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Abstract

Solution strategies for Mixed-Integer Nonlinear Programs (MINLPSs) often rely
on a convex relaxation of the feasible set. This relaxation is used to derive lower
bounds and to evaluate the quality of local solutions. In this thesis, we discuss
different approaches of constructing and improving suitable relaxations. We
further analyze these relaxations with respect to tightness and quality of the
resulting lower bounds. This is done for general MINLPs as well as for specific
problems arising from certain real world applications.

We develop a cutting plane method for the convex hull of the feasible set
of relatively general MINLPs. It is based on simultaneous considerations of
the involved constraints and on solving a convex optimization problem. This
underlying separation problem is non-differentiable and requires the convex
envelope of linear combinations of the constraint functions. We analyze its
structure and smoothness in detail, and discuss suitable solution approaches.
Furthermore, we introduce approximation strategies for the convex envelope
and discuss the resulting approximate version of the separation problem. This
approximate version leads to weaker results but to a greater applicability.

The proposed cutting plane approach is further applied to constraint sets
consisting of bivariate quadratic absolute value functions. We present general
analytic tools and concepts, and derive the convex envelope of the considered
functions under certain assumptions. This type of functions also emerges from
the modeling of gas networks, which allows us to computationally evaluate the
impact of our cutting plane approach on a real world application.

Finally, we consider an example of optimal design problems in chemical
engineering. For a distillation column model, we introduce a suitable reformu-
lation and prove monotonic behavior of several sequences of relevant variables.
Reformulation and monotonicity are used to improve the formulation of the
respective feasible set. In particular, we develop a problem specific bound
tightening strategy. Our results are computationally evaluated on multiple

test instances.
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Zusammenfassung

Losungsstrategien fiir Gemischt-Ganzzahlige Nichtlineare Programme
(MINLPs) basieren haufig auf einer konvexen Relaxierung der zuléssigen Men-
ge. Diese Relaxierung wird benutzt um untere Schranken zu ermitteln und um
die Qualitédt lokaler Losungen zu beurteilen. In dieser Thesis diskutieren wir
verschiedene Ansétze um geeignete Relaxierungen zu konstruieren und zu ver-
bessern. Auflerdem analysieren wir diese in Hinblick auf Strenge und Qualitét
der resultierenden unteren Schranken. Dabei betrachten wir sowohl allgemeine
MINLPs als auch spezifische Probleme, die sich aus der Anwendung ergeben.

Wir entwickeln ein Schnittebenenverfahren fiir die konvexe Hiille der zulés-
sigen Menge von relativ allgemeinen MINLPs. Es basiert auf der simultanen
Betrachtung von Nebenbedingungen und auf einem konvexen Optimierungs-
problem. Dieses Separationsproblem ist nicht-differenzierbar und bendtigt die
konvexe Einhiillende von Linearkombinationen der Nebenbedingungen. Wir
analysieren seine Struktur und Glétte ausfiihrlich und diskutieren passende
Losungsanséatze. Aufserdem entwickeln wir Approximationen der konvexen Ein-
hiillenden und ein ensprechendes approximatives Separationsproblem. Dieses
fithrt zu schwécheren Resultaten aber zu einer héheren Anwendbarkeit.

Das obige Schnittebenenverfahren wird aufserdem auf eine Menge von Ne-
benbedingungen angewendet, die aus bivariaten quadratischen Absolutwert-
funktionen besteht. Wir présentieren allgemeine analytische Hilfsmittel und
Konzepte und bestimmen die konvexe Einhiillende fiir diese Funktionen unter
gewissen Voraussetzungen. Diese Klasse von Funktionen wird auch bei der Mo-
dellierung von Gasnetzwerken verwendet, was es uns erlaubt den Einfluss des
Schnittebenenverfahrens auf Probleme aus der Anwendung zu untersuchen.

Schlieklich betrachten wir noch ein Beispiel eines optimalen Designproblems
aus dem Bereich des Chemieingenieurwesens. Fiir das Modell einer Destillati-
onskolonne bieten wir eine Reformulierung an und beweisen monotones Ver-
halten von bestimmten Folgen relevanter Variablen. Reformulierung und Mo-
notonie werden benutzt um die Formulierung der zugehorigen zuldssigen Men-
ge zu verbessern. Insbesondere entwickeln wir eine problemspezifische Bound-
Tightening-Strategie. Unsere Ergebnisse werden an einigen Testinstanzen com-

putergestiitzt evaluiert.
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Chapter 1
Introduction

Many theoretical questions and relevant applications can be mathematically
formulated as optimization problems. The resulting problem classes are usu-
ally distinguished by the type of the involved decision variables and constraint
functions. This thesis deals with problems consisting of finitely many dis-
crete as well as continuous variables, and continuous constraints that may be
nonlinear and nonconvex. These mixed-integer nonlinear programs (MINLPs)
form a rather general, and therefore challenging problem class. In addition to
the well-known complexity of integer programming, the nonconvexity of the
constraints in general leads to multiple locally optimal solutions that are not
globally optimal. Solving MINLPs is therefore also denoted as global opti-
mization, and the required solution strategies are quite sophisticated. In this
thesis, we mainly focus on handling the difficulties arising from the nonlinear

constraint set in MINLPs.

This is done in two parts. In the first part, we describe the most established
solution strategy for general MINLPs called spatial Branch and Bound. One
important component of this strategy is the generation of lower bounds by
considering a convex relaxation of the feasible set. This thesis focuses on ana-
lyzing the quality of this relaxation and on improving it by so-called relaxation
refinement strategies. For this, we first introduce a proper theoretical founda-
tion and present relevant results from the literature. Next, we extend these
results in order to derive a relaxation refinement for relatively general MINLPs
that is based on the interaction of multiple constraint functions. We further

discuss properties and applicability of the resulting refinement strategy.



In the second part, we investigate two important applications in the broad
field of engineering. Namely, we consider gas network operation and a chemical
separation process. A common question in this context is the one of optimal de-
sign, either in terms of productivity or economic aspects. These questions can
be interpreted as optimization problems that require discrete decision variables
and nonlinear constraints to be modeled adequately, i.e., MINLPs. Despite re-
cent progress concerning solution strategies and software, many MINLPs arising
from real world applications need an unreasonable amount of solution time.
Therefore, it is often useful or necessary to apply problem-specific optimization
techniques. These techniques are based on the usual components of the spatial
Branch and Bound, but exploit properties of the given application or problem
class to be more effective. They are restricted to special types of MINLPs,
but are often able to significantly reduce the solution time. Motivated by this,
we analyze the structure and properties of the two applications, and use this

knowledge to design problem specific relaxation refinement strategies for both.

This thesis is structured as follows. Chapter 2 formally introduces the
considered MINLP problem class and the spatial Branch and Bound solution
strategy. This includes the generation of upper and lower bounds by heuris-
tics and relaxations, common branching strategies, and the main requirements
for convergence. We further discuss relaxation refinement strategies, as they

represent the common topic of all following chapters.

In Chapter 3, we introduce the convex envelope and discuss the “standard”
way of constructing a convex relaxation of the feasible set. We illustrate that
this construction leaves room for improvement. We present a result from the
literature that characterizes the best possible convex relaxation. It is based on
a simultaneous consideration of the involved constraints. We further exploit
this characterization in order to derive a cutting plane method for relatively
general MINLPs. The requirements needed to apply this method are high,
as it uses the convex envelope of all linear combinations of the constraint
functions. Therefore, we also introduce an approximate version that leads to

weaker results but to a greater applicability.

Chapter 4 deals with problems arising from gas network operation. We
consider a single junction in such a network. The resulting constraints are

given as quadratic absolute value functions. We present some general analytic



tools and concepts, and derive the convex envelope of the considered functions
under certain assumptions. This allows us to apply the cutting plane method
from Chapter 3 to the feasible set of gas networks. We exemplarily evaluate
the computational impact on two small test instances.

In Chapter 5, we develop a problem specific relaxation refinement strategy
for optimal design problems of distillation columns. For this, we first present a
detailed model of the considered distillation process and introduce a reformula-
tion. For this reformulation, we prove monotonic behavior of several sequences
of relevant variables. We further develop a bound tightening strategy for the
considered problem class based on this monotonic behavior. The influence of
the presented techniques is evaluated on multiple artificial test instances.

A conclusion is given in Chapter 6. We briefly discuss the connection be-
tween the presented results and put them into relation to the state of research.

Several parts of this thesis are the result of joint works. Chapter 4 is based
on collaboration with Frauke Liers, Alexander Martin, Maximilian Merkert
and Dennis Michaels. Chapter 5 is based on collaboration with Achim Kienle,
Christian Kunde and Dennis Michaels. However, the presentation is focused
on the results provided by the author. Additional information is given in the

respective chapters.
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Chapter 2

Branch and Bound for MINLPs

We consider an optimization problem with continuous as well as discrete de-
cision variables and a nonlinear constraint set. Such a problem is called a

Mized-Integer Nonlinear Program (MINLP) and can be formulated as

Problem 2.1.

min  f(x) :=c'x
st. zrelX
X:={zel,ul|glz)<0, 5, €ZVieJ}.

We call X feasible set, f : R" — R objective function and the entries of
g : R" — R™ constraints. Note that the constraints are allowed to be nonlinear
and in particular nonconvex. Integrality constraints are imposed on a subset
of variables by the index set J C {1,...,n}. Lower and upper bounds on
the variables are given by [,u € (R U {£o00})". We assume that the objective
function is linear, as potential nonlinearities can be moved to the constraint set.
Common further requirements for practical purposes are real valued bounds
[,u and a certain degree of smoothness of the constraints.

Problems that can be modeled as MINLPs arise from many different ap-
plications like chemical process design, network operation, and engineering in
general (Grossmann et al. [1999]; Martin et al. [2006]). See also [Burer and
Letchford, 2012] and [Belotti et al., 2013] for an overview on applications. It
is therefore desirable to be able to determine an exact solution, or at least a
reliable approximation of Problem 2.1. However, discrete decision variables

as well as nonconvex constraint functions on their own make general MINLPs
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NP-hard in theory (Kannan and Monma [1978|). Furthermore, the combina-
tion makes MINLPs also particularly difficult to solve from a practical point of
view.

In this chapter we review a solution strategy for MINLPs called spatial
Branch and Bound. It can be applied to quite general problem classes and
is used in many state-of-the-art software packages like SCIP (Gleixner et al.
[2017]), ANTIGONE (Misener and Floudas [2014]) and BARON (Tawarmalani
and Sahinidis [2005]). See also |Bussieck and Vigerske, 2011| for a summary
of available solvers.

The presented information in this chapter is mostly known for several years
and already gathered in various publications. For a very datailed introduction
we refer to [Locatelli and Schoen, 2013; Vigerske, 2012; Belotti et al., 2013].
Further publications are available, for example with focus on quadratic prob-
lems (Burer and Letchford [2012]), derivative free optimization (Boukouvala
et al. [2016]) and the MINLP solver SCIP (Vigerske and Gleixner [2018]).

The remainder of this chapter is structured as follows. In Section 2.1 we
highlight some important components of the spatial Branch and Bound so-
lution strategy. This includes the generation of upper and lower bounds by
heuristics and relaxations, common branching strategies, and the main require-
ments for convergence. Section 2.2 deals with relaxation refinement strategies.
Therein, we describe methods used to derive additional constraints on the fea-

sible set in order to speed up the solution process of the spatial Branch and
Bound.

2.1 General Solution Strategy

The general spatial Branch and Bound solution strategy is based on the fol-
lowing approach. The feasible set of the main problem is successively divided,
resulting in multiple subproblems with respective smaller feasible sets. This
procedure is called branching, as it can be described with a tree structure con-
sisting of branches of subproblems. We call this structure Branch and Bound
tree.

For each subproblem, we derive upper and lower bounds on the optimal

objective value. Upper bounds are given by any feasible solution and can



be computed by heuristics (see Section 2.1.1). Lower bounds are derived by
generating and solving a convex relaxation of the respective subproblem (see
Section 2.1.2). The convexity of the relaxation ensures that we are able to
find its global optimum. The resulting lower bound can be used to evaluate
the quality of the heuristic solution. If lower and upper bounds coincide, or
are sufficiently close, the heuristic solution is considered as (approximately)
optimal for this subproblem. Otherwise another branching step is applied
(see Section 2.1.3). It is expected that the bounds are tighter for smaller
feasible sets, eventually leading to convergence of this procedure under several
assumptions (see Section 2.1.4).

In order to reduce the size of the Branch and Bound tree, it is also important
to close branches if they can not contain any additional information for the
original problem. This is obviously the case, when a subproblem is found to be
infeasible or when upper and lower bound are sufficiently close. Furthermore,
when the lower bound of a subproblem is larger than the upper bound of any
other subproblem in the tree, it does also not contain an optimal solution and

can be deleted. The latter procedure is called pruning.

2.1.1 Heuristics

Heuristics can be used as an alternative to an exact solution strategy for Prob-
lem 2.1. This is the case if we are not interested in the optimal solution, but
only in finding a (good) feasible solution with relatively small computational
effort. In the context of this thesis however, it is important to highlight the
benefits of good heuristics for the convergence speed of the spatial Branch and
Bound.

We already mentioned that every feasible solution gives an upper bound
on the respective subproblem in the Branch and Bound tree. However, as
subproblems are generated by restricting the feasible set, these bounds are
also valid for the original main problem. Usually we are satisfied with ap-
proximately optimal solutions, so a good upper bound obviously speeds up
the solution process. Furthermore, it helps to prune parts of the Branch and
Bound tree without optimal solutions.

In the following, we briefly discuss three different categories of heuristics.

Search heuristics are based on the usage of NLP solvers for a continuous relax-
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ation of Problem 2.1 and MILP solvers for an integer linear relaxation. Both
relaxations can be solved significantly faster than the original problem. This
is either done independently, or different NLP and MILP relaxations are solved
iteratively. Integer variables in the NLP run can then be rounded or fixed to
prior MILP solutions, while the MILP problem is aimed to find points close to
the last NLP solution.

Other strategies aim to obtain a simpler version of the problem by reducing
the search space. Undercover heuristics, for example, fix certain variables to
reduce the complexity of the constraints. In some cases, it suffices to fix a small
amount of variables in order to derive a linear problem that can be handled
by LP solvers. In a neighborhood search, the search space is restricted to
a neighborhood of a given point. If this point is nearly feasible or close to
optimal, we can assume that a feasible or good solution can be found.

Diving heuristics explore the Branch and Bound tree in a depth-first search.
Thereby, we quickly reach subproblems with a smaller feasible set, and increase
the likelihood of finding a feasible solution with other heuristics or the standard

relaxation.

2.1.2 Lower Bounds

A lower bound for Problem 2.1 can be generated by considering a convex

relaxation, given as

Problem 2.2.

min  f(z)

s.t. reX

with X O X convex. Note again that the objective function f is already
assumed to be linear. The nonconvexity in the feasible set X however, is due
to integer decision variables as well as nonconvex constraint functions. The
first restriction can be relaxed by dropping the integrality constraints, which is
a common strategy in integer programming. In order to handle the nonconvex
constraints, we make use of the concept of convex underestimators.

A convex underestimator h'® of h is a convex function with h'°(z) < h(z)

on the underlying domain [/, u]. A convex relaxed feasible set to Problem 2.1
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is then given by
X :={zellu|g°x) <0}

with ¢'° := (¢°,...¢°)" and convex underestimators ¢° of g; on D for all
i=1,...,m. By definition, we have X C X and the optimal value of Prob-
lem 2.2 gives a lower bound on the optimal value of Problem 2.1. Furthermore,
Problem 2.2 is convex and can be solved to global optimality by common strate-
gies like interior point methods.

Every subproblem in the Branch and Bound tree is of the same form as
Problem 2.1, so we can derive lower bounds for every one of them by following
the methodology above. In contrast to upper bounds, these lower bounds
are only valid for the respective subproblem and further subproblems in this
specific branch. They are in particular not valid for the original problem or
the entire tree.

An important step in the presented strategy is the construction of con-
vex underestimators. They have a significant influence on the quality of the
resulting lower bound. From this point of view, the “best” convex underesti-
mator is called the convex envelope. It is defined as the point-wise supremum
over all convex underestimators, which is again a convex underestimator. In
general, the convex envelope is hard to determine for arbitrary constraint func-
tions. Therefore, a broad field of research is devoted to deriving the convex
envelope for specific classes of functions (e.g., Sherali and Alameddine [1990];
Rikun [1997]; Tawarmalani and Sahinidis [2001]; Meyer and Floudas [2005];
Jach et al. [2008]; Locatelli and Schoen [2014]). See also [Kleibohm, 1967] and
[Falk, 1969] for early work and [Boukouvala et al., 2016]| for a list of publica-
tions on this subject. In Chapter 3, we go into more detail on the construction
of the convex envelope. In Chapter 4, we present some tools that are helpful
in deriving it for specific classes of functions.

However, a representation of the convex envelope, or even good convex un-
derestimators are in general not given for every constraint function. But from
a computational point of view, we need at least a strategy to construct convex
underestimators in order to make use of the spatial Branch and Bound. One
of the most popular strategies is based on factorization. It is presented in [Mc-
Cormick, 1976] and implemented in many state-of-the art software packages.

Every function is successively divided into smaller parts until a set of basis
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functions is reached, for which the convex envelope, or a good convex under-
estimator is available. A suitable composition of these underestimated basis
functions does result in a convex underestimator of the original constraint.
Note that the choice of the convex underestimators also influences the com-
putational effort needed to solve the respective relaxed subproblem. Therefore,
it is not always beneficial to use the convex envelopes as underestimators, as
they tend to have a complicated representation. Instead, convex underestima-
tors with easy representations, like piecewise linear functions are often used

during the solution process, although they produce worse lower bounds.

2.1.3 Branching

Branching is the procedure of dividing the feasible set of a problem into several,
usually two, smaller sets. The motivation is that the respective lower bounds
of the smaller problems are in general tighter.

A standard approach is to divide the feasible set by choosing one variable
and splitting its interval into two parts. This strategy originates from integer
linear programming. If the solution of the linear relaxation of an ILP is in-
feasible, it consists of at least one variable ¢ with non-integral value. Let the
value of this variable be z; € [l;,u;]. We then design two subproblems with
the intervals of variable ¢ given by [li, [xlﬂ and Hxﬂ , ui}, respectively. As the
current relaxed solution is feasible for neither of the subproblems, we expect
progress in the next step of the Branch and Bound algorithm.

In the MINLP setting, we also need to branch on continuous variables. This
is called spatial branching and is done in a similar way. If the solution of
a relaxed MINLP is not feasible besides all integral variables meeting their
restriction, there have to be some nonlinear constraints producing this infea-
sibility. Hence, it is reasonable to branch on any variable that appears in one
of those constraints. In contrast to the integer case, we can not reduce the
overall search space by exploiting integrality constraints. Instead, the new in-
tervals are given by [l;, z;] and [z;, u;]. However, as convex underestimators are
usually tight at the boundary of the underlying domain, it is still likely that
the relaxation is improved in the next step. Note further that, if the value

x; is close to the boundary, the branching point is usually moved towards the
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middle of the interval in order to generate a more balanced Branch and Bound
tree.

As the choice of the branching variable is in general not unique and has
a huge impact on the solution process, there are several different strategies
designed to support this decision. Branching primarily aims on improving the
lower bounds of the problem in order to speed up the solution process. Hence,
it makes sense to choose the variable that results in the greatest improvement
of the lower bound as the branching variable. This improvement can either be
computed by explicitly solving the relaxation of the resulting subproblems for
different choices of branching variables (strong branching), or it can be esti-
mated using data from prior branching steps (pseudocost branching). As the
first strategy is computationally expensive and the second one is not reliable in

early stages, it is common to combine both approaches (reliability branching).

2.1.4 Convergence

We briefly discuss the convergence of the spatial Branch and Bound algorithm.
For this, consider a setting where we are not satisfied with an approximate so-
lution of Problem 2.1. Instead, the algorithm only terminates if lower bound
and upper bound coincide, or if infeasibility of the original problem is detected.
Otherwise the algorithm generates an infinite sequence of subproblems. We
say that the algorithm converges when it either terminates with one of the two
results above, or when the lower bounds of the infinite sequence of subprob-
lems converge towards the optimal solution of Problem 2.1. In the following,
we cite three important conditions that are commonly demanded to ensure
convergence. See [Locatelli and Schoen, 2013, Chap. 5| for a detailed analysis.

The first condition is a bound tmproving node selection. It demands that,
after branching, the open subproblem with the smallest lower bound is con-
sidered next. The successive number of times where this rule is not applied
always has to be finite.

The second condition is the exactness in the limit of the used convex un-
derestimators. This means, that the difference between a constraint function
g; and its convex underestimator ¢i° tends to zero if the diameter of the un-

derlying set tends to zero.
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The last one is the exhaustiveness property. When the algorithm does not
terminate after a finite number of iterations, the branching strategy produces
infinite sequences of subsets. These subsets need to converge towards a single

point, which means that the respective diameters tend to zero.

2.2 Relaxation Refinement

As derived above, one of the most important components of the spatial Branch
and Bound solution strategy is the generation of good lower bounds for the
considered subproblems. They are essential for the convergence speed, as a
globally optimal solution is usually only verified if the lower bound is equal
(or very close) to the actual objective value. Furthermore, having good lower
bounds at hand allows for more efficient pruning of the Branch and Bound
tree.

Problem 2.2 gives the best lower bound for Problem 2.1 if the relaxed feasible
set X is chosen to be the convex hull of X. This holds, as the convex hull is the
inclusion-wise smallest convex superset of X. In fact, the optimal objective
values of Problem 2.1 and 2.2 are equal in this case, as the objective function
is linear.

However, following the outlined strategy in Section 2.1.2, the relaxed fea-
sible set is in general larger than the convex hull of the feasible set, i.e.,
conv(X) € X. There are three main reasons for this. First of all, drop-
ping the integrality constraints does not lead to the convex hull of the integral
points. This behavior is well known in integer programming and the reason
for its complexity. Second, the convex underestimators are usually not as
tight as possible due to the fact that the convex envelopes are not available
or undesirable. At last, even if the convex envelopes are used and no integer
variables occur, there is in general still a discrepancy between conv(X) and X.
This is due to the fact that every constraint is considered separately and that
the interaction of different constraints is mostly ignored. The latter point is
discussed in detail in Chapter 3.

In order to compensate for this, it has become a common strategy to add
linear constraints to the relaxed Problem 2.2. These constraints aim to reduce

the size of the relaxed feasible set X, while being valid for the original feasible



15

set X and therefore also for conv(X). We call this quite general approach
relaxation refinement and we will highlight two special types of refinement
in the following. Bound tightening explicitly reduces the ranges of variables,
while cutting planes are designed to separate given infeasible points from the

relaxation.

2.2.1 Bound Tightening

Bound tightening, also known as domain reduction or range reduction, is a
common strategy to reduce the initial domain of the problem variables without
cutting off the optimal solutions. As tighter variable bounds can be interpreted
as additional linear inequalities, this obviously helps in restricting the feasible
set of the original problem and its relaxations. Additionally, the explicit bound
reduction improves the relaxation even further, as convex underestimators are
usually tighter on smaller underlying domains.

In the literature, it is mainly distinguished between two basic types of
domain reduction. Feasibility based bound tightening (FBBT) cuts off non-
feasible solutions using the constraints of the underlying problem. Standard
methods are often based on interval arithmetic (e.g., see Hansen et al. [1991];
Ratschek and Rokne [1995]) and the description of nonlinearities using expres-
sion trees (e.g., see Schichl and Neumaier [2005]). Bounds on the variables can
be propagated onto the nonlinear expressions via forward propagation. Also,
the other way around, tighter bounds on the variables can be computed using
the bounds on the nonlinearities (backward propagation). This procedure can
be iterated until no further strengthening of the bounds is achieved. In Chap-
ter 5, we develop a specific bound tightening strategy for problems arising from
chemical process design.

Optimization based bound tightening (OBBT) applies optimization tech-
niques in order to derive tighter variable bounds. The key idea is to con-
secutively minimize and maximize every variable on the feasible set. This is
in general as hard as finding the optimal solution of the problem itself, so a
common approach is to only use (linear) relaxations of the feasible set. This
procedure can also be iterated multiple times in order to further tighten the
bounds. OBBT can be more effective than FBBT, but is often much more

time-consuming. It is therefore used very rarely or only at the root node of
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the Branch and Bound tree. See |Gleixner et al., 2016] for more information

on OBBT and [Quesada and Grossmann, 1993| for an early application.

2.2.2 Cutting Planes

Cutting planes are a special type of linear inequalities. They are designed
to separate given points from the feasible set and are commonly used in the
context of optimization.

Let a feasible set X, its convex hull conv(X) and an arbitrary relaxation
X D conv(X) be given. Furthermore, we assume to have a point € X which
may be a solution of a relaxed problem. If = ¢ conv(X), a cutting plane for z is
a linear inequality that is valid for conv(XX) but not valid for . Asz ¢ conv(X)
holds, the hyperplane separation theorem states that such an inequality always
exists. If we are able to find such a hyperplane, we add it to the relaxed set X
and thus make sure that the same solution will not be obtained in any further
optimization runs. If the cutting planes are chosen “strong enough”, then the
solution of the relaxed problem converges iteratively towards a point that lies
inside conv(X). See [Kelley, 1960] for an early publication on cutting planes
in the context of integer linear programming. In Chapter 3 and 4 we develop
and apply a cutting plane approach for MINLPs.

As mentioned above, the objective values of Problem 2.1 and 2.2 are the
same for X = conv(X). Hence, well designed cutting planes can be used as
an alternative approach to the spatial Branch and Bound in order to converge
towards the optimal objective value. More commonly, cutting planes are in-
tegrated into the Branch and Bound framework as an additional step prior
to the branching. This helps in deriving tighter lower bounds for the consid-
ered subproblems and speeds up the solution process. The combination is also
called Branch and Cut.



Chapter 3

Individual and Simultaneous

Convexification

In Chapter 2 we briefly described the main components of the spatial Branch
and Bound solution strategy for MINLPs. Recall that an important step for
computing lower bounds is the generation of the relaxed feasible set X in the
relaxed Problem 2.2. In this chapter we focus on handling the nonlinearities in
this relaxation. We assume that there are no integrality constraints involved, or
that the continuous relaxation is already provided. In order to derive a good
relaxed feasible set, a common strategy is to replace every single nonlinear
constraint by its convex envelope, i.e., the “best” convex underestimator (e.g.,
see Locatelli and Schoen [2013]). We call this “standard” approach individual

convexification, as it considers every single constraint function individually.

