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Abstract: The current paper is positionedat the intersectionof computer simulation, governance research, and
researchon infrastructure systems, suchas transportationor energy. It proposesa simulation framework, “Sim-
ulation of the governance of complex systems” (SimCo), to study the governability of complex socio-technical
systems experimentally by means of agent-based modelling (ABM). SimCo is rooted in a sociological macro-
micro-macro model of a socio-technical system, taking into account the interplay of agents’ choices (micro)
and situational constraints (macro). The paper presents the conceptualization of SimCo, its elements and sub-
systems aswell as their interactions. SimCodepicts the daily routines of users performing their tasks (e.g. going
to work) by choosing among di�erent technologies (e.g. modes of transportation), occasionally deciding to re-
place a worn-out technology. All components entail di�erent dimensions that can be adjusted, thus allowing
operators to purposefully intervene, for instance in the case of riskmanagement (e.g. preventing congestion) or
system transformation (e.g. towards sustainable mobility). Experiments with a basic scenario of an urban road
transport system demonstrate the e�ects of di�erent modes of governance (so� control, strong control and a
combination of both), revealing that so� control may be the best strategy to govern a complex socio-technical
system.

Keywords: Governance, Agent-BasedModelling, Complexity, InfrastructureSystems, TransportNetwork, Trans-
port Mode Choice

Introduction

1.1 The paper at hand describes a simulation framework that is positioned at the intersection of computer simu-
lation, governance research, and investigation of infrastructure systems. Despite a long tradition of studying
the dynamics of social systems by means of computer simulation (Gilbert 2007), the topic of governance of
socio-technical systems has not yet been discussed comprehensively (Papachristos 2014). This is all the more
surprising if one considers the current debates on climate change and the political e�orts to shi� the energy
system (“Energiewende”) or the system of road transportation towards sustainability (Ho�mann et al. 2017).
Until now, only few researchers have tackled these issues by means of ABM (cf. Köhler et al. 2009; Mueller &
de Haan 2009; Van Dam et al. 2013).

1.2 Vice versa, governance research in political sciences has only seldom used the method of computer simulation
(e.g. Cederman 1997) to investigate the functioning and the e�ects of governance, butmostly has applied case-
study designs. However, as Edgar Grande (2012) deplores, this strand of research has led to a dead end – still
not allowing to understand social mechanisms and system dynamics that produce observable e�ects (cf. also
Torfing et al. 2012).
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1.3 Finally, in the engineering sciences, researchon infrastructurenetworkshasproducedvariousmodels of system
dynamics, grounded partly on cellular automata concepts (Helbing et al. 2000; Nagel & Schreckenberg 1992;
Selten et al. 2007), partly on agent-based modelling (ABM), e.g. in the case of the transportation simulation
frameworksSUMO1 (Krajzewicz et al. 2012) andMATSim2 (Horni et al. 2016). The last twomodelsutilisemapdata
of specific regions and fixed travelling plans. Agents’ preferences are modelled as well, but only considering
time or budget restrictions. MobiTopp, on the other hand, includes destination and mode choice procedures
and a route choice algorithm, but no options to influence the system bymeans of external control (Mallig et al.
2013). In sum, these approaches mostly refer to physical agent models that lack a sociological foundation of
action and interaction and do not take into account agents’ reaction to di�erent modes of governance. Thus,
conclusions on system dynamics and especially system control might be limited.

1.4 The present paper builds upon these three research strands. It adopts the ABM-based approach that the gov-
ernability of complex socio-technical systems canbe investigated experimentally. Fromgovernance research, it
takes over the idea to contrast self-coordination and control. Finally, from engineering sciences, it incorporates
the concept of modelling infrastructures as specific “spaces” that constrain agents’ actions and interactions.

1.5 We propose a simulation framework called ‘Simulation of the governance of complex systems” (SimCo) to
study the governance of complex systems bymeans of ABM. SimCo is rooted in a sociologicalmodel of a socio-
technical system that allows investigating: the decision-making of a large number of heterogeneous social
agents; the system dynamics emerging from their interaction; and, finally the impact of di�erent modes of
intervention. Like SUMO and other simulation frameworks, SimCo takes into account the spatial dimension of
infrastructure systemssuchas road transportationorenergygrids,whichalsoa�ectsdecision-makingof actors.
They act and interact in a network structure with nodes and edges, which is an important boundary condition
constraining their choices. Furthermore, these infrastructural constraints can also be used for controlling and
steering the system (e.g. by means of road pricing).

1.6 However, socio-technical systems are complex systems that are only partly controllable since a large number of
actors act and interact, producing emergent e�ects at the system level which can hardly be predicted (Coutard
1999; Resnick 1995; Willke 2007). Hence, the main purpose of this paper is to demonstrate that ABM is a use-
ful method to tackle the issue of governability of complex socio-technical systems and thus to stimulate the
inconclusive debate which has been going on in sociology and political science for decades.

1.7 A�er a brief, general introduction of SimCo in Section 2, we will describe the framework in detail by applying it
to the case of road transportation in the following sections: An inventory of framework components and their
interdependencies can be found in Section 3, their application to the case of road transportation is described
in Section 4, and themodel formalisation is covered in Section 5. Themodel’s implementation, verification and
validation are depicted in Section 6, 7, and 8. Finally, using a basic scenario of urban road transport, experi-
ments are conducted in Section 9, testing di�erentmodes of governance (so�, strong and combined) and their
e�ects in terms of inducing change towards sustainable mobility, e.g. shi�ing technology usage or reducing
emissions (cf. Banister 2008; Shove 2004).

Scope of the Model

2.1 SimCo has been conceived as a general-purpose framework that allows to model and to analyse interaction
processes in networked systems which force agents to take into consideration the physical infrastructure (with
nodes and edges) as an additional variable whenmaking individual choices3. It shall improve our understand-
ing of how to control complex, network-like infrastructure systems (macro level) involving the interactions of
a large number of strategic decision makers (autonomous agents at the micro level) as a source of complexity
(Duit et al. 2010). SimCo has been designed as a framework to investigate governance issues and to discuss the
following two items:

1. Riskmanagement: Operational riskmanagement of infrastructure systems typically aims at reducing un-
desirable external e�ects (e.g. pollution) or avoiding system breakdown (e.g. congestion) or even catas-
trophes (e.g. self-destruction of parts of the system) (cf. Grote 2009).

