, 100]. The variances ai were then determined as squares of
randomly chosen numbers in the corresponding intervals [0, c0i]. The uncertain
part of the objective function was scaled with r ∈ {0.1, 0.5, 1} (see Model (MR)),
which is equivalent to multiplication of the variance coefficients ai with r2.

To manage fixings arising during the branch and bound-procedure, the subprob-
lem (LDlin(λ)) of the Lagrangean decomposition was in this case solved with the



104 CHAPTER 4. CONSTRAINED UNCORRELATED CASE

network simplex-method [49] (see Section 4.2.1). We produced 10 instances of each
size and set a limit of one CPU hour.

We compared the performance of the decomposition approach to the SOCP solver
of CPLEX, using version 12.6 [28]. For that the problem was reformulated to a
mixed-binary SOCP, as described in Section 2.3.2.

Table 4.1 shows the comparison of the performance of the two approaches on the
instances with up to 499000 variables. We compare the number of solved instances
(solved), the average number of branch and bound-nodes (nodes), the average
number of iterations of the subgradient method or, for CPLEX, the average
number of simplex iterations (calls) and the average total time in CPU-seconds
(time/s) for every size and scaling. All averages are taken only over the solved
instances.

The decomposition approach could solve all but two instances within the time
limit, while the SOCP solver reached its limit on 500× 500 grids. We can see in
all performance parameters the strong impact of scaling: Solving instances with a
big ellipsoid volume requires more time and branch and bound-nodes than with a
small volume. It is noticeable that the number of iterations, i.e. oracle calls in
every node, is significantly smaller in the decomposition approach, while CPLEX
takes many simplex-iterations to solve the SOCPs in the nodes. This might relate
to a good starting guess for the Lagrangean multipliers λ in the first node as
well as in the deeper nodes, such that not many iterations remain to reach the
optimal λ in every node. Moreover, as we get a lower bound for every λ in a node,
on the way to an optimal λ for this node, we might get a lower bound which
allows to prune already before the optimal λ in this node has been reached, such
that not all iterations of the subgradient method in every node are necessary.

A comparably small total number of nodes indicates a good quality of the lower
bounds obtained through Lagrangean decomposition in every node. Combined
with strong primal bounds obtained in every iteration by solving the subprob-
lem (LDlin(λ)), the decomposition approach turns out to be well suited for the
robust uncorrelated Shortest Path-problem. It outperforms the CPLEX solver in
all sizes and scaling parameters by a factor between 10 and 100.

4.2.3.2 Robust Knapsack-Problem

We consider again the following Risk-Averse Capital Budgeting Problem (see
Example 2.7):

max c>0 x−
√

1−ε
ε
a>x

s.t. w>x ≤ b
x ∈ {0, 1}n .

(4.11)
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Here, in addition we characterize the level of risk the investor is willing to take by
a parameter ε > 0. The investment choice ensures that with probability 1− ε the
portfolio will return at least the value of the optimal solution (see the value-at-risk
model in Section 2.2.1.2).

The instances were produced as proposed in [4]. In particular, the mean and
variance values for every variable were generated as described in Section 4.2.3.1
and the coefficients wi of the knapsack constraint are randomly and uniformly
distributed numbers from the interval [0, 100]. To prevent generation of trivial
instances, the capacity was set to b = 1

2

∑n
i=1wi, as common in the literature.

Each instance was solved for the values ε ∈ {0.01, 0.02, 0.03, 0.05, 0.1}. Note that
in comparison to the Shortest Path-application ellipsoids of a larger volume are
considered here. In particular, here we have r =

√
(1− ε)/ε > 1, so that r ∈ [3, 10)

for the given choice of ε.

The subproblem (LDlin(λ)) of the Lagrangean decomposition was solved with the
greedy algorithm by Dantzig [29]. In particular, we do not solve the Knapsack-
problem exactly, but compute only a lower bound. Doing this, it is easy to see
that (LD(λ)) still provides a lower bound for (4.11). Of each size 10 instances were
generated. We state the results for dimensions n ∈ {1000, . . . , 6000} in Table 4.2.

In the case of the robust Knapsack-problem the decomposition approach could
solve all instances without exception with up to 4000 variables. The scaling
parameter has only a slight effect here. As in the previous application we observe
that only a few calls per node on average were necessary, mostly less than three.
This again can be explained by the warmstart-strategy and earlier pruning due to
existing bounds. Combined with fast algorithms to solve arising subproblems it
leads to a fast overall running time.

Also here we compared the performance with the SOCP solver of CPLEX [28]. The
SOCP solver turned out to be not competitive with the decomposition approach,
as it could not even solve all instances of dimension 40 within the given time limit
of 1 hour. For that reason we do not specify the results of CPLEX.

A more problem specific approach was proposed in [4]. The authors derive addi-
tional cutting planes from the submodularity of the objective function and use
them to strengthen the SOCP by adding the cutting planes to the relaxation in
each node of the enumeration-tree. This leads to better dual bounds and as a
consequence faster solution times compared to the pure SOCP approach. But this
approach still turns out to be not competitive with the decomposition approach:
For instances with only 100 variables it takes on average more than 800 seconds
for ε = 0.01.

We summarize that the decomposition approach also here strongly outperforms
the CPLEX solver, but also more problem-specific solvers.
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n=vars ε solved nodes calls time/s

1000 0.10 10 11561.6 25059.9 8.88
0.05 10 11901.0 25946.6 9.04
0.03 10 18080.6 40439.2 14.13
0.02 10 17116.4 38528.3 13.74
0.01 10 18227.4 40036.7 14.09

2000 0.10 10 38648.8 86407.2 62.46
0.05 10 43502.8 99245.1 71.46
0.03 10 83618.2 188819.6 134.42
0.02 10 54335.8 120607.0 88.38
0.01 10 45562.8 103159.3 73.70

3000 0.10 10 70660.2 158974.0 181.48
0.05 10 65901.0 147838.1 167.27
0.03 10 71944.2 164729.6 185.35
0.02 10 195983.4 446662.6 502.76
0.01 10 122424.0 281471.0 315.72

4000 0.10 10 77751.4 173648.2 260.22
0.05 10 74034.2 167908.2 247.60
0.03 10 134695.0 311877.6 462.83
0.02 10 134252.4 303120.6 451.51
0.01 10 158270.2 370843.7 558.05

5000 0.10 10 105903.4 239099.0 459.70
0.05 9 229644.3 541620.1 1040.87
0.03 8 210731.2 478897.1 926.99
0.02 10 211222.2 508668.6 981.95
0.01 9 288255.7 668599.0 1302.85

6000 0.10 10 214092.4 494438.2 1172.40
0.05 8 303761.0 701917.5 1663.84
0.03 9 294969.7 690688.8 1610.91
0.02 6 271478.7 621214.5 1445.17
0.01 9 258226.6 611664.8 1491.80

Table 4.2: Results for the Knapsack-problem with ellipsoidal uncertainty.
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We consider now the general ellipsoidal uncertainty case, i.e. general, not necessarily
axis-parallel ellipsoids, described by a positive semidefinite, not necessarily diagonal
matrix:

min c>0 x+
√
x>Ax

s.t. x ∈ X .

As already known, this problem is NP-hard (see Section 2), which can be seen
by reduction of the weakly NP-hard Subset Sum-problem.

