
Probabilistic Graphical
Models in RapidMiner

Te
ch

ni
ca

lR
ep

or
t Nico Piatkowski

2/2011

technische universität

dortmund

Part of the work on this technical report has been supported by Deutsche Forschungs-
gemeinschaft (DFG) within the Collaborative Research Center SFB 876 "Providing
Information by Resource-Constrained Analysis", project A1.

Speaker: Prof. Dr. Katharina Morik
Address: TU Dortmund University

Joseph-von-Fraunhofer-Str. 23
D-44227 Dortmund

Web: http://sfb876.tu-dortmund.de

http://sfb876.tu-dortmund.de

1 Introduction

Structured data has become common in a large set of machine learning tasks like text
segmentation [9, 20], denoising and classification of images [25], 3-D depth reconstruction
[19], protein side-chain prediction [28], or web page labeling [3]. A structured training
instance (y,x) consists of a label vector y ∈ Y1×Y2×· · ·×Yn and an observation vector
x ∈ X1×X2×· · ·×Xm. Both, y and x, may contain dependencies within and between each
other. Probabilistic Graphical Models (PGMs) [26] are a common approach to model the
interactions of those variables. Although several variants of PGMs like Naive Bayes (NB),
Bayesian Networks (BNs), Hidden Markov Models (HMMs) [18], Markov Random Fields
(MRFs) [5], Gaussian Markov Random Fields [22] or Conditional Random Fields (CRFs)
[9] exist, the Factor Graph representation as described by Kschischang et al. [8] covers
them all, since it allows arbitrary funtional dependencies between random variables.

This Report describes the technical background and usage of the GraphMod plug-in for
RapidMiner [12]. The plug-in enables RapidMiner to load factor graphs and interpret
Label and Attributes which are contained in an Example as assignments to random
variables. A set of examples which belong to the same Batch is treated as assignment
to a whole factor graph. New operators allow the estimation of factor weights, the
computation of the single-node marginal probability functions and the computation of
the most probable assignment for each Label-node with several methods. All algorithms
are optimized for parallel execution on common multi-core processors and NVIDIA CUDA
[14] capable many-core processors (also known as Graphics Processing Unit).

The remainder of this report is organized as follows. Section 2 shortly reviews the general
theory of PGMs. The RapidMiner operators which are contained in the GraphMod plug-
in and technical details on their implementation are presented in Section 3. Section 4
shows how to create factor graphs which may be loaded by the plug-in. Two example
processes are shown and explained in Sec. 5. Section 6 subsumes this report and gives a
short outlook on future work.

2 Probabilistic Graphical Models

We will now introduce the necessary notation and the basic concept of PGMs. Following
[8], we focus on graphical models which are represented as factor graphs. A factor graph
G = (V , E ,F) consists of a set of variable nodes V , a set of factor nodes F and a set
of undirected edges between factors and variable nodes E ⊆ F × V . In the following,
we assume that the nodes in V are partitioned into two distinct multivariate random
variables X and Y with assignments x and y and discrete domains X1 ×X2 × · · · × Xm

and Y1 × Y2 × · · · × Yn. The nodes in Y are called hidden nodes and those in X are
the observed ones. For notational convenience, let y ∈ Yn and x ∈ Xm. Furthermore,
let yU be the joint assignment y restricted to the nodes in an arbitrary set U ⊆ Y . The
nodes f ∈ F are corresponding to positive functions f : Y |∆(f)| × X |∆̃(f)| → R+, where
∆ : F → 2Y assigns1 to a factor node a set of its adjacent nodes which correspond to

1Here, 2U denotes the power set of a set U ⊆ V.

1

random variables in Y and ∆̃ those which corresponds to variables in X, respectively.