2. System transformation: Political measures of system transformation typically promote a regime change
(e.g. towards sustainablemobility), whichmostly entails a fundamental newway of operating the system
(cf. Loorbach 2007).

2.2 However, both forms of governance raise the same kind of questions, namely how to control a complex socio-
technical system in a way that helps to achieve intended goals, whether it be risk reduction or system transfor-
mation.
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2.3 SimCo shall help to answer the following questions:

• For a given infrastructure system, is it possible to construct a stable base scenario rooted in sociological
theory and validated referring to agent and technology types?

• To which extent do di�erent modes of governance (self-coordination, so� control, strong control) a�ect
system performance and support policy goals?4

Inventory

3.1 Road transportation, which serves as an example here, is a complex socio-technical system consisting of di�er-
ent components and subsystems in social and technological areas. These, as well as their interdependencies,
will be introduced in this section. A structured, UML-like overview of components and their interactions is de-
picted in Figure 1.

Figure 1: Structural overview of components and interactions (reduced, UML-like diagram, 1 indicates multi-
dimensional variables; * not modelled yet).

Social subsystem

3.2 As in Chappin & Afman, “the actors in the social subsystem are represented as agents in the model” (2013,
p. 184). The main actor group in road transportation are the users, who move through the network in order to
fulfil their tasks (suchasvisitingdistinctnodes). On thebasisofbounded rationality, theychooseamongvarious
transportation technologies (seeSection4.17 fordetails). Additionally, usersperiodicallydecide to invest innew
transportation technologies.

3.3 Another important actor is the operator in the control room, who is in charge of monitoring and managing the
system, occasionally intervening if certain limits are exceeded. The operator’s logic of action is rule-based (for
details see Section 4.5).

3.4 SimCo has been conceived as a first step towards modelling the whole social subsystem. The present version
consists of the usermodule and the operatormodule. It can be complemented by othermodules (markedwith
an asterisk in Figure 1) in future versions, e.g. industrial actors o�ering established or new technologies. Actors
frompolitics and other stakeholdersmight also be included, negotiating future policy, deciding on the network
topology, setting up regulations (e.g. limits), and providing means for promoting alternative technologies.

Technological subsystem

3.5 The infrastructure network consists of nodes, edges, and controls, which have various properties such as ca-
pacity, costs-of-usage, or technologies-allowed on the respective element. Some of these properties have been
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implemented as multi-dimensional variables with mathematical values, which can be freely defined concern-
ing number and semantics: in the following referred to as “dimensions” (for details see Section 4). SimCo thus
allows conceiving edges as roads of a transportation network or as transmission lines of an energy grid. The
semantics are scenario-specific5.

Nodes

3.6 Nodesareplaceswith case-specific featuresmaking themattractive for agents, e.g. a cinema, a shopping centre
or a university. Nodes can either be defined: as “home nodes”, where agents live and typically start (and end)
their journeys; as “tasknodes”,whereagents travel to inorder to fulfil tasks suchasworking, shopping, learning,
relaxing, etc.; or as “standard nodes”, which don’t possess a specific feature, but only serve as intermediate
steps on long distance journeys (e.g. a highway) or as crossing points.

Edges

3.7 Edges are one-directional connections between nodes allowing agents to move from one node to another in
finite time. They also have features that may favour or restrict certain users or technologies, e.g. in the case of
bicycle lanes or technology-specific tolls.

Controls

3.8 Nodes and edges are equipped with controls that allow changing their parameters regarding to di�erent “di-
mensions”. Activating these controls may, for example, lead to banning specific technologies such as conven-
tionally fuelled cars in the case of road transportation.

Technologies

3.9 Di�erent technologies, such as cars, bicycles, public transport, utilised by users, provided by producers, and
regulated by operators and/or governmental activities, are also part of the technical subsystem.

Interactions

3.10 Interactions6 take place at di�erent levels: between social components, between technical components, and
between both of them (cf. Chappin & Afman 2013, p. 185). We will explicate this referring again to the scenario
of road transportation.

Social interactions

3.11 The current version of SimCo puts emphasis on daily practices and routines within infrastructure systems.

3.12 User–user: Users of the infrastructure system interact, for example if they produce a local overloadwhich forces
them to change their behaviour (e.g. slow down or take another route). In this respect, in the current version
of SimCo, actors react and adapt to others’ actions. They do not communicate directly. Instead, their social
interactions are mediated by technological subsystems7.

3.13 User–operator: Operators and users interact indirectly, as well. Users permanently transmit information (e.g.
about their current position) to operators, who in turn try to a�ect users’ choices by changing system parame-
ters (via controls), e.g. blocking streets for conventional cars.

3.14 Other interactions: Users’ choices are influenced and constrained by other factors, too, such as the availability
of transportation technologies, which in turn is influenced by producers’ decisions to invest in certain tech-
nologies. Additionally, governmental decisions – e.g. to restrict car use by road pricing or to promote public
transport – a�ect users’ choices.
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Technological interactions

3.15 The system’s technological components interact, e.g. by exchanging information, and thus serve as ameans of
(indirect) social interaction.

3.16 Edge–node: Edges receive information about the identity of adjacent nodes, which can then be transmitted to
users on request (see below).

3.17 Technology–edge/node: The properties of edges and nodes determine the technologies allowed. Additionally,
the use of technologies changes the state of edges and nodes, e.g. bywearout, tolls paid, or pollutants emitted.

3.18 Controls–edge/node/technology: Controls can a�ect the current properties of edges, nodes or technologies
by charging or limiting their use (e.g. speed limit) or by improving their quality (e.g. investments in public
transport).

Socio-technical interactions

3.19 There are manifold interactions between social and technological components.

3.20 User–node/edge: When visiting nodes (or using edges), users change the state parameters, such as occupancy
rate (eventually leading to a tra�ic jam) or total toll revenue. Additionally, they wear out nodes (and edges) or
pollute them, depending on the type of technology used.

