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Abstract

Sensor measurements can be represented as points in Rd. Ordered by the time-stamps

of these measurements, they yield a time series, that can be interpreted as a polygonal

curve in the d-dimensional ambient space. In this thesis we study several fundamental

computational tasks on curves: clustering, simplification, and embedding.

The Fréchet distance is a popular distance measure for curves, in its continuous and

discrete version. It is a distance measure of choice should the inner structure of the curves

be observed. The Fréchet distance lends itself naturally to the computational tasks we

investigate, in the corresponding metric spaces. One of the limitations is the inherent

complexity of the computation of the Fréchet distance, as it is widely believed that no

algorithms exist to compute either the discrete or the continuous Fréchet distance between

two curves with m vertices each, in the subquadratic running time in m. The number of

the vertices is called complexity of the curve.

In this thesis we focus on curves in the one-dimensional ambient space R. We study the

problem of clustering of the curves in one-dimensional ambient space under the Fréchet

distance, in particular, the following variations of the well-known k-center and k-median

problems. Given is a set P of n curves in one-dimensional ambient space, each of complexity

at most m. Our goal is to find k one-dimensional curves, not necessarily from P , that we

call cluster centers and that each has complexity at most `. In the (k, `)-center problem,

the maximum distance of an element of P to its nearest cluster center is minimized. In

the (k, `)-median problem, the sum of these distances is minimized. We show that both

problems are NP-hard under both the discrete and the continuous Fréchet distance, if k is

part of the input.

Under the continuous Fréchet distance, we give (1 + ε)-approximation algorithms for

both (k, `)-center and (k, `)-median problem, with running time near-linear in the input

size for constant ε, k and `. Our techniques yield constant-factor approximation algorithms

for the observed problems under the discrete Fréchet distance.

To obtain the (1 + ε)-approximation algorithms for the clustering problems under the

continuous Fréchet distance, we develop a new simplification technique on one-dimensional

curve. Our simplifications, called δ-signatures, provide the “shape” of the curve. The

parameter δ relates to the minimum length of the edges of the simplified curve. The

signatures always exist, and we can compute them efficiently.

We also study the problem of embedding of the (discrete and continuous) Fréchet distance

into one-dimensional ambient space. More precisely, we study distortion of the probabilistic

embedding that results from projecting the curves onto a randomly chosen line. We show

that, in the worst case and under reasonable assumptions, the discrete Fréchet distance
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between two polygonal curves of complexity m in Rd, where d ∈ {2, 3, 4, 5, 6, 7}, degrades

by a factor linear in m with constant probability. We show upper and lower bounds on the

distortion.

Sensor measurements can also define a discrete distribution over possible locations of a

point in Rd. Then, the input consists of n probabilistic points. We study the probabilistic

1-center problem in Euclidean space Rd, also known as the probabilistic smallest enclosing

ball (pSEB) problem. Our main objective is to improve the best existing algorithm for the

pSEB problem by reducing its exponential dependence on the dimension to linear.

To do so, we study the deterministic set median problem, which is a variant of the

median problem for a collection of point sets in high dimensions. The set median problem

generalizes the 1-median as well as the (probabilistic) 1-center problems. We present a

(1 + ε)-approximation algorithm for the set median problem, using a novel combination

of sampling techniques for clustering problems in metric spaces with the framework of

stochastic subgradient descent.

Our (1+ε)-approximation algorithm for the pSEB problem takes O
((
dn/ε4

)
· log2 (1/ε)

)
time. As a result, the pSEB algorithm becomes applicable to shape fitting problems in

Hilbert spaces of unbounded dimension using kernel functions. We present an exemplary

application by extending the support vector data description (SVDD) shape fitting method

to the probabilistic case. This is done by simulating the pSEB algorithm implicitly in the

feature space induced by the kernel function.
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1 Introduction

Sensors and other measuring devices are part of everyone’s day-to-day life. We actively

contribute to many measuring processes, with or without being aware of it, for example,

to our electronic fingerprint by browsing online-shops or wearing a tracking device, like a

cell phone or a smart watch. Some measurements result from observing phenomena that

happen independently of us, for example those observed at IceCube Neutrino Observatory

at Amundsen–Scott South Pole Station, or the air temperature and the wind speed and

direction. There are phenomena we can partially influence, such as the stock market and

commodities prices, or annual migration routes of various bird species.

These measurements can be one-dimensional, e.g. represented by an integer or by a

real number, or multi-dimensional, where the number of dimensions can be extremely

high. Each of the measurements can be combined with a time stamp. From recording the

measurements we can learn about the behavior of the observed object or phenomenon, and

recognize their habits, customs, or patterns. Based on the gained knowledge, we hope to

be able to predict the future behavior. If we model the measurements as points and/or

the trajectories that describe changes of the measured values as polygonal lines, then the

problems we are solving are computational geometry problems.

The sensors generate a vast amount of data every day. It is not always possible to store

everything we measure, or even to know the amount of information in advance. When the

data is stored, often only a limited number of passes over the data is allowed. It is of a

particular interest for scientists, business people, governments, etc. to be able to efficiently

analyze the recorded data. That can be done by identifying an “important” part of the

data, or by simplifying the input, or it is often enough to pick a small random sample

from the collected data, and make a good prediction for the whole set based on the chosen

sample.

1



2 1 Introduction

1.1 Choice of the objects observed

On deterministic points and sets

The measured position or the state of some object (e.g. a person that wears a smart watch,

or a bird that has a tracking ring) can be described by a point in the space Rd, where d is a

positive integer. The dissimilarity (or the relative position) of two points can be measured

in various manners, most often by the Euclidean distance, which “naturally” describes the

straight line distance between them. One may ask, why is this distance measure “more

natural” than some other, e.g. well-known Manhattan distance? Indeed, the Manhattan

distance follows the geometry of city streets that form a rectangular grid, thus a person

with a smart watch that commutes from point A to point B has to walk along the streets

in order to reach her destination. A bird, on the other hand, can still use the Euclidean

straight path on its way from A to B. In this thesis, our choice of the distance measure

between two points in Rd is the Euclidean distance.

A similar question on “naturality” can be posed for the distance between a point and a

set of points in Rd. A flying bird that is currently over the sea and wants to reach the shore

as fast as possible will choose the closest point on the shore. This behavior represents the

Hausdorff distance (cf. the definition in Subsection 2.5.2). Sometimes one does not want

to know the nearest, but the farthest neighbor. This can be illustrated by an example

given by Pagh et al. [149]: if an online-shop-customer purchased a product, it is reasonable

to offer her additional products, that are related to the purchased, but rather far from

it, to increase the probability of further (successful) shopping. We address such measure

within the set median problem in Section 6.2.

On curve representation and dissimilarity measures

Next, we assume that we are no longer observing just a current position of a point, but also

the trajectories that are made by tracing the point, e.g. GPS tracking of a person during

one day. If a sequence of points w1, . . . , wm in Rd is connected by straight line segments in

the order of the indices of the points, we obtain a polygonal curve in the d-dimensional

ambient space. A polygonal curve is a standard representation for the continuous real-life

curves in the computational geometry.

In the other computer science (sub)communities, e.g. in machine learning, one works

with time series instead of curves. Time series are sequences of discrete measurements

of a continuous signal, e.g. S = (w1, t1), . . . , (wm, tm), consisting of paired values of

measurements wj and time stamps tj , 1 ≤ j ≤ m. Examples of data that are often

represented as time series include stock market values, electrocardiograms, temperature,
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the number of newly infected persons per day, and the hourly requests of a webpage. Note

that all of these measurements are one-dimensional, but they can be multi-dimensional as

well, e.g. voters’ polling results, vital parameters of a patient, etc.

The time stamp of a point can be observed as an additional dimension of the point.

Then, a time series would have one dimension more than a curve, based on the same

measurements. However, in this thesis, we decide that a dissimilarity measure should

consider only the ordering of the measurements/points, and ignore the explicit time stamps.

Then the two notions are equivalent and of same dimension. It is the shape of curves that

counts, and not the “speed of points” along the curves.

A common approach to measure the dissimilarity between the two curves is to treat the

vertices of the curve (time series data) as coordinates of a point in high-dimensional space,

i.e. the curve w1, . . . , wm and the time series (w1, t1), . . . , (wm, tm) are treated as a point

(w1, . . . , wm) in the m-dimensional Euclidean space. Using this simple interpretation of the

data, to process the input in a desired way, any algorithm for points in high-dimensional

space can be applied. Although this is a common practice (e.g. in the work of Liao [131]),

it has many limitations. One major drawback is the requirement that all the curves must

have the same number of vertices, and the measurements must be regular and synchronized.

In particular, for multiple sensors, the latter requirement is often hard to achieve.

Another option to measure the dissimilarity between the two curves is to treat the

curves as sets, and thus, to use the Hausdorff distance. Such approach seems simple, but it

completely ignores the inner structure of the curves. Namely, this approach could identify

the two curves as similar (e.g. two taxi customers are taking the same road), based only on

the fact that they consist of similar vertices, but without observing the time stamps order

(e.g. that the routes are in opposite directions). See Subsection 2.5.2 for an example.

We assume that it is “natural” to observe the inner structure of the curves when

measuring their dissimilarity, instead of simply observing the endpoints of the curves, the

closest or the farthest pair of points on the curves, etc. These goals are achieved if we

choose the (discrete or continuous) Fréchet distance. The continuous Fréchet distance was

proposed by Fréchet [85] in 1906, in the context of the study of general metric spaces. The

discrete Fréchet distance was introduced by Eiter and Mannila [75] in 1994.

The Fréchet distance intuitively describes the minimal cost of transforming one curve

into another, where the cost measure of the transformation is the maximum distance

between two points mapped to each other by the transformation of the curves1 (for formal

definitions see Subsection 2.5.2). For the continuous Fréchet distance, the complete curves

1In the literature, the intuitive introduction to the Fréchet distance utilizes a man-and-dog-on-the-leash
metapher. We opt to avoid that.
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have to be mapped to each other, while respecting the order of the points on the curves.

In handwriting identification [164], the letters can be of different size or font, but the

similarity between respective parts of a letter is decisive.

In one-dimensional ambient space, the interpretation of the continuous Fréchet distance

has another aspect. For two monotone curves in R, the continuous Fréchet distance

equals the maximum of the distances between the start- and endpoints, pairwise. This

also implies, that the continuous Fréchet distance between two functions is completely

determined by the sequence of local extrema ordered by their indices/time stamps. Thus,

when considering the continuous Fréchet distance of the curves, we view a one-dimensional

curve as a specification of the sequence of local extrema of the curve.

However, the continuous transformation measure between the two curves does not always

make sense. In biology, the proteins consist of amino acids, each containing α-carbon atoms.

The carbon atoms can be observed as vertices, whose order determines the structure of

a protein [176]. If we would measure the dissimilarity of two proteins by the continuous

Fréchet distance, two arbitrary points on the curves (proteins) could be mapped to each

other, which is biologically meaningless. Here, it is natural to consider only vertices of the

two curves for the transformation of one curve into another, in which case we have the

discrete Fréchet distance.

The cost of transforming one curve into another is sometimes not evaluated over maximum,

but over the sum of the distances between the mapped vertices. This dissimilarity measure

related to the discrete Fréchet distance is called the dynamic time warping (DTW). DTW

was (presumably) first time introduced in the context of speech discrimination and aligning

distorted speech signals by Vintsyuk [173] in 1968, and has since been popularized in the

field of data mining (cf. [62, 142]). The process of traversing the curves with varying

speeds, while summing the dissimilarity measure between the mapped vertices, is referred

to as “time-warping” in this context. DTW is known for its universality, and is applied to

describe various phenomena, such as chromosomes [129], electrocardiogram frames [104],

fingerprints [122], signature comparison [151], etc. However, DTW has some disadvantages

against the Fréchet distance. For this work, the most important one is that DTW is not a

metric, while both continuous and discrete Fréchet distance are (pseudo)-metrics.

Both versions of the Fréchet distance, as well as the dynamic time warping distance can be

computed in worst-case (roughly) quadratic time in the number of vertices of the curves by

applying dynamic programming (cf. [5, 40, 88]). On the other side, algorithms to compute

any of these three distance measures in strongly subquadratic time, even for one-dimensional

curves, do not exist under widely believed complexity theoretic assumptions (cf. [31, 33, 37]).

The faster computation is possible, if additional assumptions on the input curves are made.
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For the detailed listing of the results see Subsection 2.5.3. The fast computing of these

distance measures in practice is also an active research topic (cf. [35, 36, 119]), and is of

independent interest, which is out of scope of this thesis.

On probabilistic point distributions

The measurements of positions or quantities of a point in Rd can reveal that the locations

(values, amounts) get repeated, and that the frequencies of their appearing, or not appearing,

at certain locations are known. Then one could be interested in discovering the patterns

that are valid in expectation. For example, a taxi customer requires more often to be

picked up from her workplace, than from her sport club, for a ride home. But it is also

possible that she does not call on some days at all. A taxi company would like to know

where ideally to place a car, so that the expected length of a route to the customer is as

short as possible.

The problems can also be high-dimensional, e.g. in combustion, a flame reactor deals

with hundreds of reactions and species, resulting from multiple chemical components. The

reactions occur and the species appear under certain conditions and in various quantities.

They all have various influence onto the combustion scenario. It is of crucial importance for

a simulation, to identify the representative reactions/species, such that the expected result

is a good approximation of a real combustion in the reactor, that would be too expensive

to compute with the detailed chemical data [161, 162].

Therefore, if we assign to a point a discrete probability distribution over the locations in

Rd where the point can appear, or be “not present”, at a moment, we have probabilistic

points. A realization of a set of probabilistic points is achieved when for each point one

location is picked. Then, a probabilistic optimization problem is to minimize the objective

function in expectation over all possible realizations of the probabilistic points. Note that

the parameters of the observed problems are: the number of distributions (say n), the

maximum number of locations in a distribution (say z), the number of realizations (say N),

and the dimensionality of the ambient space d. For formal definitions see Subsection 6.1.1.

1.2 Choice of the problems observed

1.2.1 Input reduction

To model a problem on curves, we begin with two parameters: the number of the curves

(say n), and the maximum number of vertices of each curve, called complexity, that we

denote with m. We consider two input reduction techniques: curve simplification and
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metric embedding. However, it is convenient to make a realistic assumption on the input,

that simplifies the modelling and the computation.

The realistic analysis of problems on curves is a popular research topic [64]. There are

many competing models for a problem simplification through the realistic assumptions,

where each of the models has an argument of “being closer to reality”. For one of the

problems (in Chapter 5), we utilize the concept of c-packedness, introduced by Driemel,

Har-Peled and Wenk [66], as it appears that this model attracts the most attention in the

computational geometry community (cf. [6, 34, 65, 98]). We say for a curve to be c-packed,

if its length within each ball in the ambient space is at most c times the radius of the ball

(cf. Definition 2.30).

Two alternative models were introduced by Alt, Knauer and Wenk [15]: the c-straightness,

where the length of a curve between two points is at most c times the Euclidean distance

between these points; and the c-boundedness, where for each two points x and y on the

curve, the part of the curve between x and y is covered by the balls of radius c/2 times the

distance between x and y, and centered at x and y, respectively.

Curve simplification

A general input reduction idea is the concept of curve simplification. It is often the case

that the input curves contain too much redundant or irrelevant information, increasing the

complexity of the curves, and thus of the problem. Then, given a curve, the problem is to

find a simpler curve, i.e. of smaller complexity, while having a small dissimilarity to the

original. We use the Fréchet distance as the dissimilarity measure, and develop an efficient

simplification technique to capture critical points of the curves in one-dimensional space in

Chapter 3.

Godau [86] noted that a simplification under the Fréchet distance is a bicriteria approxi-

mation. The parameters for the simplification of the curves can be either:

• the maximum allowed distance (error) between the original and the simplified curve,

where the goal is to find a simplified curve with the minimum number of vertices

within the given distance, or

• the maximum allowed complexity (size) of the simplified curve, and the goal is to

minimize its distance to the original curve over all curves of the given size.

The problems can be observed with an additional constraint that the vertices of the

simplified curves must belong to the original curve. In this case the simplification is called

strong. Agarwal et al. [7] showed that the strong simplification is a 4-approximation to the

unconstrained minimum-size problem. All of these problems are of independent research
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interest, but they are useful as a building block for the other problems as well (e.g. in

Chapter 4, or in [44]). For related work on the curve simplifications, see Subsection 3.1.3.

Through the curve simplification, we solve an additional problem – noise. For example,

physical or chemical measurements typically have measurement errors. The stock and

commodities market data contain minor transactions or short term trading, that (usually)

do not affect the general trends (cf. [7]). By having a theoretical guarantee on the

simplification quality, a better analysis of the input can be made.

Metric embeddings

The following approach to the problems on curves is a concept of metric embeddings and

dimensionality reduction. In practice, the problems on multi-dimensional curves are often

approximated by observing the coordinates separately. For example, for a stock market

index, the performance of various stocks are combined. Frequently, a certain trend can be

recognized by observing only one or a subset of stocks (cf. [7]).

A metric embedding is a mapping between two metric spaces which preserves distances up

to a certain distortion. Any finite metric space with n points can be embedded isometrically

into `n∞ [136], which is called the Fréchet embedding. Any bounded set in Rd with the

metric induced by the `∞-norm can be embedded into the space of curves with the Fréchet

distance (see Lemma 4.24). It is not known if the Fréchet distance spaces can be embedded

into an `p-space using finite dimension [113]. The result of Bartal, Gottlieb and Neiman [24]

implies that a metric embedding of the Fréchet distance into an `p-space must have at

least super-constant distortion. For more results on metric embeddings and the Fréchet

distance, see Subsection 5.1.3.

We are interested in the distortion of the embeddings of the Fréchet distance spaces into

one-dimensional spaces (in Chapter 5). One such embedding was used by Sheehy [159] in

his topological work on bounds of the Fréchet distance. His embedding picks a random

point x in the original ambient space, and maps each vertex of the input curve to a point in

R representing the distance of the vertex to x. However, no upper bound on such distortion

for curves in Rd for arbitrary dimension d was given.

Bringmann and Künnemann [34] used projections to one-dimensional spaces (i.e. lines)

to speed up their approximation algorithm for the Fréchet distance. They showed that

the Fréchet distance computation can be done in linear time if the convex hulls of the two

curves are disjoint, by reducing the decision problem to the one-dimensional separated

curves.
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A solution to the problem of metric embeddings under the Fréchet distance could

serve as a building block for other fundamental computational tasks, such as clustering,

nearest-neighbor search [69, 71], and spherical range search [4].

1.2.2 Clustering problems

Given a set of input objects (points, curves, etc.), it is a natural problem to look for a set

of representatives under some given criteria, and/or to group the input objects according

to that criteria, in order to extract patterns from the given set. The idea behind is that

similar objects belong to the same group, and very dissimilar objects should be assigned

to different groups. For example, bus stations should ideally be placed close to homes or

working places in a city. Mountain huts should be evenly distributed and reachable to the

walkers on various mountain trails. A criterion for grouping can also be negative, e.g. a

diabetes warning campaign should not be placed together with a fast-food advertisement.

A process of grouping the input objects is called clustering, and is defined using a cost

function, that describes the pairwise distance between elements of the group. The groups

are called clusters, and a representative of each group is called cluster center.

There is a plethora of various clustering problems in general metric spaces, and they have

been extensively studied in many different settings. Let the maximum number of allowed

clusters be denoted as k, k ∈ N. We will discuss two intensively investigated clustering

concepts that both have a goal to divide the input into k clusters, each with a cluster

center that serves as a representative, thus we call them k-clustering problems. The first

problem has the objective to find a set of k cluster centers such that the maximum distance

to the nearest cluster center is minimized, over all input objects. This problem is known

as the k-center clustering.

The goal of the second problem we consider is to find a set of k centers, that minimizes

the sum of distances to the nearest centers, over all input objects. This problem is known

as the k-median clustering. A popular problem related to the k-median problem, which we

do not consider in this thesis, is the k-means clustering, where the distances are squared

and then summed.

The 1-center problem in its simplest form with three input points in the plane is

equivalent to the construction of the circumscribed circle to the triangle given by the three

points. This problem and a compass-and-ruler construction were given by Euclid in his

“Elements” (cf. [77] Book IV, Proposition 5) around year 300 BC. The 1-median problem

with three points was posed by Fermat, followed by a compass-and-ruler construction by

Toricelli (cf. [123]), both in 1600s.
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When the number of clusters or the dimensionality of the problem is changed, the

problems become very hard. It is known that the k-center and the k-median problem, both

in general metric spaces and in Euclidean spaces, are NP-hard to be exactly solved, and in

many cases, even to be approximated better than a constant factor (cf. [80, 101, 115, 138]).

Several lines of approximation algorithms for the k-clustering problems exist, and we

discuss some of them in Subsection 2.4.1. Some of these algorithms are limited only to the

Euclidean spaces, others are intended for the general metric spaces. Sometimes, not all

properties of metric spaces are provided, and this can actually be the case when we deal

with the curves.

Ackermann, Blömer and Sohler [3] showed, that under certain conditions a randomized

(1 + ε)-approximation algorithm by Kumar, Sabharwal and Sen [126] can be extended to

general distance measures. In particular, they showed that under a dissimilarity measure,

one can compute a (1 + ε)-approximation to the k-median problem if the 1-median problem

solution can be (1 + ε)-approximated, based only on information from a random sample of

constant size, picked from the input. They showed that this is the case for metrics with

bounded doubling dimension (cf. Definition 2.12), as it is the case for the Euclidean spaces.

If the doubling dimension is unbounded, then the algorithm of [3] will remain applicable,

provided that the dissimilarity measure satisfies certain conditions on sampling.

Clustering of curves

Clustering of curves is a fundamental problem of general interest: for industry to monitor

the performance using sensor data [177], for statisticians to analyze functional [114, 156]

or longitudinal data [55], for biologists to track the animals [94], for financial analysts

to predict the market behavior [103], for data mining community [152], as well as for

the computational geometry community. Unfortunately, most approaches are oriented to

obtain a good empirical solution, and do not pursue theoretical guarantees on lower and

upper bounds.

A direct approach to curve clustering under the Fréchet distance using k-clustering

algorithms for general metric or Euclidean spaces fails on dimensionality of the ambient

spaces. There is no known embedding into `p-spaces with finite dimension [113]. As

previously said, the infinite doubling dimension of the space with Fréchet distance prevents

the direct application of the standard techniques from [3, 126].

A generalization of the approach of Alt and Godau [14] for computing the Fréchet

distance to k-clustering problems fails on dimensionality of the joint parametric space,

defined by the set of the input curves. The algorithm of [14] explores the parametric space

for a monotone and continuous mapping. If generalized to n curves, this approach leads to
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the exponential time algorithms, as it does with a search for a single representative curve

(cf. [12, 98]).

Furthermore, a representative curve under the Fréchet distance for an input of n curves

of complexity m can have complexity of O (mn) [12]. Such representative curves imply

overfitted data, which is unnecessary for the real-world modelling. Therefore it is “natural”

to introduce an additional parameter to the k-clustering problems for curves under the

Fréchet distance, and to bound the complexity of the cluster centers by a constant `. We

formally introduce the (k, `)-clustering problems in the one-dimensional ambient space

in Subsection 4.1.1. It is straightforward to extend our definitions to curves in multi-

dimensional ambient spaces.

It is important to assume that both k and ` are constants, since the (k, `)-clustering

problems are NP-hard, in the case when k is part of the input (cf. Section 4.6), and

when ` is part of the input (cf. [44, 45]). For more related work on curve clustering, see

Subsection 4.1.3. In this thesis we consider the (k, `)-clustering problems for the curves in

one-dimensional ambient space.

Clustering of probabilistic high-dimensional points

The k-clustering problems on probabilistic points, both for the general metric and Euclidean

spaces were first studied by Cormode and McGregor [59]. They gave reductions of the

probabilistic k-median and k-means problems to weighted instances of their corresponding

deterministic problems. The probabilistic k-center problem was shown to be the most

interesting one. All these probabilistic problems inherit the computational hardness from

their deterministic counterparts. For more related work see Subsection 6.1.3.

In this thesis we consider the probabilistic version of the 1-center problem – the proba-

bilistic smallest enclosing ball (pSEB), in Rd. The (probabilistic) smallest enclosing ball

problem is to find a center that minimizes the (expected) maximum distance to the input

points. Munteanu, Sohler and Feldman [145] showed that the pSEB problem in Rd can be

reduced to two deterministic instances of a generalized problem, that extends both 1-center

and 1-median problem. For a formal definition and reduction details see Subsections 6.1.1

and 6.1.4.

The (probabilistic) SEB problem often occurs as a building block for complex data

analysis and machine learning tasks like estimating the support of high dimensional

distributions [169], outlier and novelty detection [166], anomaly detection [165], and

classification and robot gathering [56]. It is therefore very important to develop highly

efficient approximation algorithms for the base problem. This involves reducing the number

of points but also keeping the dependence on the dimension as low as possible.
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Munteanu, Sohler and Feldman [145] gave the first and fastest-to-date polynomial-time

(1 + ε)-approximation algorithm for the pSEB problem in fixed dimension. Its running

time dependence on the number of points is linear, but exponential in the dimension. In

particular, the number of realizations sampled by their algorithm had a linear dependence

on dimension stemming from a ball-cover decomposition of the solution space. The

actual algorithm made a brute force evaluation (on the sample) of all centers in a grid of

exponential size in the dimension.

Our investigation is focused on the reduction of the dependence on the dimension, based

on [145]. This is additionally motivated by the concept of kernel functions (cf. Subsec-

tion 2.1.2). Kernel methods are a standard technique in machine learning. These methods

implicitly project the d-dimensional input data into much larger dimension D, that can

even be infinite. However, in D-dimensional space, simple linear classifiers or spherical

data fitting methods can be applied to obtain a non-linear separation or non-convex shapes

in the original d-dimensional space. The efficiency of kernel methods is usually not affected.

Despite the large dimension D � d, most important kernel functions, and thus inner

products and distances in the D-dimensional space, can be evaluated in O (d) time [155].

To make the probabilistic smallest enclosing ball algorithm viable in the context of kernel

methods and generally in high dimensions, it is highly desirable to reduce the dependence

on the dimension to a small polynomial occurring only in evaluations of inner products

and distances between two (low dimensional) vectors.

1.3 Outline and contributions of this thesis

The rest of this thesis is structured into Chapters 2 – 6, dealing with the following content

summarized below.

Chapter 2 presents the notions from, and the references on the body of the literature,

that we need for analysis of the problems in the subsequent chapters. In particular, we

give a brief overview of the metric and the normed spaces, and a sketch of the well-known

subgradient descent method for convex optimization. We review the general metric and

Euclidean k-center and k-median clustering problems and present the related work. Finally,

we formally define the curves, that are the main objective of the present study, and the

Fréchet distance to measure the dissimilarity of the curves. We close this chapter with a

brief overview of the state-of-the-art on the computing of the Fréchet distance.

Each of the Chapters 3 – 6, is structured as follows. First we give an introduction followed

by a formal definition of the problem, and an overview of the results presented in the
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chapter. A discussion on the work related to the topic of the chapter is given afterwards.

The rest of the chapter is dedicated to the analysis of the considered problem(s). Each

chapter ends with a section discussing open problems and conclusions.

Chapter 3 is dedicated to the problem of curve simplification. We introduce a special

type of curve simplification in the one-dimensional ambient space – the δ-signatures. We

show several properties of signatures, and how to construct them efficiently, both in the

case when the goal error and the goal size are given. Our signatures are designed in such

way, that enables an efficient approach for other problems on curves in R, e.g. to the

clustering problems under the continuous Fréchet distance (in Chapter 4), and recently, for

the first nearest neighbor constant-factor approximation algorithm under the continuous

Fréchet distance [69].

In particular, we can use a technique similar to shortcutting, which has been used before

in the context of partial curve matching (cf. [42, 65]). We show that given an input curve,

any vertex of a clustering candidate center curve, that is not δ-close to a vertex of the

δ-signature of the input curve, can be omitted from the candidate curve without increasing

the distance beyond the threshold δ. This is the main technical contribution of Chapter 3,

stated as Theorem 3.8.

Chapter 4 extends the classical k-center and k-median clustering problems to the (k, `)-

curve clustering problems, by adding a constraint on the number of vertices ` of the

chosen representative curves. The input consists of n curves, each of complexity m. The

dissimilarity measure of the curves is either the discrete or the continuous Fréchet distance.

The curves in the one-dimensional ambient space are observed, and it is shown that even

in such a setting, the observed problems are computationally hard. Under assumption that

k, `, and ε are constants, the first (1 + ε)-approximation algorithms for both (k, `)-center

and (k, `)-median problems under the continuous Fréchet distance are given, in near-linear

time in terms of the input. Our techniques also provide a constant-factor approximation

algorithms for the (k, `)-clustering problems under the discrete Fréchet distance.

Our approach exploits the low dimensionality of the ambient space, using signatures of

bounded size. We show that the vertices of the potential cluster center curves need to be

close to the vertices of the signatures of the input curves. This enables us to generate a

constant-size set of candidate solutions for the (k, `)-center problem.

In our analysis for the (k, `)-median problem, we apply the known approach of random

sampling of Kumar, Sabharwal and Sen [126] and Ackermann, Blömer and Sohler [3].

However, a straightforward application of their results is not possible, as we show that the
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doubling dimension of the metric space of the curves under both discrete and continuous

Fréchet distance is unbounded, even for the space of univariate curves.

We extend the conditions required for the application of the algorithm from [3] to take

into account the added parameter `, and show that one can generate a constant-size

candidate set that contains a (1 + ε)-approximation to the 1-median based on a sample of

constant size (cf. Theorem 4.20). To achieve this, we observe that a vertex of the optimal

solution, which is not close to a signature vertex of an input curve, and which is unlikely

to be induced by our sample, can be omitted without increasing the cost by a factor of

more than (1 + ε) (cf. Lemma 4.16).

Chapter 5 investigates the problem of the embedding of the Fréchet distance metric

spaces. In particular, the embeddings into the space of one-dimensional curves are discussed,

since for this space we have developed several efficient techniques described in the previous

chapters. We ask for both upper and lower bounds on the distortion of a probabilistic

embedding of the discrete Fréchet distance into the one-dimensional ambient space, under

certain conditions on the dimension of the original ambient space. Some of our bounds

extend to the continuous Fréchet distance, and to the dynamic time warping distance.

In our analysis we observe a realistic input class of polygonal curves – the c-packed

curves. For this class of curves, with high probability, the distortion of such an embedding

is shown to be linear in the complexity of the original curves (cf. Theorem 5.15). This may

seem as a weak bound, but it is a first such result, and it is paired with the matching lower

bound.

Chapter 6 contains a discussion on the clustering of probabilistic data. The objects

of analysis of the clustering problems in this chapter are probabilistic points, contrary to the

previous chapters that have dealt with curves. In particular, we are interested in solving an

open problem posed by Munteanu, Sohler and Feldman [145]. They gave the first FPTAS

to the probabilistic smallest enclosing ball (pSEB) problem, but under the assumption

that the dimension of the ambient space is a constant. Based on algorithm from [145], we

solve the problem for arbitrary dimension of the ambient space, by solving efficiently a

generalized deterministic problem: the set median problem, extending the 1-center and

1-median problems.

Our solution for the set median problem is based on a popular method in convex

optimization – the subgradient descent. We adapt the random sampling techniques of

Kumar, Sabharwal and Sen [126] and Indyk and Thorup [110, 168] to avoid the dependence

on the number of sets N , and keeping the dependence on the number of elements in each set

n linear. Theorem 6.15 states the main technical contribution of Chapter 6. Additionally,
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we show that the dependence on the number of elements in a set cannot be reduced to

sublinear (after reading the input), unless we sacrifice the approximation factor of (roughly)
√

2, or accept the exponential dependence on the dimension (cf. Theorem 6.16).

Our probabilistic smallest enclosing ball (1+ε)-approximation algorithm requires running

time that is no longer exponentially dependent on the dimension d of the ambient space,

but only linear (cf. Theorem 6.17). Furthermore, the linear dependence on the dimension

is needed only for the computation of the distances between the points. This enables us

to further extend the pSEB algorithm to the probabilistic version of the support vector

data description problem (SVDD). The SVDD problem is known to be equivalent to the

smallest enclosing ball problem in (potentially infinitely) high dimensional feature space,

induced by the kernel function. This result is stated as Theorem 6.19.

1.4 Coauthored sources

The present thesis is based on the previous joint work and the following publications,

coauthored with Anne Driemel, Alexander Munteanu and Christian Sohler. The purpose

of this section is to comply with the rules of good scientific practice at the TU Dortmund

University [170]. For all publications with n authors, I have contributed 1/n of the work.

• Chapter 3 and Chapter 4 are based on [68],

A. Driemel, A. Krivošija, and C. Sohler. Clustering time series under the Fréchet

distance. In R. Krauthgamer, editor, Proceedings of the 27th ACM-SIAM Symposium

on Discrete Algorithms, SODA, pages 766–785, 2016

The minor flaws are corrected. The argumentation is extended and partially rewritten

to improve readability and to enhance the simplicity of verification. The differences

for the discrete Fréchet distance case are explicitly discussed.

• Chapter 5 is based on [67],

A. Driemel and A. Krivošija. Probabilistic embeddings of the Fréchet distance. In

L. Epstein and T. Erlebach, editors, 16th International Workshop on Approximation

and Online Algorithms, WAOA, Revised Selected Papers, pages 218–237, 2018

The minor errors are corrected. The argumentation is extended to improve readability.

The upper bound is extended to the cases d ∈ {6, 7} and discussed for the higher

dimensions. The possibilities in the case of the continuous Fréchet distance are

discussed.

• Chapter 6 is based on [125],
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A. Krivošija and A. Munteanu. Probabilistic smallest enclosing ball in high dimensions

via subgradient sampling. In G. Barequet and Y. Wang, editors, Proceedings of the

35th International Symposium on Computational Geometry, SoCG, volume 129 of

LIPIcs, pages 47:1–47:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019

The argumentation is extended to improve readability and the simplicity of verifica-

tion.

Some parts of the publications [67, 68, 125] are used and merged with other preliminaries

in Chapter 2.

All related work, that was not coauthored by the author of this thesis, is listed and

clearly denoted in the respective chapters.





2 Preliminaries

In this chapter we introduce the notions that are used throughout this thesis, and give

references for further reading. We start with a brief overview of the notation used. Later,

in Section 2.1 we make a brief review of metric spaces. In Sections 2.2 and 2.3 we state

some basic results from the convex analysis and the probability theory. In Section 2.4

we introduce the clustering problems on general metric spaces and give an overview of

the related work. We extend these problems to the space of one-dimensional curves in

Chapter 4, and to a probabilistic generalization in Chapter 6. Finally, in Section 2.5 we

define the curves and the Fréchet distance, and give an overview of the results on computing

the versions of the Fréchet distance.

We denote the set of positive integers with N, and the set of real numbers with R. We

denote the set of positive integers up to n with [n] = {1, . . . , n}. For any set P , we denote

its cardinality with |P|.
We use the following notational conventions:

• The calligraphic letters, e.g. H,S, are reserved for sets and spaces. Some sets are

denoted with capital Latin letters (e.g. to distinct between a set and a set of sets).

• Curves are denoted with Greek letters σ, ς, τ, υ, ω.

• Points in Rd are denoted with small Latin letters, e.g. c, p, q, r.

• Vectors are denoted with bold letters, e.g. u,x,y.

• Some Greek letters are used exclusively for parameters: γ for probabilities, δ for

distances, and ε for approximation errors.

The following non-standard notation is used in this thesis.

• 〈〈a, b〉〉 = [min(a, b),max(a, b)], for any a, b ∈ R (defined on page 47).

• [h]δ = [h− δ, h+ δ], for any h ∈ R and δ > 0 (defined on page 47).

• 1E : the indicator function of an event E (defined on page 29).

• B(p, r): the ball in a metric space, centered at p with radius r (defined on page 23).

• ddF (·, ·): the discrete Fréchet distance (defined on page 40).

• dDTW (·, ·): the dynamic time warping distance (defined on page 40).

• dF (·, ·): the continuous Fréchet distance (defined on page 38).

• ∆: the set of polygonal curves in the ambient space R (defined on page 39).

17
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• ∆m: the set of polygonal curves of complexity m in the ambient space R (defined on

page 39).

• L (τ): the length of a curve τ (defined on page 37).

• max(τ [t′, t′′]) = max{τ(t) : t ∈ [t′, t′′]}, for a given curve τ ∈ ∆, and two parameters

t′ and t′′, with 0 ≤ t′ ≤ t′′ ≤ 1. Analogously, we write min(τ [t′, t′′]) = min{τ(t) : t ∈
[t′, t′′]} (defined on page 47).

• V(τ): the set of the vertices of a curve τ (defined on page 36).

2.1 Notes on metric spaces

2.1.1 Metrics and norms

Given a set X , a natural question to ask is to what extent are two elements x, y ∈ X
(dis)similar to each other. To that end, any function d : X × X → [0,∞), such that for

any x, y ∈ X it is d(x, y) = 0 if and only if x = y, is called a dissimilarity measure.

Additionally, we can require for any x, y ∈ X , that it holds d(x, y) = d(y, x). In that case,

the function d is called a distance function. However, distance function properties are

not sufficient for many problems, thus, an additional condition is added, introducing a

notion of metric.

Definition 2.1 (Metric, Pseudo-metric, cf. [95] Definition 4.1). A metric space is a

pair (X ,d), where X is a set, and d : X × X → [0,∞) is a function called metric, having

the following properties for any three x, y, z ∈ X :

(i) d(x, y) = 0 if and only if x = y (identity of indiscernible elements);

(ii) d(x, y) = d(y, x) (symmetry);

(iii) d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality).

A function d is a pseudo-metric, if all aforementioned properties are satisfied, except

possibly (i).

Throughout this thesis we will work with the space Rd, d ∈ N, whose elements we call

points. For x ∈ Rd, we denote its coordinates with xi, for i ∈ [d]. Then, the Euclidean

distance between two d-dimensional points x and y is defined by

d(x, y) =

(
d∑
i=1

|xi − yi|2
)1/2

. (2.1)

The set Rd accompanied with the Euclidean distance (Equation (2.1)) is a metric space

(cf. [95, 158]).
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A vector space V over a field F is a set of objects V (called vectors) that is closed

under addition operation, that is associative and commutative and has an identity (known

as zero vector). The set V contains additive inverses and is closed under multiplication

with scalars from the field F (cf. [102], Section 0.1). Throughout this work we use the field

F = R.

The set Rd, d ∈ N, is a vector space over the field R (cf. [102]). We call it Euclidean

d-dimensional space. The coordinates of a vector x ∈ Rd are denoted with xi, i ∈ [d], and

write x = (x1, . . . , xd). A point x ∈ Rd is associated with its position vector x ∈ Rd, thus

we can overload the coordinates’ notation. In the geometric interpretation, the vector x

begins at origin in Rd, and ends at the point x.

A norm intuitively introduces a concept of length of the elements of a vector space.

Definition 2.2 (Norm, cf. [102] Definition 5.1.1). Let V be a vector space over the field

F . A function ‖ · ‖ : V → R is a norm, if, for all x,y ∈ V and all α ∈ F :

(i) ‖x‖ ≥ 0 (nonnegativity);

(ii) ‖x‖ = 0 if and only if x = 0 (positivity);

(iii) ‖αx‖ = |α|‖x‖ (homogeneity);

(iv) ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

Sometimes the notion vector norm is used instead. In many aspects it resembles the

definition of the metric. Indeed, any norm ‖·‖ defines a metric d using d(x,x′) = ‖x− x′‖,
but the opposite does not hold (cf. [158]). The vector space equipped with a norm is called

a normed space.

We use the `p-norms, defined on the vector space V = Rd over the field R (cf. [102]

Section 5.2). The `p-norm of x ∈ Rd, denoted ‖x‖p, for p ∈ [1,∞) is defined as

‖x‖p =

(
d∑
i=1

|xi|p
)1/p

. (2.2)

The limiting case p = ∞ is defined as ‖x‖∞ = maxi∈[d] |xi|. All `p-norms satisfy the

conditions of Definition 2.2 (cf. [157]). The normed space (Rd, ‖ · ‖p) is called the `p-space,

and compactly denoted with `dp.

The `1-norm is known as the sum, Manhattan, or taxicab norm. The `2-norm is the

Euclidean norm. The `∞-norm is called the maximum norm. Throughout this thesis we

mostly use the Euclidean norm, and therefore, for simplicity of notation, we write ‖·‖
instead of ‖·‖2. We emphasize the type of the `p-norm we use only in the case that multiple

norms are discussed in one context.
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We note that the Euclidean distance between two points x, y ∈ Rd equals the Euclidean

norm of the vector x− y, defined by their respective position vectors x,y ∈ Rd. Therefore,

it is sometimes convenient to omit the vector notation, and denote the Euclidean distance

metric (Equation 2.1) between the points x and y with the norm ‖x− y‖, as long as the

distinction is clear from the context.

2.1.2 Inner products, Hilbert spaces, Kernel functions

After introducing the concepts of distances and lengths, we need the concept of angles.

This is obtained through the notion of the inner products on the normed spaces.

Definition 2.3 (Inner product, cf. [102] Definition 5.1.3). Let V be a vector space over

the field F . A function 〈·, ·〉 : V × V → F is an inner product if for all x,y, z ∈ V and all

α ∈ F ,

(i) 〈x,x〉 ≥ 0 (nonnegativity);

(ii) 〈x,x〉 = 0 if and only if x = 0 (positivity);

(iii) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉 (additivity);

(iv) 〈αx,y〉 = α 〈x,y〉 (homogeneity);

(v) 〈x,y〉 = 〈y,x〉 (Hermitian property).

Since we only use the field R, the Hermitian property in Definition 2.3 becomes the

symmetry property. A vector space with inner product is called an inner product space.

Any inner product 〈·, ·〉 on a vector space V defines a norm ‖·‖ on V , using ‖x‖ = 〈x, x〉1/2,

but the opposite does not hold (cf. [158]). Since every norm defines a metric, any inner

product space is a metric space.

On the Euclidean vector space (Rd, ‖·‖2) the inner product, denoted 〈·, ·〉2, is defined for

all x,y ∈ Rd as

〈x,y〉2 = xTy =
d∑
i=1

xiyi. (2.3)

It is clear from Equation (2.3) that for every x ∈ Rd, it is 〈x,x〉2 = ‖x‖22. The Euclidean

inner product on the vector space Rd is the one we mostly use, thus we overload the

notation and simply write 〈·, ·〉 instead of 〈·, ·〉2. The only exception will be in the context

of kernel functions, where the type of the inner product will be duly noted.

The Cauchy-Schwarz inequality is an important property of all inner products. We state

it here for the Euclidean space Rd.
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Lemma 2.4 (Cauchy-Schwarz inequality, cf. [102] Theorem 5.1.4). Let 〈·, ·〉 be the

inner product on a Euclidean vector space Rd. Then it holds that

| 〈x,y〉 |2 ≤ 〈x,x〉 〈y,y〉 for all x,y ∈ Rd, (2.4)

with equality if and only if x and y are linearly dependent, that is, if and only if x = αy

for some α ∈ R.

The geometric interpretation of the inner product in Rd is that it defines a cosine of the

angle between vectors x,y ∈ Rd. Let the angle ϕ be the angle between vectors x and y,

i.e. ϕ = ∠x0y. Then

cosϕ =
〈x,y〉
‖x‖ · ‖y‖

, (2.5)

for ϕ ∈ [0, π] (cf. [158]).

Sometimes the inner product spaces are called pre-Hilbert spaces. For the definition of

Hilbert spaces, that we will need for an application of the results in Chapter 6, we need

first to define the Cauchy sequence.

Definition 2.5 (Cauchy sequence, cf. [158] Definition B.10). A sequence {xi}i∈N in a

normed space H is said to be a Cauchy sequence, if for every ε > 0, there exists an n ∈ N,

such that for all n′, n′′ > n it is ‖xn′ − xn′′‖ < ε. A Cauchy sequence converges to an

element x ∈ H if ‖xn − x‖ → 0 as n→∞.

Definition 2.6 (Banach and Hilbert spaces, cf. [158] Definition B.11). A space H is

called complete if all Cauchy sequences in the space converge. A Banach space is a complete

normed space. A Hilbert space is a complete inner product space.

The Euclidean space Rd is the simplest Hilbert space. However, the dimension of the

Hilbert spaces can be unbounded [158].

To introduce the SVDD problem in Chapter 6, we need to introduce the notion of kernel

functions. Kernel functions can be defined on any set X . In this thesis, we use X = Rd. A

positive semidefinite function K : Rd × Rd → R is called a kernel function (sometimes

called covariance function, cf. [155] Section 4.1).

It is well known by Mercer’s theorem (cf. [155] Theorem 4.2, or [158] Theorem 2.10), that

such a function implicitly defines the inner product, denoted 〈·, ·〉H, in a high dimensional

Hilbert space H, say RD, where D � d.

This means we have K(x,y) = 〈φ(x), φ(y)〉H, for all x,y ∈ Rd, where φ : Rd → H is the

so-called feature mapping associated with the kernel. We call the space H associated

with the kernel K its feature space. The idea is to be able to work implicitly in the
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high-dimensional space H by interaction only through the inner product, and to replace

the inner product by an invocation of the kernel function K. Then, we could act as if the

function φ was computed explicitly, without actually computing φ (cf. [28] Section 5.3).

This is sometimes called the kernel trick.

Examples for such kernel functions include polynomial transformations of the standard

inner product in Rd such as the constant, linear or higher order polynomial kernels, e.g.

K(x,y) = poly(〈x,y〉). In these cases the dimension D (of the Hilbert space) remains

bounded, but grows as a function of d raised to the power of the polynomials’ degree.

Other examples are the exponential, squared exponential, Matérn, or rational quadratic

kernels, which are transformations of the Euclidean distance between the two low dimen-

sional vectors. The dimension D of the implicit feature space associated with these kernels

is in principle unbounded, e.g. for the exponential kernel function K(x,y) = e−‖x−y‖
2

(cf. [155], Table 4.1). Despite the large dimension D � d, all these kernels can be evaluated

in time O(d) (cf. [155]). For a longer introduction to kernel functions and their applications

we confer to the books by Rasmussen and Williams [155] and by Schölkopf and Smola [158].

2.1.3 Embeddings of the metric spaces

A metric embedding is a function between two metric spaces which preserves the distances

between the elements of the metric space. Definition 2.7 provides a formal definition of

metric spaces.

Definition 2.7 (D-embedding of metric spaces, Distortion, cf. [136] Definition

15.1.1). Given metric spaces (X ,dX) and (Y,dY ), a mapping f : X → Y is called a

D-embedding, where D ≥ 1 is a real number, if there exists a number r > 0 such that for

all u,v ∈ X ,

r · dX(u,v) ≤ dY (f(u), f(v)) ≤ D · r · dX(u,v).

The infimum of the numbers D such that f is a D-embedding is called the distortion of f .

The embedding is called isometric if distances are preserved exactly, i.e. if the distortion

of the embedding is 1.

In Section 4.6 we present an embedding necessary for our hardness result. We discuss

the distortion of embeddings of the metric spaces of polygonal curves in Chapter 5.

Moreover, for a discussion in Section 2.4 we need a following well-known result on isometric

embedding between spaces `d1 and `2
d−1

∞ , for all d ∈ N. For d = 2, Lemma 2.8 implies that

`21 is isometrically embeddable into `2∞.
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Lemma 2.8 (cf. [111]). For any d ∈ N, the space Rd with the `1-norm is isometrically

embeddable into the space R2d−1
with the `∞-norm.2

2.1.4 Balls, spheres, and doubling dimension

In a metric space X it is often important to identify all elements of X that are at most at

certain distance from a given element in X . This is captured by the notion of balls.

Definition 2.9 (Ball). In a metric space (X ,d), a ball of center p ∈ X and radius r ∈ R,

r ≥ 0, is defined as the set B(p, r) = {q ∈ X : d(p, q) ≤ r}.

Wherever the term “ball” is used throughout this thesis it will be clear from the context

which metric space is used. Therefore, we do not distinguish the metric space from the

notation of a ball.

In the Euclidean spaces, a d-sphere is a d-dimensional manifold that can be embedded

in Euclidean (d+ 1)-dimensional space. A d-sphere is a set of points in Rd+1 at a constant

distance r from a fixed point called center. A ball in Euclidean d-dimensional space is

called a d-ball, and it is bounded by a (d − 1)-sphere. The d-sphere is the surface or

boundary of a (d+ 1)-dimensional ball.

We want to be able to quantify the volume and the surface area of d-spheres with radius

r in the Euclidean space. To do so, we need first to introduce the gamma function. It is a

known extension of the factorial function to the set of complex numbers, but here we give

the definition using the set of positive real numbers as a domain.

Definition 2.10 (Gamma function, cf. [17] Equation 5.2.1). Given positive real number

z, the gamma function is defined by

Γ(z) =

∫ ∞
0

xz−1e−xdx.

The gamma function has the following properties. It holds that Γ(1) = 1 and Γ(n+1) = n!

for all n ∈ N ([17] Equation 5.4.1). It is Γ(1/2) =
√
π ([17] Equation 5.4.6). Since for all

z > 0 it is Γ(z + 1) = z · Γ(z) ([17] Equation 5.5.1), we can conclude by induction that, for

all n ∈ N ∪ {0}, it is

Γ

(
n+

1

2

)
=

(2n)!
√
π

4n · n!
.

2In the survey by Indyk [111] the goal dimension is 2d. The result with 2d−1 is proven in the lecture
notes [23] as Theorem 1.14. See https://moodle2.cs.huji.ac.il/nu15/pluginfile.php/553935/

mod_resource/content/1/METAP18_Lecture_1.pdf (visited on April 13th, 2021).

https://moodle2.cs.huji.ac.il/nu15/pluginfile.php/553935/mod_resource/content/1/METAP18_Lecture_1.pdf
https://moodle2.cs.huji.ac.il/nu15/pluginfile.php/553935/mod_resource/content/1/METAP18_Lecture_1.pdf
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Now, the volume and the surface area of a d-dimensional Euclidean ball are given by the

following lemma.

Lemma 2.11 (cf. [17] Equation 5.19.4). The volume Vd(r) and the surface area Sd(r) of

the d-dimensional ball ((d− 1)-sphere) of radius r ≥ 0 in the space (Rd, ‖·‖2) are given by

Vd(r) =
π
d
2

Γ
(
d
2 + 1

) · rd and Sd(r) =
2π

d
2

Γ
(
d
2

) · rd−1. (2.6)

The concept of doubling dimension of a metric space seems to be primarily of combina-

torial interest, using balls in that metric space. However, it turns out that, if the doubling

dimension is finite, it provides properties to the metric space that enable efficient clustering

algorithms, discussed in Section 2.4.

Definition 2.12 (Doubling dimension, cf. [93]). The doubling dimension of a metric

space is the smallest positive integer d such that every ball of the metric space can be covered

by 2d balls of half the radius.

Note that for every fixed p ≥ 1, the doubling dimension of the space (Rd, ‖·‖p) is

Θ(d) (cf. the work of Gupta, Krauthgamer and Lee [93]). In many applications, the

intrinsic dimension of the input data is much lower than the dimension of the space the

data is taken from (cf. Ackermann, Blömer and Sohler [3]). However, the opposite can

also be the case, as we show in Section 4.2, where the ambient space has a finite doubling

dimension, but the space of the curves has an infinite doubling dimension.

2.1.5 Notes from the real analysis

In this thesis, we use the following two concepts from the real analysis. First concept provides

a characterization of mappings between two metric spaces. The Lipschitz continuous

property, stated by Definition 2.13, is stronger than the uniform continuity property, but

weaker than the continuous differentiability property (cf. [157]). This turns out to be a

sufficient property for the subgradient optimization method to work (cf. Section 2.2), and

later for its probabilistic extension in Chapter 6, as the functions we optimize are not

differentiable.
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Definition 2.13 (Lipschitz function, cf. [157] on page 192). A mapping f from a metric

space (X ,dX) to a metric space (Y,dY ) is said to be M-Lipschitz continuous, provided

there is a constant M ≥ 0 such that for all u, v ∈ X it is

dY (f(u), f(v)) ≤M · dX(u, v). (2.7)

Sometimes the Lipschitz property (Equation (2.7)) is valid only within a ball B(c,R) ⊂ X ,

with given center c ∈ X and radius R > 0. Then we say that f is M -Lipschitz on B(c,R).

The second concept is the Lebesgue measure. It is convenient to use the Lebesgue

measure to simplify the expressions including total length of intervals contained in the

finite or countable collection, in the one-dimensional space R.

For a set of real numbers U ⊆ R, we denote its Lebesgue measure with µ(U) (cf. the

book by Royden [157], Chapter 2 for more details). This set function has following three

properties:

i) each interval I = [a, b] is measurable, and its measure µ(I) is its length, which is

defined to be |b− a| if I is bounded, and ∞ if I is unbounded;

ii) measure is transition invariant, i.e. for a measurable set E and x ∈ R, if we define

E + x = {e+ x : e ∈ E}, then it is µ(E + x) = µ(x);

iii) measure is countably additive over countable disjoint unions of sets, i.e. if {Ei}∞i=1 is a

countable pairwise disjoint collection of measurable sets, then µ(∪∞i=1Ei) =
∑∞

i=1 µ(Ei).

Since for any two measurable sets E1 and E2 in R it is µ(E1 ∪ E2) + µ(E1 ∩ E2) =

µ(E1) + µ(E2) (cf. [157] page 47), it follows that for a finite set I of n (possibly not

pairwise disjoint) intervals Ii, i ∈ [n], the value of µ(I) = µ (∪ni=1Ii) is the total length of

all intervals in I.

2.2 Notes from the convex analysis

In Chapter 6 we use several results from the convex analysis, that are needed for the

subgradient descent method. In this section, we list these results. For a longer introduction

to convex optimization confer to the books by Boyd and Vanderberghe [29], and by

Nesterov [148]. We start with the notion of a convex set.

Definition 2.14 (Convex set, cf. [148] Definition 2.2.2). A set Q ⊆ Rd is called convex,

if for any x, y ∈ Q, their assigned vectors x,y ∈ Rd, and any λ ∈ [0, 1], it holds that the

point z, representing the vector z = λx + (1− λ)y, is in Q.
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The point z is called a convex combination of x and y. We can reduce the notation to

the points only, implying the assigned vectors. It is well known (cf. [29] Section 2.1.4), that

for any given set of points Q = {x1, . . . , xn} in Rd, its convex hull, denoted CH(Q), and

defined as the set of all convex combinations of the points in Q:

CH(Q) = {y ∈ Rd : y =
n∑
i=1

λixi, where xi ∈ Q, λi ≥ 0,
n∑
i=1

λi = 1, for all i ∈ [n]} (2.8)

is a convex set.

Definition 2.15 (Convex function, cf. [29] Equation 1.3). A function φ : Rd → R is

called a convex function, if for all x, y ∈ Rd, and for all α, β ≥ 0 with α+ β = 1, it holds

that

φ(αx+ βy) ≤ αφ(x) + βφ(y). (2.9)

The link between convex sets and convex functions is made by the epigraph: a function

is convex if and only if its epigraph, defined as epi(φ) = {(x, t) ∈ D × R : φ(x) ≤ t}, is a

convex set (cf. [29] Section 3.1.7).

One of the main problems in convex optimization is to solve

min{φ(x) : x ∈ Q}, (2.10)

where φ is a convex function, and Q is a closed convex set Q ⊆ Rd (cf. [148] Equation

3.2.7). If the gradients of φ exist, i.e. φ is continuously differentiable, then there are many

methods to solve the optimization problem. However, the differentiability of the function

φ is often not provided, and therefore, the gradients do not exist. For such general convex

functions, the notion of a subgradient is appropriate.