A general factor graph defines a function of all nodes in V that factorizes over smaller
functions, namely those in F . It is known from [5], that the joint probability density func-
tion (pdf) over a set of random variables V factors over the cliques of the corresponding
dependency graph G if its edge set encodes a conditional independence structure between
the variables in V . Thus, a factor graph that models the same distribution contains a fac-
tor for each clique of G. The pdf of a general MRF over a multivariate random variable y
is shown in Eq. 1. The quantity Z is a normalization factor to ensure that

∑
y p(y) = 1.

pθ(Y = y) = Z−1
∏
f∈F

fθ(y∆(f)) (1)

If an observed vector x is given, one may formulate a CRF (Eq. 2). In this case, the
normalization is a function of x. As PGMs are usually parametrized, the factors and thus
the whole pdf depends on a parameter set θ. In case of MRFs, θ contains one weight
vector θf per factor node, each of size O(|Y|∆max). For CRFs, each θf contains again a set
of conditional weight vectors θf |v=x for each possible combination of observed neighbor
v ∈ ∆̃(f) and corresponding assignment x ∈ X . Depending on the actual type of PGM,
factors f, g ∈ F with a common domain may share the same set of parameters, that is
θf = θg. A set of factors which share the same parameter set is called factor template.

pθ(Y = y|X = x) = Z(x)−1
∏
f∈F

fθ(y∆(f),x∆̃(f)) (2)

A factor node measures how likely a given assignment to its neighbors is. In discrete
CRFs, they usually take the form of Eq. 3. Let 1Y ∆(f)=y∆(f)

be a binary vector of size
|Y|∆max which contains 0 on all positions except for position y∆(f) where it contains a 1.

fθ(y∆(f),x∆̃(f)) =
∏

v∈∆̃(f)

exp
[〈
θf |v=xv ,1Y ∆(f)=y∆(f)

〉]
(3)

By definition of 1Y ∆(f)=y∆(f)
, the dot product in Eq. 3 simply selects the weight which

corresponds to the assignment y∆(f).

To complete the framework for PGMs, Maximum Likelihood Estimation (MLE) is used
to approximate the most probable set of parameters for a given set of N totally observed
assignments (or training instances) T = {(y,x)i}1≤i≤N . The parameters are updated by
moving the current vector θt into the direction of the steepest ascent of the likelihood.
The resulting update rule for CRFs is given in Eq. 4. Here, ηt is a dynamic stepsize and
1y′

∆(f)
=y∆(f)

is a binary indicator function which evaluates to 1 iff the expression in the
subscript is true and 0 otherwise. Furthermore, let T (v, x) := {(y′,x′) ∈ T |x′v = x} be
the set of all training examples where the random variable v was observed with assignment

2

x. The term pθ
(
y∆(f)|x

)
corresponds to the marginal probability of nodes in ∆(f)

having the assignment y∆(f). The two most common methods for the computation of
this quantity are investigated in Sec. 2.1. In case of MRFs, the update rule simplifies to
Eq. 5. See [23] for a detailed derivation of these update rules.

θt+1
f |v=x(y∆(f)) = θtf |v=x(y∆(f)) + ηt

∑
(y′,x′)∈T (v,x)

[
1y′

∆(f)
=y∆(f)

− pθ
(
y∆(f)|x′

)]
(4)

θt+1
f (y∆(f)) = θtf (y∆(f)) + ηt

∑
(y′,x′)∈T

[
1y′

∆(f)
=y∆(f)

− pθ
(
y∆(f)

)]
(5)

The single-node marginals pθ (yv|x) may also be used to derive the most probable as-
signment for a node v by choosing an assignment according to Eq. 6.

y∗v = arg max
yv∈Y

pθ (yv|x) (6)

Although it is possible to convert a factor graph with factors of arbitrary size into a pair-
wise model (See [26], Appendix E.3) we keep the general notation, since the corresponding
pairwise model simplyfies the notation but hides the exponential runtime complexity of
marginalization.