Beyond that the general case has been investigated to a limited extent so that the
basic approach to solve it remains the common algorithms for general mixed-integer
SOCPs, as also mentioned in Section 2.

In this part we specify the complexity of Problem (2.16) more precisely, and
propose a new exact solution method. Like in the uncorrelated case we first
consider the set X = {0, 1}n and then the general case X ⊆ {0, 1}n.

In particular, in Chapter 5 we prove the strong NP-hardness of this problem,
already in the case X = {0, 1}n, and provide a branch and bound-algorithm,
where lower bounds are obtained approximating the quadratic term under the
square root of the objective function in (2.16) by a separable underestimator.

The idea goes back to Buchheim and Traversi [20], who used separable underestima-
tors for quadratic binary programs. Applied on binary variables the minimization
of the separable underestimator reduces to a linear minimization over the same
feasible set. We adapted this idea especially to maintain the positivity of the
square root argument, which was not demanded in [20].

Later on, we use this approach to address the unrestricted binary problem,
generalizing the Lagrangean decomposition-approach from Chapter 4 for arbitrary
sets X ⊆ {0, 1}n, more precisely, to solve the left-hand side subproblem in the
decomposition to get lower bounds.

We examined the performance of the approach and present the results in Sec-
tions 5.3 and 6.2.
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Chapter 5

Unconstrained Correlated Case

We consider the special case of Problem (2.16)

min c>0 x+
√
x>Ax

s.t. x ∈ {0, 1}n , (5.1)

with c0 ∈ Rn and A ∈ Sn++. First we observe that the assumption c0 < 0 we made
in the uncorrelated case is not applicable to the correlated case without loss of
generality: Obviously, the trivial solution x = (0, . . . , 0)> is optimal if A ≥ 0 and
c0 ≥ 0. If this is not the case, however, we cannot fix a variable to 0 only if the
corresponding value of c0 is positive, like in the uncorrelated case, as the following
example shows.

Example 5.1. Consider Problem (5.1) with

c0 =

(
1
−7

)
and A =

(
10 −20
−20 41

)
∈ Sn++.

Enumerating all feasible solutions we can see that the optimal solution is
(
1, 1
)>

,
which is not 0 in the first component, even though c01 > 0.

Thus, due to possible negative covariances in the correlated case, we do not assume
c0 < 0 here.

Also we observe that special structures of A obviously exist, for which Problem (5.1)
can be solved efficiently and, as the case, may sometimes be reduced to the
uncorrelated case. For example, if the number of the correlated variables is fixed
to k, the problem reduces to solving 2k uncorrelated problems. This is due to
the fact that the combinatorial algorithm in Section 3.1 is not affected by an
additional constant under the square root, so that we can enumerate the 2k partial
solutions and solve the uncorrelated problem 2k times with the corresponding
arising constants, choosing the best solution for (5.1) afterwards.

113
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Also, Problem (5.1) is polynomially solvable if the matrix A consists of many
identical blocks of a fixed size, i.e.

A =


B 0 . . . 0

0 B
...

...
. . . 0

0 . . . 0 B

 ,

with B ∈ Sk++ for a fixed k. Dziuron [32] has shown that if A and c consist of
identical blocks of a fixed or an unfixed size, there exists an optimal solution x∗

of (5.1) composed of correspondingly identical parts, i.e.

x∗ =

x
′

...
x′

 ,

with x′ ∈ {0, 1}k. If additionally the block size of A is fixed, the solutions of this
form can obviously be enumerated polynomially.

However, if any of such special structures cannot be found, we cannot even expect
pseudo-polynomial time, as we show in the next section.

5.1 Complexity

The following complexity result and its proof are taken from our paper [9].

Theorem 5.2. Problem (2.16) is strongly NP-hard, even for X = {0, 1}n.

Proof. We use the well known fact that Binary Quadratic Programming is strongly
NP-hard, as can be shown by its equivalence to the Maximum Cut-problem [40].
It thus suffices to describe a polynomial reduction from a problem of the form

min
x∈{0,1}n

1

2
x>Qx+ L>x , (5.2)

where Q ∈ Zn×n is any symmetric matrix and L ∈ Zn, to Problem (2.16) with
data of polynomial size. First, compute

λ := min
i=1,...,n

(
|Qii| −

∑
j 6=i

|Qij|
)
∈ Z .

Setting Q̄ := Q− 2(λ− 1)I ∈ Zn×n and L̄ := L+ (λ− 1)(1, . . . , 1)> ∈ Zn, we have

1

2
x>Qx+ L>x =

1

2
x>Q̄x+ L̄>x ∀x ∈ {0, 1}n .
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By construction, the matrix Q̄ − I is diagonally dominant, so that Q̄ − I � 0
and Q̄ � 0. Next, define c := L̄>L̄+ 1 ∈ Z. Then the matrix

A :=

(
Q̄ L̄
L̄> c

)
is integer and each entry has polynomial size in the entries of Q and L. The Schur
complement shows that A is positive definite, as

c− L̄>Q̄−1L̄ = 1 + L̄>(I − Q̄−1)L̄ ≥ 1

due to I − Q̄−1 � 0. Now (5.2) agrees with

−1
2
c + min 1

2
y>Ay

s.t. y ∈ {0, 1}n+1

yn+1 = 1 ,

which can be reduced to solving

min
√
y>Ay

s.t. y ∈ {0, 1}n+1

yn+1 = 1 .

Setting M :=
∑

ij Aij + 1 ∈ Z, the latter can be rewritten as

M + min (−M)yn+1 +
√
y>Ay

s.t. y ∈ {0, 1}n+1 ,

since y>Ay ∈ {0, . . . ,M − 1} and hence 0 ≤
√
y>Ay ≤

√
M − 1 ≤ M − 1 for

all y ∈ {0, 1}n+1. The latter problem is of the form (2.16).

The result of Theorem 5.2 suggests that no efficient or even pseudo-polynomial
algorithm is possible for Problem (5.1), unless NP = P. To still handle this
strongly NP-hard problem in practice we thus specify a branch and bound-
procedure in the next section.

5.2 Branch and Bound-Algorithm Based on

Uncorrelated Underestimators

To deal with the strongly NP-hard Problem (5.1) we first underestimate the
quadratic term under the square root by a linear term. The resulting relaxation is
tractable due to Theorem 2.14 and we can solve it using the efficient Algorithm 1.
The value is then used as a lower bound in a branch and bound-algorithm.
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What requirements should the sought underestimator comply with and how can it
be determined? In the following we will constructively deduce an underestimator
for Problem (5.1). We will describe our line of thought in its development and the
adjustments we undertook while facing difficulties caused by the special problem
structure.

We start with the specification of the requirements on the underestimator, neces-
sary for the latter usage of the Algorithm 1, in particular, its linearity and the
non-negativity of the variables coefficients.

The embedding into a branch and bound-procedure causes fixed variables in the
problem definition. The information about the fixings should be used to improve
the bounds in the deeper levels of the branch and bound-tree, which results in the
need for a number of certainly defined underestimators. We formalize these ideas in
Section 5.2.1. The next step will be the computation of the defined underestimators.
How the computational concerns affect the form of the underestimators is described
in Sections 5.2.2 and 5.2.3. In particular, we will motivate a fixed branching rule
for our branch and bound-algorithm in Section 5.2.2. The calculation of the
underestimators, given this branching rule, reduces to solving n− 1 semidefinite
programs (SDPs), for which an objective function should be defined. A reasonable
choice of the objective function for the SDPs is discussed in Section 5.2.2.