Definition 2.16 (Subgradient, subdifferential, cf. [148] Definition 3.1.6). Let φ : Rd →
R be a convex function. A vector g is called a subgradient of function φ at point x, if for

any y ∈ Rd it holds

φ(x)− φ(y) ≤ 〈g, x− y〉 . (2.11)

The set of all subgradients of φ at x, denoted ∂φ(x), is called the subdifferential of function

φ at point x.
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The set of subgradients has many useful properties. For more details we refer to a book

by Nesterov [148], and state here the following two, as Lemma 2.17 and Lemma 2.18. A

convex function φ : D → R, D ⊆ Rd, is closed, if its epigraph is closed.

Lemma 2.17 (cf. [148] Theorem 3.1.13). Let φ be a closed and convex function, and let

x0 be a point in the interior of the domain of φ. Then, ∂φ(x0) is a non-empty set.

Since the domain of the function φ will be Rd for our applications, we can simply use

the fact that the subdifferential is always non-empty. If the zero-vector belongs to the

subdifferential of the function φ in some point, then that point is a (local) optimum of φ.

Lemma 2.18 (cf. [148] Theorem 3.1.15). Given function3 φ : D → R, D ⊆ Rd, we have

that φ(x∗) = minx∈D φ(x) if and only if 0 ∈ ∂φ(x∗).

The convexity of a function φ : Rd → R implies that any local optimum of φ is also the

global optimum. We state this as the next lemma, followed by a standard proof.

Lemma 2.19. Let φ : D → R, D ⊆ Rd, be a convex function, and let x∗ be a local

minimum of φ. Then it is f(x∗) ≤ f(x), for all x ∈ D.

Proof. Since x∗ is a local minimum, it holds for an arbitrary small ε > 0, for all x ∈ D
with ‖x− x∗‖ ≤ ε, that f(x) ≥ f(x∗). Let there exist another point x̂, that is a global

minimum of φ, with x̂ 6= x∗, i.e. φ(x̂) < φ(x∗). By convexity of φ, for all α ∈ (0, 1] it is

φ(αx̂+ (1− α)x∗) ≤ αφ(x̂) + (1− α)φ(x∗) < αφ(x∗) + (1− α)φ(x∗) = φ(x∗). (2.12)

Let arbitrarily small ε > 0 be chosen by the local minimum property. Let xα = αx̂+ (1−
α)x∗ ∈ D. Then it is

‖xα − x∗‖ = ‖(αx̂+ (1− α)x∗)− x∗‖ = ‖αx̂− αx∗‖ = α ‖x̂− x∗‖ . (2.13)

If ‖x̂− x∗‖ < ε, then it suffices to choose α = 1. Otherwise, let α = ε/ ‖x̂− x∗‖ ≤ 1.

For the chosen value of α, it follows from Equation (2.13) that ‖xα − x∗‖ ≤ ε. But then

Equation (2.12) contradicts the assumption that x∗ is a local minimum.

The subgradient descent optimization method to solve the problem of Equa-

tion (2.10) consists of a simple iterative scheme, that we describe next (as presented

in the book by Nesterov [148] Section 3.2.3). We start from some point c0 ∈ Q. Let

{hi}i∈N∪{0} be a sequence, such that hi > 0, limi→∞ hi = 0, and
∑∞

i=0 hi = ∞. The

3The statement of this lemma does not require for the function φ to be convex. However, the subdifferen-
tiability of the function in x∗ implies convexity [148].
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point ci+1 is computed in the i-th iteration. Let g(ci) be a subgradient of φ at point ci.

Then, let ci+1 = ci − hi · g(ci)/ ‖g(ci)‖, i.e. the point ci is translated by the unit vector

g(ci)/ ‖g(ci)‖, multiplied by −hi. Provided that φ is M -Lipschitz continuous for some

constant M (cf. Definition 2.13), this method converges toward the optimal solution point.

This is stated by the following theorem.

Theorem 2.20 (Subgradient descent, cf. [148] Theorem 3.2.2). Let c∗ ∈ argminc∈Rd φ(c),

i.e. c∗ be an optimal solution of the problem of Equation (2.10). Let c0 be the chosen

starting point. Let φ be M -Lipschitz continuous on B(c∗, R), where R = ‖c0 − c∗‖. Then

after i iterations of the subgradient descent method, it holds that

min
j∈{0,...,i}

φ(cj)− φ (c∗) ≤M ·
R2 +

∑i
j=0 h

2
j

2
∑i

j=0 hj
. (2.14)

The subgradient descent method converges toward an optimal solution. However, we

can obtain a guaranteed quality of the solution after a fixed number of iterations, say `, by

setting hi = R/
√
`+ 1, for i ∈ {0, 1, . . . , `}. Then, Equation (2.14) becomes

min
j∈{0,...,`}

φ(cj)− φ (c∗) ≤ MR√
`+ 1

. (2.15)

This strategy is also optimal for the problem of Equation (2.10) (cf. [148]).

2.3 Results from the probability theory

A probability space is a triple (Ω,F ,Pr), containing:

• a sample space Ω, which is the set of all possible outcomes of the random process

modeled by the probability space;

• a family F representing allowable events, and each set in F is a subset in Ω; and

• a probability function Pr : F → R, that satisfies Definition 2.21.

An element of Ω is called a simple event. The definition of probability spaces is taken

from [141] Definition 1.1.

Definition 2.21 (Probability function, cf. [141] Definition 1.2). A probability function

is any function Pr : F → R, that satisfies the following conditions:

(i) for any event E ∈ F it is 0 ≤ Pr [E] ≤ 1;

(ii) Pr [Ω] = 1; and

(iii) for any finite or countably infinite sequence of pairwise mutually disjoint events

{Ei}i≥1 it is Pr [∪i≥1Ei] =
∑

i≥1 Pr [Ei].
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The probability spaces that are used throughout this thesis are discrete probability

spaces, i.e. the sample space Ω is finite or countably infinite, and the family F consists of

all subsets of Ω. We use the following notation. For any event E let the indicator function

be 1E = 1 if E happens, and 0 otherwise. The probability of an event E ∈ F is denoted

Pr [E]. For a random variable X and a probability distribution D, we write X ∼ D to

indicate that X is distributed according to D. The expected value of a random variable

X ∼ D over a sample space Ω is denoted as E [X] =
∑

x∈Ω x · Pr [X = x]. If we have a

function φ that depends on the randomness of two random variables X and Y , say φ(X,Y ),

then we write EX [φ(X,Y )] to emphasize that the expectation is only over randomness of

X.

In the rest of this section we state some well-known results from the probability theory,

that are used throughout this thesis. For more results and a well-written introduction to

randomness-based algorithms see the book by Mitzenmacher and Upfal [141].

Theorem 2.22 (Linearity of expectation, cf. [141] Theorem 2.1). For any finite col-

lection of discrete random variables X1, . . . , Xn with finite expected values, it is

E

[
n∑
i=1

Xi

]
=

n∑
i=1

E [Xi] .

If two random variables X and Y are given on the same probability space, then the

expression E [X | Y ] is a random variable f(Z), i.e. a function of the random variable Z,

that takes the value E [X | Y = y] when Y = y (cf. [141] Definition 2.7). Then, from the

linearity of expectation, we have the following lemma.

Lemma 2.23 (Law of total expectation, cf. [141] Theorem 2.7). Let X and Y be two

random variables on the same probability space. Then it holds that

EX [X] = EY [EX [X|Y ]] . (2.16)

The geometric random variable represents the situation where we have a sequence of

independent trials, and in each trial the success probability equals p.

Definition 2.24 (Geometric random variable, cf. [141] Definition 2.8). A geometric

random variable X with parameter p is given by the following probability distribution on

n ∈ N:

Pr [X = n] = (1− p)n−1p. (2.17)
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That is, for the geometric random variable X to equal n, there must be n− 1 failures.

For a random variable X with the distribution given by Equation (2.17), the expectation

is given by

E [X] =
1

p
. (2.18)

A simple but very useful fact, presented by the following lemma, intuitively states that

the probability that an event from a collection of events occurs is at most the sum of

probabilities of single events from that collection.

Lemma 2.25 (Union bound inequality, cf. [141] Lemma 1.2). For any finite or

countably infinite sequence of events E1, E2, . . . it holds that

Pr

⋃
i≥1

Ei

 ≤∑
i≥1

Pr [Ei] .

The following two results relate the probability distribution of a random variable to the

expected value of that variable. The Markov inequality is often too weak, but nevertheless

a basic result for better bounds. The Chernoff inequality is a powerful result, whose bound

decreases as an exponential function.

Lemma 2.26 (Markov inequality, cf. [141] Theorem 3.1). Let X be a random variable

that assumes only nonnegative values. Then, for all a > 0,

Pr [X ≥ a] ≤ E [X]

a
.

Lemma 2.27 (Chernoff inequality, cf. [141] Theorems 4.4 and 4.5). Let X1, . . . , Xn be

independent 0-1 random variables, such that Pr [Xi = 1] = pi and Pr [Xi = 0] = 1 − pi,
for all i ∈ [n]. Let X =

∑n
i=1Xi. Then, for 0 < η < 1, it holds that

Pr [X ≥ (1 + η) · E [X]] ≤ e−η2E[X]/3 (2.19)

and

Pr [X ≤ (1− η) · E [X]] ≤ e−η2E[X]/2. (2.20)

2.4 Clustering problems and coresets

Let X be a ground set equipped with dissimilarity measure d. Let n, k ∈ N be positive

integers. Let P ⊂ X be a finite set of points with P = {p1, . . . , pn}. We want to find a set
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C ⊂ X of k points, that we call centers, which minimize one of the following cost functions:

cost∞(P,C) = max
i∈{1,...,n}

min
c∈C

d(pi, c) , (2.21)

cost1(P,C) =

n∑
i=1

min
c∈C

d(pi, c) , (2.22)

We refer to the clustering problem as k-center (Equation 2.21) and k-median (Equa-

tion 2.22), respectively. Furthermore, we denote with opt
(i)
k (P ), i ∈ {∞, 1}, the cost of an

optimal k-center (resp. k-median) clustering of P .

In case we have only one clustering center c, we will simply write costi(P, c) instead of

costi(P, {c}), for i ∈ {∞, 1}. The k-center problem for k = 1 in Euclidean space is called

the smallest enclosing ball problem.

We will occasionally in this thesis refer to the k-means clustering problem, related to

the k-center and the k-median problems. For the same input as above, the goal is to find a

set C ⊂ X of k points, that minimize

cost2(P,C) =

n∑
i=1

min
c∈C

d(pi, c)
2 . (2.23)

Intuitively, given clustering problem for an input set P , a strong coreset is a weighted

set of points such that it approximates the clustering cost of the input by any k-tuple of

the cluster centers, up to a multiplicative factor of (1 + ε). We give the formal definition

according to Har-Peled and Mazumdar [97].

Definition 2.28 (Strong coreset, cf. [97] Definition 3.1). Given ε > 0 and k ∈ N. For

a point set P in a metric space X , a weighted set S ⊂ X is a strong (k, ε)-coreset for the

k-center (resp. k-median) clustering problem, if for any set C of k points in X , we have

(1− ε) costi(P,C) ≤ costi(S,C) ≤ (1 + ε) costi(P,C),

for i =∞ (resp. i = 1).

The requirements of Definition 2.28 are difficult to fulfill, as they require to approximate

the distances to every potential set of centers. Sometimes it is enough to find a smaller set

that will approximate the clustering cost of the whole input only for an optimal choice of

clustering centers (up to a multiplicative factor of (1 + ε)). The definition of a weak coreset

in the literature is not unique. We give the definition of the weak coreset for the 1-center

problem in Rd (smallest enclosing ball), according to Bădoiu, Har-Peled, and Indyk [22],
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as their definition was also used by Bădoiu and Clarkson [20, 21]. We refer to the latter

result later in this thesis.

Definition 2.29 (Weak coreset, cf. [22]). Given is 0 < ε < 1. For a point set P in Rd,

a set S ⊂ P is a weak ε-coreset for the 1-center clustering problem (smallest enclosing ball),

if the radius of the smallest enclosing ball of S is at least 1/(1 + ε) times the radius of the

smallest enclosing ball of P . The center c∗ of the smallest enclosing ball of S satisfies that

opt
(∞)
1 (P ) ≤ cost∞(P, c∗) ≤ (1 + ε) opt

(∞)
1 (P ).

2.4.1 Related work on clustering problems

Hardness results

The k-center problem in Rd under the `∞-norm, as well as under the `1- and the `2-norm,

is NP-hard for d ≥ 2, as shown by Feder and Greene [80]. They have also shown that even

approximating the optimal cost within a factor smaller than 2 (under `∞ and `1), and a

factor smaller than 1.822 under the `2-norm is NP-hard. Some of the results of Feder and

Greene [80] can be obtained from an earlier result by Megiddo and Supowit [138]. Note

that Megiddo [137] showed that the 1-center problem in R2 can be solved in linear time.

The k-center problem in the general metric spaces is also NP-hard to approximate within

a factor of 2, as shown by Hochbaum and Shmoys [101].

The k-median problem in Rd under the `1- and the `2-norm was shown to be NP-hard

for d ≥ 2 by Megiddo and Supowit [138]. The isometric embedding of (R2, `1) into (R2, `∞),

given in Lemma 2.8 for d = 2, implies that the k-median problem is also NP-hard under

`∞ for d = 2 (and therefore for d ≥ 2).

For the k-median problem its discrete version is often observed, i.e. if the centers are to

be chosen from the set of the input points. The discrete version of the k-median problem

in Rd was shown by Papadimitriou [150] to be NP-hard as well. This implies that both

versions of the k-median problem are NP-hard in the general metric settings as well.

Even to approximate the k-median solution by a polynomial time algorithm in general

metric spaces is not possible by a factor better than 1 + 2/e ≈ 1.736 unless NP ⊆
DTIME

[
nO(log logn)

]
. This was shown by Jain, Mahdian and Saberi [115].

k-clustering in general metric spaces

There is a number of approximation algorithms for both k-center and k-median problems.

For the k-center problem in general metric spaces, a simple greedy 2-approximation

algorithm in time linear in the input was given independently by Gonzalez [89] and by
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Hochbaum and Shmoys [101], which is also optimal. We utilize this algorithm in Section 4.3,

and state it as Theorem 4.4.

For the k-median problem we state the approximation results for the discrete version

of the problem, as that one is mostly researched. Because of the triangle inequality, every

α-approximation for the discrete version is a (2α)-approximation for the general version of

the k-median problem.

The first constant-factor approximation algorithm for the (discrete) k-median problem in

general metric spaces was given by Charikar, Guha, Tardos and Shmoys [53]. They obtained

the approximation factor of 62
3 in time polynomial in n and k. Mettu and Plaxton [140] gave

a lower bound on the running time of any (deterministic or randomized) constant-factor

approximation algorithm of Ω(nk), and an O (1)-approximation algorithm. Chen [54]

presented a (10 + ε)-approximation algorithm with time linear in n, and polynomial in k.

He used strong coresets of size O
(
dk2ε−2 log n log(k/ε)

)
. We use the result of Chen [54] in

Section 4.3, and state it as Theorem 4.5.

The approximation factor after the result of Chen, was further improved by two recent

results, but with a running time no longer linear in n. Li and Svensson [130] gave a

(1 +
√

3 + ε)-approximation in time O
(
n(1/ε)2

)
. Byrka et al. [50] improved the result of Li

and Svensson from 2.732 + ε to a (2.675 + ε)-approximation algorithm, with the running

time O
(
n(1/ε) log(1/ε)

)
.

k-clustering in Euclidean spaces

In the Euclidean space Rd, one is usually interested in a (1 + ε)-approximation algorithm

for both k-center and k-median problems. There exists a series of such algorithms, and we

address only those with the running time at most linear in n. Many of the algorithms we

address are based on coresets. For a survey of the coreset methods we confer to the work

of Munteanu and Schwiegelshohn [144].

For the k-center problem, the first (1+ε)-approximation algorithm was given by Bădoiu,

Har-Peled and Indyk [22]. Their algorithm constructs a (weak) coreset of size O
(
1/ε2

)
for

the 1-center problem, and then uses this coreset to find a candidate set for the solution of

the k-center problem. The running time of their algorithm is 2O((k log k)/ε2) · dn. For the

1-center problem, this yields an O
(
dn/ε2 + (1/ε)O(1)

)
-time algorithm.

Bădoiu and Clarkson [20] improved the result of Bădoiu, Har-Peled and Indyk [22], by

reducing the coreset size for the 1-center problem to d2/εe. Bădoiu and Clarkson [21]

showed that d1/εe is the optimal (weak) coreset size for the 1-center problem. The coresets

of Bădoiu and Clarkson [20, 21] for the 1-center problem imply the small coresets for

the k-center problem, and yield the (1 + ε)-approximation algorithm to the k-center
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problem in time 2O((k log k)/ε) · dn. For the 1-center problem, the running time is reduced

to O
(
dn/ε+ (1/ε)5

)
.

Based on the (1 + ε)-approximation for the discrete k-median by Kolliopoulos and

Rao [120], Har-Peled and Mazumdar [97] gave a (1+ε)-approximation algorithm without the

assumption on the centers’ choice with running time O (n+ poly(k, log n) · exp(poly(1/ε))).

The algorithm of Har-Peled and Mazumdar uses (strong) coresets of size O
(
(k log n)/εd

)
.

Har-Peled and Kushal [96] constructed the coresets whose size does not depend on n:

O
(
k2/εd

)
. This improves the running time of the (1 + ε)-approximation algorithm to

O (n+ poly(k, log n, 1/ε)).

Another line of research is built upon the (1 + ε)-approximation algorithm for the

k-median problem by Kumar, Sabharwal and Sen [126] in time O
(
nd · 2(k/ε)O(1)

)
, based

on the random sampling. Chen [54] improved the result of Kumar, Sabharwal and

Sen [126] using coresets of size O
(
dk2 log n log(k/ε)/ε2

)
, with a total running time of

O
(
nd+ 2(k/ε)O(1) · d2 logk+2 n

)
. Feldman and Langberg [81] improved this result further us-

ing coresets of size O
(
(dk log k)/ε2

)
, and reducing the running time to O

(
nd+ 2poly(k,1/ε)

)
.

Only recently, the strong coresets for the Euclidean k-median problem of size independent of

the dimension: O
(
(k2 log k)/ε4

)
, were presented by Sohler and Woodruff [163]. The coresets

of Sohler and Woodruff can be computed in time Õ ((n+ d) poly(k/ε) + exp(poly(k/ε))).

Kumar, Sabharwal and Sen [126] showed that a small uniform sample of a constant

number of input points, independent of n: O
(
(1/ε)O(1)

)
, is sufficient to construct a

candidate set of size O
(

2(1/ε)O(1)
)

, that contains a (1 + ε)-approximation for the 1-median.

Indyk and Thorup [110, 168] showed that a uniform sample of size O
(
(1/ε2) · log n

)
is

sufficient to approximate the discrete metric 1-median on n points within a factor of (1 + ε).

Ackermann, Blömer and Sohler [3] showed how this argument can be adapted to the metric

spaces with finite doubling dimension, which include the continuous Euclidean space `d2.

We adapt these ideas to find a (1 + ε)-approximation in Section 6.2.

Ackermann, Blömer and Sohler [3] showed that a (1 + ε)-approximation to the k-median

problem in general metric spaces can be efficiently found, if a (1 + ε)-approximation to the

1-median can be found by taking a random sample of constant size, and exactly solving

the 1-median problem on the sample. This result holds not only for the metric spaces with

finite doubling dimension (e.g. `d2), but also for the (not necessarily metric) spaces, whose

dissimilarity measure satisfies the sampling property (cf. Theorem 4.14). We utilize this

result for our clustering algorithm in Section 4.5.



2.4 Clustering problems and coresets 35

Subgradient descent method and the Euclidean 1-clustering problems

The stochastic subgradient descent is a popular and often only implicitly used technique

in the coreset literature, and a method for solving the 1-center (smallest enclosing ball)

and the 1-median problem. It is derived from convex optimization, and we give a brief

overview of this method in Section 2.2.

One of the first coreset constructions using stochastic subgradient descent was given

in the uniform sampling algorithm of Bădoiu, Har-Peled and Indyk [22] for 1-median. In

each iteration a single point is sampled uniformly. Moving the current center towards that

point, for a carefully chosen step size, improves the solution with high probability. Each

step can be seen as taking a descent in a uniformly random direction from the subgradient

which roughly equals the sum of directions to all points. The result is a set of candidate

solutions of size O(2(1/ε)O(1) · log n) to (1 + ε)-approximate the 1-median problem for the

input of n points in Rd.
The coreset construction of Bădoiu and Clarkson [20] for the 1-center problem on an

input set P ⊂ Rd collects the candidate centers during a subgradient descent. Starting

from an initial center, the current point of their algorithm is iteratively moved a little

towards the input point that is farthest away. In their algorithm, the next point included

in the (weak) coreset is the one maximizing the distance to the current best center. Note

that a suitable subgradient at the current center points exactly into the opposite direction.

More precisely, if q ∈ P is a point that is farthest away from the current center c, then

(c − q)/ ‖c− q‖ ∈ ∂maxp∈P ‖c− p‖. The algorithm of [20] can thus be interpreted as a

subgradient descent minimizing maxp∈P ‖c− p‖. The authors of [20] also gave a more

explicit application of the subgradient descent to the problem with a slightly larger number

of iterations.

First application of the subgradient descent to solve the 1-median was done by Weiszfeld

[174, 175] in 1937. He gave an algorithm for the 1-median problem with O(1/ε) subgradient

iterations, and obtained an additive O(ε)-error. For the review of the results based on the

Weiszfeld method we confer to the work of Beck and Sabach [25], who emphasized the

importance of bounding the Lipschitz constant of the cost function for the optimization

process.

More recently, Cohen et al. [57] developed one of the fastest (1 + ε)-approximation

algorithms to date for the 1-median problem, using stochastic subgradient methods, with

running time O
(
nd+ d/ε2

)
. We note that in the publication [57] the running time is

stated without the O (nd)-part, which is needed to read the input. Two further crucial

steps to turn the additive error into a relative error are finding a suitable starting point

that achieves a constant approximation, and estimating its initial distance to the optimal
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solution. We generalize these approaches for the 1-center and the 1-median problem to

minimize the cost function of the set median problem, that extends both 1-center and

1-median, in Section 6.2.

Further related work on clustering of the curves is described in Subsection 4.1.3. Related

work on the clustering of the probabilistic data is described in Subsection 6.1.3.

2.5 Curves and their dissimilarity measures

2.5.1 Curves

A curve in the Euclidean space Rd, for d ∈ N, is a continuous function τ : [0, 1] → Rd.
The domain [0, 1] is chosen for the simplicity of the argumentation and presentation. It

can be replaced by an arbitrary interval [a, b], with a, b ∈ R and a < b, using an arbitrary

homeomorphism that maps [a, b] to [0, 1], and the fact that the composition of two

continuous functions is a continuous function (cf. [157], Chapter 9.3). A homeomorphism

is a function mapping two topological spaces, that is a bijection, continuous and its inverse

function is also continuous (cf. the book by Royden [157], Chapter 11).

A polygonal curve is a curve such that there are the values 0 = t1 ≤ t2 ≤ . . . ≤ tm = 1,

with wi = τ(ti) that we call vertices, and such that for all i ∈ {1, . . . ,m− 1} each curve

segment between τ(ti) and τ(ti+1) is affine, i.e.

τ(ti + x) =

(
1− x

ti+1 − ti

)
· τ(ti) +

x

ti+1 − ti
· τ(ti+1),

for all x ∈ [0, ti+1 − ti]. The polygonal curve segments between two consecutive vertices wi

and wi+1 are called edges, and denoted with wiwi+1.

We identify the curves with their images, i.e. with τ([0, 1]) ⊆ Rd, when it is clear from

the context. In this work we consider only polygonal curves, and we will simply refer to τ

as a curve. When defining a curve, we may write “curve τ : [0, 1]→ Rd with m vertices”,

or “curve τ = w1, . . . , wm”. We say that such a curve τ has complexity m. We denote

its set of vertices with V(τ).

An alternative view to the curves is provided by the data mining community, that analyzes

the signal measurements. A time series is a series (w1, t1), . . . , (wm, tm) of measurements

wi ∈ R of a signal taken at times ti ∈ R. We assume 0 = t1 < t2 < . . . < tm = 1 and

m is finite. A time series may be viewed as a continuous function τ : [0, 1] → R by

linearly interpolating w1, . . . , wm in order of ti, i = 1, . . .m, thus being a polygonal curve

in the ambient space R. This notation does not specify the points of time at which the

measurements are taken. This is justified by the choice of the dissimilarity measures we work
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with, that are formally introduced in the next subsection. In the one-dimensional ambient

space R these dissimilarity measures depend only on the ordering of the measurements

(and their values), but not on the exact points of time when the measurements are made.

As our study concentrates on one-dimensional ambient space, we are not going to make a

distinction between the notions of univariate time series and curves in R. Throughout

this thesis we use the notion curve only.

For any ti ≤ tj ∈ [0, 1], we denote the subcurve of τ starting at τ(ti) and ending at τ(tj)

with τ [ti, tj ]. For one-dimensional curves we define min(τ [t−, t+]) = min {τ(t) : t ∈ [t−, t+]}
and max(τ [t−, t+]) = max {τ(t) : t ∈ [t−, t+]}, to denote the minimum and maximum

along a (sub)curve.

Given polygonal curve τ = w1, . . . , wm in Rd, we define the length of the curve L (τ)

as L (τ) =
∑

1≤i≤m−1 L (wiwi+1) =
∑

1≤i≤m−1 ‖wi − wi+1‖. For two curves τ and σ it is

L (τ ∪ σ) = L (τ) + L (σ). (It is neither required that the curves τ and σ do not intersect,

nor that they are concatenated.) Then for a set S ⊆ Rd, L (τ ∩ S) is the length of the

part of the curve τ that is contained in S. Such part of the curve τ can consist of multiple

(sub)curves. Note that here we want to take in count multiple instances of the same line

segment separately, and not just once, as it was the case with the Lebesgue measure for

the length of the possibly intersecting intervals (cf. Subsection 2.1.5).

We need the notion of curve length to define a class of realistic input curves. The

c-packed curves were introduced by Driemel, Har-Peled, and Wenk in [66], who wrote that

the parameter c should measure how “unrealistic” the input curves are. The c-packedness

of curves is formally defined as follows.

Definition 2.30 (c-packed curve, cf. [66]). Given c > 0, a curve τ ∈ Rd is c-packed if

for any point p ∈ Rd and for any radius r > 0, the total length of the curve τ inside the

ball B(p, r) in the metric space (Rd, ‖ · ‖2) is at most c · r, i.e. L (τ ∩B(p, r)) ≤ c · r.

We utilize the c-packed curves to obtain better bounds on embeddings of the curves in

Chapter 5. A brief discussion on computing of the distances of c-packed curves is given at

the end of Subsection 2.5.3.

2.5.2 Dissimilarity measures on curves

Given are two curves τ : [0, 1]→ Rd and σ : [0, 1]→ Rd. In some literature, the curves are

observed as sets of points, and thus a dissimilarity measure defined over sets can be used.

One such measure is the Hausdorff distance.

Let τ(t), t ∈ [0, 1], be a point on τ . Let the dissimilarity measure of the point τ(t)

to the curve σ be defined as d−→
H

(τ(t), σ) = mins∈[0,1] ‖τ(t) − σ(s)‖2. By extending this
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τ
σ

Figure 2.1: Two differently structured curves τ and σ that have small Hausdorff distance.
The Hausdorff distance of these curves is small, but their Fréchet distance is
much greater. A similar figure was given in [64, 66].

dissimilarity measure to the case of two curves, we have directed Hausdorff dissimilarity

measure4, defined as:

d−→
H

(τ, σ) = max
t∈[0,1]

min
s∈[0,1]

‖τ(t)− σ(s)‖2.

Since for the two curves τ and σ it may hold that d−→
H

(τ, σ) 6= d−→
H

(σ, τ) (see Figure 2.1 for

an example), we overcome this obstacle by defining the (undirected) Hausdorff distance

as:

dH(τ, σ) = max{d−→
H

(τ, σ) , d−→
H

(σ, τ)}.

The Hausdorff distance does not consider the inner structure of the curves and the possible

curve orientation. This comes from observing the curves as sets, thus there exist curves

whose structure differs a lot, but whose Hausdorff distance is small (see Figure 2.1). The

distance measures of two curves that do not have such a problem, and that represent

the cost of transforming one curve into the other are Fréchet and dynamic time warping

distance.

Let H denote the set of continuous and monotonically increasing functions f : [0, 1]→
[0, 1] with the property that f(0) = 0 and f(1) = 1. Note that the functions in H are

bijections. The functions in H are called reparametrizations. For two given functions

τ : [0, 1]→ Rd and σ : [0, 1]→ Rd, their continuous Fréchet distance5 is defined as

dF (τ, σ) = inf
f∈H

max
t∈[0,1]

‖τ(t)− σ(f(t))‖2, (2.24)

The Fréchet distance between the two curves is defined as the Fréchet distance of their

corresponding continuous functions. Note that any f ∈ H induces a bijection between the

4This dissimilarity measure is usually called “directed Hausdorff distance”, but we defined that a distance
function must be symmetric.

5Usually called simply “Fréchet distance”.
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two curves. We refer to the function f that realizes the Fréchet distance as a matching.

We say that the matching witnesses the Fréchet distance between the two curves.

It may be that such a matching exists in the limit only. That is, for any ε > 0, there

exists a f ∈ H that matches each point on τ to a point on σ within distance dF (τ, σ) + ε.

In particular, there is a continuous function f ′ : [0, 1] → [0, 1], that is monotonically

non-decreasing, with maxt∈[0,1] ‖τ(t)−σ(f ′(t))‖2 = dF (τ, σ). By a slight perturbation of f ′

we have a bijection f ∈ H with maxt∈[0,1] ‖τ(t)− σ(f(t))‖2 = dF (τ, σ) + ε, for arbitrarily

small ε > 0.

Clearly by the definition of the Fréchet distance the interval [0, 1] can be adapted to

any domain interval. The Fréchet distance is invariant under reparametrizations by an

arbitrary homeomorphism.

It is well-known that the Fréchet distance is a pseudo-metric (cf. [14]), i.e. it satisfies

all properties of a metric in the ambient space Rd, except that there may be two different

functions τ, σ : [0, 1] → Rd such that dF (τ, σ) = 0. To resolve this, we observe all such

functions to be equivalent, and consider the equivalence classes that are induced by functions

of pairwise distance 0 represented by a single function.

In this thesis, particularly in Chapter 3 and Chapter 4, we work with curves in one-

dimensional ambient space R, i.e. with univariate time series. We represent the curves

as an ordered list of measurements, without explicit time-stamps. We notice that only

the ordering of the measurement values wi is relevant and that under Fréchet distance

two one-dimensional curves can be considered of being identical, if they have the same

sequence of local minima and maxima. Therefore, we can assume that a curve is induced

by its sequence of local minima and maxima and we will use the term “curve” throughout

this work to describe the equivalence class of curves with pairwise Fréchet distance 0.

Therefore, we obtain a metric space (∆, dF ), defined by the set ∆ of all (equivalence

classes of) one-dimensional curves and the continuous Fréchet distance. We denote with

∆m the set of all one-dimensional curves of complexity at most m.

The continuous Fréchet distance requires for a reparametrization for the complete domain

interval [0, 1]. A related dissimilarity measure is the discrete Fréchet distance, which requires

only for a mapping between vertices of the input curves. For simplicity of the notation,

we adapt the domain of the functions: let the polygonal curves σ : [1,m′′] → Rd and

τ : [1,m′]→ Rd be given by their sequences of vertices σ = v1, . . . , vm′′ and τ = w1, . . . , wm′ .

We may assume that the parameters of the curves are chosen in such manner that for all

i ∈ [m′′], it is σ(i) = vi, and for all j ∈ [m′], it is τ(j) = wj .

A traversal T of σ and τ is a sequence of pairs of indices (i, j) of vertices (vi, wj) ∈ σ×τ
such that
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i) the traversal T starts with (1, 1) and ends with (m′′,m′), and

ii) the pair (i, j) of T can be followed only by one of (i+ 1, j), (i, j + 1) or (i+ 1, j + 1).

We notice that every traversal is monotone. If T is the set of all traversals T of σ and τ ,

then the discrete Fréchet distance between σ and τ is defined as

ddF (σ, τ) = min
T∈T

max
(i,j)∈T

‖vi − wj‖2. (2.25)

The discrete Fréchet distance is a metric on the set of polygonal curves in Rd (cf. [75]

Proposition 1). In particular, the difference to the continuous case is that two curves can

be at the discrete Fréchet distance 0 if and only if they are equal.

A related dissimilarity measure between the two curves to the discrete Fréchet distance

is dynamic time warping distance. It considers the sum of the used distances in the

traversal (instead of the maximum distance). Formally, for the two curves σ and τ from

the ambient space Rd, as given for the discrete Fréchet distance, we define:

dDTW (σ, τ) = min
T∈T

∑
(i,j)∈T

‖vi − wj‖2. (2.26)

The dynamic time warping distance is not a metric, as it does not satisfy the identity of

indiscernible elements and the triangle inequality.

2.5.3 Computing the Fréchet distance

To compute the continuous Fréchet distance, the algorithm of Alt and Godau [14] is

commonly used. We give a brief overview of the algorithm next.

For two curves τ : [0, 1]→ Rd and σ : [0, 1]→ Rd their parametric space is [0, 1]× [0, 1].

Then for a given parameter Θ ≥ 0, the Θ-free-space of τ and σ is defined as

FΘ(τ, σ) = {(t, s) ∈ [0, 1]× [0, 1] : ‖τ(t)− σ(s)‖2 ≤ Θ}. (2.27)

The parametric space can be divided into a grid called the free-space diagram. The vertical

lines of this grid correspond to the vertices of τ , and the horizontal lines correspond to the

vertices of σ. Every free-space cell in this grid corresponds to a pair of edges, one from

the polygonal curve τ and another from the polygonal curve σ. For a fixed Θ > 0 the

free-space has properties utilized by the algorithm of Alt and Godau, and which we state

as Lemma 2.31.

Lemma 2.31 (cf. [14] Lemma 3 and 4). Given are two polygonal curves τ and σ and a

parameter Θ > 0. For each pair of edges from τ and σ, the free-space in the corresponding
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free-space cell is the intersection of the cell rectangle with an ellipse (possibly degenerated

to a line), and is thus convex. It is dF (τ, σ) ≤ Θ if and only if there exists a curve within

corresponding free-space diagram FΘ(τ, σ) from (0, 0) to (1, 1) which is monotonically

non-decreasing in both coordinates.

Using Lemma 2.31 for two curves τ and σ of complexities m′ and m′′ respectively we

can decide (using dynamic programming) in time O (m′m′′) if dF (τ, σ) ≤ Θ. The value of

dF (τ, σ) can be computed using a parametric search technique over the critical values, for

which the structural changes happen to the free-space diagram, and thus obtaining the

following lemma.

Theorem 2.32 (Alt and Godau algorithm cf. [14] Theorem 6). For given polygonal

curves τ and σ, with complexities m′ and m′′, respectively, there is an algorithm that

computes the (continuous) Fréchet distance dF (τ, σ) in time O (m′m′′ log(m′m′′)).

To compute the discrete Fréchet distance and the dynamic time warping distance, it

suffices to use dynamic programming. We state the result for the discrete Fréchet distance,

provided originally by Eiter and Mannila [75].

Theorem 2.33 (Eiter and Mannila algorithm, cf. [75] Theorem 7). For given polygonal

curves τ and σ, with complexities m′ and m′′, respectively, there is an algorithm that

computes the discrete Fréchet distance ddF (τ, σ) in time O (m′m′′).

Theorem 2.33 holds for the dynamic time warping distance as well. The DTW distance

can be computed in time O (m′m′′) using dynamic programming (cf. [88]).

These algorithms, although a quarter of century old, remain almost state-of-the-art

and are frequently algorithms of choice. Let us assume that both input curves have

complexity m. For the continuous Fréchet distance, there is an algorithm of Har-Peled

and Raichel [98] that has the same asymptotical running time as the algorithm of Alt and

Godau (Theorem 2.32). The advantage of this algorithm over the algorithm of Alt and

Godau is that it avoids using the parametric search technique, that can generate large

constants during execution. The best known algorithm to compute the continuous Fréchet

distance was given by Buchin, Buchin, Meulemans and Mulzer [40], which has expected

running time O
(
m2
√

logm (log logm)3/2
)

using real RAM model, and expected running

time O
(
m2 (log logm)2

)
using word RAM model.6

For the discrete Fréchet distance, the best algorithm was given by Agarwal, Ben Avraham,

Kaplan and Sharir [5], and has the running time O
(
m2 log logm/ logm

)
using word

RAM model. The dynamic time warping distance can be deterministically computed in

6For distinction between two RAM models we refer to [40].
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O
(
m2 log log logm/ log logm

)
time using real RAM model. This was shown by Gold and

Sharir [88].

The only known lower bound for both the discrete and the continuous Fréchet distance

was given by Buchin et al. [38]. They showed that the time Ω(m logm) is needed for the

problem of deciding whether the (continuous or discrete) Fréchet distance of two curves in

the space R2 is at most a given value. Alt [13] conjectured that the decision problem of

continuous Fréchet distance is 3SUM-hard. Since Alt’s conjecture, both affirmative (by

Grønlund and Pettie [90]) and negative (by Buchin, Buchin, Meulemans and Mulzer [40])

arguments were presented. However, a definite answer is not yet known.

More fruitful was research on conditional lower bounds for the Fréchet distance problem

based on the Strong Exponential Time Hypothesis (SETH), conjectured by Impagliazzo,

Paturi and Zane (cf. [108, 109]), that we state next (as it was presented by Bringmann [31]).7

Hypothesis 2.34 (SETH, cf. [108, 109]). There is no η > 0, such that there is an algo-

rithm for all k, with running time O
(

(2− η)N
)

, that answers if a formula in conjunctive

normal form with N variables and whose each clause is limited to at most k literals, is

satisfiable.

Bringmann [31] showed that, unless SETH fails, there is no O
(
m2−η) algorithm to

compute the (continuous or discrete) Fréchet distance for any η > 0, in the ambient space

Rd, d ≥ 2. This result was extended by Bringmann and Mulzer [37] for the discrete Fréchet

distance and for d = 1. For the continuous Fréchet distance in one-dimensional ambient

space, no lower bounds are known. Buchin et al. [43] stated that the computing of the

continuous Fréchet distance problem has a special structure in one-dimensional ambient

space. It was independently shown by Bringmann and Künnemann [33] and by Abboud,

Bačkurs and Williams [2], that there is no algorithm for the dynamic time warping distance

in time O
(
n2−η) for any η > 0, unless SETH fails.

If an approximation scheme for these distance measures is of interest, the following results

have been reported. Bringmann [31] showed that the (continuous and discrete) Fréchet

distance cannot be approximated better than the factor 1.001 by an algorithm with running

time O
(
m2−η), for any η > 0, unless SETH fails. This was improved for the discrete

Fréchet distance by Bringmann and Mulzer [37], who showed that any 1.399-approximation

algorithm in time O
(
m2−η) in one-dimensional ambient space violates SETH.

7Besides SETH, in [108, 109] Exponential Time Hypothesis (ETH) was introduced. ETH asserts that
3-SAT problem has no 2o(N)-time algorithm. SETH is stronger than ETH. Bringmann [31] stated that
ETH is not suited for proving polynomial time bounds, since it does not specify the exponent.
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However, there are some positive approximation results. A simple greedy algorithm

by Bringmann and Mulzer [37] provides a 2Θ(m)-approximation of the discrete Fréchet

distance in time O (m). This algorithm extends to the continuous Fréchet distance case,

with the same approximation guarantee and the running time.

Bringmann and Mulzer [37] gave an α-approximation algorithm for the discrete Fréchet

distance as well. It has a running time O
(
m logm+m2/α

)
, for any 1 ≤ α ≤ m. This

implies that if α = m/ logm, then the α-approximation is obtained in time O (m logm).

An (mη)-approximation is obtained in time O
(
m2−η), for any 0 < η < 1. Therefore, a

much better approximation compared to the greedy algorithm is obtained, at the cost of

the running time.

If additional assumptions on the input curves are made, then faster algorithms are

possible. Recently, it was reported by Kuszmaul [127], that dDTW (τ, σ) between two

curves τ and σ of complexity m in general metric ambient space X can be computed in

time O (m · dDTW (τ, σ)). The result of Kuszmaul has a caveat, that the smallest non-zero

distance between two points in X is normalized to 1. This is not a problem if the input

are two strings, but for the curves in Rd this assumption is not negligible.

For the realistic class of curves we consider in this thesis – if the curves are c-packed for

some constant c > 0, then efficient (1 + ε)-approximation algorithms for all three of these

distance measures exist. A (1 + ε)-approximation to the continuous Fréchet distance can

be computed in O (cm/ε+ cm logm) time, as shown by Driemel, Har-Peled, and Wenk

[66], by exploring the complexity of the free-space diagram. Their result was improved

by Bringmann and Künnemann [34], who gave an O
(
(cm/

√
ε) · log2(1/ε) + cm logm

)
-

time (1 + ε)-approximation algorithm. The result of Bringmann and Künnemann [34] is

actually optimal in high dimensions, unless SETH fails. This follows from the result by

Bringmann [31], who showed that for d ≥ 5 there are no (1 + ε)-approximation algorithms

for the continuous Fréchet distance between two c-packed curves in time O
(
(cm/

√
ε)1−η)

for any η > 0, unless SETH fails.

The algorithm of Bringmann and Künnemann [34] extends for the discrete Fréchet

distance. The running time of their (1+ε)-approximation algorithm for the c-packed curves

in the discrete case is O ((cm/
√
ε) · log(1/ε) + cm logm). Analogously to the continuous

case, this is near-optimal, except in the low dimensions.

A (1 + ε)-approximation for the dynamic time warping distance of two c-packed curves

was given by Agarwal, Fox, Pan and Ying [6]. Their algorithm runs in O ((cm/ε) · logm)

time. It is not known if a (conditional) lower bound for this problem exists.
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2.5.4 Notes on the concatenation of curves

As we are going to construct new matchings of curves to maintain the Fréchet distance, we

formally define the notion of concatenation of two curves in Rd.

Definition 2.35 (Concatenation). Let two curves τ1 : [a1, b1] → Rd, 0 ≤ a1 ≤ b1 ≤ 1,

and τ2 : [a2, b2] → Rd, 0 ≤ a2 ≤ b2 ≤ 1 be given, such that τ1(b1) = τ2(a2). The

concatenation of τ1 and τ2 is a curve τ defined as τ = τ1 ⊕ τ2 : [0, 1]→ Rd, such that

τ(t) = (τ1 ⊕ τ2) (t) =

τ1 (a1 + (b1 − a1 + b2 − a2) · t) if t ≤ b1−a1
b1−a1+b2−a2

τ2 (b2 − (b1 − a1 + b2 − a2) · (1− t)) if t > b1−a1
b1−a1+b2−a2 .

We are going to use the following simple lemmas in Chapter 3, often without explicitly

referring to them. We present their proofs for completeness.

Lemma 2.36. Let two curves τ : [0, 1]→ Rd and π : [0, 1]→ Rd be the concatenations of

two subcurves: τ = τ1 ⊕ τ2 and π = π1 ⊕ π2, then it holds that

dF (τ, π) ≤ max{dF (τ1, π1) , dF (τ2, π2)}.

Proof. Let the parameter t̂ ∈ [0, 1] be such that τ(t) = τ1(t) for all 0 ≤ t ≤ t̂, and

τ(t) = τ2(t) otherwise, as in Definition 2.35. Let the matchings f1, f2 : [0, 1]→ Rd witness

dF (τ1, π1) and dF (τ2, π2), respectively. Let the mapping f : [0, 1]→ [0, 1] be defined as

f(t) =

f1 (t) if t ≤ t̂

f2 (t) if t > t̂.

This mapping is a continuous and monotonically increasing mapping from τ to π. It

witnesses that the Fréchet distance between τ and π is at most max{dF (τ1, π1) , dF (τ2, π2)},
as claimed.

Lemma 2.37. Given two edges a1a2 and b1b2 with a1, a2, b1, b2 ∈ Rd, it holds that

dF
(
a1a2, b1b2

)
= max{|a1 − b1|, |a2 − b2|}.

Proof. The Fréchet distance between the two edges is at least ϑ = max{|a1− b1|, |a2− b2|},
as the endpoints must be pairwise matched. But the Fréchet distance has the value ϑ at

most. Namely, by Lemma 2.31, any free-space diagram of the edges a1a2 and b1b2 is the

intersection of rectangle (the only cell) and an ellipse, and thus is a convex set. Since both
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pairs (0, 0) and (1, 1) are in the ϑ-free-space, by convexity, the straight line connecting the

endpoints (0, 0) and (1, 1) is in the ϑ-free-space. This line is monotonically non-decreasing

in both coordinates, and thus dF
(
a1a2, b1b2

)
≤ ϑ.

Lemma 2.36 holds for the discrete Fréchet distance as well, by the same argument over

traversals instead of the matchings. Lemma 2.37 holds for the discrete Fréchet distance by

definition.





3 Curve simplification under the Fréchet

distance

3.1 Introduction

The curve simplification problem has been studied under different names, for multidi-

mensional curves and under various error measures, in many scientific domains, such as

cartography [63, 154], computational geometry [86], data mining [118], pattern recogni-

tion [153], and structural biology [78]. In some of these areas, a large body of work is

commited to a search for a fast heuristic or a solution that works well for an average case.

However, a mathematically provable worst-case analysis is always welcome.

Given a curve τ , a simplification σ of τ is a curve which has a lower complexity than the

original curve, and which is similar to the original curve. The dissimilarity between τ and

σ is measured by a distance measure d, where the error d(τ, σ) needs to be small. There

are many variants of this problem. Some of them require vertex-constraint simplifications,

i.e. that the vertices of σ come from the set of the vertices of τ , and additionally, that they

respect the same order in τ and σ, and/or that the endpoints are kept. If there are no

conditions on the vertices of σ, such simplifications are called weak.

In this chapter we introduce a special type of the curve simplification – the signatures.

A signature is a vertex-constrained simplification of the given polygonal curve in the

one-dimensional Euclidean ambient space. The error of a signature is measured by the

continuous Fréchet distance. The exact definition of the signature (cf. Definition 3.3) is

somewhat cumbersome. However, as it will turn out, such a definition provides exact prop-

erties to prove the technical lemmas, and consequently, that enable us to construct efficient

clustering algorithms for the curves in one-dimensional ambient space (cf. Chapter 4). The

signatures are envisioned to be a tool, that is not bounded only to the usage in clustering

problems, and as such of independent interest. Unfortunately, they are bounded to work

only in one-dimensional space, as their properties heavily depend on the features of the

space R.

In this chapter we use the following non-standard notation:

• Let 〈〈a, b〉〉 = [min(a, b),max(a, b)], for any a, b ∈ R.

47
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• Let [h]δ = [h− δ, h+ δ], for any h ∈ R and δ > 0.

• For a given curve τ , and two parameters t′ and t′′, with 0 ≤ t′ ≤ t′′ ≤ 1, we denote

max(τ [t′, t′′]) = max{τ(t) : t ∈ [t′, t′′]}, and min(τ [t′, t′′]) = min{τ(t) : t ∈ [t′, t′′]}.

3.1.1 Definition of the signatures

In a general setting, the curve simplification problem is not bounded by any requirements.

The simplification is a bicriteria optimization problem. The quality of the solution is

measured by two parameters: error and size. Minimizing each of them separately defines

an optimization problem. We state these problems as Definition 3.1 and Definition 3.2, as

it is done in the standard literature.

Definition 3.1 (Minimum-error `-simplification). A curve π is a minimum-error

`-simplification of τ if the complexity of π is at most ` and for any curve π′ of at most `

vertices, it holds that dF (π′, τ) ≥ dF (π, τ).

Definition 3.2 (Minimum-size ε-simplification). A curve π is a minimum-size ε-

simplification of τ if dF (π, τ) ≤ ε and for any curve π′ such that dF (π′, τ) ≤ ε, it holds

that the complexity of π′ is at least as much as the complexity of π.

The signatures are none of these two, but provide a good approximation of the optimal

solutions for both the minimum-error and the minimum-size simplification problems. Our

definition aligns with the work by Pratt and Fink [153] on computing important minima

and maxima in the context of time series compression. Intuitively, the signatures provide

us with the “shape” of a curve (in their work Pratt and Fink call the curve time series) at

multiple scales. A signature has a parameter δ > 0. This parameter intuitively describes

the minimum-edge-length of the simplified curve (more than 2δ for the edges not including

the endpoints), as well as the maximal direction-preserving discrepancy (on how far can

two vertices of the input curve be, to be safe to ignore them in the simplified curve). The

formal definition of a δ-signature is provided by Definition 3.3.

Definition 3.3 (δ-signature). Given are a curve τ : [0, 1]→ R and a parameter δ > 0.

The δ-signature of the curve τ is a curve σ : [0, 1] → R defined by a series of values

0 = t1 < · · · < t` = 1 as the linear interpolation of τ(ti) in the order of the index i, and

such that for 1 ≤ i ≤ `− 1 the following conditions hold:

(i) (non-degeneracy property) if i ∈ [2, `− 1] then τ(ti) /∈ 〈〈τ(ti−1), τ(ti+1)〉〉;
(ii) (direction-preserving property)

if τ(ti) < τ(ti+1) for t < t′ ∈ [ti, ti+1]: τ(t)− τ(t′) ≤ 2δ, and

if τ(ti) > τ(ti+1) for t < t′ ∈ [ti, ti+1]: τ(t′)− τ(t) ≤ 2δ;
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(iii) (minimum-edge-length property)

if i ∈ [2, `− 2] then |τ(ti+1)− τ(ti)| > 2δ, and

if i ∈ {1, `− 1} then |τ(ti+1)− τ(ti)| > δ;

(iv) (range property) for t ∈ [ti, ti+1]:

if i ∈ [2, `− 2] then τ(t) ∈ 〈〈τ(ti), τ(ti+1)〉〉, and

if i = 1 and ` > 2 then τ(t) ∈ 〈〈τ(ti), τ(ti+1)〉〉 ∪ 〈〈τ(ti)− δ, τ(ti) + δ〉〉, and

if i = `− 1 and ` > 2 then τ(t) ∈ 〈〈τ(ti), τ(ti+1)〉〉 ∪ 〈〈τ(ti+1)− δ, τ(ti+1) + δ〉〉, and

if i = 1 and ` = 2 then τ(t) ∈ 〈〈τ(t1), τ(t2)〉〉∪〈〈τ(t1)−δ, τ(t1)+δ〉〉∪〈〈τ(t2)−δ, τ(t2)+δ〉〉.

It follows from the properties (i) and (iv) of Definition 3.3 that the parameters ti for

i ∈ [`] specify vertices of τ . Furthermore, it follows that the vertex τ(ti) is either a minimum

or maximum on τ [ti−1, ti+1] for 2 ≤ i ≤ `− 1.

For a signature σ we will simply write signature σ : [0, 1]→ R with ` vertices or signature

σ = v1, . . . , v`, instead of signature σ : [0, 1]→ R, with vertices v1 = σ(s1), . . . , v` = σ(s`),

where 0 = s1 < . . . < s` = 1. We assume that the parametrization of σ is chosen such that

σ(sj) = τ(sj), for any j ∈ [`]. An example of a δ-signature is provided in Figure 3.1.

2δ

τ

s1 s2 s3 s4 s5 . . . s`

Figure 3.1: Example of a δ-signature σ of a curve τ . The vertices of σ are colored red.
The ranges of width 2δ centered at the signature vertices are colored light blue.
Note that the ranges of two consecutive signature vertices do not intersect,
except possibly for the start- and endpoint.

In this chapter, and subsequently in Chapter 4, we make the following general position

assumption on the input curves: for every input curve τ we assume that no two vertices

τ have the same coordinates and any two differences between coordinates of two vertices of

τ are different. This assumption can easily be achieved by symbolic perturbation. This is

a well-known technique to cope with degenerate cases in geometric algorithms given by

Edelsbrunner and Mücke [73]. Furthermore, we assume that τ has no edges of length zero

and its vertices are an alternating sequence of minima and maxima, i.e. no vertex lies in

the linear interpolation of its two neighboring vertices.8

8See page 4: the continuous Fréchet distance between two curves in R1 is completely determined by the
sequence of local extrema of the two curves.
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3.1.2 Results in this chapter

In Section 3.2 we show that the curves similar to the input curve τ : [0, 1]→ R need to be

similar to its δ-signature σ, regarding both the continuous Fréchet distance to τ , and the

complexity of such a curve. The main result of Section 3.2 is Theorem 3.8. This theorem

claims that for a given curve τ and for any curve π : [0, 1] → R, such that dF (τ, π) ≤ δ,

we can omit the vertices of π, which are far from the vertices of the δ-signature σ of τ ,

while keeping the Fréchet distance of the such obtained curve to the curve τ at most δ.

Theorem 3.8 follows from Lemma 3.7. As the proof of Lemma 3.7 is long and consists of a

comprehensive case analysis, it is separated into Section 3.3, for the sake of readability.

The signatures always exist. In Section 3.4 we give an algorithm to compute signatures

efficiently. For a given parameter δ and a given curve τ of complexity m, it is possible to

construct a δ-signature of τ in time O (m) (cf. Theorem 3.40). Our signatures have a unique

hierarchical structure. This structure allows the construction of a data structure in time

O (m logm) and that uses space O (m), such that given a parameter ` ∈ N it is possible

to compute a signature of complexity ` in time O (` log `) (cf. Theorem 3.39). We show

that our signatures are a constant-factor approximation solution to the minimum-error

`-simplification problem in Lemma 3.41.

3.1.3 Related work

Historically, the first minimal-size curve simplification algorithm was a heuristic algorithm

independently suggested in the 1970’s by Ramer [154] and Douglas and Peucker [63] and it

remains popular in the area of geographic information science until today (e.g. for marine

traffic pattern recognition [178]). It uses the Hausdorff error measure and has running time

O
(
m2
)

(where m denotes the complexity of the input curve), but does not offer a bound

to the size of the simplified curve. Recently, worst-case and average-case lower bounds on

the number of vertices obtained by this algorithm were proven by Daskalakis, Diakonikolas

and Yannakakis [60]. Imai and Iri [107] solved both the minimum-error and minimum-size

simplification problem under the Hausdorff distance by modeling it as a shortest path

problem in directed acyclic graphs. For both algorithms: of Douglas and Peucker, and

of Imai and Iri, it was shown by van Kreveld, Löffler and Wiratma [172] that they may

produce far-from-optimal results.

A concept similar to the simplification, called segmentation, of time series has been

extensively studied in the area of data mining [27, 100, 167]. The standard approach for

computing exact segmentations is to use dynamic programming which yields a running

time of O
(
m2
)
.
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Curve simplification using the Fréchet distance was first proposed by Godau [86]. Guibas

et al. [92] gave an O
(
m2 log2m

)
time algorithm for computing the minimum-size weak

simplification under the continuous Fréchet distance in R2. Such a simplification assumes

that the vertices of the simplification curve do not necessarily come from the original

curve. The current state-of-the-art approximation algorithm for (weak) simplification under

the Fréchet distance was suggested by Agarwal et al. [7]. This algorithm computes a 2-

approximate minimal-size simplification in time O(m logm). They also gave a simplification

that has at most the complexity of an optimal simplification with an 8-approximation of

the error.