2.1 Marginal distribution

One of the main targets when dealing with PGMs is to compute the margnial distribution
(Eq. 7). They may be used to predict the most probable assignment for a variable
node or to adjust the PGM parameters θ. For notational convenience, let V be the set
{1, 2, . . . , n}.

pθ(yv|x) =
∑
y1

∑
y2

· · ·
∑
yv−1

∑
yv+1

· · ·
∑
yn

pθ(y1,y2, . . . ,yn|x) (7)

Obviosly, the complexity of a complete enumeration of all possible assignments to the
whole graph isO(|Y|n−1), which is intractable for most choices of n. The GraphMod plug-
in currently contains two methods for marginalization which are much more efficient than
the naive enumeration. The first one exploits the factorization of pθ to reduce the time
complexity. The second one is based on a sampling approach.

2.1.1 Belief Propagation

The computation of conditional marginal probabilities p(y∆(f)|x) with Belief Propagation
(BP) consists in repeatedly computing Eq. 8 and 9. Both equations have to be computed
for all possible combinations of factor node f ∈ F , neighboring variable node v ∈ ∆(f),
corresponding assignment yv ∈ Y and training instance x ∈ T . This process may be

3

interpreted as the sending of messages and is therefore called Belief Propagation [16] or
Sum-Product algorithm [8].

mf→v(yv|x) =
∑

y′∆(f)−v

fθ(yv,y
′
∆(f)−v,x)

∏
u∈∆(f)−v

mu→f (y′
u|x) (8)

mv→f (yv|x) =
∏

g∈∆−1(v)−f

mg→v(yv|x) (9)

One iteration of BP is finished, if all nodes have computed their new outbound messages.
The number of iterations I and therefore the overall complexity of BP heavily depends
on the actual graphical structure. In general, when the graph is undirected and contains
loops, both equations must be computed multiple times until convergence or if a maximum
number of iterations Imax is reached. In tree structured undirected models, the number
of iterations is known, since the process can safely be stopped if each node has received
the messages from all other nodes in the graph through its neighbors. In case of tree
structured directed models, messages only need to be passed in edge direction. Hence,
message must be computed once for each depth-level of the tree. Independent of the
graphical structure, the complexity of computing an outgoing message from a factor is
O(∆max|Y|∆max) and therefore exponential in ∆max.

After BP has terminated, the single-node marginals may be approximated with Eq. 10
and those of a factor node with Eq. 11. The normalization factors Zv and Z∆(f) have to
ensure that the corresponding functions sum to 1.

pθ(yv|x) = Zv(x)−1mf→v(yv|x)mv→f (yv|x) (10)

pθ(y∆(f)|x) = Z∆(f)(x)−1f(y∆(f),x∆̃(f))
∏

v∈∆(f)

mv→f (yv|x) (11)

In case of tree structured graphs, the computed margnials are exact. A formal proof is
omitted here, but one easily derives Eq. 7 by recursively substituting Eq. 8 and Eq. 9
into Eq. 10 followed by a rearrengement of terms and factors. In loopy graphs, BP will
converge if the dynamic range of each factor fθ satisfies a certain property [6].

2.1.2 Markov Chain Monte Carlo

Another common way to approximate the marginal probabilities in factor graphs is a
Markov Chain Monte Carlo (MCMC) method called Gibbs sampling [4]. The idea is to
repeatedly replace each single-node assignment yv with a value picked from a distribution
which is conditioned on the current values of all other variable nodes. This process can
be seen as generating a realization of a Markov chain.

yt+1
v ∼ Zv(x)−1

∏
f∈∆−1(v)

fθ(yv,y
t
∆(f)−v,x∆̃(f)) (12)

4

The algorithm consists in repeatedly sampling each nodes assignment according to Eq.
12 for a fixed number of Imax iterations while counting how often node v had a certain
assignment yv. Let #(v = y|x) be this absolute frequency, then the relative frequency
#(v = y|x)I−1 is an estimate for the wanted marginal probability pθ(yv|x). To estimate
the factor marginals pθ(y∆(f)|x), the joint assignments to all neighbors of each factor
node has to be counted after each MCMC iteration, i.e. after all variable nodes have
been resampled. This procedure will indeed converge to the true marginal distribution
if I approaches infinity. As an variety, one may only count assignments which pass
a randomized acceptance procedure, which leads to the Metropolis-Hastings algorithm
[11]. A more detailed explanation about the application of this algorithm to factor graphs
can be found in [27].