We now describe the approach in all detail.

5.2.1 The Model

We want to underestimate the objective function of Problem (5.1), such that the
resulting problem is solvable by Algorithm 1. To this aim, for a given c0 ∈ Rn and
A ∈ Sn++ we are looking for a diagonal matrix

D = Diag(d), d ∈ Rn+,

such that
c>0 x+

√
x>Dx = c>0 x+

√
d>x ≤ c>0 x+

√
x>Ax (5.3)

holds for all x ∈ {0, 1}n. It is hard to restrict this requirement on the binary
domain. Therefore, we agree on vectors d with

0 � Diag(d) � A, (5.4)

which can be found by solving an SDP. For such d the condition (5.3) is satisfied
even for every x ∈ Rn. The first inequality in the condition (5.4) is necessary to
well define the square root argument in (5.3) and the second condition is necessary
to ensure the underestimation of the matrix A.

In a branch and bound-algorithm such underestimator can be used in the root node
of the branch and bound-tree. But in the lower levels of the tree it is worthwhile
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to take into account the information about the arising fixings, to obtain better
bounds in the course of the procedure. There the problem to be solved is

min
x∈{0,1}n−k

c>
(xfix
x

)
+

√(xfix
x

)>
A
(xfix
x

)
, (5.5)

where for simplicity of notation we assume the first k variables to be fixed and xfix
to be the vector of corresponding fixed binary values. Here, the only quadratic
term under the square root is (0

x

)>
A
(0
x

)
.

But the mere underestimation of the corresponding part of A might make the
whole square root argument negative, as we allow negative covariances.

The idea is to underestimate the whole square root argument, i.e. to find a matrix(
q l
l> D

)
∈ Sn−k+1

+

with the diagonal submatrix D ∈ R(n−k)×(n−k)
+ , q ≥ 0 and l ∈ Rn−k, such that

0 �
(
q l
l> D

)
�


(xfix

0

)>
A
(xfix

0

) (xfix
0

)>
A

A>
(xfix

0

)
An−k

 ,

where An−k represents the part of the matrix A corresponding to the unfixed
dimensions and (

1
x

)>(
q l
l> D

)(
1
x

)
≤
(xfix
x

)>
A
(xfix
x

)
is valid for all x ∈ {0, 1}n−k.
Note that such an underestimator incorporates the information about both which
variables are fixed and on which values these are fixed. One could assume it to
provide good bounds. On the other hand, getting these bounds requires solving
an SDP in every single node of the branch and bound-tree, which, even when the
dimension of the SDPs decreases, could result in a very big expense.

5.2.2 Fixed Branching

A solution to the difficulty described in the end of the previous section is to keep
the underestimators independent from the specific fixings and use fixed branching,
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i.e. branch on variables in the order of 1, . . . , n, such that in the level k of the tree
exactly the variables 1, . . . , k are fixed.

Also the nature of the lower bound is in support of this decision: The lower bound
here does not result from the relaxation (enlargement) of the feasible set, but
from the underestimation of the objective function. The optimal solution of the
underestimating problem is always feasible for the underestimated unconstrained
binary Problem (5.1), such that the popular branching criterion of the “highest
unfeasibility” looses its sense here.

Thus, for every k = 1, . . . , n−1, we compute in a preprocessing an underestimator

Uk :=

(
Q L
L> D

)
∈ Sn++,

with Q ∈ Rk×k, L ∈ Rk×(n−k) and a diagonal matrix D = Diag(d) ∈ R(n−k)×(n−k)
+ ,

such that
0 � Uk � A.

The underestimator Un consists of n2 entries to compute. This complies with the
dimension n× n of A, such that Un = A would be the optimal underestimator for
any objective function of the arising SDP.

A lower bound on (5.5) is then the value of the problem

min
x∈{0,1}n−k

c>0

(xfix
x

)
+

√(xfix
x

)>
Uk

(xfix
x

)
, (5.6)

which is equivalent to

c>0

(xfix
0

)
+ min

x∈{0,1}n−k
c>0

(0
x

)
+
√

(d+ 2L>xfix)>x+ x>fixQxfix. (5.7)

The argument of the square root is positive due to construction. However, the
vector d+ 2L>xfix might contain negative entries, which Algorithm 1 cannot deal
with. Still, we can easily handle Problem (5.7) adjusting it slightly for Algorithm 1:

Lemma 5.3. Problem (5.7) can be solved in time O((n− k) log(n− k)).

Proof. Let
I :=

{
i ∈ {k + 1, . . . , n} | (d+ 2L>xfix)i < 0

}
be the index set of the variables corresponding to the negative entries of the
vector d+ 2L>xfix. For every i ∈ I we replace the variable xi by its complement
x̄i := 1− xi and define the equivalent problem

c>0

(xfix
0

)
+
∑
i∈I

coi + min
x∈{0,1}n−k

∑
i/∈I

coixi −
∑
i∈I

coix̄i+
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i/∈I

(d+ 2L>xfix)ixi −
∑
i∈I

(d+ 2L>xfix)ix̄i +
∑
i∈I

(d+ 2L>xfix)i + x>fixQxfix.

(5.8)
This problem is of the form (2.21) and the inequalities

x>fixQxfix ≥
∑
i∈I

(d+ 2L>xfix)i + x>fixQxfix ≥ 0

still hold, in particular, the constant term under the square root is still non-negative.
Thus we can apply Algorithm 1 to Problem (5.8), as it can handle non-negative
constants under the square root and the variables entries are now non-negative as
well. The running time follows with the complexity of the algorithm.

5.2.3 Objective Function

The choice of the matrices Uk, for k = 1, . . . , n− 1, satisfying the requirements
defined in the previous section is crucial for the quality of the lower bounds. The
best underestimators are induced by the problem

max
A�Uk�0

min
x∈{0,1}n

c>0 x+
√
x>Ukx. (5.9)

But due to Theorem 5.2 a single evaluation of the objective function of (5.9) for
a fixed Uk is strongly NP-hard. Thus, instead of solving (5.9) exactly, we use a
different objective function in the definition of the SDP. We maximize the sum of
the diagonal entries of the underestimator, i.e. we solve the SDP

max 1>diag(Uk)
s.t. A � Uk � 0,

(5.10)

with 1> = (1, . . . , 1)>. This choice of the objective function is motivated by the
following observations:

Lemma 5.4. Let A � 0. The optimal solution U∗ of

max 1>diag(U)
s.t. A � U � 0

(5.11)

is U∗ = A.

Proof. We have diag(A) ≥ 0, since A � 0, and diag(U) ≤ diag(A), since A−U � 0.
This implies that the diagonal of the optimal solution U∗ is identical to the diagonal
of A, since A is a feasible solution of (5.11). Thus, diag(A− U∗) = 0 and due to
restriction A− U∗ � 0 all other entries of A− U∗ are 0 as well.
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Due to the following lemma we can expect that for an increasing k the corre-
sponding underestimator Uk is a better approximation of the matrix A and thus
we get better bounds with the growing number of fixed variables:

Lemma 5.5. The optimal value of the problem

max 1>diag

(
Q L
L> Diag(d)

)
s.t. A �

(
Q L
L> Diag(d)

)
� 0

Q ∈ Rk×k

L ∈ Rk×(n−k)

d ∈ Rn−k, d ≥ 0

(5.12)

is monotonously increasing in k.