Recently, van de Kerkhof et al. [171] showed that a weak simplification with twice the

complexity of an optimal solution and a (1 + ε)-approximation of the error can be found in

time O
(
m2 logm log logm

)
. For the problem of a vertex-restricted simplification under

continuous Fréchet distance, Bringmann and Chaudhury [32] gave an O
(
m3
)

time solution,

and simultaneously, a conditional cubic lower bound. This improved a previous polynomial

time algorithm of van Kreveld, Löffler and Wiratma [172].

Driemel and Har-Peled [65] considered the computing of the Fréchet distance with

shortcuts, i.e. with local simplifications. They showed how to preprocess a polygonal curve

in near-linear time and space, and introduced the concept of a vertex permutation, such

that, intuitively, any prefix of this permutation represents a bicriteria approximation to

the minimal-error curve simplification, with respect to the continuous Fréchet distance. In

Section 3.4 we will use this concept to develop an efficient algorithm for our simplification

curves.

Assuming c-packedness of a curve and that the shortcuts start and end in the vertices

of the curve, Driemel and Har-Peled [65] gave a near-linear time (3 + ε)-approximation

algorithm. A more general variant of the problem where the shortcuts can be taken at any

point of the curve is NP-hard, as shown by Buchin, Driemel and Speckmann [47]. They

also gave a 3-approximation for the decision variant of the problem, in O
(
m3 logm

)
time.

Bereg et al. [26] gave an O (m logm) time algorithm for the minimum-size ε-simplification

problem, and a O (m` logm log(m/`)) for the minimum-error `-simplification problem under

the discrete Fréchet distance. Confer to Lemma 4.9 where the latter result is formally

stated.

For two given curves, simplifying them independently does not necessarily preserve their

resemblance. Bereg et al. [26] considered the problem of two simultaneously simplified

curves, using vertices of the original curves. This problem is called chain pair simplification,
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and its two variants are studied: CPS-2H - where the error of the simplifications to

the original curves is measured by the Hausdorff distance, and the distance between

two simplifications is measured by the discrete Fréchet distance; and CPS-3F, where all

three distances are discrete Fréchet distances. They showed that the CPS-2H problem is

NP-complete, and hypothesized the same for the CPS-3F problem.

Wylie and Zhu [176] considered the protein chain pair simplification under the discrete

Fréchet distance. The polygonal curve (called chain) alignment and comparison with

respect to the proteins is a central problem in structural biology. Proteins’ alignment

was previously studied using root mean square deviation (RMSD). The discrete Fréchet

distance is a natural choice option for alignment of the vertices, that represent carbon

atoms in proteins. On contrary, the continuous Fréchet distance would map arbitrary

points on the curves, which is biologically not meaningful. They gave a 2-approximation

algorithm to the CPS-3F problem.

Fan et al. [78] showed that the chain pair simplification (CPS-3F) problem is polynomially

solvable – in time O
(
m5
)
. The general chain pair simplification problem, when the vertices

of the simplification curve are not limited to the vertices of the original curves, was

considered by Fan et al. [79], who gave both an exact algorithm with Õ(m7) running time,

and an approximation algorithm, with O
(
m4
)

running time.

In reality, the curves or even their complexity do not have to be known completely

in advance. The streaming scenario describes the case when the vertices of the input

curve are presented one at a time. The curve simplification algorithm under the Fréchet

distance in a streaming fashion was first studied by Abam et al. [1]. They considered

simplification of general paths in R2 under the Fréchet distance, using the framework of

Imai and Iri [107]. The authors of [1] obtained an algorithm that, for any fixed ε > 0,

produces (4
√

2+ε)-competitive streaming algorithm, that uses O(`2/
√
ε) additional storage

and processes each input point in O(` log(1/ε)) amortized time. Their algorithm allows

resource augmentation, more precisely, it uses a 2`-simplification, but compares its error

to the optimal `-simplification. A similar assumption was previously used by Agarwal

et al. [7].

The result of Abam et al. [1] was improved by Driemel, Psarros and Schmidt [70], who

obtained an 8-approximation to the optimal `-simplification of the input curve from Rd in the

streaming scenario under the discrete Fréchet distance, and without resource augmentation.

Their algorithm needs time O (d`) per update, and uses space O (d`). Recently, Filtser

and Filtser [83] gave, based on a minimal enclosing ball streaming algorithm, a (1.22 + ε)-

approximation algorithm to the optimal `-simplification in a streaming fashion, using space

that is linear in both ` and d, and almost linear dependency on 1/ε. Additionally, they
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gave a (1 + ε)-approximation to the optimal `-simplification in a streaming fashion, but at

the cost of additional (1/ε)O(d) space required.

Recently, our δ-signatures have found the first application area outside of our work ([68]),

where they have been originally introduced. Driemel and Psarros [69] used signatures

to construct a (2 + ε)-approximation to the approximate near neighbor problem for the

one-dimensional polygonal curves.

3.2 On properties of signatures

In this chapter, for given two curves τ and π, we analyze a matching of these curves,

i.e. the function that realizes the Fréchet distance dF (τ, π). By the definition of the

(continuous) Fréchet distance in Equation (2.24), such a matching f is a bijection between

parametrizations of τ and π. The bijection that realizes dF (τ, π) does not always exist, but

it is obtained only in limit, since in the definition there is infimum instead of minimum.

In the literature it is well-known and commonly used9, that a proper bijection can be

obtained by a slight perturbation, such that for any ε > 0 this bijection realizes the Fréchet

distance dF (τ, π) + ε. Without loss of generality we will thus construct matchings which

are not bijections, but can be perturbed into one.

In this section we prove several useful properties of the signatures. These properties will

be crucial for the application of signatures to the clustering of curves in one-dimensional

ambient space. First we show that a δ-signature σ of a given curve τ is indeed a curve

simplification with bounded error, which approximates the original curve well, since its

Fréchet distance to τ is at most δ. This is claimed by Lemma 3.4.

Lemma 3.4. It holds for any δ-signature σ of τ that dF (τ, σ) ≤ δ.

Proof. Let 0 = s1 < . . . < s` = 1 be the series of parameter values of vertices on τ

that describe σ. We construct a matching between each signature edge ei = τ(si)τ(si+1),

1 ≤ i < `, and the corresponding subcurve τ̂i = τ [si, si+1] of τ , in a greedy manner.

Assume first, for simplicity, that it holds τ(si) < τ(si+1) (i.e. the edge of the signature

is directed upwards at the time) and none of its endpoints are endpoints of τ . We process

the vertices wj of the subcurve τ̂i while keeping a current position v on the edge e. The

idea is to walk as far as possible on τ̂ while walking as little as possible on ei. We initialize

v = τ(si), and match the first vertex wi = τ(si) of τ̂i to v (i.e. to itself). The invariant

that each vertex w ∈ τ̂i is at distance at most δ to the matched point v is satisfied. When

processing a vertex wj ∈ τ̂i, we update v to max(v, wj − δ), and match wj to the current

9A proof can be found in the paper by Buchin, Driemel and Rohde [46].
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position v on ei. The invariant remains valid by induction over vertices wj and by the

direction-preserving property in Definition 3.3. At the end we match τ(si+1) to itself. By

Lemma 2.37, every subcurve of τ̂i is matched to a subsegment of ei within Fréchet distance

δ. Lemma 2.36 implies that dF (τ̂i, ei) ≤ δ.
If, for the edge ei, it holds that τ(si) > τ(si+1) (edge directed downwards), the construc-

tion can be done symmetrically by walking backwards on τ̂i and ei. If the first vertex wi of

τ̂i is τ(0), we start the construction above with the first vertex wj , that lies outside the

range [τ(0)− δ, τ(0) + δ]. The skipped vertices (from wi to wj) can be matched to τ(0),

being all at distance at most δ. In the remaining case: if the last vertex of τ̂i is an endpoint

of τ , we can again walk backwards on τ̂ and ei from τ(1), and the case is analogous to the

case of τ(0).

Joining all edges of σ, and all subcurves of τ , by Lemma 2.36 we have that dF (τ, σ) ≤ δ,
as claimed.

A signature does not only provide a good approximation to the original curve, but also

provides a description for all the curves that are similar to the original curve. That is, any

curve that is close (i.e. at small Fréchet distance) to the curve τ has to have vertices close

to the vertices of the signature. This is formally stated by Lemma 3.5.

Lemma 3.5. Let σ = v1, . . . , v` be a δ-signature of τ = w1, . . . , wm. Let Ri = [vi−δ, vi+δ],
for 1 ≤ i ≤ `, be ranges centered at the vertices of σ ordered along σ. It holds for any

curve π that if dF (τ, π) ≤ δ, then π has a vertex in each range Ri, and such that these

vertices appear on π in the order of i.

Proof. For any i = {3, . . . , `− 2}, the vertices vi−1, vi and vi+1 satisfy that |vi− vi−1| > 2δ

and |vi+1−vi| > 2δ, by the minimum-edge-length property. This implies that Ri−1∩Ri = ∅
and Ri ∩Ri+1 = ∅. Let π(pi) be the point matched to vi under a matching that witnesses

dF (τ, π), for all 1 ≤ i ≤ `. It holds that 0 = p1 < p2 < . . . < p` = 1. Therefore, the curve

π visits the ranges Ri−1, Ri, and Ri+1 in the order of the index i.

Since vi /∈ 〈〈vi−1, vi+1〉〉 the curve π must change direction (from increasing to decreasing

or vice versa) between visiting Ri−1 and Ri+1. Furthermore, π cannot go beyond Ri

between visiting Ri−1 and Ri+1, i.e. there is no point x ∈ π [pi−1, pi+1] such that it holds

that x /∈ Ri and there is an ordering vi−1 < vi < vi + δ < x or vi−1 > vi > vi− δ > x. This

follows from vi being a local extremum on τ . Therefore, the change of the direction of π

takes place in a vertex in Ri.

For i = 2 we use a similar argument. Note that π(0) has to be matched to v1 by the

definition of the Fréchet distance. As before, π has to visit the ranges R2 and R3 in this

order and it holds that R2 ∩R3 = ∅. Either the first vertex of π already lies in R2, or π has
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to change direction again, and therefore needs to have a vertex in R2. The case i = `− 1

is symmetric. The fact that the points τ(0) and τ(1) have to be matched to π(0) and π(1),

respectively, closes the proof.

The following corollary is a direct implication of Lemma 3.5 and the minimum-edge-

length property in Definition 3.3, since σ is a δ-signature and there has to be at least one

vertex in each of the ranges centered in vertices which are not endpoints of τ .

Corollary 3.6. Let σ be a signature of τ with ` vertices and dF (σ, τ) ≤ δ. Then any curve

π with dF (π, τ) ≤ δ needs to have at least `− 2 vertices.

In order to prove the main result of this section we need to prove the following lemma,

which is a slight variation of the main result (Theorem 3.8) and which simplifies the case

when the Fréchet distance is obtained in the limit. Its proof is, as said in the introduction

to this chapter, quite long, and we separate it into the next Section 3.3.

Lemma 3.7. Let σ = v1, . . . , v` be a δ-signature of τ = w1, . . . , wm. Let Rj, 1 ≤ j ≤ `,

be ranges centered at the vertices of σ ordered along σ, where R1 = [v1 − 4δ, v1 + 4δ],

R` = [v` − 4δ, v` + 4δ], and Rj = [vj − δ, vj + δ] for 2 ≤ j ≤ `− 1. Let π be a curve with

dF (τ, π) < δ, and let π′ be a curve obtained by removing some vertex ui = π(pi) from π

with ui /∈
⋃

1≤j≤`Rj. For any ε > 0, it holds that dF (τ, π′) ≤ δ + ε.

From Lemma 3.7 we obtain Theorem 3.8 – our main result of Section 3.2. Intuitively

it states that for a given curve τ and its signature σ, a curve π that is close to τ can be

adapted by omitting vertices which are far from the vertices of the signature σ. By doing

such an adaptation, the distance of the adapted curve to the curve τ will remain bounded

by the distance the curve had before the adaptation.

Theorem 3.8. Let σ = v1, . . . , v` be a δ-signature of τ = w1, . . . , wm. Let Rj, 1 ≤ j ≤ `,
be ranges centered at the vertices of σ ordered along σ, where R1 = [v1 − 4δ, v1 + 4δ],

R` = [v` − 4δ, v` + 4δ], and Rj = [vj − δ, vj + δ] for 2 ≤ j ≤ `− 1. Let π be a curve with

dF (τ, π) ≤ δ, and let π′ be a curve obtained by removing some vertex ui = π(pi) from π

with ui /∈
⋃

1≤j≤`Rj. It holds that dF (τ, π′) ≤ δ.

Proof. Given are curves τ and π, and a parameter δ > 0, such that dF (τ, π) ≤ δ. By the

definition of the Fréchet distance it holds for any ε > 0 that dF (τ, π) < δ+ ε. Let δ′ = δ+ ε

for some ε > 0 small enough such that:

(i) the δ-signature of τ is equal to the δ′-signature of τ . Such a signature always exists,

since there is an arbitrarily small ε > 0, such that δ- and δ′-signatures are equal. This

is shown by Lemma 3.34 in Section 3.4.
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(ii) any vertex ui of π satisfying the conditions in Theorem 3.8 also satisfies the conditions

of Lemma 3.7 for δ′.

Now we can apply Lemma 3.7 using δ′: let π be a curve with dF (τ, π) < δ′, then for the

curve π′ it is dF (τ, π′) ≤ δ′ + ε = δ + 2ε. Since this is implied for any ε > 0 small enough,

we have dF (τ, π′) = limε→0 dF (τ, π′) ≤ limε→0 (δ + 2ε) = δ, as claimed.

Theorem 3.8 implies that a search for vertices of a curve, which is close to the curve τ ,

can be done in areas close to the signature vertices, while the rest can be ignored. But

first we need to prove Lemma 3.7.

3.3 The proof of Lemma 3.7

Let f denote the matching from π to τ that witnesses dF (τ, π). It maps each point on π to

a point on τ within distance δ. Such a matching f exists since dF (τ, π) < δ. Intuitively, we

removed ui and its incident edges from π by replacing the incident edges with a new “edge”

connecting the two subcurves that were disconnected by the edge removal. The obtained

curve is called π′. We want to construct a matching f ′ from π′ to τ , based on f to show

that their Fréchet distance is at most δ+ε. We are actually going to construct a mapping f ′

between π′ and τ that is not a bijection, but continuous and monotonically non-decreasing.

However, this mapping f ′ will be a bijection between the respective subcurves of π′ and τ .

Each of these bijections will witness the Fréchet distance at most δ. Then, it is well known

that f ′ can be slightly perturbed to become a bijection between π′ and τ , i.e. a matching

that witnesses the distance at most δ + ε for arbitrarily small ε > 0.

Because of the continuity of the curves, we have to formally describe the “edge” con-

necting disconnected parts. Let π(pi−1) and π(pi+1) be the endpoints of the disconnected

components. Let π[p−, p+] denote the subcurve by which π and π′ differ. We call this

subcurve a missing part. In particular, p− and p+ are such that π′ can be written as a

concatenation of a prefix and a suffix curve of π: π′ = π[0, p−]⊕π[p+, 1] and pi is contained

in the open interval (p−, p+). Note that π(p−) = π(p+) (i.e. it is the same point, with two

different time stamps). Furthermore, it is clear that π[p−, p+] consists of two edges with ui

being the minimum or maximum connecting them, since we work in the one-dimensional

ambient space. If ui would have been neither a minimum nor a maximum on π, then

π[p−, p+] would be empty. In this case the claim would hold trivially.

The new “edge” π′[pi−1, pi+1] consists of three parts: the edge π[pi−1, p
−], the point

π[p−] and the edge π[p+, pi+1]. This is illustrated by Figure 3.2.

In the construction of f ′ we need to show that the subcurve τ [f(p−), f(p+)], which we

call a broken part, and which was matched by f−1 to the missing part, can be matched
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pi−1 p− pi+2 pi−1 p− p+ = pi+1 pi+2p+ = pi+1pi

π π′

p

Figure 3.2: The removal of the vertex π(pi) from π. The curves π[p−, p+] and π′[p−, p+]
are marked red

to some subcurve of π′, while respecting the monotonicity of the matching. The proof

is a case analysis based on the structure of the two curves. The structure of the proof

is roughly as follows: we consider first the trivial case (Case 1), where the missing part

matching can be repaired by a point. Then we introduce some basic tools to bound the

extent of the repairing of the missing part. This is done in Subsection 3.3.1. Once these

tools are established, based on behavior of the curve π we analyze three non-trivial cases in

Subsection 3.3.2. However, there still remains Case 5, where an iterative scheme occurs on

π, but it can be solved using the techniques from the three previously analyzed non-trivial

cases. This is done in Subsection 3.3.3. Finally (in Subsection 3.3.4), we consider the case

of the first/last signature edge. That is, the removed vertex ui was matched by f to a

point on the subcurve of τ , whose endpoints are either the first two or the last two vertices

of the δ-signature of τ .

In order to focus on the essential arguments, we first make some global assumptions

stated below. The first two assumptions can be made without loss of generality. We also

introduce some basic notation which is used throughout the rest of the proof.

Assumption 1. We assume that π(pi) is a local minimum on π.

If Assumption 1 would not hold, we could first mirror the curves τ and π across the

horizontal time axis to obtain the property of Assumption 1 without changing the Fréchet

distance.

Let the minimum point on the broken part of the curve τ be denoted

zmin = arg min
t∈[f(p−),f(p+)]

τ(t).

Let τ [sj , sj+1] be the subcurve of τ bounded by two consecutive signature vertices, such

that zmin ∈ [sj , sj+1].10

Assumption 2. We assume that τ(sj) < τ(sj+1).

10The statement of Lemma 3.7 uses vertices vi of the signature σ of the curve τ . However, throughout the
proof we work with parameters si, with vi = σ(si) = τ(si) (see page 49).
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If Assumption 2 would not hold, we could first reparametrize the curves τ and π with a

new parametrization φ(t) = 1− t, i.e., we reverse the direction of the time axis, to obtain

the property of Assumption 2 without changing the Fréchet distance. Note that this does

not interfere with Assumption 1, i.e. does not change the property of π(pi) being a local

minimum.

Assumption 3. We assume that neither sj = 0, nor sj+1 = 1.

The cases omitted by Assumption 3 are boundary cases, that will be handled at the end of

the proof in Subsection 3.3.4.

For simplicity of presentation, we state the characteristics of the curve τ and its δ-

signature σ, that we obtain from Definition 3.3 under Assumption 2, in the following

property.

Property 1 (Signature). We can assume that

(i) τ(sj+1)− τ(sj) > 2δ;

(ii) τ(sj) = min(τ [sj−1, sj+1]);

(iii) τ(sj+1) = max(τ [sj , sj+2]);

(iv) τ(t′)− 2δ ≤ τ(t′′) for sj ≤ t′ < t′′ ≤ sj+1;

(v) τ(sj+1)− τ(sj+2) > 2δ.

By the general position assumption, the minimum τ(sj) and the maximum τ(sj+1) are

unique on their respective subcurves.

From the condition that dF (τ, π) < δ we have the following property.

Property 2 (Fréchet). Any two points matched by f have distance at most δ from each

other. In particular, for any two 0 ≤ p < p′ ≤ 1, it holds that

(i) τ(f(p))− δ ≤ π(p) ≤ τ(f(p)) + δ,

(ii) min(τ [f(p), f(p′)])− δ ≤ min(π[p, p′]) ≤ min(τ [f(p), f(p′)]) + δ,

(iii) max(τ [f(p), f(p′)])− δ ≤ max(π[p, p′]) ≤ max(τ [f(p), f(p′)]) + δ.

Our proof is structured as case analysis. We consider first the case τ(zmin) ≥ π(p−)− δ.
This is illustrated by Figure 3.3. In this case, the whole broken part of τ can be matched

to a point.

Case 1 (Trivial case). τ(zmin) ≥ π(p−)− δ

Claim 3.9 (Correctness of Case 1). If the conditions of Case 1 are satisfied, then it is

dF (π′, τ) ≤ δ.
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t

p

τ(zmin)

τ(zmin) + δ

f(p−)

p−

f(p+)

p+pi

zmin

π

τ

Figure 3.3: Example of Case 1. The broken part of the matching f (the broken part of τ
and the missing part of π) is indicated by thick colored lines.

Proof. In this case, we can simply match π(p−) to the subcurve τ [f(p−), f(p+)] and the

remaining subcurves π[0, p−] and π[p+, 1] can be matched to the respective subcurves of τ ,

as it was done by f . By the case distinction it is

min(τ [f(p−), f(p+)]) = τ(zmin) ≥ π(p−)− δ, (3.1)

and by Property 2(iii) it is

max(τ [f(p−), f(p+)]) ≤ max(π[p−, p+]) + δ = π(p−) + δ. (3.2)

From Equations (3.1) and (3.2) follows that

{
τ(t) : t ∈ [f(p−), f(p+)]

}
⊆ [π(p−)]δ.

Thus, by Lemma 2.36 it holds in this case that dF (π′, τ) ≤ δ, as claimed.

For the rest of the proof we can make the following assumption.

Assumption 4 (Non-trivial case). We assume that τ(zmin) < π(p−)− δ.

3.3.1 Bounds on the matching

Intuitively, we want to extend the subcurves of the trivial case in order to fix the broken

matching. The difficulty lies in finding suitable subcurves which cover the broken part

τ [f(p−), f(p+)] and whose Fréchet distance is at most δ. Furthermore, the endpoints need

to line up appropriately such that we can re-use f for the suffix and the prefix curve

τ [f(0), f(p−)] and τ [f(p+), f(1)], respectively.

The next two claims settle the question to which extent signature vertices τ(sj), τ(sj+1),

and τ(sj+2) can be included in the subcurve τ [f(p−), f(p+)] for which we need to fix the
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broken matching. It holds that only the vertex τ(sj+1) can belong to the subcurve, the

other two vertices cannot.

Claim 3.10. If sj+1 ∈ [f(p−), f(p+)] then

{
τ(t) : t ∈ [sj+1, f(p+)]

}
⊆ [τ(sj+1)− 2δ, τ(sj+1)].

Furthermore, it is sj+2 /∈ [f(p−), f(p+)].

Proof. We have to prove that

min(τ [sj+1, f(p+)]) ≥ τ(sj+1)− 2δ and max(τ [sj+1, f(p+)]) ≤ τ(sj+1).

The subcurve π[p−, p+] consists of two edges π(p−)π(pi) and π(pi)π(p+), where π(pi)

is the minimum of the subcurve. For the lower bound we distinguish two cases: p− ≤
f−1(sj+1) < pi and pi ≤ f−1(sj+1) ≤ p+.

If p− ≤ f−1(sj+1) < pi, then since zmin < sj+1, the subcurve π[p−, f−1(sj+1)] is

decreasing (by Assumption 1). Thus, by Property 2 it holds that

τ(zmin) = min(τ [f(p−), sj+1]) ≥ min(π[p−, f−1(sj+1)])− δ = π(f−1(sj+1))− δ

≥ τ(sj+1)− 2δ. (3.3)

From the definition of zmin, it follows that

min(τ [sj+1, f(p+)]) ≥ min(τ [f(p−), f(p+)]) = τ(zmin)
(3.3)

≥ τ(sj+1)− 2δ.

If pi ≤ f−1(sj+1) ≤ p+, the subcurve π[p−, f−1(sj+1)] is increasing. Then by Property 2

min(τ [sj+1, f(p+)]) ≥ min(π[f−1(sj+1), p+])− δ = π(f−1(sj+1))− δ ≥ τ(sj+1)− 2δ,

and the lower bound on min(τ [sj+1, f(p+)] is proved.

Furthermore, by Property 1(v) it follows from the lower bound on min(τ [sj+1, f(p+)],

that

min(τ [sj+1, f(p+)]) ≥ τ(sj+1)− 2δ > τ(sj+2),

and therefore sj+2 /∈ [f(p−), f(p+)].

The upper bound follows from Property 1(iii):

max(τ [sj+1, f(p+)]) ≤ max(τ [sj+1, sj+2]) = τ(sj+1).
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This closes the proof.

Claim 3.11. It holds that sj /∈ [f(p−), f(p+)].

Proof. For the sake of contradiction, assume the claim is false, i.e. sj ∈ [f(p−), f(p+)]. We

have (by definition)

zmin ∈ [f(p−), f(p+)] ∩ [sj , sj+1].

Furthermore, by definition τ(zmin) = min(τ [f(p−), f(p+)]), and by Property 1(ii), we have

τ(sj) = min(τ [sj−1, sj+1]). The assumption sj ∈ [f(p−), f(p+)] would imply that

τ(zmin) = min
{
τ(t) : t ∈ [f(p−), f(p+)] ∩ [sj , sj+1]

}
= τ(sj).

By the lemma statement is π(pi) /∈ [τ(sj)]δ = [τ(zmin)]δ. However, by Property 2, we have

π(pi) = min(π[p−, p+]) ∈ [min(τ [f(p−), f(p+)])]δ = [τ(zmin)]δ = [τ(sj)]δ,

a contradiction.

We now introduce some additional notation which will be used throughout the proof.

Let

tmin = arg min
t∈[f(p−),sj+1]

τ(t),

x = max{p ∈ [0, p−] : π(p) = min{τ(tmin) + δ, τ(sj+1)− δ}},

pmax = arg max
p∈[x,p−]

π(p),

y = min{t ∈ [tmin, 1] : τ(t) = π(pmax)− δ}.

In the next few claims we argue that these variables are well-defined. In particular, that

x and y always exist in the non-trivial case (Claim 3.12 and Claim 3.13, respectively).

Clearly, tmin is well-defined. It holds that zmin ≤ tmin. To see this, we observe two cases

on sj+1.

sj+1 ∈ [f(p−), f(p+)]: By the definition we have that zmin ≤ sj+1, and thus zmin ∈
[f(p−), sj+1]. This implies that zmin = tmin.

sj+1 /∈ [f(p−), f(p+)]: It is either tmin ∈ [f(p−), f(p+)], implying zmin = tmin, or tmin ∈
[f(p+), sj+1], in which case we have zmin < tmin.

We also derive some bounds along the way, which will be used throughout the later parts

of the proof.
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Claim 3.12 (Existence of x). It holds that

(i) min{τ(tmin) + δ, τ(sj+1)− δ} ∈ {π(p) : p ∈ [f−1(sj), p
−]};

(ii) min(π[x, p−]) ≥ min{τ(tmin) + δ, τ(sj+1)− δ} = π(x);

(iii) τ(sj) ≤ τ(tmin).

Proof. We first prove part (i) of the claim. We show that there exist two parameters p1

and p2, with f−1(sj) ≤ p1 ≤ p2 ≤ p−, such that

π(p1) ≤ min{τ(tmin) + δ, τ(sj+1)− δ} ≤ π(p2). (3.4)

Since the curve π is continuous, this would imply the claim, and also imply the existence

of x. Indeed, we can choose p1 = f−1(sj) and p2 = p−. If sj+1 ≥ f(p+), we have

π(p2) = π(p−) > τ(zmin) + δ ≥ τ(tmin) + δ, (3.5)

since we assume the non-trivial case τ(zmin) < π(p−) − δ. Note that the last inequality

in Equation (3.5) holds independently of the case assumption sj+1 ≥ f(p+). Other-

wise, if sj+1 < f(p+), it is τ(sj+1) = max(τ [f(p−), f(p+)]) by Property 1(iii), since

[f(p−), f(p+)] ⊆ [sj , sj+2]. Then by Property 1 and Property 2, we have that

π(p2) = π(p−) = max(π[p−, p+]) ≥ max(τ [f(p−), f(p+)])− δ = τ(sj+1)− δ.

Thus, in both cases, it holds that π(p2) ≥ min{τ(tmin) + δ, τ(sj+1)− δ}.
As for p1, by Claim 3.11 and the definition of tmin, we have 0 ≤ sj ≤ f(p−) ≤ tmin ≤ sj+1.

By Property 2(i), it is

π(p1) = π(f−1(sj)) ≤ τ(sj) + δ.

It follows by Property 1(ii) that π(p1) ≤ min(τ [sj−1, sj+1]) + δ = τ(tmin) + δ, and by

Property 1(i) that π(p1) < τ(sj+1)− δ. Thus, π(p1) ≤ min{τ(sj+1)− δ, τ(sj+1)− δ}, and

the part (i) of the claim is proved.

The part (ii) of the claim follows directly from Equation (3.4). It is min(π[x, f(p−)]) =

π(x), since π(x) is defined as the last point along the prefix subcurve π[0, p−] with the

specified value, and π is continuous. The part (iii) follows from the Property 1(ii), implying

τ(sj) = min(τ [sj−1, sj+1]), and the definition of τ(tmin) = min(τ [f(p−), sj+1]).

Claim 3.13 (Existence of y). It holds that

(i) π(pmax)− δ ∈ {τ(t) : t ∈ [tmin, sj+1]};
(ii) max(τ [tmin, y]) ≤ π(pmax)− δ = τ(y);

(iii) π(pmax) ≤ τ(sj+1) + δ.
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Proof. To prove part (i) of the claim, which will also imply the existence of y, we show

that there exist two parameters t1 and t2, with tmin ≤ t1 ≤ t2 ≤ sj+1, such that

τ(t1) ≤ π(pmax)− δ ≤ τ(t2).

We choose t1 = tmin and t2 = sj+1. Since we have the non-trivial case, we know that

π(pmax)− δ ≥ π(p−)− δ > τ(zmin)
(3.5)

≥ τ(tmin) = τ(t1).

Now, for t2, we know that sj
(3.4)

≤ f(x) ≤ f(pmax) ≤ f(p−) ≤ sj+1. By Property 2 and by

Property 1(iii) it is

π(pmax)− δ ≤ τ(f(pmax)) ≤ τ(sj+1) = τ(t2). (3.6)

Since the subcurve is continuous, there must be a parameter t1 ≤ t ≤ t2 which satisfies

the claim, and the part (i) is proved. The part (ii) of the claim also follows directly, since

τ(y) is the first point along the suffix subcurve τ [tmin, 1] with the specified value, and since

τ(y) ≥ τ(tmin). The part (iii) follows from Equation (3.6).

The following claim follows directly from Claim 3.12, the definitions of x and y, and

Claim 3.13, respectively.

Claim 3.14. It holds that sj ≤ f(x) ≤ f(pmax) ≤ f(p−) ≤ tmin ≤ y ≤ sj+1.

The following claim will be used throughout the proof, drawing the relation between

π(pmax) and π(x).

Claim 3.15. It holds that π(pmax)− 2δ ≤ π(x).

Proof. We need to show that

π(pmax)− 2δ ≤ min{τ(tmin) + δ, τ(sj+1)− δ}.

Claim 3.13 immediately implies π(pmax) − 2δ ≤ τ(sj+1) − δ. On the other hand, by

Claim 3.14 and the definitions of pmax and tmin, it is

sj ≤ f(x) ≤ f(pmax) ≤ f(p−) ≤ tmin ≤ sj+1.

By Property 2 and by Property 1(iv), we have

π(pmax)− 2δ ≤ τ(f(pmax)) + δ − 2δ ≤ τ(tmin) + δ. (3.7)
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Thus, the claim is proved.

The next two claims (Claim 3.16 and Claim 3.17) show that our choice of x and y is

suitable for fixing some parts of the broken matching: the subcurve π[x, p−] can be matched

entirely to τ(y) (by Claim 3.16), and the subcurve τ [f(x), y] can be matched entirely to

π(x) (by Claim 3.17). After that, it remains to match the subcurve π[p+, f−1(y)]. For this,

we have the case analysis that follows from Section 3.3.2 on.

Claim 3.16. {π(p) : p ∈ [x, p−]} ⊆ [π(pmax)− 2δ, π(pmax)] = [τ(y)]δ.

Proof. By Claim 3.12 and Claim 3.15, respectively, we have that

min(π[x, p−]) ≥ min{τ(tmin) + δ, τ(sj+1)− δ} ≥ π(pmax)− 2δ.

On the other hand, by the definition of pmax, we have max(π[x, p−]) = π(pmax). The latter

equality of the claim follows directly from the definition of y and from Claim 3.13 (y is

well-defined).

Claim 3.17. {τ(t) : t ∈ [f(x), y]} ⊆ [min{τ(tmin) + δ, τ(sj+1)− δ}]δ = [π(x)]δ.

Proof. We first prove the lower bound on the minimum of the subcurve τ [f(x), y]. By

Property 2, and by Claim 3.12, we have

min(τ [f(x), f(p−)]) ≥ min(π[x, p−])− δ ≥ min{τ(tmin), τ(sj+1)− 2δ}. (3.8)

By definition, τ(tmin) is a minimum on τ [f(p−), sj+1]. Thus, for y ≤ sj+1, which is ensured

by Claim 3.14, we have that

min(τ [f(p−), y]) ≥ min(τ [f(p−), sj+1]) = τ(tmin) ≥ min{τ(tmin), τ(sj+1)− 2δ}. (3.9)

Equations (3.8) and (3.9) imply the lower bound.

We now prove the upper bound on the maximum of the subcurve τ [f(x), y]. Since by

Claim 3.14, sj ≤ f(x) ≤ tmin ≤ sj+1 and, since by Property 1(iv), τ [sj , sj+1] may not

descend by more than 2δ, it follows that

max(τ [f(x), tmin]) ≤ τ(tmin) + 2δ. (3.10)

By Claim 3.13, Claim 3.15, and by the definition of x, it is

max(τ [tmin, y]) ≤ π(pmax)− δ ≤ π(x) + δ ≤ τ(tmin) + 2δ. (3.11)
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For y ≤ sj+1, which is ensured by Claim 3.14, and by Property 1(iii), we also have that

max(τ [f(x), y]) ≤ τ(sj+1). (3.12)

Equations (3.10), (3.11), and (3.12) together imply the upper bound. The last equality of the

claim follows directly from the definition of x and from Claim 3.12 (x is well-defined).

3.3.2 Non-trivial cases

Now we have established the basic setup for our proof of Lemma 3.7. Since for any

0 ≤ p′ ≤ p−, π(p′) and τ(f(p′)) were already matched by f , witnessing dF (π, τ), the

matching of the prefix curves π[0, p′] and τ [0, f(p′)] can be reused from f . An analogous

claim can be made for the suffix curves. In the rest of the proof we use the notation

π[a, b]⇔ τ [c, d] to denote that these two subcurves are matched to each other by the new

matching (between π′ and τ).

In the following, we describe the case analysis based on the structure of the two curves

τ and π. Consider walking along the subcurve π[p+, 1]. At the beginning of the subcurve,

we have π(p+) ∈ [π(x), π(pmax)]. One of the following events may happen during the walk:

either we stay inside this interval, or go above π(pmax), or we go below π(x). Let q denote

the time at which one of these events occurs for the first time. Formally, we define the

intersection function g : R→ [p+, 1] ∪ {p∞}, as{
g(h) = min({p ∈ [p+, 1] : π(p) = h} ∪ {p∞}),
q = min{g(π(pmax)), g(π(x))},

(3.13)

where p∞ > 1 is some fixed constant for the case that the suffix curve π[p+, 1] does not

contain the value h. We distinguish the following main cases. In each of the cases, we devise

a matching scheme to fix the broken matching. For each case, our construction ensures

that the extended subcurves cover the subcurve τ [f(p−), f(p+)] and that the subcurves

line up with suitable prefix and suffix curves, such that we can always use f for the parts

of π and τ not covered in the matching scheme. We need to prove in each case that the

Fréchet distance between the specified subcurves is at most δ. If this is the case, we call

the matching scheme valid. By Lemma 2.36 it will follow that dF (π′, τ) ≤ δ, and thus,

that Lemma 3.7 is correct.

We have to make further distinction between the case when f(p+) ≤ y and the case

f(p+) > y. If f(p+) ≤ y holds, the three aforementioned events are described by Case 2,

Case 3 and Case 4. If it happens that f(p+) > y, it becomes more complicated to repair

the matching. This is discussed in Case 5, which is separated into Subsection 3.3.3.
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Case 2 (π stays level). p+ ≤ f−1(y) ≤ q.

Case 2 is the simplest non-trivial case, as the curve π does not reach outside of the

interval [π(x), π(pmax)] on the subcurve π[p+, f−1(y)]. Confer to Figure 3.4 for an example.

We intend to use the following matching scheme:
π(x) ⇔ τ [f(x), y]

π[x, p−] ⇔ τ(y)

π[p+, f−1(y)] ⇔ τ(y),

(3.14)

and for the suffix curves π[f−1(y), 1] and τ [y, 1] we reuse the matching f .

π(pmax)

π(pmax)− δ

τ(tmin)

τ(tmin) + δ

π τ

tmin f(p+) sj+1f(p−)

p+pip−pmaxx

y

f−1(y)

t

p

f(x)

Figure 3.4: Example of Case 2. The broken part of the matching f is indicated by thick
lines.

Claim 3.18 (Correctness of Case 2). Let the conditions of Case 2 be satisfied. Then

the matching scheme given by Equation (3.14) is valid.

Proof. Claim 3.17 implies that the Fréchet distance between τ [f(x), y] and π(x) is at most

δ. Claim 3.16 implies that the Fréchet distance between π[x, p−] and τ(y) is at most δ.

Finally, by our case distinction and by Claim 3.15 it is

{
π(p) : p ∈ [p+, f−1(y)]

}
⊆ [π(x), π(pmax)] ⊆ [π(pmax)− 2δ, π(pmax)] = [τ(y)]δ.

Therefore, also the Fréchet distance between π[p+, f−1(y)] and τ(y) is at most δ, implying

that dF (π′, τ) ≤ δ.

Case 3 (π tends upwards). q < f−1(y) and q = g(π(pmax)).

In Case 3, let

y′ = max{t ∈ [0, f(q)] : τ(t) = τ(y)} and z = max{p+, f−1(y′)}. (3.15)
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Confer to Figure 3.5 for an example. We intend to use the following matching scheme:
π(x) ⇔ τ [f(x), y′]

π[x, p−] ⇔ τ(y′)

π[p+, z] ⇔ τ(y′)

π(z) ⇔ τ [y′, f(p+)].

(3.16)

If y′ > f(p+), then the last line of the matching scheme in (3.16) is simply neglected. Then

it is z = f−1(y′), and the suffix curves π[f−1(y′), 1] and τ [y′, 1] are matched. Otherwise, if

y′ ≤ f(p+), then z = p+, and we can match π[p+, 1]⇔ τ [f(p+), 1].

π(pmax)

π(pmax)− δ

τ(tmin)

τ(tmin) + δ

t

p

π τ

tminf(p+) sj+1f(p−)

p+pip−pmaxx

y

f−1(y)

f(x) y′zmin

q

f(q)

Figure 3.5: Example of Case 3. The broken part of the matching f is indicated by thick
lines.

Claim 3.19 (Correctness of Case 3). Let the conditions of Case 3 be satisfied. Then

the matching scheme given by Equation (3.16) is valid.

Proof. We first argue that y′ exists. To do this, we show that there exist two parameters

t1 and t2, with 0 ≤ t1 < t2 ≤ f(q), such that

τ(t1) ≤ τ(y) = π(pmax)− δ ≤ τ(t2). (3.17)

We choose t1 = zmin and t2 = f(q). Such a choice is fine, since by the definitions of zmin

and q, it is zmin ≤ f(p+) ≤ f(q). Now, by Property 2 and the case distinction,

τ(t2) = τ(f(q)) ≥ π(q)− δ = π(pmax)− δ.

Since we are assuming the non-trivial case,

τ(t1) = τ(zmin) < π(p−)− δ ≤ π(pmax)− δ.
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Thus, since τ [0, f(q)] is continuous, by Equation (3.17) y′ must exist, and it holds that

f(p−) ≤ zmin

(3.17)

≤ y′. It remains to prove that the matching scheme is valid. Since

y′ ≤ f(q) < y, Claim 3.17 implies that the Fréchet distance between τ [f(x), y′] and π(x) is

at most δ. Claim 3.16 implies that the Fréchet distance between π[x, p−] and τ(y′) is at

most δ. For the last two lines of the matching scheme we distinguish two subcases:

(i) If y′ > f(p+), then z = f−1(y′), and we need to prove that

{
π(p) : p ∈ [p+, f−1(y′)]

}
⊆ [τ(y′)]δ.

By Case 3 distinction and by Claim 3.15

{
π(p) : p ∈ [p+, q]

}
⊆ [π(x), π(pmax)] ⊆ [π(pmax)− 2δ, π(pmax)] = [τ(y′)]δ.

Since f−1(y′) ≤ q, this implies the validity of the matching.

(ii) If y′ ≤ f(p+), then z = p+, and we need to prove that

{
τ(t) : t ∈ [y′, f(p+)]

}
⊆ [π(p+)]δ.

On the one hand, since y′ ∈ [f(p−), f(p+)] by the choice of t1 and the subcase

distinction, we have, by Property 2, that

max(τ [y′, f(p+)]) ≤ max(π[f−1(y′), p+]) + δ = max(π[p−, p+]) + δ = π(p+) + δ.

On the other hand, since y′ ≤ f(p+) ≤ f(q) by the subcase distinction and the

definition of q, we have, by the definition of y′ as the last point along the prefix

subcurve τ [0, f(q)] with the specified value, that

min(τ [y′, f(p+)]) = τ(y′) = π(pmax)− δ ≥ π(p+)− δ.

Thus, our matching scheme of Case 3 is valid, and it is dF (π′, τ) ≤ δ.

Case 4 (π tends downwards). q < f−1(y) and q = g(π(x)).

In Case 4, let

y′′ = min{t ∈ [f(pmax), 1] : τ(t) = τ(y)}.
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π(pmax)
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τ(tmin)

τ(tmin) + δ

t
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π τ

tmin f(p+) sj+1f(p−)
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q

y′′ f(q)f(pmax)

Figure 3.6: Example of Case 4. The broken part of the matching f is indicated by thick
lines.

Confer to Figure 3.6 for an example. We intend to use the following matching scheme:
π(pmax) ⇔ τ [f(pmax), y′′]

π[pmax, p
−] ⇔ τ(y′′)

π[p+, q] ⇔ τ(y′′)

π(q) ⇔ τ [y′′, f(q)].

(3.18)

Since pmax ≤ p− and q ≥ p+, we can reuse the matching f to match the respective prefix

and the suffix curves.

Claim 3.20 (Correctness of Case 4). Let the conditions of Case 4 be satisfied. Then

the matching scheme given by Equation (3.18) is valid.

Proof. Clearly, y′′ exists in the non-trivial case, since τ is continuous and it is

τ(f(pmax)) ≥ τ(y) ≥ τ(zmin) and f(pmax) ≤ f(p−) ≤ zmin.

We prove the validity of the matching scheme line by line. Note that by definition

τ(y′′) = τ(y) = π(pmax) − δ. For the first matching, by the definition of y′′ and by

Property 2, we have that τ(f(pmax)) ≥ τ(y′′) = min(τ [f(pmax), y′′]) = π(pmax) − δ. On

the other hand, it is also max(τ [f(pmax), y′′]) = τ(f(pmax)) ≤ π(pmax) + δ. If there would

exist t′ ∈ [f(pmax), y′′] with τ(t′) > π(pmax) + δ, then it would contradict Property 1(iv).

Therefore, it is {
τ(t) : t ∈ [f(pmax), y′′]

}
⊆ [π(pmax)]δ.

The validity of the second matching follows from Claim 3.16 since pmax ≥ x. For the third

matching, by Case 4 distinction and by Claim 3.15, it is

{
π(t) : t ∈ [p+, q]

}
⊆ [π(x), π(pmax)] ⊆ [π(pmax)− 2δ, π(pmax)] = [τ(y′′)]δ.
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As for the last matching, since f(x) ≤ f(pmax) ≤ y′′ ≤ y, and since by Case 4 distinction it

is f(q) < y, Claim 3.17 implies

{
τ(t) : t ∈ [y′′, f(q)]

}
⊆ {τ(t) : t ∈ [f(x), f(y)]} ⊆ [π(x)]δ = [π(q)]δ.

Therefore, our matching scheme is valid, and it is dF (π′, τ) ≤ δ.

3.3.3 The matryoshka case

Up to here we explored the case where f(p+) ≤ y, and showed by Claim 3.18, Claim 3.19,

and Claim 3.20 that, in this case, Lemma 3.7 is correct. However, if f(p+) > y, the repairing

of the broken matching becomes more complicated. We call this case the matryoshka

case, since it contains an iterative matching scheme, that metaphorically resembles a

matryoshka doll.

Case 5 (The matryoshka case). f(p+) > y.

In the previous cases we have already established a suitable set of tools to handle this

case. We devise an iterative matching scheme and prove an invariant (stated in Claim 3.21)

to verify that the Fréchet distance of the matched subcurves is at most δ. We first define

z
(1)
min = zmin, t

(1)
min = tmin, x(1) = x, and y(1) = y. Now, for a = 2, . . . let

z
(a)
min = arg min

t∈[y(a−1),f(p+)]

τ(t),

t
(a)
min = arg min

t∈[y(a−1),sj+1]

τ(t),

x(a) = min
{
p ∈ [x(a−1), pmax] : π(p) = min{τ(t

(a)
min) + δ, τ(sj+1)− δ}

}
,

y(a) = min
{
t ∈ [t

(a)
min, sj+1] : τ(t) = π(pmax)− δ

}
.

We describe the intended matching scheme. We begin by matching π[0, x(1)]⇔ τ [0, f(x(1))]

and π(x(1)) ⇔ τ [f(x(1)), y(1)]. The first matching is reused from f , while the validity of

the second matching follows from Claim 3.17. We continue with the following subcurves:{
π[x(a−1), x(a)] ⇔ τ(y(a−1))

π(x(a)) ⇔ τ [y(a−1), y(a)],
(3.19)

where the last two matchings are repeated while incrementing a (starting with a = 2). We

call the part of the matching stated by (3.19) the iterative part. After each iteration, we

are left with the unmatched subcurves π[x(a), p−] and τ [y(a), f(p+)].
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Case 5(i) (Trivial subcase): It is f(p+) > y, and for some a ≥ 2, it holds that:

π(p−) ≤ τ(z
(a+1)
min ) + δ. (3.20)

In this case the matching scheme can be completed easily, since this is equivalent to the

trivial case (Case 1). We complete the matching with the following scheme{
π[x(a), p−] ⇔ τ(y(a)),

π(p+) ⇔ τ [y(a), f(p+)].
(3.21)

For the suffix curves π[p+, 1] and τ [f(p+), 1] we reuse the matching f . In order to prove

the correctness of this (sub)case (Case 5(i)), we extend Claim 3.17 as follows. The next

claim will be used in the non-trivial (sub)cases as well.

Claim 3.21. It holds that{
τ(t) : t ∈ [y(a−1), y(a)]

}
⊆
[
τ(t

(a)
min) , min{τ(t

(a)
min) + 2δ, τ(sj+1)}

]
⊆ [π(x(a))]δ.

Proof. By Claim 3.14 and the definition of y(a), it is sj ≤ y ≤ y(a−1) ≤ y(a) ≤ sj+1. By

the definition of t
(a)
min,

min(τ [y(a−1), y(a)]) ≥ min(τ [y(a−1), sj+1]) = τ(t
(a)
min). (3.22)

Let us assume there exists t′ ∈ [y(a−1), y(a)], such that τ(t′) − τ(t
(a)
min) > 2δ. By the

definitions of y(a) and t
(a)
min, it is max(τ [t

(a)
min, y

(a)]) = τ(y(a)), thus t′ ∈ [y(a−1), t
(a)
min]. But

this contradicts Property 1(iv), therefore, we have that

max(τ [y(a−1), y(a)]) ≤ τ(t
(a)
min) + 2δ. (3.23)

By Property 1(iii), we also have that

max(τ [y(a−1), y(a)]) ≤ τ(sj+1). (3.24)

Equations (3.22), (3.23), and (3.24) prove the first part of the claim. For the second part

we use the definition of π(x(a)) = min{τ(t
(a)
min) + δ, τ(sj+1)− δ}, which implies

τ(t
(a)
min) ≥ π(x(a))− δ

min{τ(t
(a)
min) + 2δ, τ(sj+1)} = π(x(a)) + δ,
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as claimed.

Claim 3.22 (Correctness of Case 5(i)). If for some value of a, a ≥ 2, it holds that

π(p−) ≤ τ(z
(a+1)
min ) + δ, then the matching scheme given by Equations (3.19) and (3.21) is

valid.

Proof. By Claim 3.16 the first row of (3.19) is valid, since for all values of a it is τ(y(a)) =

π(pmax)− δ, and [x(a−1), x(a)] ⊆ [x, p−]. The second row of (3.19) is valid by Claim 3.21.

Thus, the iterative part of the matching scheme is valid.

It remains to prove the validity of the matchings in (3.21). By Claim 3.16, it is

{
π(p) : p ∈ [x, p−]

}
⊆ [π(pmax)− 2δ, π(pmax)] = [τ(y)]δ = [τ(y(a))]δ.

Since x ≤ x(a) ≤ p−, this implies that the Fréchet distance between π[x(a), p−] and τ(y(a))

is at most δ. For the second row in (3.21), we have by our case distinction (3.20), that

min(τ [y(a), f(p+)]) = τ(z
(a+1)
min ) ≥ π(p−)− δ, (3.25)

while (by Property 2) the matching f testifies that

max(τ [f(p−), f(p+)]) ≤ max(π[p−, p+]) + δ = π(p−) + δ. (3.26)

Since f(p−) ≤ y ≤ y(a) ≤ f(p+), Equations (3.25) and (3.26) imply{
τ(t) : t ∈ [y(a), f(p+)]

}
⊆ [π(p−)]δ = [π(p+)]δ,

as claimed. Note that the proof holds both if sj+1 < f(p+) or sj+1 ≥ f(p+), which is the

distinction we will make in the non-trivial subcases.

From now on, we will assume the non-trivial (sub)case, i.e. π(p+) > τ(z
(a+1)
min ) + δ.

Our matching scheme is based on a stopping parameter a, which (intuitively) depends on

whether f matched some point on the missing subcurve π[p−, p+] to a signature vertex

τ(sj+1) of τ .

Definition 3.23 (Stopping parameter a). If sj+1 ≥ f(p+), then let a be the minimal

value of the index a satisfying f(p+) ≤ y(a). Otherwise, let a be the minimal value of a

such that y(a) = y(a+1) ≤ sj+1.

We show that the stopping parameter is well-defined by the following claim.

Claim 3.24. The stopping parameter a (cf. Definition 3.23) is well-defined, and the

iterative part of the matching scheme (Equation (3.19)) is valid for a ≤ a.
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Proof. We first argue that there must be a value of a such that t
(a+1)
min = y(a) = y(b) for any

b > a. Recall that by our initial assumptions, we have chosen the signature edge, such that

zmin ∈ [sj , sj+1], and thus zmin ≤ tmin ≤ sj+1. As a consequence, Claim 3.13 testifies that

in the non-trivial case, the point τ(y) exists and is well-defined. We defined y(1) = y and

for a > 1 we defined

y(a) = min{t ∈ [t
(a)
min, sj+1] : τ(t) = π(pmax)− δ}.

Since by Claim 3.13, τ(sj+1) ≥ π(pmax)− δ = τ(y(a)), there must be a value of a, such that

min(τ [y(a), sj+1]) ≥ τ(y(a)).

Let this value of a be denoted â. In this case, it follows by definition that t
(â+1)
min = y(â).

This further implies that y(â+1) = y(â) and t
(â+2)
min = y(â+1), . . . . Therefore, by induction it

is y(â) = y(b), for all b > â. Now, if sj+1 < f(p+), then the above analysis implies that the

stopping parameter a is well-defined.

However, if sj+1 ≥ f(p+), we defined a to be the minimal value of a such that f(p+) ≤ y(a).

Now it might happen that y(â) < f(p+) ≤ sj+1. In this case, there exists no value of a,

such that f(p+) ≤ y(a), thus y(a) does not exist. We can reduce this case to the trivial

case (Case 5(i)) as follows. By Claim 3.13, τ(sj+1) ≥ π(pmax)− δ and by Property 1(iii),

τ(sj+1) must be a maximum on τ [sj , sj+2]. Thus, by definition of t
(â)
min, we would have

τ
(
z

(â)
min

)
= τ

(
t
(â)
min

)
= τ(y(â−1)) = π(pmax)− δ ≥ π(p−)− δ, which is Case 5(i) (the trivial

(sub)case).

Therefore, in the non-trivial case, a is well-defined. The validity of the iterative part of

the matching scheme (Equation (3.19)) for a ≤ a follows from Claim 3.16 and Claim 3.21,

as in the proof of Claim 3.22.

It remains to complete the matching scheme for the unmatched subcurves π[x(a), p−]

and τ [y(a), f(p+)]. In order to set up a case analysis with a similar structure as before, we

define

q′ = min
{
g(π(pmax)), g(τ(t

(a)
min) + δ)

}
q′′ = min {g(π(pmax)), g(τ(sj+1)− δ)}

The exact case distinction is specified in Table 3.1: (i) trivial case (see Claim 3.22), (ii) π

stays level, (iii) π tends upwards, (iv) π tends downwards, (v) unmatched signature vertex

and π tends upwards, (vi) unmatched signature vertex and π tends downwards. We have
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to formally prove that the case analysis is complete, and to prove correctness in each of

these subcases.

case definition intended matching

5(i) ∃a : π(p−) ≤ τ(z
(a+1)
min ) + δ π[x(a), p−] ⇔ τ(y(a))

π(p+) ⇔ τ [y(a), f(p+)]

5(ii) p+ ≤ f−1(y(a)) ≤ q′ π[x(a), p−] ⇔ τ(y(a))

π[p+, f−1(y(a))] ⇔ τ(y(a))

5(iii)
p+ ≤ q′ < f−1(y(a)) and
q′ = g(π(pmax))

This case can be reduced
to Case 5(i)

5(iv)
p+ ≤ q′ < f−1(y(a)) and

q′ = g(τ(t
(a)
min) + δ)

π[x(a−1), p−] ⇔ τ(y(a−1))

π[p+, q′] ⇔ τ(y(a−1))

π(q′) ⇔ τ [y(a−1), f(q′)]

5(v)

p+ > f−1(y(a)) and q′′ = g(π(pmax))

For the matching scheme, let

x′ = min{p ∈ [x(a), pmax] : π(p) = τ(sj+1)− δ}
y′ = max{t ∈ [0, f(q′′)] : τ(t) = τ(y)}
z = max{p+, f−1(y′)}

π[x(a), x′] ⇔ τ(y(a))

π(x′) ⇔ τ [y(a), y′]

π[x′, p−] ⇔ τ(y′)

π[p+, z] ⇔ τ(y′)

π[z] ⇔ τ [y′, f(p+)]

5(vi)
p+ > f−1(y(a)) and
q′′ = g(τ(sj+1)− δ)

π[x(a), p−] ⇔ τ(y(a))

π[p+, q′′] ⇔ τ(y(a))

π(q′′) ⇔ τ [y(a), f(q′′)]

Table 3.1: Subcases for Case 5: (i) trivial case (Claim 3.22), (ii) π stays level, (iii) π tends
upwards, (iv) π tends downwards, (v) unmatched signature vertex and π tends
upwards, (vi) unmatched signature vertex and π tends downwards. Examples of
these cases are shown in Figure 3.7 and Figure 3.8.

Claim 3.25. The case distinction of subcases of Case 5 (cf. Table 3.1) is complete.

Proof. We assume that we do not have the trivial case (Case 5(i)), i.e. π(p+) > τ(z
(a+1)
min )+δ,

for all a ≥ 2. If f(p+) ≤ y(a) (also f(p+) ≤ y(a) ≤ sj+1), we get one of Case 5(ii)-(iv).

Note that if q′ = p∞, then we have Case 5(ii). Thus, this part of the case distinction is

complete.