Figure 1: Screenshot of RapidMiner version 5.1. The folder Graphical Models contains
9 new operators.

3 The GraphMod plug-in

The GraphMod plug-in for RapidMiner (Fig. 1) implements PGMs like described in Sec.
2 of this report. A usual GraphMod process loads or creates a factor graph and either
estimates the model parameters from a given example set or approximates the marginal
distribution, which also yields the most probable assignment for each node. Additionally,
the plug-in contains operators to modify a factor graph or to extract the estimated weight
vectors.

3.1 Layout of ExampleSets

Like operators for time series, the GraphMod plug-in requires that the data which is
contained in an ExampleSet obeys a certain layout. Each row has to contain an example
identifier i and node identifier j. The remaining fields of a data row correspond to a
vector (y

(i)
j ,x

(i)
j,1, . . . ,x

(i)
j,m) which at least contains the assignment y(i)

j of hidden node

5

f
a b

g

1 2

c

3

Y:

X:

d

4

Figure 2: Factor graph of a linear-chain conditional random field.

j in example i and in case of conditioned models also the assignments x(i)
j,1, . . . ,x

(i)
j,m of

some observed nodes. The column of y(i)
j needs to have the role Label and the x(i)

j,m

should be marked as Regular Attributes. This data layout fits to regular structures
like linear-chains or grids but also applies to irregular structures like proteins.

3.2 Operator: Create Factor Graph

The Create Factor Graph operator can be used to create new factor graphs. It has no
input ports and its output is a new factor graph, which is either empty, i.e. it contains
no nodes, or obeys a linear-chain structure (Fig. 2). The corresponding property is
called Structure which allows to choose between Empty and Linear-chain. In case of
predefined structures, optional parameters may appear, e.g. for linear-chain structures
the names of attributes which should be used as observations at each time step can be
supplied as comma seperated list. Additionally, it is possible to indicate that all hidden
nodes v ∈ Y have the same domain by setting the binary property Shared domain to
true.

3.3 Operator: Add Factor Node

This operator reads a factor graph as input, adds a new factor to it and returns the
resulting factor graph. The main property of a factor node is its Neighborhood. The
neighbors of a new factor node are defined by a comma seperated list of integers which
are used to address hidden nodes with their node identifiers. To connect a factor with
observed nodes, attribute names have to be supplied, each followed by an underscore and
a node identifier. Thus, the connectivity of the whole graph is fully specified by its set of
factors. Each factor may also get a Name which can be set as a property of this operator.
If no Name is supplied, the new factor will get the name unnamed_k, whereas k ≥ 1 equals
the total number of unnamed nodes. Furthermore, a factor may get a Tempalte Name,
which identifies the template to which a factor belongs. If two factors f, g ∈ F have the
same Tempalte Name, they share the same set of parameters, that is θf = θg. Because
of the template names, it is possible to apply a model which was learned on graph G to
a different graoh G′. If a factor node is unconditioned, i.e. it is not connected to any
observed node, then the weights of this factor may be set manually by activating the

6

Set weights button. This is not possible for conditional factors, since the domains of
the observed nodes are extracted from an ExampleSet which is unknown at construction
time of the graph.

3.4 Operator: Set Neighborhood

The neighborhood of a factor node may be changed with this operator. It reads a factor
graph as input, changes the neighborhood of a given factor node and returns the resulting
factor graph. The factor is addressed by its Name. The Neighborhood should be specified
as described above.

3.5 Operator: Set Template

If a factor node should be remapped to another template, this operator can be used. It
reads a factor graph as input, changes the Template Name of a given factor and returns the
resulting factor graph. The operator expects the Name of an existing factor and replaces its
corresponding template with another one which has to be supplied as property Template
Name.