Proof. The diagonal part Diag(d) = D of the matrix

(
Q L
L> D

)
shrinks for an

increasing k, i.e. less variables are fixed to 0. That means that the number of

degrees of freedom in the matrix

(
Q L
L> D

)
grows. This leads to an extension of

the feasible set and the claim follows.

As the diagonal of the underestimator is upper bounded by the diagonal of A,
we expect a better approximation of the matrix A the more variables are fixed.
Hence, we solve in a preprocessing phase n− 1 SDPs of the form

max 1>diag

(
Q L
L> D

)
s.t. A �

(
Q L
L> D

)
� 0 ,

(5.13)

and expect an improvement of the bounds with progressing fixings.

5.3 Experiments

We provided a new branch and bound-approach for the strongly NP-hard Prob-
lem (5.1), with arising theoretical questions that should be examined experimen-
tally: How good are the defined bounds and how fast can these be computed? We
want now to examine the practical performance of our approach.

We implemented our idea in C++ and run these experiments on an Intel Xeon
CPU E5-2640 2.5 GHz processor.

To compute the underestimators for every branching level we solve in a preprocess-
ing phase n− 1 semidefinite programs using the version 6.1.1 of the csdp library
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for semidefinite programming [16]. We recall that we use a fixed branching rule,
such that the variables are fixed in the order 1, . . . , n. Also we adopted the best
node first-strategy.

We aimed to produce binary correlated instances following as far as possible the
generation routine of the uncorrelated instances in the applications of Chapter 4.
The coefficients of the mean c0 were generated randomly in the intervals [−100, 0],
the eigenvalues of the covariance matrix A were generated as squares of the
randomly chosen numbers from the corresponding intervals [0,−c0i] and the
eigenvectors were then chosen randomly.

We generated 10 instances of each size. The uncertain part of the objective
function was scaled with r ∈ {0.1, 0.5, 1}. Since we allow both positive and
negative covariances, the scaling of the ellipsoid in the unconstrained correlated
case usually does not lead to trivial instances, in contrast to the uncorrelated case.

We again examined the correctness and compared the performance of our approach
with the SOCP solver of CPLEX. However, CPLEX clearly outperformed the
underestimation algorithm, such that we only state our results to detect the
improvement potential and to analyze the impact of covariances on the practical
complexity of the problem.

Table 5.1 shows the performance of our algorithm on the instances with up to 70
variables. Besides the number of solved instances (solved), the average number
of branch and bound-nodes (nodes) and the average total time in CPU-seconds
(t-total/s) for every size and type, we broke down the total running time of our
program into the average time consumed in preprocessing on solving the SDPs (t-
SDPs/s) and the average time spent on the actual branch and bound-procedure
(t-BNB/s).

Our algorithm could solve all but two instances with up to 60 variables within
the time limit of one CPU-hour. We see that a big share of the total time is spent
on the calculation of the underestimators. Especially for minor dimensions the
preprocessing consumes nearly 100% of the total time. On the other hand the
dependency of the SDP-time on the scaling parameter r is completely absent.
Here only the growing dimension causes the increase of the calculation time. And
in fact this growth rate is polynomial in theory, while the number of nodes in an
enumeration-tree grows exponentially with the dimension of the problem. That
induces that the time needed for the branch and bound-procedure would exceed at
some point the time of the preprocessing. Unfortunately, the range of the problem
size reached is still too small to observe this effect clearly.

The performance of the branch and bound-procedure in turn is strongly dependent
on the ellipsoid volume. Instances with a big r seem to be very hard to solve
with our approach. Obviously, with the growing influence of the hard part of
the objective function, i.e. the covariances, the gap between the uncorrelated
underestimators and the original ellipsoid grows, and so does the number of the
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vars r solved nodes t-total/s t-SDPs/s t-BNB/s
10 0.1 10 17.4 0.036 0.036 0.000

0.5 10 27.8 0.037 0.037 0.000
1 10 40.8 0.037 0.037 0.000

20 0.1 10 53.4 0.696 0.696 0.000
0.5 10 213.6 0.683 0.683 0.000
1 10 583.2 0.692 0.691 0.001

30 0.1 10 120.0 5.281 5.280 0.001
0.5 10 802.0 5.381 5.376 0.005
1 10 4143.0 5.498 5.425 0.073

40 0.1 10 251.8 31.576 31.572 0.004
0.5 10 3476.4 31.879 31.834 0.045
1 10 28798.8 34.156 31.001 3.155

50 0.1 10 523.4 129.608 129.600 0.008
0.5 10 17544.0 130.634 129.145 1.489
1 10 236847.4 596.343 125.561 470.782

60 0.1 10 1113.0 444.649 444.627 0.022
0.5 10 69890.6 471.168 425.116 46.052
1 8 306631.8 1156.234 405.046 751.187

70 0.1 10 1491.6 1165.269 1165.228 0.041
0.5 10 143457.8 1215.433 1154.990 60.443
1 2 425028.0 2025.815 1170.395 855.420

Table 5.1: Results for the unconstrained correlated problem. Underestimator approach with
SDP-tolerance 10−8

scanned nodes. On the other hand a very small value of r leads to the dominance of
the linear part of the objective function such that in this special case X = {0, 1}n
the correlated problem may become trivial.

Hoping for a reduction of the long preprocessing running times we shrink the
accuracy of the SDP solver from 10−8 to 10−2. Corresponding results can be found
in Table 5.2. As expected, we decreased the SDP computing time (by a factor
of 2), while the bounds seem to be hardly influenced by this relaxation, as can be
observed on the slightly affected number of nodes and the running time for the
branch and bound-routine.

Summarizing our observations, for the first, we must conclude that our approach
requires a faster computation of the underestimators. Dropping the practically
expensive solution of the arising SDPs it is then also conceivable to go back to
a flexible branching, exploiting the information about the concrete fixings, to
tighten the lower bound in every branch and bound-node. For the second we might
possibly need better underestimators, preferably even more problem-specific. All
in all our approach shows a high improvement potential in different directions.
Still, it is a new strategy to solve the strongly NP-hard Problem (5.1).
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vars r solved nodes t-total/s t-SDPs/s t-BNB/s
10 0.1 10 21.6 0.019 0.019 0.000

0.5 10 32.2 0.017 0.017 0.000
1 10 46.0 0.017 0.017 0.000

20 0.1 10 57.4 0.325 0.324 0.001
0.5 10 217.8 0.327 0.327 0.000
1 10 588.8 0.329 0.325 0.004

30 0.1 10 123.6 2.623 2.623 0.000
0.5 10 808.8 2.612 2.603 0.009
1 10 4159.9 2.684 2.612 0.072

40 0.1 10 256.0 15.026 15.024 0.002
0.5 10 3484.6 15.126 15.078 0.048
1 10 28820.8 18.461 15.253 3.208