However, the convex hull of a feasible set defined by multiple constraint
functions is, in general, not completely described by the convex envelope of
every single constraint. As a consequence of this observation, the individual
convexification of the feasible set can be significantly tightened by considering
the interaction between multiple constraint functions. This interaction was
already studied in several publications. In this thesis, we follow the nomination
in |[Tawarmalani, 2010] and refer to the convex hull of a set given by multiple
constraints as simultaneous convexification. The Reformulation-Linearization
Technique (RLT, Sherali and Alameddine [1992]) can be interpreted as an
early result in this context. Suitable functions are multiplied in order to derive

additional constraints on the relaxation. A combination of the RLT constraints

17
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and semidefiniteness is further integrated in [Anstreicher and Burer, 2010] to
derive the simultaneous convexification of a set of bivariate quadratic functions.
See for example also [Burer and Ye, 2019] for exact semidefinite relaxations of

quadratic problems or |Belotti et al., 2010] for the bilinear case.

A more general characterization of the simultaneous convexification is given
in [Ballerstein, 2013]. The convex hull of a feasible set, defined as the graph
of a vector-valued function, can be described by the convex envelopes of all
linear combinations of its components. The author already exploits this result
to improve the relaxation of feasible sets given by multiple univariate convex
functions. He further identifies linear combinations that are not required for

the characterization.

In this chapter, we make use of the result above to derive a refinement of
the “standard” relaxation using simultaneous convexification. We present a
strategy to include the refinement into an algorithmic framework by a cutting
plane method. As a result, we are able to separate from the convex hull of
the feasible set of relatively general MINLPs by solving a convex optimization
problem. The problem is not differentiable, so that subgradient methods are
required for the solution process (e.g., see Lemaréchal [1989]; Mékeld [2002];
Shor [2012]). Furthermore, the separation problem relies on an algorithmically
utilizable representation of the convex envelope of linear combinations of the
constraint functions. As the convex envelopes are usually not given for general
constraints, we also discuss possible substitutions. Under some assumption,

we still derive a necessary condition for the separation strategy to work.

Other publications also focus on cutting planes and supporting hyperplanes
for convex envelopes (e.g., see Tawarmalani et al. [2013]; Locatelli and Schoen
[2014]). In contrast to those publications, we do not aim to improve the descrip-
tion of the convex envelope of a single constraint function, but of the convex
hull of the feasible set given by multiple constraints. The cutting planes in our
case are therefore in a higher dimensional space and provide more information.
However, the insight from previous work on the general structure of convex

envelopes is still very helpful.

The remainder of this chapter is structured as follows. In Section 3.1, we
briefly discuss the convex envelope and illustrate that the individual convex-

ification is not sufficient to describe the convex hull of the feasible set. In
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Section 3.2, we present a constraint setting for which a representation of the
convex hull of the feasible set is given. This result from the literature is used to
derive a separation problem based on the convex envelope of linear combina-
tions of the constraint functions. We analyze the smoothness of the separation
problem and further present a method to generate cutting planes based on its
solution. In Section 3.3, we introduce estimations of the convex envelope that
may serve as substitutions in the proposed separation problem. We discuss
requirements that still ensure a necessary condition for the separation strategy
to work, and present methods for the construction of suitable estimations.
Most fundamental arguments used in the analysis in this chapter are given
in more detail in [Rockafellar, 2015]. The author’s contribution is mainly

presented in Sections 3.2.2 — 3.3.

3.1 Individual Convexification

A common strategy for deriving a convex superset of the feasible set of Prob-
lem 2.1 is to replace every single nonlinear constraint by its convex envelope.
We call this approach individual convexification. In order to analyze the re-

sulting relaxation quality, we first discuss the convex envelope in more detail.

3.1.1 The Convex Envelope

We make use of the following notation and properties of the convex envelope.
See [Locatelli and Schoen, 2013, Chap. 4] for an extensive introduction to this

topic.
Definition 3.1. Let D C R" convex and ¢ : D — R continuous.

e A convex function ¢'° : D — R with ¢'°(z) < g(z) for all x € D is called

a convex underestimator of g on D.
e The convex envelope of g on D is defined by

vex,[g](Z) :=sup {h(Z) | h(z) < g(z) V = € D, h convex}.



20

The value of the convex envelope at a certain point £ € D can be determined

by the following nonconvex optimization problem.

n+1
vexp[g)(Z) = minz Ai - g(a)

n+1

s.t. E Nt =17
=1
n+1

d =1
=1

N>0, 2'eD, i=1,....,n+1.

(3.1)

Note that the number of points in (3.1) is bounded by n 4 1 as a consequence
of Caratheodory’s Theorem.

The restriction 2 € D in (3.1) is quite general. We can often strengthen
the problem formulation significantly by choosing another set G C D instead
of D. For example, if G is a finite set, (3.1) reduces to a linear problem. This
holds as x* can be treated as a parameter instead of a variable. We discuss
some valid choices that result in an equivalent problem in the following. In
general, the set G can be chosen as a proper subset of D using the concept of

generating sets (e.g., see Tawarmalani and Sahinidis [2002]).
Definition 3.2.

e Let D C R”. We denote the interior of D by
int(D) := {z € D |3 U C D open with z € U},
and the boundary of D by

bd(D) := D \ int(D).

e Let D CR"and g: D — R. We denote the epigraph of ¢ on D by

epi(g, D) := {(z,2) eR""' |z € D, 2> g(x)}.

e Let D C R” convex. We denote the set of all extreme points of D by

extr(D) := {z € D | D\ {z} is convex}.
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e For a continuous function ¢ : D — R on a compact convex domain

D C R", we denote the generating set of g on D by
®lg, D] == {x €D | (z,g(z)) € extr (conv (epi(g, D))) }

By definition of the generating set, we equivalently formulate (3.1) into
n+1

vex,[g](Z) = minz A - g(at)
i=1
n+1
s.t. Z Nl =7
i=1
n+1

d =1
1=1

A\ >0, 2°€®lg,D], i=1,...,n+1.

(3.2)

Next, we provide a necessary condition that allows us to exclude points
from the generating set. For this, we require the concept of concave and

convex directions.
Definition 3.3. Let a continuous function g : R" — R be given.
e The set of concave directions of g at z € R" is given by

0lg, 7] :=={d eR" | T e>0:hyz4(N) :=g(T+ \d)

is strictly concave on [—¢,¢]}.

e The set of convex directions of g at * € R" is given by

lg,z) :={de€R"|Te>0:hyz4)) = g(T+ \d)

is strictly convex on [—¢,¢]}.

In the case of g being twice continuously differentiable at z, we obtain

dlg,z] = {d € R" | d" Hy(z)d < 0}
and ¢[g,2] = {d € R" | d' Hy(z)d > 0},

where H,(Z) denotes the Hessian Matrix of g at z.
A necessary condition for an interior point = € int(D) being an element of
the generating set is that the function g must be strictly locally convex at z.

This leads to the following observation
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Observation 3.4. |Tawarmalani and Sahinidis, 2002, Cor. 5| Let D C R™ be
convex and g : D — R continuous. Then, for every x € int(D) with d[g, z] # 0,
we have x ¢ Bg, D].

In order to derive the convex envelope for a specific function, it is often
not useful to restrict the feasible set to &[g, D] as done in (3.2). Instead, we
may choose a superset G O &g, D] with G C D and consider the respective
problem

n+1

vex,[g](Z) = min Y A - g(x)
i=1
n+1

s.t. Z Nt =17
i=1

n+1

> a=1

i=1

N>0, 2°€G, i=1,...,n+1

(3.3)

In certain cases, this allows us to find an optimal solution A\* and
{z¥* ... 2" TH*} of (3.3) with a reduced number of non-zero components of
the vector \* € R™™! compared to an optimal solution of (3.2). To indicate

non-zero components, we define the support of a vector A\* as
IV)={ie{l,...,n+1}| A} >0}

Definition 3.5. For D C R", g : D — R, £ € D and some G C D with
&g, D] C G, let {\*; 2™, ... 2""1*} denote an optimal solution to (3.3) such
that the cardinality |I(A*)| is minimal. Then we call

Sy (&) = conv ({2 | i € I(\")})
a minimizing simplex for z w.r.t. g and G. If |I(A\*)| < 2, then we also use the
term minimizing segment for S, ¢ (7).

Remark 3.6. Note that the condition |I(A*)| < 2 results in possible minimiz-
ing segments consisting of only one point. This way, points from the generating

set formally also have a minimizing segment.

We consider the following small example to show the difference in the num-
ber of non-zero components in (3.2) and (3.3) for G 2 &[g, D].
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Example 3.7. Let g(z) = —2125 and D = conv ({(0,0), (0,1),(1,2)}). As-
sume that we are interested in deriving the value of the convex envelope of g

at T = (%, 1). As g is concave on D, the generating set is given by

&g, D] = {(0,0),(0,1),(1,2)}.

The only optimal solution of (3.2) (up to permutations) is therefore
()\* = (%, %, %), x* = ((0,0), (0,1), (1,2))) with three non-zero components
in \* (see Figure 3.1(a)).

For (3.3) with G = conv ({(0, 0), (0, 1)}) U{(1,2)}, one optimal solution is

given by </\* = (%, %, O); x* = ((0, %), (1,2), (0, O))> The number of non-zero
components is two in this case, resulting in a minimizing segment for z w.r.t.

g and G (see Figure 3.1(b)). It is given by

S, (T) = conv <{(0, b, (1,2)}).

In general, the number of non-zero components can be reduced by this ap-
proach if the considered function is linear between two points of the generating

set.

(a) Minimizing simplex for Z w.r.t. (b) Minimizing segment for Z w.r.t. G.
&g, D].

Figure 3.1: Visualization of Example 3.7.

We can exclude points and pairs of points from being part of minimizing

simplices by again using the concept of concave directions.
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Observation 3.8. Let D C R"™ convez, g : D — R continuous and T € D.
Let x' € extr (S, p (2)) fori=1,...,m with &' # 27 fori # j.

e Ifz' € int(D) holds for some i € {1,...,m}, then d[g,x"] = 0.

o For every pair x', 27, i,5 € {1,...,m} with i # j, there exists some

2’ € conv ({z,27}) with

(2" — 27) € 8[g, 7).

In order to determine the convex envelope of a specific function, it is ad-
vantageous to know the dimension of the minimizing simplices beforehand. If
there exists, for some G C D and for every x € D, a minimizing segment w.r.t.
g and G, we say that the convex envelope of g (on D) consists of minimizing
segments w.r.t. G. Note that in this case the convex envelope of g also consists
of minimizing segments with respect to every superset G O (. These consid-
erations are applied in Chapter 4 to derive the convex envelope of absolute

value functions.

However, we are now able to discuss the relaxation quality of the individual
convexification using the definition of the convex envelope. This is done in the

following subsection.

3.1.2 Relaxation Quality

We consider Problem 2.1 without integrality constraints. The feasible set is

given by

X ={zell,u]]g(x)<0}.

We briefly discuss different approaches of constructing a suitable relaxed fea-
sible set X D X for Problem 2.2. The choice of X is crucial for the quality
of the lower bound attained by Problem 2.2 and has a significant influence on

the solution process of the spatial Branch and Bound.
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We use the following basic definitions.
Definition 3.9. Let D C R" convex and g : D — R™ continuous.
e Let A, B CR". We say A is tighter than B if A C B holds.

o Let gt g% : D — R™ be two convex underestimators of g. We say
g1 is tighter than ¢'°2 if epi(g'®t, D) C epi(¢'*?, D) holds.

Problem 2.2 gives the best lower bound for Problem 2.1 if X is chosen as
tight as possible. The tightest possible convex superset of X is conv(X). As
conv(X) is hard to determine in general, a standard approach is to use X = X°
with

X :={ze[l,u]|¢°(x) <0},

g° = (g°,...,g2)" and convex underestimators g° of g; for i = 1,...,m. It
is easy to see that tighter estimators lead to a tighter relaxed feasible set X°.

By definition, the tightest possible estimators are the convex envelopes. Hence

we define

X ={zel,u]g(z) <0},
with ¢* == (vexp[gi], ..., vex, [gm])T. We call X* individual convexification of
X.

In general, we have X* C X" and conv(X) C X*. The latter statement is

demonstrated in the following example (see also [Ballerstein, 2013)).

Example 3.10. Consider the set

X ={z€[0,1]® | 2y = 27,235 = 27}

- {I S [07 1]3 ‘ T2 S [E%, ) S _I%wrii S LU?, —Z3 S —l’i’}

3

Both functions ¢;(z) := 2? and ¢y(x) := 23 are already convex and the convex

envelopes of their negatives are given by
vexp[—a1](x) = vexp[—go) () = —x
for D = [0, 1]. Therefore we obtain

X*={ze0,1] 2] <my <mp a7 <ws <}
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We show that conv(X) C X* holds. For this, consider maximizing the linear
objective function

h(z) == 1 + 2(x5 — x2)

on conv(X) and X* respectively. As h(z) is linear, we have

h(z) = h(z).
TP = G M

The statement follows by showing

max h(z) < max h(x).

In fact, 1o = 2% and z3 = 23 hold for z € X. We derive

h(z) = 2(x3 — 2%) < 1.
max h(z) nax oy + (xy —a7) <

On the other hand, (0.9,0.81,0.9) € X* holds with ~(0.9,0.81,0.9) = 1.08 > 1.

Example 3.10 indicates that the resulting lower bound obtained by the re-
laxed Problem 2.2 with X = X°, or even X = X* is not the best possible. This
observation is the motivation for considering the interaction between different

constraints, as it is done in the following section.

3.2 A Separation Method using Simultaneous

Convexification

We develop a separation method for MINLPs based on a result on simultaneous
convexification. Compared to the individual convexification, it provides addi-
tional information by considering the interaction between multiple constraint
functions. The resulting separation problem is convex but not continuously
differentiable. Furthermore, it relies on an algorithmically utilizable represen-
tation of linear combinations of the involved constraint functions. It can be
applied whenever the feasible set, or a subset of it, is given as the graph of a
vector-valued function.

First, we present a result from the literature and briefly discuss the con-
straint set needed to make use of it. Afterwards, we develop the separation
problem, analyze the objective function, and present a way to derive linear

inequalities based on the solution of this problem.
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3.2.1 Representation of the Simultaneous Convex Hull

We are interested in deriving the convex hull of the feasible set of MINLPs,
as it is an important tool for the construction of tight lower bounds in the
Branch and Bound framework. We discussed in Section 3.1, that the individual
convexification is in general not sufficient to describe the convex hull of the
feasible set. Example 3.10 indicates that this is in particular the case when
multiple variables depend on different constraints with the same arguments.
Therefore, we consider a feasible set given as the graph of a vector-valued
function. The resulting MINLP has the form of

Problem 3.11.
min ¢’ (x,2)
st. (r,2)e X
X = {(ac,z) | z=g(z), x € D}

with a cost vector ¢ € R, a compact and convex set D C R" and a
continuous function g : D — R™. Integrality constraints are omitted, as this
chapter focuses on handling the nonlinearities in MINLPs.

However, even without the integrality constraints, not all MINLPs of the
form of Problem 2.1 can be formulated this way. Only certain types of depen-
dencies are allowed in Problem 3.11 and bounds on z are only given implicitly
by x. This is a relevant restriction for general MINLPs. Nevertheless, the pro-
posed structure is well suited for demonstrating the difference between indi-
vidual and simultaneous convexification. Furthermore, at least a substructure
of the form X is given in almost any MINLP. The developed strategies may
therefore still be applied in order to tighten the relaxation of more general
feasible sets.

In order to derive a lower bound for Problem 3.11, we consider the relaxed

problem given as
Problem 3.12.
min ¢’ (z,2)
st. (r,2)eX
with a convex superset X D X (see Chapter 2). The tightest possible choice

for X is the convex hull of the feasible set

Y := conv(X) = conv ({(z, g(z)) | z € D}).
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As the individual convexification is in general not sufficient to describe Y,
we make use of a result in [Ballerstein, 2013| instead. The convex hull of a
vector of continuous functions on a compact, convex domain can be described

using the convex envelopes of all possible linear combinations of its entries.

Proposition 3.13. [Ballerstein, 2013, Cor. 5.25] Let D C R™ be a compact,

conver domain and g : D — R™ a continuous function with x — g(x),

9(z) = (g1 (), ... ,gm(x))T. Then it is

Y = ﬂ My (cv)

aeR™

with

My(a) = {(z,2) e R""™ | a'z > vex,la'g](z), z € D}.

In the following, we use this representation to derive a convex optimization
problem that provides suitable « for separating points from the convex hull
of the feasible set of Problem 3.11. Furthermore, we present a strategy to
compute cutting planes based on this «.

Our result can be algorithmically exploited by a cutting plane method (see
Section 2.2.2). First, the relaxed Problem 3.12 is solved with an arbitrary
X D conv(X). Second, a linear inequality that separates the optimal solution
from conv(X) is added to the description of X. This way, the feasible set of

Problem 3.12 becomes tighter with every iteration.

3.2.2 Separation Problem

Based on Proposition 3.13, we derive an algorithmic framework for the follow-

ing separation task.
Separation Task 3.14.

Input: A compact and convex set D C R" | a continuous function g : D — R™

and a point (z,2) € D x R™.

Task: Decide whether (z,z) € Y and, if not, return a vector « € R™ with

(7, 2) & My().
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Let a point (Z,z) € D x R™ be given. According to Proposition 3.13, we

have
(z,2)¢Y <« ZdaeR™: (7,2) ¢ My(a)
& JaeR™: vexpla'gl(z) >a'z
Observe that due to scaling, it suffices to consider only linear multipliers
a € R™ from the unit ball B™ := {a € R™ | ||a|]z < 1}. Thus, we can

validate whether the given point (z,z) € D x R™ is contained in Y by solving

the Separation Problem given as

Problem 3.15.

T

min () :=a'z — vexpla' ¢](Z).

aeB™
Problem 3.15 has the following properties.
Proposition 3.16.

1. For all a € R™, h(a) < 0 holds if and only if (z,z) ¢ My().

2. Problem 3.15 is convexr and h : R™ — R is continuous on B™. In

particular, there exists an optimal solution to Problem 3.15.

3. Let o* be an optimal solution to Problem 3.15. Then h(a*) > 0 holds if
and only if (Z,z) € Y.

Proof.
1/3. By construction and Proposition 3.13.

2. The feasible set B™ is compact and convex, and o' Z is linear in a. More-
over, observe that vexp[a'g](Z) is concave in a. In fact, for arbitrary
a,f € R™ and A € [0, 1] we obtain

Avescola” g] () + (1 — A) vexo[37 g](7)
— vexo[AaTg](&) + vex[(1 - N)8Tg)(@)

8

< vexp[Aa'g+ (1 —-N)Bg]()
= vexp[(Aa+ (1 = N)B) " g](z)
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Inequality (i) holds, as vex,[fi] + vexp[fe] is a convex underestimator of
f1 + fo for arbitrary fi, fo : D — R.

Thus, the objective function h of Problem 3.15 is convex on any open

superset of B™ and therefore also continuous on B™.
]

Note that, in the case of (Z, Z) € Y, it is not necessary to solve Problem 3.15
to optimality in order to fulfill Separation Task 3.14. In fact, it suffices to find
a point o € B™ with objective value h(a) < 0 to derive (Z,2) ¢ Y.

From a practical point of view, it is important to mention that an efficient
solvability of Problem 3.15 heavily relies on the availability of an algorithmi-
cally utilizable representation of the convex envelope of o g for every a € B™.
Moreover, the function vex,[a'g] is in general not continuously differentiable

in «a, as discussed in the following subsection.

3.2.3 Smoothness of the Objective Function

We analyze the structure and smoothness of the objective function of the
proposed Separation Problem 3.15. For this, consider a fixed point £ € D
and a fixed continuous vector-valued function g : R® — R™. We neglect the
linear part of the objective function and focus on the convex envelope. As the
optimization variable is «, we interpret the convex envelope of a'g at = as a

function in «. Based on Section 3.1 and the identity

n+1 n+1

Z Ni-a'gxh)=a' Z Ai - g(xh),
i=1 i=1

the value of this function can be written as

n+1
f(a) :=vexp[a’g](Z) = min ' Z A g(zh)
i=1
n+1
s.t. Nl =17
; (3.4)
n+1

> =1

i=1

N>0, 2°eD, i=1,....,n+1.
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Function f can be considered as the minimum of infinitely many linear
functions. For this, we interpret the term Y74\, - g(27) as a coefficient and

see that the set of coefficients

n+1 n+1 n+1
Q= { L h o) L A =2 Sox =1,
=1 =1 =1
X\ >0, 2t €D, izl,...,n—i—l}

does not depend on «, but on z,g and D. Note that () is compact, as the
image of a compact set under a continuous function is compact again. Note
further that @) is not convex in general, as g is nonconvex.

Function f is continuous as shown in Proposition 3.16. However, it is in
general not continuously differentiable at every point a € B™. In order to

show this statement, consider the following example.

Example 3.17. Let g(z) = 22, D = [-1,1], a'g(z) = ax? with a € B!,
and Z = 0 be given. For o > 0, the value of the convex envelope of a'g at
T is equal to zero (see Figure 3.2(a)). For a < 0 it can be determined by the
minimizing segment [—1, 1] (see Figure 3.2(b)). This leads to the following

function for the value of the convex envelope at T w.r.t. a (see Figure 3.2(c))

0, ifa>0,
—a, if a <O.

f(@) = vexo[aTg] (&) = {

This function is not continuously differentiable at a = 0.

1 1 1
O = —
Fm 0 F% 0 ;i/ 0
3 3
1 -1 ® -1
1 0 1 -1 0 1 -1 0 1
xr X (6%

(a) Convex envelope of a”g (b) Convex envelope of a'g (c) Value of the convex en-

at T for a = 1. at T for a = —1. velope at T w.r.t. a.

Figure 3.2: Visualization of Example 3.17.
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The main reason that f is not differentiable in this case lies in the behavior
of the minimizing simplex. For a < 0, the minimizing simplex is [—1,1] and
for @ > 0, the minimizing simplex is simply {0}. The extreme points do not
change continuously and the resulting simplex is not full dimensional at o = 0.
This leads to the conjecture that the opposite holds, and that f is differentiable

when the minimizing simplex does change continuously and is full dimensional.

We confirm this conjecture by generalizing the setting. For this, we simply

consider ¢ : R™ — R as the minimum of infinitely many linear functions, i.e.,

¢(a) := min c¢'a

(3.5)
st.ceC

with a compact (nonconvex) set C' C R™.

The optimal value of (3.5) exists, so we chose one optimal solution for every

a € R™ and denote this choice by L(«), i.e.,

L(a) € argmin ¢'a

st. ce C.

L(«) represents the coefficients of one of the linear functions that generate the
minimum of (3.5) at . We conclude the following results in this setting. Note
that the first two statements are already known.
Theorem 3.18. Let C, ¢ and L be as defined above.

1. ¢ s concave

2. L(«) is a supergradient of ¢ at «, i.e.,

p(ao) + L{ag) " (@ = ag) = p(a)

for all apg € R™.

3. If L is continuous at «, then ¢ is continuously differentiable at «.
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Proof.

1. Let o, € R™ and A € [0,1]. Tt is

Ap(@) + (1 = A)e(B)
= AL(e) '+ (1= N)L(B)" B
(<)\L()\oz+ 1-2)8) a+ 1 =NLAa+(1-Np) '8
= LA+ (1 — 5)T(Aa +(1=2)p)
= cp()\oz +(1- 6)
The inequality (i) holds, as L(«) is the argmin of (3.5) and
L(Aa+(1-X)B) eC.

2. Let ap € R™. With the same argument as above and L(«og) € C, we

obtain

() + L(ag) " (v — ag) = L(ag) "o + L(ag) " (o — ag)
)

3. L(a) is a supergradient and therefore the only feasible choice for a pos-

sible gradient. Hence, function ¢ is differentiable at « if

limM:()

v=0 [[v]|2

holds for r(v) : R™ — R with

r(v) == p(a +v) = (p(a) + L(a) ).
It is

r(0)] = |p(a) + L) "o — (o + v)|
0 o(a) + L(a) v — o(a +v)

= L(a) o+ L(a) 'v = L(a +v) (o +v)
(%) Lia+v) a+ L(a) v — Lla+v)" (a+wv)
= L(a)'v— L{a+v) v

= (L(a) — L(a + U))TU.

—
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The equation (i) holds, as L(«) is a supergradient of ¢ at «, and the
inequality (ii) holds again with L(a + v) € C. Using Cauchy-Schwartz

and the fact that L is continuous at «, we have

lim M <} (L(a) — L(a+ v))Tv

v—0 ||'U||2 v—0 ||'U||2
< o 100) = Zher+ 0l [l
v—0 |v]]2
= 11)1LI(1)|L(C¥) — L(Oz—{—’U)Hg =0.

Hence, ¢ is differentiable at « and its gradient is given by L(«). As L is

continuous at «, ¢ is continuously differentiable at a.
O

Next, we transfer this result back to the case of the convex envelope. We

choose a solution of (3.4) for every a and denote this choice by A(«) and

i (a),..., 2" (a).
Corollary 3.19. Let f(a) = vex,|a' g](7),

Z?Ill Ai(@) - gi(2'(a))
K(a):= :
> Ail@) - ga(2'(a))
and let g,x'(c), ..., 2" () and N a) be as defined above. K(a) is a super-
gradient of f at a. If K(«) is continuous at & € B™, then the function f is

differentiable at a. This holds in particular if the points (@), ..., z" (@) are

affinely independent and x*(c) is continuous at & for all i =1,...,n+ 1.

Proof. The first two statements follow directly from the definition of (3.4) and
Theorem 3.18.

For the last statement, consider A € R™+)*(+1) and 2/ € R™*! given as

| 2Na) o 2" (a) s
A(a)'_< 1 1 ) '_<1>'

With z!'(a),...,z""(a) affinely independent, we derive that A(a@) is the
unique solution of
Ala)y =2/, y € R*M
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This leads to det (A(a)) > 0. As A(a) only depends on the entries of
r'(a),..., 2" (a), and () is continuous at @ for all i = 1,...,n + 1, there

is a neighborhood U of & with
det (A()) >0

for all @« € U. Now we consider a sequence of points (af);en C U with
lim;_,o o/ = &. With det (A(a’)) > 0 we set A to be the unique solution of

Al )y =2,  yeR™

for 7 € N. The entries of A(a), and therefore also the entries of A(a)™! are

continuous at &@. We derive

lim M = lim A(a?) 12’ = A(a) 2’ = A,

J—00 J—00
We conclude that A(«) and z*(«) are continuous at @ for all i = 1,...,n+ 1.
Function ¢ is continuous, so we derive that K(«a) is continuous at @ and our

statement follows. O

Remark 3.20. Note that there are possibly multiple optimal solutions of (3.4)
and that z'(a),..., 2" (a) only denotes one of them. This indicates that
there only has to be a unique choice between all possible solutions such that
the respective coefficients of this choice behave continuously in the considered
point. It may be beneficial to consider different choices of z'(a),...,z" ()
in order to show differentiability of f(a). For instance, any permutation of
r'(a),..., 2" (a) is optimal as well, so that a simple lexicographic ordering

of the points is already useful.

