
Anton A. Kiss, Edwin Zondervan, Richard Lakerveld, Leyla Özkan (Eds.)
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Abstract
Regulations and the public expectations on improving efficiency, reducing the carbon footprint
and lowering the environmental impact drive the process industry towards improved operation and
the development of new technologies. The efficiency of an existing production plant depends on a
variety of factors like capacity utilisation, raw material quality, ambient temperature or operational
performance. Identifying the influence of these factors on the performance of the plant helps to
take suitable measures to drive it towards a more efficient operation. One approach to assess the
resource efficiency potential of a plant is the comparison of the actual performance with the best
possible operation under the given circumstances. This work presents a surrogate modelling ap-
proach for the identification of the best possible operation based on historical data. The surrogate
model is compared to a more detailed rigorous model and advantages and possible shortcomings
of the surrogate approach are discussed based on real production data at INEOS in Köln.
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1. Introduction

The process industry is constantly developing methods for the evaluation of their resource

Figure 1: Illustrative example of the
BDP concept

consumption and the identification of possible improve-
ment potentials. In cases where there are no structural
changes of the process planned, on the one end this can
be achieved by implementing Advanced Process Control
(APC) solutions, which is time consuming and expen-
sive. On the other end, there are well-trained operators
who are often able to realize a significant fraction of the
APC saving potential, if information on the magnitude
of the performance gaps is accessible and the experi-
ence about how to improve the operational efficiency can
be used. The international standard ISO50001:2011 de-
mands the use of energy performance indicators (EnPI)
which have to be compared with an energy baseline. The
idea of the Best Demonstrated Practice (BDP), as shown
in Fig. 1, is similar and provides the operators with a performance reference model which repre-
sents the most resource efficient and stable production at a specific instance of non-influenceable
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circumstances, as e.g. plant load. By comparing the real-time EnPI, which is defined as the spe-
cific steam consumption at a particular point in time in this example, with its BDP, the operational
improvement potentials (OIP) can be identified (NAMUR WG 4.17, 2017).

2. BDP Model

The level of detail of the BDP models can vary from rigorous models to simple input-output mod-
els. The accuracy and the extrapolation capability of rigorous models are advantageous. However,
the time and effort needed to develop these models is usually high. On the other end of the scale
are input-output models based on linear regression which cannot always represent the complexi-
ties of the chemical processes properly.
An alternative to these two types of models are surrogate models (see e.g. Cozad et al. (2014)).
In this modelling approach the process data is used to fit a model to the observations. The devel-
opment of such models requires considerably less effort compared to the development of rigorous
models and they are able to capture the plant behaviour better than linear regression models. Fur-
thermore, the evaluation of the surrogate models is easier which makes them attractive for large
scale optimisation (Søndergaard, 2003). On the downside, the validity of the surrogate models
is limited to the range of the data that is used for their fitting and the results of the model for
extrapolated data must be used with care.

2.1. Surrogate modelling procedure

This section briefly discusses the approach to surrogate modelling of the BDP curves that has
been developed and implemented at INEOS in Köln. A detailed description of the procedure can
be found in Beisheim et al. (2018). As depicted in Fig. 2, the method consists of five general
steps. The first step is the acquisition of measurement data. The goal of this step is to col-
lect representative and reliable measurements of the performance of the plant, where aspects
as e.g. removal of gross errors, stationarity, selection of suitable sampling times and removal

Figure 2: Steps of
the BDP modelling
procedure

of abnormal operation windows have to be considered.

The second step is the preprocessing of the data. The goal of this step is
to remove outliers, classify the data and to standardise. For the latter mean
centring and unit variance scaling is used. Data standardisation is useful for
the clustering of the data, which is explained in the next step.

The third step of the method is data clustering. The goal of this step is to
reduce the large amount of the measurement data into a much smaller num-
ber of a few representatives of different operating regimes, which are then
used for model fitting. In this work, the kmeans++ algorithm (Arthur and
Vassilvitskii, 2007) is applied, which is an extension of the kmeans algo-
rithm (MacQueen et al., 1967). The distance metric used for clustering is
the Euclidean distance of the data from the cluster centres and therefore it
is sensitive to the magnitude of the data and is prone to the assignment of
a higher influence on a variable with a higher magnitude. As the impor-
tant factor to consider in this work is the effect of the variation of the non-
influenceable factors on the resource efficiency, the data is pre-processed by
the subtraction of the mean of each variable and dividing the values by the
standard deviation. The kmeans++ algorithm requires the number of the clusters as an input. The
clustering algorithm assigns a centre to each cluster that represents the average of the points in that
cluster. As the goal of the BDP model is to calculate the most efficient operational domain, the
cluster centres are not used as representative values. Instead, a percentile analysis for each cluster
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is performed:

r j =
1∣∣R j
∣∣ ∑

x∈R j

x (1)

x ∈R j ∀ Pj,n ≤ EnPI(x)≤ Pj,m (2)
R j ⊆X (3)

EnPIR j =
1∣∣R j
∣∣ ∑

x∈R j

EnPI(x), (4)

where R j denotes the set of points which are assigned to the cluster j,
∣∣R j
∣∣ is its cardinality and r j

is the cluster centre. Pj,n, Pj,m are the lower and and upper percentile bounds for cluster j. These
bounds are used to select achievable good operation points as representatives, EnPIR j , for each
cluster. The chosen percentiles are tuning factors and can be modified for each case.