3.6 Operator: Generate Sample

This operator expects a model as input and generates an example set which contains
samples that are drawn from the estimated distribution. To use this operator, each factor
in the corresponding graph has to be unconditioned, i.e. has no Regular Attributes as
neighbors. The only property of this operator is the Number of samples which should
be generated. One factor is randomly selected and a joint assignment to his neighboring
variable nodes is sampled according to its marginal distribution pθ(y∆(f)|x). The process
is continued at all factors which still have unassigned neighbors.

3.7 Operator: Load GraphML

Instead of creating a factor graph directly in RapidMiner, is is possible to load a factor
graph from a GraphML [2] file. The graph may be either supplied by the File input
port of the operator or by providing the File Name. In both cases, the operator delivers
a factor graph object at its output port. The GraphML format is based on XML and
supports the entire range of possible graph structure constellations. The semantics is
derived from the definition of factor graphs [8]. A black rectangle is interpreted as a
factor node. A black ellipse is considered as observed node and all other ellipses represent
hidden nodes. GraphML allows to equip nodes with names. In case of a factor node, this
name is interpreted as its Template Name. The name of observed nodes has to correspond
to an attribute name, followed by an underscore seperated node identifier like described
above. Hidden nodes must have an integer number as name which corresponds to its
node identifier. For now the only editor which is known to generate compatible files is

7

the free graphical editor yEd. The creation of factor graphs with yEd is described in Sec.
4.1. Currently it is not possible to store an entire model in a GraphML file, only the
graphical structure can be loaded. In analogy to the Create Factor Graph operator, it
is possible to indicate that all hidden nodes v ∈ Y have the same domain by setting the
binary property Shared domain to true.

3.8 Operator: Load MRF

As an alternative to direct graph creation or GraphML files, unconditioned graphical
models, i.e. MRFs, may be loaded by a simple proprietary file format. The graph may
be either supplied by the File input port of the operator or by providing the File
Name. In contrast to GraphML files, MRF files usually contain factor weights. Hence,
the operator delivers a factor graph object and a Model at its output ports. Such models
may be used as input for the Generate Sample operator or, if applied by a Apply Model
operator to compute the single-node marginal distributions. In order to use the Apply
Model operator, an example set has to be supplied which is not available in case of
Markov Random Fields. Hence, the Load MRF operator additionally outputs an example
set which contains one GraphMod example. The content of an MRF file is basicly a list of
variables followed by list of factors. Each factor may may be followed by a list of weights.
Since this file format does not allow the use of names or other identifiers for factors, the
explicit use of factor templates in MRF files is not possible. A detailed example on how
to create an MRF file is given in Sec. 4.2.

3.9 Operator: PGM

The PGM operator expects a factor graph and an example set as input and outputs a
model, which contains a set of parameters θ and a copy of the graphical structure on
which the model was trained on. The structural information has to be stored in the
model, since it is required to apply the model to unlabeled testing data. The engine
which performs the actual computation of the marginal distribution may be changed by
the property Engine. Possible values are LBP which is an implementation of the method
described in Sec. 2.1.1 and MCMC which corresponds to the sampling procedure described
in Sec. 2.1.2. The other properties of this operator are the same for both engines. The
property Marginalization Iterations sets the maximum number of iterations Imax.
To perform a Stochastic Gradient Descent training, the property Batched Training can
be set to true. In this case, the batchsize should be set with parameter Batchsize. The
number of updates (Eqs. 4 and 5) which are performed can be set up with the property
Training Iterations. The stepsize η which is used in the update rules may be fixed
or annealed. If η is fixed its value can be set as property Stepsize. Otherwise, the
stepsize will be annealed like ηt = 1√

t
, whereas t is the number of the current update.

Finally, the type of Hardware parallelization may be set to either Multi-Core (CPU)
or Many-Core (GPU). Sec. 3.10.1 gives a short overview on the parallelization.

8

3.10 Operator: Exchange Factor Graph

A model which was learned on a graph, may be coupled with another graph if both
graphs are using the same factor templates. This operator expects a factor graph and a
model which was generated by the PGM operator as input, checks both for compatibility by
comparing the corresponding sets of factor templates and outputs a model which contains
the new factor graph. The model may then be applied as usual.