Otherwise we have f(p+) > y(a) (also f(p+) > sj+1 ≥ y(a)). In this case, we get one of

Case 5(v)-(vi). To show the completeness, we need to show that there is no case omitted.
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In the following, we argue that, if the subcurve of τ specified by the parameter interval

[f(p−), f(p+)] contains the signature vertex at sj+1, it must be that

τ(sj+1)− δ ∈
{
π(p) : p ∈ [p+, 1]

}
(3.27)

and thus, q′′ 6= p∞. Equation (3.27) implies that π(q′′) is one of {π(pmax), τ(sj+1)− δ}.

From sj+1 ∈ [f(p−), f(p+)] it follows that π(p+) ≥ π(f−1(sj+1)). By our initial assump-

tions it is

max(π[p−, p+]) = π(p+).

Assume that sj+2 6= 1, i.e., the next signature vertex after τ(sj+1) is not the last signature

vertex. In this case, by Property 1(i) and Property 2, we have

π(p+) ≥ π(f−1(sj+1)) ≥ τ(sj+1)− δ ≥ τ(sj+2) + δ ≥ π(f−1(sj+2)).

Since π is continuous, this implies that there must exist a point π(t), with p+ ≤ t and

π(t) = τ(sj+1)− δ, i.e. such that Equation (3.27) is satisfied.

Now, assume that sj+2 = 1. In this case, we have by the theorem statement that

π(pi) /∈ [τ(sj+2)]4δ. It must be that either τ(sj+1) ≥ π(pi) > τ(sj+2) + 4δ, or π(pi) <

τ(sj+2)− 4δ ≤ τ(sj+1)− 5δ. The second case is not possible, since by Claim 3.15 and by

Property 2 we have

π(pi) ≥ τ(f(pi))− δ ≥ τ(tmin)− δ
(3.7)

≥ π(pmax)− 4δ

≥ π(p+)− 4δ ≥ π(f−1(sj+1))− 4δ ≥ τ(sj+1)− 5δ.

Thus, τ(sj+1) > τ(sj+2) + 4δ, and, as in the case sj+2 6= 1, we have that

π(p+) ≥ π(f−1(sj+1)) ≥ τ(sj+1)− δ > τ(sj+2) + 3δ ≥ π(f−1(sj+2)) + 2δ ≥ π(f−1(sj+2)).

By the continuity of π, there is a point on π that satisfies Equation (3.27). Therefore, one

of Case 5(v)-(vi) occurs, as claimed.

The cases with f(p+) ≤ y(a) ≤ sj+1

We prove now the subcases (ii), (iii), and (iv) of Case 5 (cf. Table 3.1), where the signature

vertex τ(sj+1) does not belong to the subcurve of τ , that was matched by f to the missing

part of π.
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Claim 3.26 (Correctness of Case 5(ii)). Assume y < f(p+) ≤ y(a) ≤ sj+1 and

p+ ≤ f−1(y(a)) ≤ q′ (Case 5(ii)). Then the matching scheme given by Equation (3.28) is

valid.

Proof. We want to use the matching{
π[x(a), p−] ⇔ τ(y(a)),

π[p+, f−1(y(a))] ⇔ τ(y(a)),
(3.28)

and for the suffix curves π[f−1(y(a)), 1] and τ [y(a), 1] we reuse f , since y(a) ≥ f(p+). By

Claim 3.16, the Fréchet distance between π[x(a), p−] and τ(y(a)) is at most δ, implying the

validity of the first row of (3.28).

Since t
(a−1)
min always exists, due to y(1) ≤ sj+1 by Claim 3.14, we have by Claim 3.15 and

the definition of t
(a)
min, that

τ(t
(a)
min) + δ ≥ τ(t

(a−1)
min ) + δ ≥ τ(tmin) + δ ≥ π(x) ≥ π(pmax)− 2δ.

By our case distinction, it is p+ ≤ f−1(y(a)) ≤ q′, and thus{
π(p) : p ∈ [p+, f−1(y(a))]

}
⊆ [τ(t

(a)
min) + δ, π(pmax)] ⊆ [τ(t

(a−1)
min ) + δ, π(pmax)]

⊆ [π(pmax)− 2δ, π(pmax)] = [τ(y(a))]δ.

This implies that also the second matching of (3.28) is valid, as claimed.

Claim 3.27 (Correctness of Case 5(iii)). Assume y < f(p+) ≤ y(a) ≤ sj+1, and let in

this case p+ ≤ q′ < f−1(y(a)) and q′ = g(π(pmax)) (Case 5(iii)). Then the conditions of

Case 5(i) are satisfied.

Proof. By the case definition it is f(p+) ≤ f(q′) < y(a) and q′ = g(π(pmax)). We can

reduce this case to Case 5(i) (the trivial case) as follows.

Let b be the maximal value of a such that f(q′) ∈ [y(a), y(a)]. By Property 2 it must be

that τ(f(q′)) ≥ π(q′)− δ = π(pmax)− δ = τ(y(b)). By the definition of y(a), for any a, τ

goes upwards in τ(y(a)), then intersects π(pmax)− δ downwards, and goes upwards again

in τ(y(a+1)). Thus, by the choice of b, it is min(τ [y(b), f(q′)]) ≥ π(pmax)− δ.
By our case distinction and the choice of b, f(p+) ∈ [y(b), f(q′)]. Thus,

τ(z
(b+1)
min ) = min(τ [y(b), f(p+)]) ≥ min(τ [y(b), f(q′)]) ≥ π(pmax)− δ ≥ π(p−)− δ,

and we are again in Case 5(i).
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Claim 3.28 (Correctness of Case 5(iv)). Assume y < f(p+) ≤ y(a) ≤ sj+1, and let in

this case p+ ≤ q′ < f−1(y(a)) and q′ = g(τ(t
(a)
min) + δ) (Case 5(iv)). Then the matching

scheme given by Equation (3.29) is valid.

Proof. By our case distinction, it is p+ ≤ q′ < f−1(y(a)) and q′ = g(τ(t
(a)
min) + δ). In this

case, we rollback the last two matchings of the iterative part of the matching scheme

(Equation (3.19)), and instead end with a = a− 1. Thus, we are left with the unmatched

subcurves π[x(a−1), p−] and τ [y(a−1), f(p+)]. We intend to use the following matching:
π[x(a−1), p−] ⇔ τ(y(a−1)),

π[p+, q′] ⇔ τ(y(a−1)),

π(q′) ⇔ τ [y(a−1), f(q′)],

(3.29)

and to complete the matching scheme with the suffix curves π[q′, 1] and τ [f(q′), 1], reusing

the matching f , since p+ ≤ q′.
The validity of the first matching in (3.29) follows directly from Claim 3.16, since

x(a−1) > x. By the definition of t
(a)
min and Property 1(iv), it has to hold

τ(t
(a)
min) + 2δ ≥ τ(y(a−1)) = π(pmax)− δ. (3.30)

Then, by the definition of q′ and our case distinction, it is

{
π(p) : p ∈ [p+, q′]

}
⊆ [τ(t

(a)
min) + δ, π(pmax)]

(3.30)

⊆ [π(pmax)− δ]δ = [τ(y(a−1))]δ.

This proves the validity of the second matching in (3.29). Finally, Claim 3.21 implies

the validity of the third matching in (3.29), since [y(a−1), f(q′)] ⊆ [y(a−1), y(a)], and

π(q′) = τ(t
(a)
min) + δ. This closes the proof of Case 5(iv).

We have now analyzed Case 5(i)-(iv), and showed by Claim 3.22, Claim 3.26, Claim 3.27,

and Claim 3.28 that, in these cases, Lemma 3.7 is correct. Examples of these cases are

shown in Figure 3.7. We now move on to prove correctness of the remaining cases Case 5(v)

and Case 5(vi), where the signature vertex τ(sj+1) was in the part of the matching f that

needs to be repaired.

The cases with f(p+) > sj+1 ≥ y(a)

Claim 3.29 (Correctness of Case 5(v)). Let f(p+) > sj+1 ≥ y(a) ≥ y and assume

q′′ = g(π(pmax)) (Case 5(v)). Then the matching scheme given by Equation (3.31) is valid.
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Figure 3.7: Examples of Case 5(i)-(iv). The broken part of the matching f is indicated
by thick lines. The indices in the exponents are written without brackets for
simplicity.
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Figure 3.8: Examples of Case 5(v)-(vi). The broken part of the matching f is indicated
by thick lines. The indices in the exponents are written without brackets for
simplicity.
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Proof. By our case distinction, it holds that f(p+) > y(a) and q′′ = g(π(pmax)). We

introduce the following additional notation:

x′ = min{p ∈ [x(a), pmax] : π(p) = τ(sj+1)− δ},

y′ = max{t ∈ [0, f(q′′)] : τ(t) = τ(y)},

z = max{p+, f−1(y′)}.

We intend to use the following matching scheme

π[x(a), x′] ⇔ τ(y(a))

π(x′) ⇔ τ [y(a), y′]

π[x′, p−] ⇔ τ(y′)

π[p+, z] ⇔ τ(y′)

π[z] ⇔ τ [y′, f(p+)]

(3.31)

Observe that in this case q′′ = q = g(π(pmax)), as in Case 3 (cf. Equation (3.13)).

Therefore, y′ and z are the same as in Case 3 and they must exist (cf. Equation (3.15)).

We argue that x′ must also exist. Recall that by our case distinction f(p−) ≤ sj+1 ≤ f(p+).

By Property 1(iii) and Property 2, it follows that

τ(sj+1)− δ = max(τ [f(p−), f(p+)])− δ ≤ max(π[p−, p+]) ≤ π(pmax). (3.32)

By the definition of x(a) it is x(a) ≤ τ(sj+1)− δ, for all a ≥ 2. Thus, π(x(a)) ≤ τ(sj+1)−

δ
(3.32)

≤ π(pmax), and by the continuity of π, x′ has to exist.

Now we need to prove the validity of the matching scheme (3.31). The first line follows

from Claim 3.16, since x(a) ≥ x. For the second line in (3.31), we need to prove that{
τ(t) : t ∈ [y(a), y′]

}
⊆ [τ(sj+1)− 2δ, τ(sj+1)] = [π(x′)]δ.

The upper bound follows from Property 1(iii), thus, max(τ [y(a), y′]) ≤ τ(sj+1). As for the

lower bound, by the definition of the stopping parameter (when f(p+) > sj+1) and using

Equation (3.32), we have

min(τ [y(a), sj+1]) = τ(y(a)) = π(pmax)− δ
(3.32)

≥ τ(sj+1)− 2δ. (3.33)

By Claim 3.10,

min(τ [sj+1, f(p+)]) ≥ τ(sj+1)− 2δ. (3.34)
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By Property 2 and by our case distinction (τ(y′) is the last point before τ(q′′) with the

specified value), we have

min(τ [f(p+), y′)]) = min(τ [f(p+), f(q′′)]) ≥ min(π[p+, q′′])− δ ≥ τ(sj+1)− 2δ. (3.35)

Therefore, by Equations (3.33), (3.34), and (3.35), min(τ [y(a), y′]) ≥ τ(sj+1)− 2δ, and the

second matching in (3.31) is valid as well. The validity of the third matching is implied by

Claim 3.16, since x′ > x. For the last two matchings we can apply the respective part of the

proof of Case 3 (for matching presented in Equation (3.16), cf. Claim 3.19) verbatim.

Claim 3.30 (Correctness of Case 5(vi)). Let f(p+) > sj+1 ≥ y(a) ≥ y and assume

q′′ = g(τ(sj+1)− δ) (Case 5(vi)). Then the matching scheme given by Equation (3.36) is

valid.

Proof. In this case it is f(p+) > y(a) and q′′ = g(τ(sj+1)− δ). We will use the following

matching scheme: 
π[x(a), p−] ⇔ τ(y(a))

π[p+, q′′] ⇔ τ(y(a))

π(q′′) ⇔ τ [y(a), f(q′′)]

(3.36)

The validity of the first matching in (3.36) follows from Claim 3.16, since x(a) ≥ x. By

Property 1(iii) and Property 2 it is τ(sj+1) ≥ π(pmax)− δ. Then, by our case distinction,

{
π(p) : p ∈ [p+, q′′]

}
⊆ [τ(sj+1)− δ, π(pmax)] ⊆ [τ(y(a)]δ).

Thus, the second matching in (3.36) is valid as well. For the third matching in (3.36) we

need to prove that{
τ(t) : t ∈ [y(a), f(q′′)]

}
⊆ [τ(sj+1)− 2δ, τ(sj+1)] = [π(q′′)]δ. (3.37)

Again, as in Case 5(v), from Equations (3.33) and (3.34), it follows that{
τ(t) : t ∈ [y(a), f(p+)]

}
⊆ [τ(sj+1)− 2δ, τ(sj+1)]. (3.38)

By Property 2 and by our case distinction

min(τ [f(p+), f(q′′)]) ≥ min(π[p+, q′′])− δ ≥ τ(sj+1)− 2δ (3.39)
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Equation (3.39) also implies that f(q′′) < sj+2, by Property 1(i). Thus, by Property 1(iii),

we conclude

max(τ [f(p+), f(q′′)]) ≤ τ(sj+1). (3.40)

Equations (3.38), (3.39), and (3.40) together imply the correctness of (3.37), and thus, the

validity of the last matching in (3.36).

We now proved correctness of the last two cases (Case 5(v) and Case 5(vi)), and showed

by Claim 3.29, and Claim 3.30 that, in these cases, Lemma 3.7 is correct. Examples of

these cases are shown in Figure 3.8.

3.3.4 Boundary cases

It remains to prove the boundary cases, which we have ruled out so far by Assumption 3.

There are three boundary cases:

(B1) sj = 0 and sj+1 = 1 (there is only one signature edge),

(B2) sj = 0 and sj+1 < 1 (the first signature edge),

(B3) sj > 0 and sj+1 = 1 (the last signature edge).

To prove the claim in each of these cases, we can use the proof we have done under

Assumption 3 verbatim, with minor modifications. Throughout the proof, we used sj only

in its function as the minimum on the signature edge sjsj+1, and sj+1 only in its function

as the maximum on the signature edge, respectively. Thus, let

smin = arg min
s∈[sj ,sj+1]

τ(s) and smax = arg max
s∈[sj ,sj+1]

τ(s).

Assumption 1 and Assumption 2 remain valid. The next claim relates the point τ(f(pi)),

that was matched to the removed vertex on π, to τ(smin) and τ(smax).

Claim 3.31. In each of the cases (B1), (B2), and (B3), it holds for the removed point

π(pi) that f(pi) ∈ [smin, smax] and τ(smax)− τ(smin) ≥ 4δ.

Proof. By the theorem statement and by Definition 3.3, it holds that

π(pi) /∈ [v1]4δ ∪ [v`]4δ = [τ(0)]4δ ∪ [τ(1)]4δ, (3.41)

i.e., the removed vertex π(pi) lies very far from the endpoints of the curve τ . At the same

time, by Definition 3.3, in case sj = 0 ((B1) and (B2)),

τ(0) ≥ τ(smin) ≥ τ(0)− δ, (3.42)



3.3 The proof of Lemma 3.7 83

and, in case sj+1 = 1 ((B1) and (B3)),

τ(1) ≤ τ(smax) ≤ τ(1) + δ. (3.43)

For the sake of a contradiction, assume that f(p(i)) < smin. In the case when sj 6= 0

(B3), by Assumption 1 it is smin = sj (a contradiction). In other two cases, by the

direction-preserving property of Definition 3.3 and by Property 2, it is

τ(0)− 2δ ≤ τ(f(pi))− δ ≤ π(pi) ≤ τ(f(pi)) + δ ≤ τ(0) + 2δ,

a contradiction to Equation (3.41). Analogously, we conclude that it cannot be f(pi) > smax,

and thus, it holds that f(pi) ∈ [smin, smax], as claimed.

By the direction-preserving property of Definition 3.3, we conclude further, making

distinction on relation between π(pi), and τ(0) and τ(1), that:

(i) If τ(0) + 4δ < τ(f(pi)) and τ(1) + 4δ < τ(f(pi)), then we have in the cases (B1) and

(B2), that

τ(smin) + 4δ
(3.42)

≤ τ(0) + 4δ < τ(f(pi)) ≤ τ(smax), (3.44)

and in the case (B3), that

τ(smin) + 4δ
(3.43)

≤ τ(1) + 4δ < τ(f(pi)) ≤ τ(smax). (3.45)

Equations (3.44) and (3.45) imply τ(smax)− τ(smin) > 4δ.

(ii) If τ(0) + 4δ > τ(f(pi)) and τ(1) − 4δ > τ(f(pi)), then in the cases (B1) and (B2)

Equation (3.44) remains valid. In the case (B3) we have

τ(smin) ≤ τ(f(pi)) < τ(1)− 4δ
(3.43)

≤ τ(smax)− 4δ. (3.46)

Equations (3.44) and (3.46) imply τ(smax)− τ(smin) > 4δ.

The remaining two cases: τ(0)− 4δ > τ(f(pi)) and τ(1)− 4δ > τ(f(pi)), and τ(0) + 4δ >

τ(f(pi)) and τ(1)− 4δ > τ(f(pi)), respectively, are equivalent to the two cases we analyzed

above. Thus, the second part of the claim is proved.

We replace Property 1 with the following property.

Property 3 (Signature (boundary case)).

(i) τ(smax)− τ(smin) > 2δ,
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(ii) τ(smin) = min(τ [sj−1, sj+1]) (if sj = 0, then τ(smin) = min(τ [0, sj+1])),

(iii) τ(smax) = max(τ [sj , sj+2]) (if sj+1 = 1, then τ(smax) = max(τ [sj , 1])),

(iv) τ(t′)− 2δ ≤ τ(t′′) for smin ≤ t′ < t′′ ≤ smax,

(v) if sj = 0, then τ(smax)− τ(sj+2) > 2δ.

Property 3(ii), (iii), (iv), and (v) hold by Definition 3.3. Property 3(i) follows from

Claim 3.31.

Instead of Claim 3.10 we use the claim

Claim 3.32. If smax ∈ [f(p−), f(p+)], then

{
τ(t) : t ∈ [smax, f(p+)]

}
⊆ [τ(smax)− 2δ, τ(smax)].

Instead of Claim 3.11 we use the claim

Claim 3.33. It holds that smin /∈ [f(p−), f(p+)].

The correctness of Claim 3.32 and Claim 3.33 follows by taking the proofs of Claim 3.10

and Claim 3.11, respectively, and by replacing sj with smin, and replacing sj+1 with smax.

This is enabled by Claim 3.31. The correctness of Lemma 3.7 follows in the boundary cases

(B1), (B2) and (B3), by replacing sj with smin, and replacing sj+1 with smax.

Therefore, we have proved the correctness of Lemma 3.7 in all possible cases, as well as

that our case analysis is complete.

3.4 On computing signatures

In this section we discuss how to compute signatures efficiently. Our signatures have a

unique hierarchical structure as testified by Lemma 3.34. Together with the concept of

vertex permutations (Definition 3.35), this allows us to construct a data structure, which

supports efficient queries for the signature of a given size (Theorem 3.39). If the parameter

δ is given, we can compute a signature in linear time using Algorithm 1. Furthermore, we

show that our signatures are approximate simplifications in Lemma 3.41.

3.4.1 Computing signatures of a given size

We consider first the case of computing the signatures when a size of signature is given.

Lemma 3.34. Given a polygonal curve τ : [0, 1] → R with vertices in general position,

there exists a series of signatures σ1, σ2, . . . , σk and corresponding parameters 0 = δ1 <

δ2 < · · · < δk+1, such that
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(i) σi is a δ-signature of τ for any δ ∈ [δi, δi+1),

(ii) the vertex set of σi+1 is a subset of the vertex set of σi,

(iii) σk is the linear interpolation of τ(0) and τ(1).

Proof. We construct the desired series of signatures by a series of edge contractions. Given

a curve σ = w1, . . . , w`, the contraction of an edge wjwj+1 of σ yields a curve σ′, such that:

(a) if j ∈ {2, . . . , `− 2}, then the vertices wj−1 and wj+2 are connected by an edge in σ′;

the vertices wj and wj+1 are deleted; the rest of the curve σ′ equals σ.

(b) if j ∈ {1, `−1}, then the vertices w1 and w3 (respectively, w`−2 and w`) are connected

by an edge in σ′; the vertex w2 (respectively w`−1) is deleted; the rest of the curve

σ′ equals σ.

We start with σ1 = τ , which is clearly a minimal δ1-signature for δ1 = 0. We now

conceptually increase the signature parameter δ until a smaller signature is possible. In

general, let 0 = t0 < t1 < · · · < t` = 1 be the series of parameters that defines σi. Let for

i > 1 be:

δi+1 = min

{
|τ(t1)− τ(t2)|, |τ(t`−1)− τ(t`)|, min

2≤j≤`−2

|τ(tj)− τ(tj+1)|
2

}
. (3.47)

We contract the edge where the minimum is attained to obtain σi+1. By the general

position assumption, this edge is unique. See Figure 3.9 for an example.

σi σi+1

Figure 3.9: Edge contraction from Lemma 3.34. The contracted edge is marked dotted.

We show by induction over i that σi is a δi-signature. The claim for i = 1 holds by

definition. We assume that for some i the induction hypothesis holds, and prove that it

remains valid for σi+1 and δi+1. We distinct two cases: whether the contracted edge of σi

to obtain σi+1 is an internal edge, or is connected to an endpoint.

Case 1: τ(tj)τ(tj+1) is the contracted edge, with 2 ≤ j ≤ `− 2. Observe that

τ(tj), τ(tj+1) ∈ 〈〈τ(tj−1), τ(tj+2)〉〉. (3.48)
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If Equation (3.48) would not hold, say τ(tj) > τ(tj+2) > τ(tj−1) (i.e. the case that

τ(tj) is a local maximum, the other three cases are analogous), then the contracted

edge τ(tj)τ(tj+1) would not minimize the expression in (3.47). We prove that σi+1

satisfy the conditions of Definition 3.3.

(i) (non-degeneracy): Assume for the sake of contradiction that this property

does not hold, i.e., either that τ(tj−1) ∈ 〈〈τ(tj−2), τ(tj+2)〉〉, or that τ(tj+2) ∈
〈〈τ(tj−1), τ(tj+3)〉〉. We assume the first case. Then, Equation (3.48) would

imply that τ(tj−1) ∈ 〈〈τ(tj−2), τ(j)〉〉, which contradicts the non-degeneracy

property of σi. The second case is symmetric to the first, and follows by

analogy.

(ii) (direction-preserving): Since δi < δi+1, we have to prove this property only

for the newly established edge τ(tj−1)τ(tj+2) of σi+1 (for the other edges it is

inherited from σi). The contracted edge was the shortest interior edge of σi

and by construction we have that

|τ(tj)− τ(tj+1)| = 2δi+1 (3.49)

For any s, s′ ∈ [tj , tj+1], s ≤ s′, it holds that |τ(s)− τ(s′)| ≤ 2δi+1. Indeed, by

induction, the range condition held true for the contracted edge (of σi), and

by Equation (3.49) its length was 2δi+1. For any s, s′ ∈ [tj−1, tj ], s ≤ s′, the

direction-preserving property of σi+1 holds by induction, and the same holds

for the case s, s′ ∈ [tj+1, tj+2]. The remaining case is s, s′ ∈ [tj−1, tj+2], s ≤ s′,
where the points τ(s) and τ(s′) belonged to different edges of σi. In this case,

the direction-preserving property for σi+1 follows by the range property of σi

and by Equation (3.49).

(iii) (minimum-edge-length): Equation (3.49) and the choice of the contracted edge

imply the minimum-edge-length property for σi+1.

(iv) (range): Since by induction, the range property was satisfied for σi, by the state-

ment in (3.48) the range property cannot be violated by the edge contraction,

thus it holds for σi+1 as well.

Case 2: τ(tj)τ(tj+1) is the contracted edge, with j = 1 (the case j = `− 1 is analogous).

For simplicity, let the first three vertices of the current signature σi have indices 1, 2,

and 3. Again, we prove the conditions of Definition 3.3.

(i) (non-degeneracy): The non-degeneracy property on the vertex τ(t3) is not

affected by the edge contraction, since τ(t3) stays a minimum (resp. maximum)

in σi+1 if it was a minimum (resp. maximum) in σi. Otherwise, the contracted
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edge would not minimize the expression in Equation (3.47). The other vertices

of σi (except the deleted τ(t2)) are not affected by the edge contraction.

(ii) (direction-preserving): The arguments for the direction-preserving property are

the same as in the case when j > 1.

(iii) (minimum-edge-length): |τ(t2)− τ(t3)| > 2δi+1 and |τ(t1)− τ(t2)| = δi+1 imply

the minimum-edge-length property for σi+1, i.e. that |τ(t1)− τ(t3)| > δ.

(iv) (range): By induction, the range property and the non-degeneracy property are

satisfied for the first two edges of σi. Since it holds for the length of the second

edge that |τ(t2) − τ(t3)| > 2δi+1, it must be that the union of the intervals

[τ(t1)−δi+1, τ(t1)+δi+1] and 〈〈τ(t1), τ(t3)〉〉 spans the range of values on τ [t1, t3].

Thus, the range property is satisfied for σi+1.

By construction it is clear that the vertex set of the σi+1 is a subset of the vertex set of σi

for each i, as well as that σk is the linear interpolation of τ(0) and τ(1). This completes

the proof of the lemma.

We call the signatures σ1, . . . , σk of Lemma 3.34 the canonical signatures of the curve

τ . We next define the canonical vertex permutation, following the concept of the vertex

permutations of Driemel and Har-Peled [65].

Definition 3.35 (Canonical vertex permutation). Given a curve τ : [0, 1]→ R with

m vertices in general position, consider its canonical signatures σ1, . . . , σk of Lemma 3.34.

We call a permutation of the vertices of τ canonical if for any two vertices x, y of τ it

holds that if x /∈ V(σi) (the vertex set of σi) and y ∈ V(σi), for some i, then x appears

before y in the permutation. Furthermore, we require that the permutation contains a token

separator for every σi, for 1 ≤ i ≤ k, such that σi consists of all vertices appearing after

the separator.

A canonical vertex permutation can be computed efficiently. The idea is to simulate

the series of edge contractions done in the proof of Lemma 3.34. This is claimed by

Lemma 3.36.

Lemma 3.36. Given a curve τ : [0, 1]→ R with m vertices in general position, a canonical

vertex permutation can be computed in O (m logm) time and using O (m) space.

Proof. Let w1, . . . , wm be the vertices of the curve τ . We build a min-heap from the vertices

w2, . . . , wm−1 using certain keys, that will be defined briefly. We iteratively extract the

(one or more) vertices with the current minimum key from the heap and update the keys

of their neighboring vertices along the current signature curves. The extracted vertices are

recorded in a list L (which is initially empty) in the order of their extraction and will form
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the canonical vertex permutation in the end. Before every iteration we append a token

separator to L. In this way, all vertices extracted during one iteration are placed between

two token separators in L. After the last iteration we again append a token separator and,

at last, the two vertices w1 and wm.

More precisely, let v1, . . . , vk (a subset of {w2, . . . , wm−1}, renamed for simplicity of

notation) denote the vertices contained in the heap at the beginning of one particular

iteration, sorted in the order of their appearance along the curve σ. We call the curve

σ = w1, v1, . . . , vk, wm,

the current signature. For every vertex we keep pointers to the heap elements that represent

its current predecessor and successor vertices along the current signature. We also keep

these pointers to the virtual elements w1 and wm, which are not included in the heap. We

define the key W (vi) for every vertex vi in the heap as follows:

(i) if i = 1, then W (vi) = min
(
|w1 − v1|, |v1−v2|2

)
,

(ii) if i = k, then W (vi) = min
(
|wm − vk|, |vk−vk−1|

2

)
, otherwise

(iii) W (vi) = min
(
|vi−vi−1|

2 , |vi−vi+1|
2

)
.

Initially, the current signature equals τ and initializing these keys takes O (m) time in total.

Building a min-heap takes O (m logm) time. Following the argument from Lemma 3.34,

we need to contract the edge(s) with minimum length (where exceptions hold for the first

and the last edge). This is captured by the choice of the keys’ values above.

We first assume that the minimum is attained for exactly one edge with two endpoints

vi and vi+1 in the heap, for some i. In this case, vi and vi+1 are the next two elements to

be extracted from the heap and their keys must be equal to |vi−vi+1|
2 . Using the pointers

to vi−1 (unless i = 1) and vi+2 (unless i = k), we now update the key values of these

neighbors and update the pointers such that vi−1 (respectively, w1) becomes predecessor

to vi+2, and vi+2 (respectively, wm) becomes successor to vi−1. Computing the new key

value of one of these neighboring vertices can be done in O(1) time. Updating the keys

in the heap takes O (logm) time per vertex. We can charge every update of the keys and

the pointers to the extraction of a neighboring vertex, thus the extraction costs O (logm)

per vertex. Since every vertex is extracted exactly once, we need O (m logm) time in total.

The space O (m) requirement follows from the construction of the min-heap.

If only one vertex v1 or vk is extracted during the iteration, which corresponds to the

case that an edge adjacent to w1 or wm is being contracted, the presented upper bounds

remain valid. By the general positition assumption, it is not possible to have more than

one edge (and two vertices) to be extracted simultaneously. If this assumption would be
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neglected, then multiple edges of the same length would be contracted all at once. In this

case more than two vertices need to be extracted, but the (amortized) cost of extraction

per vertex (in particular, the updating of the pointers) would remain O (logm), as every

vertex is extracted exactly once.

We have computed the canonical vertex permutation by Lemma 3.36. The running time

of Lemma 3.36 is optimal, as it is showed in Lemma 3.37.

Lemma 3.37. Given a curve τ : [0, 1]→ R with m vertices in general position, the problem

of computing a canonical vertex permutation requires at least Ω(m logm) time.

Proof. We show the lower bound using a reduction from the problem of sorting a list of

M = m−2
2 natural numbers. This problem is well-known to require at least Ω(m logm)

comparisons in worst case (cf. a classical book by Cormen et al. [58], Theorem 8.1). Let

a1, . . . , aM be the elements of the list in order in which they appear in the list. We can

determine the maximal element amax in O (M) time. We now construct a curve τ of

complexity m as follows: let xi = 2i · amax, for 1 ≤ i ≤M + 1, and let

τ = 0, x1, x1 − a1, . . . , xi, xi − ai, . . . , xM , xM − aM , xM+1.

The constructed curve contains an edge between xi and xi − ai of length ai, for every ai of

our sorting instance. We call these edges variable edges. The remaining edges of the curve

τ are called connector edges. All connector edges are longer than amax. We can consider

all the edges that would occur after extracting the two vertices of variable edges to be

connector edges.

If the claim of the lemma would not hold, a canonical vertex permutation of τ would

provide us the variable edges (i.e. the values xi associated with these edges) in ascending

order of their length, a contradiction.

The following lemma testifies that we can query the canonical vertex permutation for a

signature of a given size `. Note that a canonical signature of size exactly ` may not exist.

Lemma 3.38. Given a canonical vertex permutation of a curve τ, we can extract the

canonical signature of τ of maximal size `′, with `′ ≤ `, in O(` log `) time.

Proof. Let L′ denote the suffix of the canonical vertex permutation which contains the last

` vertices. If there is no token separator at the starting position of L′, then we remove

the maximal prefix of L′ which does not contain a token separator. In this way, we obtain

the vertices of the canonical signature σ of maximal size `′, with `′ ≤ `. We now sort

the vertices in L′ in order of their appearance along σ in time O (` log `), and return the

resulting curve.
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The following theorem follows from Lemma 3.36 and Lemma 3.38. Furthermore,

Lemma 3.37 testifies that the preprocessing time is asymptotically tight.

Theorem 3.39. Given a curve τ : [0, 1] → R with m vertices in general position, we

can construct a data structure in time O (m logm) and space O (m), such that, given a

parameter ` ∈ N we can extract a canonical signature of maximal size `′, with `′ ≤ `, in

time O (` log `).

3.4.2 Computing signatures of a given error

Up to now, we have considered the problem of constructing a signature containing at most

` vertices, for a given value of ` ∈ N. Now we consider the construction of a δ-signature for

a given parameter δ > 0. Algorithm 1 does this, as it is claimed by Theorem 3.40. This

algorithm is a greedy one, choosing the next signature vertex as the one that is out of

the covered range, while being the farthest point in the allowed direction, such that the

properties of Definition 3.3 are satisfied. The variable a counts the indices of the signature

σ (as they are discovered), while the variable b counts the indices of the curve τ seen so far.

Algorithm 1: Computing a δ-signature

Data: curve τ = τ(t1), . . . , τ(tm) with 0 = t1 < . . . < tm = 1, parameter δ > 0
Result: values s1 < . . . < s`, such that σ = τ(s1), τ(s2), . . . , τ(s`) is the δ-signature

of τ
1 j ← 1; a← 1; s1 ← 0 /* assign first vertex τ(0) to σ */
2 repeat j ← j + 1
3 until τ(tj) /∈ [τ(0)]δ or j ≥ m /* scan beginning of the curve τ */
4 b← j /* τ(tb) is first point outside [τ(0)]δ */
5 for i← j + 1 to m do /* scan remaining of the curve τ */
6 if τ(tb) ∈ 〈〈τ(sa), τ(ti)〉〉 then /* τ(ti) farther than τ(tb), and in the same

direction */
7 b← i /* update farthest point of τ from τ(sa) seen so far */
8 else
9 if |τ(ti)− τ(tb)| > 2δ then /* gone backwards too far */

10 a← a+ 1; sa ← tb /* append farthest point to σ */
11 b← i /* update farthest point (and change direction) */

12 if τ(tb) /∈ [τ(1)]δ then /* check if the last vertex before τ(1) gets into σ */
13 a← a+ 1; sa ← tb;

14 a← a+ 1; sa ← 1; /* assign last vertex τ(1) to σ */
15 return curve σ = τ(s1), . . . , τ(s`)



3.4 On computing signatures 91

Theorem 3.40. Given a curve τ : [0, 1] → R with m vertices in general position, and

given a parameter δ > 0, Algorithm 1 computes a δ-signature σ : [0, 1]→ R of τ in O (m)

time and using O (m) space.

Proof. We prove that Algorithm 1 produces the values s1 < . . . < s` that define a proper

δ-signature σ = τ(s1), τ(s2), . . . , τ(s`) of τ according to Definition 3.3. The algorithm

operates in three phases: (1) lines 2-4, (2) lines 5-11, and (3) lines 12-14. In the first phase,

the algorithm finds the first vertex τ(tj) of τ which lies outside the interval [τ(0)]δ (if such

a vertex exists), and assigns its index to the variable b.

In the trivial case, τ is entirely contained in the interval [τ(0)]δ. In this case, the

first phase will simply run until the last vertex of τ (j = m), the second phase is not

executed, and the condition in line 12 for the entry into the third phase evaluates to false.

The algorithm returns the correct signature, which has two vertices, s1 = 0 and s2 = 1.

Otherwise, τ must leave the interval [τ(0)]δ, and there is the index j < m of the first vertex

τ(tj) outside [τ(0)]δ. For the rest of the proof, we assume that this happens.

We claim that the following invariants hold at the end of each iteration of the for-loop

in the phase 2 (lines 5-11):

(I1) τ(s1), . . . , τ(sa) is a correct prefix of the δ-signature;

(I2) for any x ∈ [sa, ti] it holds:

(a) if a > 1 then τ(x) ∈ 〈〈τ(sa), τ(tb)〉〉,
(b) if a = 1 then τ(x) ∈ [τ(0)− δ, τ(tb)] when τ(tb) > τ(0)

(respectively, τ(x) ∈ [τ(tb), τ(0) + δ] when τ(tb) < τ(0));

(I3) (a) if a > 1, then |τ(sa)− τ(tb)| > 2δ,

(b) if a = 1 then |τ(0)− τ(tb)| > δ;

(I4) if ti > tb, then for any x ∈ [tb, ti] it is |τ(tb)− τ(x)| ≤ 2δ;

(I5) the direction-preserving property holds for the subcurve τ [sa, tb].

We prove the invariants by induction on i (i.e. over the vertices of the curve τ). The base

case happens after execution of line 4, before the first iteration of the for-loop (i.e. at the

end of the zeroth iteration). For ease of notation, we define i = b for this case. Invariants

(I1), (I3) and (I4) hold by construction. The invariants (I2) and (I5) follow immediately

from the observation that τ(tb) is the first point outside the interval [τ(0)]δ.

Now we prove the induction step. During the execution of the for-loop in lines 5-11, we

implicitly maintain a general direction in which the curve τ is moving. This direction is

upwards if τ(sa) < τ(tb) and downwards otherwise. Furthermore, we maintain that τ(tb)

is the farthest point from τ(sa) on the current signature edge (starting at τ(sa)) in the

current general direction. Note that a new vertex is appended to the signature prefix (in
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line 10) only when τ has already moved in the opposite direction by a distance greater

than 2δ. Only then, we say that the current general direction of the curve has changed.

Consider an arbitrary iteration i of the for-loop. There are three cases:

(i) line 7 is executed and i becomes the new b

(this happens if τ is moving in the current general direction beyond τ(tb));

(ii) lines 10 and 11 are executed and a new signature vertex is appended to the signature

prefix

(this happens if τ has changed its general direction, as the new vertex satisfying

minimum-edge-length property was found);

(iii) no assignments were made

(this happens if τ locally changes direction, but the current general direction does

not change, i.e. τ(tb) /∈ 〈〈τ(sa), τ(ti)〉〉 and |τ(ti)− τ(tb)| ≤ 2δ).

For each invariant we consider each of the three cases above.

(I1) If the signature prefix was not changed in the previous iteration (cases (i) and (iii)),

then (I1) simply holds by induction. Otherwise, we argue that the new signature

prefix is correct. By induction, τ(s1), . . . , τ(sa−1) is a correct signature prefix. The

conditions of Definition 3.3 for τ(s1), . . . , τ(sa) follow by the induction hypothese

in the iteration step i′ < i, in which the last value of b was assigned. In particular,

(i) non-degeneracy follows from (I2), (ii) direction-preserving follows from (I5), (iii)

minimum-edge-length follows from (I3), and (iv) range property follows from (I2).

(I2) We distinct the two cases:

a = 1: Let τ(tb) > τ(0). Since a = 1, we cannot be in case (ii). Furthermore, once we

enter the for-loop, the current general direction is fixed until a is incremented

for the first time. Therefore, by (I2) in the (i − 1)-th iteration, we have for

x ∈ [s1, ti−1] that τ(x) ∈ [τ(0)− δ, τ(tb′)], where b′ holds the value of b before

we entered the for-loop in the current iteration. Now, in case (i) the claim

follows immediately. In case (iii) it follows from the (false) condition in line 9,

that τ(ti) > τ(tb)− 2δ ≥ τ(0)− δ, and by the (false) condition in line 6, that

τ(ti) < τ(tb). The case τ(tb) < τ(0) is analogous.

a > 1: Assume case (ii) and assume that the general direction changed from upwards

to downwards (the opposite case is analogous). Let a′ and b′ be the values of a

and b before the new assignment in lines 10 and 11. By (I2) in the iteration

when one of these values were previously assigned, we have τ(tb′) ≥ τ(x) for

any x ∈ [tb′ , ti−1]. By (I4), we have τ(tb′)− 2δ ≤ τ(x) for any x ∈ [tb′ , ti−1]. By

the (true) condition in line 9, we have τ(ti) < τ(tb′) − 2δ. Therefore, for any
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x ∈ [tb′ , ti], we have τ(x) ∈ [τ(ti), τ(tb′)], which implies (I2) after the assignment

in lines 10 and 11.

Now, in case (i) and case (iii), we have by (I2) (in the previous iteration) for

x ∈ [sa, ti−1] that τ(x) ∈ 〈〈τ(sa), τ(t′b)〉〉. The correctness in case (i) follows

immediately. In case (iii), assume τ(tb) > τ(sa). It follows from the (false)

condition in line 9 and by (I3), that τ(ti) > τ(tb)−2δ ≥ τ(sa), and by the (false)

condition in line 6, that τ(ti) < τ(tb). The case τ(tb) < τ(sa) is analogous.

(I3) Again, we distinguish the two cases:

i = 1: since the for-loop was started after the curve τ left the interval [τ(0)]δ for the

first time, and by (I2) in the previous iteration, τ(tb) is farthest point from τ(0),

and thus, the invariant (I3) remains valid.

a > 1: In case (ii), we append the parameter tb to the signature prefix and re-initialize

b to be i only after the curve has moved by a distance of at least 2δ (line 9)

from τ(tb), thus (I3) is valid. For the cases (i) and (iii), the distance (inherited

by (I3) from the previous iteration) is further maintained by (I2).

(I4) is clearly satisfied in case (i) and case (ii), since b = i is assigned. In case (iii), when

no new assignment is done, for the curve τ [tb, ti−1], (I4) follows by induction from

the previous iteration. For the curve τ [ti−1, ti], (I4) holds by the (false) condition in

line 9 that |τ(tb)− τ(ti)| ≤ 2δ.

(I5) holds since we assign a new signature vertex with parameter sa = tb as soon as the

curve moves by more than 2δ in the opposite direction (case (ii)). In the other two

cases there is no change, thus the correctness follows by induction from the previous

iteration.

By induction, we conclude from the invariant (I1) that after the phase 2 of the algorithm,

the vertices chosen into σ make a correct prefix of the δ-signature. It remains to decide on

the last two vertices. In phase 3, there are two cases. If the range condition is satisfied

for the edge from τ(sa) to τ(1) (potentially the last signature edge), the algorithm only

appends the last vertex τ(1) of the curve τ to the signature σ. Otherwise, the algorithm

appends τ(tb) and τ(1) to the signature, since we have moved from τ(tb) in the opposite

direction by more than δ, and by (I3), we had previously a signature edge of length more

than 2δ. In both cases, the conditions in Definition 3.3 are satisfied for the part of the

curve we considered in phase 3 as well.

We can use a linked list to store the parameters of the vertices of the signature. Then,

the running time and the space requirements of the algorithm are linear in m, since the
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execution of one iteration of the for-loop takes constant time, and there are at most m

such iterations. This closes the proof of the theorem.

3.4.3 Signatures as approximate minimum-error simplification

We close this section with the result that shows that signatures are a 2-approximation to

the minimum-error `-simplification problem (cf. Definition 3.1).

Lemma 3.41. Given a curve τ : [0, 1]→ R with m vertices in general position, and given

a parameter ` ∈ N, we can compute in O(m logm) time a curve π : [0, 1]→ R with at most

` vertices, such that dF (π, τ) ≤ 2dF (π∗, τ), for π∗ being a minimum-error `-simplification

of τ.

Proof. Let σ1, . . . , σk be the canonical signatures of τ with corresponding parameters

δ1, . . . , δk, as defined in Lemma 3.34. Lemma 3.4 implies that dF (σi, τ) ≤ δi. Consider the

signature σi with the maximal number of `′ ≤ ` vertices. We claim that

δi
2
≤ dF (π∗, τ) ≤ δi,

which will imply the claim of the lemma. The second inequality follows from dF (π∗, τ) ≤
dF (σi, τ) ≤ δi, by the definition of π∗ and the fact that σi consists of at most ` vertices.

To see the first inequality, consider the signature σi−1 = v1, . . . , vh, with h > `. By

Lemma 3.34(i), the signature σi−1 is a δ-signature of τ for all δ ∈ [δi−1, δi), and so for

δ = δi − ε, for any ε > 0. By Definition 3.3, it holds for

Rj =

[
vj −

δ

2
, vj +

δ

2

]
,

that for any 1 ≤ j ≤ h− 1 it is Rj ∩Rj+1 = ∅.
Repeating the proof of Lemma 3.5, but with ranges Rj = [vj − δ/2, vj + δ/2] instead of

[vj − δ, vj + δ] (the rest of the proof can be taken verbatim), we conclude that any curve π

with dF (π, τ) ≤ δ/2 needs to consist of at least h > ` vertices. Since π∗ has complexity at

most `, the first inequality follows. We can compute the signature σi in O (m logm) time

using Theorem 3.39. This closes the proof of the lemma

3.5 Conclusion and open questions

In this chapter we introduced the special type of the curve simplification in one-dimensional

ambient space – the δ-signatures. The advantage of signatures is that for any input curve

of complexity m, they can be efficiently computed, both if an error threshold δ, or a
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goal size ` is given (in time O (m) and O (m logm), respectively). The signatures yield

a 2-approximative solution to the minimum-error `-simplification problem on the input

curve τ . Thus, the signatures can be incorporated as a tool into algorithms that require an

`-simplification, without requiring a large computation time.

Once we computed a δ-signature of a given input curve τ , we can search for vertices of

the curves that are similar to τ , i.e. at continuous Fréchet distance to τ at most δ, only in

the intervals of width 2δ around the signature vertices. All other possible vertices can be

“forgotten”, since we showed that by removing such a vertex from a curve that is close to τ

does not increase the distance of the curve beyond δ.

A strict restriction to the application of the signatures is the dimension of their ambient

space. It would be great to have an analogous concept in higher dimensional spaces, or

at least in the two-dimensional space. However, it is not clear how to formulate such a

simplification concept, in order to be able to repeat the proof of the crucial Lemma 3.7.

This remains the main open question of this chapter.





4 Clustering under the Fréchet distance

4.1 Introduction

Clustering of curves is an active research topic, both in algorithmic theory and in data

mining community, with results dating back to the well-known Lloyd’s algorithm from

1957 [132], which was developed for the k-means clustering. However, most of the approaches

in data mining, where the notion of time series instead of curves is rather used, lack a

rigorous algorithmic analysis. For an overview of data mining approaches and methods we

confer to the surveys of Aghabozorgi et al. [10], Jacques and Preda [114], and Liao [131].

For a more extensive discussion we refer to the book chapter by Kotsakos et al. [121] and

references therein.

A common approach to the curve analysis is to observe each vertex of the input curves

as a coordinate (or a tuple of coordinates) and thus a curve as a high-dimensional point

(cf. [131]). Upon such interpretation of data, any clustering algorithm can be applied.

Despite the practicality of such an interpretation and its simplicity, there are at least

two main drawbacks that are often hard to resolve: that all curves must be of the same

complexity, and if the vertices of the curves have embedded the time aspect, then these

need to be synchronized.

When choosing a single representative for a set of curves under Fréchet distance, the

optimal solution may have a complexity that equals the sum of the complexities of the

input curves (cf. [12]). This can cause a vast overfitting. Therefore, we opt to adapt the

classic k-clustering problems (cf. Section 2.4) by bounding the complexity of the clustering

center curves by a constant ` ∈ N.

4.1.1 Problem definition

We define our problems for curves in the one-dimensional Euclidean ambient space. Re-

member that ∆m denotes the set of the polygonal curves of complexity m in the ambient

space R (cf. to the page 39 for the definitions of ∆ and ∆m). The formulations of Equa-

97
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tions (4.1) and (4.2) can easily be extended for the curves in Rd. As in Chapter 3, we make

the general position assumption11 on the input curves.

Given a set of n curves P = {τ1, . . . , τn} ⊆ ∆m and parameters k, ` ∈ N that we assume

to be constants, we define a (k, `)-clustering as a set of k curves C = {ς1, . . . , ςk} taken

from ∆` which minimize one of the following cost functions:

cost∞(P,C) = max
i∈{1,...,n}

min
j∈{1,...,k}

dF (τi, ςj) , (4.1)

cost1(P,C) =
n∑
i=1

min
j∈{1,...,k}

dF (τi, ςj) . (4.2)

In case that we have only one clustering center curve ς (when k = 1), we will simply

write costi(P, ς) instead of costi(P, {ς}), for i ∈ {∞, 1}. We refer to the clustering problem

as (k, `)-center (Equation 4.1) and (k, `)-median (Equation 4.2), respectively. We define

the cost of an optimal solution as

opt
(i)
k,`(P ) = min

C⊂∆`

costi(P,C),

where the restrictions on C are as described above and i ∈ {∞, 1}.
We define and analyze both problems using continuous Fréchet distance. It is of

independent interest to study both problems under discrete Fréchet distance as well. Since

parts of our analysis for the continuous case work for the discrete Fréchet distance too, we

discuss the differences and respective results at the end of each section.

4.1.2 Results in this chapter

Let 0 < ε < 1. We present the first (1 + ε)-approximation algorithms for the (k, `)-center

(cf. Theorem 4.13) and (k, `)-median (cf. Theorem 4.22) problem under the continuous

Fréchet distance, for the curves in the one-dimensional Euclidean space. Both algorithms

produce a witness solution and a (1 + ε)-approximate cost for the respective problems, in

time Õ(mn).

In order to produce a solution for (k, `)-median, we have to overcome the problem that

the metric spaces we work in do not have the bounded doubling dimension, neither for the

continuous nor for the discrete Fréchet distance. We show these facts first in Section 4.2.

Both of our (1 + ε)-approximation algorithms use the properties of signatures, presented

in Chapter 3. Unfortunately, the signatures cannot be used for the discrete Fréchet distance

11See page 49 for the definition.
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case. Therefore, for the (k, `)-center and the (k, `)-median problems under the discrete

Fréchet distance we present constant-factor approximation algorithms, with approximation

factors of 5 and 45, respectively. The running times of these algorithms are O (mn). We

state these results as Theorem 4.10 and Theorem 4.11. Note that both of these results are

valid for any dimension d ≥ 1 of the ambient space.

We also show that both problems are NP-hard, if k is part of the input, for ` ≥ 2, under

both continuous and discrete Fréchet distance. The (k, `)-center problem is NP-hard to

approximate better than a factor of 2. Theorem 4.25 and Theorem 4.26 show these results.

4.1.3 Related work

Until recently not so much was known on computing of curves’ clustering under dissimilarity

measures that do not treat curves as sets. Dumitrescu and Rote [72] considered the problem

of simultaneous minimization of the Fréchet distance between all pairs of curves from

a set12 of n curves of complexity m, and provided a 2-approximation solution in time

O (mn logm). For this problem (under the discrete Fréchet distance), Buchin et al. [39]

showed that unless SETH (cf. Hypothesis 2.34) fails, the solution cannot be computed

significantly faster than O (mn).

Searching for a single representative of a set of n input curves was the first clustering-like

approach. Buchin et al. [41] defined the median level curve using only parts of the input

curves. Har-Peled and Raichel [98] defined a mean curve, which minimizes the distance to

the input curves, and which can be chosen with no restrictions. Ahn et al. [12] defined

the middle curve problem, which uses only vertices of the input curves and minimizes

the Fréchet distance to the input. Both of these algorithms need exponential time in the

number of the input curves n.

On clustering of curves with multiple representative curves there were no published

results before our work, which was published in [68], and which is presented in this chapter.

These results started a series of publications that we consider in the following.

For the (k, `)-center problem it was later shown by Buchin et al. [44] that if ` is part

of the input, then there is no polynomial time approximation scheme. They reduced the

problem to the Shortest Common Supersequence (SCS) problem. The approximation

factor bound depends on the dimension of the ambient space d and on whether the Fréchet

distance is discrete or continuous. These lower bound factors are presented in Table 4.1,

and are originally from [44]. These bounds hold even if k = 1. The (k, `)-median problem

is NP-hard as well, if ` is part of the input. This was shown by Buchin, Driemel and

Struijs [45] by reduction to the SCS problem.

12They called this the Fréchet distance of the set of curves.
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Continuous Fréchet distance Discrete Fréchet distance

d = 1 1.5 2

d ≥ 2 2.25 2.598

Table 4.1: The lower bounds for the approximation factor of an approximation algorithm for
the (k, `)-center problem, if ` is part of the input. These results were presented
in [44].

On the positive side, there exists a constant-factor approximation algorithm for d ≥ 2

by Buchin et al. [44]. They adapted the algorithm of Gonzalez [89], with approximation

factor of 3 for the discrete Fréchet distance (in time Õ(mn)), and the factors 3 and 6 for

d = 2 and d > 2 respectively, for the continuous Fréchet distance (in time Õ(mn+m3)).

The result for the discrete Fréchet distance was later improved by Buchin, Driemel and

Struijs [45] into a (1 + ε)-approximation algorithm with running time Õ(mn). They also

gave an exact algorithm for d ≤ 2 with running time Õ((mn)2k`+1).

For the (k, `)-median problem an improvement to our result was given by Buchin,

Driemel, and Struijs [45]. They gave a (1 + ε)-approximation algorithm for d > 1 under

the discrete Fréchet distance in time Õ(nmdkl+1). This result was further improved into a

(1 + ε)-approximation algorithm under discrete Fréchet distance by Nath and Taylor [146],

with running time Õ(mn). Their approach extends to the k-median under Hausdorff

distance.

To find a (1 + ε)-approximation to the (k, `)-median clustering under the continuous

Fréchet distance for d > 1 is still an open problem. However, for d > 1 there are recent

results by Meintrup, Munteanu and Rohde [139], and by Buchin, Driemel and Rohde [45],

that both obtain a (1 + ε)-approximation solution to the (k, `)-median clustering under

the continuous Fréchet distance, but with a caveat. The result of Meintrup, Munteanu and

Rohde [139] assumes that the number of outlier input curves is bounded. The result of

Buchin, Driemel and Rohde [46] has no assumptions on the input, but yields a bicriteria

approximation solution with complexity of each center curve at most 2`− 2, in time linear

in n and polynomial in m.

We summarize the best known results for the problems we consider in this thesis in

Table 4.2.

For the (k, `)-means problem (an extension of the known k-means problem analogous

to our extensions of the k-center and the k-median problems) and for the (k, `)-clustering

problem under the DTW distance there are no known results in the literature.

On problems related to the (k, `)-clustering the following is known. When the restrictions

on ` are lapsed, we have classical k-clustering problems: 1-center (smallest enclosing ball)
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Continuous Fréchet distance Discrete Fréchet distance

(k, `)-center d = 1 Theorem 4.13 1 + ε Õ(mn) [45] 1 + ε Õ(mn)

d = 2 [44] 3 Õ(mn+m3) [45] 1 + ε Õ(mn)

d > 2 [44] 6 Õ(mn+m3) [45] 1 + ε Õ(mn)

(k, `)-median d = 1 Theorem 4.22 1 + ε Õ(mn) [146] 1 + ε Õ(mn)

d ≥ 2 ? ? ? [146] 1 + ε Õ(mn)

bicriteria d ≥ 2 [46] 1 + ε O
(
mO(1)n

)
Table 4.2: The best known approximation algorithms for the (k, `)-center and the (k, `)-

median problems. For each result the reference, the approximation factor, and
the running time are given.

and 1-median problems are NP-hard under both discrete and continuous Fréchet distance

(cf. [45]). 1-median under DTW (and its variants) are NP-hard as well, where the result

of [45] generalizes the previous result by Bulteau, Froese, and Niedermeier [49]. Based

on technique of [44, 45], Buchin, Funk, and Krivošija [48] showed that the middle curve

problem of Ahn et al. [12] is NP-hard.

4.2 Doubling dimension of the metric space

The standard clustering techniques [3, 126] for metric spaces with bounded doubling

dimension cannot be directly applied to (k, `)-clustering problems under (continuous

and discrete) Fréchet distance. Namely, the doubling dimension of the space of one-

dimensional curves in R, i.e. univariate time series, is unbounded. This result is presented

by Lemma 4.1. Even if we restrict the complexity of the curves to ` ≥ 4, the doubling

dimension is unbounded, which is claimed by Lemma 4.2. Note that Lemma 4.2 does not

hold under the discrete Fréchet distance. We discuss this at the end of the section, together

with cases when ` < 4.

Lemma 4.1. The doubling dimension of the metric spaces (∆, dF ) and (∆, ddF ) is un-

bounded.

Proof of Lemma 4.1 for the continuous Fréchet distance. Assume for the sake of

contradiction that the doubling dimension of (∆, dF ) is bounded and equal to some d ∈ N.