Note that the specific criterion of affine independence in Corollary 3.19 is
in general not necessary for f(«) being differentiable at a. For this, consider

the following example.
Example 3.21. Let D := [-1,1], gi(x) := 2%, go(z) := 2 — 22, T = 0 and
a = (1,0). The linear combination of the constraint functions is given by

a'g= (o + ag)z? — apa®.

We consider a small neighborhood of &. For ay < 0, we derive that a'g is

convex and that f(a) = 0 holds (see Figure 3.3(a)). For ap > 0, the extreme
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points of the minimizing segment are given by the two minima of a'g, i.e.,

12 () = + T ran) (see Figure 3.3(b)). The value of the convex envelope in
this case is therefore f(a) = —%. We derive
0, if Qs < 0,
flo) = o2 .
_—4(a1+a2)’ lf (6] > 0

This function is differentiable at @ = (1,0). However, the only continuous
choice of z'(a),...,z""(a) at a is ' (@) = z*(@) = 0. These points are not

affinely independent.

1.5 0.75
1 0.5
B B
> 0.5 > 0.25
= =
3 3
0 0
-0.5 -0.25
-1 0 1 -1 0 1
X X

(a) Convex envelope of a' g at Z for az < 0. (b) Convex envelope of a'g at & for ay > 0.

Figure 3.3: Visualization of Example 3.21.

In this section, we derived a criterion for showing differentiability of f(«)
at specific points. However, the proposed Separation Problem 3.15 is in gen-
eral not differentiable for all points o € B™ (see Example 3.17). In order to
derive a solution of Problem 3.15, we need suitable solution methods for non-
differentiable problems. See for example [Lemaréchal, 1989; Makeld, 2002;
Shor, 2012 for an introduction on this topic. Simple interior point methods
work similar to steepest descent methods for convex differentiable problems.
In every iteration, a subgradient is used as a descent direction with a fixed
diminishing step size. Bundle methods on the other hand aim to approxi-
mate the considered function from below. This approximation is iteratively
improved by the approximate solution and the respective subgradient. These
strategies require the objective value as well as a subgradient for every itera-

tion point @ € B™. Based on Corollary 3.19, both are given directly by any
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solution of (3.4). This allows us to solve Problem 3.15 if a minimizing simplex

is available for all linear combinations of the constraint functions.

3.2.4 Deriving Linear Inequalities

In Section 3.2.3, we discussed the structure of the objective function and pos-
sible solution strategies for Separation Problem 3.15. In the following, we
assume that a solution to Separation Problem 3.15 can be computed. In order
to algorithmically utilize this solution in a cutting plane approach, we need to

find a linear inequality that separates the point (z, Z) from
Y = conv(X) = conv ({(z,g(z)) | z € D}).
We establish the following notation for our analysis.

Definition 3.22. Let Z C R" be a closed convex set. Furthermore, for f € R"

and 3y € R, we consider the linear inequality 3"z < 3y and the corresponding
hyperplane H(5, fo) == {z € R" | 87z = fi}.

e The inequality 37z < f3y is called a valid inequality for Z if BTz < f3y
holds for all z € Z.

o Let z € Z. We call H(S,y) a supporting hyperplane of Z at z if
BTz < By is valid for Z and z € H(B, By).

o Let z ¢ Z. We call H(B,[) a cutting plane of Z for z if 372 < 3 is
valid for Z but not valid for {z}.

The respective separation task using cutting planes is defined as
Separation Task 3.23.

Input: A compact and convex set D C R", a continuous function g : D — R™

and a point (Z,z) € D x R™.

Task: Decide whether (z,zZ) € Y, and, if not, return a vector

(b, a,by) € R "such that
H(b,a,bo) = {(z,2) ER™™ | bz +a'z=1b}

is a cutting plane of Y for (z, z).



38

Our analysis and algorithmic results are summarized in the following corol-

lary.

Corollary 3.24. Let D C R™ be compact and convex and g : D — R™ con-

tinuous.

1. Let o € R™ and & € D be fived. Let (B, 53y) € RO with B, = —1
define a supporting hyperplane H(B, By) of epi (VeXD[aTg],D) at the
point (Z,vexpla'g](Z)). Then, a valid linear inequality for Y is given

by
(Biy... By —a) (z,2) < Bo (3.6)
We denote V, z[8, Bo] .= H(51, - -, Bn, —a, Bo)-

2. Let (z,2) ¢ Y and let o* be an optimal solution to Problem 3.15. Let
(B, Bo) € ROFDFL wyith B, 1 = —1 define a supporting hyperplane H ([, Bo)
of epi (VexD [a* gl D) at the point (57, vexp [Oz*Tg](:Tc)). Then Vo 2[5, Bo)
is a cutting plane of Y for (z,Z).

Proof.
1. First, we define the half-space given by (3.6) intersected with box D as
Ng,f(a7ﬁ7ﬁ0) = {(33',2) S Rner | (ﬂla s 76?17 _a)T<x72) < ﬁ0> S D}

H (B, Po) is a supporting hyperplane of epi (VeXD[aTg]) at the point
(a’c,vexD[@Tg](i’)). For every (z,2) € H(B, fy) it follows

2 < vexpla'g](x)

and
. Bo— Z?:I Biz; .
" Z Biwi — fo

For any point (z,z) € My(a) we have
—a'z +vexp[a’g](x) <0

= —OéTZ—f—Zﬁil’i—BoSO
=1
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and therefore (z, z) € N, z(a, 5, Bp). This implies My(a)) € N, z(c, 5, Bo)s
and that the linear inequality
(B, -3 By —) (2, 2) < By
is valid for Y.
2. Let (z,2) ¢ Y. Using Observation 3.16 we obtain
o'z < vexpla* g)(Z).
As H(S, Bo) is a supporting hyperplane at (E, vexpla* ' g] (i:)), we have

(z, vexpla* " g)(z)) € H(B, Bo)-

We follow the proof of 1. and derive
S B — oy = vespla (@)
i=1
Combining these equations, we have
a*'z < zn:ﬂixi — Bo.
i=1
This leads to (z,2) ¢ N, z(a*, 8, o) and to our statement.

O

Remark 3.25. Note that the restriction £,,1 = —1 on the supporting hy-
perplane of epi (vexD [aTg], D) is not a strong restriction. In fact, there is no
supporting hyperplane H (S, 5y) with 5,1 > 0 of epi(f, D) for any continuous
f D — R. This holds as (z,2) € epi(f, D) leads to (z,z + ¢) € epi(f, D)
for all ¢ > 0. Furthermore, the case 5,41 = 0 only occurs for x € bd(D). For

Brni1 < 0 finally, we may assume 3,41 = —1 without loss of generality.

A direct consequence of Corollary 3.24 is that we can find an exact rep-
resentation of Y based on supporting hyperplanes of the epigraph of the
convex envelopes for different a (see also |Ballerstein, 2013]). For this, let
(B(z, ), Bo(z,a)) € ROV with B,11(x,«) = —1 define an arbitrary sup-
porting hyperplane H(ﬁ(m,a),ﬁo(x,oz)) of epi(vexD[aTg]) at the point
(z,vexpla'g](z)). Then we have

Y = ﬂ (ﬂ Ng(a,ﬁ(x,a),ﬁo(x,a))>.

aceB™ zxeD
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Concluding these results, we are able to design cutting planes of the set
Y by solving a convex, non-differentiable optimization problem. For this, we
need an algorithmically utilizable representation of vex,[a'¢](z) as well as a
supporting hyperplane at a given point z for arbitrary a € B™.

These requirements are quite high and usually not satisfiable for general
constraint sets. In Chapter 4, we focus on a special constraint consisting
of bivariate quadratic absolute value functions. For this case, we derive the
convex envelope and make use of the proposed cutting planes in order to show
improvements of the quality of the relaxed feasible set.

The remainder of this chapter is used to generalize the prior analysis. We
derive a weaker separation result that can be applied with only an estimation

of the convex envelope.

3.3 Estimating the Convex Envelope

Recall that the proposed separation strategy in Section 3.2 is based on Sep-
aration Problem 3.15. The main drawback of this problem is its dependency
on the convex envelope, that is required for all linear combinations of the
constraint functions. As the convex envelope is in general not available for ar-
bitrary functions, we relax this condition in the following. To be more precise,
we substitute the convex envelope in the proposed Separation Problem 3.15
by a convex underestimator. We discuss the required properties of such an
underestimator and present the respective results for the separation strategy.
Furthermore, we derive ways of constructing an underestimator that meets the

requirements.

3.3.1 Sufficient Criteria for Separation

We consider the setting given in Section 3.2 with a continuous vector-valued

constraint function g : D C R" — R™, a feasible set
X = {(2,2)| 2 = g(x),z € D}

and its convex hull Y = conv(X).
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Recall that Separation Problem 3.15 is given as

T

min () :=a'z — vexpla' ¢](Z).

acB™

In this section, we aim to replace the convex envelope by a convex underes-
timator. On the one hand, it is usually a lot easier to construct a convex
underestimator instead of the convex envelope. On the other hand, as the
convex envelope is just a special underestimator, we still expect similar results
considering the proposed separation strategy.

However, as the convex underestimator for a given function is not uniquely
defined, we first introduce a suitable selection of estimators. For this, consider

the set of relevant functions (see Problem 3.15) given as
F:={a'g|aeB™}.

The selection of estimators can now be interpreted as a function itself, that
simply maps every f € F' onto an estimator of f. We formalize this concept

by the following definition.

Definition 3.26. Let D C R" be compact and convex. Let CP(R) be the
space of continuous functions mapping from D to R. Let £ C CP(R) be
convex. We call a function o : E — CP(R), f — o[f] an estimator selection
of F'on D.

We further introduce two suitable properties of estimator selections. The
first one ensures that the estimator selection always maps onto a convex un-
derestimator of the considered function. The second one is motivated by the
property of the convex envelope presented in Proposition 3.16. It is designed

to ensure the convexity of the resulting separation problem.

Definition 3.27. Let D C R" be compact and convex, and let £ C CP(R)

convex.

e We call an estimator selection of FZ on D a convex underestimator selec-

tion of F on D if o[f] is a convex underestimator of f on D for every
fek.

e We call a (convex under-) estimator selection ¢ of £ on D consistent if

Molfi(@) + (1= Nalfal(z) < a[Afi+ (1= A)fo] (2)
holds for all fi, fo € E, every A € [0,1] and all z € D.
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Remark 3.28. The last property of o being consistent is equivalent to o being
concave on /. However, we avoid this expression in order to prevent confusion.
For a consistent convex underestimator selection o of F' on D, it follows that
o: B — CP(R) is concave but that o[f] : D — R is convex for all f € E.

Example 3.29. Consider o* : CP(R) — CP(R) with o*[f] := vex,[f] that
maps every function onto its convex envelope. By definition and Proposi-
tion 3.16, 0* is a consistent convex underestimator selection of CP(R) on D.

Furthermore,
alf](z) < o"[f](z)

holds for all convex underestimator selections @ of E C CP’(R) on D, f € E
and z € D.

Now, let o be an estimator selection of F' = {OzTg | a € Bm} on D. We
consider a given point (z, z) and adapt Separation Problem 3.15 to derive the

Approximate Problem given as

Problem 3.30.

T

min h(a) :=a'z —ola'g](z).

aeB™
Using Definition 3.26 and 3.27, we directly generalize the prior results.
Proposition 3.31.

1. The objective function h : R™ — R s continuous.

2. Let « € R™ with h(a) < 0. If 0 is a convex underestimator selection,

then (z,2) ¢ My(a) and therefore (Z,2) ¢ Y.
3. If o is consistent, then the Approzimate Problem 3.30 is convez.
Proof.
1/2. By construction.

3. See proof of Proposition 3.16
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This means that choosing a consistent convex underestimator selection o
of " on D in Problem 3.30 provides two important benefits. First of all,
Problem 3.30 is convex and can therefore be solved to global optimality. This
observation is based on ¢ being consistent. Second, the optimal value pro-
vides a sufficient condition that the optimal solution is suitable for separating
a given point (Z, z) from Y. This condition is based on ¢ being a convex un-
derestimator selection. However, as o[f](Z) < vex,[f](Z) holds in general for
f € F, we do not derive a necessary condition anymore.

In a next step, we present ways of designing consistent convex underestima-
tor selections. This topic is worth to discuss, as several standard options for

convex underestimators do not lead to suitable estimator selections.

3.3.2 Design of Estimator Selections

We aim to derive suitable estimator selections to apply Proposition 3.31. As a
motivation, we use the following example to show that the property of being

consistent is not given automatically by convex underestimator selections.

Example 3.32. It is common to construct algorithmically utilizable convex
underestimators for convex functions as the maximum of tangents. We consider
two convex functions g;(r) = 2% and go(x) = z* on [0,1]. Let the (convex
under-) estimator selection o be defined as follows. For every function f, of]

is given as

o f)(x) = max (f(y) + V(y) (& —y), f(2) + V[(2) " (z - 2))

with y =0 and z = 1.

Below, we display ¢; and o[g;] in Figure 3.4(a), and ¢ and o(gy) in Fig-
ure 3.4(b). Figure 3.4(c) shows the convex combinations 5 (g1+¢2), o [5(91+92)]
and 30(g1](z) + 30(go]. Obviously,

1 1

Solon](@) + %a[gﬂ(x) > 0[%91 + 592 (@)

holds for x € (%, %) Therefore, o is not a consistent estimator selection.

Note that the presented interaction is implicitly already studied in [Tawar-
malani and Sahinidis, 2005]. The authors show that a tighter convex underes-
timator of a composition of convex functions can be designed by considering

the convex underestimators of the single functions.
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30091](@) + 30l02] (@)

(391 + 392) ()

0.5 0.5

(391 + 392](2)

0 0.5 1 0 0.5 1
T z T

(a) Graph of g1 and o[g1]. (b) Graph of g3 and o[g2].  (¢) Convex combinations.

Figure 3.4: Visualization of Example 3.32.

The motivation, why the kind of estimator selection used in Example 3.32 is
not consistent, lies in the fact that the resulting function is given as a maximum

of certain values. It is well known that

max(a; + by, as + be) < max(ay, as) + max(by, by)

holds. In the case of Example 3.32, aq,b; represent the tangents at y and
as, by the ones at z. The convex envelope on the other hand is given as the
minimum of certain values. To be explicit, it is given as the minimum of
all suitable convex combinations of points in the graph. For the minimum

operator we have

min(ay + by, as + by) > min(ay, az) + min(by, by),

which results in the desired property of o* being consistent.

This observation gives a good intuition that consistent estimator selections
should be designed in a similar way as the convex envelope. In the following, we
present an estimator selection that is based on computing the convex envelope

only w.r.t. to a discretized set of points.

Adjusted Discretization

Let D be a polytope and let G C D be a discretization of D, i.e., a finite set
with D = conv(G). For any g : G — R, we define o¢[g] : D — R point-wise
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by a simplified version of the problem used to derive the convex envelope.
n+1

oalg)(T) == min > \; - g(")
=1
n+1

s.t. Z Nt =7
i=1

n+1

> a=1

=1

N >0, 20eG, i=1,...,n+1.

This problem is feasible because of D = conv(G). The image og[g] may also
be interpreted as a convex extension of g (see |[Tawarmalani and Sahinidis,
2001]) or as a “konvexe Unterfunktion” of g (see |[Kleibohm, 1967]) on a subset
G CD.

In this context however, we use function o as an estimator selection of

CP(R) on D and derive the following desirable properties.

Lemma 3.33.
1. The problem in (3.7) reduces to a linear one.
2. The function oglg] is convex for every g : G — R.

3. The estimator selection og is consistent.

Proof.

1. With a finite set G, the points 2 € G may be interpreted as parameters
and the only variables are \; for ¢ = 1,...,|G|. By Caratheodory’s
Theorem, there always exists an optimal solution \* € RI¢l with only
n + 1 non-zero components. These non-zero components, together with

their respective points x?, give a solution to (3.7).

2. Consider two points z,y € D with their respective optimal solutions
of (3.7) for o¢lg](Z) and oglg](y) given by (A;z!,...,2"™') and
(u;y,...,y"™1). The convex combination of  and ¥ is denoted by
Z:=vZ+ (1 —v)y with v € [0,1]. We reformulate it into

n+1 n+1

Z=vi+(l-v)y= Z vhz' + Z(l — )y,

=1 i=1
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with %, ... 2™yl oyt € Gand S N + (1 - v)p = 1
We denote the convex combination of the respective objective values by

n+1 n+1

g::ZV)\ g(x +Zl—y,ul y').

=1

Now we interpret (Z, g) as a convex combination of points

(2',9(2")) € epi(g,G) and (y',g(y")) € epi(g, G),

and derive (Z,g) € conv (epi(g,G)). It is either (z,g) on the boundary
of conv (epi(g,G)), or there exist some (z,¢*) € conv (epi(g,G)) with
g* < g. By Caratheodory’s Theorem, this means that there exist points
2t ..., 2" € D and coefficients «y € [0, 1]"! with

n+1

Z Vi 9(z') < g

n+1

Z Vi 2= 27

i=1

n+1

Z%‘ =L
i=1

Hence, (v;2',...,2""!) is a feasible solution of (3.7) for og|g](z). The
associated objective value is given by > 7 ' ~:9(2") while the optimal
value is o¢[g](vZ + (1 — v)7). We conclude

n+1
oclgl(vi+ (1 —v)y Z%

<9

n+1 n+1

—ZV/\ ~g(x —i—Zl—yuz ')

= voglg](Z) + (1 — v)oclg)(y).
The statement follows.

3. Similar to the convex envelope, the function og[g] can be interpreted
as the point-wise supremum over all convex functions that have a lower

value at the points of the discretization, i.e.,

oclg)(zZ) = sup {h(Z) | h(z) < g(z) YV z € G, h convex}.
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For the property of being consistent, let gi,g0 € CP(R). Obviously,
Aoglgi] + (1 — N)oglge] is convex and

Aog[gi](x) + (1 = Noglge](z) < Agi(z) + (1 — A)g2(2)
= (Ag1 + (1= N)g2) ()

holds for all z € G. This means that o [Agi 4+ (1—A)g] is the supremum
of a set that includes Aog[g1] + (1 — N)og[ge]. Hence, we conclude

Aoclg] + (1= Noglga] < og[Agr + (1= N)g]
and o is consistent.

[]

However, the behavior of the input function between the discretized points
is not considered in the approach above. Therefore, og[g] < g does not hold in
general and o is not a convex underestimator selection. In order to account
for this behavior, we adjust every function value at the discretized points based
on the first derivative and the size of the set D. As a first step, the following

theorem will allow us to estimate the difference between the values of g and

oalgl-

Theorem 3.34. Let D C R" and G := {2',..., 2™} C R™ withm =n + 1
and conv(G) = D. Let g : D — R be differentiable with ||Vg(x)||2 < R for all

z €D. Then
n

*

n+1

g(x) =z oalgl(z) — R

holds for all x € D, where

d* .= di = —
iam(G) = max ||z —y|

is the diameter of G.

Proof. Consider an arbitrary point x € D. We denote the distance of = to the
points in G by

di = HSL’ —.Tng
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for all i = 1,...,m. Using the mean value theorem, there exist some y* € D
with

g9(z") + Vg(y') - (x — ")
g9(@") = IVa(y)ll2 - [|(z — 272
g(z") — R-d;

g()

v

v

fori=1,...,m. Let \; be given by any optimal solution of (3.7) for o¢[g](z),
Le, Yo ot =a, > " Ny =1land \; > Oforalli =1,...,m withm = n+1.

Using the non-negativity of A\, we derive

D Aiglx) =D Niglah) — R Nid;
=1 =1 =1

& g(z) > oclgl(x) = R Aid:.
i=1
Next, we estimate the term \;d; for every fixed j € 1,...,m. We assume

Aj # 0 and A\; # 1, as the term is equal to zero otherwise. This follows for
Aj = 0 trivially and for \; = 1 because of z = 27 and therefore d; = 0. We set

j\jZ: Z

Ai =
i=1,1#7
m
, Ai
i 3
i=1,1
dj = ||z — f]||2

with Z7 being a convex combination of points in G, and therefore with 27 € D.
Furthermore, we interpret x as a convex combination of the two points 27 and

7’ by

x—Z)\x =\l + Z Nt = Nl + ) Z —x = Nl 4+ AT
1=1,i#7 z—lz;éj

This implies the following:
1. The point z lies on the line connecting 27 and 7. Hence, we have
&+ = Ile? = alla + 1187 — olls = |}o? = 2] < .

The inequality holds, as the diameter of D is the same as the diameter

of GG.
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2. In the two dimensional case, the coefficient \; behaves inversely propor-
tional to d;. It is

)‘j = dj = and /_\j = dj =.
d; + d; d;+d;

3. Combining all of the above, we derive

)\jdj - )\j)\j(dj + d}) S )\](1 - )\j)d*.
Hence, the difference between function g and o¢[g] can be estimated by
g(x) = oclgl(@) = Rd™ Y A1 = N). (3.8)

We further simplify this expression by deriving the maximum of the sum. We

consider

max f(A Z)\ (1—=X

The problem is convex and differentiable, so we apply KKT conditions. For

A= Ly elandu——Q— we obtain

VIO) + pVA(N*) =0

This leads to the optimal point A* and the optimal value

1 1 m—1
fo) = —1—— =1]1——= —.
;m m m

Using (3.8) and m = n + 1, we derive the statement

n
n+1

%

9(x) = oa(g)(z) — R
O

Remark 3.35. The statement in Theorem 3.34 can be generalized for an
arbitrary polytope D and m > n + 1. For any # € D, let G' := (a!,..., 2%)
be the set of the corresponding solution of (3.7) and let D’ := conv(G’). Then
we have o [g](z) = 0¢[g](z) and the bound d* on the diameter of G, as well
as the bound R on the gradient in D, also hold for G’ and D’. The statement

follows for m > n + 1.
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For a large set D, the error parameter d* is accordingly high. This problem
can be handled by generating subdivisions of D and by applying the result on

every one of them.

Corollary 3.36. Consider a polytope D C R" and a discretization
G ={z',...,2™} C D with m > n+ 1. Furthermore, let Gy,...,G; C G
with D; := conv(G;) for j=1,...,0 and D C Ué’:1 D;. Let ||Vg(z)|l2 < R;
for all x € D; and let d5 = diam(D;) for all j =1,...,1. Then

o(x) > oclgl(x) — Ryd; ——

holds for every j =1,...,1 and x € D;.

Proof. Let x € D;. Using Theorem 3.34, we obtain

9(x) > 06, lg)(x) — Rydj—.

Furthermore, we have G; C G and x € D; C D. Hence, the optimal solution
of (3.7) for og,[g](7) is a feasible solution of (3.7) for o¢[g](x). Therefore, we
have o¢[g](z) < 0g,[g](z) and our statement
9(2) > o6g)(x) — Ry} .
n+1
0

The error estimation in Corollary 3.36 is better than the one given in The-
orem 3.34. In fact, dj < d* and R; < R hold for all j = 1,...,[, and in general
even dj < d* and R; < R for most j =1,...,[.

Now, we are able to design a consistent convex underestimator selection
of any FF C CP(R) on D € R"™. Tt relies on a discretization of D and an
estimation of the gradient. We denote it by adjusted discretization and present
two different approaches in the following. The first one is based on a constant
bound of the gradient for the entire sets F' and D. The second one considers

the gradient and the size of the subdivision in a more flexible way.

Corollary 3.37. Consider a polytope D C R" and a discretization
G = {z',...,2™} C D with m > n+ 1. Furthermore, let G1,...,G; C G
with D; = conv(Gy) forj=1,...,1 and D C Ué.:l D;. Let d* > diam(D;) for
allj=1,...,1. Let F C CP(R) with |Vg(z)||s < R for allg € F and x € D.
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We set g: G — R by

n
n+1

g(x) = g(x) — Rd"

Then, p: F — CP(R) with pglg] := 0¢|g| is a consistent convex underestima-

tor selection of F on D.

Proof. The term Rd*;%5 does not depend on z and g. With respect to (3.7),
any constant term in g may be considered separately because of Zle A= 1.
Therefore, we have

n

n+1

pclgl(z) = oglgl(x) — Rd*

Following Lemma 3.33, p¢ is consistent and pglg] is convex for all g € F'. By
Corollary 3.37 and the definition of R and d*, we also derive

pclgl(z) < ga(x).
The statement follows. O

The bound R on ||Vg(x)||; may be unreasonable high for most subsets D;
of D. Furthermore, the general bound d* on all diameters does not allow for a
dynamic discretization. The second presented estimator selection takes both

problems into account.

Theorem 3.38. Consider a polytope D C R" and a discretization
G = {z',...,2™} C D with m > n+ 1. Furthermore, let G1,...,G; C G
with D; = conv(G;) forj=1,...,1 and D C Ué’:l D;. Let F C CP(R) and
Rj(g) := maxeep ||Vg(2)||2 for all v € Dy, g € F and dj = diam(D;) for all
jg=1,...,1. Wesetg:G— R by

with

ei(g) == max R;(g)d;

s.t. x' € G,
jed{l,... 1}

Then, a consistent convex underestimator selection of F' on D 1is given by
76 F — CP(R) with 1¢lg] := 0¢lg].
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Proof. Using Lemma 3.33 and Corollary 3.37, 7¢[g] is convex and
7¢lg9](x) < g(x) holds for all ¢ € F and all z € D. In order to show that
T is consistent, we interpret 7¢[g] as the supremum over all convex functions
with

n
n+1

alg)(2') < g(2') — ei(g)

for every i = 1,...,m (similar to Lemma 3.33). Then, with A € [0,1] and
g1, 92 € F, we have

At6lgn] (@) + (1 = N76lge] ()

< A (gl(:vi) - 51‘(91)” Z 1) +(1=2) (92($i) — ei(g2)— )

n+1
; n
= g1 + (1= Vg (@) = (eilgn) + (1 = Neilge)) o=
foralli =1,...,m. The term ¢;(g) can be interpreted as the maximal absolute

gradient of

h(z) = g(z) - d*(x) with  d*(7) = max dj.

j:1 ..... l, ZI?GDZ'

The gradient of h behaves linear in g and the maximal gradient of the sum
of two functions is smaller than the sum of the maximal gradients of two

functions. In other words, ¢;(g) is concave. Therefore,
Malgi](2') + (1 = A)7elga](2")
< [Ag1+ (1= Ng2] (2') = (Aeilgr) + (1 = Nei(gn))

< P+ (1~ Nl i3 + (1~ V)

n
n—+1

n+1

holds for all i = 1,...,m. As Arg[g1](z%) + (1 — N)7clg2](2") is convex, and
76 [Ag1+ (1 —\)gz] is the supremum over all convex functions with the property

shown above, we derive

Ateloi)(x) + (1 = N)7elge] () < 76 [Agr + (1 = N)ga] (2)

for all g;,90 € F and © € D. Hence, 74 is a consistent convex underestimator
selection of F' on D. O
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Remark 3.39. The statement in Theorem 3.38 also holds for different choices
of R;. The most relevant choice is a constant R as a boundary for the gradient
on the whole sets F' and D, as done in Corollary 3.37. This allows for a flexible
discretization without the need of computing the maximal gradient in every
subset D;. Choosing R; as the norm of the element-wise maximum of the
gradient does also result in a consistent convex underestimator selection. This

value can be determined more easily in general.