3.21 Node/edge–user: The network’s physical structure constrains the options available to users, but it also serves
as a resource for action. Nodes (as well as edges) provide users with data on request, informing them about:
current state, charges, technologies allowed, and their neighbourhood. Furthermore, both nodes and edges
pay o�8, since theymay charge users (e.g. toll) or reward them (e.g. salary) depending on di�erent parameters,
e.g. the type of node (or edge), the technology used, etc. Users interact with nodes/edges, as individual actions
change their state.

3.22 User–technology: Users typically have to decide twice on technologies: first, when they – occasionally – pur-
chase a newdevice (a car, a bicycle, amonthly ticket for public transport) and, second, when they decidewhich
of the available technologies to use for the next ride.

3.23 Technology–user: Certain technologies allow users to move faster (car) or in a more environmentally friendly
way (bicycle), depending on their respective properties.

3.24 Controls–user: Controls a�ect users, since interventions (on nodes, edges or technologies – see above) change
the users’ room for manoeuvre.

Concept Formalization

4.1 “Dimensions” are freely programmable according to the specific scenario selected andwill be used for all com-
ponents of the simulation framework. These features also serve as “levers” for control. Only some variables like
technologies’ lifetime aremandatory. Thus, “dimensions” can be used to implement specific scenarios without
changing the simulation framework as such9. The scenario presented in Section 9, for example, uses the di-
mensions capacity,money, comfort and pollution.

Nodes

4.2 Network-nodes are distinct spaces with specific features that are attractive for agents and thus are chosen as
targets tomove to. Nodes are characterised by the following state variables (mostlywith several “dimensions”):

• rights of use (determining e.g. technologies-allowed);

• lifetime (which, if exceeded, causes the node to become unusable);

• limits (e.g. maximum carrying capacity, maximum pollution, minimum toll collection);

• payo�s (costs or benefits): to agents who visit the node; to the node visited by an agent10; to the system
(e.g. the environment, society, etc.), if nodes are used;
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• specific features defining the node’s “identity” (e.g. home, task or standard node, or more specifically
petrol station, bicycle parking, shopping centre, etc.);

• total payo� for the node over time 11;

• finally, a memory of previous states.

Edges

4.3 Network-edges create directed paths between nodes, leaving some potential connections empty. They allow
agents to move from one node to another, using specific technologies and paying per use. Edges are charac-
terised by state variables similar to those of nodes, except for their length (i.e. the duration for travelling along
the edge).

Technologies

4.4 To perform their actions, agents use di�erent technologies. These are characterised by the following state vari-
ables:

• lifetime, which causes a technology to become unusable once it is reached;

• purchase price;

• a technology factor, which allows to set comparative values for all “dimensions”, for example:

– operating costs (especially fees to be paid when using edges or visiting nodes);

– size (i.e. space needed on nodes and edges);

– external e�ects of use (e.g. pollution or wear out of nodes and edges);

• travelling speed.

Controls

4.5 Since SimCo has been designed to study the control of complex systems, controllers (be it human probands,
artificial control agents or the experimenter)will have theopportunity to interveneboth at theoperational level
of the systemmanagement and at the strategic level of the political system.

4.6 Operators can intervene, e.g. by blocking roads, if certain limits are exceeded, which happened for example in
Oslo (Norway) and Hagen (Germany) (The Guardian 2017; District Government of Arnsberg 2017). These limits
may result from physical constraints (e.g. congestion) or be externally defined (e.g. pollution). Typically, policy
plays an important part in defining and adjusting controls, e.g. emission limits, road prices (Transport for Lon-
don 2017), or subsidies for new technologies12. Additionally, policy authorises controllers to operate the system
and to intervene by changing parameters for certain “dimensions” of nodes, edges or technologies.

4.7 Control may intend to damp down fluctuation tomaintain stability and to avoid risks or a potential breakdown
of the system, e.g. in thecaseof congestion in transportationorblackout in theenergy system. However, control
may also intend to amplify fluctuation in order to transform the system partly or entirely, e.g. in the case of
regime change (cf. Section 2). Controls are characterised by the state variables:

• parameters/“dimensions” to be controlled;

• limits for intervention;

• sensors to monitor system performance;

• governance mode (self-coordination, so� control, strong control).

4.8 Every “dimension” of nodes, edges and technologies can be used as a means of control. This way, controllers
may influence the boundary conditions of decision-making of single actors and change their behaviour if they
are sensitive to the specific dimension, e.g. costs.
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Short-term and long-term limits

4.9 In some cases, short-term limits are relevant. For example, in the case of emissions of greenhouse gases by road
tra�ic, only the daily amount of pollution counts (European Parliament 2008, Annex II.A). In other cases, such
as road toll, fluctuating short-term data are less important than the total amount over a longer period of time.
Consequently, long-term limits are applied.

Modes of governance

4.10 The intensity of control can vary heavily. Based on our outlook on governance research (Weyer et al. 2015), we
identify the following ideal-types:

1. In themodeof self-coordination, agents coordinate themselves following their respective rulesofdecision-
making. Operators monitor system operations, prepared to switch to other modes if a critical incident
occurs, e.g. exceedance of limits (see below).

2. In the mode of so� control, operators use stimuli or incentives which make certain behaviour attractive
or unattractive.

3. In the mode of strong control, operators apply constraints that are more compelling13.

4.11 In the current version of SimCo, thesemodes of governance are implemented as an algorithm (operator agent)
that automatically switches interventions o� (mode of self-regulation) or on (so�/strong control) if a relevant
parameter reaches pre-defined limits (e.g. 60% of amaximum value for so�, 80% for strong control). Addition-
ally, in future experiments, suitable interventions may also be triggered by a human proband.

4.12 In themodeof so� control, if a given limit is reached, theuseof theparticular nodeor edge is renderedunattrac-
tive (e.g. by raising usage fees stepwise) with the expectation that agents will change their behaviour in a way
that helps to solve the problem. If the parameter falls below the limit again, the measure will be withdrawn.