50 0.1 10 529.0 57.560 57.550 0.010
0.5 10 17612.8 58.942 57.458 1.484
1 9 163435.4 224.229 56.518 167.711

60 0.1 10 1116.5 191.468 191.446 0.022
0.5 10 69855.8 236.639 190.046 46.593
1 8 307909.6 1042.097 194.352 847.745

70 0.1 10 1494.0 496.556 496.517 0.039
0.5 10 143375.8 558.518 497.284 61.234
1 3 586354.3 2125.633 568.477 1557.157

80 0.1 10 2175.6 1153.915 1153.842 0.073
0.5 10 267819.2 1666.189 1291.392 374.797
1 1 796169.0 3544.360 1172.730 2371.630

90 0.1 10 4490.6 2549.829 2549.648 0.181
0.5 5 347856.2 2979.470 2467.144 512.326
1 0 — — — —

Table 5.2: Results for the unconstrained correlated problem. Underestimator approach with
SDP-tolerance 10−2
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Chapter 6

Exact Approach for
Combinatorial Optimization
under Ellipsoidal Uncertainty

We now present an exact approach to solve the general Problem (2.16). In the
previous chapters we have seen that parts of this problem taken in isolation
already can lead to an enormous growth of complexity. In particular, the prob-
lem becomes strongly NP-hard when extending from the uncorrelated to the
correlated problem. When extending from the unconstrained uncorrelated to the
general uncorrelated case, we proceed from proven optimality to uncertainty about
polynomial solvability for most combinatorial problems.

Consider for example again the robust Shortest Path-problem, now with corre-
lations between the edges. Even though there are few special cases where the
complexity of Problem (2.16) can be bounded, the general result is negative:

Theorem 6.1. [24] The correlated Problem (RSP) is APX-hard [24].

For the proof we refer to [24].

Nevertheless, there is a positive result on the weakly correlated problem (RSP).
Nikolova [60] has shown that if there are only correlations between adjacent edge
costs, the instance can be polynomially reduced to the uncorrelated case. Chassein
et al. [24] introduced a slightly modified reduction. They create in every node a
complete bipartite graph with the first partition standing for the incoming edges
and the second partition standing for the outgoing edges (see Figure 6.1).

The edges of the bipartite graph in every node get the variances equal to the
double corresponding covariances and the expected values equal to 0. It is easy to
see that the uncorrelated instance described by the new graph is equivalent to
the original weakly correlated instance and the reduction is polynomial (see [24]
for the proof). The original reduction of Nikolova [60] can also be extended for

125
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Figure 6.1: Transformation of a weakly-correlated Shortest Path-instance to an
uncorrelated instance. Every artificial edge connecting an edge i with an edge
j of the bipartite graph gets the variance equal to the double corresponding
covariance Covij.

correlations between a constant number of consecutive edges, i.e. edges with a
constant distance between each other, maintaining polynomiality.

Still the solution approaches for the general Problem (2.16) remain to the best
of our knowledge limited to the general mixed-integer SOCP reformulations (see
Section 2.3.2).

Here, we combine the procedures presented in previous chapters for the components
of the general problem. The sorting Algorithm 1, the Lagrangean decomposition for
robust combinatorial problems (Algorithm 3) and the underestimator-approach
from Chapter 5 are the building blocks to establish a general procedure for
Problem (2.16).

6.1 Underestimation of the Covariance Matrix

in the Lagrange-Approach

In analogy to the uncorrelated case (Chapter 4), we decompose Problem (2.16) to

min (c0 − λ)>x+
√
x>Ax + min λ>y

s.t. x ∈ {0, 1}n s.t. y ∈ X .
(6.1)

This decomposition is a lower bound on (2.16) for every λ, which can be computed
by separately solving the two corresponding subproblems. We now take advantage
of the flexibility of the Lagrangean decomposition-approach, which in principle
allows arbitrary constraints and objective functions.
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Since for general matrices A the unconstrained problem

min (c0 − λ)>x+
√
x>Ax

s.t. x ∈ {0, 1}n .
(6.2)

is strongly NP-hard, we abstain from solving it exactly and merely compute a
lower bound on this subproblem. As we use the solution of the left-hand part
of (6.1) only in the computation of a lower bound on (2.16), the overall lower
bound, which is the sum of the two parts of (6.1), remains valid if we decrease
the left-hand summand for a given λ. So, we underestimate matrix A through a
diagonal matrix, to solve the resulting uncorrelated unrestricted problem using
Algorithm 1. This may lead to a worse overall lower bound, but the evaluation of
the lower bounds in the nodes of the branch and bound-tree becomes significantly
faster. Handling the nominal combinatorial problem (the right-hand part of the
decomposition) remains the same.

Note that the subgradient method is now applied to the underestimating problem

min (c0 − λ)>x+
√
x>Ux + min λ>y

s.t. x ∈ {0, 1}n s.t. y ∈ X .
(6.3)

Therefore, the supergradient y∗ − x∗ is still valid if x∗ and y∗ are the optimal
solutions of the left-hand and the right-hand subproblems, respectively. This can
easily be verified in analogy to Lemma 4.9.

To be able to compute the underestimators in a preprocessing step, like in the
unconstrained case, we also here agree on a fixed branching.

6.2 Experiments

We implemented the idea of combining all the building blocks from the previous
chapters to solve the general robust Problem (2.16). The Lagrangean decompo-
sition approach exploits the combinatorial structure of the feasible set to solve
the right-hand part of the decomposition quickly and obtain good primal bounds.
In the unconstrained correlated case our approach did not show an excellent
performance. We might be concerned that in the constrained case, where the
procedure is even more complicated, the performance might get worse. On the
other hand we can reasonably expect no great increase of the running time in the
general case compared to the unconstrained case, because we suspect the main
difficulty of the general Problem (2.16), also from the practical point of view, to
be in the objective function.

We introduce results for the robust Shortest Path-problem and the robust Knapsack-
problem. The set up of the branch and bound-routine remains like in the uncorre-
lated case (Chapter 4), besides from the fixed branching, which we agreed on for the
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n vars r solved nodes calls t-total/s t-SDPs/s t-BNB/s
5 40 0.1 10 41.4 73.1 29.815 29.809 0.006

0.5 10 67.2 138.2 31.092 31.080 0.012
1 10 95.1 239.7 30.459 30.444 0.015

6 60 0.1 10 86.0 160.7 417.588 417.574 0.014
0.5 10 140.8 280.7 427.928 427.908 0.020
1 10 206.4 502.9 415.364 415.326 0.038

7 84 0.1 5 103.6 188.8 3409.558 3409.538 0.020
0.5 4 227.8 427.0 3401.502 3401.457 0.045
1 4 377.2 922.0 3356.295 3356.210 0.085

Table 6.1: Results for the reliable Shortest Path-problem on grid graphs. Decom-
position approach with SDP-tolerance 10−8. The number of edges is 2(n− 1)n.

underestimator-approach. In particular, also here we apply the warm start-strategy
using the mean c0 as the initial values of the Lagrangean multipliers λ.

All experiments were done on the same processor as in the unconstrained case
(Chapter 5). We compared the performance with the SOCP solver of CPLEX,
which again overtook our approach.