Summarizing the results, we may substitute the convex envelope in our
proposed Separation Problem 3.15 by any consistent convex underestimator
selection and still obtain a necessary condition for our separation strategy
to work. One possible estimator selection with the desired properties is the
adjusted discretization. Given a discretization and bounds on the gradient of
the considered functions, we are able to compute the value of the estimator
selection by a linear problem. The number of variables in this problem is
equal to the number of discretization points. The adjusted discretization has a
similar form as the convex envelope, so that the resulting separation problem
is again not differentiable in general. However, according to Corollary 3.19 we
are at least able to derive a subgradient directly from an optimal solution of the
linear problem. In the following subsection, we discuss some relevant function

classes for which an estimation of the gradient can be computed efficiently.

Adjusted Discretization for Special Functions

Again, we consider a feasible set given as the graph of a vector-valued function.
In this special case, each entry is given by the same function type and varies

only in its argument. For instance, let

X :={(z,y,2) R’ | 21 = f(2), 22 = f(y),23 = f(z +y), (z,y) € D}

with D := [l,u] € R? and some f : R — R. In particular, we consider
monomials as a common type of one dimensional basic functions, i.e., f(z) :=
2P with p € N.

Our aim is to separate from Y := conv(X). As the convex envelope of

fol@,y) = arf(2) + o f(y) + asf(x +y)
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is not known for general v and p, we are not able to apply Separation Prob-
lem 3.15. Instead, we make use of the Approximate Problem 3.30. For this,

we need a consistent convex underestimator selection of ' on D with

F:={aif(z)+aaf(y) +asf(z+y) | o € B*}.

We choose the adjusted discretization presented above, and briefly discuss the
two options based on Corollary 3.37 and Theorem 3.38.

In order to apply Corollary 3.37, we require a bound on the gradient for all
g € Fon D. One possible bound is the elementwise supremum of the absolute
gradient. As F' is given as a linear combination and the gradient behaves
linearly, we may consider the three functions f(z), f(y), f(z + y) separately.

The respective gradients are

viw = (" )
Vi) = pyo)
Vit y) = igig;)

It is easy to see that

Vf(cx) = 'V f(x),
Vfey) = 'V f(y),
Vi(e(z+y) =@ 'Vw+y)

hold. Therefore, the absolute maximum of each entry of the gradient is at-
tained at the boundary of the box D and can be derived as the root of a
polynomial of degree p — 1 on each of the four facets. This root can either be
determined analytically for small p, or computed numerically for larger p. This
procedure is not very time consuming either way. The subdivision Gy, ..., G,
of D can be done arbitrarily. The bound d* on the diameter is given directly
by G; for j =1,...,l. As a result, we are able to apply Corollary 3.37 and to
design the consistent convex underestimator selection p of F' on D.

In order to apply Theorem 3.38 and to construct the respective 7, we first

need a subdivision of D. The set D is a box, so we are able to design G' and
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a subdivision of D that also consists of boxes. According to Remark 3.39, we
consider the elementwise supremum of the absolute gradient of a given function

on every sub-box. For every g € F', it also holds
Vy(cx) = P 'Vy(ex).

Therefore, the maximum is again attained at the boundary of the sub-box.
The elementwise maximum is given by the roots of one-dimensional polynomi-
als on fixed intervals and can be determined easily. This allows us to design
the consistent convex underestimator selection 75 of F' on D. With two pos-
sible consistent convex underestimator selections at hand, we may apply the
sufficient criteria for our separation strategy to work.

Similar observations as above also hold for f(x) := z|z|. The gradients are

given by
V() = 2'5'),
Vi) = ;y‘>,

Vix+y) = 2;213:)

If the subdivision D; of D is designed correctly, then the maximum of these
gradients is again attained at the boundary of D,. For this, let D; be a sub-box
and let the relative interior of each facet of D; not contain points (x,y) with
either t =0,y =0or x =y for all j =1,...,[. Note that such a subdivision

is always available, as motivated by the following example.

Example 3.40. Consider the function

1
9(w) = ale| + (@ + y)? -y

on the box D = [—6,4] x [1.5,7.5]. In order to derive a subdivision of D with
the properties demanded above, we consider each orthant individually. For the
second and forth orthant, every sub-box on the diagonal x = y needs to have
the same coordinates with respect to z and y. In this case, the discretization

consists of 96 points and the subdivision of 77 sub-boxes (see Figure 3.5).
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Note that g only consists of one absolute value term in this example. The
requirements on the subdivision of D are therefore not necessary. However, we
still use this example as an illustration because the convex envelope is available

for g (see Chapter 4) and can be compared to the adjusted discretization.

10 ¢
5l Subdivision
of D
> 0Or =0
5
T=yY
-10 : :
-10 -5 0 5 10

Figure 3.5: Example 3.40: Subdivision of D.

We derive the maximal gradient elementwise for every sub-box as discussed
above. The resulting adjusted discretization 7[g| is illustrated in Figure 3.6,

together with g and vex,[g].

-150 ‘ |

Ko o
&

Figure 3.6: Example 3.40: Visualization of g, vex,[g] and 7[g] from two differ-

ent angles.

This type of quadratic absolute value functions arises from network design
problems and is used in Chapter 4. We substitute the convex envelope by the
adjusted discretization for the design of cutting planes. The effectiveness of
the cutting planes is exemplarily evaluated on a test network.

For algorithmic purposes, it is important to note that we are only able to

compute pglfa](x) and 7¢[f.](x) for a given o € B™ and x € D (see (3.7)).
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This means that the adjusted discretization may only be used as a black box
in order to solve the Approximate Problem 3.30. However, obvious solution
strategies are subgradient methods that only rely on function values and sub-
gradients for the iteration points. They can be applied in this setting, as

subgradients can also be computed easily (see Corollary 3.19).
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Chapter 4

Convex Envelope and Cutting
Planes for Gas Network

Constraints

In this chapter we apply the general separation strategy for MINLPs that was
developed in Chapter 3. The proposed strategy relies on an algorithmically
utilizable representation of the convex envelope, that has to be available for
every linear combination of the constraint functions. As deriving the convex
envelope of arbitrary functions is beyond the capability of the current state of
research, it is common to only consider a specific function class. In the fol-
lowing, we exemplarily restrict ourselves to bivariate quadratic absolute value
functions. We derive the convex envelope of these kind of functions, which al-
lows us to apply the separation strategy on the corresponding constraint sets.
In order to derive the convex envelopes, we make use of Section 3.2 and var-
ious structural results from the literature (Tawarmalani and Sahinidis [2001];
Meyer and Floudas [2005]; Jach et al. [2008]).

The considered quadratic absolute value functions are used in the chal-
lenging field of gas network operation. We refer to [Koch et al., 2015] for an
extensive introduction to this topic. A gas network in its simplest form is a
system of connected pipes that is used to transport and distribute gas. The
feasible set at every junction in this network can be modeled as the graph of
a vector-valued function (see Problem 3.11). This allows us to evaluate the

impact of our separation strategy on a real world application. Note that the

61
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considered functions are already studied in the literature, but with a differ-
ent focus than provided in this work. See for example |Geiler et al., 2012;
Pfetsch et al., 2015] for an approximation approach based on mixed-integer

linear methods.

This chapter is structured as follows. In Section 4.1, we briefly describe
the gas network setting and the resulting constraint structure. In particular,
we focus on the description of a single junction in such a network. In Sec-
tion 4.2, we present some analytic tools and concepts that help deriving the
convex envelope for general function classes. We further exploit these results
to derive the convex envelope of all linear combinations of relevant constraint
functions for a single junction in a gas network. This allows us to apply the
separation strategy from Section 3.2 to the respective feasible set. The practi-
cal impact of our work is evaluated for some small test instances of gas network
optimization problems in Section 4.3. We derive stronger lower bounds using
our separation strategy compared to the “standard” relaxation. Furthermore,
we substitute the convex envelope in our separation problem by an estimation

(see Section 3.3) and analyze the influence on the separation process.

This chapter is based on collaboration with Frauke Liers, Alexander Mar-
tin, Maximilian Merkert and Dennis Michaels. The author’s contribution is

presented in Sections 4.2 — 4.3. Preliminary considerations and computations
are already published in [Merkert, 2017].

4.1 Constraint Structure in Gas Networks

A gas network in its simplest form consists of a system of connected pipes. In
our setting, we neglect all other components like compressor stations or control
valves. We consider the stationary case without dependency on time. Gas flows
through the pipes based on the pressure differences at the respective end points.
Mathematically, the network is modeled as a graph with arcs representing pipes
and nodes representing end points. Most nodes only function as coupling
points, which means that the difference of outgoing and incoming flow from
all pipes is zero. For source nodes, this difference is positive, as the node is

used to feed gas into the network. Sink nodes represent the demand of gas in
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T
\ﬂ' s
3 4
q3
q2 . .
T2

Figure 4.1: A single junction in a gas network.

the network, which means that the difference of outgoing and incoming flow is
negative.

We focus on analyzing a single junction in a gas network consisting of four
nodes and three arcs. FEvery arc has a corresponding flow variable
¢; (j =1,2,3) and every node has a variable m; (i = 1,2, 3,4) that denotes the
squared pressure. See Figure 4.1 for a visualization. We assume that the inte-
rior node 3 is neither a source nor a sink. The relevant constraints connecting

these values are given by

c - qlqn = m — s,
Co * |q2|q2 = T2 — T3,
! (4.1)
c3 - |qslgs = w3 — m,
43 =q +q
with parameters ¢ € R? (see Koch et al. [2015]).

Note that the direction of flow is given by the sign of each flow variable.
The respective flow is directed as shown in Figure 4.1 for a positive sign, and
the other way around for a negative sign.

We reformulate (4.1) into

G1(q1, g2, m3) =11 = 1 - |q1|q1 + 73,
G2(q1, @2, T3) = Ta = C2 - |@2|q2 + T3, (4.2)
G3(q1,q2,m3) =74 = —c3 - |1 + @2| (@1 + q2) + 73

Function g is separable and 73 is simply a linear term that can therefore be
ignored. Parameter c is a scaling factor that has no influence on the structure
of the remaining function. Furthermore, we identify x;1 = ¢, o2 = ¢2 and

reduce our analysis to the feasible set

X :={(z,2) eR’ | z=g(x), z € D}
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with D C R? and

91(33) = ‘5E1|371>
92(x) = |21 + Ta2| (21 + 12), (4.3)
g3(z) := |za|xs.

The convex hull of the feasible set is again denoted by
Y = conv(X).

Note that the complexity of the object X is mainly due to the absolute value
terms in ¢g. It is an obvious solution approach to branch all involved variables
at 0 (see Section 2.1.3), and to consider the resulting subproblems without
absolute values terms (see below). However, this results in exponentially many
branches and subproblems, and is therefore not desirable.

Instead, we consider Y in its entirety and make use of the results from the
previous chapter. For this, let a point (Z,z) € D x R? be given. In order
to apply the proposed separation strategy from Section 3.2 on Y, we need to
solve the Separation Problem 3.15 given as

geliBr}” h(a) = o'z — vexpla'g)(z).

For this, we first derive the convex envelope of

Jo ‘— OéTg.

4.2 Convex Envelope of Quadratic Absolute Value

Functions

In this section, we derive the convex envelope of g, on D C R? for arbitrary
a € B3 in order to solve Separation Problem 3.15. This is a challenging task
in the general case. We reduce the complexity by assuming box constraints,
ie., D =[l;,u1] X [l,us], and by fixing the direction of flow in the considered
junction.

When all flow directions are fixed, we can assume that the variables x;
and x, are non-negative. This implies that the underlying functions reduce to

quadratic ones and we obtain

Y = conv ({(z, 27,23, (z1 + 22)%) | # € [l, w1] X [lo, us]}).
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In this case, a complete description of Y is given in [Anstreicher and Burer,
2010].

The first case not covered by the literature is therefore given by two fixed
flow directions and one variable flow direction. Without loss of generality, the
only variable with unfixed sign is ;. We assume that xo > 0 and 21 + 25 >0
hold, so the single terms reduce to gi(z) = |z1|z1, g2(x) = (71 + 22)? and

gs(x) = 2. Thus, we are interested in determining the convex envelope of
9o () = ay|zy| 21 + oz + 22)° + 373

on D = [Iy,uy] X [lz, us] with Iy > 0 for arbitrary o € R3. Function g, is twice
continuously differentiable for x; # 0. The Hessian matrix of g, depends on

the sign of z; and is given by

H o — H,, ifx; <0,
“ HE, ifz; >0
with
-+« e} a1+« «Q
H, =2 ! 2 2 and H; =2 ! 2 2
(6% Qg + Q3 Qo Qg + Q3

Due to scaling we can assume oy € {—1,0,1}. In case of oy = 0, g, reduces
to a quadratic function again. For the remainder of this section we restrict
ourselves to a; = 1, as the case a; = —1 is similar and can be obtained by
symmetric considerations.

There are nine remaining cases that need to be discussed and that depend
on the specific values of the parameters as and a3. They define the curvature
properties of g,. In order to distinguish the different cases, we use the following

definition.
Definition 4.1. Let g : R® — R continuous and D C R" convex.

e We call g direction-wise (strictly) convex/concave w.r.t. component i on

D if, for every fixed T € D, g is (strictly) convex/concave on

D(z,i):={zeDl|xj=z;Vj=1,...,n, j#i}.

e We call g indefinite on D if 6[g,z] # 0 and &[g,Z] # (0 hold for every
T € int(D).
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Case Conditions Curvature Curvature General
w.r.t comp. 1 w.r.t comp. 2 curvature

1. —ag > 1 concave

l.a as + a3 <0 concave concave concave/indefinite

1.b as+ a3 >0 concave convex indefinite

2. ag > 1 convex

2.a as + a3 <0 convex concave indefinite

2.b. as+ a3 >0 convex convex

2.b.i. HI#0 convex convex indefinite

2.b.ii. H, =0 convex convex convex

2.bili. HY =0, H, #0 convex convex indefinite-convex

3. —1 < ag <1 concave-convex

3.a as + az < 0 concave-convex concave concave/indefinite

3.b. as + a3z > 0 concave-convex convex

3.b.i HI #0 concave-convex convex indefinite

3.b.ii H} =0 concave-convex convex indefinite-convex

Table 4.1: Conditions and properties for all nine (sub)cases.

Using this notation, the nine different cases can be distinguished as listed
in Table 4.2. The first column denotes the (sub-)cases and the second one
lists the conditions on « for the respective case. Columns three to five give
the curvature of g, with respect to both components and in general. Concave-
conver means that g, is direction-wise concave for x < 0 and direction-wise
convex for x > 0. Indefinite-convexr means that g, is indefinite for < 0 and
convex for x > 0. Concave/indefinite indicates that g, is either concave or

indefinite.

In the following, we first discuss some interesting results and properties
of the convex envelope exemplarily on the two most complicated (sub-)cases.
Section 4.2.1 considers Case (2.b.iii) and uses the concept of (n — 1)-convex

functions (see Jach et al. [2008]) in order to show that the convex envelope of g,
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consists of minimizing segments. In Section 4.2.2, we introduce the direction-
wise convex envelope and reduce Case (3) to Case (2). The remaining cases are
briefly discussed in Section 4.2.3. They are obtained by results in the literature
or by similar arguments as presented.

Note that the following presentation is very extensive and in some cases
quite complicated. However, the computational effort needed to make use
of the results is very little. In fact, for most cases we obtain a minimizing
simplex for every point x € D analytically. The exceptions are Case (2.b.i),
(2.b.iii), (2.c.i) and (2.c.ii). For these cases we need the roots of a polynomial
of degree four, that can also be computed with little effort. Furthermore, the
minimizing simplices directly result in the objective value and a subgradient
of Problem 3.15 for given € B* and (7,z) € D x R?® (see Section 3.2.3).

4.2.1 Reduction on Minimizing Segments

We consider Case (2.b.iii). The function g, is direction-wise convex w.r.t
component 1 and 2. Furthermore, it is convex for z; > 0 and indefinite for
x1 < 0. We show that the convex envelope consists of minimizing segments
and derive them for any given point z € D.

For this, we make use of the concept of (n—1)-convex functions as introduced
in [Jach et al., 2008].

Definition 4.2. Let g : R" — R be a twice differentiable function. g is said
vi=z; - R"1 — R is (strictly)

to be (strictly) (n — 1)-convex if the function ¢

convex for each fixed value z; € R and for all : = 1,...,n.

Remark 4.3. For g : R” — R and n = 2, g being (strictly) (n — 1)-convex is

equivalent to g being direction-wise (strictly) convex w.r.t. both components.

For indefinite functions with this property, the authors make a statement

on the structure of the concave directions.

Lemma 4.4. [Jach et al., 2008, Lemma 3.2| Let g: D = [l,ul CR" - R be a
twice differentiable function, and let the collection {Oy, ..., O} be the system
of open orthants of the space R™. Then, the function g is (n — 1)-convex and

indefinite if and only if d[g, x| is nonempty for each x € D and there exists an
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index i € {1,...,2"}, such that
dlg,z] € O; U (=0)
holds for all x € D.

This statement can be extended to the function g, for Case (2.b.iii). g,
can be divided into an indefinite (n — 1)-convex function for negative z; and a
convex function for positive x1. The property stated in Lemma 4.4 therefore

also holds for g, as shown in the following Corollary.

Corollary 4.5. Let « be as given in Case (2.b.iii). Then, there exists an index
ie{l,...,2"}, such that

0lga, 2] € O: U (=0)
holds for all x € D.
Proof. We divide function g, into two parts and formulate it as

g5 (x), ifzy <0,
ga($) = n .
g (x), ifxy; >0

with

g, (1) == —a1 2} + as(zy + 29)* + aszz;

and gt (x) = ana? + ag(xy + 22)? + asas.

The function g is convex because of H = 0, so we have

o] ] dg.,x], ifzy <O,
ay L] =
I @, if x> 0.

The concave directions at a point x with 1 = 0 need to be discussed separately.
We consider the direction d = (d;,ds) and distinguish the two cases d; = 0
and d; # 0. For d; = 0, the function

hgza(X) = ga(z + Ad) (see Definition 3.3)

is convex in A as g, is direction-wise convex w.r.t. component 2. Therefore, any

d with dy = 0 is not a concave direction. For d; # 0, the function h , 4(\) with
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A € [—¢,¢] always has a domain that includes points whose first component
attains values strictly greater zero for every € > 0. As g, is convex for x; > 0,
d is again not a concave direction.

Summarizing these results, we obtain

o] ] dg x|, ifzy <0,
a?"’C =
g 0, ifx; >0

for every x € D. As g, is an (n — 1)-convex and indefinite function, we
can apply Lemma 4.4 to conclude that there exists an index i € {1,2,3,4},
such that for all z € D the set of concave direction of g, at = is a subset of
0, U -0,. [

This structure of the concave directions can be used to show the existence of
minimizing segments for every point & € D w.r.t. a set G (see Definition 3.5).
As the existence of minimizing segments depends on the choice of G, we first
define G := G; UGy U G3 U G4 with

Gy = {1} X [lo, us), G = [11,0] x {lo},
Gy = [11,0] x {u1}, Gy = [0, u1] X [la, us)].

See Figure 4.2(a) for a graphic representation of the subsets G;. Using Obser-
vation 3.4, it is easy to see that &[g,, D] C G holds.

The existence of minimizing segments is then given by the following Lemma.
A similar case and basic ideas of the proof are already provided in [Jach et al.,
2008, Theorem 3.1].

Corollary 4.6. Let o be as given in Case (2.b.iii), D = [l,u] with Iy > 0
and G as defined above. Then the convexr envelope of g, on D consists of

mainimizing segments w.r.t. G.

Proof. Note the following preliminary considerations. Let
E:=D\G={peint(D)|p <0}

The proof of Corollary 4.5 already indicates that g_ is indefinite. The set of
concave directions of g, at z € F is therefore non-empty.
For the proof, we mainly show that the convex envelope of g on D consists

of minimizing segments w.r.t. D. Using Observation 3.8, it is easy to see that
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there are no extreme points of any minimizing segment inside £. We conclude
that the convex envelope of g on D also consists of minimizing segments w.r.t.
G.

Assume that there exists a point Z € D with a minimizing simplex S, p (Z)

consisting of at least three different extreme points, i.e.,
o', 2?, 2® € extr(S,, p (Z)) with ' # 2% #2° # 2.

According to Observation 3.8, we have z', 2%, 2% ¢ E, as §[g,,p| # 0 holds
for all points p € E. We conclude that z', 22, 2% € G and we only need to

distinguish two cases:

3 are elements of the same subset G; for some

e Two of the points ', 22,
i €{1,...,4}. Function g, is convex on G; for every i € {1,...,4}. This

leads to a contradiction based on Observation 3.8.

e No two points are elements of the same subset G; for all ¢ € {1,...,4}.
For all possible combinations, one of the three vectors (z! —x?), (22 —23)
and (23 — ') is not element of the same pair of open orthants O; U (—0;)
forall = 1,...,4. According to Corollary 4.5, g, is convex on at least
one of the three sets conv ({z!,z%}), conv ({22, 2°}) or conv ({z*,2'}).

This contradicts Observation 3.8 again.

Hence, the convex envelope of g on D consists of minimizing segments w.r.t. D.

We conclude our statement by using Observation 3.8 as described above. [

U2 Gs U2
P
z
‘\
G -
1 G4 . L
.. ) p2
“o.
ly ly : —
ll G2 0 Uy ll 0 Uq
(a) Visualization of the subdivision of G. (b) Visualization of L,p! and p2.

Figure 4.2: Case (2.b.iii).
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Next, we construct a minimizing segment for any given point z € D w.r.t
go and G. For this, we first analyze the structure of concave directions in order

to apply Observation 3.8. For as > 1 we show
(—ag, 0 — 1) € 0[Ga, 7]
for all x € D with z; < 0. In fact, we have

(—ag, a0 —ay) H (—ag, an — 041)T

= ag(ag —o) — 204%(042 —ay) + (a2 — 041)2(% + ag)

= (ag —aq)det(H,)).
With as > 1 = «a; and H] # 0, we obtain det(H,) < 0 and
(—ag, g — 1) € 6[ga, 7.
For as = 1, it is easy to see that
(—ao +as, 1) Hy (—ag + a3, 1)T <0
holds for all x € D with z; < 0. This leads to
(—ag + ag,1) € [ga, x].

Either way, there exists a vector v € R_ x R, with v € 0[g,, x]. Using Corol-

lary 4.5, we derive
0[ga, ] Cint(Ry x R_) Uint(R_ x Ry) (4.4)

for all x € D. This property of the structure of concave directions will be used
together with Observation 3.8 in the following analysis.
By Corollary 4.6, there exists a minimizing segment S,  (z) for any given

point 7 € D. We denote the two extreme points of S, ¢ (Z) by p' and p?, i.e.,
Sy (T) = conv(p', p?).

By definition of G, we have p' € G; and p* € G, for some i,j € {1,...,4}.
Next, we classify possible minimizing segments for all combinations of 7 and j

(exploiting symmetry). For this, consider the following “easy” cases first.
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i=j: As g, is convex on G, for k=1,...,4, we have p! = p* =7 in

this case.

(i,7) = (1,3): Using (4.4) and Observation 3.8, we derive that there are no
minimizing segments with p* € G; and p? € G3 except for

pt=p* =1 = (l1,us).

(i,7) = (2,4): Using (4.4) and Observation 3.8 again, this leads to
pl=p*=2=(0,l).

(1,7) = (2,3): See Case (2.a) in Section 4.2.3.

(7,7) = (1,2): See Case (2.b.i) in Section 4.2.3.

The first interesting combination is (i,5) = (1,4). For every given point
T € D and every extreme point p' := (I;,7) € G} of a possible minimizing

segment of Z, we consider the ray L starting at p! into the direction of Z as
L:={p"+Xz—p")|A>0}.

We determine the convex envelope of g, restricted to L, and thereby detect
the second extreme point p* := (s,t) € G4 (See Figure 4.2(b)). The point p?
is given as the point with a directional derivative coinciding with the gradient

of the line connecting (pl,ga(pl)) and (p2,ga(p2)), ie.,

9a(P*) + Vga ()T (0" — %) = ga(0").

Note that s > 0 holds because of p* € G4. We further introduce a new variable
i and set

S l T1—1
pP=p+uz-p) & ( )=<1>+u<_1 1)-
t T Tog— T

Variable ;1 can be interpreted as the distance between p' and p? relatively to

the distance between p' and z. We combine the equations above and derive

—V 20(1 ll

\/(Oél -+ C(Q)(if’l — l1)2 —+ 2042(3_71 — l1)<i‘2 — T) -+ (Oéz + Oég)(i’z — T’)2'

Each of the variables r,s,t and p now depend on r. We insert this infor-

mation into the problem used to derive the value of the convex envelope at
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a given point Z (see (3.1)). This results in the one-dimensional optimization

problem

min A(r) = %ga(s,t) + (1 _ %) galln, )

s.t. s= ll +M(f1 — ll) >0
t=r+p(@—r) (4.5)

= —V2a1 11
V/(e1+az)(@1—11)2+202(F1 1) (Ta—7)+ (a2 +as) (T2 —)?

r € [la, usg).

This problem has to be solved in order to determine the actual minimizing
segment and the value of the convex envelope at Z. Using basic transformation,

we first reformulate the objective function into
1
h(T) = T(2042(1_31 - ll) + 2(042 + CY3)ZZ’2> + 7“2(@2 + Oég) + ;(40&1[%) +c

with a constant ¢ not depending on r, that can be omitted for sake of opti-
mization. We aim to apply the first order optimality condition and consider

the derivative of h(r) (with p also depending on r), which reads as

B (r) :(20@(:@1 — 1) + 2(ap + ag) (@ — 7’)) (1 . u).

In order to determine the optimal solution, the roots of 1 — ;= 0 do not have
to be considered as this would result in p? = Z. The remaining root of the
derivative is given by
«
L =129+ OQT2043(3;1 —1).
Hence, the optimal value of (4.5) is attained at r; or at the boundary of the
interval [la, up]. The minimum of (4.5) can not be attained at r = I, because

this would result in a minimizing segment not including a concave direction (see

(4.4) and Observation 3.8). The two remaining possible optimal solutions are

a2
az+asz

therefore ry = T + (Z1 —11) and 73 = ug, and their respective minimizing
segments.