4.13 In themode of strong control, those technologieswhich domost harm regarding a given parameter (e.g. cars in
case of pollution) are banned from the respective node or edge. This measure is directed at prompting agents
to change their behaviour so as to avoid a further increase of the parameter values and, ultimately, a total col-
lapse of the node or edge. A�erwards, if the degree drops back below the second limit, the measures will be
withdrawn. Of course, so� and strong modes of governance can also be combined.

4.14 The pseudo code (see below) includes the combined type of governance to increase the car’s costs of usage if
any measurement reaches 60% of the respective pre-defined limit, and to ban the car completely if 80% are
exceeded:

payof f−l im i t−r a t i o s =
c a l c u l a t e ( shor t−time−payo f f / shor t−time− l i m i t ) f o r each dimension ,
0 i f no l i m i t i s s e t f o r the r e s p e c t i v e dimension

worst−r a t i o = get h i ghe s t va lue in payof f−l im i t−r a t i o s
i f e l s e ( worst−r a t i o > 0 . 8 )
[

s t rong con t r o l : ban the car
] [

s t rong con t r o l : re−a l low the car
i f e l s e ( worst−r a t i o > 0 . 6 )

[
s o f t c on t r o l : i n c r e a s e cost−f a c t o r o f us ing the car on
t h i s edge , i f below max−va lue

] [
s o f t c on t r o l : decrease cost−f a c t o r o f us ing the car on
t h i s edge , i f above 1

]
]
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Agents

4.15 User-Agents14 move through the network, which both enables and constrains their actions, to fulfil their tasks.
They select edges that lead to nodes with a high utility whenmaking decisions, using technologies that fit their
interests best.

4.16 Agents are designed according to sociological theory of action. In modelling decision-making, we lean on the
“model of sociological explanation” (MSE) by Hartmut Esser (1993), which explains structural dynamics of so-
cial systemsbymeans of amacro-micro-macromodel similar to Coleman’s “boat” (1990). Thismodel describes
system dynamics as the emergent result of actors’ interactions (micro-macro link), which on their part are con-
strained by the current state of the system (macro-micro link). Other concepts such as Ostrom’s Institutional
Analysis and Development (IAD) framework operate rather similarly (Ghorbani et al. 2013; Ostrom 2010), point-
ing to the heterogeneity of actors and their choices.

4.17 According to these models, actors’ choices are shaped by their individual perception of situational constraints
as well as their individual preferences. Actors make decisions with bounded rationality, referring to multiple
evaluation criteria (cf. the MAUT model of Velasquez & Hester 2013)15. Behavioural alternatives are evaluated
by assigning a utility to every possible consequence and finally choosing the optionwith the highest subjective
expected utility (cf. Konidari & Mavrakis 2007, p. 6246). The evaluation of subjective expected utilities (SEU)
may be calculated with the following formula, including action alternatives (A)16, the valuation (U) of expected
outcomes (O) and the expected probability (p) of achieving a goal (O) by taking an action (A):

SEU(Ai) =

n∑
j=1

pij ∗ U(O)j

4.18 As Esser (2000, p. 250) points out, this calculation is based on subjective evaluations, which may explain why
various actors behave di�erently in identical situations. In addition, many everyday decisions are based on
routine action, which is not calculated reflexively (Kroneberg 2014).

4.19 In our adaptation of the SEU model, the probabilities (p values) are not fixed but based on situational factors
(i.e. current financial resources of the respective agent, tra�ic situation, etc.) as well as transportmode charac-
teristics (cf. Section 8.10). Furthermore, agents may select the second-best choice if its SEU value is not too far
below the best choice, representing a “fuzzy logic” option (Kron 2006).

4.20 In the SimCo framework, di�erent types of agents can be created by taking a generic agent and adjusting pa-
rameters such as individual preferences and valuation of goals.

4.21 User-agents are characterised by the state variables:

• location (the current node or edge);

• list of task-nodes still to be visited;

• technologies available;

• technology currently used;

• individual preferences (type-specific valuation of goals, e.g. travelling fast, cheap, eco-friendly and/or
comfortable);

• limits, e.g. concerning bank account and range of sight;

• payo�s from actions (current/total);

• resources needed to perform actions (modelled combining payo�s and limits);

• finally, a memory of visited nodes and edges, technologies used and results of SEU calculations.

Model Formalization

5.1 Since all components and concepts of themodel have been introduced, the completemodel can be set up. This
contains several interconnected loops.
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Setup of the system

5.2 The initial setup of the system comprises (according to the specific scenario):

• the setup of the network with nodes, edges, and controls;

• the setup of several types of technologies; and, finally,

• the setup of various types of agents with heterogeneous preferences, located at di�erent nodes and
equipped with a variety of technologies and individual task lists.

First loop: Agents’ routine choices

5.3 Agent’ choices can be divided into regular, partly routine-based decision-making and a periodical/occasional
decision to replace the currently used technology (second loop, cf. Section 5.8).

5.4 Agents start their journeys at their respective homenode, referring to anordered task list (such as kindergarten,
work, shopping, home). As depicted in blue in Figure 2, they first select the next target node and then decide
to which node to go next17. According to their individual preferences, they choose one of several alternatives
available that best fit their interests.

Figure 2: Flow chart of agent’s choices (first and second loop).

5.5 The pseudo code below highlights themain steps of the decision process. If, for example, two follow-on nodes
can be reached by means of two technologies, four alternatives open up via combinatorial logic. The value of
each alternative depends on the value of the respective node (i.e. its costs and benefits in “dimensions” con-
nected to the agent’s preferences) and the value of the edge (mainly its costs and length) leading to it, which
both, however, may di�er according to the type of technology used and to the valuation of conflicting prefer-
ences by the agents (e.g. move fast or cheap). According to our sociological model of action (cf. Section 4.17),
agents’ choices are also influenced by the amount of resources le� and the current state of the network that
changes dynamically (due to agents’ actions), resulting in di�erent decisions of various agents at di�erent
points in time (e.g. using the bicycle or the car).
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ask agents on nodes [
poss ib l e−de s t i n a t i o n s = compute neighbour−nodes i n range o f s i g h t
i f e l s e ( agent may change techno logy on node ) [

t echno log ie s−po s s i b l e = a l l t e chno log i e s owned
] [

t echno log ie s−po s s i b l e = techno logy c u r r e n t l y i n use
]
reachable−de s t i n a t i o n s = a l l pos s ib l e−de s t i n a t i o n s which can
be reached us ing one of techno log i e s−po s s i b l e

a c t i on s = a l l po s s i b l e combinat ions o f reachable−de s t i n a t i o n
and techno log i e s−po s s i b l e

c a l c u l a t e SEU f o r a l l a c t i on s
SEU−max = h i ghe s t SEU−va lue
i f e l s e fuzzy−opt ion [

randomly choose from ac t i on s with SEU >= fuzzy−f a c t o r ∗ SEU−max
] [

randomly choose from ac t i on s with SEU = SEU−max
]

]

5.6 The first loop takesplace in steady timesteps (“ticks”)18. Agents continue this procedureuntil theyhave reached
the target, where they can harvest the respective resources. They evaluate their performance by memorizing
the technology used and other performance parameters and then select the next target node from their task
list.