3.10.1 Parallelization

The Multi-Core parallelization is based on the GraphLab framework [10]. GraphLab is
written in C++ and allows an easy distribution of computations which are associated
with nodes over the cores of multi-core processors. Although a exemplary JAVA binding
of GraphLab is available, most of the GraphLab classes had to be converted to JAVA to
ensure the compatibility with RapidMiner.

In general, all computations which are local to one node (e.g. message computations or
resampling and counting) are called task. For one iteration of BP or MCMC, the tasks are
distributed over all available cores. In order to perform training or testing a PGM, the
tasks have to be computed for a set of instances. The multi-core implementation iterates
over this set while the many-core implementation performs the local computations for
each instance in parallel. Furthermore, the many-core version applies Thread-Cooperative
LBP to reduce the complexity of marginalization. The Thread-Cooperative approach is
described in a former technical report [17].

Figure 3: Screenshot of yEd version 3.8. The shape of a new node may be selected in
area A, the edge type can be choosen in area B and the actual graph is drawn in area C.
The name and the color of a node may be set in right panel.

9

4 File formats for factor graphs

Information about an actual graphical structure is needed in order to apply graphical
models. Those structures may directly generated within RapidMiner or loaded from file
by the operators described in Sec. 3. Here, the generation of graphs with external tools
is described. Those graphs may be subsequently loaded into RapidMiner.

4.1 Generating GraphML files with yEd

GraphML is an XML-based file format for graphs and may therefore be written by hand.
As mentioned above, factor graphs may be easily generated with a free software called
yEd2. A screenshot of yEd is shown in Fig. 3. The program allows graph creation by
simply dragging the nodes from area A and dropping them on area C. Nodes may be
connected by selecting an edge type in area B, clicking on a node and dropping the edge
on another node. Only nodes with Rectangle or Ellipse shape are recognized by the
Load GraphML operator. Nodes must be connected by a Polyline which corresponds to
an undirected edge. Each node should have assigned a name and a color. A white ellipse is
interpreted as hidden node and must have an integer number for name which corresponds
to its node identifier. Black ellipses are interpreted as observed nodes. Their name should
match the name of an attribute in RapidMiner followed by an integer (node identifier) to
select the actual data row which contains the assignment to this node. Fianlly, a black
rectangle corresponds to a factor node. The name of a factor identifies its template. A
explained in Sec. 3.3, factors with the same name will share the same set of parameters.
Since the native file format for yEd is GraphML, the designed model needs simply be
saved on disk and may be loaded afterwards by the Load GraphML operator.

A

B

C

D

E

Figure 4: A simple Markov Random Field.

4.2 Writing MRF files

The second file type supported by GraphMod is a simple list format. It mainly consists
of two lists. The elements of the first list are starting after a line which solely contains the
string variables:. Each element is a pair of name and domain size of the corresponding
random variable. The second list is introduced by the keyword factors:. Each line of
this list corresponds to a factor f and begins with slash separated list of variables. Those
variables are forming the neighborhood ∆(f) of the current factor.

2The program is available for download at: http://www.yworks.com/en/products_yed_about.html

10

||∆(f)|| =
∏

v∈∆(f)

|Dom(v)| (13)

The neighborhood is terminated by a double-slash //, followed by a space separated list
of ||∆(f)|| weights. The total number of weights may be computed with Eq. 13. As an
example, Listing 1 generates the factor graph which is shown in Fig. 4. Since names or
other identifiers for factors are not supported, the explicit use of factor templates is not
possible in this file format.
variables:
A 2
B 2
C 2
D 2
E 2
factors:
A // -0.356 -1.203///
B // -0.916 -0.510///
A /C // -0.510 -1.609 -0.916 -0.223///
A /B /D // -0.223 -1.609 -0.105 -1.203 -1.609 -0.223 -2.302 -0.356///
C /E // -0.223 -1.203 -1.609 -0.356///

Listing 1: Sample MRF file

5 Sample processes

We will now present two exemplary sample processes to clarify the usage of the GraphMod
plug-in within RapidMiner. The samples contain a description of how to connect the
involved operators and the input which should be supllied to achieve a desired output.