For (i,7) = (3,4), the resulting possible minimizing segment can be derived
in a simultaneous way. Combining these results, we derive possible minimizing
segments for several combinations of 7,5 € {1,...,4}. As all combinations are

considered, the actual minimizing segment for = has to be one of them. In order
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to determine it, we compute the values of the convex combination induced by
all different possible segments and take the lowest one.

Figure 4.3 exemplarily shows the resulting structure of the minimizing seg-
ments for different z € D. We use green lines for segments with (7, j) = (1, 2),
magenta and red lines for segments with (¢, 5) = (1,4) and blue lines for seg-
ments with (¢,7) = (3,4). Yellow lines show intermediate segments with one
extreme point at (I;,us). Black dots indicate minimizing segments of dimen-
sion zero inside set (G4. This means that the function g, coincides with its

convex envelope.

Figure 4.3: Case (2.b.iii): Structure of the minimizing segments.

4.2.2 The Direction-Wise Convex Envelope

We consider Case (3) and all its sub-cases. In order to handle these cases, we
introduce the concept of direction-wise convex envelopes and show how it can
be used to reduce Case (3) to results from Case (2).

ay € (—1,1) holds, so that, w.r.t. component 1, g, is direction-wise concave
for x < 0 and direction-wise convex for x > 0. For a function ¢ that is not
direction-wise convex w.r.t to a certain coordinate i € {1,...,n} on the whole
set D, we can design a function with this property by computing the convex

envelope of g restricted to a line segment defined by fixing the value of z; for
all j #1,ie€{1,...,n}.

Definition 4.7. The direction-wise convex envelope of g on D w.r.t. compo-

nent 7 is defined as

Vo.il9)(7) = vexp 9] ()

! (4.6
with  D(z,i)={2' € D|aj=u;Vj=1,...,nj#i}.
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In certain cases, this operation preserves the direction-wise curvature with

respect to other coordinates.

Lemma 4.8. Let g : R" — R continuous and direction-wise (strictly) con-
vex/concave w.r.t component k € {1,...n}. Let D C R™ be a closed convex

set and leti € {1,...,n} be given. If there exists a set X; C R such that

@[g,D(x,i)]:{yeDwieXi, yy=x;¥Vji=1...,n, j#z’}

holds for every x € D, then vp,[g] is direction-wise (strictly) convex/concave

w.r.t. component k.

Proof. We discuss the proof only for the statement on convexity. The results
for concavity and strictness can be derived analogously.
. 1 2 . 1 o 2 < .
Let A € [0, 1] and two points z', z* with x;=uxjforeveryj=1,....n, j #k
be given. We denote 2* := A\x! + (1 — \)z%. Due to our condition, we have

either

zt € &g, D(z',i)], 2° € B[g,D(2*4)], 2 € B[g, D(x*,i)]
or

o' ¢ 89, D(a',9)], 2* ¢ &lg, D(z*1)], a* ¢ &g, D(a*,4)].
In the first case, vp.[g](z) = g(z) holds for all x € {z!, 22 2*} and

Mpalgl(at) + (1= Nw.[g)(2?) = 70,9l (2?) (4.7)

holds as g is direction-wise convex w.r.t. component k.

In the second case, the value of 7, ;[g](x) for x € {x!, 22 2} is given as
a convex combination of two points respectively. This holds as the direction-
wise convex envelope is defined on a one-dimensional set and therefore always
consists of minimizing segments. Due to (4.7), the respective two points share
the same value for every component but component k for all z € {x!, 2%, 2}.

To be more specific, there exists some p € [0, 1], and points

131,17 xl’Q, x2’1, :1:2’2, :1:)"1, 2 c D
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. 1,1 2,1 Al 1 A2 . :
with 2,7 = a7 =2 and o;” = 27" = 27" for every j = 1,...,n, j # k,

J
such that

As Aga™) + (1 — N)g(a®1) = g(e™) and Ag(a'?) + (1 — N)g(a22) > g(a?)

holds due to the direction-wise convexity of g, we again obtain
Moalgl(@") + (1= No.[g(@%) = yo.lg)(2?).
O

Furthermore, the direction-wise convex envelope is a suitable intermediate

step for determining the actual convex envelope.

Corollary 4.9. Let D CR" and g : D — R continuous. Then

vexplg](x) = vexp[yp,:[g]](2).
holds for alli € {1,...,n}.

In order to make use of this result, we first derive the direction-wise convex
envelope of g, w.r.t. component 1. It is

s—I1 )

Galy, z2) + (21 — ZI)W if 2, < s,
Vpalgal(2) =

ga(x), ifx;>s

with s := min (ul,ll (1—\/1_33_3))'

See the following example for a small illustration.

Example 4.10. We consider o = (1,—0.25,1) and D = [—-1,1] x [0,1]. Fig-
ure 4.4 shows the direction-wise convex envelope of g, w.r.t component 1 for
ro = 0 and x5 = 1 respectively. Note that the extreme points of the minimiz-
ing segment [—1, s] are the same in both cases. This holds as the value of x5
only changes the first derivative of g, w.r.t. x1, but not its overall curvature.

Therefore, s is independent of z5.
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Yp,119a) (21, 1)

1 ‘(}”,(Zl,'l, 1) I~
0

YD,1 [g(}} (3:17 O)
S
0 0.5 1
€1

Figure 4.4: Illustration of Example 4.10: The direction-wise convex envelope

for o = 0 and x5 = 1 respectively.

Yp.lga)(2) restricted to z1 < s is twice differentiable, so we can derive the

Hessian Matrix as

0 as(s —1y)
as(s — 1) (a2 +az)

Hop sfge) @y <o =
Yp.ilga) is direction-wise convex w.r.t. component 1 and indefinite for x; < s.
Note that, for all sub-cases of Case (3), the direction-wise convexity /concavity
w.r.t component 2 is also preserved as stated in Lemma 4.8. This holds as
the value of s in the definition of v, ,[g,] is independent in x5. By applying
these results, the convex envelope of 7, ,[gs] for all sub-cases of Case (3) can
be reduced to observations in other cases. See Case (3.a), (3.b.i) and (3.b.ii)
in Section 4.2.3 for detailed information.

Using the convex envelope of 7p,[gs], the convex envelope of g, can also
be easily derived by translating the minimizing segments w.r.t. vp..[g.] into
minimizing simplices w.r.t. g,. For this, we consider any extreme point y of
a minimizing segment w.r.t. v,.[g.]. If 11 < s holds, then we derive two
extreme points (Iy,y2) and (s,y2) of the respective minimizing simplex w.r.t.
Jo- Otherwise the extreme point y is also an extreme point of the respective

minimizing simplex w.r.t. g,.

4.2.3 Summary of the Remaining Cases

The respective convex envelope and minimizing segments of the remaining

cases are obtained by results from the literature or by similar considerations
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as given in Section 4.2.1. We briefly present them in the following for the sake
of completeness. We also refer to the technical report [Ballerstein et al., 2013]

for similar considerations.

Case (1.a)

In this case, g, is direction-wise concave w.r.t components 1 and 2. As our
domain D is a box, g,(z) is also called edge-concave. Functions with this
property and the respective convex envelopes are for example studied in [Meyer
and Floudas, 2005].

The generating set of g, is given by the four extreme points of the box, i.e.,

(’5[900 D] = {(lh l2)’ (llau2)> (u17l2)7 (u1’u2)}'

The convex envelope is polyhedral and the minimizing simplices are induced
by a certain triangulation of the box D. As we deal with a bivariate function,

D can be triangulated in only two different ways:

e Triangulation T} is given by the sets Gy := {(I1,u2), (I1,12), (w1, us) } and
Ga = {(l1, 1), (w1, ua), (ur, o) }.

e Triangulation 75 is given by the sets G := {(l1,2), (I1, u2), (u1,l2) } and
G 1= {(h,u2), (ur, bo), (w1, u2) }.

In order to decide which of the two possible triangulations determines the
convex envelope, we need to compare the respective values at the center point
s(li4u1, lb+ug) of D (e.g., see Meyer and Floudas [2005]). The corresponding

possible minimizing segments for the center point are given by

conv ({(l1,12), (w1, us)}) and  conv ({(I1,u2), (u1,5)}).

It turns out that

%(ga(lh lo) + ga(U17U2)) < %(ga(thQ) + galus, 12))

holds for x5, > 0 and that, hence, triangulation 77 determines the convex
envelope. The resulting minimizing simplices are given by conv(G;) (green
region in Figure 4.5), conv(Gs) (blue region in Figure 4.5) and conv ({(l1, l»),
(u1,uz)}) (red line in Figure 4.5).
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Figure 4.5: Case (1.a): Triangulation  Figure 4.6: Case (1.b): Structure of

of D induced by T7. the minimizing segments.

Case (1.b)

In this case, g, is direction-wise concave w.r.t component 1 and direction-wise

convex w.r.t. component 2. The generating set of g, is given as
6[904? D] = {llaul} X [l27u2]'

As g, () is convex on {13 } x[la, us| and {u; } x[l2, us| respectively, no minimizing
simplex contains more than one point in each of both subsets. Hence, the
convex envelope w.r.t. &[g,, D] consists of minimizing segments of the form
conv ((ll, y1), (uq, yz)), with y1,ya € [l2, us]. Functions of this type are already
studied in the literature (e.g., Tawarmalani and Sahinidis [2001]; Jach et al.
[2008)).

For a given point Z, the specific values of y; and y, are given as the unique

minimizer of an univariate optimization problem. They need to satisfy

aga _ aga
a_xz(llayl) = Omy (w1, 92) (4.8)

or either y; or y, need to lie at the boundary of the interval [ly, us).

Thus, a minimizing segment is either parallel to the vector v := (1, — ajfa;»,)
(red lines in Figure 4.6), or is determined by y; = ls (blue lines in Figure 4.6)

or by y2 = ug (green lines in Figure 4.6).
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Case (2.a)

In this case, g, is direction-wise convex w.r.t component 1 and direction-wise

concave w.r.t. component 2. The generating set of g, is given as
®[ga,D] = [ll,ul] X {ZQ,UQ}.

In order to compute the minimizing segments, we use the same arguments as
in Case (1.b) with inverted roles of the two coordinates.

As the second derivative of g, differs among the two half-spaces z; < 0 and
x1 > 0, we additionally distinguish three possibilities defined by the position
of the minimizing segments with respect to these half-spaces. Minimizing

segments containing only points with negative values of x, are parallel to the

a2
a2—aq’

vector v! 1= ( —1) (yellow lines in Figure 4.7), or defined by the extreme

point (I3, us) (green lines in Figure 4.7). Segments containing only points with

a positive value of x; are parallel to the vector v? := <a2c_fa1 , —1) (red lines in
Figure 4.7) or defined by the extreme point (uq,ls) (blue lines in Figure 4.7).
Minimizing segments containing points from both half spaces are not parallel
to each other. For one extreme points (y;,us), the second one is given by

<y1 + M, lg) (magenta lines in Figure 4.7).

altaz

U2

ll 0 uy

Figure 4.7: Case (2.a): Structure of the minimizing segments.

Case (2.b.i)

In this case, g, is indefinite and direction-wise convex w.r.t. components 1 and

2. We derive a similar result as in Section 4.2.1 for Case (2.b.iii).

Corollary 4.11. Let « be as defined in Case (2.b.i) and let G = bd(D).
Then we have &lg,, D] C G and the convex envelope of g, on D consists of

minimizing segments w.r.t G.
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Proof. Analogous to Corollary 4.6. n

We divide G into four sets given by

Gl = {ll} X [ZQ,UQ], GQ = [ll,uﬂ X {l2}7

Gg = [ll,ul] X {'LLQ}, G4 = {Ul} X [ZQ,UQ].
Again, every minimizing segment S, ¢ (Z) is defined by its two extreme points
p* and p? with p' € G; and p* € G, for some i, j € {1,2,3,4}. We classify the
minimizing segments for all possible combinations of i and j (with exploited

symmetry). Similar to Section 4.2.1, we can exclude the following “easy” cases.

i=7j: As g, is convex on Gy, for k = 1,...,4, we obtain p! =p? =7

in this case.

(i,7) = (1,3): Leads to p* = p? = (I;,uz) by considering the concave direc-

tions and Observation 3.8.

(i,7) = (2,4): Leads to p' = p* = (uy,l2) by considering the concave direc-
tions and Observation 3.8.
(7,7) = (1,4): See Case (1.b).
(7,7) = (2,3): See Case (2.a).
We consider the combination (7, j) = (1, 2) in more detail. Every minimizing

segment is defined by two points p' := (I;,t) and p? := (¢, l5). Furthermore,

the following equation

d9a 99a
(h = @) (0, 12) + a0 o) = (I = )72 (10.0) + ga (11, )
21 L2

must hold. For ¢ < 0 we derive
Vay —ai(qg—h) = Vaz +as(t — ),
and for ¢ > 0 we derive
(o + a2)(q — 1) = 20013 = (a0 + a3)(t — I5)*.

Minimizing segments with p' € G5 with p? € G, are handled analogously.

They are not shown in the figures below in order to keep the presentation
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clean. Again, we derive a possible minimizing segments for several combina-
tions of 4, j € {1,...,4} and choose the one with the lowest induced value (see
Section 4.2.1).

This results in two possible options for the structure of the convex envelope.
The first one consists of, roughly speaking, minimizing segments running from
the left to the right side of the box D (see Figure 4.8). Red and blue lines in-
dicate minimizing segments with extreme points in G; and G4, similar to Case
(1.b). Green and magenta lines indicate minimizing segments with extreme
points in GG; and G5, as distinguished above.

The second option instead consists of, roughly speaking, minimizing seg-
ments running from the top to the bottom side of the box (see Figure 4.9).
Magenta, red and blue lines indicate minimizing segments with extreme points
in G and G3, as described in Case (2.a). Green lines again indicate minimizing

segments with extreme points in G; and Gs.

U2 U2

ll 0 Ul

Figure 4.8: Case (2.b.i): Option 1 for  Figure 4.9: Case (2.b.i): Option 2 for

the structure of the segments. the structure of the segments.

Case (2.b.ii)

Function g, is convex on D. The convex envelope is given by g, itself.

Case (3.a)

As explained in Section 4.2.2, we first derive the convex envelope w.r.t. v, ,[ga]-
In this case, 751 [ga] is direction-wise convex w.r.t. component 1 and direction-

wise concave w.r.t. component 2. We apply a similar approach as in Case (2.a).
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We again derive the structure of minimizing segments by analyzing the deriva-
tives of vp1[ga)-

As a second step, Figure 4.10 displays the structure of the minimizing seg-
ments w.r.t. vexy[vp.[ga]]. Green, yellow and blue lines indicate minimiz-
ing segments that are determined by the extreme points (ly,us), (¢,l2) and
(u1, ly) respectively. The red lines indicate minimizing segments parallel to the
vector v.

It is

U= <041a+20427_1> ’
s:zmin(umlI(l— 1—%))7
¢ := min (ux, Lz <1 —/1 -85 ) + iy (uy — ly))‘

Note that the analysis and visualization only holds for ay > 0. However,

the case of ay < 0 is mostly symmetric and can be handled analogously.

Figure 4.10: Case (3.a): Structure of Figure 4.11: Case (3.b.i): Structure

the minimizing segments. of the minimizing segments.

Case (3.b.i)

As explained in Section 4.2.2, we first derive the convex envelope w.r.t. v, [ga]-
The function 7y ,[gs] is indefinite and direction-wise convex w.r.t components
1 and 2. Hence, we can use the same arguments as in Case (2.b.i) to derive
the structure of the of minimizing segments.

As a second step, Figure 4.11 displays the structure of the minimizing seg-

ments w.r.t. vex,[vp.[ga]]- Minimizing segments connecting opposite sides are
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colored in green, yellow and red (similar to Case (3.a)). Magenta and blue
lines indicate segments that connect adjacent sides. Note that the analysis
and visualization only holds for ap > 0. However, the case of ay < 0 is mostly

symmetric and can be handled analogously.

Case (3.b.ii)

As explained in Section 4.2.2, we first derive the convex envelope w.r.t. v, ,[ga].
The function 7, ,[gs] is direction-wise convex w.r.t. components 1 and 2. Fur-
thermore, it is indefinite for x < s as motivated in Section 4.2.2. We use the
same strategy and the same subdivision of G as in Case (2.b.iii).

As a second step, Figure 4.12 displays the structure of the minimizing seg-
ments w.r.t. vexp[vp.:[ga]] (). Magenta and red lines show segments connecting
(1 and G4 and yellow lines show segments defined by the extreme point (I3, us).
Black dots indicate that the function g, coincides with its convex envelope.
Note that the analysis and visualization only holds for a, > 0. However, the

case of ay < 0 is mostly symmetric and can be handled analogously.

Figure 4.12: Case (3.b.ii): Structure of the minimizing segments.

Concluding the analysis, we are able to determine a minimizing segment of
go on D for any point # € D and for arbitrary o € R? with very little computa-
tional effort. The point Z is then given as a convex combination of the extreme
points of its minimizing segment. The value of vex,[g,] at Z can be computed
by the equivalent convex combination of the values of g, at these extreme
points (see (3.1)). This directly allows us to compute the objective value and
a subgradient of the corresponding Separation Problem 3.15 for a given o € B3
and for all (z,z) € D x R? (see Corollary 3.19). Separation Problem 3.15 can

now be solved by optimization methods for non-differentiable problems that
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rely on value and subgradient at every iteration step (see Section 3.2.3). Com-
bining all of this, we can solve the associated Separation Task 3.23 for gas
network constraints on a single junction efficiently. Computational results for

some test networks are given in the next section.

4.3 Computational Results

In this section, we evaluate the proposed separation strategy from Section 3.2
exemplarily on the feasible set arising from two test networks. We aim to
show that the resulting cutting planes are well suited to tighten the convex
relaxation of the feasible set provided by state-of-the-art software packages.
Additionally, we show that the computation of cutting planes is not very time
consuming in comparison to their benefits. We present the test setting in Sec-
tion 4.3.1, the strategy of our implementation in Section 4.3.2, and discuss the
computational results in Section 4.3.3. Section 4.3.4 deals with the separation
method based on the Approximate Problem 3.30, that uses an estimator of the
convex envelope (see Section 3.3).

This is joint work. The test setting, visualizations, and parts of the compu-

tations are not provided by the author. We also refer to [Merkert, 2017].

4.3.1 Test Setting

We consider two test networks. The first one is artificially designed and de-
noted by “Net1” (see Figure 4.13). It has 7 nodes, 9 arcs and 3 interior junc-
tions. The topology of the second one is taken from a gas network library
(GasLib-11, Schmidt et al. [2017], see Figure 4.14) and denoted by “Net2”. It
has 11 nodes, 11 arcs and 5 interior junctions.

For both networks we consider three different settings each, given by differ-
ent bounds (box constraints) on the involved variables. We further consider ten
different objective functions respectively, that are all minimized in our com-
putations. These objectives are given as linear combinations of the pressure
and flow variables in the network. They are either inspired by applications or
designed randomly in order to evaluate the relaxed feasible set in multiple “di-
rections”. There are 30 different combinations of bound setting and objective

function for both networks. We call each combination a scenario.
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Figure 4.13: Visualization of Netl
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Figure 4.14: Visualization of Net2

The formulation of every interior junction in the considered networks is
adapted according to Section 4.1, and has therefore the desired structure as
the graph of a vector-valued function (see Problem 3.11). The bounds on
the variables are chosen in such a way that several flow directions are fixed
automatically. At most one flow direction at every junction remains unfixed.
This allows us to compute the convex envelope of all linear combinations of

the constraint functions for every junction (see Section 4.2).

As a result, we are able to perform Separation Task 3.23 on the feasible
set of every single junction. Note that not the whole network has the desired
structure of Problem 3.11, as additional constraints are needed to describe the

coupling between the junctions. Therefore we are not able to separate from
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the convex hull of the feasible set of the whole network, but only from the
convex hull of subsets. The design of the implementation is described in the

next section.

4.3.2 Implementation

The strategy of our computations is the following. We design and solve a
linear relaxation of the network. For each interior junction in the network, we
perform Separation Task 3.23 by solving Separation Problem 3.15. This way,
we either confirm the solution of the relaxation or derive a cutting plane that
is added to the description of the relaxation. We iterate this procedure until
no further cutting planes are found, or until a fixed number of iterations is
reached.

The Separation Problem 3.15 is implemented as a simple subgradient method.
We use an arbitrary o € bd(B?) as a starting point and compute value and
subgradient according to Section 4.2 and Corollary 3.19. We make use of a
diminishing step size and a stopping criteria based on iteration count and im-
provement of the objective function. We also apply several standard methods
to avoid numerical issues. Note that this part of the implementation is not
optimized in terms of computational efficiency, as the focus lies on the quality
of the resulting cutting planes. For instance, it could be beneficial to consider
a different starting point, like the optimal point of a prior iteration. Further-
more, other optimization methods for non-differentiable problems like bundle
methods could be applied (see Section 3.2.3).

If we only consider the progress of the objective value in the iterative linear
relaxation outlined above, we simply confirm that the cutting planes hold ad-
ditional information compared to the linear relaxation. However, our aim is to
show that the cutting planes also tighten the “standard” relaxation provided
by a state-of-the-art solver for MINLPs. We chose BARON 18.5.8 (Tawar-
malani and Sahinidis [2005]) for this comparison. BARON does not allow the
user to interfere with the solution process or to integrate custom optimization
techniques. Therefore, we add the computed cutting planes to the model de-
scription and let BARON solve the problem with and without these additional
constraints. We deactivate presolving routines and primal heuristics, and di-

rectly provide an optimal solution to the solver. This way, we are able to
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analyze the influence of our separation strategy on the quality of the convex

relaxation and the resulting lower bounds.

We further deactivate the bound tightening strategies provided by BARON,
as they are also not available for the iterative linear relaxations used to de-
rive the cutting planes. Otherwise, the cutting planes would be applied on a

different relaxed feasible set than the one they are constructed for.

Except for the points above, we choose the default options for BARON. All
computations are carried out on a 2.6 GHz Intel Xeon E5-2670 Processor with

a limit of 32 GB memory space for each run.

4.3.3 Results

We first present the results of the iterative linear relaxation for both networks.
Note that the iterative linear relaxation is in our setting only used to derive
the cutting planes. We are not interested in comparing the quality of the linear
relaxation with BARON, but in analyzing the influence of the generated cuts
on the quality of the lower bounds obtained by BARON as a stand-alone solver.
Therefore, we omit any further information on the solution process of the linear
relaxation. For all considered scenarios, Table 4.2 and 4.3 display the number
of created cuts and the computation time needed for the construction of all

cuts combined.

In a second step, we present the results obtained by BARON (see Table 4.4
and 4.5). In column 2 and 3, we display the optimal value of the respective
scenario and the lower bound at the root node obtained by BARON alone.
Their difference is denoted as the gap. For all further settings, we display the
respective lower bounds in terms of the percentage of this gap that was closed
by the solver. Column 4 gives the lower bound at the root node obtained by
BARON with the use of our cutting planes (w/cuts). Column 5 and 6 show
the lower bound after 10 minutes into the solving process. See column 5 for
the results of BARON alone and column 6 for BARON with the additional use

of our cutting planes.
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Scenario  # generated computation Scenario  # generated computation
cuts time [s] cuts time [s]
1 28 0.22 9 38 0.17
2 52 0.19 10 16 0.07
3 50 0.23 11 38 0.15
4 32 0.12 12 25 0.13
5 14 0.07 13 24 0.08
6 34 0.12 14 20 0.09
7 19 0.09 15 25 0.11
8 41 0.16 16 38 0.09

Table 4.2: Number of generated cutting planes and computation time needed
for Netl.

Scenario  # generated computation Scenario # generated computation
cuts time [s] cuts time [s]
1 29 0.14 11 18 0.06
2 24 0.07 12 22 0.06
3 13 0.05 13 35 0.07
4 29 0.12 14 52 0.22
5 13 0.05 15 30 0.09
6 19 0.03 16 35 0.14
7 18 0.07 17 37 0.14
8 32 0.18 18 23 0.1
9 19 0.07 19 31 0.1
10 36 0.15

Table 4.3: Number of generated cutting planes and computation time needed
for Net2.
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Note that several of our 30 scenarios are already solved in the root node.
The solution process of these scenarios does not offer any information in terms
of improvement of lower bounds. They are therefore excluded from the pre-

sentation.

We discuss the artificially designed network Net1 first. 14 of our 30 scenarios
are already solved in the root node and are not considered in the tables. The
results of the cutting plane generation are given in Table 4.2. Our recursive
linear relaxation generates on average 31 cutting planes for every scenario
(see columns 2 and 5). We see that the computational effort needed for the
construction of the cuts can be neglected. For every scenario, the computation
of all cuts together is done in less than a quarter of a second (see columns 3 and
6). The results obtained by BARON are given in Table 4.4. Our generated cuts
clearly improve the quality of the lower bounds at the root node for almost all
instances (see column 4). This improvement has a large range between 0 % and
84 %, and a mean value of 37 %. After 10 minutes into the solution process, the
lower bounds obtained with the cuts are still significantly better than the ones
obtained without them (see columns 5 and 6). The average values are 13 %
and 68 % respectively, which is a difference of 55 percentage points. Note that
100 % gap closed means that the respective scenario 3 is solved to optimality

thanks to the cutting planes.