5.7 There is also a learningmechanism, though not at the level of the single agent, but only at the level of thewhole
population: Agents that lack resources for performing actions will exit the simulation, and a new agent will
hatch automatically, equipped with the properties of one of the remaining agents, who is selected by chance.
In the long run, successful types of agentswill thus havehigher chances of being used as a source for hatching19.

Second loop: Replacement of technology

5.8 If the technologies available to the agent have reached their limits and are worn-out, they have to be replaced
(see Figure 3, red colour). For modelling these purchase decisions, we use a provisional eighty-twenty-rule: In
80%of all cases, agents purchase themost successful technology, i.e. the one theymostly selected in their daily
choices until then. However, in 20% of all cases, they opt for a type of technology they didn’t possess before,
if available. By this means, new technologies may “invade” the market and replace old ones step-by-step, if
successful. The second loop is called up if specific limits, such as the lifetime of technologies, are exceeded.

Third loop: Systemmanagement (and infrastructure policy)

5.9 The operators monitor the state of the network and intervene if certain limits are exceeded, typically based on
a political decision to operate the systemwithin defined limits (e.g. pollution, congestion). Operators evaluate
the system’s performance and adjust parameters of di�erent “dimensions”20. In this way, they indirectly a�ect
agents’ decision-making by changing the boundary conditions. Di�erentmodes of governancemay be applied
here (cf. Section 4.5). Additionally, the network’s performance data are reported to politics and may trigger
political negotiations, e.g. on redesigning the network, reconfiguring controls and incentives, or promoting
alternatives21.

So�ware Implementation

6.1 The model was programmed in NetLogo (Wilensky 1999), thus using standard so�ware for designing sociolog-
ical experiments by means of ABM22.
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Simulating networks using NetLogo

6.2 Like Sugarscape and other models of artificial societies (Epstein 2006; Epstein & Axtell 1996; Krusch 2008),
SimCo depicts the interactions of a large number of heterogeneous agents in an artificial scenario. However, in
contrast to thesemodels, the artificial world is not a chessboard-like lattice allowing agents tomove arbitrarily
to one of eight neighbouring fields, but a network-like structure with a limited number of paths to choose from
and to follow (cf. Wilensky 2007).

6.3 Compared to network models in sociology (Jansen & Diaz-Bone 2011) and agent-based models such as “Di�u-
sion on a Directed Network” (Stonedahl & Wilensky 2008) or “Page Rank” (Stonedahl & Wilensky 2009), edges
in SimCo do not connect nodes virtually, but are conceived as (edge-)agentswith a spatial dimension and other
features, such as carrying capacity. Agents need time to traverse edges and interact with them in various ways
– similarly to agents and patches in NetLogo.

6.4 Weused a link-breed tomodel edges, which allows specifying characteristics of an arbitrary number of “dimen-
sions”, as described in Section 3.5. Furthermore, we implemented functions to handle the interactions between
agents and nodes/edges, as they need to knowof each other. As an interaction outcome, wemainly have to cal-
culate payo�s. Since we organised the di�erent “dimensions” modelled within a scenario in the same way for
all components, this can be easily done via list operations such as “map”.

Scenario generator

6.5 A separate NetLogo model facilitates setting up scenarios. It allows users to choose from a predefined set of
nodes, edges, agentsand technologies, and to save this configurationasamaster file (allowing to rerunscenario
generation when type definitions have changed) and as a SimCo network file which can be loaded into SimCo
a�erwards. The twomodels share some basic code.

Output organization

6.6 SimCoentails somebasic plots in its graphical user interface, showing for example thepercentageproportionof
technologies used or the number of agents unable tomove due to local restrictions. Themain visualisation (cf.
Figure 3) shows the network and, using a colour code, its state with regard to di�erent “dimensions” specified
in the scenario.

Figure 3: Screenshot (small example network with 30 nodes).

6.7 Besides, we collect many data from test runs, such as information on agents’ choices, nodes’ and edges’ state
variables as well as the history of controlling interventions. Most of these data are collected using the stats
extension23 and can be exported in single CSV files on request. Result files are processed using standard tools
to extract only relevant variables and, finally, data is imported to SPSS in order to calculate and evaluate results
at both the system and the agent level.
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Interface for human probands

6.8 Themodelwas implemented tobe run inGUImode inorder to conduct experimentswithhumanprobands,who
can control the system and intervene if necessary. Additionally, Netlogo’s headless mode allows conducting
automatedexperimentswithout anyuser or experimenter interaction,which canbeused to test basic functions
or to calibrate scenarios.

Model Verification

7.1 Model verification on a technical level was mainly focused on interaction functions, thus ensuring that costs
andbenefits of agents’ actions are calculated correctly and changes in state variables function as intended. Fur-
thermore, calculating the subjective expected utility value for actions was tested and improved step-by-step in
order to avoid flawedoutcomes. This included the exemplary comparisonof situational input parameters, their
processing within agents’ decision-making, and, finally, results of agents’ SEU calculation. In some situations,
several options showed upwith the same, highest subjective expected utility value: Agents selected from them
in a fixed order such that the first action under consideration gained a structural advantage. Randomization
helped to avoid this inappropriate decision-making.