5.1 Simple Markov Random Field

This example shows how to apply Markov Random Fields by using the MRF file format.
The first part of this process-chain is the Load MRF operator. The file which is shown in
Lst. 1 is used as input, whereas the given factor weights are logs of the entries of the
corresponding conditional probability tables. The graphical structure and the weights
were taken from an example for baysian networks3. The second operator is Apply Model.
It is connected with the model output port as well as the example set output port of the
Load MRF operator. Finally, all output of the Apply Model are connected to the output
ports of this process. When the process is started, it applies Belief Propagation to
estimate the single-node marginal probabilities. The result is shown in a simple table
which contains the marginal probabilities for each node an each assignment.

3URL of example for baysian networks: http://cs.nyu.edu/faculty/davise/ai/bayesnet.html

11

6 Summary and Future Work

This report presented the GraphMod plug-in, which allows the easy application of prob-
abilistic graphical models within RapidMiner. The first Section cantained a short in-
troduction. The theoretical foundations of PGM together with the two most common
algorithms for estimation of the marginal distribution were introduced in the second Sec-
tion. The third Section described the operators which are contained in the GraphMod
plug-in. Section 4 showed how to create file representations of factor graphs and two
examples of how to use the operators in RapidMiner processes were given in the last
Section.

To support a broader range of software plattforms, Windows and MacOS support will
be added in the upcoming release. The GPU acceleration will be enhanced to support
OpenCL [15] in order to be compatible with upcoming many-core architectures.

The parameter update, given by Eq. 4 or Eq. 5, is done by Stochastic Gradient Descent
(SGD) optimization [25]. Additional optimization techniques may be added in future
releases, since the implementations of BP and MCMC are completely decoupled from the
optimization procedure.

The current selection of marginal distribution estimation algorithmes will be extended
with Stochastic Belief Propagation [13] to reduce the complexity of ordinary BP, Gaussian
Belief Propagation [1] to support numerical random variables which follow a gaussian
distribution and Kernel Belief Propagation [21] to support numerical variables with an
arbitrary distribution.

References

[1] Bickson, D.: Gaussian Belief Propagation: Theory and Application. Ph.D. thesis,
University of Jerusalem (2009)

[2] Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.: GraphML
Progress Report: Structural Layer Proposal. Proceedings of th 9th International
Symposium on Graph Drawing (GD ’01), LNCS 2265 pp. 501–512 (2002)

[3] Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K.,
Slattery, S.: Learning to extract symbolic knowledge from the world wide web. In:
Proceedings of the 15th national conference on Artificial Intelligence. pp. 509–516.
AAAI ’98/IAAI ’98, American Association for Artificial Intelligence, Menlo Park,
CA, USA (1998)

[4] Geman, S., Geman, D.: Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence PAMI-6(6), 721–741 (1984)

[5] Hammersley, J.M., Clifford, P.: Markov fields on finite graphs and lattices. Unpub-
lished Manuscript (1971)

12

[6] Ihler, A.T., Willsky, A.S.: Loopy Belief Propagation: Convergence and Effects of
Message Errors. Journal of Machine Learning Research 6, 905–936 (2005)

[7] Jungermann, F.: Documentation of the Information Extraction Plugin for Rapid-
Miner (2011)

[8] Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor Graphs and the Sum-Product
Algorithm. IEEE Trans. on Infor. Theory 47(2), 498–519 (2001)

[9] Lafferty, J., McCallum, A., Pereira, F.: Conditional Random Fields: Probabilistic
models for segmenting and labeling sequence data. Proceedings 18th International
Conf. on Machine Learning pp. 282–289 (2001)

[10] Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.:
Graphlab: A new parallel framework for machine learning. In: Conference on Un-
certainty in Arti. Intell. (UAI). California (July 2010)