6.2.1 Robust Shortest Path-Problem

In the case of the reliable Shortest Path-problem we solved the combinatorial
deterministic problem in the left-hand part of the decomposition in analogy to the
uncorrelated case, i.e. with the network simplex-method [49]. For this application
we aimed to generate instances in a way, which is as similar as possible to the
generation of the uncorrelated instances in Section 4.2.3, to see the effect of
additional correlations. In particular, we produced n× n grid graphs, where every
edge i is associated with a mean c0i. These values were randomly chosen from
the interval [0, 100]. In analogy to generating variances in the uncorrelated case,
we have chosen the eigenvalues of the covariance matrix as squares of randomly
chosen numbers from the corresponding intervals [0, c0i]. We scaled the ellipsoids
with r ∈ {0.1, 0.5, 1} and generated 10 instances of each size and type.

The results are stated in Table 6.1. As in the uncorrelated case we compare the
number of solved instances (solved), the average number of branch and bound-
nodes (nodes) and the average number of iterations of the subgradient method
or, for CPLEX, the average number of simplex iterations (calls). Additionally, as
in the unconstrained correlated case, we broke down the total running time of our
program into the average time consumed in preprocessing on solving the SDPs (t-
SDPs/s) and the average time spent on the actual branch and bound-procedure
(t-BNB/s). All averages are taken only over the solved instances.

Unfortunately, our approach could only reach instances with 60 variables. On
all parameters we can observe similar tendencies as in the unconstrained case.
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However, the crucial importance of a faster preprocessing, i.e. solving the n− 1
semidefinite programs while computing the underestimators, is evident here. We see
that the preprocessing exhausts the time limit of 3600 CPU seconds for instances
with 84 variables, while after the preprocessing the branch and bound-routine is
done quickly.

The effect of using different r again can only be observed after the preprocessing,
but in all performance parameters. This is explicable by the invariance of the
SDP solver towards big parameter values.

It is interesting to observe that for comparable dimensions the branch and bound-
routine for the robust Shortest Path-problem takes considerably less time than
in the unconstrained case. This could possibly be due to the special structure of
the grid graphs, where covariances between many edges are not relevant as they
cannot occur together in one path.

Moreover, in the unconstrained case the primal bounds result from the solution of
the underestimating problem, while here we obtain reasonable and strong primal
bounds from the solution of the right-hand part subproblem of the decomposition.

We conclude here that it is absolutely necessary to compute the underestimators
in a different way. The bounds though appear to be strong enough, such that it is
imaginable to accept weaker bounds if their computation would take shorter time.

6.2.2 Robust Knapsack-Problem

Like in the unconstrained case we present here also numerical results for the
robust Knapsack-problem, i.e. Problem

max c>0 x−
√

1−ε
ε
x>Ax

s.t. w>x ≤ b
x ∈ {0, 1}n .

(6.4)

(compare with Problem (4.11) without correlations). We initially produced the
instances following the generation of the instances in Section 4.2.3. In particular,
the mean values were randomly chosen from the interval [0, 100]. The eigenvalues
of the covariance matrix were then generated as squares of randomly chosen
numbers from the corresponding intervals [0, c0i] and the eigenvectors were chosen
randomly.

The deterministic part of the decomposition was solved exactly by dynamic
programming, such that for the coefficients w of the knapsack constraint we took
randomly chosen integers from the interval [0, 100]. The capacity is b = 1

2

∑n
i=1wi,

in analogy to the unconstrained case.

Each instance was solved for the values ε ∈ {0.1, 0.05, 0.03, 0.02, 0.01}. We recall
that this corresponds to a scaling of the covariance matrix by a factor (1− ε)/ε, i.e.
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vars ε solved nodes calls t-total/s t-SDPs/s t-BNB/s
10 0.1 10 75.4 225.3 0.043 0.037 0.006

0.05 10 80.7 252.8 0.043 0.033 0.010
0.03 10 72.1 249.2 0.041 0.033 0.008
0.02 10 68.7 252.0 0.041 0.035 0.006
0.01 10 59.9 233.0 0.043 0.035 0.008

20 0.1 10 2193.4 7478.6 0.797 0.516 0.281
0.05 10 4449.5 16040.3 1.117 0.514 0.603
0.03 10 4849.9 18494.0 1.216 0.516 0.700
0.02 10 4668.8 18781.0 1.225 0.512 0.713
0.01 10 3868.5 17098.4 1.168 0.516 0.652

30 0.1 10 125414.5 444526.1 190.278 4.637 185.641
0.05 9 127248.6 496918.8 276.764 4.718 272.047
0.03 9 131239.6 540277.8 180.999 4.669 176.330
0.02 10 222580.9 941409.4 414.165 4.655 409.510
0.01 10 158088.9 697552.6 133.171 4.633 128.538

40 0.1 6 307075.5 1080834.5 483.422 26.232 457.190
0.05 3 249381.7 998811.0 262.237 26.180 236.057
0.03 3 516601.3 2236966.7 1150.047 26.253 1123.793
0.02 2 541996.0 2357665.0 1783.820 26.570 1757.250
0.01 1 287730.0 1419479.0 275.630 25.140 250.490

Table 6.2: Results for the robust Knapsack-problem. Generation of instances in
analogy to the uncorrelated case. Decomposition approach with SDP-tolerance
10−7.

here by the factors 9, 19, 32.3, 49 and 99. As in the uncorrelated case we compare
the number of solved instances (solved), the average number of branch and bound-
nodes (nodes) and the average number of iterations of the subgradient method
or, for CPLEX, the average number of simplex iterations (calls). Additionally, as
in the unconstrained correlated case, we broke down the total running time of our
program into the average time consumed in preprocessing on solving the SDPs (t-
SDPs/s) and the average time spent on the actual branch and bound-procedure
(t-BNB/s). All averages are taken only over the solved instances.

Unfortunately, with this scaling of the ellipsoids our approach did not go as far as
we hoped (see Table 6.2).

While the SDP time is not affected by a growing ellipsoid volume, the instances
with a big scaling parameter appear to be very hard to handle with the following
branch and bound-routine.

Fortunately, in the majority of the conceivable applications we can assume the
coefficients to not vary to the extent of up to the expected value c0. Here, however,
we generated the eigenvalues (in analogy to the variances in the uncorrelated case)
as squares of randomly chosen numbers in the intervals [0, c0i], which means that
the corresponding costs can be allowed to deviate from the expected value up to
the expected value. One can argue that the variances in the instances generated



6.2. EXPERIMENTS 131

in this way are extremely over-estimated from the practical point of view.

After this consideration we generated new, in our opinion more reasonable in-
stances, by scaling the old covariance matrices by a factor of 1

100
and used the

original values ε. This scaling of the matrix is offset against the scaling factor 1−ε
ε

,
such that comparable sizes of the ellipsoids are considered as in the application to
the robust Shortest Path-problem and the unconstrained binary problem. The

factor r in the Model (MR) is in this case 1
10

√
1−ε
ε
∈ {0.3, 0.44, 0.57, 0.7, 0.995}.