Model Validation

8.1 The SimCo framework o�ers a large variety of options to construct scenarios of socio-technical infrastructure
systems and to conduct experiments with di�erent settings. In the following, wewill introduce a basic scenario
representing the current state of urban road transportation, which was validated by various tests and, subse-
quently, has been used to conduct experiments on regime change (cf. Section 9).

8.2 As criteria of internal validation, we set the following requirements:

• Agents should have a chance to survive, i.e. by acting more or less “cost-covering” without exceeding
their cost limits24.

• The number of agents leaving the simulation should remain low25.

8.3 Additionally, we performed an external validation26:

• Agents’ decisions concerning technology usage should roughly match empirical data onmodal split27.

• Composition of edge types should roughly resemble a typical mid-sized town in Germany.

Parameter variation

8.4 Weran repeatedexperimentswithmultipleparameter variationsandanalysed themusing theabove-mentioned
measurements28. Parameter variations encompassed the following items:

• Payo�s agents gain if reaching task nodes (“payo�-task” – variation from 3 to 12).

• A strong limit, causing agents to leave the simulation if exceeded (“strong-limit-money” – variation from
-700 to -1,000).

• A so� limit, influencing agent behaviour concerning cost sensitivity in the short run (“so�-limit-money” –
variation of “daily debt” limit from -10 to -60).

• A financial “bu�er” value to evaluate the feasibility of thenext action (“financial-cushion” – variation from
3 to 15).

Furthermore, we tested two di�erent network structures, composed of five types of edges, namely

• “shared-big” and “shared-small”, which can be used by everymode of transport andmerely di�er regard-
ing their capacity;

JASSS, 21(2) 2, 2018 http://jasss.soc.surrey.ac.uk/21/2/2.html Doi: 10.18564/jasss.3654



• “car-only”, “bicycle-only”, “public-transport-only”, which can only be used by a single mode of transport
and have the same capacity as “shared-big”.

8.5 In order to examine if the composition of edges matters, we first constructed an artificial network containing
only one single type of edge (“shared-big”) on which all technologies may be used without restrictions. Next,
we tried to reproduce a more realistic network by ‘translating’ real-world data from a typical medium-sized
German city (City of Dortmund 2004) into SimCo-related parameters, especially the shares of node and edge
types29.

8.6 In combination with two random seeds30 used to generate the SimCo network files, we thus investigated four
di�erent networks by conducting identical parameter variation, as presented above31. A�er a large number of
experiments, the combination (4, -900, -50, 3; cf. Table 4) proved to be optimal across all network structures.
The realistic network provided better fitting results regarding our requirements specified in Section 8.3. The re-
sulting basic scenario (with a realistic network topology), used for experimentation in Section 9, is summarised
in Table 4.

Agent types and technology factors

8.7 Inorder tocalibrateagentbehaviour, a surveyon theselectionof transportmodes inurbanareaswasconducted
and provided empirical data on individual preferences. Respondents were asked to evaluate di�erent goals –
such as travelling cheap, fast, or eco-friendly – and, based on their replies, were clustered to allow determining
the respective shares of actor types.

8.8 The resulting five types of actors, which roughly conform with other studies (Dijk & Kemp 2010; Götz 2007),
as well as their preferences are listed in Table 1. “Pragmatists” mostly favour travelling fast, while “ecos” prefer
eco-friendly and a�ordable transportation. “Penny-pinchers” like travelling cheap and fast, while “convenient”
actors favour comfortable transportation. Only “indi�erent” agents do not show specific di�erences in their
preferences. By implementing these actor types into agent types, we added heterogeneity to our scenario.

Actor Types Preferences N Share
Cheap Fast Eco-friendly Comfortable

Pragmatic 3.7 6.8 2.4 1.2 119 24%
Eco 4.4 2.0 7.6 1.9 123 24%
Indi�erent 4.0 4.6 2.8 4.2 157 31%
Penny-pincher 9.0 4.7 3.7 0.7 58 11%
Convenient 0.6 6.4 0.2 6.8 49 10%

506 100%

Table 1: Preferences of actor types (mean values – ranging from 0 to 10) (Source: Teigelkamp 2015).

8.9 The sociological concept of governance assumes that various types of actors will react di�erently to incentives
and restrictions. In order to investigate the influence of various agent populations on the e�ectiveness of gov-
ernancemodes, we constructed three di�erent sets of agents. First, an artificial setwith an equal distribution of
agents. Second, a set based on the shares observed in our survey. However, shares of agent types in the survey
were heavily biased towards ecologically oriented users (“ecos”), preferring the bicycle, which led to a rather
unusual modal split in our simulation. Hence, we created a third “realistic” set (cf. Table 2) which better fits the
real distribution of agent types concerning modal split (cf. Meißner 2014) and was later used for experimenta-
tion. Nevertheless, we accepted the respective preferences from the survey data.
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Number of agents

Agent-set Artificial Survey-based Realistic

Agent types

Pragmatic 1,200 1,440 750
Eco 1,200 1,440 450
Indi�erent 1,200 1,860 1,350
Penny-pincher 1,200 660 450
Convenient 1,200 600 1,500

Sum 6,000 6,000 6,000

Table 2: Agent-sets.

8.10 To calibrate technologies, respondentswere asked to assess di�erentmodes of transport – especially regarding
their suitability for achieving certain goals (cf. Table 3).

Technology Preferences

Fast Cheap Eco-friendly Comfortable

Public transport 3.15 4.85 6.28 3.67
Bicycle 4.06 8.94 9.32 3.30
Car (fossil-fuelled) 6.08 3.00 1.96 6.72
Electric vehicle 7.80 6.08 7.64 7.78

Table 3: Respondents’ assessment of di�erent technologies regarding the achievement of goals (ranging from
0 to 10;N = 506) (Source: Teigelkamp 2015).