We construct an instance of 2d + 1 curves from ∆, which lie in a ball of radius 1
8 while no
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Figure 4.1: Examples of the constructed curves in Lemma 4.1 (left) and Lemma 4.2 (right).

two elements can be covered by a ball of radius 1
16 . But, by pigeonhole principle there must

exist two curves from the input set, such that they are covered by one ball of radius 1
16 .

Let therefore be P = {τ1, . . . , τ2d+1}, with τi = 0, i, i− 1
2 , 2

d + 2, for i ∈ [2d + 1]. The set

P is contained in the ball B
(
ς, 1

8

)
, where ς is the curve

ς = 0,
7

8
,
5

8
, . . . , i− 1

8
, i− 3

8
, . . . , 2d +

7

8
, 2d +

5

8
, 2d + 2.

An example is given in Figure 4.1 (left).

Any two curves τi, τj ∈ P have Fréchet distance 1
4 to each other. Now, assume that a

ball of radius 1
16 exists which contains both τi and τj . Let its center be denoted ςij . Using

the triangle inequality we get:

1

4
= dF (τi, τj) ≤ dF (τi, ςij) + dF (ςij , τj) ≤

1

8
,

a contradiction.

Proof of Lemma 4.1 for the discrete Fréchet distance. We follow the proof for the

continuous case. We adapt the curves of the input set P and the center curve by adding

vertices along the curves without changing the shape of the curves. Let τi = 0, 1− 1
4 , . . . , i−

1− 1
4 , i, i−

1
2 , i+ 3

4 , . . . , 2
d + 3

4 , 2
d + 2, and let the center curve be

ς = 0,
7

8
,
6

8
,
5

8
, . . . , i− 1

8
, i− 2

8
, i− 3

8
, . . . , 2d +

7

8
, 2d +

6

8
, 2d +

5

8
, 2d + 2.

The rest of the proof holds verbatim, since the discrete Fréchet distance between each two

of the input curves is 1
4 .

Lemma 4.2. For any integer ` ≥ 4, the doubling dimension of the metric space (∆`, dF )

is unbounded.
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Proof. The proof is similar to the proof of Lemma 4.1. This time we argue that no two

curves in the set can be covered by a ball of half the radius because there exists no suitable

center in ∆`, that is, the center would need to have complexity higher than `. As in

the proof of Lemma 4.1, we define a set P = {τ1, . . . , τ2d+1} ⊂ ∆`. For s =
⌊
`−2

2

⌋
and

i ∈ [2d + 1], let

τi = 0, s(i− 1) + 1, s(i− 1) +
1

2
, . . . , s(i− 1) + j, s(i− 1) + j − 1

2
, . . .

. . . , s(i− 1) + s, s(i− 1) + s− 1

2
, s(2d + 2),

where j ∈ [s]. Note that if ` is odd, the curve τi has `− 1 vertices. Clearly, each τi ∈ P is

an element of ∆`, since its complexity is at most `. Figure 4.1 (right) presents an example

with ` = 8 (and s = 3). Note that the choice of the curves τi requires ` ≥ 4, otherwise our

curves would have only one vertex 0.

The set P is contained in the ball with radius 1
4 centered at ς = 0, s(2d + 2). Note that

the 1
8 -signature of any τi ∈ P is equal to τi itself. Thus, by Lemma 3.5, any potential

center curve ςi of a ball of radius 1
8 , such that τi ∈ B

(
ςi,

1
8

)
needs to have a vertex in

each interval
[
w − 1

8 , w + 1
8

]
for each vertex w of τi. By construction, these intervals are

pairwise disjoint for each curve and across all curves in P (except for the intervals around

the two endpoints). Therefore, such a ball with radius 1
8 which would cover two different

curves τi, τj ∈ P , would need to have the center curve with more than ` vertices and is

therefore not contained in ∆`. Indeed, the number of pairwise disjoint signature intervals

induced by any τi, τj ∈ P with i 6= j, is 2 + 2 · 2s ≥ 2`− 2 > `, since ` ≥ 4.

We would like to have an analogous claim as Lemma 4.2 under discrete Fréchet distance,

but in that case the doubling dimension of the metric space (∆`, ddF ) is bounded. We

show this in the following lemma.

Lemma 4.3. For any integer ` ≥ 2, the doubling dimension of the metric space (∆`, ddF )

is bounded.

Proof. Let ς = c1, . . . , c` be a curve in ∆`, and let r > 0. Each curve τ ∈ B(ς, r), must

have a vertex in each of the ranges [ci − r, ci + r], for all i ∈ [`], otherwise a traversal that

realizes ddF (ς, τ) ≤ r would not exist. The curve τ we assign to a curve ςj = cj1, . . . , cj`

in the following manner. Let wi be a vertex of τ that lies in the range [ci − r, ci + r], for

i ∈ [`]. Then, the vertex cji = ci − r
2 if wi ∈ [ci − r, ci), and cji = ci + r

2 otherwise (i.e. if

wi ∈ [ci, ci + r]). There are 2` possible assignments, and thus at most 2` distinct curves ςj .

Clearly τ ∈ B
(
ςj ,

r
2

)
, therefore the ball B(ς, r) is covered with at most 2` balls of half the

radius. This closes the proof.
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Under continuous Fréchet distance for small values of ` (i.e. ` ∈ {2, 3}) we can analogously

to Lemma 4.3 conclude that the doubling dimension of the space (∆`, dF ) is bounded, since

for each center curve from ∆2 (respectively ∆3) and any radius r > 0, we can cover the

ball B(ς, r) with at most 2` balls of half the radius. Note that for ` = 2 the metric space

(∆`, dF ) equals the metric space (R2, `∞), which is known to have a bounded doubling

dimension (cf. Gupta, Krauthgamer, Lee [93]).

4.3 Constant-factor approximation

A constant-factor approximation algorithm for a clustering problem is often a first step

in construction of a (1 + ε)-approximation. The algorithm we present, first simplifies the

input curves while reducing their complexity to a constant, and then applies an existing

k-clustering approximation algorithm designed for general metric spaces. One aspect we

need to take care of for the choice of algorithms is that our clustering centers have to have

complexity `. This can be obtained if the used algorithms return a subset of the input,

whose curves are in ∆`.

For k-center problem we use the algorithm of Gonzalez [89], here stated as in [95]. This

algorithm is a greedy algorithm, it selects an arbitrary input point as the first center, and

subsequently k − 1 times selects and adds into set of centers the point from the input that

is at maximum distance to the so far selected centers. This result we state as Theorem 4.4.

Theorem 4.4 ([95] Theorem 4.3). Given a set P of n points in a metric space (X ,d),

there is an algorithm that computes a set of k centers, which is a subset of P , such that

it is a 2-approximation to the optimal k-center clustering of P . The running time is

O (nk · T (X )) time, where T (X ) is the time needed to compute distance d between a pair

of points in X .

Chen [54] has given a constant-factor approximation algorithm for the discrete k-median

problem in general metric spaces, i.e. when the cluster centers are selected among the

input points. Chen’s algorithm begins with the construction of a strong coreset Q (cf.

Definition 2.28) of the input set P for k-median problem, whose size depends only logarith-

mically on n. This construction is probabilistic, chooses the points among the elements of

P , and guarantees success with constant probability. Running the local search algorithm

of Arya et al. [16] on Q yields a (5 + ε)-approximative k-median solution for Q. Since the

local search algorithm explores the elements of Q as potential solution centers, the found

solution is a subset of Q, therefore it is a subset of P as well. Chen proved that it is a

(10 + ε)-approximation to the optimal solution of the k-median problem on P . This result

we state as Theorem 4.5.
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Theorem 4.5 ([54] Theorem 6.2). Given a set P of n points in a metric space, for

0 < ε < 1, there is an algorithm that computes a set of k centers, which is a subset of

P , such that it is a (10 + ε)-approximation to the optimal k-median clustering of P , with

constant probability of success. The running time is O
(
nk + k7ε−5 log5 n

)
.

The following algorithm provides a constant-factor approximation to the (k, `)-clustering

problems.

Algorithm 2: Constant-factor approximation for (k, `)-clustering

Data: curves P = {τ1, . . . , τn}, parameters k > 0, ` > 0
Result: cluster centers C = {ς1, . . . , ςk} and cost D

1 For each τi compute an approximate minimum-error `-simplification τ̂i (Lemma 3.41)
2 Apply an approximation algorithm for k-clustering in general metric spaces on

P̂ = {τ̂1, . . . , τ̂n} (Gonzales’ algorithm (Theorem 4.4) for k-center and
Chen’s algorithm (Theorem 4.5) for k-median)

3 return the resulting cluster centers C = {ς1, . . . , ςk} with approximate cost

D∞ = cost∞(C, P̂ ) + max
i∈{1,...,n}

dF (τi, τ̂i)

D1 = cost1(C, P̂ ) +

n∑
i=1

dF (τi, τ̂i)

for (k, `)-center and (k, `)-median, respectively

Lemma 4.6. The cost D∞ (respectively, D1) and the solution C computed by Algorithm 2

constitute a (α + β + αβ)-approximation to the (k, `)-center problem (respectively, the

(k, `)-median problem), where α is the approximation factor of the simplification step and

β is the approximation factor of the clustering step.

Proof. We first discuss the case of (k, `)-center. We have that

D∞ = cost∞(C, P̂ ) + max
i∈{1,...,n}

dF (τi, τ̂i)

= max
i∈{1,...,n}

min
ς∈C

dF (τ̂i, ς) + max
i∈{1,...,n}

dF (τi, τ̂i)

≥ max
i∈{1,...,n}

(
min
ς∈C

dF (τ̂i, ς) + dF (τi, τ̂i)

)
≥ max

i∈{1,...,n}
min
ς∈C

(dF (τ̂i, ς) + dF (τi, τ̂i))

≥ max
i∈{1,...,n}

min
ς∈C

dF (τi, ς)

≥ cost∞(C,P ).
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Let δ∗ be the optimal cost for a solution to the (k, `)-center problem for P = {τ1, . . . , τn},
and let one such optimal solution be C∗. If we denote the optimal `-simplification of τi

with τ̂i
∗, then we have

max
i∈{1,...,n}

dF (τi, τ̂i) ≤ α · max
i∈{1,...,n}

dF (τi, τ̂i
∗) ≤ α · max

i∈{1,...,n}
min
ω∈C∗

dF (τi, ω) = αδ∗,

since dF (τi, ω), ω ∈ C∗, is lower bounded by the Fréchet distance of the input time series

τi to its optimal `-simplification, as the curves ω ∈ C∗ have at most ` vertices. Thus it

holds that

D∞ ≤ cost∞(C, P̂ ) + αδ∗.

To relate an optimal solution C∗ to D∞, we proceed as follows. Let ωi ∈ C∗ be the center

of this optimal solution which is closest to τi, for 1 ≤ i ≤ n. We have

δ∗ = max
i∈{1,...,n}

dF (τi, ωi)

≥ max
i∈{1,...,n}

(dF (τ̂i, ωi)− dF (τi, τ̂i))

≥ max
i∈{1,...,n}

dF (τ̂i, ωi)− max
i∈{1,...,n}

dF (τi, τ̂i)

≥ cost∞(C∗, P̂ )− max
i∈{1,...,n}

dF (τi, τ̂i)

≥ 1

β

(
cost∞(C, P̂ )

)
− αδ∗

≥ 1

β
(D∞ − αδ∗)− αδ∗,

since

cost∞(C, P̂ ) ≤ β · cost∞(Ĉ∗, P̂ ) ≤ β · cost∞(C∗, P̂ ),

where Ĉ∗ is an optimal solution to the (k, `)-center problem for P̂ . We conclude that

δ∗ ≤ cost∞(C,P ) ≤ D∞ ≤ (α+ β + αβ)δ∗, as claimed.

The claim of the lemma for the (k, `)-median problem follows with small modifications,

that we give here for completeness. We have that

D1 = cost1(C, P̂ ) +

n∑
i=1

dF (τi, τ̂i)

=
n∑
i=1

min
ς∈C

dF (τ̂i, ς) +
n∑
i=1

dF (τi, τ̂i)
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D1 ≥
n∑
i=1

min
ς∈C

(dF (τ̂i, ς) + dF (τi, τ̂i))

≥
n∑
i=1

min
ς∈C

dF (τi, ς)

≥ cost1(C,P ).

Let δ∗ be the optimal cost for a solution to the (k, `)-median problem for P = {τ1, . . . , τn},
and let one such optimal solution be C∗. Analogously to the (k, `)-center problem, it holds

that

n∑
i=1

dF (τi, τ̂i) ≤ αδ∗ and D1 ≤ cost1(C, P̂ ) + αδ∗.

An optimal solution C∗ is related to D1 as follows. Let ωi ∈ C∗ be the center of this

optimal solution which is closest to τi, for 1 ≤ i ≤ n. We have then

δ∗ =
n∑
i=1

dF (τi, ωi)

≥
n∑
i=1

dF (τ̂i, ωi)−
n∑
i=1

dF (τi, τ̂i)

≥ cost1(C∗, P̂ )− αδ∗

≥ 1

β

(
cost1(C, P̂ )

)
− αδ∗

≥ 1

β
(D1 − αδ∗)− αδ∗.

We conclude that δ∗ ≤ cost1(C,P ) ≤ D1 ≤ (α+ β + αβ)δ∗, as claimed.

Theorem 4.7 and Theorem 4.8 claim the quality and the running times of our constant-

factor approximation algorithms for (k, `)-clustering problems under the continuous Fréchet

distance.

Theorem 4.7. Given a set of n curves P = {τ1, . . . , τn} ⊆ ∆m and parameters k, ` ∈ N,

Algorithm 2 computes an 8-approximation to opt
(∞)
k,` (P ) under the continuous Fréchet

distance and a witness solution in time O (mnk` log(m`)).

Proof. The theorem follows from Lemma 4.6 by setting α = β = 2. We use Lemma 3.41 to

compute a 2-approximate `-simplification for each curve (in time O (m logm) per curve).
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Then, we use Gonzales’ algorithm which by Theorem 4.4 yields a 2-approximation k-

center clustering of the `-simplifications of the curves from P . Each distance computation

in Gonzales’ algorithm between curves from ∆` takes O
(
`2 log `

)
time using Alt and

Godau’s algorithm (Theorem 2.32). To compute the approximate cost, the distance

computations between the cluster centers (that are in ∆`) and the input curves (that are

in ∆m) take O (m` log(m`)) time each. Therefore, the running time of Algorithm 2 is

O
(
mn logm+ nk`2 log `+mnk` log(m`)

)
= O (mnk` log(m`)).

If we would first run the Gonzales’ algorithm on the input curves, followed by the

`-simplification of the obtained cluster centers, the cost of one distance computation would

increase to O
(
m2 logm

)
and the total running time would be O

(
m2n logm

)
.

Theorem 4.8. Given a set of n curves P = {τ1, . . . , τn} ⊆ ∆m and parameters k, ` ∈ N,

Algorithm 2 computes a 68-approximation to opt
(1)
k,`(P ) under the continuous Fréchet

distance and a witness solution in time O
(
(nk + k7 log5 n) ·m` log(m`)

)
.

Proof. The theorem follows from Lemma 4.6 by setting α = 2 and β = 22. We use

Lemma 3.41 to obtain a 2-approximate `-simplification for each curve in time O (mn logm).

Then, we use the algorithm of Chen (Theorem 4.5) to obtain the (10 + ε)-approximation

of the k-median problem on the `-simplifications, with 0 < ε < 1. Thus Chen’s algo-

rithm yields an 11-approximation to the discrete problem (where the clusters’ centers

are constrained to the input set). As we cluster the curves from ∆`, each distance com-

putation within Chen’s algorithm takes O
(
`2 log `

)
= O (1) time using Alt and Godau’s

algorithm (Theorem 2.32). Since the Fréchet distance satisfies the triangle inequality,

the cluster centers from Chen’s algorithm are 2-approximation to the unconstrained case

cluster centers, thus β = 22 is a correct approximation bound. The distance computa-

tions between two curves while reporting D1 takes O (m` log(m`)) each. Therefore, the

running time of Algorithm 2 is O
(
mn logm+ (nk + k7 log5 n) · `2 log `+mnk` log(m`)

)
=

O
(
(nk + k7 log5 n) ·m` log(m`)

)
.

As in the (k, `)-center case, it would be more time consuming to first cluster the original

input curves from P , and then to simplify the result, since the distance computation costs

O
(
m2 logm

)
time each.

It remains to be discussed the differences for (k, `)-clustering under the discrete Fréchet

distance. The analysis of Lemma 4.6 remains valid, up to the facts that the distance

computation between two curves is now done by the algorithm of Eiter and Mannila (Theo-

rem 2.33), and that we need a minimum-error `-simplification or its α-approximation under

the discrete Fréchet distance, that can be plugged in Algorithm 2 instead of Lemma 3.41.
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For that we can use the result of Bereg et al. [26], that we state as the following lemma

adapted here to our notation, and to the one-dimensional curves. The result of Bereg et al.

holds for curves in Rd, for any dimension d ∈ N.

Lemma 4.9 (cf. [26] Theorem 3). Given a curve τ : [0, 1]→ Rd with m vertices in general

position (for any dimension d ∈ N), and given a parameter ` ∈ N, we can compute in

O (m` logm log(m/`)) a minimum-error `-simplification π of τ , under the discrete Fréchet

distance.

Using Lemma 4.9 in the proof of Theorem 4.7 we have α = 1 and β = 2. The running time

of the distance computations within Gonzales’ algorithm is O
(
`2
)

using Eiter and Mannila

algorithm. In the computation of the approximation cost the distances are computed

in O (m`) each. The total running time is thus O
(
m` logm log(m/`) + nk`2 +mnk`

)
=

O
(
mnkl +m` log2m

)
. This yields the following theorem.

Theorem 4.10. Given a set of n curves P = {τ1, . . . , τn} ⊆ ∆m and parameters k, ` ∈ N,

Algorithm 2 computes a 5-approximation to opt
(∞)
k,` (P ) under the discrete Fréchet distance

and a witness solution in time O
(
mnkl +m` log2m

)
.

For the (k, `)-median clustering the said adaptation of Theorem 4.8 yields a 45-approxi-

mation. The running time becomes O
(
m` logm log(m/`) + (nk + k7 log5 n) · `2 +mnk`

)
.

We get the following theorem.

Theorem 4.11. Given a set of n curves P = {τ1, . . . , τn} ⊆ ∆m and parameters k, ` ∈ N,

Algorithm 2 computes a 45-approximation to opt
(1)
k,`(P ) under the discrete Fréchet distance

and a witness solution in time O
(
m` log2m+ (nk + k7 log5 n) · `2 +mnk`

)
.

4.4 (k, `)-center (1 + ε)-approximation

In order to improve from a constant-factor approximation discussed in Section 4.3 to

a (1 + ε)-approximative solution to the (k, `)-center problem, a common approach is to

perform a binary search procedure with approximative cost as a parameter. For this we

need an efficient way to generate the candidate solutions for cluster centers in ∆` that

correspond to an approximation of the clustering cost, and that can be evaluated efficiently.

The number of the candidate solutions should not depend on the input size. This is

provided by Algorithm 3, where we either decide that we cannot find adequate candidates

for cluster centers (i.e. we need to adapt our parameters), or produce a set of candidate

solutions of a constant size, where this constant depends on k, `, and ε only. Algorithm 3

uses two positive real parameters α and β. The parameter α approximates the value of
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the cost of the optimal solution of (k, `)-center clustering. The parameter β will be used to

discretize the candidate set, and it will be related to α.

Algorithm 3: Generate candidates for (k, `)-center from signature vertices

Data: curves P = {τ1, . . . , τn} ⊂ ∆m, parameters α, β > 0, k, ` ∈ N
Result: candidate set Γk,`α,β(P ) ⊆ ∆`

1 For each τi, let Vi be the vertex set of its α-signature computed by Algorithm 1
2 Compute the union U of the intervals [v − 4α, v + 4α] for v ∈ V =

⋃n
i=1 Vi

3 if µ(U) > 24αk` then
4 return the empty set
5 else

6 Discretize U with resolution β, thereby generating a set of vertices V̂
7 return all possible curves consisting of ` vertices from V̂, and denote this set

Γk,`α,β(P )

Lemma 4.12. Given are a set of curves P = {τ1, . . . , τn} and parameters α, β > 0,

k, ` ∈ N. If α < opt
(∞)
k,` (P ) then Algorithm 3 concludes correctly that no solution can be

found. Otherwise (if α ≥ opt
(∞)
k,` (P )) Algorithm 3 generates a set of candidate solutions

Γk,`α,β(P ) ⊆ ∆` of size at most (b24αk`/βc+ 6k`)`. The set Γk,`α,β(P ) contains k candidates

C̃ = {ς̃1, . . . , ς̃k} that satisfy

cost∞(P, C̃) ≤ α+ β.

Proof. Let C = {ς1, . . . , ςk} denote an optimal solution of (k, `)-center clustering problem

for P with cost opt
(∞)
k,` (P ), and let ςi = zi1, . . . , zi` denote the vertices for each cluster

center ςi ∈ ∆`. Consider the union of intervals

R =

k⋃
i=1

⋃̀
j=1

[zij − 4α, zij + 4α].

Let us assume that α ≥ opt
(∞)
k,` (P ). Let Vi be the vertex set of the α-signature of τi

computed by Algorithm 1, for 1 ≤ i ≤ n, and let V =
⋃n
i=1 Vi. Since for each curve τi there

is a curve ςx ∈ C, such that dF (τi, ςx) ≤ α, then by Lemma 3.5 there is a vertex of ςx at

distance at most α to each of the vertices of Vi. Thus all vertices of V are contained in R.

What can be said for the dual statement, i.e. whether the vertices zij of the optimal

solution C are contained in the set U , where U = ∪v∈V [v − 4α, v + 4α]? Let τx ∈ P be

the curve from the input which is assigned to the center ςi in the optimal solution C, such

that it maximizes the distance dF (τx, ςi). If there exists a vertex zij of the center curve ςi,

which is not contained in U , then let ς ′i be the curve obtained from ςi by omitting zij . Let
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C ′ be obtained from C by replacing ςi with ς ′i. From dF (τx, ςi) ≤ opt
(∞)
k,` (P ) ≤ α it follows

by Theorem 3.8 that dF (τx, ς
′
i) ≤ α. Furthermore it is cost∞(P,C ′) ≤ α.

Therefore, let Ĉ = {ς̂1, . . . , ς̂k} denote the solution where all vertices of the cluster centers

in C that lie outside U have been omitted. Clearly, U contains all remaining vertices of

cluster centers in Ĉ, and the cost of the (k, `)-center clustering of P with centers Ĉ will

not increase beyond α, i.e. cost∞(P, Ĉ) ≤ α.

If we discretize U with resolution β, we get the set V̂. Let the set Γk,`α,β(P ) consist of all

curves consisting of ` vertices of V̂. It must contain k candidates C̃ = {ς̃1, . . . , ς̃k}, such

that dF (ς̂i, ς̃i) ≤ β, for all 1 ≤ i ≤ k, and such that

cost∞(P, C̃) ≤ α+ β.

Note that R consists of at most k` intervals and has measure at most µ(R) = 8αk`. The

measure of U is bounded by the sum of the measure of R (which covers the intervals

centered at signature vertices of V̂) and the measure of the intervals centered at signature

vertices of V \ V̂. The latter intervals are, in the worst case, centered at each boundary

point of R. Thus µ(U) ≤ µ(R) + (2k`)8α = 24αk`. Furthermore, U consists of at most

dµ(U)/(8α)e ≤ 3k` intervals, since each interval has measure at least 8α. We conclude that

in V̂ there can be at most b24αk`/βc+ 6k` vertices, where the summand 6k` represents

the endpoints of intervals of U . Thus the size of Γk,`α,β(P ) is as claimed.

Therefore, we have the implication α ≥ opt
(∞)
k,` (P ) ⇒ µ(U) ≤ 24αk`. If Algorithm 3

computes that µ(U) > 24αk`, this implies that α < opt
(∞)
k,` (P ) and we conclude correctly

that with given α and β no candidate solution set can be found. Otherwise we have

correctly generated a candidate set Γk,`α,β(P ) which contains k candidates C̃ that yield the

given bound on cost∞(P, C̃).

Now, the constant-factor approximation algorithm of Section 4.3 gives us bounds for the

choice of the parameter α, that we pass to Algorithm 3. We obtain the following theorem.

Theorem 4.13. Let 0 < ε < 1 and k, ` ∈ N be given constants. Given a set of curves

P = {τ1, . . . , τn} ⊂ ∆m, we can compute a (1 + ε)-approximation to opt
(∞)
k,` (P ) and a

witness solution in time O (mn logm).

Proof. We first apply Algorithm 2 (described in Section 4.3) for (k, `)-center clustering to

the input set P . We obtain a solution C with cost D∞, such that by Theorem 4.7 we can

bound the optimal clustering cost by

δmin =
D∞

8
≤ opt

(∞)
k,` (P ) ≤ D∞ = δmax.
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According to Lemma 4.12, by running Algorithm 3 with parameters α and β we either

correctly decide that the optimal solution cost is larger than α, or produce cluster centers

that (α+ β)-approximate the optimal solution. We can apply a binary search procedure

on the interval [δmin, δmax] to find a (1 + ε)-approximation solution as follows. In each

recursive step of the binary search we set α to be the middle of the current interval, i.e.

initially α = (δmax + δmin)/2. We run Algorithm 3 on P twice with parameters:

• (α1, β1) for the first run, where α1 = α/(1 + ε/2), β1 = α1ε/2, and α1 + β1 = α;

• (α2, β2) for the second run, where α2 = α, β2 = α2ε/3, and α2 + β2 = α · (1 + ε/3).

Thus by Lemma 4.12 we obtain the following knowledge, depending on the outcome of the

two runs:

i) First run returns a solution, second produces no solution – this outcome is not possible,

as it would imply α = α2 < opt
(∞)
k,` (P ) ≤ α, a contradiction.

ii) None of two runs produces a solution – this implies that α < opt
(∞)
k,` (P ), thus we rerun

the binary search on the interval [α, δmax].

iii) Both runs return a solution – thus there is a solution with clustering cost at most α,

and we rerun the binary search on the interval [δmin, α].

iv) First run produces no solution, but second returns a solution – we have a solution C̃

(from the second run) with the clustering cost satisfying α/(1 + ε/2) < opt
(∞)
k,` (P ) ≤

cost∞(P, C̃) ≤ α · (1 + ε/3). Thus the solution C̃ has the approximation factor

(1 + ε/2) · (1 + ε/3) ≤ 1 + ε to the optimal solution, since 0 < ε < 1.

The number of the binary search steps is at most O (log((δmax − δmin)/ε)) = O (1), and

each step consists of two runs of Algorithm 3, where the parameters α and β satisfy

α/β = O (1/ε) = O (1).

One execution of Algorithm 3 by Lemma 4.12 takes O (mn) time for computing the

n signatures (using Algorithm 1), O (n) time to compute U , and O (1/β) = O (1/ε) =

O (1) time to generate V̂. The candidate set Γk,`α,β(P ) has size (b24αk`/βc+ 6k`)` =

O
(
(k`/ε)`

)
= O (1). To evaluate the candidate set it takes to test

(O((k`/ε)`)
k

)
= O (1)

k-tuples of centers from the candidate set. Evaluating one candidate solution takes

kn Fréchet distance computations, where one Fréchet distance computation takes time

O (`m log(`m)) = O (m logm) using the algorithm by Alt and Godau (Theorem 2.32).

Therefore the total running time is O (mn logm), as claimed.

Note that the running time constants that are hidden in the O-notation in Theorem 4.13

are exponential in both input constants k and `.
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4.5 (k, `)-median (1 + ε)-approximation

The known (1+ε)-approximation algorithm for k-median clustering problem by Ackermann,

Blömer and Sohler [3] for a space with bounded doubling dimension extends into a space

X with unbounded doubling dimension, but that is equipped with arbitrary dissimilarity

measure d, such that the sampling property is satisfied, while keeping the asymptotic

running time the same (cf. [3]). The adapted result roughly says that we can obtain an

efficient (1+ε)-approximation algorithm for the k-median problem on input P ⊆ X , if there

is an algorithm that, given a random sample of constant size, returns a set of candidates

for the 1-median that contains a (1 + ε)-approximation to the 1-median with constant

probability (over the choice of the sample).

We start with restating the sampling property by the following theorem. It was defined

by Ackermann, Blömer and Sohler ([3], Property 4.1).

Theorem 4.14 (Sampling property). We say that a dissimilarity measure d on the set

X satisfies the (weak) [ε, γ]-sampling property if and only if there exist integer constants

mε,γ and tε,γ such that for each P ⊆ X of size n and for each uniform sample multiset

S ⊆ P of size mε,γ, a set Γ(S) ⊆ X of size at most tε,γ can be computed satisfying

Pr

(∃c̃ ∈ Γ(S))
∑
p∈P

d(p, c̃) ≤ (1 + ε) opt
(1)
1 (P )

 ≥ 1− γ.

Furthermore, Γ(S) can be computed in time depending on ε, γ, and mε,γ only.

It is likely that the sampling property (Theorem 4.14) does not hold for the Fréchet

distance on the set of the one-dimensional curves of complexity at most m, for arbitrary

value of m. Furthermore, there is no claim given on the complexity of the candidate center

curves. In particular, we need to guarantee that the candidate set Γ(S) contains only

curves from ∆`. We will therefore prove a modified sampling property, which allows the

size of the sample to depend on `. For that sake, we will first discuss the impact of the

input curves on the choice of a candidate center.

4.5.1 Reducing candidate solution set

The following lemma intuitively says that the curves lying far away from a candidate

median have little influence on the clustering cost with respect to the candidate median,

and thus little influence on the shape of the candidate median.
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Lemma 4.15. Given are a set of n curves P = {τ1, . . . , τn} and a curve π. Let RS be the

union of intervals

RS =
⋃

{τi∈P : xi≤
2x1
ε
}

⋃
v∈V(σi)

[v − 4xi, v + 4xi],

where τi are sorted in increasing order of xi = dF (τi, π) and where σi is the xi-signature

of τi ∈ P . Then for the curve π̂, obtained from π by omitting any subset of vertices lying

outside of RS, it holds that

cost1(P, π̂) ≤ (1 + ε) cost1(P, π).

Proof. We assume that ε ∈ (0, 2]. Otherwise the set RS is empty, and the claim is obvious,

since for ε > 2 it holds that 2x1
ε < x1 ≤ xi, for 1 ≤ i ≤ n.

By Lemma 3.5, each curve at distance at most xi to τi has a vertex in each range

[v − xi, v + xi] centered at vertices v ∈ V(σi). For each signature σi, 1 ≤ i ≤ n, having at

least two vertices, it holds that the curve π has vertices in at least two such ranges, and

these vertices will not be omitted. Thus the curve π̂ is well defined.

We distinguish two subsets of the curves in P : those τi that lie close to π (i.e. those

that satisfy xi ≤ 2x1
ε ), and the far ones (satisfying xi >

2x1
ε ). For the close curves, it holds

by Theorem 3.8 that dF (π̂, τi) ≤ xi.

We now argue that for the curves lying farther away from π the distances to π will

increase by a factor of at most (1 + ε) if we omit the “far” points (and observe π̂ instead

π). Consider any index i, such that xi >
2x1
ε = x̂. By the triangle inequality, it holds that

dF (π̂, τi) ≤ dF (π̂, τ1) + dF (τ1, τi)

≤ dF (π̂, τ1) + dF (τ1, π) + dF (π, τi)

≤ x1 + x1 + xi

< 2 · ε
2
· xi + xi = (1 + ε)xi.

Therefore,

cost1(P, π̂) ≤
∑
xi≤x̂

dF (π̂, τi) +
∑
xi>x̂

dF (π̂, τi)

≤
∑
xi≤x̂

dF (π, τi) +
∑
xi>x̂

(1 + ε)dF (π, τi) ≤ (1 + ε) cost1(P, π),

as claimed.
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Since computing RS can depend linearly on the number of input curves n, we want to

reduce this dependency, while maintaining the approximation quality. We prove that the

basic shape of a candidate median can be approximated based on a constant-size sample.

This is stated by the following lemma.

Lemma 4.16. Given are a set of n curves P = {τ1, . . . , τn} and a curve π. There exists

an integer constant mε,γ,` ≥
⌈

3`
ε

(
ln 1

γ + ln `
)⌉

, such that for each uniform sample multiset

S ⊆ P of size mε,γ,`, and for a curve π̂ obtained from π by omitting any subset of vertices

lying outside the union of intervals RS, defined as:

RS =
⋃
τi∈S

⋃
v∈V(σi)

[v − 4xi, v + 4xi],

where the τi are sorted in increasing order of xi = dF (τi, π) and where σi is the xi-signature

of τi ∈ S, it holds that

Pr [cost1(P, π̂) ≤ (1 + ε) cost1(P, π)] ≥ 1− γ.

Proof. If all vertices of π are contained in RS , then π = π̂ and the claim is implied.

However, this is not necessarily the case. Let π = u1, . . . , u`. In the following, we consider a

fixed vertex uj , 1 ≤ j ≤ `, and we prove that it is either contained in RS with a sufficiently

high probability, or the cost of a solution will not be increased significantly if we ignore it.

For this purpose, let Tj ⊆ P be the subset of curves τi with

uj ∈
⋃

v∈V(σi)

[v − 4xi, v + 4xi].

If any curve of Tj is contained in our sample S, then uj is contained in RS .

We distinguish two cases. If Tj is large enough then uj is contained in RS with high

probability, otherwise, if Tj is not so large, then we argue that the total change in clustering

cost resulting from omitting uj from π will be insignificant.

Case 1: |Tj | > εn
4` (Tj is large)

For |Tj | > εn
4` , 1 ≤ j ≤ `, we want to choose the sample size mε,γ,` such that at least

one element of Tj is contained in the sample S. For a fixed index j, it holds that

Pr [Tj ∩ S = ∅] ≤
(

1− |Tj |
n

)mε,γ,`
≤
(

1− ε

4`

)mε,γ,`
.
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We use the union bound inequality to estimate the probability that this event fails for

at least one of the sets Tj in question. We choose the parameter mε,γ,` large enough,

such that it holds for the failure probability γ that

Pr

⋃̀
j=1

Tj

 ∩ S = ∅

 ≤ ∑̀
j=1

Pr [Tj ∩ S = ∅] ≤ `
(

1− ε

4`

)mε,γ,`
≤ γ.

The last inequality can be transformed into

mε,γ,` ≥
ln `

γ

ln
(

1 + ε
4`−ε

) ≥ 4`− ε
ε

ln
`

γ
≥ 3`

ε
ln
`

γ
,

using inequality ln(1 + x) ≤ x, that holds for all x ≥ 0, and since ` ≥ 2 and ε ∈ [0, 2).

Thus it suffices to choose

mε,γ,` ≥
⌈

3`

ε

(
ln

1

γ
+ ln `

)⌉
to obtain that, with a probability at least 1− γ for all 1 ≤ j ≤ ` simultaneously, we

have at least one element of Tj in S, if |Tj | ≥ εn
4` .

Case 2: |Tj | ≤ εn
4` (Tj is small)

Consider the set of curves T = {Tj : 1 ≤ j ≤ `, Tj ∩ S = ∅}. Following the analysis of

the first case it holds that

Pr
[
T 6⊆ {Tj : |Tj | ≤

εn

4`
}
]

= Pr
[
(∃Tj ∈ T ) |Tj | >

εn

4`

]
≤ γ.

Then we have that with probability at least 1− γ is T ⊆ {Tj : 1 ≤ j ≤ `, |Tj | ≤ εn
4` }.

For the rest of the case analysis we assume that this event happens.

Let π̃ denote the curve obtained from π by removing all vertices lying outside RS .

This is equivalent to removing all vertices uj with Tj ∈ T . Namely, if for fixed uj it is

(∀τi ∈ S)uj /∈ ∪v∈V(σi)[v−4xi, v+4xi], then (∀τi ∈ S) τi /∈ Tj ⇔ Tj∩S = ∅ ⇔ Tj ∈ T .

In the following, let PT =
⋃
T ′∈T T

′ be the set of input curves that are contained in

one of the sets in T . For any curve τi ∈ P \ PT it holds that τi /∈ Tj for any Tj ∈ T .

This implies that none of the vertices uj of π is contained in the union of the ranges

around the vertices of the signature σi, thus by Theorem 3.8, we can exclude uj from

π without increasing the distance of the remaining curve to τi beyond xi. Therefore,

for such a curve τi ∈ P \ PT it holds that dF (π̃, τi) ≤ xi = dF (π, τi).
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Let τq be the curve in P \PT with minimal distance to π (i.e. with smallest index q).

At least half of the input curves have to lie within a radius of r = 2
n cost1(P, π) from

π (twice the average distance of the input curves to π). Otherwise we would have

cost1(P, π) >
∑

dF(τi,π)≤r

dF (τi, π) + dn
2
e · 2

n
cost1(P, π)

≥
∑

dF(τi,π)≤r

dF (τi, π) + cost1(P, π),

a contradiction. Furthermore, the set PT has size less than n/2 (with probability

at least 1 − γ), since T ⊆ {Tj : |Tj | ≤ εn
4` }, and there are at most ` “small” sets,

thus |PT | ≤ ` · εn4` <
n
2 . Therefore with probability at least 1− γ we conclude that

xq ≤ 2
n cost1(P, π) (otherwise all elements of P \ PT would lie at distance to π larger

than r).

Using triangle inequality we conclude that

cost1(P, π̃) = cost1(P \ PT , π̃) + cost1(PT , π̃)

≤
∑

τ∈P\PT

dF (π̃, τ) +
∑
τ∈PT

(dF (τ, π) + dF (π, τq) + dF (τq, π̃))

≤
∑

τ∈P\PT

dF (π, τ) + cost1(PT , π) + |PT | · (dF (π, τq) + dF (τq, π̃))

≤ cost1(P \ PT , π) + cost1(PT , π) + |PT | · 2xq

≤ cost1(P, π) +
εn

4
· 4 cost1(P, π)

n

= (1 + ε) cost1(P, π),

with probability at least 1− γ, as claimed.

4.5.2 Generating candidate solutions

After we have shown how to approximate the cost function based on a constant-sized

sample, we need to generate a set of candidates for the (1, `)-median clustering center

curve, based on the sample set. This is done using an algorithm, that is similar in form to

Algorithm 3 for (k, `)-center problem. The roles of the positive real parameters α and β

are analogous to those in Algorithm 3, and will both be later related to a constant-factor

approximation solution.
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Algorithm 4: Generate candidates for (1, `)-median from signature vertices

Data: curves S = {τ1, . . . , τs} ⊂ ∆m, parameters α, β > 0, ` ∈ N
Result: candidate set Γ1,`

α,β(S) ⊆ ∆`

1 For each τi, let Vi be the vertex set of the signature of size at most
`+ 3 (Theorem 3.39)

2 Compute the union U of the intervals [v − 8α, v + 8α] for v ∈ V =
⋃s
i=1 Vi

3 Discretize U with resolution β, thereby generating a set of vertices V̂
4 return all possible curves consisting of ` vertices from V̂

Algorithm 4 generates a candidate set, whose properties we prove next. The proof

of Lemma 4.17 serves as a basis for the proof of the modified sampling property in

Theorem 4.20.

Lemma 4.17. Given are a set of curves S = {τ1, . . . , τs} and parameters α, β > 0,

ε ∈ (0, 2], and ` ∈ N, with α ≥ mini∈{1,...,s}
dF(τi,ςs)

ε , where ςs denotes an optimal (1, `)-

median clustering center of S. There exists ς̂ ∈ ∆` with

cost1(S, ς̂) ≤ (1 + ε) opt
(1)
1,` (S),

and Algorithm 4 computes a set of candidates Γ1,`
α,β(S) ⊆ ∆` of size

(
16αs(`+3)

β

)`
which

contains an element ς̃, such that

dF (̂ς, ς̃) ≤ β.

Proof. Let τ1, . . . , τs denote the input curves in the increasing order of their distance to ςs,

denoted by xi = dF (ςs, τi). For every τi, consider its xi-signature denoted by σi. Using the

same arguments as in the proof of Lemma 4.12, by Lemma 3.5, each vertex of ςs lies within

distance 4xi to a vertex of some xi-signature σi otherwise we can omit it by Theorem 3.8.

Hence, we can bound our search for candidate vertices of the curve ςs to the union the

intervals. ⋃
τi∈S

⋃
v∈V(σi)

[v − 4xi, v + 4xi].

Since xi could be considerably large, we cannot cover this entire region with candidates.

Instead, we consider the following union of intervals:

RS =
⋃

{τi∈S : xi≤x̂}

⋃
v∈V(σi)

[v − 4xi, v + 4xi],
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with x̂ = 2x1
ε . Now, let ς̂ be the curve obtained from ςs by omitting all vertices that do not

lie in RS . Lemma 4.15 implies that cost1(S, ς̂) ≤ (1 + ε) cost1(S, ςs), and the first claim of

the lemma is proven.

Now we can relate the set of the candidate curves returned by Algorithm 4 to the curve

ĉ (and implicitely to ςs) as follows. By Corollary 3.6 we have ` ≥ |V(ςs) | ≥ |V(σi) | − 2,

since ςs ∈ ∆` and dF (τi, ςs) = xi ≥ dF (τi, σi). Thus, it is |V(σi) | ≤ `+ 2, for 1 ≤ i ≤ s. If

a signature of size ` + 3 does not exist, then by the general position assumption, there

must be a signature of size `+ 2. We conclude that by Lemma 3.34, the vertices of σi are

contained in the set of signature vertices computed by Algorithm 4 (i.e. of the canonical

signatures of size at most `+ 3).

Since we have chosen α ≥ min1≤i≤s
dF(τi,ςs)

ε , it is 2α ≥ 2x1
ε = x̂. Therefore, for

the intervals used in Algorithm 4, it holds that [v − 4xi, v + 4xi] ⊆ [v − 4x̂, v + 4x̂] ⊆
[v − 8α, v + 8α], with xi ≤ x̂. Hence the union U of the intervals covers the set RS , and if

we discretize it with resolution β, we conclude that such generated candidate set contains

a curve ς̃ that lies within Fréchet distance β of ς̂, as claimed. For the measure of the union

U it holds that µ(U) ≤ 16αs(`+ 3). This implies the size of the generated set Γ1,`
α,β(S).

Before we prove the modified sampling property we need to prove the following two

lemmas. Lemma 4.18 bounds the probability that the cost of (1, `)-clustering of S with

center at the optimal median of P deviates significantly. Lemma 4.19 gives lower bound

on the cost of the optimal (1, `)-median clustering of the sample, related to the optimal

(1, `)-median clustering center of the whole input. The proof technique of this lemma is

inspired by a result by Kumar, Sabharwal and Sen [126] (cf. their Theorem 5.4).

Lemma 4.18. Let 0 < γ ≤ 1. Given a set P = {τ1, . . . , τn} of curves from ∆`, for each

uniform sample multiset S ⊆ P it holds that

Pr

[
cost1(S, ς) ≥ |S|

γn
opt

(1)
1,` (P )

]
≤ γ,

where ς is an optimal (1, `)-median center of P .

Proof. Let S = {τ ′1, . . . , τ ′s} ⊆ P . It holds that

E [cost1(S, ς)] = E

[
s∑
i=1

dF
(
τ ′i , ς

)]
=

s∑
i=1

E
[
dF
(
τ ′i , ς

)]
= |S|

n∑
j=1

dF (τj , ς)

n
=
|S|
n

opt
(1)
1,` (P ).

Since cost1(S, ς) is a non-negative random variable, we can apply Markov’s inequality and

obtain

Pr

[
cost1(S, ς) ≥ E [cost1(S, ς)]

γ

]
≤ γ,
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which implies the claim.

Lemma 4.19. Let 0 < γ ≤ 1. Given a set of curves P , for each uniform sample multiset

S ⊆ P of size at least d6.5 ln 1
γ e+ 2 it holds that

Pr

[
12 opt

(1)
1,` (S) ≥ min

τ∈P
dF (τ, ς)

]
≥ 1− γ,

where ς denotes an optimal (1, `)-median clustering center of P .

Proof. We analyze two cases, depending on whether the input curves are concentrated

close to a curve in ∆` or not, in particular, if there exists a curve ρ ∈ ∆`, such that

|{τ ∈ P : dF (ρ, τ) ≤ r}| ≥ 5
7 |P |, where r = dF (ρ, ς) /5.

Case 1: There exists ρ ∈ ∆` with |{τ ∈ P : dF (ρ, τ) ≤ r}| ≥ 5
7 |P |.

In this case we assume that a large fraction of P lies within a small ball far away

from the optimal center. We let

Q = {τ ∈ P : dF (ρ, τ) < 2r},

and we claim that Q has size at most 6
7 |P |. If we assume the opposite (i.e. |Q| > 6

7 |P |),
then it follows by the triangle inequality that

cost1(P, ς)− cost1(P, ρ) =
∑
τ∈Q

(dF (τ, ς)− dF (τ, ρ)) +
∑

τ∈P\Q

(dF (τ, ς)− dF (τ, ρ))

≥
∑
τ∈Q

(dF (ρ, ς)− 2dF (τ, ρ)) +
∑

τ∈P\Q

(−dF (ρ, ς))

> |Q| ·
(
dF (ρ, ς)− 4

5
dF (ρ, ς)

)
− |P \Q| · dF (ρ, ς)

>
6

7
|P | · r − 5

7
|P | · r =

1

7
|P | · r ≥ 0.

This would imply that ς is not optimal, a contradiction.

Now we analyze the event that at least one curve of P lies within Fréchet distance r

of ρ and at least one curve lies farther than 2r from ρ. If this event happens, then

we have that

opt
(1)
1,` (S) ≥ max

σ′,σ′′∈S
dF
(
σ′, σ′′

)
≥ r ≥ minτ∈P dF (ς, τ)

6
. (4.3)

The first inequality in Equation (4.3) results from the triangle inequality. The

second inequality in (4.3) results from the event condition. If the third inequality
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would not hold, then there would exist τ ′ ∈ P with dF (ρ, τ ′) ≤ r, implying that

dF (ς, τ ′) ≤ dF (ς, ρ) + dF (ρ, τ ′) ≤ 5r + r = 6r, a contradiction.

From the assumptions about the size of the sets {τ ∈ P : dF (ρ, τ) ≤ r} and Q, it

follows that for the ith sample curve σi ∈ S, it is

Pr [dF (σi, ρ) ≤ r] ≥ 5

7
and Pr [dF (σi, ρ) ≥ 2r] ≥ 1

7
.

In order to have

Pr
[
(∃σ′, σ′′ ∈ S) dF

(
ρ, σ′

)
≤ r ∧ dF

(
ρ, σ′′

)
≥ 2r

]
≥ 1− γ,

we observe that, for the complementary event holds

Pr [(∀σi ∈ S)(dF (ρ, σi) > r) ∨ (∀σi ∈ S)(dF (ρ, σi) < 2r)] ≤

≤
(

2

7

)|S|
+

(
6

7

)|S|
≤ 4

3
·
(

6

7

)|S|
≤ γ,

using union bound inequality. It suffices to take |S| ≥ d6.5 ln 1
γ e+2 ≥ (ln 1

γ+ln 4
3)/ ln 7

6

samples for the last inequality to hold. Thus, Equation (4.3) (that implies the claim

of the lemma) holds with probability of at least 1− γ.

Case 2: There is no ρ ∈ ∆` with |{τ ∈ P : dF (ρ, τ) ≤ r}| ≥ 5
7 |P |.

Let σ1 be the first sample curve and let σ̂1 be its minimum-error `-simplification (see

Definition 3.1). We first note that if 12dF (σ1, σ̂1) ≥ dF (σ1, ς) , then it holds

12 opt
(1)
1,` (S) ≥ 12dF (σ1, ς) ≥ 12dF (σ1, σ̂1) ≥ dF (σ1, ς) ≥ min

τ∈P
dF (τ, ς) , (4.4)

and the claim of the lemma holds with probability 1. For the rest of the case analysis

we assume that

12dF (σ1, σ̂1) < dF (σ1, ς) . (4.5)

The case definition provides

|{τ ∈ P : dF (σ̂1, τ) ≤ r}| <
5

7
|P |,

for r = dF (σ̂1, ς) /5. Thus, for each of the remaining sample curves σi, for 1 < i ≤ |S|,
is

Pr [dF (σ̂1, σi) > r] ≥ 2

7
. (4.6)
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It suffices to take |S| ≥ 3 ln 1
γ + 1 ≥ ln 1

γ / ln 7
5 + 1 samples, in order to ensure that

there is at least one index i, 1 < i ≤ |S|, such that dF (σ̂1, σi) > r, with probability of

at least 1− γ. Let j be one such index, then it holds by the triangle inequality that

dF (σ1, σj) ≥ dF (σj , σ̂1)− dF (σ̂1, σ1) > r − dF (σ̂1, σ1) =
dF (σ̂1, ς)

5
− dF (σ̂1, σ1)

≥ dF (σ1, ς)− dF (σ1, σ̂1)

5
− dF (σ̂1, σ1) =

dF (σ1, ς)

5
− 6dF (σ1, σ̂1)

5
(4.5)
>

dF (σ1, ς)

10
.

We conclude using triangle inequality, that with probability at least 1− γ, it is

10 opt
(1)
1,` (S) ≥ 10 (dF (σ1, ς) + dF (σj , ς)) ≥ 10dF (σ1, σj)

> dF (σ1, ς) ≥ min
τ∈P

dF (τ, ς) , (4.7)

which completes the proof of the lemma.

4.5.3 Modified sampling property

We are now ready to prove the modified sampling property. Note that in comparison to the

sampling property of Ackermann, Blömer and Sohler [3] (cf. Theorem 4.14) the running

time to compute a candidate set depends on the additional parameter m, but now we have

a guarantee on the complexity of the candidate curves.

Theorem 4.20 (Modified sampling property). Let ε ∈ (0, 2] and γ ∈ (0, 1]. There

exist integer constants mε,γ,` and tε,γ,` such that given a set of curves P = {τ1, . . . , τn}
from ∆m for a uniform sample multiset S ⊆ P of size mε,γ,` we can generate a candidate

set Γ(S) ⊂ ∆` of size tε,γ,` satisfying

Pr
[
(∃q ∈ Γ(S)) cost1(P, q) ≤ (1 + ε) opt

(1)
1,` (P )

]
≥ 1− γ.

Furthermore, we can compute Γ(S) in time depending only on `, γ, ε, and m.

Proof. Let γ′ = γ
4 and ε′ = ε

4 . Let ς denote an optimal (1, `)-median of P and let ςs denote

an optimal (1, `)-median of S. We use Algorithm 2 for (k, `)-median problem described

in Section 4.3 to compute a constant-factor approximation D1 to opt
(1)
1,` (S) and obtain an

interval [δmin
S , δmax

S ] which contains opt
(1)
1,`(S). By Theorem 4.8 it holds that δmax

S = D1

and δmin
S = D1/68. We apply Algorithm 4 to S with parameters

α =
12δmax

S

ε′
and β =

ε′γ′δmin
S

|S|
,
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to obtain a set Γ1,`
α,β(S). We claim that the set Γ1,`

α,β(S) satisfies the properties of Γ(S).

As in Lemma 4.17, we argument as follows. Let τ1, . . . , τn denote the input curves in

the increasing order of their distance to ς, denoted by xi = dF (ς, τi). For every τi, consider

its xi-signature denoted by σi. By Lemma 3.5, each vertex of ς lies within distance 4xi

to a vertex of some signature σi, otherwise we can omit it by Theorem 3.8. Hence, there

must be a (1, `)-median curve whose vertex set is contained in the union of the intervals⋃
τi∈P

⋃
v∈V(σi)

[v − 4xi, v + 4xi].

Let this solution be denoted ς.

We first consider the following union of intervals:

R1 =
⋃
τi∈S

⋃
v∈V(σi)

[v − 4xi, v + 4xi].

Let ς̂1 be the median curve obtained from ς by omitting all vertices that do not lie in R1.

Lemma 4.16 implies

Pr
[
cost1(P, ς̂1) ≤ (1 + ε′) cost1(P, ς)

]
≥ 1− γ′, (4.8)

if we choose |S| ≥
⌈

3`
ε′

(
ln 1

γ′ + ln `
)⌉

.

Second, we consider the following union of intervals:

R2 =
⋃

{τi∈P : xi≤x̂}

⋃
v∈V(σi)

[v − 4xi, v + 4xi],

where x̂ = 2x1
ε′ . Let ς̂2 be the median curve obtained from ς̂1 by omitting all vertices that

do not lie in R2. We can apply Lemma 4.15 and obtain

cost1(P, ς̂2) ≤ (1 + ε′) cost1(P, ς̂1). (4.9)

From Lemma 4.19 follows that, if we take the set of sample curves |S| ≥ d6.5 ln 1
γ′ e+ 2,

then it holds that Pr
[
x1 ≤ 12 opt

(1)
1,` (S)

]
≥ 1 − γ′. Hence with the same probability it

holds that

8α = 8 ·
12δmax

S

ε′
≥ 8 ·

12 opt
(1)
1,` (S)

ε′
≥ 8 · x1

ε′
= 4x̂, (4.10)

since we have chosen α =
12δmax

S
ε′ and x̂ = 2x1

ε′ . This relates the intervals of Algorithm 4

and R2. From Equation (4.10) we have that α ≥ 12 opt
(1)
1,`(S)/ε′ ≥ 12 min dF (τi, ςs) /ε

′.
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Therefore the conditions of Lemma 4.17 are fulfilled and its claims hold with probability

at least 1− γ′. In particular, with probability 1− γ′, the generated set Γ1,`
α,β(S) contains a

curve ς̃ which lies within Fréchet distance β of ς̂2.

Lemma 4.18 implies that with probability at least 1− γ′ it holds that

opt
(1)
1,` (S) ≤ cost1(S, ς) ≤ |S|

γ′n
opt

(1)
1,` (P ).

Thus, with the same probability it holds that

β =
ε′γ′δmin

S

|S|
≤
ε′γ′ opt

(1)
1,` (S)

|S|
≤
ε′ opt

(1)
1,` (P )

n
. (4.11)

Using union bound inequality we conclude that with probability at least 1− 3γ′ > 1− γ
the events of Equations (4.8), (4.10), and (4.11) simultaneously occur, and thus there exists

a candidate ς̃ ∈ Γ1,`
α,β(S) such that

cost1(P, ς̃) ≤
∑
τ∈P

(dF (τ, ς̂2) + dF (ς̂2, ς̃)) ≤ cost1(P, ς̂2) + βn
(4.9)

≤ (1 + ε′) cost1(P, ς̂1) + βn

(4.8)

≤ (1 + ε′)2 cost1(P, ς) + βn
(4.11)

≤ ((1 + ε′)2 + ε′) opt
(1)
1,` (P ) ≤ (1 + ε) opt

(1)
1,` (P ).

The last inequality results from ε ∈ (0, 2]. The size of the sampled multiset is mε,γ,` = |S| =
d12`
ε

(
ln 4

γ + ln `
)
e, since d3`

ε′

(
ln 1

γ′ + ln `
)
e ≥ d6.5 ln 1

γ′ e+ 2. Furthermore, by Lemma 4.17

the size of Γ1,`
α,β(S) is bounded as follows

tε,γ,` ≤
(

16α|S|(`+ 3)

β

)`
=

((
16 · 12 · 68 · 43

) |S|(`+ 3)

ε2γ

)`
≤ c1 ·

(
`3

ε4γ

(
log2 1

γ
+ log2 `

))`
,

where c1 is a sufficiently large constant. The set Γ1,`
α,β(S) is computed in time that depends

only on ε, γ, `, and m. Namely, we need O (|S|) time for the sampling. For a constant-

factor approximation by Algorithm 2 we need O (|S|m` log(m`)) time by Theorem 4.8.