The results for these instances can be found in Table 6.3. Here all instances could
be solved up to the dimension 50. In the following dimensions the time limit
was consumed by the SDP solver. The effect of a growing ellipsoid volume can
be observed in the performance parameters of the branch and bound-algorithm.
The total number of branch and bound-nodes is the crucial factor for the long
running time. The warmstart-strategy, however, appears to work properly further
on, as we can judge looking onto the number of calls per node. For all dimensions
and scalings only 2-3 iterations of the subgradient method were necessary to
reach a near-optimal λ or to prune. For all performed dimensions the running
time consumed is to the largest extent still attributed to the computation of the
underestimators in preprocessing.

In both applications the effects of the building blocks of our algorithm can be
observed. The tests show that the approach is hardly applicable for extremely
large ellipsoid volumes, since even if being able to reduce the preprocessing time,
the branch and bound-routine takes a lot of time in these cases. Provided certain
improvement strategies mostly concerning the computation of the underestimators
the approach is though applicable for a less risk-averse user.
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vars ε solved nodes calls t-total/s t-SDPs/s t-BNB/s
10 0.1 10 22.6 45.9 0.037 0.036 0.001

0.05 10 26.4 57.1 0.037 0.034 0.003
0.03 10 29.2 65.2 0.037 0.033 0.004
0.02 10 31.3 76.3 0.036 0.033 0.003
0.01 10 38.9 95.9 0.040 0.034 0.006

20 0.1 10 172.6 361.8 0.531 0.514 0.017
0.05 10 254.1 580.7 0.542 0.519 0.023
0.03 10 348.3 832.3 0.548 0.514 0.034
0.02 10 486.1 1218.0 0.563 0.516 0.047
0.01 10 853.9 2294.3 0.603 0.514 0.089

30 0.1 10 280.4 595.7 4.563 4.530 0.033
0.05 10 580.2 1314.5 4.664 4.589 0.075
0.03 10 1017.1 2420.0 4.697 4.565 0.132
0.02 10 1685.4 4235.4 4.804 4.577 0.227
0.01 10 4237.0 11599.1 5.179 4.564 0.615

40 0.1 10 1393.4 2706.6 25.497 25.285 0.212
0.05 10 3420.5 7137.3 25.929 25.390 0.539
0.03 10 6687.9 14790.1 26.524 25.424 1.100
0.02 10 13968.8 32733.4 27.983 25.477 2.506
0.01 10 52976.4 134303.7 42.119 25.362 16.757

50 0.1 10 2054.8 4125.2 102.718 102.323 0.395
0.05 10 5182.6 11211.7 102.562 101.505 1.057
0.03 10 11061.6 25734.1 103.884 101.419 2.465
0.02 10 24754.9 61746.4 108.238 101.438 6.800
0.01 10 100008.5 278295.3 169.212 101.779 67.433

60 0.1 10 19138.9 38023.0 345.971 341.295 4.676
0.05 10 74432.8 156748.9 369.034 339.306 29.728
0.03 9 220136.0 488869.1 555.343 344.274 211.069
0.02 9 393779.0 920658.4 984.951 335.004 649.947
0.01 4 435189.2 1087465.8 1209.720 326.355 883.365

70 0.1 10 30009.4 58103.1 953.429 942.485 10.944
0.05 10 124088.7 250347.9 1047.280 939.293 107.987
0.03 9 205564.7 428071.2 1255.046 1012.863 242.182
0.02 7 247408.7 543120.6 1214.899 944.690 270.209
0.01 3 231291.3 586763.3 1094.880 904.943 189.937

80 0.1 10 68662.3 135831.7 2268.158 2223.987 44.171
0.05 9 163106.1 329809.6 2360.852 2219.807 141.046
0.03 7 188277.1 401219.0 2342.336 2216.190 126.146
0.02 6 403808.7 891797.3 2763.785 2290.643 473.142
0.01 0 - - - - -

Table 6.3: Results for the robust Knapsack-Problem. Decomposition approach
with SDP-tolerance 10−7.



Summary, Conclusions and
Outlook

Combinatorial optimization under ellipsoidal uncertainty turns out to be very
diverse from theoretical and practical perspectives. We distinguished two main
cases in this thesis, namely the uncorrelated and the general correlated case.
For the uncorrelated case we gained many different insights and results. We
proposed a new combinatorial algorithm for the unconstrained binary case, which
we derived from the geometrical view onto the problem. We visualized the di-
minishing returns-property of submodular functions for this special problem and
obtained a sorting rule for variables and an optimality condition. This gave us an
efficient O(n log n)-algorithm, which we then successfully used in a Lagrangean
decomposition approach for general subsets X ⊆ {0, 1}n, i.e. for the constrained
uncorrelated case.

The idea of the Lagrangean decomposition approach is to separate the two
characteristic aspects of the problem, namely the mean-risk objective function and
the combinatorial constraints. This is done through the Lagrangean relaxation
of the artificial constraints connecting the two parts and has the advantage that
the combinatorial structure is not getting useless through the non-linear objective
function, but is effectively used further on. The two isolated aspects manifest
themselves in two arising subproblems, one of which is exactly the linear version of
the combinatorial problem with the second being the unconstrained binary mean-
risk problem, for which the sorting algorithm mentioned above is immediately
applicable. The decomposition is embedded into a branch and bound-procedure,
which is implemented using the subgradient method to obtain lower bounds in
every node. We discussed the theoretical issues of the approach and established the
convenient property that any homogeneous inequality, valid for the scenarios from
the uncertainty set, can be assumed to be valid for the Lagrangean multipliers as
well. The method was tested on two applications and proved itself very fast and
suitable, demonstrating by its performance all the theoretical advantages.

We extended the combinatorial algorithm for the unconstrained binary mean-
risk problem to general integer variables. The extension is based on the same
diminishing returns-property, applied to each value-increase of each variable. As
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we look at each value of each variable, the sorting algorithm in this case is only
pseudo-polynomial, with the resultant running time depending on the bounds
of the variables. Whether there exists a faster algorithm for the unconstrained
integer mean-risk problem, remains unclear.

Furthermore, we introduced a new uncertainty set, which was not considered
in the literature before, the p-norm-uncertainty. It describes basically the in-
between cases within the uncorrelated ellipsoidal and the interval uncertainty.
We transformed the objective function using the Karush-Kuhn-Tucker optimality
conditions and have shown that after minimal modifications, the sorting algorithm
can be easily applied.

Whereas the constrained case of uncorrelated ellipsoidal uncertainty was suc-
cessfully solved in practice, the theoretical complexity of the reliable Shortest
Path-problem remains an open question. We studied several approaches to this
problem, in particular a node-labeling approach with some problem-specific non-
dominance-conditions. We again used a geometrical illustration to understand the
development of the set of non-dominated subpaths in every node. We formalized
the dependency of the dominance-capacity on the upcoming subpaths in the forms
of a label-function and a dominance-function. This gave us the insight that the
actual number of the stored labels in every node is small. In particular, we could
determine a bound on the number of labels corresponding to the set of subpaths
over a given node.

After an effective examination of the uncorrelated case we turned to the correlated
case and considered first the unconstrained case. Initially we gave a tighter lower
bound on the complexity of the problem, showing its strong NP-hardness. The
method of solving this difficult problem exactly was to develope a new branch and
bound-algorithm, where we constructed a linear underestimator on the covariance
matrix, i.e. approximate a given general ellipsoid by an axis-parallel ellipsoid, to
gain lower bounds. One of the special features of this branch and bound-procedure
is a fixed branching, which we use to compute only one underestimator for each
level of the enumeration-tree, and not for every node, to reduce computational
expenditure. The actual computation of the underestimators is performed by
solving the corresponding semidefinite programs.