[11] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of state calculations by fast computing machines. Journal of Medical Physics
21(6), 1087–1092 (1953)

[12] Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid Pro-
totyping for Complex Data Mining Tasks. In: Ungar, L., Craven, M., Gunopulos,
D., Eliassi-Rad, T. (eds.) KDD ’06: Proceedings of the 12th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. pp. 935–940. ACM,
New York, NY, USA (August 2006)

[13] Noorshams, N., Wainwright, M.J.: Stochastic Belief Propagation: Low-Complexity
Message-Passing with Guarantees. Graphical Models pp. 1–33 (2011)

[14] NVIDIA Corporation: CUDA Programming Guide 4.0 (June 2011)

[15] OpenCLWorkingGroup: The OpenCL Specification 1.1. Khronos Group (September
2010)

[16] Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible infer-
ence. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1988)

[17] Piatkows, N.: Parallel Algorithms for GPU accelerated Probabilistic Inference. In:
Morik, K., Rhode, W. (eds.) Technical Report for Collaborative Research Center
SFB876, pp. 6–10. TU Dortmund, Graduate School of the SFB876 (October 2011)

[18] Rabiner, L.R.: A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE 77(2), 257–286 (Feb 1989)

[19] Saxena, A., Chung, S.H., Ng, A.Y.: 3-D depth reconstruction from a single still
image. International Journal of Computer Vision (IJCV) 76, 53–69 (2007)

[20] Settles, B.: Biomedical Named Entity Recognition using Conditional Random Fields
and rich feature sets. In: Proceedings of the International Joint Workshop on Natural
Language Processing in Biomedicine and its Applications. pp. 104–107. JNLPBA ’04,
Ass. for Computational Linguistics, Stroudsburg, PA, USA (2004)

13

[21] Song, L., Gretton, A., Bickson, D., Low, Y., Guestrin, C., Computational, G., Unit,
N.: Kernel Belief Propagation. Artificial Intelligence and Statistics 15 (2011)

[22] Speed, Kiiveri: Gaussian Markov Distributions over Finite Graphs. Annals of Statis-
tics 14(1), 138–150 (1986)

[23] Sutton, C., McCallum, A.: An Introduction to Conditional Random Fields for Re-
lational Learning. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Rela-
tional Learning. MIT Press (2007)

[24] Tjong Kim Sang, E.F., Buchholz, S.: Introduction to the CoNLL-2000 shared task:
chunking. Association for Computational Linguistics, NJ, USA (2000)

[25] Vishwanathan, S.V.N., Schraudolph, N.N., Schmidt, M.W., Murphy, K.P.: Accel-
erated training of conditional random fields with stochastic gradient methods. In:
ICML ’06: Proceedings of the 23rd international conference on Machine learning.
pp. 969–976. ACM, New York, NY, USA (2006)

[26] Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and vari-
ational inference. Foundations and Trends in Machine Learning 1, 1–305 (January
2008)

[27] Wick, M., McCallum, A., Miklau, G.: Scalable probabilistic databases with factor
graphs and MCMC. Proceedings VLDB Endow. 3, 794–804 (September 2010)

[28] Yanover, C., Schueler-Furman, O., Weiss, Y.: Minimizing and learning energy func-
tions for Side-Chain prediction. Springer, Berlin (2007)

14

	Introduction
	Probabilistic Graphical Models
	Marginal distribution
	Belief Propagation
	Markov Chain Monte Carlo

	The GraphMod plug-in
	Layout of ExampleSets
	Operator: Create Factor Graph
	Operator: Add Factor Node
	Operator: Set Neighborhood
	Operator: Set Template
	Operator: Generate Sample
	Operator: Load GraphML
	Operator: Load MRF
	Operator: PGM
	Operator: Exchange Factor Graph
	Parallelization

	File formats for factor graphs
	Generating GraphML files with yEd
	Writing MRF files

	Sample processes
	Simple Markov Random Field

	Summary and Future Work