By Theorem 3.39 we compute the signatures in Algorithm 4 in O (|S|m logm) time.

The discretization of the ranges around signature vertices requires O (|S|/(εγ)), and the

computing of the candidate curves requires O (tε,γ,`) time. If we observe the parameters

ε, γ, and ` as constants, then the time needed to compute Γ(S) is O (m logm). This

completes the proof of the theorem.
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Our definition of the (k, `)-median clustering problem is in the metric space (∆m, dF ).

However, it corresponds to the classical definition of the k-median problem (cf. Section 2.4),

if the ground set is X = ∆` ∪ P , P ⊂ ∆m, and the distance measure d is defined for

x, y ∈ X as

d(x, y) =


∞ if x, y ∈ P and x 6= y,

0 if x, y ∈ P and x = y,

dF (x, y) otherwise.13

Such defined distance measure d on ∆` ∪ P is not a metric, since it does not satisfy the

triangle inequality, i.e. it does not hold d(x, y) + d(y, z) ≥ d(x, z) if x, z ∈ P , x 6= z,

and y /∈ P . Other properties of Definition 2.1 are clearly satisfied. But the analysis

of Ackermann, Blömer and Sohler [3] requires that d be only a dissimilarity measure,

and not necessarily a metric. Therefore, we can use Theorem 4.20 in the space ∆` ∪ P ,

and incorporate it (instead of Theorem 4.14) into the analysis of the k-median clustering

algorithm by Ackermann, Blömer and Sohler [3]. Their result is stated as the following

theorem.

Theorem 4.21 (cf. [3] Theorem 1.1). Given are k ∈ N and 0 < ε, γ < 1. Let X be

a ground set with dissimilarity measure d, such that it satisfies the sampling property

(Theorem 4.14). Let mε,` and tε,` be the constants provided by Theorem 4.14. There exists

an algorithm that with constant probability returns a (1 + ε)-approximation of the k-median

clustering problem with respect to d for input instance P ⊂ X , |P | = n, and that requires

at most

n · 2O(kmε/3,γ log((k/ε)·mε/3,γ))

arithmetic operations, including evaluations of the clustering cost.

The distance computations between two points in the work of Ackermann, Blömer and

Sohler [3] required a constant time. In our case, the distances are computed between two

curves, where one has complexity at most m and another the complexity at most `. Thus

using Alt and Godau’s algorithm (Theorem 2.32) for distance computations we require

time O (m` log(m`)) per distance computation, as an additional multiplicative factor to

the running time of the algorithm of Theorem 4.21. Since k, `, ε, γ are constants, we can

hide them in the O-notation, and obtain the following theorem, which is the main result of

Section 4.5.

13The curves from P cannot be chosen to be the cluster centers (unless they have the complexity at most
`). However, the analysis of Theorem 4.20 guarantees the cluster centers to be from ∆`.
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Theorem 4.22. Let 0 < ε < 1 and k, ` ∈ N be constants. Given a set of curves

P = {τ1, . . . , τn} ⊂ ∆m, there exists an algorithm that with constant probability returns a

(1 + ε)-approximation to opt
(1)
k,`(P ) and a witness solution for input instance P , and that

has running time O (mn logm).

4.6 Hardness of clustering under the Fréchet distance

In this section we show that the (k, `)-center and the (k, `)-median clustering problems

are NP-hard (if k is a part of the input). We reduce these problems to their classical

counterparts (cf. Section 2.4) under `p-norms in Rd.
The hardness of both (k, `)-clustering problems for ` ≥ 6 follows from the following

lemma, stated in the survey of Indyk and Matoušek [113]. The lemma is also valid for the

case of the discrete Fréchet distance.

Lemma 4.23 (cf. [113]). One can isometrically embed any bounded subset of a d-

dimensional vector space equipped with the `∞-norm into ∆3d equipped with the continuous

Fréchet distance .

This immediately implies NP-hardness for ` ≥ 6 knowing that the clustering problems

we consider are NP-hard under the `∞ distance for d ≥ 2. We want to extend the

NP-hardness result to hold for ` ≥ 2. This is achieved by preserving ` = d in the metric

embedding. The following lemma describes the needed embedding.

Lemma 4.24. Any metric space (X , `∞), where X ⊂ Rd is a bounded set, can be embedded

isometrically into (∆d, dF ). Furthermore, if X is discrete, the embedding and its inverse

can be computed in time linear in |X | and d.

Proof. Given bounded set X ⊂ Rd. We denote the i-th coordinate of x ∈ X with xi. Let

s′ = minx∈X {xi : i ∈ [d]} and s′′ = maxx∈X {xi : i ∈ [d]}. Let ϑ = s′′ − s′. We define the

embedding f : X → ∆d as follows. To each coordinate xi, i ∈ [d], we assign the vertex

x′i = xi + (−1)i · 3ϑ. The curve f(x) ∈ ∆d is obtained by a linear interpolation of the

vertices x′i in order of the coordinate index i. The vertices of curves f(x) are alternating

local minima and maxima, and for each two consecutive vertices x′i, x
′
i+1 of f(x), i ∈ [d−1],

it holds that 5ϑ ≤ |x′i+1 − x′i| = |xi+1 − xi + 6ϑ| ≤ 7ϑ.

It is clear that for any x, y ∈ X it is dF (f(x), f(y)) ≤ ‖x − y‖∞ ≤ ϑ, since we can

map the vertices of f(x) and f(y) bijectively by mapping x′i to y′i, i ∈ [d], and such

mapping witnesses the Fréchet distance of at most ‖x− y‖∞. Let us assume for the sake

of contradiction, that δ = dF (f(x), f(y)) < ‖x− y‖∞. Then, for each curve f(x) it holds

that it is its own δ-signature. Since dF (f(x), f(y)) = δ, then by Lemma 3.5 there has to
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be a vertex of f(y) in each range R
(x)
i = [x′i − δ, x′i + δ], and these vertices have to appear

on f(y) in the order of i. Analogously, there has to be a vertex of f(x) in each range

R
(y)
i = [y′i − δ, y′i + δ].

No two consecutive vertices y′j , y
′
j+1 of f(y), (respectively, x′i, x

′
i+1 of f(x)) being at

distance of at least 5ϑ, can lie in the same range R
(x)
i (respectively R

(y)
j ). Since both f(x)

and f(y) have complexity d, for each vertex x′i, i ∈ [d], the vertex y′i has to lie in R
(x)
i . But

then for the index j, such that |xj − yj | = ‖x − y‖∞, would hold that δ ≥ ‖x − y‖∞, a

contradiction.

If X is discrete it is clear from the construction, that both the embedding and its inverse

can be computed in time linear in |X | and d. This closes the proof.

The previous proof holds for the embedding into (∆d, ddF ) as well. We cannot use

Lemma 3.5, but since the discrete Fréchet distance maps vertices to vertices of the two

curves, by having that δ = ddF (f(x), f(y)) < ‖x−y‖∞ there would need to exist a vertex y′j

in each range R
(x)
i , so that the pair (i, j) is in the traversal that witnesses ddF (f(x), f(y)).

The rest of the proof holds verbatim.

The NP-hardness reduction takes an instance of the k-center (respectively, k-median)

problem under `∞ in Rd and embeds it into ∆d (under continuous or discrete Fréchet

distance) using Lemma 4.24. If we could solve the (k, d)-center (respectively, (k, d)-median)

problem (for definitions see Subsection 4.1.1), then by Lemma 4.24, we could apply the

inverse embedding function to the solution to obtain a solution for the original problem

instance. The same holds for the approximate solution.

Note that the embedding given in Lemma 4.24 works for any point in the convex hull of

X , therefore also for the centers (respectively, medians) that form the solution.

The following theorems state our NP-hardness results.

Theorem 4.25. The (k, `)-center problem (where k is part of the input) under both

continuous and discrete Fréchet distance is NP-hard for ` ≥ 2. Furthermore, the problem

is NP-hard to approximate within a factor of 2.

Theorem 4.26. The (k, `)-median problem (where k is part of the input) under both

continuous and discrete Fréchet distance is NP-hard for ` ≥ 2.

4.7 Conclusion and open questions

The (k, `)-clustering problems are still open in several cases, and they offer several possibil-

ities for further extensions and a potential research. For the two problems we considered in
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this chapter the hardness and many approximation algorithms we discussed in Section 4.1.3

are known. However, no (1 + ε)-approximation algorithm for the (k, `)-center problem for

higher dimensions under the continuous Fréchet distance is known yet.

For the (k, `)-median problem under the continuous Fréchet distance our result (for

the one-dimensional ambient space) is the only known (1 + ε)-approximation algorithm,

for the problem without any restrictions. It is probable that for an extension into the

multidimensional ambient space, and in particular for a (1+ε)-approximation, the algorithm

of Ackermann, Blömer and Sohler [3] would be used as a tool, as we did in the one-

dimensional case. This result was used (in an adapted form) by Nath and Taylor [146]

for their (1 + ε)-approximation algorithm in the discrete Fréchet distance case, as well as

by Meintrup, Munteanu and Rohde [139] and by Buchin, Driemel and Rohde [46] in the

continuous Fréchet distance case.

In this thesis we did not consider two related clustering problems with bounded complexity

of the cluster center curves: (k, `)-means, which extends the k-means problem in general

metric spaces (cf. Equation (2.23)), and the (k, `)-clustering under DTW distance, where

in our definitions the Fréchet distance is replaced with DTW distance.

For the (k, `)-means clustering, using notation of Subsection 4.1.1, we would aim to

minimize the function

cost2(P,C) =
n∑
i=1

[
min

j∈{1,...,k}
dF (τi, ςj)

]2

,

analogously to the definitions of our problems in Subsection 4.1.1. A potential problem

is that the dissimilarity measure defined as the squared metric distance is no longer a

metric, since it does not satisfy the triangle inequality, but a weaker version of it. We can

adapt our constant-factor approximation algorithm for the (k, `)-clustering to the (k, `)-

means problem under both discrete and continuous Fréchet distance. Such an adaptation

of Algorithm 2 produces a (2α2 + 4β + 4α2β)-approximation algorithm, where α = 2

remains the simplification step factor as in the (k, `)-median case. For the clustering step

factor β we can use the 6.357-approximation algorithm by Ahmadian et al. [11], or the

9 + ε-approximation algorithm by Kanungo et al. [117] for the k-means clustering problem

in general metric spaces. The running times of these algorithm is polynomial in k and

n (in the case of Kanungo et al. it is O
(
n3ε−d

)
). Thus, such an algorithm would not

have a near-linear time in terms of the input, as opposed to the algorithm for our two

aforementioned clustering problems, and a much weaker approximation factor.

For the (k, `)-clustering under the dynamic time warping distance, a drawback is that

the DTW distance is not a metric. But it is possible that, as we did for the (k, `)-
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median problem, the dissimilarity measure dDTW can be incorporated into the analysis of

Ackermann, Blömer and Sohler [3], provided that the complexity of the candidate center

curves is bounded with `, and that the sampling property (Theorem 4.14) is satisfied. The

only related result is the work of Brill et al. [30], that gave an exact computation algorithm

for the 1-median problem under DTW, but this result holds only for one-dimensional

ambient space and has a running time exponential in the complexity of the input curves.





5 Embedding of the Fréchet distance

5.1 Introduction

In Chapter 4 we have seen that the clustering problems under the Fréchet distance can

be efficiently approximated for one-dimensional curves, but for higher dimensions these

problems are harder and there are even more open questions. Buchin et al. [43] observed

that the problem of computing the continuous Fréchet distance has a special structure in

the one-dimensional space, and there is no known lower bound for this problem. Bringmann

and Künnemann [34] used projections of the curves to the one-dimensional space to speed

up their approximation algorithm for the Fréchet distance computation. It is tempting to

assume that if we would restrict the curves to the one-dimensional ambient space, then

the continuous Fréchet distance computation problem would be significantly simplified.

However, this is not necessarily true, as in the general case there is no known algorithm to

compute the continuous Fréchet distance that performs better on one-dimensional than on

multi-dimensional curves.

It is conventional practice to separate the coordinates of the curves’ vertices to simplify

computational tasks. It seems that the inherent character of a curve is often largely

preserved if restricted to one of coordinates of the ambient space. This is equivalent to

embedding the curves to the space of one-dimensional curves by projecting them to a line.

This is one motivation for the study presented in this chapter.

Another motivational factor comes from the work of Driemel and Silvestri [71] on

probabilistic data structures, in particular locally sensitive hashing (LSH) functions for

the discrete Fréchet distance. There are no known LSH functions for the continuous case.

It is conceivable that the concept of signatures we discussed in Chapter 3 together with

projections of the curves to random lines could be used for defining an LSH function.

Therefore, in this chapter we study the distortion of the probabilistic embedding of the

Fréchet distance between two polygonal curves that results from projecting them to a

randomly chosen line.

131
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5.1.1 Problem definition

Consider two polygonal curves σ = v1, v2, . . . , vm and τ = w1, w2, . . . , wm with m vertices,

each in Rd, given by their sequences of vertices. Consider sampling a unit vector u in

respective Rd by choosing uniformly at random a point on the unit (d − 1)-sphere (the

surface of the d-ball in Rd) centered at the origin. We denote with L the line through the

origin that supports the vector u. Let σ′ = v′1, v
′
2, . . . , v

′
m and τ ′ = w′1, w

′
2, . . . , w

′
m be the

projections of σ and τ to L. If we denote vi, wj , v′i, and w′j the position vectors in Rd

associated with respective points vi, wj , v
′
i, and w′j , for all 1 ≤ i ≤ m and 1 ≤ j ≤ m, then

these projections are defined by v′i = 〈vi,u〉u and w′j = 〈wj ,u〉u.

Note that throughout this chapter, for x, y ∈ Rd we denote the Euclidean distance

between the points x and y with ‖x− y‖. If x and y are their respective associated vectors

in Rd, then ‖x− y‖ equals the Euclidean norm of the vector ‖x− y‖. This distinction is

only used in Lemma 5.1, Lemma 5.3, and Lemma 5.5, and for the rest of the chapter we

can overload the norm notation.

Since the (continuous and discrete) Fréchet distance, as well as the dynamic time warping

distance, always decrease when the curves are projected to a line (cf. Lemma 5.3), we ask

which extent this decrease can have, for the general case curves and in particular for the

realistic class of input curves – c-packed curves (cf. Definition 2.30). We are interested

both in upper and lower bounds.

5.1.2 Results in this chapter

We start our problem analysis by stating several basic results on projections of the points

and the curves from the d-dimensional to a one-dimensional Euclidean space. This is

presented in Section 5.2.

When computing the upper bound, we assume that d ∈ {2, 3, 4, 5, 6, 7}. In Section 5.3 we

show that if the curves σ and τ are c-packed for constant c, then, with constant probability,

the discrete Fréchet distance between the curves σ and τ , denoted by ddF (σ, τ), degrades

by at most a linear factor in m. This result is presented by Theorem 5.15. To obtain this

theorem, we explore the properties and the inner structure of the free-space matrix of two

curves.

In Section 5.4 we consider the lower bounds on our problem. For the c-packed curves,

the upper bound on the ratio of the two distances is matched by a lower bound that is also

linear in m. This lower bound result is presented by Theorem 5.16. The construction of

the lower bound uses c-packed curves with c < 3. Theorem 5.16 holds for the continuous

Fréchet distance and for the dynamic time warping distance as well.
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We also show that there exist polygonal curves σ and τ that are not c-packed for sublinear

c and their (continuous or discrete) Fréchet distance degrades by a linear factor for any

projection line (i.e. with probability 1). Theorem 5.17 presents this result.

5.1.3 Related work

Embedding of the metric spaces into low-dimensional geometric spaces is a fundamental

problem, whose research roots back to the middle of the 20th century. It has multiple

algorithmic applications and for an overview we refer to the survey of Indyk [111]. We

discuss what is known for two variations of the metric embedding problem that are most

studied, emphasizing the results for embedding into a line.

The first problem is to find the smallest distortion for any metric from the given class.

This problem is called a combinatorial problem by Sidiropoulos et al. [160]. Matoušek

[135] showed that any metric on a point set of size s can be embedded into d-dimensional

Euclidean space with multiplicative distortion O
(

min{s2/d log3/2 s, s}
)

, but not better

than Ω
(
s1/b(d+1)/2c). This implies that for d = 1 the distortion is linear in the worst case.

The second problem, called an algorithmic problem by Sidiropoulos et al. [160], is to

find the smallest approximation factor to a minimal distortion for a given metric over a

point set X of size s. Matoušek [134] showed that any shortest path metric on a graph

G = (V,E) with s vertices can be embedded into a line with distortion at most 2s− 1 in

time O (|V |+ |E|).
We call the maximum/minimum ratio of the distances of the input point set X the

spread Ψ. Bădoiu et al. [19] gave an O
(
Ψ3/4c11/4

)
-approximation to the embedding to

a line, where c is the distortion of embedding of the input set onto the line. They also

showed that it is hard to approximate this problem up to a factor Ω
(
s1/12

)
, even for a

weighted tree metrics with polynomial spread. Assuming a constant distortion c and a

polynomial spread Ψ, Nayyeri and Raichel [147] gave an O (1)-approximation algorithm to

the minimal distortion of the embedding to a line, in time polynomial in s and Ψ.

H̊astad, Ivansson and Lagergren [99] studied the matrix-to-line problem, i.e. given s

points and given their distances in a symmetric matrix, the aim is to find an embedding

of the points into a line, such that the distances of the embedded points agree as much

as possible to the original distances. Their distortion is defined as a maximum difference

between the distance of embedded points |f(x)− f(y)| and the original distance d(x, y),

for two input points x and y. They gave a 2-approximation algorithm for that problem,

but also showed that it is NP-hard to approximate better than a factor of 7/5.

Sidiropoulos et al. [160] considered the problem of a noncontracting embedding f of

a graph G with s vertices (that induces a shortest path metric d) into a line, such that
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the distortion c is minimized. Their distortion is defined as a maximum ratio between the

distance of embedded points |f(x)− f(y)| and the original distance d(x, y), for x, y ∈ G.

Their algorithm gave an O (c)-approximation for metrics whose distortion is at most c, and

an O (
√
s)-approximation for general metrics. They gave an exact algorithm that requires

O (ncopt) time, where copt is the optimal distortion. This result that can be paired with

their proof that an α-approximation of copt is NP-hard for certain α > 1, where the factor

α comes from the NP-hardness result on the travelling salesman problem.

Fellows et al. [82] showed that given an unweighted graph G with s vertices, and a

positive integer c, it is possible in time O
(
s · c4(2c + 1)2c

)
= O (s) ·2O(c log c) either to embed

the shortest path metric defined by the graph G into the real line with distortion at most

c, or to conclude correctly that no such embedding exists. Thus the running time of their

algorithm is linear for every fixed c, and the problem is fixed parameter tractable (FPT),

parameterized by the distortion. For this problem it was shown by Lokshtanov, Marx and

Saurabh [133] that the dependency on c cannot be reduced to 2o(c log c) unless Exponential

Time Hypothesis (ETH) fails.14

It is not much known on embeddings under the Fréchet distance. The result that is

closest comparable to that we develop and present in this chapter was given by Bačkurs

and Sidiropoulos [18]. They gave an embedding of the Hausdorff distance into constant-

dimensional `∞-space with constant distortion. More precisely, for any s, d ≥ 1, they

obtained an embedding for the Hausdorff distance over point sets of size s in d-dimensional

space, into `s
O(s+d)

∞ with distortion sO(s+d). No such metric embeddings are known for the

discrete or continuous Fréchet distance.

By extending the random projection (1+ε)-embedding of Johnson and Lindenstrauss [116]

to the case of n curves under the continuous Fréchet distance in the d-dimensional space

and under assumptions on the length of the edges of the curves, Meintrup, Munteanu and

Rohde [139] obtained an embedding into O
(
ε−2 log n

)
-dimensional space, which has an

additive (and not multiplicative) error component. It is not clear if such an approach

can yield a multiplicative (1 + ε)-approximation of the Fréchet distance, with or without

additional assumptions.

Since the doubling dimension of spaces equipped with the Fréchet distance is unbounded,

even for the case when the metric space is restricted to curves of constant complexity,

as shown in Section 4.2, a result of Bartal, Gottlieb and Neiman [24] for spaces with

finite doubling dimension implies that a metric embedding of the Fréchet distance into an

`p-space would have at least super-constant distortion. However, it is not known how to

find such an embedding.

14Cf. Hypothesis 2.34 for the distinction between ETH and SETH.



5.1 Introduction 135

The complexity of classic data structuring problems for the Fréchet distance is an active

research topic. Since we intended to develop an embedding technique, that would be useful

for the nearest-neighbor searching and range searching problems, we review next what is

known about them. An α-approximate nearest-neighbor data structure in a metric space

(X ,d) returns, for a given data point set S ⊆ X and a given query point q, a data point

p ∈ S, such that the distance d(p, q) is at most α · d(p∗, q), where p∗ ∈ S is the true

nearest neighbor to q. Indyk [112] gave a deterministic and approximate near-neighbor

data structure for the discrete Fréchet distance, using an embedding of the metric space

with the discrete Fréchet distance into an inner product space. Indyk’s data structure for

data set S, containing n curves which have at most m vertices, achieves approximation

factor c ∈ O (logm+ log log n) and has query time O (poly(m) · log n). This data structure

requires very large space (exponential in
√
m), as it precomputes all queries with curves

with
√
m vertices.

For short curves (with m ∈ O (log n)) Driemel and Silvestri [71] described an approxi-

mate near-neighbor structure for the discrete Fréchet distance, based on locality-sensitive

hashing (LSH) with approximation factor O (m), query time O (m log n), and using space

O (n log n+mn). An experimental evaluation of the data structure of Driemel and Sil-

vestri with improvements was presented by Ceccarello, Driemel and Silvestri [51]. LSH is a

technique that uses families of hash functions with the property that near points are more

likely to be hashed to the same index than far points. Driemel and Silvestri were the first

to define locality-sensitive hash functions for the discrete Fréchet distance. Emiris and

Psarros [76] improved their result and also showed how to obtain (1 + ε)-approximation

with query time Õ(d · 22m · log n) using space Õ(n) · (2 + d/ logm)O(m·d·log(1/ε)). No such

hash functions are known for the continuous case.

Only recently two (1 + ε)-approximate near neighbor data structures for the discrete

Fréchet distance in d-dimensional ambient space were given, both following the approach

of preprocessing the answers to all relevant queries on a discretization of the space. Those

are results of Filtser, Filtser and Katz [84] and Driemel, Psarros and Schmidt [70]. Both

papers considered the asymmetric setting where the query curves have much smaller

complexity ` � m than the input curves. Driemel, Psarros and Schmidt presented a

construction of a randomized data structure that uses space O
(
n ·
(
d3/2`ε−1

)d`)
and

needs query time O (d`). They also gave a derandomized algorithm, which causes

an increase of the space used to O
(
n · d3/2`ε−1 ·

(
d3/2`ε−1

)d`)
and the query time to

O
(
d5/2`2ε−1 ·

(
log n+ d` log

(
d`ε−1

)))
. The most recent version of the work of Filtser,

Filtser and Katz presents the data structure that needs space O
(
n ·
(
ε−1
)d`)

and query

time O (d`) in randomized version and O
(
d` log

(
nd`ε−1

))
in derandomized version. Their
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result extends to the dynamic time warping distance. These results suggest, that the

preprocessing approach is more efficient than the approaches that use LSH or randomized

projections.

Until recently, there were no results known for the approximate near-neighbor problem

under the continuous Fréchet distance, besides of using the discrete Fréchet distance to

approximate the continuous Fréchet distance. The recent result of Driemel and Psarros [69]

gives a (2 + ε)-approximation solution to the problem in one-dimensional ambient space R,

for the query curve of complexity `. Their data structure uses space O
(
n · (1/ε)` +mn

)
and has query time O (`), after the preprocessing that needs O

(
n · (1/ε)` +mn`3

)
time.

The range searching problem under the Fréchet distance receives a set S of n curves as

an input, each of complexity m in the ambient space Rd. The goal is to report all curves

from the input, such that their (continuous or discrete) Fréchet distance to the query curve

of complexity ` is at most some threshold value δ ≥ 0. A related problem of range counting

is to answer how many distinct subcurves are within a given threshold to a query curve.

For both problems the challenge is to build a data structure, such that answering the

queries is efficient.

De Berg et al. [61] studied range counting data structures for spherical range search

queries under the continuous Fréchet distance, assuming that the query curves are line

segments. They built a data structure that stores compressed subcurves of a single polygonal

curve, and utilizing a partition tree. Their data structure uses space O (s · polylog(n)) and

has query time O ((n/
√
s) · polylog(n)) to obtain a constant-approximation factor solution,

where n ≤ s ≤ n2 is a parameter of the data structure which is fixed at the preprocessing

time.

Afshani and Driemel [4] showed how to leverage semi-algebraic range searching for the

range searching problem under the Fréchet distance. Their data structure supports polygo-

nal curves of low complexity and answers queries exactly. In particular, for the discrete

Fréchet distance they described a data structure which uses space in O
(
n · (log log n)m−1

)
and achieves query time in O

(
n1−1/d · logO(m) n · `O(d)

)
, where it is assumed that the com-

plexity of the query curves ` is upper-bounded by a polynomial of log n. For the continuous

Fréchet distance they described a data structure for polygonal curves in the plane which

uses space in O
(
n · (log log n)O(m2)

)
and achieves query time in O

(√
n · logO(m2) n

)
. For

the case where the curves lie in dimension higher than 2 and the distance measure is the

continuous Fréchet distance, no data structures for range searching or range counting are

known.
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5.2 Preliminaries

Given curves σ = v1, v2, . . . , vm and τ = w1, w2, . . . , wm, we denote δi,j = ‖vi − wj‖ and

δ′i,j = ‖v′i − w′j‖, for all 1 ≤ i ≤ m and 1 ≤ j ≤ m, i.e. δi,j and δ′i,j are the pairwise

distances of the vertices for the input curves σ and τ and for their respective projections

σ′ and τ ′.

Furthermore, we define a directed, vertex-weighted graph G = (V,E) on the node set

V = {(i, j) : 1 ≤ i, j ≤ m}. A node (i, j) corresponds to a pair of vertices vi of σ and wj

of τ and we assign it the weight δi,j . The set of edges is defined as E = {((i, j), (i′, j′)) :

i′ ∈ {i, i+ 1}, j′ = {j, j + 1}, 1 ≤ i, i′, j, j′ ≤ m}. The set of paths in the graph G between

(1, 1) and (m,m) corresponds to the set of traversals T of σ and τ . A path in G which

does not start in (1, 1) or end in (m,m) is called a partial traversal of σ and τ .

It is useful to picture the nodes of the graph G as a matrix, where rows correspond to

the vertices of σ and columns correspond to the vertices of τ . For any fixed value Θ > 0,

we define the free-space matrix FΘ = (φi,j)1≤i,j≤t with

φi,j =

1 if ‖vi − wj‖ < Θ

0 if ‖vi − wj‖ ≥ Θ.

Note that the conventional definition of the free-space matrix for parameter Θ, analogous

to the definition of the Θ-free-space of Equation 2.27 in Subsection 2.5.3 is slightly different.

There was an 1-entry in the free-space matrix if and only if ‖vi − wj‖ ≤ Θ. We adapt the

definition in this chapter since it better suits our needs.

Overlaying the graph with the free-space matrix for Θ > ddF (σ, τ), we can observe that

there exists a path in the graph from (1, 1) to (m,m) that visits only the matrix entries

with value 1. Moreover, the existence of such a path in the free-space matrix for some

value of Θ implies that Θ > ddF (σ, τ).

We prove the following basic fact about random projections to a line, stated for d ∈
{2, 3, 4, 5, 6, 7} by Lemma 5.1. After the proof of the lemma we discuss briefly what happens

in higher dimensions.

Lemma 5.1. If two points p and q are projected to the straight line L, which supports the

unit vector chosen uniformly at random on the unit sphere in Rd, d ∈ {2, 3, 4, 5, 6, 7}, the

probability that the distance of their projections will be reduced from the original distance

by a factor greater than ϕ is at most e · ϕ, where e is a constant. The constant e equals 1

for d ∈ {2, 3}, 1 + 2/π for d ∈ {4, 5}, and 15/8 for d ∈ {6, 7}.
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Proof. Let p and q be two vertices in Rd. Let u be the unit vector chosen uniformly at

random on the unit sphere in Rd, and let L be the straight line that supports the vector

u. Then let p′ and q′ be the projections of p and q respectively to the projection line L.

Let p, q, p′, and q′ be the vectors associated with vertices p, q, p′, and q′ respectively.

Let α be the angle between u and the vector q− p (cf. Figure 5.1). Then it holds by the

definion of the inner product that

‖q′ − p′‖ = ‖ 〈q− p,u〉 · u‖ = ‖q− p‖ · ‖u‖ · | cosα| · ‖u‖. (5.1)

u
α

p

q

p′

q′

q− p

L

Figure 5.1: The projection of the pair of the vertices to the straight line

Since the projection line L supports the vector u, which is chosen uniformly at random

on the unit (d − 1)-sphere in Rd centered at origin, the angle α is distributed by the

probability distribution function hd(α), defined as the ratio of the surface of a (d − 2)-

sphere ((d− 1)-dimensional ball) of radius sinα, and the surface of a unit (d− 1)-sphere

(d-dimensional ball) (cf. Lemma 2.11). Using Equation (2.6), this can be expressed as:

hd (α) =
1√
π
·

Γ
(
d
2

)
Γ
(
d−1

2

) · (sinα)d−2 (5.2)

over the interval α ∈ [0, π].

Since sin(π/2 ± α′) = cosα′, it is hd(π/2 + α′) = hd(π/2 − α′), for α′ ∈ [0, π/2], i.e.

all functions hd(α) are symmetric around π/2. It is | cosα| ≥ ϕ for α ∈ [0, arccosϕ] ∪
[π − arccosϕ, π], for any ϕ ∈ [0, 1]. Then from Equations (5.1) and (5.2) we have that for

all d ≥ 2 and ϕ ∈ [0, 1] it is

Pr

[
‖q′ − p′‖
‖q − p‖

< ϕ

]
= 1− 2 ·

∫ arccosϕ

0
hd(α)dα. (5.3)
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Case d = 2: The distribution of α in Equation (5.2) is uniform with h2(α) = 1/π. Thus

Equation (5.3) implies

Pr

[
‖q′ − p′‖
‖q − p‖

< ϕ

]
= 1− 2 arccosϕ

π
. (5.4)

Using Taylor series of arccosϕ we get for 0 ≤ ϕ ≤ 1:

arccosϕ =
π

2
−
∞∑
k=0

(2k)! · ϕ2k+1

22k · (2k + 1) · (k!)2
=
π

2
− ϕ−

∞∑
k=1

(2k)! · ϕ2k+1

22k · (2k + 1) · (k!)2

≥ π

2
− ϕ− ϕ3 ·

∞∑
k=1

(2k)!

22k · (2k + 1) · (k!)2
=
π

2
− ϕ− ϕ3 ·

(π
2
− 1
)
,

since ϕ ≥ ϕ3 ≥ ϕ2k+1 for all k ≥ 1. Therefore

Pr

[
‖q′ − p′‖
‖q − p‖

< ϕ

]
= 1− 2 arccosϕ

π
≤ 2

π
· ϕ+

(
1− 2

π

)
· ϕ3 ≤ ϕ. (5.5)

Case d = 3: The distribution of α is h3(α) = (sinα) /2, for α ∈ [0, π]. Thus Equation (5.3)

implies that

Pr

[
‖q′ − p′‖
‖q − p‖

< ϕ

]
= 1− 2 ·

∫ arccosϕ

0

sinα

2
dα = 1− (1− ϕ) = ϕ. (5.6)

Case d = 4: The distribution of α is h4(α) =
(
2 sin2 α

)
/π for α ∈ [0, π]. Thus

Pr

[
‖q′ − p′‖
‖q − p‖

< ϕ

]
= 1−2·

∫ arccosϕ

0

2

π
sin2 αdα

(A.1)
= 1− 2

π

[
arccosϕ− ϕ ·

√
1− ϕ2

]
.

This expression implies, using the last two inequalities of (5.5), that

Pr

[
‖q′ − p′‖
‖q − p‖

< ϕ

]
≤ ϕ+

2

π
· ϕ ·

√
1− ϕ2 ≤

(
1 +

2

π

)
· ϕ. (5.7)

Case d = 5: The distribution of α is h5(α) =
(
3 sin3 α

)
/4 for α ∈ [0, π]. We have that

Pr

[
‖q′ − p′‖
‖q − p‖

< ϕ

]
= 1− 2 ·

∫ arccosϕ

0

3

4
sin3 αdα

(A.3)
= 1− 3

2

(
1

3
ϕ3 − ϕ+

2

3

)
(A.12)

≤
(

1 +
2

π

)
· ϕ. (5.8)
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Case d = 6: The distribution of α is h6(α) =
(
8 sin4 α

)
/(3π) for α ∈ [0, π]. Then (5.3)

implies

Pr

[
‖q′ − p′‖
‖q − p‖

< ϕ

]
= 1− 2 ·

∫ arccosϕ

0

8

3π
sin4 αdα

(A.6)
= 1− 2

3π

(
3 arccosϕ+ ϕ · sin(arccosϕ) ·

(
2ϕ2 − 5

))
(A.13)

≤ 16

3π
ϕ. (5.9)

Case d = 7: The distribution of α is h7(α) =
(
15 sin5 α

)
/16 for α ∈ [0, π]. Then Equa-

tion (5.3) implies

Pr

[
‖q′ − p′‖
‖q − p‖

< ϕ

]
= 1− 2 ·

∫ arccosϕ

0

15

16
sin5 αdα

(A.9)
= 1− 1

8

(
−3ϕ5 + 10ϕ3 − 15ϕ+ 8

) (A.14)

≤ 15

8
ϕ. (5.10)

For the extensive analysis confer to Appendix A. This closes the proof of the lemma.

For a general problem in much higher dimension d, the probability stated by Lemma 5.1

cannot be bounded by a linear function in ϕ. Figure 5.2 shows the probability distribution

function hd(α) of Equation (5.2) for chosen values of d.

Notice that with increase of the dimension d the probability concentrates around π/2.

This is actually a well-known fact about the unit d-ball in high-dimensional spaces (cf.

[28]): most of its volume is concentrated near its “equator”. If we set the coordinate system

in such a manner, that the first coordinate x1 is in the direction of the “north” (say, the

vector q− p), then the following lemma holds.

Lemma 5.2 ([28] Theorem 2.7). For a ≥ 1 and d ≥ 3, at least a
(

1− (2/a) · e−a2/2
)

fraction of the volume of the d-dimensional unit ball has |x1| ≤ a/
√
d− 1.

For the sake of completeness we prove the following lemma, that also holds if the discrete

Fréchet distance is replaced by the continuous Fréchet distance, or by the dynamic time

warping distance.

Lemma 5.3. Given two curves σ = v1, . . . , vm and τ = w1, . . . , wm in Rd, and let

σ′ = v′1, . . . , v
′
m and τ ′ = w′1, . . . , w

′
m respectively, be their projections to the straight line L

which supports the vector u chosen uniformly at random on the unit sphere in Rd. It holds

that ddF (σ, τ) ≥ ddF (σ′, τ ′).
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Figure 5.2: The distribution of the functions hd(α), for d ∈ {7, 20, 50, 100}

Proof. Assume ddF (σ, τ) < ddF (σ′, τ ′) for some projection line L, and let T and T ′ be the

traversals of σ and τ , and σ′ and τ ′ that realize ddF (σ, τ) and ddF (σ′, τ ′), respectively. It

is T, T ′ ∈ T , where T is the set of all traversals of σ and τ (and also of σ′ and τ ′). Then

by assumption it holds that

max
(i,j)∈T

‖vi − wj‖ = ddF (σ, τ) < ddF
(
σ′, τ ′

)
= max

(i,j)∈T ′
‖v′i − w′j‖. (5.11)

Let αi,j be the angle between the vectors wj − vi and w′j − v′i (the latter being parallel to

u), for all pairs (i, j) ∈ T . Since any traversal of σ′ and τ ′ is a traversal of σ and τ , using

Equation (5.1) yields

max
(i,j)∈T ′

‖v′i − w′j‖ ≤ max
(i,j)∈T

‖v′i − w′j‖ = max
(i,j)∈T

‖vi − wj‖ · | cosαi,j | ≤ max
(i,j)∈T

‖vi − wj‖,

(5.12)

a contradiction.
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Lemma 5.3 holds for the continuous Fréchet distance as well. To adapt the proof we

observe the curves as functions σ, τ, σ′, τ ′ : [0, 1] → Rd. Let f and f ′ be the matchings

of σ and τ , and σ′ and τ ′, respectively. Equation (5.11) in the proof of Lemma 5.3

becomes dF (σ, τ) = maxt∈[0,1] ‖σ(t)− τ(f(t))‖ < maxt∈[0,1] ‖σ′(t)− τ ′(f ′(t))‖ = dF (σ′, τ ′).

A reparametrization between σ′ and τ ′ is a reparametrization between σ and τ , thus

Equation (5.12) becomes maxt∈[0,1] ‖σ′(t) − τ ′(f ′(t))‖ ≤ maxt∈[0,1] ‖σ′(t) − τ ′(f(t))‖ ≤
maxt∈[0,1] ‖σ(t)− τ(f(t))‖, a contradiction.

Furthermore, Lemma 5.3 holds for the dynamic time warping distance as well. To see

this, we can repeat the proof for the discrete Fréchet distance, while replacing the maximum

over the pairs of a traversal by the sum over the same pairs in both Equation (5.11) and

Equation (5.12). The rest of the proof holds verbatim.

5.3 Upper bound

5.3.1 Guarding sets

The discrete Fréchet distance between curves σ and τ is realized by a pair (vi, wj) of vertices

vi ∈ σ and wj ∈ τ , being at the distance ‖vi−wj‖ = δ. We would like to apply Lemma 5.1

to this pair of vertices to show that the distance is preserved up to some constant factor.

However, it is possible that the pairwise distances in the projection are such that a cheaper

traversal is possible that avoids the pair (vi, wj) altogether. Therefore, we will apply the

lemma to a subset of pairs of vertices of σ and τ whose distance is large (e.g. larger than

Θ = δ/θ for some small value of θ ≥ 1) and such that the chosen set forms a hitting set for

the set of traversals T . To this end we introduce the notion of the guarding set by the

following definition.15

Definition 5.4 (Guarding set). For any two polygonal curves σ = v1, . . . , vm and

τ = w1, . . . , wm, and a given parameter θ ≥ 1, a θ-guarding set B ⊆ V for σ and τ is a

subset of the set of vertices of G that satisfies the following conditions:

(i) (distance property) for all (i, j) ∈ B, it holds that δi,j ≥ ddF (σ, τ) /θ, and

(ii) (guarding property) for any traversal T of σ and τ , it is T ∩B 6= ∅.

The set B “guards” every traversal of σ and τ in the sense that any path in G from

(1, 1) to (m,m) has a non-empty intersection with B. In other words, B is a hitting set for

the set of traversals T .

For a guarding set B we define the subset of vertices SB ⊆ V that can be reached by a path

in G starting from (1, 1) without visiting a vertex of B. We call the set SB the reachable

15The guarding sets for two curves σ and τ exist independently of ddF (σ, τ). For the construction confer
to Lemma 5.6 and Algorithm 5.
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area defined by B. We also define the subset of vertices HB = V \ (B ∪ SB). A guarding

set B thus defines a vertex partition of the graph G into three subsets V = SB ∪B ∪HB.

We show the following simple lemma for d ∈ {2, 3, 4, 5, 6, 7} using Lemma 5.1.

Lemma 5.5. Given parameter θ ≥ 1, if B is a θ-guarding set for the given curves

σ = v1, . . . , vm and τ = w1, . . . , wm from Rd, d ∈ {2, 3, 4, 5, 6, 7}, and if σ′ and τ ′ are

their projections to the straight line L, whose support unit vector u is chosen uniformly at

random on the unit sphere in Rd, then for any β > 1 it holds that

ddF (σ′, τ ′)

ddF (σ, τ)
≥ 1

e · β · θ · |B|

with positive constant probability at least 1− 1/β. In the upper inequality, e is a constant

and it equals 1 for d ∈ {2, 3}, 1 + 2/π for d ∈ {4, 5}, and 15/8 for d ∈ {6, 7}.

Proof. Let u be the unit vector which is chosen uniformly at random on the unit sphere

in Rd with d ∈ {2, 3, 4, 5, 6, 7}, and let u be supported by the projection line L. Let αi,j

be the angle between u and the vector wj − vi, for i, j ∈ {1, . . . ,m}. If we consider the

distances of the pairs of the points (vi, wj) ∈ σ × τ , represented by the elements (i, j) ∈ B,

then the probability that some of these distances of the points of σ and τ is reduced by a

factor greater than e · β · |B| (the “bad” event) when projected to L can be bounded by

the union bound inequality and by Lemma 5.1 for ϕ = 1/(eβ|B|) as:

Pr

[
(∃(i, j) ∈ B) :

δ′i,j
δi,j

<
1

eβ|B|

]
≤

∑
(i,j)∈B

Pr

[
δ′i,j
δi,j

<
1

eβ|B|

]
≤

∑
(i,j)∈B

e

eβ|B|
=

1

β
,

(5.13)

for any β > 1.

Since by Definition 5.4 any traversal T of σ and τ has a nonempty intersection with B,

the discrete Fréchet distance of σ and τ has to be at least as big as the distance of some

pair (i, j) ∈ T ∩B. These pairs of vertices have distance at least ddF (σ, τ) /θ, and they are

going to be reduced at most by the factor e · β · |B| (with positive constant probability).

The traversal T ′ of σ′ and τ ′ that realizes ddF (σ′, τ ′) has to contain at least one of the pairs

of B by Definition 5.4, since the pairs of the traversal T ′ are simultaneously the pairs of the

traversal T of σ and τ (that contains the pairs of the vertices of σ and τ in the same order

as the pairs of their projections in σ′ and τ ′). Thus ddF (σ′, τ ′) ≥ ddF (σ, τ) / (e · β · θ · |B|),
which proves the lemma.

Intuitively we think of δ′i,j as an approximation to δi,j . Lemma 5.5 yields a naive(
β ·m2

)
-approximation for any β > 1 and θ = 1. Let B be the set of all pairs (i, j) ∈

{1, . . . ,m} × {1, . . . ,m} such that ‖vi − wj‖ = δi,j ≥ ddF (σ, τ). In the worst case B could
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contain all m2 pairs. Set B is a 1-guarding set. The correctness of the condition (i) of

Definition 5.4 is provided directly by the definition of B. The condition (ii) follows by

contradiction. If there would exist some traversal T such that T ∩B = ∅, then for all pairs

(i, j) ∈ T it would have to hold that ‖vi−wj‖ < ddF (σ, τ). But then the traversal T would

witness that ddF (σ, τ) ≤ max(i,j)∈T ‖vi − wj‖ < ddF (σ, τ), a contradiction.

Clearly, the approximation factor of Lemma 5.5 can be improved by the better choice of

the set B. How can this be done is the question we explore in the following subsection.

5.3.2 Improved analysis for c-packed curves

In order to ensure that the number of the pairs of the indices that take part in the sum

in the union bound inequality in (5.13) is not quadratic but at most linear in terms of

the input size, we have to carefully select a small subset that satisfies the guarding set

properties.

Building of the initial guarding set

We start with a simple construction of a θ-guarding set for any θ ≥ 1 by Algorithm 5.

Lemma 5.6 proves that the resulting set is indeed a θ-guarding set.

Algorithm 5: Computing the θ-guarding set, θ ≥ 1

Data: δ = ddF (σ, τ), vertex-weighted graph G = (V,E)
Result: set B

1 B ← ∅
2 if δ1,1 ≥ δ/θ then
3 B ← {(1, 1)}
4 else
5 FIFO-Queue Q ← {(1, 1)} /* Breadth-First-Search on G = (V,E) */
6 while Q 6= ∅ do
7 (i, j)← pop(Q)
8 foreach ((i, j), (i′j′)) ∈ E do
9 if δi,j < δ/θ and δi′,j′ < δ/θ then

10 push(Q, (i′, j′))
11 else if δi,j < δ/θ and δi′,j′ ≥ δ/θ then
12 B ← B ∪ {(i′, j′)}

13 return B

Lemma 5.6. The set B obtained by Algorithm 5 is a θ-guarding set, for any θ ≥ 1.
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Proof. We have to show that the resulting set B satisfies the conditions of Definition 5.4. In

the case that the distance δ1,1 ≥ δ/θ, it suffices to assign B = {(1, 1)}, since any traversal of

the curves σ and τ has to include the pair (1, 1). This is handled in lines 2-3 of Algorithm 5.

For the rest of the proof let δ1,1 < δ/θ.

To see that the set B produced by Algorithm 5 satisfies the condition (i) of Definition 5.4,

note that a pair (i′, j′) is added into B in line 12 only if δi′,j′ ≥ δ/θ, and such that the pair

is reached by an edge from a pair (i, j) with δi,j < δ/θ.

Algorithm 5 performs a Breadth-First-Search on G = (V,E) (in lines 5-12), starting from

(1, 1), that is initial content of the queue Q. With each iteration of the BFS, the first element

in Q is removed. Further pairs are pushed into Q only over the edges ((i, j), (i′, j′)) ∈ E
with δi,j < δ/θ and δi′,j′ < δ/θ. Since the graph G is directed and does not contain circuits,

each edge in E can be explored by BFS at most once. The structure of G implies that

each pair (vertex in V ) can be added into Q at most three times. Thus, the while-loop of

the BFS terminates with Q = ∅.
We show the following invariant by induction over the steps of the BFS: after each

iteration of the BFS, any traversal T contains either a pair (vertex) in B or a pair (vertex)

in the queue Q. The BFS starts in (1, 1) ∈ Q, with δ1,1 < δ/θ. Since (1, 1) ∈ T for any T ,

the invariant initially holds. Let the invariant be satisfied for all vertices visited by the

BFS before popping the pair (i, j) from Q, where δi,j < δ/θ (since this had to hold when

(i, j) was pushed into Q). We observe the traversals whose pairs were not added into B yet

(and thus have a pair in Q). While processing the pair (i, j) (in lines 7-8), the traversal T

may use one of the pairs (i+ 1, j), (i, j + 1), or (i+ 1, j + 1) (connected to (i, j) by the

edges of E). The next pair in T is either at distance less than δ/θ, thus is pushed into Q
(lines 9-10), or at distance at least δ/θ, thus is added into B (lines 11-12). In both cases

the invariant remains valid. The case distinction within the for-loop (line 8) is complete,

since the pairs (i, j) with δi,j ≥ δ/θ are never added into Q.

The invariant is therefore valid at the end of the while-loop, when Q = ∅, implying that

the set B satisfies the condition (ii) of Definition 5.4. This closes the proof.

Unfortunately, the set B built by Algorithm 5 can have a quadratic number of elements

in terms of the input size, like the one in Figure 5.3 (marked with the outline). If the

free-space matrix Fδ/θ would have the “fork-like” structure for some θ ≥ 1, such that

for every column j with j mod 3 = 1 it holds for all pairs δi,j < δ/θ and thus φi,j = 1

(except for δm,j ≥ δ/θ), and for every column j with j mod 3 = 2 there are all pairs with

δi,j ≥ δ/θ and thus φi,j = 0 (except for δ1,j < δ/θ). For the columns with j mod 3 = 0

let φ1,j = 1, φ2,j = 0 and φm,j = 0 (the rest may be filled arbitrarily). Then the set B

built by Algorithm 5 would contain (m− 1) ·m/3 = O
(
m2
)

entries. We note that this



146 5 Embedding of the Fréchet distance

w1 = w4 = w7 = . . .

v1

w3 = w6 = w9 = . . .

w2 = w5 = w8 = . . .

τ
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v2 = v4 = v6 = . . .

v3 = v5 = v7 = . . .

δ/θ

δ/θ
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Fδ/θ =



0 0 0 0 0 0 0 0 . . .

1 0 1 1 0 1 1 0 . . .
. . .
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1 0 0 1 0 0 1 0 . . .

1 0 1 1 0 1 1 0 . . .
1 0 0 1 0 0 1 0 . . .

1 1 1 1 1 1 1 1 . . .



Figure 5.3: The curves σ and τ (left) that yield a “fork-like” free-space matrix Fδ/θ for

some θ ≥ 1 (right). The pairs selected into B by Algorithm 5 are outlined.

cannot happen if the curves σ and τ are c-packed for some constant c, c ≥ 2, as it will be

discussed in the further text.

On the structure of the distance matrix

Lemma 5.7 states one property of the c-packed curves in Rd, d ≥ 1, which we apply

afterwards in Lemma 5.8.

Lemma 5.7. Given point v and a c-packed curve τ = w1, . . . , wm from Rd, then for any

value b > 0 there exists a value r ∈ [b/2, b], such that the (d− 1)-sphere (the sphere in Rd)

centered at v with radius r intersects or is tangent to at most 2c edges of τ .

Proof. Assume for the sake of contradiction that there exists c′ > 2c, such that for any

r ∈ [b/2, b] there are at least c′ edges of τ that intersect or are tangent to the (d− 1)-sphere

– the surface of the d-ball B(v, r). Let the event points be the points in B(v, b) \B(v, b/2),

such that they are either

i) vertices wi of τ or

ii) the points w′ ∈ wiwi+1, such that vw′ ⊥ wiwi+1.

Let the set of events be R = {R1, . . . , R`}, and let ri = ‖v−Ri‖ for all 1 ≤ i ≤ `. We may

assume that the events Ri are sorted ascending by ri. Let r0 = b/2 and r`+1 = b, thus

r0 ≤ r1 ≤ . . . ≤ r`+1.

The number of the edges of τ that intersect or are tangent to the surface of B(v, r) is

equal for all r′ ∈ [ri, ri+1) and for all 0 ≤ i ≤ `, since the number of such edges changes

only in event points. By assumption there are at least c′ edges of τ that intersect the
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surface of B(v, r′), for any r′ ∈ [ri, ri+1) and for any 0 ≤ i ≤ `. The length of the curve τ

within B(v, b) \B(v, b/2) is

∑̀
i=0

L (τ ∩ (B(v, ri+1) \B(v, ri))) = L
(
τ ∩

(
B(v, b) \B

(
v,
b

2

)))
≤ c · b

since τ is c-packed. On the other side, it is

∑̀
i=0

L (τ ∩ (B(v, ri+1) \B(v, ri))) ≥
∑̀
i=0

c′ · |ri+1 − ri| = c′ ·
(
b− b

2

)
> c · b,

a contradiction.

Lemma 5.8. Given point v and a c-packed curve τ = w1, . . . , wm from Rd, and given a

value b > 0, then for any pairwise disjoint set of intervals

I ⊆ {[i1, i2] : i1, i2 ∈ N ∧ 1 ≤ i1 ≤ i2 ≤ m}

with ‖v − wi‖ ≥ b for all indices i ∈ [i1, i2] ∩ N where [i1, i2] ∈ I, there exists a value of

r ∈ [b/2, b] and a pairwise disjoint set of intervals

J ⊆ {[j1, j2] : j1, j2 ∈ N ∧ 1 ≤ j1 ≤ j2 ≤ m}

with the following properties:

(i) |J | ≤ c+ 1;

(ii) (∀ [j1, j2] ∈ J) (∃ i1 ≤ i2 < i3 ≤ i4) : [i1, i2], [i3, i4] ∈ I ∧ j1 = i1 ∧ j2 = i4;

(iii) (∀ i ∈ [j1, j2] ∩ N : [j1, j2] ∈ J) : ‖v − wi‖ ≥ r.

Proof. We set r to be the value of the same variable as in Lemma 5.7, r ∈ [b/2, b], and

we start with the given set I. Now we construct the set J by merging intervals of I as

follows. Initially J is empty. We iterate over the intervals of I in the order of their starting

points. Consider the first interval [i1, i2] and the next interval in the order [i3, i4]. We

merge them into one interval [i1, i4] if there exists no vertex wj with i2 < j < i3 such that

‖v − wj‖ < r. We continue merging this interval with the intervals in I until we found a

vertex wj such that ‖v−wj‖ < r. Then, we add the current merged interval to J and take

the next interval from I and merge it with the proceeding intervals in the same manner.

When there are no intervals left in I, we also add the current interval to J . Each time

we add an interval to J (except possibly for the last one), we encountered two edges of τ

that intersect the (d− 1)-sphere of radius r centered at v. By Lemma 5.7 we have added
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at most c+ 1 intervals to J (including the last interval). The other properties stated in

the lemma follow by construction of J . See Figure 5.4 for an illustration of the merging

process.

b

b/2
v

wj

wj+1

τ

r

∈ I

∈ J

Figure 5.4: The process of Lemma 5.8 for the vertex v and the curve τ . The representation
of the vertices of τ corresponds to their distance to v: squares for ‖v−wj‖ ≥ b,
black circles for b/2 ≤ ‖v − wj‖ < b, white circles otherwise.

For a fixed vertex v of σ the intervals contained in the set I represent indices of the

vertices w of the curve τ , such that the distance ‖v − w‖ is at least b = ddF (σ, τ) /θ,

for some θ ≥ 1, thus the intervals I represent the entries 1 within a row/column of the

free-space matrix Fb. Lemma 5.8 provides an algorithm with parameters: set of intervals I

and a parameter b (or equivalently, parameter θ), such that the result of this algorithm is

a set of intervals J that represent the entries 1 in the free-space matrix Fb/2. Before we

can apply this algorithm to our guarding set B, we need to deal with some pairs whose

presence in B is actually not necessary for keeping up the quality of the guarding set.

Avoidable pairs

If we have a θ-guarding set B obtained by Algorithm 5, we analyze if it is possible to

remove some of the elements (i.e. pairs) of B while keeping the properties of the guarding

set. For that sake we introduce the notion of an avoidable pair.

Definition 5.9 (Avoidable pair). Let B be the θ-guarding set produced by Algorithm 5,

and let V = SB ∪B ∪HB be the partition of V implied by B. The pair (i, j) ∈ B is called

avoidable if there exist a pair (i′, j′) ∈ B and two partial traversals T1 and T2 of σ and τ

from (1, 1) to (i′, j′), such that:

(i) ∀(i′′, j′′) ∈ (T1 ∪ T2) \ {(i′, j′)} it holds that (i′′, j′′) ∈ SB,

(ii) there exist pairs (i, y1) ∈ T1 and (i, y2) ∈ T2, with y1 < j < y2,
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(iii) there exist pairs (x1, j) ∈ T2 and (x2, j) ∈ T1, with x1 < i < x2.

We say that the pair (i′, j′) and the partial traversals T1 and T2 from Definition 5.9

make the pair (i, j) avoidable.

We notice that for the pair to be avoidable, it suffices to have the conditions (i) and

(ii), or (i) and (iii), since the remaining condition is implied by the monotonicity of the

traversals. The definition of the avoidable pair (i, j) implies that any partial traversal of σ

and τ from (i, j) to (m,m) has to have a nonempty intersection with T1 ∪ T2.

Figure 5.5 shows the pairs selected by Algorithm 5 into the θ-guarding set B, for some

θ ≥ 1, marked with polygonal red and blue bounds. The pairs within the red bound are

avoidable, and the pairs within the blue bound are not. Two partial traversals T1 and T2 in

SB that make the red bounded pairs avoidable (as in Definition 5.9) are marked by arrows.

Fδ/θ =


0 0 0 0 1 1 1 . . .

1 1 1 0 0 0 0 . . .

1 0 1 1 0 1 0 . . .
1 0 0 1 1 1 0 . . .

1 1 1 1 1 1 0 . . .

. . . 

Figure 5.5: Avoidable pairs from the θ-guarding set B (for some θ ≥ 1) are marked with
red bound. Not avoidable pairs are marked with blue bound.