Next, we discuss the library network Net2. 11 scenarios are already solved
in the root node. The results of cutting plane generation are given in Table 4.3.
The average number of generated cuts is 27 in this case (see columns 2 and 5)
and the construction of cuts is again performed in under a quarter of a second
(see columns 3 and 6). The results obtained by BARON are given in Table 4.5.
Our observations for Net2 are similar to the ones for Net1l. The improvement
of the lower bounds at the root node has a large range and a mean value of
54 % (see column 4). After 10 minutes into the solution process, the average
amount of gap closed is 17 % without the cuts and 69 % with cuts (see columns
5 and 6). Three scenarios (13, 16 and 19) are solved to optimality within 10

minutes thanks to the cutting planes.
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Scenario  Optimal Root Node After 10 min.
Value Lower Bound Gap closed Gap closed Gap closed
by BARON w/ cuts by BARON  w/ cuts

1 1051 46 59 % 7% 66 %
2 -2084 -2500 6 % 0% 64 %
3 1205 1000 0% 1% 100 %
4 -512 -2206 53 % 26 % 63 %
5 1965 -1394 0% 7% 8%

6 402 -2042 84 % 37 % 95 %
7 924 4 54 % 0% 64 %
8 -2043 -2500 27% 0% 81%
9 -512 -2167 46 % 32% 82 %
10 2281 -1190 0% 18 % 18 %
11 441 -2042 84 % 14 % 99 %
12 725 325 53 % 5% 60 %
13 -1406 -1600 0% 0% 57 %
14 -389 -1748 48 % 22% 68 %
15 2664 -132 0% 14% 66 %
16 290 -995 84 % 18% 98 %

Table 4.4: Improvement of the lower bound for Net1, comparing BARON alone
and BARON with the use of the cutting planes
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Scenario  Optimal Root Node After 10 min.
Value Lower Bound Gap closed Gap closed Gap closed
by BARON w/ cuts by BARON  w/ cuts
1 2139 1812 82% 6 % 84 %
2 -3837 -4398 52% 14 % 84 %
3 -53 -360 25% 0% 922 %
4 -53 -200 15% 0% 31%
5 460 0 25% 0% 83 %
6 531 -2000 98 % 70 % 99 %
7 1639 1635 0% 30 % 30 %
8 -3853 -4430 50 % 0% 70 %
9 -10 -210 0% 0% 0%
10 -66 -160 0% 0% 4%
11 -53 -150 0% 0% 0%
12 19 -2170 922 % 3% 96 %
13 -180 -300 100 % 60 % 100 %
14 2655 2072 85 % 53 % 97 %
15 -3573 -4414 73% 9% 89 %
16 21 -248 97 % 0% 100 %
17 -76 -172 59 % 0% 66 %
18 399 -31 73% 4% 87 %
19 938 -1490 95 % 79 % 100 %

Table 4.5: Improvement of the lower bound for Net2, comparing BARON alone
and BARON with the use of the cutting planes
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We conclude that our separation method for this special application can
be performed in a fraction of a second. This result is expected, as the value
and a subgradient of our Separation Problem 3.15 can be derived “mostly”
analytically (see Section 4.2). Additionally, the designed cuts are well suited
to improve the convex relaxation of the considered MINLP and the resulting
lower bound. Furthermore, the amount of gap closed after 10 minutes is higher
with the usage of the cuts for every single scenario. This indicates that the
growth of the model formulation caused by the additional constraints is not
significant compared to the provided benefits of the cuts. We assume that
the separation strategy is even more efficient if it is integrated into a MINLP

solver, as the cutting planes can be designed adaptively in this setting.

4.3.4 Results by Estimation

In the following, we present computational results that are derived by substi-
tuting the convex envelope in Separation Problem 3.15 by a convex underesti-
mator. We make use of the adjusted discretization as presented in Section 3.3
and apply the separation strategy relying on the Approximate Problem 3.30.
Similar to the section above, we compute cutting planes using an iterative
linear relaxation and add them to the model formulation in BARON. In order
to compare the results, we denote the setting that uses the exact Separation
Problem 3.15 by EXACT (see Sections 4.3.1 — 4.3.3), and the setting in this
section that uses the Approximate Problem 3.30 by APPROX.

Recall that the computation of the adjusted discretization relies on the
solution of a linear optimization problem, while the convex envelope can be
determined “mostly” analytically in our case. Furthermore, the quality of the
resulting cutting planes is in general better for the exact Separation Problem
than for the Approximate Problem. It is therefore expected that APPROX
needs more time to compute cutting planes and that the improvement of the
lower bounds is worse compared to EXACT. The benefit of the approximate
version on the other hand is its wide applicability. However, here we apply
both approaches to the same test instances and use the results of EXACT as
a reference point to evaluate the computational behavior of APPROX.

As a test set for APPROX, we consider the artificial network Netl and its

scenarios as described in the previous sections. In order to derive the adjusted
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discretization for the considered functions, we follow the approach given in
Section 3.3 and Example 3.40. A crucial decision in this approach is the
accuracy of the discretization and the resulting subdivision of the feasible set.
A smaller subdivision leads to more computational effort for the construction
of cuts, as the linear subproblems are larger. On the other hand, this leads to
tighter convex underestimators and therefore to “stronger” cutting planes and
to a greater improvement of the lower bounds. The computation time needed
for the generation of cutting planes and the resulting improvement of lower

bounds are therefore directly related.

In order to analyze this relation, we consider three different discretizations
with increasing accuracy. The corresponding settings are called APPROX1,
APPROX2 and APPROX3. For APPROX1, the feasible set is only divided into
approximately 10 sub-boxes. This setting is designed to allow for a generation
of cutting planes as fast as given by EXACT. For APPROXS3, the feasible set
is divided into approximately 10000 sub-boxes. This setting is designed to
generate tight estimations of the convex envelope, and to compute cutting
planes with a similar quality as given by EXACT. Finally, APPROX?2 is designed
as an intermediate setting between the two above. The feasible set is divided
into approximately 100 sub-boxes. We expect a trade-off between computation
time and quality of cutting planes. Note that the exact number of sub-boxes in
these settings may vary due to different interval sizes and the required property

of the sub-boxes discussed in Section 3.3.

See Table 4.6 for the results of the cutting plane generation. It displays the
number of generated cutting planes and the required computation time for all
cuts combined for EXACT, APPROX1, APPROX2 and APPROX3, respectively.
For APPROX1, we see that the overall computation time is in fact close to
the one for EXACT (on average 0.25s compared to 0.13s, see columns 3 and
5). The amount of cutting planes on the other hand is significantly lower (on
average 4 compared to 31, see columns 2 and 4). This can be explained, as the
cutting planes are in general worse and therefore there are fewer cuts able to
separate given points. However, we derive that the generation of every single
cutting plane still requires significantly more computation time, even for the
considered small number of sub-boxes. As expected, the number of generated

cutting planes and the computation time are increasing for APPROX2 and
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APPROX3. The average numbers are 24 and 28 (see columns 6 and 8), and
the average times are 2s and 84s (see columns 7 and 9), respectively. Note in
particular, that the computation time for APPROX3 is unreasonable high for

the size of our test instances.

The lower bound obtained by BARON alone is compared to the lower bounds
obtained by BARON using the cutting planes generated in the different settings.
The relative improvement is again evaluated at the root node and after 10
minutes into the solution process. The results for APPROX (compared to
EXACT) are shown in Table 4.7 for the root node and in Table 4.8 for 10
minutes into the solution process. In both cases, we display the percentage
of gap closed by additionally using the cutting planes of EXACT, APPROX1,
APPROX2 and APPROX3 respectively. For the meaning of “Gap closed” and
the values of the optimal solution and the lower bound obtained by BARON
alone, we refer to Section 4.3.3 and Table 4.4.

We consider the lower bounds at the root node first (see Table 4.7). We
see that APPROX1 is only able to improve the lower bounds of three instances
and leads to an average improvement of 6 % (see column 3). This is expected
as a result of the small number of sub-boxes used for the approximation. AP-
PROX?2 already improves the lower bound of 7 instances and leads to an av-
erage improvement of 20 % (see column 4). APPROXS3 leads to similar results
as EXACT. They both improve the lower bounds of the same instances and
the average improvement is given by 36 % and 37 % respectively (see columns
2 and 5).

We derive similar observations for the lower bounds after 10 minutes into the
solution process (see Table 4.8). APPROX1 leads to an average improvement
of the lower bound of 24 % (see column 4), which is still better than the average
improvement of 13 % given by BARON alone (see column 2). APPROX2 and
APPROXS lead to an average improvement of 53 % and 67 % respectively. The
latter value is again very close to the average improvement of 68 % obtained
by EXACT. Two details are worth to mention. First of all, the improvement
of scenario 9 is worse for APPROX1 than for BARON alone. Second, the
improvement of scenario 3 is worse for APPROX2 than for APPROX1 and for
BARON alone. We assume that this is due to the larger model formulation

and differences in the solution behavior.
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EXACT APPROX1 APPROX?2 APPROX3
Scn.  #cuts timels| #cuts timels] #cuts time[s|] #cuts timels]
1 28 0.22 3 0.25 15 1.24 23 76.23
2 52 0.19 4 0.18 41 3.48 36 95.81
3 50 0.23 ) 0.38 41 2.56 58 199.08
4 32 0.12 2 0.19 21 1.3 27 60.51
5 14 0.07 1 0.13 14 1.85 17 78.39
6 34 0.12 16 0.76 47 3.44 38 125.97
7 19 0.09 3 0.22 22 1.86 17 51.64
8 41 0.16 6 0.36 47 2.79 36 77.33
9 38 0.17 3 0.24 17 1.52 28 48.41
10 16 0.07 6 0.23 14 1.94 18 89.47
11 38 0.15 2 0.13 34 3.88 41 103.04
12 25 0.13 0 0.05 14 1.65 28 52.82
13 24 0.08 3 0.25 19 2.01 20 73.09
14 20 0.09 1 0.14 11 1.39 14 29.3
15 25 0.11 0 0.05 10 1.09 15 41.56
16 38 0.09 7 0.36 24 3.16 39 142.38

Table 4.6: Number of generated cutting planes and computation time needed

for APPROX on Netl (compared to EXACT).
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Scenario Gap closed at root node by
EXACT APPROX! APPROX2 APPROXS3

1 59 % 0% 31% 54 %
2 6 % 0% 0% 5%
3 0% 0% 0% 0%
4 53 % 0% 21% 50 %
5 0% 0% 0% 0%
6 84 % 44 % 7% 83 %
7 54 % 0% 20 % 51%
8 27% 0% 0% 21%
9 46 % 0% 28 % 44%
10 0% 0% 0% 0%
11 84 % 34 % 73 % 83 %
12 53 % 0% 0% 51 %
13 0% 0% 0% 0%
14 48 % 0% 0% 44 %
15 0% 0% 0% 0%
16 84 % 17% 70 % 83 %

Table 4.7: Improvement of the lower bound at the root node for APPROX on
Netl (compared to EXACT).
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Scenario Gap closed after 10 min. by

BARON EXACT APPROX! APPROX2 APPROXS

1 7% 66 % 14 % 53 % 79 %
2 0% 64 % 0% 48 % 56 %
3 1% 100 % 25% 0% 65 %
4 26 % 63 % 26 % 54 % 58 %
5 7% 8% 7% 36 % 37%
6 37 % 95 % 76 % 92 % 95 %
7 0% 64 % 0% 44 % 69 %
8 0% 81 % 8% 88 % 90 %
9 32% 82% 4% 69 % 82%
10 18% 18% 18% 18% 18%
11 14% 99 % 67 % 95 % 98 %
12 5% 60 % 7% 48 % 65 %
13 0% 57 % 11% 49 % 40 %
14 22% 68 % 22% 51 % 67 %
15 14% 66 % 14 % 14 % 63 %
16 18% 98 % 79 % 91 % 98 %

Table 4.8: Improvement of the lower bound after 10 minutes for APPROX on
Netl (compared to EXACT and BARON alone).



99

We conclude that the separation strategy that relies on the Approximate
Problem 3.30 in general requires more computational effort and leads to smaller
improvements of the lower bounds in our setting. For the adjusted discretiza-
tion, our study supports the obvious assumption that effort and improvement
behave contrarily to each other and can be regulated by the accuracy of the
discretization. In both directions, we were able to nearly reach the quality of
the exact version of the separation method. However, the reason for us to con-
sider the approximate version of the separation method in the first place was
its wide applicability. It could be beneficial to analyze the interaction of the
approximate version with further applications. We assume this to hold based
on the following arguments. First of all, estimations of the convex envelope can
be designed in a very flexible way with respect to effort and quality as pointed
out above. Second, specific applications may allow for specific estimations that
may be easier to compute and more accurate. At last, we want to recall that
our implementation is not optimized with respect to the computation time of
the separation method. All arguments combined, we see potential for future

work in this context.
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Chapter 5

Monotonic Reformulation and
Bound Tightening for Distillation
Column Models

In this chapter, we consider another application for MINLPs and present prob-
lem specific relaxation refinement strategies for the corresponding feasible set.
To be more precise, we develop a bound tightening strategy for problems aris-
ing from the modeling of distillation columns.

Distillation columns are an important tool in chemical process design and
are used to separate a mixture into its component parts. During the process,
the column is filled with a chemical mixture and heated up. As a result,
components with high volatility concentrate in the vapor phase at the top part
of the column, while components with low volatility concentrate in the liquid
phase at the bottom part. In this work we focus on ideal multi-component
distillation columns. The term ideal refers to the simplified assumptions on
the thermodynamic properties of the mixture, while multi-component indicates
that the considered mixtures may consist of more than three components. For
a general introduction to the topic of thermal separation processes, we refer to
[Mersmann et al., 2011].

As distillation columns often dominate the chemical production cost, we are
interested in finding a cost optimal design of distillation columns for specific
separation tasks. These problems can be formulated as MINLPs (see Prob-

lem 2.1). Integer variables arise from certain design decisions and nonlineari-
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ties are used to model the cost function and physical properties. Despite recent
progress in deterministic global optimization (see Chapter 2), these problems
are often very difficult to solve due to high computational effort caused by the
complexity of the nonlinearities and a large number of variables and equations.
Deterministic global optimization of distillation processes is therefore a very

challenging task.

In the literature, rigorous deterministic global optimization of distillation
processes is not well-covered. Instead, restrictive model assumptions are used
to get so-called short-cut models that are easier to solve. In [Nallasivam et al.,
2016] for example, optimal sequencing of multi-component distillation columns
is calculated using short-cut models at minimum reflux, i.e., smallest feasible

internal vapor and liquid flows.

In this work, we drop these simplifying assumptions and use a so called
tray-by-tray distillation column model (e.g., see Ballerstein et al. [2015]; Kunde
et al. [2016]). The column is discretized into several trays and the behavior
of the mixture on every tray and the interaction between the trays is mod-
eled explicitly. This modeling strategy allows for more flexibility compared to
short-cut models but leads to an increased computational effort. The effort
can be significantly reduced by applying problem-specific relaxation refine-
ment strategies as demonstrated for ideal two-component distillation columns
in |Ballerstein et al., 2015]. Therein, it has been shown that the computational
effort could be reduced by orders of magnitude using a specific bound tight-
ening strategy. It is based on monotonicity of molar fractions, i.e., fractions
of mole numbers of individual components relative to the total mole number
of all components, throughout the column. The application was demonstrated
for a hybrid process combining distillation and crystallization units for the
separation of two isomers that are difficult to separate by distillation alone.
However, an extension to multi-component mixtures is non-trivial, because
molar fractions associated with certain components do typically not show the

required monotonic behavior in this case.

As a follow-up, a reformulation of a tray-by-tray distillation column model
is presented here to overcome this problem. The reformulation is obtained by
aggregation of single components, resulting in a linear transformation of the

variables used for molar fractions. For mixtures with ideal liquid and vapor
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behavior, we prove that the transformed variables show the desired property
of monotonicity. This allows us to extend the bound tightening strategy from
the two-component case to the multi-component setting. It is based on stan-
dard interval arithmetic (e.g., see Hansen et al. [1991]; Ratschek and Rokne
[1995]), but uses insight on the problem specific constraint structure to be
more effective.

The remainder of the chapter is structured as follows. In Section 5.1, we
present the ideal multi-component distillation column model we are working
with. In Section 5.2, we derive an alternative model formulation by introducing
suitable aggregated components. In Section 5.3, we prove that the transformed
variables associated with each newly introduced aggregated component fulfill
the desired monotonicity property. This is exploited in Section 5.4 in order to
extend the bound tightening strategy from the two-component case (Baller-
stein et al. [2015]) to the general ideal multi-component case. In Section 5.5,
we solve several numerical test instances to global optimality and experimen-
tally analyze the influence of the developed techniques on the running time of
MINLP solvers.

This chapter is the result of joint work with Achim Kienle, Christian Kunde
and Dennis Michaels. The first two sections are mainly based on the litera-
ture and previous work, while the author’s contribution is presented in Sec-

tions 5.3 — 5.5. The respective results are already published in [Mertens et al.,
2018].

5.1 Distillation Column Model

This section presents the considered model. We focus on a tray-by-tray model
of a distillation column in steady state, i.e., explicit modeling of the single trays
with no dependency on time. We assume that the partial vapor pressure of each
component is equal to the vapor pressure of the pure component multiplied by
its molar fraction and that the relative volatility of all components is constant
(ideal liquid and vapor phase). Final assumptions are total condenser and total
reboiler (see below), single liquid feed flow at boiling temperature and constant
molar overflow, i.e., constant value of the liquid/vapor flow in the top and the

bottom half of the column respectively. Notation and model description are
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Parameters:

u  Upper bound on the number of trays (length)

«; Constant relative volatility of component ¢

o Position of the split between less and more volatile components

m  Purity requirement on the components

F  Feed molar flow entering the column, given in mols™?

Variables:

V' Vapor flow streaming upwards through the column, given in mols™!

D Distillate molar flow withdrawn at the condenser, given in mols™!

B Bottom molar flow withdrawn at the reboiler, given in mols™!

vy Ratio of downward flow to upward flow in the rectifying section

vs Ratio of upward flow to downward flow in the stripping section

[ Number of trays in the part of the column specified by superscript

[ Binary coupling variable determining the position of the feed tray

z;/y; Liquid/Vapor molar fraction of component 4
X1 /Y Liquid/Vapor molar fraction of the aggregated component k
Indices:
in Feed flow
dist Distillate flow
bot Bottom flow
feed Feed tray
feed—1 Tray above the feed tray
feed+1 Tray below the feed tray
col  Whole column
rect Rectifying section
[, Tray number in rectifying section
strip  Stripping section

Tray number in stripping section

Table 5.1: List of parameters, variables and indices used in our model.
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basically taken from [Ballerstein et al., 2015] and [Kunde et al., 2016], and

adapted if necessary.

We are given a mixture consisting of n single components labeled by 1, ..., n.
The order of the components is defined with respect to the boiling point. Here,
component 1 is the component with the lowest boiling point and component
n refers to the component with the highest boiling point. The composition of
a mixture is given in terms of molar fractions. A molar fraction denotes the
mole numbers of an individual component relative to the total mole number
of all components. Thus, the sum of molar fractions over all components is
equal to one at every position of the column, which is known as the summation

conditions.

—— . D
1 Xidlst
2 _2
| | 3
feed-1 rect F
feed | V -
feed+1 (strip Xi
o _
3 3
2
1 B

\_/ X ibOt

Figure 5.1: A fixed design of a distillation column. Numbers of trays in the
rectifying and stripping sections are {*** and [P, The total number of trays

in the column is given by [®°! = [rect 4 [strip 1

Table 5.1 displays the name and meaning of all parameters, variables and
indices used in this chapter. A sketch of a distillation column is shown in
Figure 5.1. The mixture enters the column at the feed tray with molar feed flow

F and initial composition z!", i = 1,...,n. At the top tray (condenser), the

7 7
dist
7

and at the bottom tray (reboiler), the molar flow B leaves the column with

distillate molar flow D leaves the column with composition z¢*, 1 =1,...,n,

composition 2?°% i = 1,...,n. V denotes the vapor flow that streams upwards
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through the column. The overall mass balance equations
Fag™ = Da®t 4 Bgbot i=1,...,n (5.1)

ensure that the amount of component ¢ entering the column coincides with the
overall amount of component ¢ leaving the column.

Rectifying section (above the feed tray) and stripping section (below the
feed tray) can contain several trays. Trays of the rectifying section are num-
bered from the top to the bottom by I, = 1,...,[™ and trays in the stripping
section are numbered from the bottom to the top by Iy = 1,...,5"P Vari-
ables used for molar fractions of component 7 in liquid and in vapor phases
are denoted by z; and y;, respectively. We introduce superscripts “feed”,
“feed—17, “feed+1", “rect” and “strip” in order to specify the associated tray of
a variable. The script “feed—1” denotes the tray above the feed tray and the
script “feed+1” denotes the tray below the feed tray. Trays from the rectify-
ing and stripping sections are additionally equipped with their associated tray
number as subscript. Mass balances comprising the first tray and a number of
consecutive trays are established for the stripping and the rectifying section as
well as a mass balance comprising the feed tray. The mass transfer in liquid
and vapor phase through the column is then described by the component mass

balance equations

Y = v’ + (1w g
veyled pafed = poy T p T - (- ) 2l (5.2)

S = P () ety
fori=1,...,n, 6, =1,..., v and [y = 1,...,u""P, where u™* and uS"P

denote upper bounds imposed on [** and %P respectively. We remark that
in equations (5.2) the subscripts indicating trays formally range to u™* + 1
and v 4 1. This way, two artificial trays are introduced to the model.
These two trays are later used to model the coupling of the feed tray with
the rectifying and the stripping sections (see equations (5.6)). The auxiliary

variables v, vs € [0, 1] defined as

- D
I/r:v— and v, = v

V V+B

describe the ratio of upward and downward molar flows in the rectifying and

(5.3)

stripping section.
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The separation behavior of component ¢ is given by its volatility. Compo-
nents with higher volatility have a lower boiling point and accumulate in the
vapor phase, while components with lower volatility have a higher boiling point
and accumulate in the liquid phase. We assume constant relative volatilities of
the components, expressed by parameters a; > 0, for ¢ = 1,...,n. Due to our
assumption on the order of the components, we have that a; > as > --- > «a,,
holds. At all trays, the interactions of the molar fractions in the vapor phase

and in the liquid phase are given by the phase equilibrium equations

. prect feed ; s‘trip
yrect Qi T Jr yfeed Qi Ty ystrlp o xz ls (5 4)
Bl T n rect ’ i n feed ’ 1,ls n strip
Z] 1 C(]:C]lr Z =1 Oéjx Z] 1 ajx]ls

fori=1,....n,,=1,..., v+ 1land i =1,...,u"P 4+ 1.

The assumption of a total condenser and a total reboiler are modeled by

dlst rect bot strip

=y and ;% =2, 1=1,...,n. (5.5)

The total number [°°! of trays used in a distillation column is given by the
number of trays used in the rectifying section, the number of trays used in the
stripping section, and the feed tray. To specify {° in our model, the following

coupling conditions are imposed.

rcct rcct
feed—1 __ § rect rect feed E rect rect .
T 6 zlr ﬁ zl—f—lv Z—l,...,?’L,
=1 =1
L L (5.6a)
strlp strlp
feed+1 __ 2 : strip strlp feed 2 : strip strlp .
yl /8 le I 6 le+1, Z—l,...,n’
ls=1 ls=1
rcct strlp
col __ rect strip
=T+ Y B+,
=1 ls=1
urect
rect _ rect rect
> Bt =1, e {0,1}, 1., ueet, (5.6b)

dogrr =1, g e{01}, L=1,...,u""

Note that the binary variables 3/°* and Bbmp attain value one if and only if
tray [, of the rectifying section and tray [ of the stripping section are chosen

to be the trays above and below the feed tray in the column.
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The purpose of the distillation column is to separate the more volatile com-
ponents from the less volatile components under given purity constraints. Let
the predefined split parameter o € {1,...,n — 1} be the index such that the
components 1 to ¢ belong to the more volatile part and components o + 1 to
n belong to the less volatile part of the mixture. Let 73t 7Pt € [0,1] further
denote the purity requirements imposed on the more volatile components at
the condenser and on the less volatile components at the reboiler. Then the

purity constraints are given as

ag n
Zx?ist > 71_dist and Z Ilioot > 7_(_bot' (57)
i=1 i=o+1

The objective function of our column model reflects the total annualized
cost of the distillation process that needs to be minimized. Here, we make use

of the following cost function that is taken from previous work (Kunde et al.

[2016]).

cost =MV 4+ Xl 4+ A3V 4+ AsB)I™ 55)
+ AV + AsB)T (M + A)” + Ag(MV + AsB)BI,

with coefficients as specified in Table 5.2. This objective function was originally
developed for the distillation of dodecanal and 2-methylundecanal. However,
its structure is typical for economical cost estimation and therefore suitable

for the computational studies in our work.

Coefficient )\1 )\2 >\3 )\4 /\5 >\6

Value 17544 173.6 2009.7 0.2378 0.0221 2364.5

Coefficient A7 g Ag %1 Yo 3

Value 0.2 4 -171.4  0.533 0.5 0.82

Table 5.2: Coeflicients for the cost function

The resulting mixed-integer nonlinear optimization problem is given by

Problem 5.1.
min (5.8)
s.t. (5.1) — (5.7).
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We also assume reasonable, real valued bounds on all used variables, that
usually arise from the considered application. They are omitted here for a clean
presentation but are given for our computational study in Section 5.5. The only
discrete variables are 5 for I, = 1,...,u"" and Blsstrip for Iy = 1,..., ustP,
which are binary. They implicitly define the (discrete) length of the distillation

column.

5.2 Model Reformulation by Aggregating Com-

ponents

In the following, we present a reformulation of the given model from Sec-
tion 5.1. This reformulation is needed to transfer a desired property from
the two-component to the multi-component case. For a two-component mix-
ture, molar fractions associated with a single component behave monotonically
through the distillation column. Based on this property, a problem-specific
bound tightening strategy for two-component distillation column design prob-
lems has been developed in previous work (Ballerstein et al. [2015]).

To formalize the notion of monotonicity, we consider the distillation col-
umn tray by tray from the bottom to the top. We say that a component ¢
shows monotonic behavior through the distillation column when the sequence
of respective molar fractions in the liquid phase is either non-decreasing or
non-increasing, i.e., either

w? < Saful, et <affle < <oy
or

strip strip feed rect rect
x@l Z Tt Z J"Z"lstrip 2371 Z l'iVlrect Z tet Z $271

holds. A sequence of values associated with liquid phase (or vapor phase)
molar fractions of a single component, considered from the bottom to the top,
is also referred to as a molar fraction profile.

However, the molar fractions of a single component do possibly not behave
monotonically in the multi-component setting. Such a typical situation is il-
lustrated in Figure 5.2 (a) for component 2 (blue-colored dashed curve) and

component 3 (yellow-colored dotted curve). This fact makes it hard to gener-
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alize the bound tightening strategy from the two-component case (Ballerstein

et al. [2015]) to the multi-component case directly.

—_— —_—
- =X, e
X, X, + X, + Xy
-, =Xy Xy + Xy + X
(a) Molar fraction profiles of original (b) Molar fraction profiles of aggregated
variables variables

Figure 5.2: Molar fraction profiles of original and aggregated variables in liquid

phase for a four component mixture.

We overcome this problem by aggregating, for £ = 1,...,n, the first k
components. This is achieved by summing up the corresponding variables
used for molar fractions at every position of the distillation column.

The driving force for separating the components of a mixture using distil-
lation is a difference in the volatilities of the single components. For compo-
nents sorted by decreasing volatility, any group of the first £ components has
an effective volatility larger than that of the complementary group of n — k
components. Therefore, the same direction of the driving force and thus mono-
tonicity of the aggregated molar fractions is expected over the whole column.
Although it is expected, there is no proof of this property in the literature to
the best of the author’s knowledge.