8.11 The resulting “technology factors” were included as part of the agents’ decision-making: They are multiplied
by the respective base payo�s of nodes and edges and thus influence the achievement of goals, for example
concerning moving fast or eco-friendly through the transportation network (cf. Section 4.4). Consequently,
technologies’ characteristics in the SimCo framework are based on the subjective, perceived costs and gains
rather than objective data, which are usually used in ABM (cf. Köhler et al. 2009; Lopolito et al. 2013). However,
test runs yielded some unexpected results since an unrealistically large proportion of agents used the bicycle
(cf. Lürwer & Meißner 2013) on typical modal split). Obviously, on the respondents’ side, there is a certain bias
which mentally frames real, everyday decisions, but remains in the background when people are interviewed.
Especially routines, which are deeply embedded in social practices and guide everyday decision-making, are
an important factor to considerwhenexplainingdeviations between real behaviour and survey-basedattitudes
(Elster 2016; Kroneberg 2014).

8.12 The SEUmodel presented in Section 4.17 allows integrating these routines by adding additional preferences to
the decision-making algorithm, namely travelling “by car”, “by public transport”, or “by bicycle” in complement
to travelling “fast”, “cheap”, “comfortable”, or “eco-friendly”. By implementing these “hidden preferences”, the
use of certain technologies becomesmore likely, regardless of situational parameters. This addition allowed us
tomaintain the core structure of the SEUmodel while simultaneously implementing amore realistic represen-
tation of daily routines into agents’ behaviour.

Final setup

8.13 The final basic scenario, which runs stable and will serve as a reference point for experiments with di�erent
governance scenarios, consists of the following elements and proportions:
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Type Number/value

Nodes
Home 204
Task 236
Standard 160

Edges

Shared-small 984
Shared-big 110
Car-only 104
Bicycle-only 3
PT-only 110

Users (realistic agent-set)

Pragmatic 750
Eco 450
Indi�erent 1,350
Penny-pincher 450
Convenient 1,500

Parameters

Payo�-task 4
So�-limit-money -50
Strong-limit-money -900
Financial-cushion 3

Table 4: Final basic scenario.

8.14 In the realistic scenario, the distribution of 600 nodes and 1,311 edges is based on data from a typical mid-sized
German town. Concerning the agent set, the realistic distribution is chosen, correcting biases in the survey data
and including mental frames. Finally, relevant parameters are adjusted based on our parameter variation.

Experimentation

9.1 Experimentation with SimCo has first put emphasis on the network of road transportation and the issue of
regime change32, which has been analysed from the angle of governance research, focusing on the impact of
di�erentmodesof governance. Experiments includeda reference scenario (without any intervention) and three
governance scenarios with di�erent degrees of intervention. The latter three focus on cars with internal com-
bustion engine and assume (without debating in detail) that this technology is more harmful for the environ-
ment than other technologies, e.g. considering its CO2 emissions.

9.2 These three governance scenarios were implemented as follows:

• So�control: via roadpricing, limited in space and time33. Costs of agents using the car are raised stepwise
if tra�ic jams occur or pollution exceeds limits, and lowered again a�erwards.

• Strong control: via spatial and temporal car bans if a second limit is reached (cf. Section 4.5). Agents are
forced to change technology or take another route.

• Combination of so� and strong control.

9.3 The e�ects of interventions were measured by means of various indices (cf. Table 5): mean capacity utilisation
on edges, mean degree of emission on edges in short-time (“days”) and long-time (“months”), and technology
usage (bicycle, car, public transport).
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Mean
capacity
utilisation
on edges*

Mean emis-
sion short-
time*

Mean emis-
sion long-
time*

Bicycle
usage

Car usage Public
transport
usage

Self-
coordination
(reference
scenario)

21.36% 17.96% 33.28% 31.61% 62.45% 5.94%

So� control 15.79% 12.76% 24.66% 46.05% 37.48% 16.47%

Strong
control

19.13% 15.55% 28.92% 41.44% 52.08% 6.47%

So�/strong
(combined)

16.37% 12.88% 24.65% 49.94% 38.95% 11.10%

Table 5: Results of governance experiments (* percentages of respective limits).

9.4 As Table 5 shows, we achieve the desired e�ects with all three modes of governance: a decrease of car use, an
increase of bicycle and public transport usage, and – triggered by these changes – also a reduction of capacity
utilisationandemissions. Additionally, as boldnumbers show, so�controlmostly performsbest (or closely sec-
ond best). This confirms previous experiments with the simulation framework SUMO-S (Adelt et al. 2014). Only
in two cases, the combination of so� and strong control yields slightly better results. But, obviously, political
goals of regime change in mobility can best be achieved by relying only on so�measures of intervention.

9.5 Figure 4 again demonstrates the varying impact of di�erent modes of governance: The reference scenario re-
mains stable over 8,000 ticks, as does the strong control scenario, inwhich values rapidly adjust a�er a few ticks
to a level that remains stable in the long run, albeit fluctuations in the short run (e.g. as short-term reactions to
bans, with return to the original behaviour a�er the ban is li�ed).

9.6 So�control has thehighest impact in termsof long-term learning. In spite of short-term fluctuations, in the long
run, agents change their behaviour remarkably in favour of more sustainablemodes of transport. Surprisingly,
the result of combining so� and strong control is so similar to so� control that it seems advisable to refrain from
resorting to strong measures as a means of regime change.

9.7 Finally, Figure 5mayo�er apossible explanation for the sudden switchat about 1,000 ticks. At this point in time,
the composition of the agent-population suddenly changes. Agents insisting to use the car even in high-price
situations (provoked by so� measures such as tolls) run into financial problems and exit the simulation. As a
result of this persistence, the learning algorithm on the population level (see Section 5.7) triggers a slow, but
gradually accelerating change in proportions of agents and then – as a consequence – of technologies’ usage
as well. Again, this mechanism can be observedmost clearly in the so� control scenario.
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Figure 4: Technology usage (fraction) in course of time (8,000 ticks).

Figure 5: Agent population (total) in course of time (8,000 ticks).

9.8 Summarizing these results, one could argue that so� control is themost e�ectivemode of governance, leading
mostly to the best results with lower e�orts, compared to the combination of so� and strong control. The en-
vironmental benefits are remarkable, but social acceptancemight be a problem, sincemany agents have been
forced to leave the simulation due to financial restrictions.

Conclusion

10.1 This paper has presented the implementation of a model of a socio-technical system, that builds upon gover-
nance research, transportation research and computer simulation. Sociological theory of action helps to con-
ceptualise agents’ decision-making (micro) and systemdynamics (macro), while survey data allow distinguish-
ing di�erent agent types with specific preferences.