Lemma 5.10. Given parameter θ ≥ 1 and the θ-guarding set B. Let B′ ⊆ B be the set of

the avoidable pairs. Then B \B′ is a θ-guarding set.

Proof. The validity of the condition (i) of Definition 5.4 for the set B \B′ is inherited from

the set B. In order to prove the condition (ii), for the sake of contradiction, let there exist

a traversal T of σ and τ such that T ∩ (B \B′) = ∅. Since by Lemma 5.6 the traversal T

of σ and τ satisfies T ∩B 6= ∅, there exists (i, j) ∈ T ∩B′, and we may assume that (i, j)

is the last such avoidable pair along T . Let (i′, j′) ∈ B \B′, T1 and T2 respectively be the

pair in B and two traversals from Definition 5.9 that make the pair (i, j) avoidable.

We may assume that (i′, j′) is in B \B′. To see this let (i1, j1), (i2, j2), . . . , (i`, j`) be the

sequence of the pairs of indices, such that for all x ∈ {1, . . . , `− 1}:
a) the pair (ix, jx) ∈ B′;
b) the pair (ix+1, jx+1) makes the pair (ix, jx) avoidable (from Definition 5.9); and

c) the pair (i`, j`) ∈ B \B′.
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Since it follows from Definition 5.9 and from the monotonicity of traversals that i1 <

i2 < . . . ≤ m and j1 < j2 < . . . ≤ m, such index ` has to exist. The partial traversals

T
(`)
1 and T

(`)
2 from (1, 1) to (i`, j`) given by Definition 5.9, that make the pair (i`−1, j`−1)

avoidable, satisfy the conditions of Definition 5.9 for the pair (i, j) as well. We assign

(i′, j′) = (i`, j`) ∈ B \B′, and thus it holds that (i′, j′) /∈ T .

Let (̂i, ĵ) be the last pair along T such that (̂i, ĵ) ∈ T ∩ (T1 ∪ T2) (there has to exist at

least one such pair, w.l.o.g let it be in T1). We construct the traversal T ′ of σ and τ out of

the partial traversal of T1 from (1, 1) to (̂i, ĵ) and the partial traversal of T from (̂i, ĵ) to

(m,m). For the pairs (i′′, j′′) ∈ T ′ ∩ T1 it holds by Definition 5.9 that (i′′, j′′) ∈ SB. Thus

(T ′ ∩ T1) ∩B = ∅, since B ∩ SB = ∅.
Since T ∩B = ∅, it follows that (T ′ ∩ T )∩B = ∅. Therefore, for the traversal T ′ it holds

that T ′ ∩ B = ∅. This contradicts the assumption that B was the θ-guarding set, and

proves that the condition (ii) of Definition 5.4 holds. Thus, B \B′ is a θ-guarding set.

Trimming the reachable area of a guarding set

Let B be a 1-guarding set for two curves σ and τ . We now want to modify B to shrink

the number of pairs while maintaining the guarding property of Definition 5.4. It turns

out that we can do this if we relax the approximation quality of the guarding set (which

we denoted with θ). We perform this trimming as an algorithm in three phases:

(1) Remove all avoidable pairs from B.

(2) Trim the reachable area of B row by row.

(3) Trim the reachable area of B column by column.

In the following, we describe the trimming operation on a single row. Consider a vertex

vi of the curve σ and consider the intersection of B with the row of the distance matrix

associated with vi. Let Ii denote the set of intervals of the column indices that represent

this intersection. We now apply Lemma 5.8 with parameter b = ddF (σ, τ) to obtain a set

of intervals Ji that can be used to trim the reachable area of B with respect to the ith row.

Each interval in Ji covers a set of intervals of Ii. Let Ai be the subset of pairs of the ith

row of which the column index is contained in an interval of Ji, but not contained in any

interval of Ii. We call Ai the filling pairs of the row. We now want to trim the reachable

area SB defined by B along the vertices of the reachability graph which correspond to

pairs of Ai. For this we will remove all vertices of Bi that are reachable from Ai and add

the pairs of Ai to B. See Algorithm 6 for the pseudocode of this trimming operation.

Figure 5.6 illustrates the process with an example.

The trimming operation for a single column is analogous to that on a single row, except

that the initialization of the set Ii in the first line is now done as Ii ← {[j, j] : (j, i) ∈ B}
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(the rows and the columns switch the places), and in the line 2 we use as parameters to

the algorithm of Lemma 5.8 the set Ii and b = ddF (σ, τ) /2.

Algorithm 6: Trimming the reachable area for one row

Data: guarding set B, row index i, parameter b > 0
Result: modified guarding set B

1 Ii ← {[j, j] : (i, j) ∈ B} /* each pair of B in the ith row produces an interval in Ii
*/

2 Ji ← Algorithm of Lemma 5.8 using I = Ii and b = ddF (σ, τ) as parameters

3 Ai := SB ∩
{

(i, j) : j ∈
(⋃

[j1,j2]∈Ji [j1, j2] \
⋃

[i1,i2]∈Ii [i1, i2]
)}

/* compute filling

pairs */
4 FIFO-Queue Q ← Ai /* find guarding pairs reachable from Ai via BFS */
5 while Q 6= ∅ do
6 (i, j)← pop(Q)
7 foreach (i′, j′) ∈ {(i+ 1, j), (i+ 1, j + 1)} do
8 if (i′, j′) ∈ B \ Q then
9 B ← B \ {(i′, j′)} /* remove the pair from B */

10 else
11 push(Q, (i′, j′))

12 B ← B ∪Ai /* add pairs of Ai to B */
13 return B

F before
b =



. . .

0 0 0 0 0 . . .

0 0 1 1 0 . . .

0 1 1 0 0 . . .

0 1 1 0 0 . . .
1 1 1 1 1 . . .


F after
b/2 =



. . .

0 0 0 0 0 . . .

0 0 1 1 0 . . .

0 1 1 0 0 . . .

0 0 0 0 0 . . .
1 1 1 1 1 . . .



Figure 5.6: The elements of a guarding set (marked with squares) before (left) and after
(right) applying of Algorithm 6 to the second row. The removed pairs are
marked by circles

The following lemma shows the result of the trimming algorithm’s phases, applied to

the 1-guarding set B obtained by Algorithm 5.

Lemma 5.11. Let B be a 1-guarding set.

(i) After the first phase of the algorithm, which removes all avoidable pairs, the modified

set B is a 1-guarding set.
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(ii) After the second phase of the algorithm, which applies the trimming operation to each

row with b = ddF (σ, τ), the modified set B is a 2-guarding set.

(iii) After the third phase of the algorithm, which applies the trimming operation to each

column with b = ddF (σ, τ) /2, the modified set B is a 4-guarding set.

Proof. The first part of the lemma follows directly from Lemma 5.10. We now prove

the second part of the lemma statement. Condition (iii) of Lemma 5.8 ensures that any

pair of a set Ai added to B corresponds to a pair of vertices v ∈ σ and w ∈ τ with

‖v − w‖ ≥ b/2 = ddF (σ, τ) /2. Indeed, the column indices of the pairs of Ai are contained

in intervals of Ji. Therefore, after the second phase, the modified set B satisfies property

(i) (distance property) in the definition of guarding sets if we set θ = 2. Secondly, we argue

that property (ii) (guarding property) is not invalidated after the trimming operation was

applied to a row. Let B denote the guarding set before the trimming operation applied

to the ith row and let B′ denote the modifed guarding set after trimming. Clearly, the

trimming operation does not add any avoidable pairs to B. Therefore we can assume that

throughout the second phase no avoidable pairs are present.

Assume for the sake of contradiction that there exists a traversal T that contains a pair

of B, but does not contain a pair of B′. Let (i′, j′) be the first pair along T that was

removed from B during the trimming operation and let (i, j2) be a pair of Ai that has

a BFS-path to (i′, j′). T must contain a pair (i, j1) in the ith row and this pair cannot

be contained in an interval of Ji (otherwise T would contain a pair of B′). Let T1 be the

partial traversal (path in G) of T that starts in (1, 1), goes through (i, j1), and ends in

(i′, j′). Since (i′, j′) was the first vertex along T in B, it follows that T1 only visits vertices

that are in SB . Note that i′ > i, since the BFS only visits row indices strictly greater than

i. Since Ai ⊆ SB, there must be a path T2 in G from (1, 1) through (i, j2) to (i′, j′) that

contains only vertices of SB. Now, property (ii) of Lemma 5.8 implies that there must be a

vertex (i, j′′) in B, such that either j1 < j′′ < j2 or j2 < j′′ < j1. This implies that (i, j′′)

must be avoidable with respect to B. However, this contradicts the fact that B does not

contain any avoidable pairs. This proves (ii). The third part of the lemma follows by a

symmetric argument applied to the columns.

5.3.3 Bounding the complexity of the modified guarding set

Given set B after the algorithm of Lemma 5.11. For every row of B (presented as matrix)

let the pairwise disjoint set of intervals Ri ⊆ {[j1, j2] : j1, j2 ∈ N ∧ 1 ≤ j1 ≤ j2 ≤ m} be

a set of intervals on {1, . . . ,m} of minimal size, such that for any 1 ≤ j′ ≤ m there exist

j1 and j2 with j′ ∈ [j1, j2] ∈ Ri if and only if (i, j′) ∈ B. We can analogously define such

pairwise disjoint sets Cj over the columns of B.
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Lemma 5.8 implies that for every row i there is a set of pairwise disjoint intervals Ji

constructed by line 2 of Algorithm 6, with |J | ≤ c + 1. Algorithm 6 takes into B only

the pairs that belong to the subsets of the intervals of Ji that were in SB as well. But

since the pairs (i, j) ∈ HB such that j ∈ [j1, j2] ∈ Ji have the property that any traversal

using these pairs has to contain a pair in B prior to (i, j), we could have added such pairs

too into B and then it would be Ji = Ri. Since we took only its subsets, it holds that for

every [j1, j2] ∈ Ri there is [j3, j4] ∈ Ji with j3 ≤ j1 ≤ j2 ≤ j4. By counting all intervals of

Ri that are subset of one interval from Ji as one, we say that all such intervals Ri build

one extended group of consecutive pairs within ith row. It follows that there are at most

c+ 1 extended groups within i-th row. This process is repeated over columns as well. See

Figure 5.7 for an illustration.

. . .

. . . s s b b h h h h h . . .

. . . s s s b h h h h h . . .

. . . s b h h h h h h h . . .

. . . s b h h b b b b h . . .

. . . s b h h s s s b h . . .

. . . s b b b s s s b h . . .

. . . s s s s s s s b h . . .

Figure 5.7: The pairs of the guarding set B (red) and its extended group (blue) within
one column. The pairs denoted with s, b, and h are from SB, B and HB

respectively

We have to note that the filling pairs added into B also imply the removal of a pair in

B that lies in the same row but with higher column index. This does not necessarily apply

for the last pair in the row. However, this can happen at most once per row, adding one

pair (and one extended group) to the row. We obtain the following lemma.

Lemma 5.12. In the guarding set produced by Algorithm 5 and modifed by the algorithm

of Lemma 5.11, there are at most c+ 1 extended groups within a column, and c+ 2 extended

groups within a row.

To finally bound the complexity of our guarding set by Lemma 5.14, we show first

Lemma 5.13.

Lemma 5.13. For the guarding set produced by Algorithm 5 and after every phase of

algorithm of Lemma 5.11 the following invariant holds: for every pair (i, j) ∈ B there exists

a pair (i′, j′) ∈ SB such that ((i′, j′), (i, j)) ∈ E.
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Proof. We call the pair (i′, j′) the predecessor pair. The construction of the guarding set

B Algorithm 5 guarantees that a pair (i, j) is added into B if it is visited over an edge

((i′, j′), (i, j)) ∈ E, where (i′, j′) /∈ B. Thus ((i′, j′) ∈ SB as claimed.

The first phase of the algorithm of Lemma 5.11 removes the avoidable pairs from B, thus

the invariant holds for the pairs that remain in B. The second phase runs Algorithm 6 upon

a row and adds into B only pairs that were already in SB , and that have also a predecessor

in SB. For every pair (i′, j′) which was in SB before and is in HB after Algorithm 6, it

holds that the BFS passes (i′, j′) and then visits and subsequently removes the pairs from

B. Therefore, the invariant remains valid for the pairs that remain in B. As for the pairs

that were already in B their predecessors remain in SB, so their status is not changed.

The third phase is equivalent to the second one, and the invariant remains valid.

Lemma 5.14. The set B obtained by the algorithm of Lemma 5.11 is a 4-guarding set,

containing at most (3c+ 4) ·m pairs.

Proof. For every pair (i, j) ∈ B one of the following holds true:

i) the index j is the smallest index of an extended group over the ith row;

ii) the index i is the smallest index of an extended group over the jth column;

iii) none of the above.

We argue that if neither i) nor ii) holds true, then it must be that i− 1 is the smallest

index of an extended group over the jth column. Indeed, note that if neither i) nor ii)

holds true, then (i− 1, j) and (i, j − 1) are part of an extended group and such groups can

only contain pairs of B or HB. Therefore, the pair (i− 1, j − 1) must be in SB because

Lemma 5.13 implies that the pair (i, j) must have an ingoing edge from a pair in SB . Now,

since pairs of SB and HB cannot be directly connected by an edge of G, it must be that

(i − 1, j) and (i, j − 1) are both in B. Thus, i − 1 is the smallest index of an extended

group over the jth column.

We charge elements of B of type i) and of type ii) to their respective extended intervals.

We charge elements of type iii) it to their extended interval over the column. Thus, extended

intervals in the column are charged at most twice. By Lemma 5.12 we have at most (c+ 1)

extended intervals per column and at most (c+ 2) extended intervals per row. This implies

that altogether |B| ≤ (3c+ 4) ·m, as claimed.

Lemma 5.5 and Lemma 5.14 imply the correctness of Theorem 5.15, that we state as

conclusion of this section.
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Theorem 5.15. Given c ≥ 2, for any two polygonal c-packed curves σ and τ of complexity

m from Rd, d ∈ {2, 3, 4, 5, 6, 7}, and for any γ ∈ (0, 1) it holds that

Pr

[
ddF (σ, τ)

ddF (σ′, τ ′)
≤ e · 12c+ 16

γ
·m
]
≥ 1− γ,

where e is a constant, that equals 1 for d ∈ {2, 3}, 1 + 2/π for d ∈ {4, 5}, and 15/8 for

d ∈ {6, 7}.

5.4 Lower bounds

Although one may see the upper bound of the previous section, being linear in the complexity

of the input curves, as a weak one, in this section we show that the lower bound is as well

linear in the complexity. We show that it may happen that for some two curves σ and τ it

holds that the ratio between Fréchet distance of the curves and the Fréchet distance of

the respective projection curves σ′ and τ ′ is at least in Ω(m), where m is the complexity

of the curves. This claim holds for both the discrete and the continuous version of the

Fréchet distance, independently of the c-packedness of the curves σ and τ . We present an

analogous claim for the dynamic time warping distance as well, but only in the case of the

c-packed curves.

5.4.1 c-packed curves

We state Theorem 5.16 (for the discrete Fréchet distance), and then prove its correctness for

the discrete and the continuous Fréchet distance, as well as for the dynamic time warping

distance.

Theorem 5.16. Given c ≥ 2, there exist polygonal c-packed curves σ and τ of complexity

m, such that for any γ ∈ (0, 1/π)

Pr

[
ddF (σ, τ)

ddF (σ′, τ ′)
≥ 5πγ

24
·m
]
≥ 1− γ.

Proof of Theorem 5.16 for the discrete Fréchet distance. Let the curves σ and τ

be from R2. Let m = 2t + 1. Let the curve σ = v1, . . . , v2t+1 be the line segment

v1v2t+1, while the vertices v1, . . . , v2t+1 are uniformly distributed on σ, i.e. ‖vi+1 − vi‖ =

‖vi− vi−1‖ for all i ∈ {2, . . . , 2t}. Let τ = w1, . . . , w2t+1 be composed by two line segments

w1wt+1 and wt+1w2t+1, and the vertices w1, . . . , w2t+1 are uniformly distributed on τ , i.e.

‖wj+1 − wj‖ = ‖wj − wj−1‖ for all j ∈ {2, . . . , 2t}. Let v1 = w1 and v2t+1 = w2t+1 and let

∠wt+1w1v2t+1 = α. An illustration is shown in Figure 5.8.
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α

δ

σ

τ

wt+1

v1 = w1

v2t+1 = w2t+1

v′i
w′

t+1
v′i+1

v′1 = w′
1

v′2t+1 = w′
2t+1

vt+1

L

Figure 5.8: Curves that witness the lower bound for the discrete Fréchet distance case for
c-packed curves (and for the continuous Fréchet distance and the dynamic time
warping distance as well)

The curves σ and τ are c-packed for any constant c ≥ 2. We may assume that L (τ) = 2.

Then it holds that L (σ) = 2 · | cosα|, and for both discrete and continuous Fréchet distance,

it holds that δ = ddF (σ, τ) = dF (σ, τ) = | sinα|.
Let the straight line L support the unit vector u, which is chosen uniformly at random

on the unit sphere in R2, and let the curves σ and τ be projected onto L. Observe that

the discrete Fréchet distance of σ and τ is realized by the pair (t+ 1, t+ 1) in the traversal

of σ and τ , thus ‖vt+1 − wt+1‖ = ddF (σ, τ) = δ. The vertex wt+1 ∈ τ is projected to w′t+1,

and w′t+1 lies either within σ′ or outside of it.

If w′t+1 ∈ σ′, then w′t+1 ∈ v′iv′i+1 for some i ∈ {1, . . . , 2t}, i.e. w′t+1 is in one of the 2t line

segments. We construct a traversal T ′ of σ′ and τ ′ by induction. Let (i, t+1), (i+1, t+1) ∈
T ′. For all indices 1 ≤ j ≤ t, starting with j = t, we repeat the following until (1, 1) ∈ T ′.
Let x be the smallest index of a vertex v′x added to T ′ (initially x = i). If w′j ∈ v′xv′x+1, we

add the pair (x, j) to T ′. Otherwise, it is w′j ∈ v′x−1v
′
x, and we add (x− 1, j) and (x, j) to

T ′. We conclude the iteration by decreasing j by one. We can analogously proceed the

indices t+ 2 ≤ j ≤ 2t+ 1, until (2t+ 1, 2t+ 1) ∈ T ′. By construction, T ′ is a traversal of

σ′ and τ ′. Then, for each pair (x, y) ∈ T ′ it is

‖w′y − v′x‖ ≤
L (σ′)

2t
≤ L (σ)

2t
=
| cosα|
t

.

Therefore, it holds that

w′t+1 ∈ σ′ ⇒ ddF
(
σ′, τ ′

)
≤ | cosα|

t
≤ 1

t
.
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For the event w′t+1 ∈ σ′ we bound the probability from below by

Pr
[
w′t+1 ∈ σ′

]
≥ 1− α/π, (5.14)

i.e. this event occurs if the perpendicular line to L is not parallel to some straight line

laying in ∠wt+1w1v2t+1 = α and including w1 (tiled area in Figure 5.8). Then it holds that

Pr

[
ddF (σ, τ)

ddF (σ′, τ ′)
≥ | sinα| · t

]
≥ 1− α

π
.

For α ∈ [0, 1] it holds that | sinα| ≥ α−α3/3! ≥ 5α/6, thus for γ = α/π is for γ ∈ (0, 1/π):

Pr

[
ddF (σ, τ)

ddF (σ′, τ ′)
≥ 5πγ

6
· t
]
≥ 1− γ.

Since t = (m− 1)/2 and m ≥ 2, it follows that t ≥ m/4. This proves the correctness of the

theorem.

In the continuous case, the linear factor is only m. We use the curves σ and τ from the

discrete case.

Proof of Theorem 5.16 for the continuous Fréchet distance. For the case of the

continuous Fréchet distance it holds that if w′t+1 ∈ σ′, then σ′ = τ ′ and dF (σ′, τ ′) = 0.

Thus it holds that

Pr

[
dF (σ, τ)

dF (σ′, τ ′)
≥ m

]
≥ Pr

[
dF
(
σ′, τ ′

)
= 0
]
≥ 1− α/π

for any constant α ∈ (0, 1). Thus, the continuous Fréchet distance will be reduced at least

by a factor of m with probability at least 1− γ, where γ = α/π and γ ∈ (0, 1/π).

The construction from the discrete Fréchet distance case can be extended to the dynamic

time warping distance case, which we analyze next.

Proof of Theorem 5.16 for the dynamic time warping distance. For the curves

σ and τ (defined in the discrete Fréchet distance case) it holds that
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dDTW (σ, τ) =
2t+1∑
i=1

‖vi − wi‖ = 2 ·

(
t∑
i=2

‖vi − wi‖

)
+ ‖vt+1 − wt+1‖

= 2 ·

(
t∑
i=1

‖vi+1 − wi+1‖

)
− ‖vt+1 − wt+1‖

= 2 ·

(
t∑
i=1

i · | sinα|
t

)
− | sinα| = t · | sinα|

For the projection curves we extend the analysis for the discrete Fréchet distance case.

Equation (5.14) states that Pr
[
w′t+1 ∈ σ′

]
≥ 1− α/π. But if this event happens, then for

all 1 ≤ j ≤ 2t+ 1 is w′j ∈ σ′, since v1 = w1 and v2t+1 = w2t+1. For the rest of the proof we

assume that this event happens.

Let T ′ be the set of all traversals of σ′ and τ ′. Let the set of the pairs T ′ ∈ T ′ be defined,

such that for 1 ≤ j ≤ 2t+ 1, the pair (i, j) ∈ T ′ if and only if ‖v′i −w′j‖ is minimal over all

1 ≤ i ≤ 2t+ 1. Such set T ′ is a traversal of σ′ and τ ′. This is shown by induction, since

v1 = w1 and v2t+1 = w2t+1. Let the pair (i, j) be in T ′. Then the closest vertex of σ′ to

the vertex w′j+1 has to be either v′i or v′i+1. The other vertices of σ′ (either with smaller or

greater index) cannot be the closest vertex to w′j+1 because of the order of the vertices on

σ′ and τ ′. Thus, the pair (i, j) ∈ T ′ is followed either by (i + 1, j + 1) or (i, j + 1), and

T ′ ∈ T ′ is a traversal. The possibility of (i+ 1, j) is excluded, since we choose exactly one

matched vertex for each j, 1 ≤ j ≤ 2t+ 1.

Then it holds that

dDTW
(
σ′, τ ′

)
= min

T∈T ′

∑
(i,j)∈T

‖v′i − w′j‖ ≤
∑

(i,j)∈T ′
‖v′i − w′j‖ ≤

1

2

∑
(i,j)∈T ′

‖v′i − v′i+1‖

≤ 1

2

2t∑
i=2

‖v′i − v′i+1‖ ≤
1

2
· L
(
σ′
)
≤ 1

2
· L (σ) = | cosα| ≤ 1

with the probability 1− α/π, and thus

Pr

[
dDTW (σ, τ)

dDTW (σ′, τ ′)
≥ | sinα| · t

]
≥ 1− α

π
.

From this point on, we can repeat the final steps of the analysis of Theorem 5.16 for

the discrete Fréchet distance, and obtain that the dynamic time warping distance will be

reduced at least by a factor of 5πγm/24 with probability at least 1−γ, for any γ ∈ (0, 1/π),

as claimed.
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5.4.2 General case curves

If the curves σ and τ are not c-packed, for any constant c ≥ 2, then the ratio of the

continuous Fréchet distances between σ and τ and their projection curves σ′ and τ ′ can be

at least linear in m, as claimed by Theorem 5.17. This event can happen with probability

1. We claim the same bound for the discrete Fréchet distance, by adapting the proof of the

continuous case.

Theorem 5.17. There exist the curves σ and τ of complexity m, such that if σ′ and τ ′

respectively are their projections to the one-dimensional space that supports the unit vector

chosen uniformly at random on the unit sphere in Rd, then it holds that

ddF (σ, τ)

ddF (σ′, τ ′)
≥ f(m),

where f(m) ∈ Ω(m).

Proof of Theorem 5.17 for the continuous Fréchet distance. We denote with ψk

the star-like closed curve with 2k + 1 vertices in R2, defined as ψk = v0, v1, v0, v2,

v0, . . . , vk, v0. Let vi = (ri, ϑi) in polar coordinates be defined as v0 = (0, 0) and

vi = (1, 2π · (i − 1)/k) for 1 ≤ i ≤ k. Let σ = ψk and τ = ψk+1, and let k be even,

k ≥ 6. To have the same complexity for σ and τ , we can add two more points v0 at the

end of σ, thus the complexity is m = 2k+ 3. We denote the indices of the curve τ with wj ,

0 ≤ j ≤ k + 2. Figure 5.9 shows the curves σ and τ for k = 12 (in full blue and dotted red

line, respectively).
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w2
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ṽ

w′
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13

Figure 5.9: Two curves σ = ψk (blue) and τ = ψk+1 (red dotted), with parameter k = 12
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The Fréchet distance between the curves σ and τ is (at most)

dF (σ, τ) =
1

2 · cos(π/(k + 1))
.

To show this, let M be the mapping of the points of σ and τ that witnesses the said distance.

The curve τ has one more subcurve (“ray”) of the star to be traversed. The “rays” v0, v1, v0

and w0, w1, w0 are equal, and they are mapped to each other by M at distance 0. The “rays”

v0, vi, v0 and w0, wi, w0 for 1 ≤ i ≤ k/2, and v0, vi, v0 and w0, wi+1, w0 for k/2 + 2 ≤ i ≤ k
are mapped pairwise by M at distance at most 2π/k − 2π/(k + 1) ≤ π/(k + 1). There

remain two consecutive “rays” w0wk/2+1w0 and w0wk/2+2w0 that have to be mapped by

the mapping M to v0vk/2+1v0. The point ṽ with coordinates (1/ (2 · cos(π/(k + 1))) , π) is

the intersection of a bisector of w0wk/2+1 with v0vk/2+1. Such point ṽ maps the subcurve of

τ defined by the vertices wk/2+1, w0, wk/2+2, thus the mapping M is completely described,

and the Fréchet distance of σ and τ is at most the distance realized by M , that is

‖wk/2+1 − ṽ‖ = ‖v0 − ṽ‖ = 1/ (2 · cos(π/(k + 1))) ≥ π/(k + 1), since k ≥ 6. It holds that

dF (σ, τ) > 1/2 for any k ≥ 2.

We notice that between every two lines w0wj and w0wj+1 there has to be one line v0wi,

for 1 ≤ i, j ≤ k. The opposite claim does not have to hold. Thus the distance between

vi and any of its neighboring wj and wj+1 is at most max{‖wj − vi‖, ‖wj+1 − vi‖} ≤
‖wj+1 − wj‖ ≤ 2π/(k + 1), since vi is on the circular arc between wj and wj+1.

If we now project the curves σ and τ onto the straight line L that supports the unit vector

u, with u chosen uniformly at random on the unit sphere in R2, let σ′ = v′0, v
′
1, v
′
0, . . . , v

′
k, v
′
0

and τ ′ = w′0, w
′
1, w

′
0, . . . , w

′
k+1, w

′
0 be their projections respectively. The line w0w′0 satisfies

one of the following two cases:

i) w0w′0‖w0wj for some 1 ≤ j ≤ k + 1, or

ii) w0w′0 lies between the lines w0wj and w0w(j+1) mod (k+1) for some 1 ≤ j ≤ k + 1 (the

modulo is added for the case that j = k + 1).

Then in the first case, since k is even, the straight line w0w′0 lies between the lines

w0w(j+k/2) mod (k+1) and w0w(j+k/2)+1 mod (k+1) (the lines through the two vertices on the

opposite side of the star). For the simplicity of the notation, in the case j = k/2 + 1 the

index (j + k/2) mod (k + 1) is replaced with k + 1. Therefore, we may only consider the

second case.

The projected curves σ′ and τ ′ can be mapped to each other by a mapping M ′ as follows:

let vi be the vertex of σ that lies between w0wj and w0wj+1 from the case definition (we

omit the modulo for notation simplicity). Let v′i be its projection. Then let the subcurves

v′0, v
′
i, v
′
0 and w′0, w

′
j , w

′
0, w

′
j+1, w

′
0 be mapped to each other by mapping M ′.
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For the rest of the curves let v′0, v
′
i+`, v

′
0 and v′0, v

′
i−`, v

′
0 be matched to w′0, w

′
j+1+`, w

′
0 and

w′0, w
′
j−`, w

′
0 respectively, as long as i+` ≤ k and j+1+` ≤ k+1. Once this condition is not

satisfied we replace v′i+` with v′(i+`) mod k, and v′j+1+` with v′(j+1+`) mod (k+1) respectively.

We map analogously v′0, v
′
i−`, v

′
0 to w′0, w

′
j−`, w

′
0 as long as i− ` ≥ 1 and j − ` ≥ 1. Note

that each vertex w′x of τ ′ (except w′j and w′j+1) is mapped to exactly one vertex of σ′.

Let M̂ be the mapping of σ and τ such that the subcurves of σ and τ are mapped to

each other if and only if their projections are mapped by M ′

The value of dF (σ′, τ ′) is bounded from above by the maximum of the Fréchet distances

between pairs of subcurves that are mapped by M ′. The Fréchet distance between

v′0, v
′
i, v
′
0 and w′0, w

′
j , w

′
0, w

′
j+1, w

′
0 is bounded from above by max{‖v′i−w′j‖, ‖v′i−w′j+1‖} ≤

‖w′j−w′j+1‖ ≤ 2π/(k+1). For the remaining pairs of subcurves, let the subcurves v′0, v
′
x, v
′
0

and w′0, w
′
M ′(x), w

′
0 be mapped to each other by M ′, for all x ∈ [k] \ {i}. The Fréchet

distance between these two subcurves is ‖v′x − w′M ′(x)‖. By the construction of M ′ we

conclude by induction that the points vx of σ and wM̂(x) of τ (whose projections are

respectively v′x and w′M ′(x)) have to lie both on a circular arc of length 2π/k. Thus we have

dF
(
σ′, τ ′

)
≤ max{‖w′j − w′j+1‖, max

x∈[k]\{i}
{‖v′x − w′M ′(x)‖}}

≤ max{ 2π

k + 1
, max
x∈[k]\{i}

{‖vx − wM̂(x)‖}} ≤
2π

k
.

Therefore by projecting the curves σ and τ to any straight line the continuous Fréchet

distance between the curves will be diminished at least by the factor

dF (σ′, τ ′)

dF (σ, τ)
<

2π

k
· 2 =

4π

k
.

This yields the claimed linear lower bound, since k = (m− 3)/2, and proves the theorem

with f(m) = (m− 3)/(8π).

Proof of Theorem 5.17 for the discrete Fréchet distance. The lower bound given

by Theorem 5.17 holds for the discrete Fréchet distance as well, with f(m) = (m−5)/(16π).

We adapt the curves σ and τ from the proof for the continuous Fréchet distance as follows.

Let us add to each “ray” v0, vi, v0 of the curve ψk two vertices v̂i (i.e. the “ray” becomes

v0, v̂i, vi, v̂i, v0), with polar coordinates v̂i = (1/ (2 · cos(π/(k + 1)) , 2 · (i− 1) · π/k) (as

for the vertex ṽ from the continuous case proof). The curve ψk contains now 4k+1 vertices,

and thus our curves σ and τ have complexity m = 4k + 5. The rest of the construction

and analysis can be used verbatim.
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5.5 Conclusion and open questions

Up to now we have not discussed if the analysis of the upper bounds presented in Section 5.3

can be extended to the continuous Fréchet distance or the dynamic time warping distance,

as it was done in Section 5.4 for the lower bounds. While there is no free-space matrix

for the DTW, and thus the analysis cannot be naturally extended for the DTW, in the

continuous Fréchet distance case a free-space matrix would be replaced with a free-space

diagram, and the notion of guarding set would include edges that bound the cells within

the free-space diagram. Instead of avoidable pairs there would be avoidable areas, and our

technique of Section 5.3 could be adapted.

However, the problem lies in the structure of the continuous Fréchet distance. The

discrete Fréchet distance δ is always obtained as the distance between two vertices (so

called “vertex-vertex event”). In the continuous Fréchet distance case the distance δ may

be additionally realized by “vertex-edge events”, where the Fréchet distance is realized

between a vertex and a point on an edge, and by “vertex-vertex-edge events”, where the

Fréchet distance is realized between two vertices A and B on one curve, and a point on

an edge of the other curve that lies on the bisector of the straight line AB. For details

confer the work of Driemel [64] and Driemel, Har-Peled and Wenk [66]. In these two cases

a complementary claim to Lemma 5.1 is missing, in particular it is not known how to

bound the ratio of the original and the projected distance, and subsequently to have the

probabilities with such values that can be bounded jointly for the complete curves, as in

Lemma 5.5 for the discrete case.

For the discrete Fréchet distance we showed that, in the worst case and under reasonable

assumption for the input curves that they are c-packed for some constant c > 0, the

distortion of the probabilistic embedding obtained from projecting to a randomly chosen

line is at most linear in the complexity of the input curves. We showed that there are

as well input curves that satisfy the same realistic assumptions and that witness the

distortion that is at least linear in the complexity of the input curves. One may see this as a

negative result, since we hoped that the Fréchet distance would be more robust under such

embedding. However, we believe that this behavior occurs only for strongly conditioned

curves, and not for a realistic input.

In the general case there exist polygonal curves that witness at least a linear distortion

of the discrete Fréchet distance, in terms of the complexity of the input curves. It is an

open question if the upper bound of the distortion can be matched with the lower bound

in the general case.



6 Probabilistic smallest enclosing ball

6.1 Introduction

In the previous chapters the objective were polygonal curves. A polygonal curve describes

the trajectory of some object by connecting the locations, i.e. the points in Rd, in the

order they are visited. Often, the locations visited by a chosen object are repeated, each

with a respective frequency.

In this chapter we aim to gain knowledge from probabilistic points. If the set of possible

locations of a point is given, each location accompanied with some probability, then a

probabilistic point is intuitively defined by a discrete probability distribution, describing a

set of possible locations in Rd where the point can appear at some moment.

Such setting is often met in practice. When looking for an optimal location for one

(or more) mobile provider antenna(s) to serve N clients using cell phones, such that the

maximal distance to a client is minimized, it is more realistic to observe the problem over

probabilistic distributions of the locations of the clients, and ask for a good solution in

expectation, than to optimize over all possible locations of all the clients. In addition, with

some probability, a client may not be present at all. In the scenario that we optimize over

all possible locations of all the clients, we would have an instance of some of the classical

clustering problems, described in Section 2.4.

In particular, we are interested in the probabilistic smallest enclosing ball (pSEB) problem

in high-dimensional Euclidean space. For this problem in a fixed-dimensional space, there

is a fully polynomial time approximation scheme, provided by Munteanu, Sohler and

Feldman [145]. However, their result assumes the dimension d of the ambient space to be

a constant, and has an exponential running time dependency on d. To make the pSEB

algorithm viable as a building block for high dimensional problems, as it is often the case

in the machine learning context, it is desirable to reduce the dependence on the dimension

from exponential to a small polynomial.

163
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6.1.1 Problem definition

We consider a generalized median problem that we call the set median problem, and aim to

solve it efficiently, in order to be able to use it as a building block for the other problems.

Definition 6.1 (Set median problem). Let P = {P1, . . . , PN} be a family of finite

non-empty sets where for all i ∈ [N ], it is Pi ⊂ Rd and n = max{|Pi| : i ∈ [N ]}. The set

median problem on P consists of finding a center c ∈ Rd that minimizes the cost function

f(c) =

N∑
i=1

m(c, Pi),

where m(c, Pi) = maxp∈Pi ‖c− p‖.

The set median problem is a generalization to two well-known clustering problems. In

case of singleton sets (n = 1), the set median problem is equivalent to the 1-median, defined

in Equation (2.22) (also known as Fermat-Weber problem or geometric median). Also, if

there is only one set (N = 1), the set median problem coincides with the smallest enclosing

ball or 1-center problem, defined in Equation (2.21).

Next, we consider the probabilistic smallest enclosing ball (pSEB) problem, aiming to

find a center that minimizes the expected maximum distance to points drawn from the

input distributions. Let the input be a set D = {D1, . . . , Dn} of n discrete and independent

probability distributions. The i-th distribution Di is defined over a set of z possible

locations qi,j ∈ Rd ∪{⊥}, for j ∈ [z], where ⊥ indicates that the i-th point is not present in

a sampled set, i.e., qi,j = ⊥ ⇔ {qi,j} = ∅. We call the points, whose locations are given by

the input distributions the probabilistic points. Each location qi,j is associated with the

probability pi,j , such that
∑z

j=1 pi,j = 1, for every i ∈ [n]. Thus the probabilistic points

can be considered as independent random variables Xi.

A probabilistic set X consisting of probabilistic points is also a random variable,

where for each random choice of indices (j1, . . . , jn) ∈ [z]n there is a realization P(j1,...,jn) =

X (j1, . . . , jn) = (q1,j1 , . . . , qn,jn). By independence of the distributions Di, i ∈ [n], it holds

that

Pr
[
X = P(j1,...,jn)

]
=

n∏
i=1

pi,ji .

The probabilistic smallest enclosing ball problem is defined as follows. Here we may

assume that the distance from any point c ∈ Rd to the empty set is 0.
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Definition 6.2 (Probabilistic smallest enclosing ball problem, cf. [145] Definition

2). Let D be a set of n discrete distributions, where each distribution is defined over z

locations in Rd ∪ {⊥}. The probabilistic smallest enclosing ball problem is to find a center

c∗ ∈ Rd that minimizes the expected smallest enclosing ball cost, i.e.,

c∗ ∈ arg min
c∈Rd

EX [m(c,X)] ,

where the expectation is taken over the randomness of X ∼ D.

It was noted in [145] that the pSEB problem can be reduced to two different types of

1-median problems, and thus to two instances of the set median problem. We discuss this

more in detail in Subsection 6.1.4.

The third problem we consider in this chapter is the support vector data description prob-

lem (SVDD). We introduced the Hilbert spaces and the kernel functions in Subsection 2.1.2.

We formally state the SVDD problem next.

Definition 6.3 (Support vector data description problem). Given are an input

set P ⊆ Rd, and the kernel function K : Rd × Rd → R with implicit feature mapping

φ : Rd → H, where H is an implicit Hilbert feature space. The task is to find

c∗ ∈ arg min
c∈H

max
p∈P
‖c− φ(p)‖ = arg min

c∈H
m(c, φ(P )), (6.1)

where φ(P ) = {φ(p) : p ∈ P}.

It is known that the SVDD problem, originally introduced by Tax and Duin [166], is

equivalent to the smallest enclosing ball problem in the feature space induced by the kernel

function, what was shown by Tsang, Kwok and Cheung [169]. Note that the deterministic

SVDD problem (Definition 6.3) is often stated with squared distances, as it is the case

in the previous work [166, 169]. It does not matter whether we minimize the maximum

distance or any of its powers or any other monotone transformation. In the probabilistic

case this is not true. Consider, for instance, squared distances, i.e. if in Equation (6.1) there

would be m(c, φ(P ))2 instead of m(c, φ(P )). Taking the expectation over the randomness

of X, as we did in Definition 6.2, would yield the (weighted) sum of the squared distances,

and thus, the resulting problem would be similar to a 1-means rather than a 1-median

problem.

Huang et al. [106] have observed that minimizing the expected maximum squared

distance corresponds to minimizing the expected area of an enclosing ball in R2. This

observation can be generalized to the expected volume of an enclosing ball in Rp when the
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p-th powers of distances are considered. Considering p = 2 might also have advantages

when dealing with Gaussian input distributions due to their strong connection to squared

Euclidean distances. In a general setting of the probabilistic smallest enclosing ball problem,

however, it is natural to minimize in expectation the maximum Euclidean distance, since

its radius is the primal variable to minimize. We proceed in such manner, to extend the

SVDD to its probabilistic version.

The input is again a set D of n discrete and independent probability distributions, where

Di ∈ D is defined over a set of z locations qi,j ∈ Rd ∪ {⊥}. Note that the mapping φ maps

the locations qi,j from Rd to φ(qi,j) in H, and we assume φ(⊥) = ⊥. Then the probabilistic

SVDD problem is given by the following adaptation of Definition 6.2.

Definition 6.4. Let D be a set of n discrete distributions, where each distribution is

defined over z locations in Rd ∪ {⊥}. Let K : Rd × Rd → R be a kernel function with

associated feature map φ : Rd → H. The probabilistic support vector data description

(pSVDD) problem is to find a center c∗ ∈ H that minimizes the expected SVDD cost, i.e.,

c∗ ∈ arg min
c∈H

EX [m(c, φ(X))] ,

where the expectation is taken over the randomness of X ∼ D.

Throughout this chapter we work with points in Rd. However, we intend to use the

subgradient method, that utilizes vectors in Rd for translations. For each point x ∈ Rd

we assign the vector x ∈ Rd (from the origin to the point x). However, since for any two

points x, y ∈ Rd, and respective position vectors x,y ∈ Rd, it is ‖x− y‖ = ‖x− y‖, we do

not make the distinction between x and x. It will always be clear from the context which

object (point or vector) is meant at the moment.

6.1.2 Results in this chapter

In Section 6.2, we solve the set median problem (cf. Definition 6.1) on the collection of

N deterministic point sets, using estimation and sampling techniques combined with a

stochastic subgradient descent algorithm. The main result is presented by Theorem 6.15,

with running time O
((
dn/ε4

)
· log2 1/ε

)
.

The elements in the collection are sets of up to n points in Rd. In Subsection 6.2.2, we

discuss the possibility of further reducing the dependence on their size. In the previous

work [145] the sets were summarized using strong coresets of size 1/εΘ(d) for constant

dimension d. This is not an option in high dimensions where, e.g. d ≈ n. We show in

Theorem 6.16 that no reduction below min{n, exp(d1/3)} is possible unless one is willing
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to sacrifice an additional approximation factor of roughly
√

2. However, we discuss the

possibility to achieve roughly a factor (
√

2 + ε)-approximation, both in off-line and in

streaming setting, using well-known data structures.

In Subsection 6.3.1, we show how the (1 + ε)-approximation algorithm for the set median

problem improves the previously best FPTAS for the probabilistic smallest enclosing ball

problem from O
((
dnz/ε3

)
· log 1/ε+ 1/εO(d)

)
to O

((
dnz/ε4

)
· log2 1/ε

)
. In particular,

the dependence on the dimension d is reduced from exponential to linear and, more notably,

it occurs only in distance evaluations between points in d-dimensional Euclidean space, but

not in the number of sampled points nor in the number of candidate centers to evaluate.

This result is presented in Theorem 6.17.

The result of Subsection 6.3.1 enables working in very high D-dimensional Hilbert

spaces, whose inner products and distances are given implicitly using positive semidef-

inite kernel functions, in Subsection 6.3.2. These functions can be evaluated in O(d)

time, although D is large or even unbounded depending on the kernel function. As an

example, we extend the well-known support vector data description (SVDD) method to

the probabilistic case. SVDD is equivalent to the smallest enclosing ball problem in the

implicit high-dimensional feature space. The main result is presented in Theorem 6.19,

and represent the first FPTAS for the probabilistic SVDD problem, with running time

O
(
dn ·

((
z/ε3

)
· log 1/ε+

(
1/ε8

)
· log2 1/ε

))
.

Throughout this chapter, we assume that the error parameter satisfies 0 < ε < 1/9. All

our results hold with constant probability, say 1/8, which can be amplified to arbitrary 1−η,

0 < η < 1, by running O (log 1/η) independent repetitions and returning the minimum

found.

6.1.3 Related work

We have discussed the deterministic clustering problems in Section 2.4. Here we present

the related work on the probabilistic clustering problems.

The study of probabilistic clustering problems was initiated by Cormode and McGre-

gor [59]. They developed approximation algorithms for the probabilistic settings of k-means,

k-median as well as k-center clustering. For the probabilistic k-median in general metric

space they gave a (3 + ε)-approximation, while for the Euclidean k-median, as well for

the both versions of k-means they produced a (1 + ε)-approximation. The probabilistic

metric k-center turns up to be the most challenging. Cormode and McGregor gave a

(1.582 + ε)-approximation, but with a blow-up on the number of clustering centers to

O
(
(1/ε) · log2 n

)
, where n is the number of the probability distributions in the input, i.e.

a bi-criteria O (1)-approximation. Even in the case that the distributions are reduced to
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the choice between the appearance of the point on a single location or the point being

absent, the blow-up on the centers remains, but the approximation factor becomes 1 + ε.

The running times of all algorithms of Cormode and McGregor is polynomial in n. Guha

and Munagala [91] improved the result of Cormode and McGregor, by giving a polynomial

time O(1)-approximation to the probabilistic k-center problem, that preserves the number

of centers.

Munteanu, Sohler and Feldman [145] gave the first fully polynomial time (1 + ε)-

approximation scheme (FPTAS) for the probabilistic Euclidean 1-center, i.e., the proba-

bilistic smallest enclosing ball problem, in fixed dimensions, with running time of roughly

O(nd/εO(1) + 1/εO(d)). Since we build our pSEB algorithm in Section 6.3.1 upon their

algorithm, we emphasize some of the aspects of the work from [145] in separate Subsec-

tion 6.1.4.

Huang, Li, Phillips and Wang [106] extended the notion of ε-kernels to the probabilistic

points, but only for the single extent measure of the input set – the directional width.

An ε-kernel is a subset of the input set, that approximates well the extent of the input.

It yields a coreset for several extent measures, cf. the survey of Agarwal, Har-Peled and

Varadarajan [8]. However, the ε-kernels have size exponential in d, i.e. O
(
ε−O(d)

)
[8].

Based on ε-kernels for probabilistic data of [106], Huang and Li [105] generalized

the (1 + ε)-approximation of [145] to a polynomial time approximation scheme (PTAS)

for Euclidean k-center in Rd, for fixed constants k and d. The running time of the

algorithm of Huang and Li [105] grows as a double exponential function of the dimension:

O
(
nO(1/ε)O(d)·d·poly (k)

)
. Even in our case, where k = 1, the running time is still prohibitive,

i.e. exponential in 1/ε, and doubly exponential in d. It is unclear how such a doubly

exponential dependence on d could be reduced.

Huang and Li [105] gave a remark that to obtain a PTAS it is necessary to assume

that k is a constant, as even the deterministic Euclidean k-center problem is NP-hard to

approximate better than a factor of 1.822 for arbitrary k even in R2, as showed by Feder

and Greene [80].

On probabilistic k-median clustering problem the only known result (other than [59])

was given by Lammersen, Schmidt and Sohler [128], who developed the first probabilistic

coresets for uncertain datasets, by extending the technique of Chen [54]. Their coreset

construction is aimed for the application in the streaming setting.

Kernel functions (introduced on page 21) simulate a Hilbert space in large or even

unbounded dimensions but can be evaluated using simple low dimensional vector operations

in the original dimension of input points [155, 158]. This enables simple spherical shape

fitting using a smallest enclosing ball algorithm in the high dimensional feature space, which
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implicitly defines a more complex and even non-convex shape in the original space. The

smallest enclosing ball problem in kernel spaces was first observed by Tax and Duin [166].

A more subtle connection between (the dual formulations of) several kernel based methods

in machine learning and the smallest enclosing ball problem was established by Tsang,

Kwok and Cheung [169]. There are no known results on the probabilistic versions of the

shape fitting and machine learning problems, prior to our work [125] presented in this

chapter.

6.1.4 The best known probabilistic smallest enclosing ball algorithm

In this subsection we sketch the probabilistic smallest enclosing ball algorithm of Munteanu,

Sohler and Feldman [145], and present some of their results. They assumed that the

dimension of the ambient space Rd is a constant, thus the exponential dependence on d in

the running time of their algorithm was not a problem.

We already mentioned that [145] showed a reduction of the probabilistic smallest enclosing

ball problem to computing a solution for two deterministic instances of the set median

problem. Their algorithm distinguishes between two cases.

The probability of obtaining a non-empty realization P 6= ∅ is small: Formally, in this

case it is
∑

qi,j∈Q pi,j ≤ ε, where Q = {qi,j : qi,j 6= ⊥, i ∈ [n], j ∈ [z]} (the set of

non-empty locations). Then we have little chance of gaining information by sampling

realizations. However, in [145] Lemma 6, it was shown that

(1− ε) · EX

∑
p∈X
‖c− p‖

 ≤ EX [m(c,X)] ≤ EX

∑
p∈X
‖c− p‖

 , (6.2)

where EX
[∑

p∈X ‖c− p‖
]

=
∑

i,j pi,j ·‖c− qi,j‖ is a weighted version of the determin-

istic 1-median problem (cf. Equation (2.22)). For the special case of the distributions

that only differentiate between the point being present on a single location or not be-

ing present, Equation (6.2) was noted by Cormode and McGregor [59]. For arbitrary

distributions, Equation (6.2) was noted by the authors of [145]. Thus, EX [m(c,X)]

is also a weighted instance of the set median problem, up to a factor of (1− ε).

The probability that a realization contains at least one point is reasonably large: In

this case, it is
∑

qi,j∈Q pi,j > ε, where Q = {qi,j : qi,j 6= ⊥, i ∈ [n], j ∈ [z]}. By the

definition of the expected value and m(c, ∅) = 0, we have

EX [m(c,X)] =
∑
P 6=∅

Pr [X = P ] ·m(c, P ),



170 6 Probabilistic smallest enclosing ball

which is a weighted version of the set median problem with very large N (all possible

point realizations).

We present their algorithm next, in order to be able to compare their findings to our

result.

Algorithm 7: PSEB of Munteanu, Sohler and Feldman, cf. [145], Algorithm 1

Data: A set D of n point distributions over z locations in Rd, a parameter
0 < ε < 1/2

Result: A center ĉ ∈ Rd
1 Q← {qi,j : qi,j 6= ⊥, i ∈ [n], j ∈ [z]} /* the set of non-empty locations */
2 Set a sample size k ∈ Θ

(
(d/ε2) · log(1/ε)

)
3 if

∑
qi,j∈Q pi,j ≤ ε then

4 - Pick a random sample R of k locations from P = Q, where for every r ∈ R we
have r = qij with probability proportional to pij

5 - Compute ĉ ∈ Rd that is a (1 + ε)-approximation to the 1-median of R, where

the search for ĉ is done over a grid of size 1/εΘ(d)

6 else
7 - Sample a set R of k non-empty realizations from the input distributions D
8 - Compute ĉ ∈ Rd that is a (1 + ε)-approximation to the set median problem on

R, where each realization is replaced by one strong coreset from [8] of size
O
(
1/εd

)
. The search for ĉ is done over a grid of size 1/εΘ(d)

9 return ĉ

Algorithm 7 runs in linear time in n, for sampling a constant number of realizations.

Solving the subsampled problem takes only constant time, though exponential in the

dimension. This yields a total running time of roughly O(nzd/εO(1) +1/εO(d)). Algorithm 7

can be extended into streaming settings using the exponential-sized strong coreset of

Agarwal, Har-Peled and Varadarajan [8], that is already used in the line 8 of Algorithm 7.

We state their main result as the following theorem.

Theorem 6.5 (cf. [145] Theorem 5). Let D be a set of n discrete distributions, where

each distribution is defined over z locations in Rd ∪ {⊥}. Let c̃ ∈ Rd denote the output of

Algorithm 7 on input D, and let the approximation parameter be 0 < ε ≤ 1/2. Then, with

constant probability, the output is a (1 + ε)-approximation for the probabilistic smallest

enclosing ball problem, i.e., it holds that

EX [m(c̃, X)] ≤ (1 + ε) min
c∈Rd

EX [m(c,X)] .

The running time of Algorithm 7 is O
((
nzd/ε3

)
· logd(1/ε) + 1/εO(d)

)
.
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6.2 The set median problem

The set median problem, given in Definition 6.1, defines the distance m(c, P ) between a

singleton set {c} and some set P , P ⊂ Rd, as the maximum distance maxc,p∈P ‖c− P‖.
Extending this to a distance measure m between any two sets A,B ⊂ Rd, defined by the

maximum distance m(A,B) = maxa∈A,b∈B ‖a− b‖ does not yield a metric, since for any

non-singleton set C ⊂ Rd it holds that m(C,C) > 0. However, throughout this chapter we

consider only cases where, as in Definition 6.1, one of the sets A = {c} is a singleton, and

B = P is an arbitrary non-empty set of points from Rd. In order to directly apply results

from the theory of metric spaces, we can define m(A,B) = 0 whenever A = B. Such an

adaptation of m was done in the dissertation of Munteanu [143] (and later presented in

[125]). For completeness we give here the proof that such m is a metric.

Lemma 6.6 (cf. [143] Lemma 5.2.3). Let X be the set of all finite non-empty subsets of

Rd. We define

m(A,B) =

maxa∈A,b∈B ‖a− b‖ if A 6= B

0 if A = B

for any A,B ∈ X . Then (X ,m) is a metric space.

Proof. The non-negativity and symmetry properties of m follow from the corresponding

metric properties in the Euclidean space (Rd, ‖·‖) and by definition. If A = B, then

m(A,B) = 0 holds by definition. Otherwise there exist elements a ∈ A, b ∈ B, a 6= b, and

thus m(A,B) ≥ ‖a− b‖ > 0. This proves the identity of indiscernible elements.

To prove the validity of the triangle inequality, let A,B,C ∈ X be distinct. Let a ∈ A,

c ∈ C be points such that m(A,C) = ‖a− c‖. For any b ∈ B, it holds that

m(A,C) = ‖a− c‖ ≤ ‖a− b‖+ ‖b− c‖ ≤ m(A,B) +m(B,C),

using triangle inequality in (Rd, ‖·‖) and the definition of m. Now consider the cases where

at least two sets are equal. In case that A = C, the claim follows from the non-negativity

property m(A,C) = 0 ≤ m(A,B) +m(B,C). In case that A = B, we have

m(A,C) = 0 +m(A,C) ≤ m(A,B) +m(B,C).

The case B = C is analogous, since m(A,C) = m(A,C) + 0 ≤ m(A,B) +m(B,C).

To be able to apply the theory of convex analysis and optimization (cf. Section 2.2), we

first note that our function f is a convex function. To see this, note that the Euclidean
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norm is a convex function. Therefore the Euclidean distance to some fixed point is a convex

function since every translation of a convex function is convex. The maximum of convex

functions is a convex function and, finally, the sum of convex functions is again convex.

We prove this claim for completeness.

Lemma 6.7. The objective function f of the set median problem is convex.

Proof. Let x, y ∈ Rd, let λ1 ∈ [0, 1], λ2 = 1 − λ1, and let p∗i maximize ‖λ1x+ λ2y − pi‖
over all pi ∈ Pi. Then, we have

f(λ1x+ λ2y) =
N∑
i=1

max
pi∈Pi

‖λ1x+ λ2y − pi‖ =
N∑
i=1

∥∥∥∥∥∥λ1x+ λ2y − (λ1 + λ2)︸ ︷︷ ︸
=1

p∗i

∥∥∥∥∥∥
=

N∑
i=1

‖λ1(x− p∗i ) + λ2(y − p∗i )‖ ≤ λ1

N∑
i=1

‖x− p∗i ‖+ λ2

N∑
i=1

‖y − p∗i ‖

≤ λ1

N∑
i=1

max
pi∈Pi

‖x− pi‖+ λ2

N∑
i=1

max
pi∈Pi

‖y − pi‖ = λ1f(x) + λ2f(y),

as claimed.

In particular, the convexity of f implies that the subdifferential ∂f(c) is non-empty

for any center c ∈ Rd (cf. Lemma 2.17), and c is locally optimal if and only if 0 ∈ ∂f(c)

(cf. Lemma 2.18). Moreover, any local optimum is also globally optimal by convexity

(cf. Lemma 2.19). This implies that, if we find a (1 + ε)-approximation to a local minimum

of the convex function, the convexity implies that it is a (1 + ε)-approximation to the

global minimum as well.