To be more precise, let z; and y; (for i = 1,...,n) be the variables used
for molar fractions of component i in the liquid and in the vapor phase at
an arbitrary position. The associated sub- and superscripts indicating the
specific position are omitted for a clean presentation. We label the aggregated
components by k = 1,...,n and introduce aggregated concentration variables
X and Y} for the liquid and vapor phases. The original variables used for

molar fractions and the new aggregated concentration variables are linearly
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linked to each other by the bijective relations

k k
X’“:Z% and Yk:Zyi, k=1,...,n. (5.9)
i=1

i=1
We also introduce an (aggregated) component 0 for which the liquid and va-

por phase concentrations X, and Y, are zero at all positions. Hence, we can

formulate the inverses to the relations (5.9) by
xi:Xi_Xifla and yi:)/;_}/ifh k= 1,...,n. (510)

By definition and due to the summation conditions (> @; = > 0" y; = 1),

we have
0=Xo<X;<--- <X, =1 and 0=Y,<YV;<---<Y,=1.(5.11)

Note that the equations (5.3), (5.6b) and the objective function (5.8) do
not depend on the molar fractions. Hence, they remain unchanged in our ag-
gregated model formulation. Observe further that the overall mass balance
equations (5.1), the component mass balance equations (5.2), the coupling
conditions (5.6a), total condenser and total reboiler conditions (5.5) and the
purity constraints (5.7) are linear in x and y while using the same coefficients
for every ¢ = 1,...,n respectively. Therefore, we obtain the corresponding
constraints for each aggregated component k& by summing up the correspond-
ing conditions associated with the first & single components. Only the phase
equilibrium equations (5.4) are not linear in the original concentration vari-
ables and need to be adapted by applying the inverse relations (5.10). The

aggregated model formulation reads as

e The aggregated overall mass balance equations:

FX@®=DX® 4 BXP*, k=1,...,n (5.12)

e The aggregated component mass balance equations:

rect _ rect rect
Vi = e X+ (1 =) VIS,
Vg kaeed + X]E,eed = Vs kaeedJrl + Uy Vg X]ieedil + (]. — Uy VS) X]ien, (513)

strip o strip i strip
Xpit1 = VY, +(1 ’/s)Xk,l

fork=1,...,n, L=1,... 0 and I, = 1,... u"P,
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e The auxiliary variables constraints:

V—-D V
= —— d vy=——. 14
v v and vy = (5.14)

e The aggregated phase equilibrium equations:

k
rect 2= G (GR-X00 )
klx - Z] 10 (Xrect Xrect ) )
k fe f
Yfeed . Z] L0y (X eed -X ccd) 5 15
k - ZJ L (Xfeed Xfeed) ( . )
k t t
Ystrip o Zj:l Qj (X]S,zrslp X]S rl1pzs)
- t t
kds Yoy (X]S zrslp X]S rllpls)

fork=1,...,n, L, =1,..., 0" +1land Iy =1,...,u"P + 1.
e The aggregated constraints for the total condenser/reboiler:

XBt =yt and  Xp° = X3P, k=1,...,n. (5.16)

e The aggregated coupling conditions:

rect

Xlieed—l E :ﬁrect rect k= 1’ Son,
=1

rcct

feed E rect yrect
;XT — /3 ;kaJr4‘17 Aj — 1, e ,7],

=1

i (5.17a)
feed+1 __ stripy rstrip o
yjeedtl = N gty g =1, n,
ls=1
strip
feed __ strip y-strip _
X0 = g B Xiprrs E=1,...m,
ls=1
rect strlp
lcol E :ﬁlrectl 4 2 :6str1pl + 1)
=1 ls=1
rcct
E ﬁrect o , rect c {O 1} — 1’ o ’urect’ (517b>
=1
trip

g 1 B 01}, L=1....u

ls=1
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e The aggregated purity constraints:

Xdist > pdistapq (1 — XPot) > bt (5.18)

e The objective function:

cost = MV 4+ Xl + Ag(M\V + A\ B
+ A AV 4+ AsB)™ (A1 + Ag)™ (5.19)
+ MMV + AsB)BI

with coefficients as specified in Table 5.2.

The resulting reformulated mixed-integer nonlinear optimization problem is

given by

Problem 5.2.
min (5.19)

st (5.12) — (5.18).

It turns out, that the concentration variables of each aggregated compo-
nent show the desired monotonic behavior, i.e., the overall molar fraction of
all components above each possible split position o € {1,...,n — 1} change
monotonically throughout the distillation column. This is illustrated in Fig-

ure 5.2 (b), and will be proven in the next section.

5.3 Monotonicity of the Aggregated Components

In this section we prove that for each aggregated component, the correspond-
ing concentration variables introduced in Section 5.2 behave monotonically
through the distillation column. We refer to a sequence of liquid or vapor
phase concentration values of an aggregated component as a (concentration)
profile.

In what follows, we investigate the restrictions of each such profile to the
stripping section and to the rectifying section separately. Section 5.3.1 deals
with the stripping section. We show that each profile is non-decreasing when
considered from the bottom to the top. For the rectifying section discussed in
Section 5.3.2, we first apply a suitable transformation. That transformation

traces the profiles restricted to the rectifying section back to the case of profiles
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restricted to the stripping section. We then conclude that each profile also

behaves non-decreasingly in the rectifying section from bottom to the top.

As the coupling conditions (5.17) ensure that, for each profile, the parts
restricted to the stripping section and restricted to the rectifying section must
coincide at the feed tray, we finally obtain that each profile of an aggregated

component behaves monotonically through the whole distillation column.

5.3.1 Monotonicity in the Stripping Section

We omit superscript “strip” and denote by X = (X )k=0,.n 1o=1,. u+1 and
Y = (Yii)k=0..m =1, u+1 the matrices consisting of all liquid and vapor
phase concentration variables w.r.t. aggregated components (including the ar-

tificial component zero) and restricted to the stripping section.

With this notation and combining the phase equilibrium equations (5.15)
with the component mass balance equations (5.13), we obtain the following
subsystem that is satisfied by every feasible solution of our distillation column

model from Section 5.2.

ki (X —Xi
Xewn = wgE iy + (=W)X, b=0..n,
s=1,...,u,
0< A)(l,lS SXQ,lS S"'SXn,ls7 lszla"'7u+17 (520)
XU,ls: 07 Xn,ls:17 ls:1,...,u—{—1,

X ¢ RO+Dx(u+h) gy ¢ 0,1].

For our analysis, the following remarks are worth to mention.

e In system (5.20), we impose that all variables X, , k > 1, are strictly
positive. This assumption can be made without loss of generality. In
fact, when Xj; = 0 holds for some k£ > 1 and some [, the recursive
formula already implies that the concentration of component k£ is zero at
every position in the stripping section, and, hence, in the entire column.

In that case we can exclude component k£ from our considerations.
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e To keep the notation simple, we define the following expressions to denote

the denominators appearing in system (5.20).
NL(X) = (X — Xjoan), k=1 u+l
j=1

Note that N (X) > 0 holds for all X such that there is a v € [0, 1] with
(X, vs) being feasible to system (5.20).

e Finally, we observe the identities
k k—
S0 (X — Xjoa) = Yoot Xy — agn) + X

fork=1,...,nandly =1,...,u+1, that we will frequently use through-

out the proofs.

For a solution (X, ;) feasible to system (5.20), we will next show that
for each aggregated component k = 1,...,n, the sequence {X, kzg}}tll is non-
decreasing. More precisely, we will prove a more general statement implying

the desired property.

Theorem 5.3. Let X € RO+ gnd . € [0,1] be feasible to system (5.20)
for some a € R™ with ay > ap > -+ > «, > 0. Then,

X1 — Xk, S X141 — Xgt1,1, (5.21)
Xk, o Xkr1,

holds fork=1,...,n—1 and forly,=1,...,u.

Proof. The statement is proven by induction on [g. We first consider the case

with [ = 1. For an arbitrary k € {1,...,n — 1}, system (5.20) yields

Zl?:l O‘j(xj 1 Xj—l 1)
S J 7 ’ - 1
Xk,2 Xk:,l VXk:,l ( N1(Y) Yk,l and

Zktll Qj(Xj 1 — Xjfl 1)
% % —uX j= ’ — —1],
k41,2 k41,1 = VsAk+1,1 ( N (X) Xig1,1

or equivalently

k
X2 — X1 _ Y Ej:l a;(Xj1 — Xj-11) o
Xk Ny (X) Xk >

k+1
Xpsip = Xppra v (255 0(Xa - X))\ )
) N

Xit1,1 N(X Xit11
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Thus, in order to prove our statement for [; = 1, we show that

k k
Zj:l (X1 — Xj11) N Zj;l a;j (X1 — Xj-11)
X1 - Xpt1,1 ‘

Observing that X411 > Xj 1 and 2521 a;(Xj1—X,-11) —ag1 Xk 1 > 0 hold,
we obtain

S (X = Xjon) Y 0(Xa — Xjo1a) — argr X

= + Qg1
Xkt11 Xkt1,1
k
> i1 (X1 — Xj11) — aga1 X
< k11
Xk
k
21 (X — Xj1)
- )
Xk

i.e., for [y = 1, the statement holds for k=1,...,n — 1.
Now assume that, for some [, > 1, the statement is true for each
k=1,...,n—1. We will show that for [, + 1 the statement is then true
Xk 1g

for each K = 1,...,n — 1 as well. For this, we define m;, := X for each

k=1,...,n. By our induction hypothesis, we have that my > m;, holds for
k=1,....,n—1.
Next, the values of the terms Xy ; 1 — Xp and Xjppq 41 — Xpg1y, are

compared. Using the recursive formula and the definition of my, we obtain for

Xk,ls-l-l — Xk,ls that

) <Zf_1 (X, — Xjoig) Sy (X1 — Xj—l,ls—1))

N, (X) - Nj,—1(X)
& X Xjia (5.22)
) > (N = X)) 2= % (m_gl ~ )
’ Ni (X) Ni,—1(X)

holds. Moreover, we have

k k
Zj:l o (X, — Xjo14,) < Z o (Xj,ls B le,ls)

mi m; m;—

j=1

k
> =1 (X, — X1,

myg

By the intermediate value theorem, there must exist some m € [my, m;] with

k
X X._ (X — X
ZO‘J< gils A l,ls> _ Z]_1 ]( Jil J 1,l). (5'23>

m; m;i—

m
Jj=1
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Combining formula (5.22) with formula (5.23) gives rise to

Xigo+1 — Xk,

k
1 1
.S (X — X, _
- ;“J( ) (M(X) mst_1<X>) (5.24)
¥ >y (X, — Xj) ( 1 1 )
= Vs — = .
ls Xk Lo N (X)) mN1(X)

Again, using the recursive formula and the definition of m,, the second term

can be rewritten as

X111 — Xkt
) (Zfl o (X, — Xjo14,) + argn ( Xy, — Xiy,)
S

N, (X)

k Xl Xj—1,0s Xgt1,0g X1

N 1(X)

k: X S X7 2 US
<Z§_1 (X, = X)) 250G — S )>
S

N (X) Ni,—1(X)

Xkt1,1s Kyl )

+ v, <<Oék+1(Xk+1,ls—Xk,zs) Vet G ~ "y )

N (X) Ni-1(X)

Using formula (5.23) and the fact that mg; < my < m holds, we can further

estimate

Xt go1 — Xpt1,

k
1 1
= Uy ; X _X‘* N
v, ZO@( Jils j11) <Nl (X) mN, 1(X))
J=1 S S

o (Xk+1,ls i @)
e (g1 (X0 — Xeo) N my,
’ N, (X) Ni—1(X)

k
1 1
< (X — X, _
- ;%( 4 = i1 (NzS(X) Tthsl<X))

i ((akJrl(XkJrl,ls — X)) o (X, — Xk,ls)>
) N, (X) MmN, 1 (X)

=y %o«(){- - Xo1) c— 1
— Vs : J Jsls J=Lis Nl (X) le —1(X> .
J=1 ) S
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Finally, we exploit that X, > X} and that

k
> (X = Xjo11,) — rpa Xeg, >0

J=1

holds. This yields

X141 — Xkt1,0,

k
< x > i1 (X — Xjm1,) — s Xy,
S Xg+11Vs e + gy
k1,1

1 1
(le(X) lesl(X))
k
C (X — X i X (5.25)
S Xk+1,lsys (Z]—l ]( Jils X] LIS) k+1MEk g +ak+1>
k.l

. (NliX) - leil(X)>

— Xeww > (X — Xjoa) ( 1 1 )
TR X N (X) mN,(X)/)

From formulas (5.24) and (5.25), we can deduce that

Xigor1 — Xpy, S X1 1o+1 — Xt
X - Xit1.,

holds. [l

We are now able to prove that the concentration profiles behave non-

decreasing through the stripping section.

Corollary 5.4. Let (X,v,) be a feasible solution to system (5.20) for some
a € R" with oy > ag > -+ > «a, > 0. Let Y be the matrix consisting
of all vapor phase concentration variables Yy, that are implied by X through
the phase equilibrium equations (5.15). Then, for each aggregated component

_ u+1 u+1 .
k=1,...,n, both sequences { X, };'Z; and {Yi,};'Z; are non-decreasing.

Proof. By definition, we have that X,,;, =1 holds for [y =1,...,u + 1. Thus,
the statement holds for k = n. For each fixed [ € {1,...,u}, we obtain from
Theorem 5.3 that

Xigo+1 — X1 S Xog+1 — Xay, S s Xogor1 — Xn .

Xl,ls X2,ls Xnyls
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holds. By assumption X;; > 0, for k = 1,...,nand [y = 1,...,u+ 1, it
follows that X ;. 11 — X, > 0, for all k =1,...,n. This proves the statement

for sequence { X}t

Using the equations (5.13), and Xy 4o > Xy 41, for all £ and [s, we can

further derive
VsYigr1 + (1 —vg) X1 2> Y + (1 — ) Xin & vs(Yigor1 — Yis) >0

forall k =1,...,nand [y = 1,...,u""P. This implies that Yit+1 — Y, =0
holds for v, > 0. Moreover, if vs = 0, then we can deduce from the equa-
tions (5.13) that X, = X0 = -+ = Xy 441 holds. By phase equilibrium

equations (5.15), it follows Y1 = Y0 =+ = Y 411. O

5.3.2 Monotonicity in the Rectifying Section

Next, we prove monotonicity of the profiles restricted to the rectifying section.
We omit superscript “rect” and denote the matrices consisting of all liquid
and vapor phase concentration variables of aggregated components (includ-
ing the artificial component zero) and restricted to the rectifying section by
X = (Xk s k=0, tr=1,..ut1 A Y := (Yiy Jeeo, . lim1, ut1-

Recall, that in our model description the trays in the rectifying section are
labeled from top to bottom. For this labeling, we show that the sequences
{ Xk, Zill and {Y}, ;‘;11 are non-increasing for every k = 1,...,n. Therefore,

the profiles considered from the bottom to the top are non-decreasing.

In order to derive a system for the rectifying section that corresponds to
system (5.20) of the stripping section, we need the well-known inverses of the
phase equilibrium equations (5.15). For each aggregated component k& > 1 and

for each tray [;, they are given as

ko1

o (Y, =Y.
Xy =2z W m Vo) -y (s
Zj:l Q; Y = Yj-14)

Using (5.26), we obtain from the component mass balance equations (5.13) the



120

following subsystem

k —1
g=10y (Y —Yj—11,)

Yijr1 = U T Y, ) +(1-v)Y, k=0,...,n,
L,=1,...,u,
0< Yy, <Yo <--- <Yy, L=1,... u+t1, (527)
}/E),lr: Oa Yn,lrzla lr:1,...,u—|—1,

Y e RO+HDx(utD) v € [0,1],

that must be satisfied by every feasible solution of our distillation column
model.

Now, we make use of the following transformation rules.

12 = U, ﬁs = Uy,
}A/ 1 - Xn— )
Ak’l ( k,l) =0, A [ = 1, yu+1, (528>
Xk/‘7l = ( - Yn—kl)7
G = iy g k=1,...,n

These rules allow us to restate system (5.27) equivalently as

D i (X — Xag)

Xk,lJrl ==, 2 ~ +(1_ﬁs)Xk,17 kan"'?”?
> i1 (X — Xjo1)
l=1,...,1u,
. . ) (5.29)
0< X < Xgp < < Xy, l=1,...,0+1,
Xo,lz(), Xn,lzl, l=1,...,4+1,

X e RHOX@HD 5 e [0, 1].
We can draw the following conclusion:

Corollary 5.5. Let (Y,v,) be a feasible solution to system (5.27) for some
a € R with oy > ag > -+ > «ap, > 0. Let X be the matriz consisting of
all liquid phase concentrations variables Xy, , that are implied by Y through
the phase equilibrium equations (5.26). Then, for each aggregated component

ke {1,....n}, both sequences {Yiy, }}T and { Xy, }}T) are non-increasing.

Proof. Consider system (5.27) with parameters a; > ag > -+- > «,, > 0 and
variables (Y, v;). We show that applying the transformation rules (5.28) to
(Yr,) and  «q,...,a, leads to system (5.29) with parameters

Gy > Qg > - > @, > 0 and with variables X , Us whose feasible solutions
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satisfy the conditions of Theorem 5.3 (and Corollary 5.4). Note that feasible
solutions to system (5.27) are in one-to-one correspondence to solutions fea-

sible to system (5.29) via the transformation rules (5.28). As we obtain from

Corollary 5.4 that, for every feasible solution (X , Us), the sequences {X k. ;‘:11
with k = 1,...,n are non-decreasing, the corresponding sequences {Y}, }“;11,

k =1,...,n are non-increasing.
The first part of system (5.27) is given as a combination of the mass balance

equations (5.13) and the inverted phase equilibrium equations (5.26), i.e.,

k _
S g (Vi = Yiu,)
S o (Vi =Y,

fork=1,...,nand [, =1,...,u. We apply the transformation rules (5.28) to

i1 = Xy, +(1—14) Y1 and Xy =

each constraint separately.

Forallk=1,...,nand all l =1,...,u, we obtain

Vi = Xeg + (1 —14)Yin
<~ (1 — Yk’,l—i—l) =1- (l/erJ + (1 — Vr>Y/§71>

= (1 — Yk,l—i—l) = I/r(l — XkJ) + (1 — I/r>(1 — YkJ).
Thus, the transformation rules (5.28) yield
Xpgsr = 0Yis + (1= ) X5y, m=0,....n, I=1...,u. (530

For the inverted phase equilibrium equations, we further derive that

k - n —
Yoy =1-Xp=1- 21 Vi = Yimw) X @ (Vi = Yimn)
7 7 > i a; (Vi = Y1) > i o (Y — Y1)

k@ (= Xy — (1= X))
St (=X = (1= X))

A A

1 O (Ko — Xag) X G (Xngiji — Xnji)

~ ~ ~ ~

> G (X — Xaji) > iy Qg (X1 — Xoji)

holds for every kK = 1,...,n and for every [ = 1,...,u. Recall that the com-
ponents appear in reverse order after the transformation. To indicate this, we

introduce new indices m := n—Fk and p := n+1—j. We derive the equivalence
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to the non-inverted phase equilibrium equations (5.15) by

S vy 10 —Xpm

n—k,l — ) TL:O, , 1,
Zp 1617( p ll)
I=1,...,u+1
S B, ) >3
& YmJ 2; ? Ap ”, m=0,...,n,
>ont Bo(Kps = Xp1)
l=1,...,u+1

Combining the equations (5.30) and (5.31), we obtain the first line from sys-
tem (5.29).

The second line of system (5.29) results from the relation
Yk-i—LlZYk,h k:O,ﬂ’L—l <~ Xm—l,lSXm,l)mzla”'an

The third line of system (5.29) trivially holds.

It remains to argue that the transformed constant relative volatilities
Ay = 04(_n1+1)7m for m = 1,...,n are strictly positive and monotonically non-
decreasing in the new ordering of the components. In fact, this holds as

ap > -+ >, > 0 implies

1

O<af1§&n§~-§a; Q.

This means that system (5.29) satisfies all conditions of Theorem 5.3 and
Corollary 5.4. We conclude that, for every £k = 1,...,n, both sequences
{ Xy it and {V;,,} 24! are non-decreasing. Using transformations rules (5.28)

again, the statement follows. O

In summary, Corollary 5.4 and 5.5 guarantee that the variables of every
feasible solution to our reformulated model (Problem 5.2) behave monotoni-
cally in the rectifying and stripping section. If we take the coupling conditions

(5.17) into account, we derive the desired relation for the whole column, i.e.,

tri t
XoiP <o S XSRS X < X < < XS

and

}/isirip S < Ystrlp < Yfeed < Yreri‘gt < S Y'iriect

lstrlp

foralli=1,...,n
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5.4 Problem Specific Relaxation Refinement

In this section, we use the results from Section 5.3 to derive problem specific
relaxation refinement strategies for our distillation column model associated
with the aggregated components (Problem 5.2). In particular, we develop a
recursive bound tightening strategy in Section 5.4.1. For this, we adapt the
arguments used in previous work [Ballerstein et al., 2015] for two-component
distillation columns to the multi-component case with aggregated components.

In Section 5.4.2, we moreover restate a method to derive additional bounds
on the aggregated concentration variables by computing the fixed points of the
concentration profiles. This method has already been applied in [Kunde et al.,
2016] to the two-component distillation case. Both techniques are implemented
in global optimization software and their impact is computationally evaluated

in Section 5.5.

5.4.1 A Recursive Bound Tightening Strategy

The bound tightening strategy that is developed in this paper for ideal multi-
component distillation column models is a feasibility based bound tightening
(see Section 2.2.1). In particular, we make use of interval arithmetics that we
apply to two types of well-structured model constraints.

The monotonic behavior of the aggregated concentration profiles together
with the aggregated component mass balance equations allows us to propagate
given bounds on the aggregated concentration variables at a certain tray to
the aggregated concentration variables associated with an adjacent tray.

For this, recall that for every k = 1,...,n, the aggregated component mass

balance equations (5.13)

rect _ rect _ rect _ rect
Vi, = X+ (1 =) VIS, lo=1,... u"",

strip _ strip . strip _ strip
Xk,lsﬂ = l/SYkJS +(1 VS>X]€71 , ls=1,...,u

associated with the trays in the rectifying and stripping sections form two
families of recursive functions (one for each section). By analyzing the partial
derivatives, one can show that in both cases the recursive functions behave
monotonically in each of their arguments (see also Ballerstein et al. [2015] for

the two-component case). The analysis is mainly straightforward. Only the
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partial derivatives

rect strip
aYylc,lr—i-l an,ls—H

_ rect rect __ ysstrip strip
= Xk,lr Y and = Yk,ls Xk,l

v, vy
need special attention. For these, we remark that the monotonicity of the
concentration profiles ensures for each aggregated component £k = 1,...,n
that
Xrect < X]ieft, lr — 1’ o ,ureCt, (5 32>
Ykszlp > Ysmp, ly=1,..., 0P

hold. As Xj;. > 0, we moreover observe that the phase equilibrium equations

can be restated as

rect rect
K S NP B W
Jj= 1@ xrect xrect
k,ly

k,ly

Yot = xpect (5.33)

. & Xrelct X;ec{ . t .
rec r r ec rec
Xk Ay Zj:l aj Xrect Xrect +Z] k41 %X (X XJ* r)

Note further that the numerator in equation (5.33) is a convex combination

of parameters aq,...,qa;. From o < ap_1 < --- < «aq, it follows that the

numerator is greater or equal to . The denominator is a convex combination

of the numerator and parameters agyq,...,a,. As a, < -+ < g1 < ag, we

can conclude that the fractional term in the right-hand-side of equation (5.33)

is greater or equal to one. This implies Y9 > X", In a similar way, we can
rect

ay,
verify that Y}:tlnp > X,itl”p holds. Combining these results, we get —52+ < 0

strip

and % > 0.
Vs

Thus, given bounds on the arguments in (5.13) can be used to compute
bounds on the aggregated concentration variables associated with the consec-
utive tray via standard interval arithmetic (e.g., see Hansen et al. [1991]). The
resulting formulas are stated in the following two lemmas, where Lemma 5.6
addresses the stripping section and Lemma 5.7 deals with the rectifying sec-
tion. In both lemmas, superscripts “strip” and “rect” are neglected in order to

keep the notation simple.

Lemma 5.6. (Stripping Section)
Consider anyls € {1,...,u} and k € {1,...,n}. Assume further that vy ranges
on [V, ve], Yy, ranges on [V}, ,Y"p] and that Xy, ranges on [X;°), X1,

Then, lower and upper bounds X% ., Xihoo1 on Xy 41 are given by

lo _ lovylo lo lo up __ L up\/Sup up up
X1 = vV, + (A =v )X, Xpho o =vY,7 + (1 - )X,
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Lemma 5.7. (Rectifying Section)
Consider anyl, € {1,...,u} andk € {1,...,n}. Assume further that v, ranges
on [V, v?], Xy, ranges on [X; , X7 ] and that Yy, ranges on [V, Y.

lo up ;
Then, lower and upper bounds Y9 1, Y oy on Yg,41 are given by
lo __ o upylo up lo up _ oy up lo up
Yvk,l,»—i—l =V, Xk:,lr + (1 -V, )Yk,h Yk,lH—l =V, Xk,lr + (1 -V, )Yk,l'

Remark 5.8. It is worth to mention that the equations (5.32) do not hold
for the variables used for the molar fractions in the original model formulation
(Problem 5.1), e.g., see the molar fraction profile of the second component
(blue-colored dashed curve) in Figure 5.2 (a). Thus, Lemma 5.6 and Lemma 5.7

are not applicable in the original formulation.

The purity constraints (5.18) already provide (strong) valid bounds on the
concentration variables at the condenser and, hence, at the first tray of the
rectifying section as well as on the concentration variables at the reboiler and
the first tray (in our ordering) of the stripping section. Starting with these
bounds, our next goal is to propagate bounds on the concentration variables
tray by tray through each section by repeatedly applying the formulas for
bound calculations from Lemma 5.6 and Lemma 5.7. This procedure defines
the bound tightening strategy.

However, a re-use of the formulas from Lemma 5.6 and Lemma 5.7 will make
it necessary to translate bounds on the aggregated concentration variables as-
sociated with the vapor or the liquid phase into valid bounds on the aggre-
gated concentration variables in the respective other phase. This is achieved
by exploiting the phase equilibrium equations (5.15) and their inverses (5.26),
respectively, and leads to the formulas as given in Lemma 5.9 (for the stripping
section) and in Lemma 5.10 (for the rectifying section). Again, superscripts

“strip” and “rect” are omitted to keep the statements easy to read.

Lemma 5.9. (Stripping Section)
Let Iy € {1,...,u+ 1} be fized. Assume further that, for every k =1,...,n,

lower and upper bounds X,i‘fls, X,f;s on Xy, are given, where

X, <XF, and X2 <X, holdfork=1,...,n— 1
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Then, for each k, lower and upper bounds Ykl"}s, Yklfi on Yy, are given by

k k b b
o Zj:l O‘j(Xﬁs - Xj(‘lfl,ls) and VP — Zj:l a]'(Xj,’;S - inus)
kls — n a a kls = b b )
’ Zj:l R (Xj,lll - Xjﬁ17ls> ’ Z?:l a]'(Xj,’;S - inus)

where we define

o { Xjoo Wik o { X, i<k

gls u . and gls = u . .
XP afg >k max{ X, , X;°}, if j>k

Jils?
forj=1,...n.