10.2 The simulation framework is free of semantics and thus allows developing di�erent scenarios. A basic scenario
of urban road transportationhasbeendeveloped, the stability and reliability ofwhichhasbeen testedbymeans
of parameter variation with data from amedium-sized German town and survey data.
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10.3 SimCo allows to investigate the issue of governability of complex socio-technical systems experimentally – re-
ferring either to the caseof riskmanagementor to the caseof regimechange. Weperformedexperiments on the
latter issue and confirmed previous findings (Adelt et al. 2014), indicating an impact of every mode of control
in terms of promoting sustainability. However, once again, so� control performed better than strong control
(or the combination of bothmodes of governance) in achieving policy goals, the legitimacy of which we simply
took for granted.

Limitations and Further Perspectives

11.1 SimCo has been designed as a tool for the analysis of governance issues that can hardly be investigated in
the real world. It aims at advising stakeholders from politics and the civil society, but also at stimulating the
governance debate in sociology and political science.

11.2 Until now, SimCohasbeen limited toonebasic scenario andhasnot yetproven its utility as amulti-purpose tool
fordi�erent scenarios (e.g. in theenergy sector). Additionally, it is rooted ina specific sociologicalmacro-micro-
macro theory that might be challenged by other models. Some modules (transport companies, technology
producers, etc.) are still missing. Furthermore, we did not yet conduct experiments with human probands,
trying various control options (see Section 4.5) to foster change or ensure stable operation of the system.

11.3 Further work and further experiments will explore these issues inmore depth; they will also tackle various sce-
narios and what-if questions and will examine the issue of resilience (recovery in case of disturbance). SimCo
can serve to evaluate to which extent the network topology or the composition of the agent population a�ect
the performance of di�erent modes of governance. Furthermore, sensitivity analysis should be conducted to
test the impact of some assumptionswemade concerning limits used as input for the controlling algorithms as
well as agents’ purchase decisions (see Section 5.8).

11.4 Additionally, further research could complement the frameworkwith additionalmodules, e.g. a producermod-
ule bringing into play new technologies created by innovators and/or promoted by politics.

Notes

1Simulation of Urban MObility.
2Multi-Agent Transport Simulation.
3The following sections use the ODD protocol (Grimm et al. 2006, 2010) in the adapted version of Van Dam

et al. (2013). For more details, see also SimCo’s webpage at http://simco.wiwi.tu-dortmund.de/.
4In future work, SimComight also serve to determine to which extent network topology and/or the compo-

sition of the agent population a�ect the performance of di�erent modes of governance.
5We decided to develop this open configuration without semantic meaning in order to use SimCo as a gen-

eral tool for di�erent research projects and to allow for focussing on basic – and still unresolved – issues of
governance research.

6Onageneral level, the term interaction canbedefined asmutual or reciprocal action or influence bymeans
of a common definition of the situation (Esser 2000, p. 17f.).

7Bruno Latour (2007) argues that modern societies mostly communicate and interact by means of technol-
ogy – in contrary to primates, which communicate directly via physical contact.

8Pay o� can include positive as well as negative values and is not restricted to the monetary dimension. It
can, for example, be used to model pollution, which may be limited on an individual basis.

9Implemented as arrays, we can calculate e.g. costs and benefits of agents’ actions independent from the
actual number of dimensions. Using special variables for each dimension would result in re-implementation
work each time a dimension is added to or removed from themodel.

10Costs and benefits of nodes must not be identical to those of the agent, e.g. in case of fees, the agent has
to pay the node.

11The total payo� is calculated by adding all gains and losses over time, resulting from the given costs and
benefits and occupancy rate by agents.
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12Since the political system is not yet part of the simulation framework, the experimenter will specify this
input at present.

13However, control must not be confused with coercion. Even in the case of strong control, actors still have
some degree of choice between alternatives.

14In the present version of SimCo, only agents of type “user” and “operator” are implemented.
15See Schlüter et al. (2017) for a classification of various agent models.
16In our implementation, an action includes the route (nodes/edges) as well as the technology to be used.
17If they cannot reach the target node directly, they choose the best intermediate node available.
18In our scenario, 144 ticks virtually represent one “day”, and 4320 ticks one “month”.
19We opted for this kind of evolutionary mechanism because its implementation is muchmore manageable

than an algorithmwith individual learning.
20The algorithm for “automated control” introduced in Section 4.11 behaves the same way.
21However, this feedback loop is not currently implemented in SimCo.
22The complete so�ware code can be found at openABM: https://www.comses.net/codebases/5924/

releases/1.1.0/.
23https://github.com/cstaelin/Stats-Extension/.
24Mean “money” payo�s, normalised by lifetime, should be between -0.15 and 0.15.
25Share of agents leaving the simulation due to exceeding financial limits should be smaller than 10% for

each agent type.
26Readers should take into account that SimCo has not been designed to perfectly reproduce a realistic sce-

nario, but to investigate more general issues of governance research.
27Data onmean technology usage per agent type were taken from a survey; cf. Section 8.7
28We adapted a script by Lukas Ahrenberg to conduct the large number of experiments in parallel on a com-

puter cluster (https://github.com/ahrenberg/split_nlogo_experiment).
29For a suitable relation between edges and nodes, we refer to Lämmer et al. (2006), who identified a ratio

of 1 edge to 2.19 nodes for the city of Dortmund.
30Di�erent seedswere used to ensure that di�erences between results depend on e.g. the edge composition.
31Each parameter combination was repeated twelve times in order to identify robust cases (i.e. at least ten

out of twelve repetitions had to be within the predefined limits).
32This scenariohasbeendeveloped in theDiscGoproject (Governanceof thediscontinuationof socio-technical

systems 2012-2015; cf. Ho�mann et al. 2017.
33More precisely, this controlling intervention represents a mixture of di�erent road pricing measures, for

example congestion charging or “bottleneck passage” (cf. Li & Hensher 2012), emission pricing and cordon
schemes. See Anas & Lindsey (2011) for a detailed overview of di�erent road pricing options.
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