The surrogate model development is an adapted ALAMO approach (Cozad et al., 2014). It gen-
erates simple and accurate models from simulated or experimental data. In order to overcome
the drawbacks of linear regression models, ALAMO selects a combination of transformed inputs
using simple basis functions that fit the responses with an acceptable accuracy. The set of basis
functions are defined by the user and ALAMO selects the most suitable ones and their respective
parameters as a result of an optimisation. The details of the implemented adapted version of the
ALAMO approach can be found in Beisheim et al. (2018). The model is fitted by solving an
optimisation problem formulated as:

min
β ,y

N

∑
i=1

ei (5)

s.t. ei ≥ zi− ∑
j∈B

β jXi j i = 1, . . . ,N (6)

ei ≥ ∑
j∈B

β jXi j− zi i = 1, . . . ,N (7)

∑
j∈B

y j = B (8)

−U j(1− y j)≤
N

∑
i=1

Xi j

(
zi− ∑

j∈B
β jXi j

)
≤U j(1− y j) j ∈B (9)

β
ly j ≤ β j ≤ β

uy j j ∈B (10)
y j = {0,1} j ∈B, (11)

where zi are the values of the responses, X is the matrix of the transformed inputs and β is the
coefficient vector of X . B is the set of the basis functions and B is the number of the maximum
allowed terms of the model. The binary variables y j are equal to 1 if their respective basis function
is selected. β u, and β l are the upper and lower bounds for the coefficient vector. N is the number of
the samples and the indices i and j correspond to the samples and the basis functions respectively.
The optimisation is done repeatedly for increasing values of B and the suitable level of complexity
is decided based on the modified corrected Akaike Information Criterion (AICc). Eq. 9 is an
additional constraint, which as described in Beisheim et al. (2018) uses the relaxed bounds U j to
convert the problem formulation into an MILP.

2.2. Application to production data at INEOS in Köln

In this section, the surrogate BDP modelling approach introduced in Sec. 2.1 is applied to two
sections of the ethylene oxide production plant at INEOS in Köln and the results are compared to
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the results of a rigorous model. All of the plots and information in this section are presented in the
scaled space due to the confidentiality of the data.

2.2.1. Surrogate approach

The algorithm described in Sec. 2.1 is used with [1,x±[1,2,3],exp(x)] as basis functions. The first
example is a section of the plant which processes the products from the ethylene oxide reac-
tor. The upper and lower percentile limits, Pj,n and Pj,m are defined as 5 and 10 respectively.

Figure 3: Surrogate BDP model of
the product processing section of the
ethylene oxide plant

As a result of discussions with plant personnel,
the production load (ṁp) is defined as the only
non-influenceable factor and is used to calculate the
resource efficiency of the specific steam consumption
(EnPIs,1). The number of the clusters is defined as 16.
The algorithm results in a model with two basis functions:

EnPIs,1 =−3.1902 ṁ2
p +1.4843exp(ṁp) (12)

Fig. 3 depicts the results of the model fitting. Each data
cloud (shown by coloured points) represents a cluster and
the circles and the + signs represent the cluster centres
and the percentile centres that are used for model fitting.
As mentioned in Sec. 2, extrapolation of the model should
be avoided. Therefore, the range of validity of the model
is defined as the range between the minimum and maxi-
mum of the percentile centre values, and the data outside
of this range are shown with dark diamonds.

Figure 4: Surrogate BDP model of the
steam production of the ethylene ox-
ide reactor

The second investigated section is the ethylene oxide re-
actor. Both the main and the side reactions are exother-
mic and the produced heat is used for steam genera-
tion. The heat of reaction of the side reaction is signif-
icantly higher than the heat produced by the main reac-
tion. Therefore, the reduction of the catalyst selectivity
increases the steam production. Considering this fact,
the load of the reactor (ṁp,r) and the catalyst selectiv-
ity (S) which is available as a measurement, are used as
non-influenceable factors for modelling the resource effi-
ciency of the steam production (EnPIs,2). As the number
of non-influenceable factors in this case is higher than
the previous one, the number of the clusters is increased
to 30. The other modification in this case is the choice of
the percentile limits. Considering that this case is about
the modelling of the production of steam, so higher values
are preferable, the BDP is defined as the highest possible
amount of steam production. Therefore the lower and upper percentile limits are defined as 90 and
95 respectively. The algorithm identifies a model, shown in Fig. 4, using three basis functions as:

EnPIs,2 =−0.0669 ṁ3
p,r−5.7478 S3 +3.0651exp(S). (13)

A conservative method for the definition of the domain of validity of regression models in higher
dimensions is the ”Convex Hull” of the input variables (Brooks et al., 1988). This method is used
here to calculate the validity bounds of the model. The importance of the validity range is more
obvious in this example compared to the previous model. It can be seen that outside of the convex
hull, the model diverges from the data and should not be trusted.
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2.2.2. Rigorous approach

In this section, a more detailed model of the ethylene oxide reactor is developed that is based on
physico-chemical principles and measurement data. This model is then used to make a comparison
between the detailed model and the proposed surrogate modelling approach and to identify the
advantages and shortcomings of each. The model is based on the energy balance around the
reactor as follows:

∂Q
∂ t

= C̄p,inṅinTin−C̄p,out ṅoutTout − Q̇cool +∑i(−∆HR,iri)− Q̇loss, (14)

where the left hand side of the equation is set to zero due to the assumed stationarity of the process.
The first two terms on the right hand side of the equation represent the amount of the heat entering
and leaving the reactor with the material streams. C̄p, j, ṅ j, Tj denote average specific heat capacity
of the gas mixture, mole flow and temperature at position j. ∑i(∆HR,iri) represents the produced
heat of reaction, Q̇cool is the heat transferred from the reactor to the cooling fluid inside the jacket
and Q̇loss is the amount of heat that is transferred to the environment.

C̄p is calculated as the weighted average of the values Cp, j of the different components using the
volumetric percentage values available in the plant, where the dependencies of the values of Cp, j
of the components on the temperature are determined based on the Shomate equation (Linstrom
and Mallard, 2018). The molar flow ṅin is not measured, but can be calculated based on the volu-
metric flow rate and the ideal gas law. The situation for ṅout is more complex, as there is no direct
flow measurements at the output of the reactor. However, using the composition measurements
and the change of the volumetric percentage of an inert gas present in the mixture, this flow can
be estimated.
The values of ∆HR,i for each reaction are known and ∑i(−∆HR,iri) is calculated using this infor-
mation together with the selectivity measurement and the estimation of the ethylene conversion
based on its volumetric percentage at the inlet and outlet flows. Q̇cool is assumed to be equal to the
amount of the heat required for the production of steam.

Considering the above mentioned assumptions, the value of Q̇loss can be calculated from eq. 14.
Q̇loss can also be described as:

Q̇loss = k(Tc f −Tamb), (15)

where Tc f and Tamb are equal to the cooling fluid and ambient temperature, and k is the heat transfer
coefficient. Assuming that k remains constant for an unchanged setup (physical structure, cooling
fluid etc.), its value can be estimated based on eq.15.

Eq. 14 is rearranged and Q̇cool , and thus the amount of steam produced is calculated based on the
energy balance. Fig. 5 depicts the real steam production together with the values that are calculated
based on the surrogate BDP model and the detailed model at two different time windows. The x-
axis and the y-axis represents the time and the resource efficiency of steam production EnPIs,2.
From Fig. 5a it can be seen that the surrogate model predicts a higher steam production rate com-
pared to the real data and the detailed model. As the result of a deeper investigation it became clear
that the conversion of ethylene in the reactor is lower in this period, which is not considered by the
surrogate model and thereby deviates from reality. It is expected that the addition of conversion
as a new non-influenceable factor to the surrogate model improves the accuracy of its prediction.
Results from a second interesting time window are presented in Fig. 5b. Here it can be seen that
the amount of produced steam predicted by the detailed model is significantly higher after a period
of time. The reason is, that the heat exchanger that is used for steam production has a limit for the
heat removal. Therefore, as a result of the decrease of the catalyst selectivity and the increase of
the amount of heat produced by the reaction, the heat removal system is not able to convert all of
the heat into steam, and this heat is lost in an extra heat exchanger against a large stream of cooling
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(a) Comparison 1 (b) Comparison 2

Figure 5: Comparison of the physical and the surrogate BDP models against production data

water. This limitation is identified with the help of the rigorous model, which is not possible with
a surrogate BDP model.

3. Conclusions

In this work a surrogate and a more detailed modelling approach were used to calculate the BDP of
production plants. It was observed that the surrogate modelling approach has a good performance
in fitting the BDP data and requires a considerably lower modelling effort compared to more
rigorous models. The proposed surrogate modelling approach is flexible and does not require
a large effort. The time spent for the development of the surrogate model of the reactor was
approximately 20 % of time that was needed for the development of the rigorous model. However,
the range of trustworthiness of surrogate models is limited to the range of the observed data.
Therefore, the performance of the models cannot be trusted beyond the data used for fitting them.
Also, as discussed above for the situation depicted in Fig. 5b, deviations of the observed BDP
from the possible best performance cannot be detected using a surrogate model and improvements
of the plant that realize the potential cannot be deduced.
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