Proof. We interpret the aggregated phase equilibrium equations (5.15)

k
> i1 (X — Xj1)

Via,(X) = S5
> i1 (X, — Xj1)
as functions in the liquid phase concentration variables. For all k,q =1,...,n
and for all [y = 1,...,u+ 1, we consider the partial derivatives %S(ZX) where
q5ts

we distinguish the three cases ¢ < k —1, ¢ = k and ¢ > k + 1. To keep the
notation simple, we introduce the constant a1 := 0.

For ¢ < k — 1, we obtain

Y. (X)
0X 1.
(g =o)X (X = X)) i (X — X)) (g — agia)
— — 5 - - 2
(X7 (X, — Xja) (X7 (X, — Xja)

(g — agen) 25 g1 o (Xja, — Xj-1.)
n 2 .
(ijl o (Xju, — Xjflzls))
As (ay — ag41) > 0 holds, this derivative is non-negative for all k = 1,...,n

and all [ =1,...,u+ 1.

For ¢ = k we obtain

Oy (X) o2y o(Xja, — X)) — 2050 (X, — X1 (g — )
— : ;
OX o, (37 (X, — Xj10))
g D i O Xju — Xjo1a) + g D000 (X, — Xjo14,)

(X0 ai(Xjy — Xjon)”

Y

(5.34)

which is also non-negative for all ¢ =1,... ,nand all [ =1,...,u+ 1.
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For ¢ > k 4+ 1 we obtain

k
OV, (X) _ = 2051 4(Xjo, — Xjra)(ag — agi)
0Xq,, (S0 a(Xjy, — X))

which is non-positive for all £k = 1,...,n and all [ = 1,...,u + 1 due to

, (5.35)

(ag —ag+1) 2 0.

This shows that the phase equilibrium equations are component-wise mono-
tonic. Therefore, we can apply simple interval arithmetic, again, leading
to the following lower and upper bounds on the vapor phase concentration

variables Y ;. 11.

a a b b
Z] 1043(Xgi Xjklls> up E] 1%(Xﬁs nglls)
Yk‘ As — Xllk X and Yk,ls = by, by, ’
ZJ 1y ( i 115) Z] 1%(Xgls X] 115)
with
. Xy, ifj <k, X, it g <k,
o= e and X5 = re (5.36)
Xin, iHj>k X, ity >k

for all j = 1,...,n. We remark that the upper bound Y;? on Y}, is not tight
when X, > X }C‘?’ls holds for some k' > k. In those cases, we can compute an

improved upper bound on Y, by finding the maximum of

k
> =1 (X — X1
> i1 o (X, — Xjo1a,)

restricted to X9, < Xpy, < Xpy, < X0 As 82’};5()() > 0 and %:/(ZX) <0

hold, it follows X} ; = Xy, for the optimal solution. A comparison of the

Vi (X) =

equations (5.34) and (5.35) gives rise to the following relation

Y, (X) | = Vir(X) >0
8Xk,ls anJs -

j=k+1

This shows that the maximum is attained at Xy, = Xy = X,‘jfl’s. Hence, we

can replace the definition of Xf”;s in the equations (5.36) by

- Xup, i<k
P max { xR XR Y, iG> k.

This completes the proof. n
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Lemma 5.10. (Rectifying Section)
Let 1. € {1,...,u+ 1} be fized. Assume further that, for every k =1,...,n,

lower and upper bounds YklflT, Yklffr on Yy, are given, where
lo lo up up —
Vil <Yy, and Y <Y,©, hold fork=1,...n—1
Then, for each k, lower and upper bounds X,i"’lr, X,Z’ZT on Xy, are given by

k — k — b b,
o Zj:l Q; 1(}/;(1112 - Y;'a—kl,l,‘) Zj:l Q; 1<Y;lk, - Y;’—kl,l)

kil — ZTL Oéf]_(Yak - Yak ) and X]?fl)r = n —1 ka o ka )

where we define

yon min{Y;'", Y9}, if j <k, P Yo if j <k,
Jolbr T Yup oo an Jlr T up ..
Jslr? ij 2 ka Y;’,Ta ij 2 k
forj=1,...n.
Proof. Analog to the proof of Lemma 5.9. n

5.4.2 Domain Reduction using Fixed Points

Another way to tighten the variable bounds in the model formulation from
Section 5.2 is to determine the fixed points from the recursive functions given
by the component mass balance equations (5.13) and the phase equilibrium
equations (5.15). Corollaries 5.4 and 5.5 imply that, for each aggregated com-

ponent k, the four infinite sequences

strip strip rect rect
{X% }lsezzl’ {Yei }lsezzl and  {X;7 }lr6221’ Y, }zr5221

must converge since they are monotonic and range on the bounded interval
[0,1]. Due to the monotonic behavior, the limit of each sequence further pro-
vides either a lower or an upper bound valid for each element of the sequence.
As done in [Kunde et al., 2016| for the two-component case, we can exploit

this property by incorporating, for each k = 1, ..., n, the following (redundant)
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nonlinear constraints to the aggregated model formulation.

strip,x __ strip,x strip
Xy, =Y, + (1 —w) X1 ",

> oy (G = X5

Ystrip,* _
k - n strip,* strip,*\ ’
Zj:l aj(Xj - Xjfl )
strip,x strip strip,*x strip _ strip
DA G A (e N RS WL A

SO 537
VI = X (L= )R

k —1 rect,x rect,x
Xrect,* o Zj=1 aj (Y; T Y’j—l )
k - n —1 rect,x rect,x\ ?
Zj:l Q; (Yg -Y, 5 )
rect,x rect rect,x rect o rect
Xpeet < xgeet ypreets <yt L=1,.. .0+ 1.

Adding these fixed point equations to the model formulation can be interpreted
as an alternative to the bound tightening strategy. Both approaches are mo-
tivated by the monotonic behavior of the concentration profiles. In general,
the fixed point equations lead to weaker bounds than the bounds that can be
obtained by the bound tightening strategy, as the latter ones are monotonic
with respect to the section lengths and also bounded by the fixed points.
However, it may be useful to integrate the fixed point equations into the
model formulation instead of using the bound tightening strategy. This may
be assumed, as the bound tightening strategy has to be explicitly applied at
every node of the Branch and Bound tree, while the fixed point equations
are integrated by simply adding several equations to the model formulation.
The computational study in Section 5.5 is also designed to investigate this
difference. Furthermore, applying the bound tightening strategy requires the
user to modify the solution process which is not always possible for commercial

software.

5.5 Computational Results

In this section, we computationally evaluate the impact of the presented tech-
niques on the performance of global optimization software. For this, we con-
sider several numerical test instances dealing with ideal multi-component dis-
tillation processes. The objective of all instances is to find an optimal column
design w.r.t. cost function (5.19), that separates the more volatile components

from the less volatile components up to a given purity.
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5.5.1 Test Setting

We consider 16 test instances. The reference test instance ref consists of a mix-
ture of n = 4 components with initial composition zi* = }1 forv=1,2,3,4, and
with the constant relative volatilities (o, g, g, ag) = (6,4,1.2,1). The num-
ber [ of trays that can be used in the entire distillation column is bounded
by 25. Every section consists of at least one tray, so that the upper bound on
the number of trays used for the rectifying as well as for the stripping section

rect

is given by u'** = 5P = 23. Molar flows F, B, D and V are given in terms

of mols™!.

The feed molar flow F' is fixed to 1, while the remaining molar
flows are variable and may range as follows: 0 mols™' < V < 20 mols™!,
0 mols™! < B,D < 1 mols~!. We choose the split o to be 2. Recall from
Section 3 that o defines the more volatile single components (1,...,0) with-
drawn from the condenser and the less volatile single components (o+1,...,n)
withdrawn from the reboiler. With respect to split o, we call the components
o and o + 1 key components, while the others are called non-key components.
The purity requirements are given by 74t = rbot = (.99

The remaining test instances are defined by changing the values of several

parameters, resulting in five groups of further test instances that are briefly
explained next.
The first group is defined by varying the constant relative volatilities for the

non-key components from the reference instance. The specifications are given
in Table 5.3.

Instance adisl adis?2 adis3

(ar,am, 03, c0)  (12,4,1.2,1) (12,8,2.4,1) (24,8,2.4,1)

Table 5.3: Specification of test instances with change in the volatilities of

non-key components

The second group consists of two further instances for which the split o is
changed. Moreover, the constant relative volatilities are adapted in such a way
that the ratios between the volatilities of the key components are the same as

in the reference setting. Table 5.4 shows the concrete specifications.
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Instance aposl apos?

o 1 3

(a1, 0, 03, 04)  (6.67,2,1.5,1) (8,5,3.33,1)

Table 5.4: Specification of test instances with change in the split o

Instance conl con? cond

(@b aff ol o) (

Table 5.5: Specification of test instances given by varying the initial composi-

tion of the mixture

In the third group, we change the initial composition of the mixture as given
in Table 5.5.

Group four consists of the test instances for which we vary the purity re-
quirements on condenser and reboiler. In addition, we adapt the constant
relative volatilities in order to keep the separation processes approximately as
difficult as the separation process of the reference instance. Table 5.6 provides

the specific setting for the changed parameters.

Instance purl pur? purs

(rdist | rbot) (0.95,0.95) (0.99,0.95) (0.95,0.99)

(a1, 0, 03, 0)  (3.64,2.42,1.2,1) (4.62,3.08,1.2,1) (4.62,3.08,1.2,1)

Table 5.6: Specification of test instances with different purity requirements

Finally, we define a fifth group of test instances in which different numbers
of components are considered. For each such instance, we adapt split o, initial

composition and relative volatilities accordingly, as summarized in Table 5.7.

5.5.2 Problem Formulation

For each instance, two MINLP formulations are derived. The first formulation,
called MINLP-O, is based on the original distillation column model (Prob-

lem 5.1) as presented in Section 5.1. The second formulation makes use of the
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Instance compl comp? comp3 compy
n 2 3 5 5
o 1 1 2 1
@) G GED GELED (b

(a1,...,on) (333,1) (4,1.2,1) (6,4,1.2,1.1,1) (6.67,2,1.5,1.2,1)

Table 5.7: Test instances where the number of components is changed

reformulated model (Problem 5.2) with aggregated concentration variables as
introduced in Section 5.2 and is called MINLP-A. Additionally, we apply sev-
eral different solution strategies to MINLP-A. The first strategy, indicated by
w/Mo, adds the (redundant) conditions on monotonicity from Corollaries 5.4
and 5.5. Note that these conditions are in general not equivalent to the bound
tightening strategy. This holds as the bound tightening additionally relies on
the detection of monotonicity in the constraints and specialized interval arith-
metic. The second strategy takes the fixed-point equations (5.37) into account
and is labeled by w/Fiz.

All formulations have been implemented using the following standard refor-
mulation techniques. Due to their redundancy, all variables that are associated

with the last component n, as well as the variables 28 zP°t i =1,... n, and
Xdist xhot 'l — 1 ... n are eliminated. Moreover, each constraint containing
a rational function is multiplied by its denominator and restated as a polyno-

mial constraint.

Note that the coupling conditions (5.6a) and (5.17a) involve quadratic terms
including binary variables. We use a standard approach to linearize these types
of equations. We applied several different linearization techniques and found,
based on preliminary computations, that the following one is best suited for

our cases. Consider the first line of the equations (5.17a)

urect

feed—1 __ rect yrect
Xk - E :Blr Xk,lr7

=1

for a fixed k € {1,...,n}. Using that Z;’“r:lt 7 = 1 holds, we can reformulate
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the equation as

rect yfeed—1 __ prect yrect . rect
B Xy = B XL L=1,...,u™"
Next, we introduce a new variable C;_ for [, = 1,..., 4™ and demand

_ prect yieed—1 __ prect yrect o rect
Clr _Blr Xk ) Olr _/Blr Xk,lr’ lr—l,...,u .

For every [, = 1,...,u"™, these two quadratic equations are linearized in the

following well-known way.

G 2 Bt + X =1, G2 B X - 1

Cy, < B, O, < Xpeed ) C, < Xig
The remaining equations in (5.17a) and (5.6a) are handled analogously.

All computations are carried out on a 3.00 GHz Intel Xeon E5450 Processor
with a limit of 30 GB memory space for each run. Moreover, running time is

limited to 24 hours and the relative optimality gap is chosen to be 1074

In order to compare different solution strategies for our test instances, we
utilize a standard performance measure. It is given by the geometric mean
of the solution times for each instance relative to a reference strategy. We
will use this as an auxiliary tool in our analysis. For calculating the average
solution time, we use 24 hours for all instances that are not solved within the
time limit. However, we will also display and discuss individual results, as the

number of test instances is quite restricted.

5.5.3 Results using SCIP

All MINLPs are implemented and solved with SCIP 3.2 (Achterberg [2009])
using CPLEX 12.6.0 (IBM CPLEX [2014]) as LP-subsolver and IPOPT 3.12.4
(Wéchter and Biegler [2006]) (incl. HSL-routines MA27 and MC19 (HSL)) as
NLP-subsolver.

By using SCIP we are able to apply a third solution strategy to MINLP-A.
Therein, the bound tightening strategy as described in Section 5.4 is used at

every node in the Branch and Bound tree. This is achieved by implementing
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a domain propagation routine as an own constraint_handler in SCIP. The

label w/BT indicates that the bound tightening strategy is switched on.

Our computational results are summarized in the Tables 5.8 to 5.11. Ta-
ble 5.8 shows the running time in CPU minutes for all instances that have
been solved in the time limit of 24 hours. Table 5.9 displays the total number
of Branch and Bound nodes needed in the solution process for these instances.
Table 5.10 lists the relative gap between upper and lower bound in percent-
age after 24 hours for all instances that have not been solved in this time.
Table 5.11 shows the geometric mean of the solution times for each instance
relative to the standard formulation MINLP-O and to other formulations, re-

spectively.

First we compare the original formulation (MINLP-O) to the aggregated
one (MINLP-A). By using formulation MINLP-O, eight of the sixteen instances
are not solved to global optimality within the time limit (see column 2 of
Table 5.8). The same holds when formulation MINLP-A is used, but with a
different subset of unsolved instances (see column 3 of Table 5.8). Comparing
the two columns, we see that among all instances that are solved by both
formulations, using formulation MINLP-A leads to a lower running time for
all but instance comp2, and to a lower number of Branch and Bound nodes
needed for all these instances (see columns 2, 3 of Table 5.9). Among all
instances that are not solved by both formulations, the remaining optimality
gap is significantly lower when formulation MINLP-A is used (see columns 2,
3 of Table 5.10). On average, the running time is reduced to 51.3% as shown
in row 2 of Table 5.11. These observations suggest an advantageous behavior
of formulation MINLP-A during the solution process. However, we need to
mention that applying the reformulation alone does not always lead to an
improvement, since three of our test instances are solved by using formulation

MINLP-O but not by using formulation MINLP-A.

Next, we discuss the influence of adding the redundant monotonicity con-
straints (w/Mo) to our model formulations by examining the differences be-
tween columns 3 and 4 of Tables 5.8 and 5.9. For five of our test instances,
the influence is negative for both running time and number of nodes needed in
the solution process, while the opposite holds for ten instances. Only instance

aposl is not solved by formulation MINLP-A w/Mo, but still the remaining
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Ex. MINLP-O MINLP-A MINLP-A MINLP-A MINLP-A MINLP-A
w/Mo w/Mo, Fix w/BT w/Mo,BT
ref - 95 61 90 9 6
adis1 280 - 88 123 24 13
adis2 - - 372 122 26 8
adis3 - - 34 40 13 12
aposl 249 - - 92 15 12
apos? - o1 34 20 ) 4
conl 232 15 30 74 6 5
con? - - 36 127 25 45
cond 1038 97 134 - 19 10
purl - - 658 405 64 32
purl - - 1331 110 21 12
purs 1373 462 71 - o7 13
compl 1.1 0.4 0.5 0.4 0.2 0.1
comp?2 12 14 33 28 3 1
comp3 - 157 290 — 41 46
comp4 481 — 443 — 32 20

Table 5.8: Running time in CPU minutes using the SCIP framework. Label

W o

The lowest running time for every instance is highlighted.

means that the problem is not solved within the time limit of 24 hours.
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Ex. MINLP-O MINLP-A MINLP-A MINLP-A MINLP-A MINLP-A
w/Mo w/Mo, Fix w/BT w/Mo,BT
ref - 148 100 119 10 7
adis1 393 - 118 153 31 19
adis2 - - 558 217 31 9
adis3 - - 61 64 16 16
aposl 392 - - 123 19 17
apos2 - 91 53 34 5 )
conl 346 19 47 95 6 5
con? - - 61 180 31 47
cons 1539 125 216 - 21 12
purl - - 920 514 60 35
purl - - 2285 151 24 13
purs 1526 623 110 - 55 14
compl 18 4 5 4 1 1
comp?2 49 48 133 96 8 5
comp3 - 111 219 — 28 24
comp 327 — 417 — 22 16

Table 5.9: Branch and Bound nodes (in 1000) needed for solving the problem

using the SCIP framework. Label “~” means that the problem is not solved

within the time limit of 24 hours.

every instance is highlighted.

The lowest number of nodes needed for
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Ex. MINLP-0O

MINLP-A MINLP-A MINLP-A MINLP-A MINLP-A

w/Mo w/Mo, Fix w/BT w/Mo,BT
ref 18.36 - — - _ _
adisl — 0.33 — - _ _
adis2 13.02 8.15 - — — _
adis3 13.44 0.26 - - — _
aposl - 0.27 0.02 - - _
apos? 18.25 - - - - _
conl — - — - _ _
con? 6.11 0.11 — - — -
cond - — — 0.33 — _
purl 11.07 0.10 - — — _
pur? 20.97 7.9 - - _ _
purd = - = 1.17 - -
compl — — — - _ _
comp2 - - - - - _
comp3 22.62 - — 0.03 - _
comp4 - 0.02 - 0.03 - -

Table 5.10: Relative gap given in percentage after 24 hours using the SCIP

framework. Label “-” means that the problem was solved with a gap lower

than 0.01%.
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relative  MINLP-O MINLP-A MINLP-A MINLP-A MINLP-A MINLP-A

to w/Mo w/Mo, Fix w/BT w/Mo,BT
-0 100% 51.3% 21.7% 27.1% 2.9% 1.9%
-A - 100% 42.3% - 5.6% -
w/BT - - - - 100% 66.2%
w/Mo - - 100% 125.0% - 8.8%

Table 5.11: Geometric mean of the running times relative to selected reference

formulations using the SCIP framework.

optimality gap is lower than the one obtained by using formulation MINLP-A.
The average running time is reduced to 42% by using MINLP-A w/Mo instead
of MINLP-A (row 3 in Table 5.11). Thus we can conclude that the positive
influence of the additional constraints for a wide subset of our instances dom-
inates the negative influences. A similar result can be obtained by comparing
the columns 6 and 7 of Tables 5.8 and 5.9. All but two instances have a lower
running time and all but three instances have a lower amount of nodes needed
when the additional monotonicity constraints are added. The average running
time is reduced to 66% in this case (row 4 in Table 5.11).

Now we analyze the influence of the fixed point equations (w/Fiz). For
this, we consider the columns 3 and 4 in Table 5.8. For two instances (aposl,
pur2), this influence is significantly positive while in four other cases (cons3,
purs, comp3, compy), the respective instances could not be solved in the time
limit. For all other instances, the influence on running time and nodes needed
(Table 5.9) is very mixed and differences are not as significant. The average
running time by adding the fixed point strategy is increased to 125% (row 5
in Table 5.11). We conclude an overall small, but rather negative influence of

this solution strategy, with a huge impact in some special cases.

At last we focus on our main contribution in terms of algorithmic impact,
which is the problem specific bound tightening strategy (w/BT). Note that
the two solution strategies using this method (columns 6 and 7 in Tables 5.8
and 5.9) are the only ones able to solve all our instances to global optimality

during the given time limit. Furthermore, one of these two strategies is always
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the best in terms of both, running time and Branch and Bound nodes needed.
By comparing the columns 3 and 6 in Table 5.8, we can see a huge improvement
in running time by applying the bound tightening strategy to the aggregated
model formulation. On average, the running time is reduced to 5.6% (row 3 of
Table 5.11). A similar result is obtained by analyzing the influence of the bound
tightening on the model formulation already using the monotonicity constraints
(columns 4 and 7 in Table 5.8). The average running time in this case is reduced
to 8.8% (row 5 of Table 5.11). These results show a significant performance
improvement by applying our developed bound tightening strategy during the
optimization process of ideal multi-component distillation columns.

To summarize the analysis, three of our four proposed solution strategies
have a positive influence on the performance of SCIP on our test set. These
strategies are the aggregated reformulation, the monotonicity constraints and
especially the bound tightening. If we add all three strategies and compare
them to the original model formulation (columns 2 and 7 in Table 5.8), we can

derive an average reduction of the running time to 1.9% (row 2 of Table 5.11).

5.5.4 Results using BARON

We finally investigate the computational behavior of another global optimiza-
tion solver on our MINLP formulations. For this, we chose the standard solver
BARON 16.3.4 (Tawarmalani and Sahinidis [2005]) as provided within the mod-
eling system GAMS 24.7.1 (GAMS Development Corporation [2016]). The
solver is used with default settings, CPLEX as LP-subsolver and CONOPT as
NLP-subsolver. We remark that our focus is on the question how the solver
works as a black box on the different model formulations rather than on com-
paring the performance with SCIP.

In the following, we consider the model formulations MINLP-O, MINLP-A,
MINLP-A w/Mo and MINLP-A w/Mo,Fiz as defined in Subsection 6.2. We do
not see a way to implement the bound tightening strategy in the closed-source
environment GAMS, so that this strategy is excluded from further considera-
tions.

Table 5.12 displays the running time in CPU minutes and Table 5.13 dis-
plays the number of Branch and Bound nodes needed for the solution process.

The single instance that has not been solved during the time limit using formu-
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Instance MINLP-O MINLP-A MINLP-A MINLP-A
w/Mo w/Mo, Fix

ref 240 201 51 80
adis1 46 103 99 95
adis2 - 307 131 160
adis3 110 220 114 103
aposl 46 68 36 53
apos?2 131 29 83 41
conl 117 55 41 242
con? 43 185 23 34
cond 232 174 163 121
purl 376 559 88 78
pur 332 126 190 178
purs 392 172 36 53
compl 0.8 0.7 0.7 0.4
comp2 4 14 22 15
comp3 596 156 304 234
comp4 56 182 355 590

Table 5.12: Running time in CPU minutes using GAMS:BARON. Label “”
means that the problem is not solved within the time limit of 24 hours. The

lowest running time for every instance is highlighted.



Instance MINLP-O MINLP-A MINLP-A MINLP-A
w/Mo w/Mo, Fix
ref 47 11 6 7
adis1 20 13 12 13
adis2 - 37 28 24
adis3 22 11 5 13
aposl 9 7 7 8
apos? 3 0.2 14 3
conl 24 15 8 19
con? 18 30 3 )
cond 53 16 28 5
purl 25 14 ) 1
purl 35 7 19 17
purs 46 3 5 0.3
compl 1 0.3 2 0.1
comp2 3 3 17 )
comp8 18 5 9 8
comp4 12 9 17 12

141

Table 5.13: Branch and Bound nodes (in 1000) needed for solving the problem
using GAMS:BARON. Label “~” means that the problem is not solved within

the time limit of 24 hours.

instance is highlighted.

The lowest number of nodes needed for every
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relative  MINLP-O MINLP-A MINLP-A MINLP-A

to w/Mo w/Mo, Fix
-O 100% 91.4% 60.4% 69.2%
-A - 100% 66.1% -
w/Mo - - 100% 114.5%

Table 5.14: Geometric mean of the running times relative to selected reference
formulations using GAMS:BARON.

lation MINLP-O is indicated by the symbol “~” and has a remaining optimality
gap of 19,46% after 24 hours. Table 5.14 shows the geometric mean of the run-
ning times relative to MINLP-O, MINLP-A and MINLP-A w/Mo respectively.
Again we will analyze the influence of the different formulations and solution
strategies one by one.

Using the reformulation MINLP-A instead of MINLP-O has an ambiguous
influence on the solution time of our test instances. Nine of the sixteen in-
stances are solved faster while the other seven are solved slower (columns 2
and 3 in Table 5.12). On average, the running time is reduced to 91.4% as
shown in row 2 of Table 5.14. However, it is important to note that all in-
stances are solved by using MINLP-A, and that all but one instance needed a
lower amount of Branch and Bound nodes.

Next we analyze the effect of adding the monotonicity constraints (w/Mo)
to our model formulation (columns 3 and 4 in Table 5.12). Although there
are six instances with a higher running time using this solution strategy, the
overall influence is very positive. On average, the running time is reduced to
66% (row 3 in Table 5.14)

Further, adding the fixed point equations (w/Mo,Fiz) to this formulation
has a small negative influence on the performance of the solver on our test
set. Half of the instances perform better and the other half performs worse
in terms on running time (columns 4 and 5 in Table 5.14). On average, the
running time is increased to 114.5% (row 4 in Table 5.14).

The differences between the performances of our problem formulations are
considerably smaller using BARON as a solver instead of SCIP. Nevertheless,

we can detect the same general tendencies. The aggregated formulation has a
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small positive influence and the monotonicity constraints a significantly higher
one. The fixed point equations tend to reduce the performance of the solvers.
Unfortunately, we are not able to compare the influence of the bound tightening
strategy on the solver BARON.

We observe that some of our instances benefit a lot from our solution strate-
gies while others are rather disturbed. We assume that this holds for the fol-
lowing reason. Adding additional constraints on the one hand tightens the
model formulation, but on the other hand increases the problem size. The
respective trade off in terms of solver performance varies among the instances

and leads to the observed behavior.



144



Chapter 6
Conclusion

In this thesis, we presented general theoretical results for MINLPs as well
as specialized techniques for applications in engineering. In particular, we
discussed the role of the convex relaxation of the feasible set for the spatial
Branch and Bound algorithm. We developed several relaxation refinement
strategies and illustrated their positive influence on the solution process by
two computational studies.

Solving MINLPs with a large number of variables and constraints, in par-
ticular those arising from applications, often requires an unreasonable compu-
tational effort. Our results confirm the obvious assumption, that the quality
of the convex relaxation has a crucial impact on this required effort. However,
significant improvements for the relaxation of general MINLPs are rarely ex-
pected. Our theoretical result allows for a quite general cutting plane approach,
but has relatively high requirements concerning the applicability. Therefore,
it is often worthwhile to consider special problem classes or applications. We
showed that the computational effort could be reduced in our cases by an-
alyzing the underlying constraint set and by adapting existing optimization
techniques.

Despite recent progress and a broad collection of literature, there is still
room for improvement in this context. This holds for the general theory as well
as for problem specific methods. The required progress is usually performed
in small steps and relies on the combination of multiple results. We hope that

this work contributes to his part in order to fill the remaining gap.
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