As with the uncorrelated case, we use the approach to solve the arising un-
constrained problem in a Lagrangean decomposition for general combinatorial
problems under ellipsoidal uncertainty. With that a new exact method for the
strongly NP-hard problem is established.

The practical evaluation of the approach has confirmed that determining the
underestimators solving SDPs is not beneficial. Secondly, large ellipsoid volumes
affect the performance of the algorithms: for an extreme risk-averse user our
approach is not suitable.

During the extensive research on ellipsoidal uncertainty in combinatorial opti-
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mization we also gained some beneficial side-results, such as a natural approach
for a multicriteria robust optimization. Whilst expanding our knowledge we simul-
taneously expanded our curiosity, as many interesting and promising directions
became evident.

For example, an adaptation of the sorting algorithm for the unconstrained binary
mean-risk problem to more general classes of submodular functions is conceivable.
The diminishing returns-property, on which the functioning of the algorithm
is based, is characteristic for all submodular functions. That means that by
abstracting the definition of the contribution functions and their roots, a sorting
rule can possibly be found that would promise a running time of O(n log n)
for minimization of further submodular functions over an unconstrained binary
domain, which is worthwhile considering.

Another direction is the improvement of the underestimator approach for general
correlated problems. To maintain the good performance of the Lagrangean de-
composition approach also in the correlated case, the embedding of a different
and a more problem-specific underestimator is required.

Since the center of the underestimating and the underestimated ellipsoids is the
same in our approach, we are very limited in getting closer to the relevant part of
the ellipsoidal boundary, typical for the robust Problem

min max
c∈U

c>x

s.t. x ∈ X ⊆ {0, 1}n .
(6.5)

Consider for illustration Figure 6.2. Due to the non-negativity of x, the worst
case-scenarios of the ellipsoid U are located in the piece of the ellipsoidal boundary
(red) between the optimal solutions of the inner maximization problem of (6.5)
over the ellipsoid for fixed non-negative directions x. The other points in U are
not relevant for the worst case-minimization since these are always dominated as
bad cases by one of the scenarios from this part of the ellipsoidal boundary. If we
did not fix the center of the underestimating ellipsoid, the approximation of this
relevant part might significantly improve.

Furthermore, with these observations, we are not limited in underestimating
the whole ellipsoid. Due to the condition (5.4) the underestimating ellipsoid
is completely contained in the original ellipsoid. The only requirement is to
approximate the mentioned boundary-section, with the one restriction being to
not pass beyond the black borders (see Figure 6.2). Once we managed to compute
the underestimators fast, we can move away from the fixed branching and use the
information given by concrete fixings.

The most relevant open question is the theoretical complexity of the uncorrelated
reliable Shortest Path-problem. Unfortunately, we could not classify this problem,
even though we considered it from several different perspectives. In our opinion,
most promising appears to be the labeling approach. The derived property in
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Figure 6.2: Approximating of the worst case subset (red) of the uncertainty set
(red, dotted) through a more problem specific underestimator (blue).

connection with reasonably defined bounds on relevant intervals should be tested
experimentally, as the number of actually relevant labels is likely to shrink rapidly.
Many possibilities for a reasonable choice of the interval bounds are imaginable.
Furthermore, other special graph structures should be examined, where the
property can possibly induce a polynomial total number of labels. The geometrical
illustration, which our results in labeling are based on, can also be helpful to
further restrict this number. The next step would be the aggregation of two
different dominance functions, i.e. of two functions proceeding from two different
nodes. Theoretically the arising aggregated function can summarize all the labels
from both nodes. By using additional information about the formation of the
corresponding subsets of labels, we can possibly reduce the number of labels.

All in all, the reliable Shortest Path-problem revealed itself as particularly intrigu-
ing. Despite its comprehensible form, the theoretical complexity remains unclear,
though maybe the mathematical community is closer to the answer. It remains
uncertain if and how it will be classified, but what is certain is that the truth is
out there.
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functions. In Michael Jünger and Gerhard Reinelt, editors, Facets of Combi-
natorial Optimization, pages 271–294. Springer Berlin Heidelberg, 2013.

[8] Frank Baumann, Christoph Buchheim, and Anna Ilyina. Lagrangean decom-
position for mean-variance combinatorial optimization. In P. Fouilhoux, E.N.
Gouveia, A.R. Mahjoub, and V.T. Paschos, editors, International Symposium
on Combinatorial Optimization – ISCO 2014, volume 8596 of Lecture Notes
in Computer Science, pages 62–74. Springer, Cham, 2014.

[9] Frank Baumann, Christoph Buchheim, and Anna Ilyina. A Lagrangean
decomposition approach for robust combinatorial optimization. In Technical
Report. Optimization Online, 2014.

137

http://www.stromnetzplanung.de


[10] Aharon Ben-Tal and Arkadi Nemirovski. Robust convex optimization. Math-
ematics of Operations Research, 23(4):769–805, 1998.

[11] Aharon Ben-Tal, Alexander Goryashko, Elana Guslitzer, and Arkadi Ne-
mirovski. Adjustable robust solutions of uncertain linear programs. Mathe-
matical Programming, 99(2):351–376, 2004.

[12] Piotr Berman and Toshihiro Fujito. On approximation properties of the
independent set problem for degree 3 graphs. In S.G. Akl, F. Dehne, JR.
Sack, and N. Santoro, editors, Workshop on Algorithms and Data Structures,
volume 955 of Lecture Notes in Computer Science, pages 449–460. Springer
Berlin Heidelberg, 1995.

[13] Dimitris Bertsimas and Melvyn Sim. Robust discrete optimization and
network flows. Mathematical Programming, 98(1):49–71, September 2003.

[14] Dimitris Bertsimas and Melvyn Sim. The price of robustness. Operations
Research, 52(1):35–53, 2004.

[15] Dimitris Bertsimas and Melvyn Sim. Robust discrete optimization under
ellipsoidal uncertainty sets. Technical report, MIT, 2004.

[16] Brian Borchers. Csdp, ac library for semidefinite programming. Optimization
Methods and Software, 11(1-4):613–623, 1999.

[17] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[18] Christoph Buchheim. Robust optimization. Lecture script, Technische
Universität Dortmund, 2014.

[19] Christoph Buchheim and Jannis Kurtz. Min-max-min robust combinatorial
optimization subject to discrete uncertainty. Technical report, Technische
Universität Dortmund, 2016.

[20] Christoph Buchheim and Emiliano Traversi. Separable non-convex underesti-
mators for binary quadratic programming. In V. Bonifaci, C. Demetrescu, and
A. Marchetti-Spaccamela, editors, 12th International Symposium on Experi-
mental Algorithms – SEA 2013, volume 7933 of Lecture Notes in Computer
Science, pages 236–247. Springer Berlin Heidelberg, 2013.

[21] Kevin Buehler, Andrew Freeman, and Ron Hulme. The risk revolution. The
Strategy: Owning the Right Risks.–Harvard Business Review, September 2008.

[22] Patricia June Carstensen. The complexity of some problems in parametric
linear and combinatorial programming. PhD thesis, University of Michigan,
1983.

138
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