Next preparatory step we make is to bound the Lipschitz constant of the function f by

N .

Lemma 6.8. The objective function f of the set median problem is N -Lipschitz continuous,

i.e., it holds that |f(x)− f(y)| ≤ N · ‖x− y‖ for all x, y ∈ Rd.

Proof. We fix any x, y ∈ Rd. Let p∗i ∈ argmaxpi∈Pi ‖x− pi‖. By the definition of f and

applying the triangle inequality (of m) to every single term we have

|f(x)− f(y)| =

∣∣∣∣∣
N∑
i=1

m(x, Pi)−
N∑
i=1

m(y, Pi)

∣∣∣∣∣ ≤
N∑
i=1

|m(x, Pi)−m(y, Pi)|

≤
N∑
i=1

m(x, y) = N · ‖x− y‖ .
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We may obtain a better bound if we limit the domain of f to a ball of small radius

centered at the optimal solution, but the Lipschitz constant cannot be bounded by o(N)

in general. Namely, in the proof of Lemma 6.8, all inequalities become equalities if both x

and y lie on the same half-axis, with |x| > |y|, and if all sets Pi, i ∈ [N ], are equal, each

containing exactly one point, say 0. We will see in the next subsection how we can remove

the dependence on N .

6.2.1 A subgradient descent method for the set median problem

We want to minimize f using the subgradient method, whose deterministic version we

sketched in Section 2.2. We can (for now) say that our convex set of potential solutions is

the whole set Rd. Remember that we need to start from a chosen point c0 ∈ Rd. We need

to choose the number of steps ` and the sequence of step sizes {hi}`i=0. Finally, we need to

know the value of R, that, in the deterministic model, was the distance from the starting

point to an optimal solution, in order for the method to converge.

Computing a subgradient at a given point

We will use the fixed step size hi = s, for all i. We choose the value of s, such that it fits our

needs. However, to apply this method we must first compute a subgradient g(ci) ∈ ∂f(ci)

at the current center ci. To this end we prove the following lemma, where we can define

that (ci − pj) / ‖ci − pj‖ = 0, whenever ci = pj .

Lemma 6.9. Let ci ∈ Rd be any center. For each set Pj ∈ P, let pj ∈ Pj be a point with

‖ci − pj‖ = m(ci, Pj). We have

g(ci) =

N∑
j=1

ci − pj
‖ci − pj‖

· 1ci 6=pj ∈ ∂f(ci), (6.3)

i.e., g(ci) is a valid subgradient of f at ci.

Proof. Let c∗ ∈ argminc∈Rd f(c). We first prove that for each term j ∈ [N ], it is〈
ci − pj
‖ci − pj‖

· 1ci 6=pj , ci − c
∗
〉
≥ m(ci, Pj)−m(c∗, Pj). (6.4)
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Assume ci = pj , then 〈0, ci − c∗〉 = 0 ≥ 0−m(c∗, Pj) = m(ci, Pj)−m(c∗, Pj). Otherwise,

let p∗j ∈ Pj be a point such that
∥∥∥c∗ − p∗j∥∥∥ = m(c∗, Pj). We have

〈ci − pj , ci − c∗〉
‖ci − pj‖

=
〈ci − pj , ci − pj + pj − c∗〉

‖ci − pj‖

=
〈ci − pj , ci − pj − (c∗ − pj)〉

‖ci − pj‖
=
〈ci − pj , ci − pj〉 − 〈ci − pj , c∗ − pj〉

‖ci − pj‖
(2.4)

≥ ‖ci − pj‖2 − ‖ci − pj‖ · ‖c∗ − pj‖
‖ci − pj‖

≥ ‖ci − pj‖ −
∥∥c∗ − p∗j∥∥ = m(ci, Pj)−m(c∗, Pj),

which follows by Cauchy-Schwarz inequality (Equation (2.4) in Lemma 2.4) and the choice

of p∗j , that gives ‖c∗ − pj‖ ≤
∥∥∥c∗ − p∗j∥∥∥. Therefore, Equation (6.4) is satisfied.

Now summing Equation (6.4) over all j ∈ [N ] we have〈
N∑
j=1

ci − pj
‖ci − pj‖

· 1ci 6=pj , ci − c
∗

〉
=

N∑
j=1

〈
ci − pj
‖ci − pj‖

· 1ci 6=pj , ci − c
∗
〉

(6.4)

≥
N∑
j=1

(m(ci, Pj)−m(c∗, Pj)) = f(ci)− f(c∗).

For brevity of presentation we omit the indicator function in any use of Lemma 6.9 in

the remainder of this chapter.

The exact subgradient computation takes O (dnN) time to calculate, since in each of the

N terms of the sum we maximize over |Pi| ≤ n distances in d dimensions, to find a point

in Pi that is farthest away from c. We are going to discuss the possibility of reducing the

dependence on n later in Subsection 6.2.2. For now, we focus on removing the dependence

on N . To this end we would like to replace the exact subgradient g(ci) by a uniform sample

of only one non-zero term, which points into the right direction in expectation. In that

case, a sampled subgradient could be computed in time O (dn). We formalize this in the

following lemma.

Lemma 6.10. Let ci ∈ Rd be any fixed center. For each set Pj ∈ P, let pj ∈ Pj be

a point with ‖ci − pj‖ = m(ci, Pj). Let g̃(ci) be a random vector, that takes the value

g̃(ci) = (ci − pj) / ‖ci − pj‖ for j ∈ [N ] with probability 1/N each. Then, E
[
‖g̃(ci)‖2

]
≤ 1

and E [g̃(ci)] = g(ci)/N , where g(ci) ∈ ∂f(ci) is the subgradient given in Lemma 6.9.
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Proof. The vector g̃(ci) is normalized by definition, except if an index j is chosen such

that ci = pj , in which case ‖g̃(ci)‖ = 0. Thus, E
[
‖g̃(ci)‖2

]
= E [‖g̃(ci)‖] ≤ 1 holds. We

have as well that

E [g̃(ci)] =
N∑
j=1

1

N
· ci − pj
‖ci − pj‖

=
1

N

N∑
j=1

ci − pj
‖ci − pj‖

(6.3)
=

g(ci)

N
,

using Lemma 6.9 (Equation (6.3)).

Probabilistic subgradient descent algorithm

We can now adapt the deterministic subgradient method from [148], that we have sketched

in Section 2.2, using the random unbiased subgradient of Lemma 6.10 in such way that

the result is in expectation a (1 + ε)-approximation to the optimal solution. This method

is presented in Algorithm 8. Given an initial center c0, a fixed step size s, and a number of

iterations `, Algorithm 8 iteratively picks a set Pj ∈ P uniformly at random and chooses a

point pj ∈ Pj that attains the maximum distance to the current center. This point is used

to compute an approximate subgradient using Lemma 6.10. The algorithm finally outputs

the best center found in all iterations.

Algorithm 8: Stochastic subgradient method

Data: A family of non-empty sets P = {P1, . . . , PN}, where Pi ⊂ Rd
Result: A center c̃ ∈ Rd

1 Determine an initial center c0

2 Fix a step size s
3 Fix the number of iterations `
4 for i← 1 to ` do
5 Choose an index j ∈ [N ] uniformly at random, and compute g̃(ci−1), cf.

Lemma 6.10
6 ci ← ci−1 − s · g̃(ci−1)

7 return c̃ ∈ argminc∈{ci : i∈{0,...,`}} f(c)

The following theorem bounds in expectation the quality of the output that our sub-

gradient algorithm returns. It is a probabilistic adaptation of Theorem 2.20, where the

subgradient descent algorithm was deterministic.

Theorem 6.11. Consider Algorithm 8 on input P = {P1, . . . , PN} for the set median

problem with objective function f , see Definition 6.1. Let an initial center c0, a step size
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s, and a number of iterations ` in Algorithm 8 be chosen. Let c∗ ∈ argminc∈Rd f(c). Let

R = ‖c0 − c∗‖. Then

Ec̃ [f(c̃)− f (c∗)] ≤ N · R
2 + (`+ 1)s2

2(`+ 1)s
, (6.5)

where the expectation is taken over the random variable c̃ ∈ argminc∈{ci : i∈{0,...,`}} f (c),

i.e., the output of Algorithm 8.

Proof. Assume that we have reached a center ci ∈ Rd while running Algorithm 8. Recall

from Lemma 6.10 that Eg̃
[
‖g̃(ci)‖2 | ci

]
≤ 1 and Eg̃ [g̃(ci) | ci] = g(ci)/N , since we assumed

to compute a subgradient in ci, and the expectation was taken over the randomness of g̃.

We have

Eg̃
[
‖ci+1 − c∗‖2 | ci

]
= Eg̃

[
‖ci − sg̃(ci)− c∗‖2 | ci

]
= Eg̃

[
‖ci − c∗‖2 + ‖sg̃(ci)‖2 − 2 〈sg̃(ci), ci − c∗〉 | ci

]
Using expected value over the choice of g̃, and the linearity of expectation, we further have

Eg̃
[
‖ci+1 − c∗‖2 | ci

]
≤ Eg̃

[
‖ci − c∗‖2 | ci

]
+ s2 − 2s 〈Eg̃ [g̃(ci) | ci] , ci − c∗〉

= Eg̃
[
‖ci − c∗‖2 | ci

]
+ s2 − 2s

N
〈g(ci), ci − c∗〉 .

The law of total expectation (cf. Lemma 2.23) implies, by taking expectations over ci on

both sides and rearranging, that

Eg̃
[
‖ci − c∗‖2

]
+ s2 ≥ Eg̃

[
‖ci+1 − c∗‖2

]
+

2s

N
Eci [〈g(ci), ci − c∗〉] . (6.6)

We sum Equation (6.6) for all values of i, i ∈ {0, . . . , `}, such that the terms Eg̃
[
‖ck − c∗‖2

]
for k ∈ {1, . . . , `} on both sides cancel. Since Eg̃

[
‖c0 − c∗‖2

]
= ‖c0 − c∗‖2, we obtain

‖c0 − c∗‖2 + (`+ 1)s2 ≥ Eg̃
[
‖c`+1 − c∗‖2

]
+

2s

N

∑̀
i=0

Eci [〈g(ci), ci − c∗〉] . (6.7)

Note that for any set Y of positive real-valued random variables Yi, we have (∀i : Yi ∈ Y)

minY ∈Y(Y ) ≤ Yi. This implies (∀i : Yi ∈ Y)E [minY ∈Y(Y )] ≤ E [Yi], and thus,

E
[
min
Y ∈Y

(Y )

]
≤ min

Y ∈Y
E [Y ] . (6.8)
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Now, we can continue the derivation from Equation (6.7), using the subgradient property

of g(ci) (cf. Equation (6.3)), Equation (6.8), and the fact that Eg̃
[
‖c`+1 − c∗‖2

]
≥ 0. We

obtain

‖c0 − c∗‖2 + (`+ 1)s2 ≥ 2s

N

∑̀
i=0

Eci [〈g(ci), ci − c∗〉]
(6.3)

≥ 2s

N

∑̀
i=0

Eci [f (ci)− f (c∗)]

≥ 2s

N
(`+ 1) · min

i∈{0,...,`}
Eci [f (ci)− f (c∗)]

(6.8)

≥ 2s(`+ 1)

N
· Eci

[
min

i∈{0,...,`}
(f (ci)− f (c∗))

]
.

The output of Algorithm 8 is c̃, which is the point in {ci : i = 0, . . . , `} that minimizes

f (ci). Rearranging the latter equation and substituting R = ‖c0 − c∗‖, yields

Ec̃ [f (c̃)− f (c∗)] = Eci
[

min
i∈{0,...,`}

f (ci)− f (c∗)

]
≤ N · R

2 + (`+ 1)s2

2(`+ 1)s
.

This closes the proof of the theorem.

Our aim now is to choose the parameters `, s, and c0 of Algorithm 8 in such a way that

the bound given in Theorem 6.11 becomes at most εf(c∗), thus giving a guarantee that the

center c̃ we found by Algorithm 8 is a (1 + ε)-approximation to the set median problem.

We discuss separately how to do so for each of the parameters.

Choosing a starting point

Lemma 6.12 shows that we can choose the initial center c0, and bound its initial distance

R = ‖c0 − c∗‖ to the optimal solution proportional to the average cost O (f(c∗)/N) with

constant probability using a simple Markov argument.

Lemma 6.12. Choose a set P from P = {P1, . . . , PN} uniformly at random and let c0 be

an arbitrary point of P . Then, for any constant 0 < γ1 < 1 it holds that R = ‖c0 − c∗‖ ≤
f(c∗)/(γ1N) with probability at least 1− γ1.

Proof. Define the random variable X = m(c∗, P ). We have X ≥ 0 from Lemma 6.6. Its

expectation equals

E [X] =

N∑
i=1

Pr [P = Pi] ·m(c∗, Pi) =

N∑
i=1

1

N
·m(c∗, Pi) =

f(c∗)

N
.
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Thus, by Markov’s inequality (cf. Lemma 2.26), we have

Pr

[
X >

f(c∗)

γ1N

]
≤ γ1.

Now choose an arbitrary c0 ∈ P . We have R = ‖c0 − c∗‖ ≤ m(c∗, P ) ≤ f(c∗)/(γ1N) with

probability at least 1− γ1.

Choosing the step size and the number of iterations

To guess properly the values of the step size s, and the number of iterations `, we assume

that we know the value of R. Then, we can set the step size to s = R/
√
`+ 1. Theorem 6.11

(Equation (6.5)) and Lemma 6.12 imply that for some constant C

Ec̃ [f(c̃)− f (c∗)]
(6.5)

≤ NR√
`+ 1

≤ N√
`+ 1

· f (c∗)

γ1N
≤ Cf(c∗)√

`+ 1

holds with constant probability. Thus, we only need to run the algorithm for ` ∈ O
(
1/ε2

)
iterations to get Ec̃ [f(c̃)− f (c∗)] within εf(c∗) error. But choosing this particular step size

requires knowing the optimal center in advance. To get around this, we attempt to estimate

the average cost. More formally, we are interested in a constant factor approximation of

f(c∗)/N . It turns out that we can do this based on a small sample of the input sets, unless

our initial center is already a good approximation. But in the latter case we do not care

about all the subsequent steps or step sizes, since we have already found a good center after

the initialization. The proof technique is originally from Kumar, Sabharwal and Sen [126]

(cf. their Theorem 5.4), and is adapted here to work in our setting with sets of points.

Lemma 6.13. There exists an algorithm that, based on a sample S ⊆ P of size |S| = 1/ε,

returns an estimate R̃ and an initial center c0 in time O(dn/ε), such that, with constant

probability, one of the following holds:

a) ε · f(c∗)/N ≤ R̃ ≤
(
2/ε3

)
· f(c∗)/N and ‖c0 − c∗‖ ≤ 8 · f(c∗)/N ;

b) ‖c0 − c∗‖ ≤ 4ε · f(c∗)/N .

Proof. Let Θ = f(c∗)/N be the value we want to approximate. Let c0 be the initial center

chosen as described in Lemma 6.12 with absolute constant γ1 = 1/8 ≥ 1/81 > ε2. Consider

the two balls B1(c0, εΘ) and B2(c∗,
(
1/ε2

)
Θ). Then ‖c0 − c∗‖ ≤ 8Θ holds with constant

probability 1− γ1, and thus c0 ∈ B2, since 8 < 1/ε2.

Let Q consist of all sets of P that are fully contained in B2. We have

|Q| ≥ (1− ε2)N, (6.9)
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since otherwise f(c∗) ≥
∑

P∈P\Qm(c∗, P ) >
(
ε2N

)
·
(
Θ/ε2

)
= f(c∗).

Now, sample a collection S of 1/ε sets, each uniformly from P. All of our samples

are completely contained in the ball B2 with constant probability. By a union bound

inequality (cf. Lemma 2.25) over the elements of S, the probability that this fails is at

most γ2 ≤ ε2 · 1/ε = ε < 1/8.

Let R̃ =
∑

P∈S m(c0, P ) be our estimate. We can compute R̃ in time O (dn/ε), since for

all P ∈ S, it is |P | ≤ n. We need to show that R̃ is close to the average cost Θ as we have

claimed. To this end, consider the following two cases:

At most (1− 2ε)|Q| sets of Q are completely contained in B1: In this case we have a

constant probability 1 − γ3, for γ3 < 2ε < 2/8, that there is a set Q ∈ Q ∩ S that

contains some point q ∈ Q that lies outside B1. Therefore, we have

R̃ ≥ m(c0, Q) ≥ ‖c0 − q‖ ≥ εΘ. (6.10)

For the upper bound, note that the diameter of B2 is 2Θ/ε2. Since all our samples

are contained in that ball, we have

R̃ =
∑
P∈S

m(c0, P ) ≤ |S| · 2Θ

ε2
=

2Θ

ε3
. (6.11)

Equations (6.10) and (6.11) imply that the claim a) holds.

At least (1− 2ε)|Q| sets of Q are completely contained in B1: Suppose the second item

b) does not hold, i.e. we have R = ‖c0 − c∗‖ > 4εΘ. We can bound the number

of sets that are not fully contained in B1 (thus, either not in Q, or in Q but not

contained in B1) by

|P \ Q|+ 2ε|Q|
(6.9)

≤ ε2N + 2εN ≤ 3εN. (6.12)

Let B = {P ∈ P : P ⊆ B1} be the remaining family of sets in P that are fully

contained in B1. Equation (6.12) implies that |B| ≥ (1− 3ε)N .

Now we compare the cost of using the center c0 to the optimal cost. For every P ∈ P
we have |m(c∗, P )−m(c0, P )| ≤ ‖c0 − c∗‖ by the triangle inequality. This inequality

implies, that for each P ∈ B it holds that m(c∗, P ) − m(c0, P ) ≥ (‖c0 − c∗‖ −
εΘ) −m(c0, P ) ≥ ‖c0 − c∗‖ − 2εΘ. So using the assumption ‖c0 − c∗‖ > 4εΘ, and

0 < ε < 1/9 we can deduce
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f(c∗)− f(c0) =
∑
P∈B

(m(c∗, P )−m(c0, P )) +
∑

P∈P\B

(m(c∗, P )−m(c0, P ))

≥ |B|(‖c0 − c∗‖ − 2εΘ)− (N − |B|) ‖c0 − c∗‖

= 2|B| · (‖c0 − c∗‖ − εΘ)−N · ‖c0 − c∗‖

≥ 2N · (1− 3ε) · (‖c0 − c∗‖ − εΘ)−N · ‖c0 − c∗‖

= N · [‖c0 − c∗‖ · (1− 6ε)− εΘ · (2− 6ε)]

> N · [4εΘ · (1− 6ε)− εΘ · (2− 6ε)] = 2εΘN (1− 9ε) > 0.

This contradicts the optimality of c∗. Thus, claim b) holds in this case.

Lemma 6.13 has the following consequence. Either the initial center c0 is already a

(1 + 4ε)-approximation, in which case we are done, or we are close enough to an optimal

solution, and we have a good estimate of the step size to find a (1 + 4ε)-approximation in

a constant number of iterations. This will be formally stated in the proof of Theorem 6.15.

Deciding the best found approximation center

Another issue that we need to take care of, is finding the best center in the last line

of Algorithm 8 efficiently. We cannot do this exactly since evaluating the cost even for

one single center takes time O(dnN). However, we can find a point that is a (1 + ε)-

approximation of the best center in a finite set of candidate centers using a result from the

theory of discrete metric spaces.

To this end we can apply our next theorem, which is originally from Indyk and Thorup.

It was published in the dissertation of Indyk [110], as Theorem 31, and in the paper by

Thorup in [168], as Theorem 34. We adapt it here to work in our setting. The main

difference is that in the original work the set of input points and the set of candidate

solutions are identical. In our setting, however, we have that the collection of input sets

and the set of candidate solutions may be completely distinct, and our distance measure is

the modified maximum distance, shown to be a metric in Lemma 6.6.

Theorem 6.14. Let Q be a set of uniform samples with repetition from P. Let C be a

set of candidate solutions. Let a ∈ C minimize
∑

Q∈Qm(a,Q), and let ĉ = argminc∈C f(c).

Then

Pr

[∑
P∈P

m (a, P )> (1 + ε)
∑
P∈P

m (ĉ, P )

]
≤ |C| · e−ε2|Q|/64. (6.13)
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Proof. Let b be an arbitrary center in C with∑
P∈P

m(b, P ) > (1 + ε)
∑
P∈P

m(ĉ, P ). (6.14)

If there is no such center then all centers are good approximations, in which case the

theorem is trivial. There are at most |C| choices for b. We study the random variable

X =
∑
Q∈Q

m(b,Q)−m(ĉ, Q) +m(ĉ, b)

2m(ĉ, b)
=
∑
Q∈Q

h(Q), (6.15)

where m(ĉ, b) = ‖ĉ− b‖, and h(Q) denote the summands of Equation (6.15). Since m is a

metric, by triangle inequality it holds that X is the sum of random variables between 0

and 1. The bad event is X ≤ |Q|/2.

If we denote by 1Q∈Q the indicator function thatQ ∈ Q, then we haveX =
∑

Q∈Q h(Q) =∑
Q∈P h(Q) · 1Q∈Q. It holds that

E [X] =
∑
Q∈P

E [h(Q) · 1Q∈Q] =
∑
Q∈P

(
1Q∈Q ·

|Q|
|P|
· h(Q)

)
=
|Q|
|P|

∑
Q∈P

h(Q). (6.16)

Equation (6.14) and the triangle inequality for any set Q ∈ P : m(ĉ, Q) +m(b,Q) ≥ m(ĉ, b),

imply that

(2 + ε)
∑
Q∈P

m(b,Q) =
∑
Q∈P

m(b,Q) + (1 + ε)
∑
Q∈P

m(b,Q)

(6.14)
> (1 + ε)

∑
Q∈P

m(ĉ, Q) + (1 + ε)
∑
Q∈P

m(b,Q) ≥ (1 + ε)
∑
Q∈P

m(ĉ, b).

Furthemore, using Equation (6.14) once again, it holds that,

∑
Q∈P

(m(b,Q)−m(ĉ, Q))
(6.14)
>

ε

1 + ε

∑
Q∈P

m (b,Q)>
ε

2 + ε

∑
Q∈P

m(ĉ, b). (6.17)

It follows that

E [X]
(6.16)

=
|Q|
|P|

∑
Q∈P

h(Q)
(6.15)

=
|Q|
|P|

∑
Q∈P

(
m(b,Q)−m(ĉ, Q)

2m(ĉ, b)
+

1

2

)
(6.17)
>
|Q|
2|P|

∑
Q∈P

(
ε

2 + ε
+ 1

)
,
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and the bad event is bounded by

|Q|
2

< E [X] · 2 + ε

2 + 2ε
= E [X] ·

(
1− ε

2 + 2ε

)
= E [X] · (1− η) , (6.18)

where η = ε/ (2 + 2ε), and η ≥ ε/4 holds since ε < 1. Using the Chernoff bound (cf.

Lemma 2.27) we have that

Pr

[
X ≤ |Q|

2

]
(6.18)

≤ Pr [X < (1− η) · E [X]]
(2.20)
< e−η

2E[X]/2 ≤ e−ε2|Q|/64, (6.19)

since η ≥ ε/4 and η2/(1− η) ≥ ε2/16. Transforming X in Equation (6.19) we have

Pr

∑
Q∈Q

m(b,Q) ≤
∑
Q∈Q

m(ĉ, Q)

 < e−ε
2|Q|/64. (6.20)

Defining the set of bad centers B = {b ∈ C :
∑

P∈P m(b, P ) > (1 + ε)
∑

P∈P m(ĉ, P )}, we

finally have, using the union bound inequality over all bad centers, that

Pr

∀b ∈ C,∑
P∈P

m(b, P ) > (1 + ε)
∑
P∈P

m(ĉ, P ) :
∑
Q∈Q

m(b,Q) >
∑
Q∈Q

m(ĉ, Q)


= 1−Pr

∃b ∈ C,∑
P∈P

m(b, P ) > (1 + ε)
∑
P∈P

m(ĉ, P ) :
∑
Q∈Q

m(b,Q) ≤
∑
Q∈Q

m(ĉ, Q)


≥ 1−

∑
b∈B

Pr

∑
Q∈Q

m(b,Q) ≤
∑
Q∈Q

m(ĉ, Q)

 (6.20)

≥ 1− |B| · e−ε2|Q|/64 ≥ 1− |C| · e−ε2|Q|/64.

Then it holds in particular for a ∈ C, that with probability at least 1− |C| exp(−ε2|Q|/64),

it is (∑
P∈P

m(a, P ) > (1 + ε)
∑
P∈P

m(ĉ, P )

)
⇒

∑
Q∈Q

m(a,Q) >
∑
Q∈Q

m(ĉ, Q)

 . (6.21)

But it holds that
∑

Q∈Qm(a,Q) ≤
∑

Q∈Qm(ĉ, Q) by optimality of a, so the contrapositive

of Equation (6.21) yields that

Pr

[∑
P∈P

m(a, P ) ≤ (1 + ε)
∑
P∈P

m(ĉ, P )

]
≥ 1− |C| · e−ε2|Q|/64.

This closes the proof of the theorem.
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A (1 + ε)-approximation to the set median

Putting all pieces we developed in this section together, we obtain the following theorem,

that is the main result on the set median problem – a (1 + ε)-approximation algorithm to

the set median problem.

Theorem 6.15. Consider an input P = {P1, . . . , PN}, where for every i ∈ [N ] we have

Pi ⊂ Rd and n = max{|Pi| : i ∈ [N ]}. There exists an algorithm that computes a center c̃

that is with constant probability a (1 + ε)-approximation to the optimal solution c∗ of the

set median problem. Its running time is O
(
(dn/ε4) · log2(1/ε)

)
.

Proof. Set ` = (68/ε)2. Using Lemma 6.13, we distinguish the two possible cases.

(i) If our initial center c0 satisfies ‖c0 − c∗‖ ≤ 4εf(c∗)/N , then Lemma 6.8 yields

f(c0) ≤ f(c∗) +N ‖c0 − c∗‖ ≤ (1 + 4ε)f(c∗),

so the starting point is already a good center.

(ii) Otherwise, we have ε·f(c∗)/N ≤ R̃ ≤
(
2/ε3

)
·f(c∗)/N and R = ‖c0 − c∗‖ ≤ 8·f(c∗)/N

by Lemma 6.13. Thus, ε3R̃/2 ≤ f(c∗)/N ≤ R̃/ε. To improve this, we run the main

loop of Algorithm 8 for the step sizes s = R̃j/
√
`+ 1, where R̃j = 2j−1 · ε3R̃

for all values of 0 ≤ j ≤ dlog(2/ε4)e. For some particular value of j we have a

2-approximation given by

f(c∗)

N
≤ R̃j ≤ 2 · f(c∗)

N
. (6.22)

In this particular run, setting the step size s = R̃j/
√
`+ 1, and incorporating it into

the bound given in Theorem 6.11 (Equation (6.5)), we have that

Ec̃ [f(c̃)− f (c∗)]
(6.5)

≤ N · R
2 + (`+ 1)s2

2(`+ 1)s
≤ N ·

R2 + R̃2
j

2
√
`+ 1R̃j

(6.22)

≤ 82 + 22

2
√
`+ 1

f(c∗)

≤ ε

2
f(c∗).

Using Markov’s inequality (cf. Lemma 2.26) we have that

Pr [f(c̃)− f(c∗) ≥ 4εf(c∗)] ≤ εf(c∗)

2
· 1

4εf(c∗)
=

1

8
= γ4.

The best center collected in all repetitions cannot be worse than this particular c̃ or

c0, see the cases of Lemma 6.13.
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Finally we have a collection C of |C| ∈ O
(
(1/ε2) · log(1/ε)

)
centers, and want to find

one of them that is a (1 + ε)-approximation for the best center in C using Theorem 6.14.

We sample a collection of (64/ε2) · ln(8|C|) ∈ O
(
(1/ε2) · log(1/ε)

)
point sets from P, and

find the best center for this subset of points, which is the final output of our algorithm.

By Theorem 6.14 this center is within another factor of (1 + ε) to the best in C with

failure probability at most γ5 ≤ 1/8. The total approximation factor is thus at most

(1 + 4ε)(1 + ε) ≤ 1 + 9ε. Rescaling ε yields the correctness. The total failure probability

is at most γ =
∑5

i=1 γi ≤ 6/8 by the union bound inequality, over all bad events in

Lemma 6.13 and this theorem.

It remains to prove the running time of the algorithm. The initial center c0 and the

estimate R̃ can be computed in O (dn/ε) time, see Lemma 6.13. The main loop of

Algorithm 8 takes O (dn) in each iteration, and runs for ` ∈ O
(
1/ε2

)
iterations for a fixed

step size. But we try O (log(1/ε)) different step sizes. This makes up a running time of

O
(
(dn/ε2) · log(1/ε)

)
. Finally, we evaluate the objective function for O

(
(1/ε2) · log(1/ε)

)
centers for the sample of O

(
(1/ε2) · log(1/ε)

)
sets taken using Theorem 6.14. This can

be done in time O
(
(dn/ε4) · log2(1/ε)

)
, which dominates the running time of the whole

algorithm. This closes the proof of the theorem.

6.2.2 Reducing the dependence on the size of the input sets

To read the whole input we need the linear dependence on the size n of the input set. But,

is it possible to perform afterwards the maximum distance computations on some smaller

sketch set, whose size would be sublinear in n? If yes, we could explore the extension

of the work of Munteanu, Sohler and Feldman [145] into the streaming setting, where

after reading the input once in linear time, the subsequent computations were sublinear,

even independent of n in the running time. To this end, a grid-based strong coreset of

size 1/εΘ(d) was used. However, here we focus on reducing the dependence on d, and an

exponential dependence is not an option if we want to work in high dimensions. It turns

out that, without introducing an exponential dependence on d, we would have to lose a

constant approximation factor.

Pagh et al. [149] showed that any data structure that stores a subset of the input,

and that approximates farthest neighbor queries to within less than a factor
√

2, must

consist of min{n, exp(Ω(d))} points. Previously, Agarwal and Sharathkumar [9] carefully

constructed an input point set of Ω
(
exp(d1/3)}

)
points in Rd, to prove the lower bounds

on streaming algorithms for several extent problems. Among the problems they considered

is approximate farthest neighbor, with the lower bound on approximation factor of roughly
√

2.
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In Theorem 6.16, we review the techniques of Agarwal and Sharathkumar [9] to show a

slightly stronger result, namely: no small data structure can exist for answering maximum

distance queries within a factor of less than roughly
√

2. In comparison to the cited results,

Theorem 6.16 is not limited to the streaming setting (as in [9]), and it is not restricted to

subsets of the input (as it is the case in [149]).

In Theorem 6.16, we reduce from the indexing problem, that is, Alice is given a vector

a ∈ {0, 1}n and a random coin. She sends a single message to Bob. Bob has an index

i ∈ [n] and a random coin. Bob has to, based on the message from Alice, guess the value

of the i-th bit of a, denoted ai, with probability at least 2/3. The indexing problem is

known to have Θ (n) one-way randomized communication complexity, i.e. the length of

any message from Alice that helps Bob to guess ai is linear in n. This result is stated in

the paper of Kremer, Nisan and Ron [124], as Theorem 3.7.

Theorem 6.16. Any data structure that, with probability at least 2/3, α-approximates

maximum distance queries on a set S ⊂ Rd of size |S| = n, for α <
√

2
(
1− 2/d1/3

)
,

requires Ω
(
min{n, exp

(
d1/3

)
}
)

bits of storage.

Proof. We show that if there would be a value α <
√

2
(
1− 2/d1/3

)
, such that an α-

approximation to the maximum distance query would be possible while keeping less than

Ω
(
min{n, exp

(
d1/3

)
}
)

bits of storage, then we would be able to solve the indexing problem

with less than Ω(n) communicated bits, a contradiction.

It is known from [9] that there is a centrally symmetric point set K of size Ω
(
exp

(
d1/3

))
on the unit hypersphere in Rd centered at the origin, such that for any pair of distinct

points p, q ∈ K it holds that

√
2
(

1− 2/d1/3
)
≤ ‖p− q‖ ≤

√
2
(

1 + 2/d1/3
)

(6.23)

unless p 6= −q, in which case ‖p− q‖ = 2.

Let d be the smallest integer such that d ≥ 8 and n ≤ exp
(
d1/3

)
. We choose a set

of exp
(
d1/3

)
pairs of centrally symmetric points of K. We may assume that there is a

lexicographic order of these pairs, so there is a mapping between the indices of a and the

pairs of points of K, that is known to both Alice and Bob. Alice constructs the set S by

including the first point of the i-th pair, denoted pi, if and only if ai = 1. She builds a

data structure ΣS which she sends to Bob.

Let the data structure be such that for any x ∈ Rd, the answer to a query ΣS(x) satisfies

m(x, S)

α
≤ ΣS(x) ≤ m(x, S),
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for some constant 1 < α <
√

2
(
1− 2/d1/3

)
. We consider two cases:

(i) If ai = 1, then pi is included in S. Thus ΣS (−pi) ≥ m (−pi, S) /α = 2/α. Since

α <
√

2
(
1− 2/d1/3

)
and d ≥ 8, it holds that

ΣS (−pi) ≥
√

2 · 1 + 2/d1/3

1− 4/d2/3
>
√

2
(

1 + 2/d1/3
)
.

(ii) if ai = 0, then pi /∈ S, and thus, ΣS (−pi) ≤ m (−pi, S)
(6.23)

≤
√

2
(
1 + 2/d1/3

)
.

Therefore, if α <
√

2
(
1− 2/d1/3

)
Bob could, based on ΣS , solve the indexing problem by

querying qi = −pi. Consequently, any encoding of ΣS uses Ω
(
min{n, exp

(
d1/3

)
}
)

bits of

space.

On the positive side, it was shown by Goel, Indyk and Varadarajan [87], that a
√

2-

approximate farthest neighbor to the point c ∈ Rd can always be found on the surface of

the smallest enclosing ball of each set Pi, using linear preprocessing time Õ(dn) and Õ(d2)

query time. Thus, if we plug in the (weak) coresets of Bădoiu and Clarkson [20, 21] for the

1-center clustering problem (cf. Definition 2.29), of size O (1/ε) instead of the entire sets

Pi ∈ P to evaluate m(c, Pi), we would have a sublinear time algorithm (in n) after reading

the input, using a
√

2 (1 + ε)-approximation to any query m(c, Pi).

In a streaming setting the same
√

2 (1 + ε)-approximation to any query m(c, Pi) can be

achieved using the blurred-ball-cover of Agarwal and Sharathkumar [9]. They defined a

blurred-ball-cover to be (intuitively) a sequence of subsets Ki of the input set, each of

the size O (1/ε), such that the radii of the smallest enclosing balls of Ki are increasing.

Each of these balls covers its predecessors, and all balls together cover the input set. Their

data structure has size O
(
(d/ε3) · log(1/ε)

)
, and answers a farthest neighbor query in time

O
(
(d/ε3) · log(1/ε)

)
.

There exists a (1+ε)-approximation to the farthest neighbor query, but at the cost of the

running time. Goel, Indyk and Varadarajan [87] have shown that using O
(
dn1+1/(1+ε)

)
preprocessing time and Õ(dn1/(1+ε)) query time, one can obtain a (1 + ε)-approximation

for the farthest neighbor problem. Note that in this case, the preprocessing time is already

superlinear in n, and in particular, the exponent is already larger than 1.7 for 1 + ε <
√

2.
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6.3 Applications of the set median problem

6.3.1 Probabilistic smallest enclosing ball

In this section, we apply our result on the set median problem (Theorem 6.15) to the

probabilistic smallest enclosing ball problem. We adapt the framework of Algorithm 7,

and obtain Algorithm 9. Depending on the two cases we discussed in Subsection 6.1.4, we

sample a number of elements, non-empty locations or non-empty realizations, and solve

the resulting set median problem using the samples in Theorem 6.15 for computing the

approximate subgradients.

Algorithm 9 differs from Algorithm 7 mainly in three points. First, the number of

samples in line 2 of Algorithm 7 had a dependence on d, that was hidden in the O-notation

in the algorithm published in [145]. This is not the case in Algorithm 9. Second, the

sampled realizations are not sketched using coresets of size O
(
1/εd

)
any more (used in

line 8 of Algorithm 7). Third, the running time of the actual optimization task (in lines 5

and 8 of Algorithm 7) is reduced using Theorem 6.15 instead of an exhaustive grid search

over 1/εΘ(d) grid points.

Algorithm 9: Probabilistic smallest enclosing ball

Data: A set D of n point distributions over z locations in Rd, a parameter
0 < ε < 1/9

Result: A center ĉ ∈ Rd
1 Q← {qi,j : qi,j 6= ⊥, i ∈ [n], j ∈ [z]} /* the set of non-empty locations */
2 Set a sample size k ∈ O

(
(1/ε2) · log(1/ε)

)
3 if

∑
qi,j∈Q pi,j ≤ ε then

4 - Pick a random sample R of k locations from P = Q, where for every r ∈ R we
have r = qij with probability proportional to pij

5 - Compute ĉ ∈ Rd that is a (1 + ε)-approximation using the sampled points R
one-by-one for computing the approximate subgradients in the algorithm of
Theorem 6.15

6 else
7 - Sample a set R of k non-empty realizations from the input distributions D
8 - Compute ĉ ∈ Rd that is a (1 + ε)-approximation using the sampled realizations

R one-by-one for computing the approximate subgradients in the algorithm of
Theorem 6.15

9 return ĉ

In all previously discussed problems in this thesis, where the sampling was required,

the uniform random sampling sufficed and was used. The samples in Algorithm 9 are

picked with probabilities proportional to pi,j , and thus, are not necessarily pairwise equal.
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The solution for this issue is provided by using a weighted reservoir sampler, described

by Efraimidis [74], and based on the previous work of Chao [52]. It enables sampling of

k items from a (possibly initially unknown) weighted population, and is compatible for

the streaming setting as well. For the weighted sampling of k items we run k concurrent

independent instances, each to sample one item (cf. [74] Section 4). To sample one location

from the set of non-empty locations, or to sample one realization requires time at most

O (dnz).

Next theorem states the quality of Algorithm 9, and is the main result of Subsection 6.3.1.

Theorem 6.17. Let D be a set of n discrete distributions, where each distribution is

defined over z locations in Rd ∪ {⊥}. Let c̃ ∈ Rd denote the output of Algorithm 9 on input

D, and let the approximation parameter be 0 < ε < 1/9. Then, with constant probability,

the output is a (1 + ε)-approximation for the probabilistic smallest enclosing ball problem,

i.e., it holds that

EX [m(c̃, X)] ≤ (1 + ε) min
c∈Rd

EX [m(c,X)] .

The running time of Algorithm 9 is O
(
dn ·

(
(z/ε3) · log(1/ε) + (1/ε4) · log2(1/ε)

))
.

Proof. The correctness of the algorithm follows from the correctness of Algorithm 7,

shown by Theorem 6.5, and replacing the grid search by the subgradient algorithm from

Theorem 6.15. It remains to analyze the running time.

In the first case we go through all input distributions and use k independent copies of

a weighted reservoir sampler of Efraimidis [74], to get the k samples (of locations). This

takes O (dnz · k) ⊆ O
(
(dnz/ε2) · log(1/ε)

)
time. The subsampled problem is then solved

using Theorem 6.15 with n = 1, in time O
(
(d/ε4) · log2(1/ε)

)
, with failure probability at

most γ =
∑5

i=1 γi ≤ 6/8 (the failure probability of Theorem 6.15).

In the second case, each realization can be sampled in time O(dnz), but the probability

pP 6=∅ that a realization P is non-empty can only be lower bounded by ε. We define k

random variables Yi. Let Y1 contain the number of realizations we need to sample in order

to get the first non-empty realization, what we consider as success. Analogously, let Yi,

2 ≤ i ≤ k, contain the number of samples needed to get the first non-empty realization

after the (i − 1)-th non-empty sampled realization. Each Yi is independent geometric

random variable (cf. Definition 2.24), whose success probability is pP 6=∅ ≥ ε. Then, using

Equation (2.18), we have that the expected number of samples that we need to take in

order to have k non-empty realizations is

E

[
k∑
i=1

Yi

]
=

k∑
i=1

E [Yi] =
k∑
i=1

1

pP 6=∅
≤ k

ε
. (6.24)
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Thus, by an application of Markov’s inequality (Lemma 2.26), the probability that we need

more than 8k/ε ∈ O
(
(1/ε3) · log(1/ε)

)
trials to have k non-empty realizations is bounded

by

Pr

[
k∑
i=1

Yi ≥ 8
k

ε

]
≤

E
[∑k

i=1 Yi

]
8kε

(6.24)

≤ 1

8
= γ6. (6.25)

We can assume with constant probability that this step succeeds in O
((
dnz/ε3

)
· log(1/ε)

)
time. The subsampled problem is then solved using Theorem 6.15 in O

((
dn/ε4

)
· log2(1/ε)

)
time. The failure probability in the second case is at most γ =

∑6
i=1 γi ≤ 7/8.

Comparing the result of Theorem 6.17 to the result of Theorem 6.5, the running time

is reduced from O
(
dnz/εO(1) + 1/εO(d)

)
to O(dnz/εO(1)), i.e., our dependence on the

dimension d is no longer exponential but only linear. Note, in particular, that the factor of

d plays a role only in computations of distances between two points in Rd. Further, the

sample size and the number of centers that need to be evaluated do not depend on the

dimension d any more. This will be crucial in the next application.

6.3.2 Probabilistic support vector data description

In this subsection we want to show how to find a (1 + ε)-approximation for the pSVDD

problem (cf. Definition 6.4). Explicitly computing any center c ∈ H takes Ω(D) time

and space which is prohibitive not only when D =∞. Note that for the SEB and SVDD

problems, any reasonable center lies in the convex hull (cf. Equation (2.8)) of the input

points. Since taking the expectation is simply another linear combination over such centers,

we can express any center c ∈ H as a linear combination of the elements of the set Q of

non-empty locations, i.e.,

c =
∑

qu,v∈Q
λu,vφ(qu,v). (6.26)

The idea is to exploit the characterization of Equation (6.26) to simulate Algorithm 8,

and thereby Algorithm 9, to work in the feature space H by computing the centers and

distances only implicitly.

For now, assume that any distance computation can be determined. Note that sampling a

set Pi ⊂ Rd is the same as sampling the set φ(Pi) of corresponding points inH from the same

distribution. We assume that we have a set of locations or realizations P = {P1, . . . , PN},
with Pi ⊂ Rd. The remaining steps are passed to Theorem 6.15, which is based on

Algorithm 8. First, we show the following invariant.
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Lemma 6.18. Each center ci, i ∈ {0, 1, 2, . . .}, reached during the calls to Algorithm 8,

can be updated such that a linear combination ci =
∑

u,v λu,vφ(qu,v) is maintained, where

at most i+ 1 terms have λu,v 6= 0.

Proof. We prove the lemma by induction over i.

• The initial center c0 ∈ H is chosen by sampling uniformly at random a set P ∈ P
using Lemma 6.12. We take any point q ∈ P , q 6= ⊥, which maps to c0 = φ(q). Thus

the invariant is satisfied at the beginning, where the corresponding coefficient is λ = 1

and all other coefficients are zero.

• In each iteration we randomly sample a set P ∈ P to simulate the approximate

subgradient g̃ (ci) at the current point ci. The vector g̃ (ci) is a vector between ci and

some point pj,k = φ(qj,k) ∈ H, such that qj,k maximizes ‖ci − φ(q′)‖ over all q′ ∈ P
(cf. Lemma 6.10).

To implicitly update to the next center ci+1 note that (cf. Algorithm 8)

ci+1 = ci − s ·
ci − φ(qj,k)

‖ci − φ(qj,k)‖
=

(
1− s

‖ci − φ(qj,k)‖

)
· ci +

s

‖ci − φ(qj,k)‖
· φ(qj,k).

Assume the invariant was valid, that ci was represented as ci =
∑

u,v λu,vφ(qu,v) with

at most i+ 1 non-zero coefficients. Then it also holds for the point ci+1, since the

previous non-zero coefficients of φ(qu,v) are multiplied by 1− s/ ‖ci − φ(qj,k)‖ and

the newly added φ(qj,k) is assigned the coefficient s/ ‖ci − φ(qj,k)‖. So there are at

most i+ 2 non-zero coefficients.

Lemma 6.18 implies that we do not have to store the points ci explicitly while performing

Algorithm 8. The implicit representation can be maintained using a list that stores points

that appear in the approximate subgradients and their corresponding non-zero coefficients.

To actually compute the coefficients, we need to be able to compute Euclidean distances

as well as determine s. Using Lemma 6.13 we determined the step size s using an estimator

R̃ =
∑

P∈S m(c0, P ) based on a small sample S. In particular, this requires distance

computations again. To this end, we show how to compute ‖ci − φ(q)‖ for any location

q ∈ Rd. Recall that the kernel function implicitly defines the inner product in H. Therefore,

it holds that
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‖ci − φ(q)‖2 =

∥∥∥∥∥∑
u,v

λu,vφ(qu,v)− φ(q)

∥∥∥∥∥
2

=

∥∥∥∥∥
i∑

w=0

λwφ(qw)− φ(q)

∥∥∥∥∥
2

=

∥∥∥∥∥
i∑

w=0

λwφ(qw)

∥∥∥∥∥
2

+ ‖φ(q)‖2 − 2
i∑

w=0

λw 〈φ(qw), φ(q)〉

=

i∑
w=0

i∑
w′=0

λwλw′K(qw, qw′) +K(q, q)− 2

i∑
w=0

λwK(qw, q), (6.27)

where w,w′ ∈ {0, . . . , i} index the locations qw, qw′ with corresponding λw, λw′ 6= 0 in

iteration i. Therefore, we have the following theorem.

Theorem 6.19. Let D be a set of n discrete distributions, where each distribution is

defined over z locations in Rd ∪ {⊥}. There exists an algorithm that implicitly computes

c̃ ∈ H that with constant probability is a (1 + ε)-approximation for the probabilistic support

vector data description problem, i.e., it holds that

EX [m(c̃, φ(X))] ≤ (1 + ε) min
c∈H

EX [m(c, φ(X))] ,

where the expectation is taken over the randomness of X ∼ D. The running time of the

algorithm is O
(
dn ·

((
z/ε3

)
· log(1/ε) +

(
1/ε8

)
· log2(1/ε)

))
.

Proof. With the described adaptations by Lemma 6.18 and Equation (6.27), the correctness

of the algorithm follows from Theorem 6.17.

The running time increases by a factor that is imposed by the simulation of the distance

computations within Algorithm 8. Note that by the invariant there are at most i + 1

non-zero coefficients in the i-th step. Equation (6.27) can thus be evaluated in time O
(
i2d
)
,

assuming K can be evaluated in time O (d). We conclude:

• The sampling part of Algorithm 9 does not change, and runs inO
((
dnz/ε3

)
· log(1/ε)

)
time.

• Estimating R̃ =
∑

P∈S m(c0, P ) takes time O (dn/ε), since i = 0, |S| = O (1/ε), and

for each P we have |P | ≤ n.

• The subgradient computation in the i-th iteration of the main loop takes O
(
dni2

)
time, since it needs to maximize over n distances. This means that for ` ∈ O

(
1/ε2

)
iterations we need O

(
dn
∑`

i=1 i
2
)

= O
(
dn`3

)
= O

(
dn/ε6

)
time. This is repeated

O (log(1/ε)) times, which implies a running time of O
((
dn/ε6

)
· log(1/ε)

)
.

• The evaluation of the minimum at the end reaches, as before, overO
(
(1/ε2) · log(1/ε)

)
centers, each defined by O (`) non-zero coefficients. Each is evaluated with respect
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to a sample of O
(
(1/ε2) · log(1/ε)

)
sets from the input. Since each maximum

distance evaluation takes O
(
dn`2

)
= O

(
dn/ε4

)
time, we have that the total time

for evaluation is O
((
dn/ε8

)
· log2(1/ε)

)
.

Summing the running times yields the claim.

6.4 Conclusion and open questions

We studied in this chapter a generalization of the 1-center and the 1-median problems – the

set median problem in high dimensions, that minimizes the sum of distances to the farthest

point in each input set. We presented a (1 + ε)-approximation algorithm whose running

time is linear in d and independent of the number of input sets. We further discussed

that in high dimensions the dependence on the size of the input sets cannot be reduced

sublinearly without losing a factor of roughly
√

2.

Our result resolves an open problem, posed in [145], and improves the previously best

algorithm for the probabilistic smallest enclosing ball problem in high dimensions by

reducing the dependence on d from exponential to linear. This enables running the

algorithm in high dimensional Hilbert spaces induced by kernel functions, which makes

it more flexible and viable as a building block in machine learning and data analysis. As

an example we transferred the kernel based SVDD problem of Tax and Duin [166] to the

probabilistic data setting.

Our algorithms assume discrete input distributions. It would be interesting to extend

the algorithms presented in this chapter to various continuous distributions. There are no

known results for a notion of probabilistic points that would be defined through continuous

distributions.

The pSEB problem minimizes the expected maximum distance. When it comes to

minimizing volumes of balls or in the context of Gaussian distributions it might be

interesting to study higher moments of the maximum distance. This corresponds to a

generalization of the set median problem to minimizing the sum of higher powers of

maximum distances. This topic is completely open for further research.

Finally, as we did for the probabilistic SVDD problem, we hope that the methods

presented in this chapter may help to extend more shape fitting and machine learning

problems to the probabilistic setting.



A Additional analysis to Lemma 5.1

In the proof of Lemma 5.1 some analysis was shortened for the sake of readability. Here

we present the exact computation. We apply the method of integration by parts, for all

integrals in the following four claims.

Claim A.1. It holds for ϕ ∈ [0, 1] that:∫ arccosϕ

0
sin2(x)dx =

1

2

(
arccosϕ− ϕ ·

√
1− ϕ2

)
. (A.1)

Proof. We denote the value of the integral in Equation (A.1) with A. Then

A =

∫ arccosϕ

0
sin2(x)dx = − sin(x) cos(x)|arccosϕ

0 −
∫ arccosϕ

0
− cos2(x)dx

= −ϕ · sin(arccosϕ) +

∫ arccosϕ

0

(
1− sin2(x)

)
dx

= −ϕ ·
√

1− ϕ2 + arccosϕ−A. (A.2)

Equation (A.2) implies the correctness of the claim.

Claim A.2. It holds for ϕ ∈ [0, 1] that:∫ arccosϕ

0
sin3(x)dx =

1

3
ϕ3 − ϕ+

2

3
. (A.3)

Proof. We denote the value of the integral in Equation (A.3) with A. Then

A =

∫ arccosϕ

0
sin3(x)dx = − sin2(x) cos(x)

∣∣arccosϕ

0
−
∫ arccosϕ

0
− cos(x) · 2 sin(x) cos(x)dx

=
(
cos3(x)− cos(x)

)∣∣arccosϕ

0
+ 2

∫ arccosϕ

0
sin(x) cos2(x)dx

= ϕ3 − ϕ+ 2

∫ arccosϕ

0
sin(x) cos2(x)dx. (A.4)

193
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We denote the integral in Equation (A.4) with B. Then, we have

B =

∫ arccosϕ

0
sin(x) cos2(x)dx = − cos3(x)

∣∣arccosϕ

0
− 2

∫ arccosϕ

0
sin(x) cos2(x)dx

= −ϕ3 + 1− 2B. (A.5)

By taking the value of B from Equation (A.5), and substituting into Equation (A.4), we

obtain Equation (A.3), as claimed.

Claim A.3. It holds for ϕ ∈ [0, 1] that:∫ arccosϕ

0
sin4(x)dx =

1

8

(
3 arccosϕ+ ϕ · sin(arccosϕ) ·

(
2ϕ2 − 5

))
. (A.6)

Proof. We denote the value of the integral in Equation (A.6) with A. Then

A =
(
− sin3(x) cos(x)

)∣∣arccosϕ

0
+ 3

∫ arccosϕ

0
sin2(x) cos2(x)dx

= −ϕ sin3(arccosϕ) + 3

∫ arccosϕ

0
sin2(x)

(
1− sin2(x)

)
dx

= −ϕ(1− ϕ2) sin(arccosϕ) + 3

∫ arccosϕ

0
sin2(x)dx− 3A. (A.7)

We denote the integral on the right-hand side of Equation (A.7) with B. Then, we have

B =

∫ arccosϕ

0
sin2(x)dx = (− sin(x) cos(x))|arccosϕ

0 +

∫ arccosϕ

0
cos2(x)dx

= −ϕ sin(arccosϕ) + arccosϕ−B. (A.8)

By taking the value of B from Equation (A.8) into Equation (A.7), we obtain

4A = −ϕ(1− ϕ2) sin(arccosϕ) +
3

2
(−ϕ sin(arccosϕ) + arccosϕ) ,

and this implies Equation (A.6), as claimed.

Claim A.4. It holds for ϕ ∈ [0, 1] that:∫ arccosϕ

0
sin5(x)dx =

1

15

(
−3ϕ5 + 10ϕ3 − 15ϕ+ 8

)
. (A.9)
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Proof. We denote the value of the integral in Equation (A.9) with A. Then,

A =
(
− sin4(x) cos(x)

)∣∣arccosϕ

0
+ 4

∫ arccosϕ

0
sin3(x) cos2(x)dx

= −ϕ
(
1− ϕ2

)2
+ 4

∫ arccosϕ

0
sin3(x) cos2(x)dx. (A.10)

We denote the integral on the right-hand side in Equation (A.10) with B. Then, we have

B =
(
cos5(x)− cos3(x)

)∣∣arccosϕ

0
+

∫ arccosϕ

0
cos(x) ·

(
4 sin(x) cos3(x)− 2 sin(x) cos(x)

)
dx

= ϕ5 − ϕ3 + 4

∫ arccosϕ

0
sin(x)

(
1− sin2(x)

)2
dx− 2

∫ arccosϕ

0
sin(x)

(
1− sin2(x)

)
dx

= ϕ5 − ϕ3 + 2

∫ arccosϕ

0
sin(x)dx− 6

∫ arccosϕ

0
sin3(x)dx+ 4

∫ arccosϕ

0
sin5(x)dx

(A.3)
= ϕ5 − ϕ3 + 2 (1− ϕ)− 6

(
1

3
ϕ3 − ϕ+

2

3

)
+ 4A. (A.11)

By substituting the value of B from Equation (A.11) into Equation (A.10), we obtain

the correctness of Equation (A.9).

In the next three claims we show the inequalities needed in the proof of Lemma 5.1. In

each of them we state a function f that is monotonically increasing on [0, π], with f(0) = 0.

Claim A.5. It holds for x ∈ [0, 1] that

1− 3

2
·
(

1

3
x3 − x+

2

3

)
≤
(

1 +
2

π

)
· x. (A.12)

Proof. We observe the function f(x) = x3 +
(

4
π − 1

)
x. By rearranging the expression

in Equation (A.12) we obtain that (A.12) is equivalent to f(x) ≥ 0, for x ∈ [0, 1]. It is

f(0) = 0. The first derivation of f is f ′(x) = 3x2 + 4
π − 1 > 0, for all x ∈ R. Therefore,

f(x) ≥ 0 for all x ∈ [0, 1], and the correctness of Claim A.5 is proven.

Claim A.6. It holds for x ∈ [0, 1] that

1− 2

3π

(
3 arccos(x) + x · sin(arccos(x)) ·

(
2x2 − 5

))
≤ 16

3π
x. (A.13)
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Proof. Equation (A.13) is equivalent to f(x) ≥ 0, for x ∈ [0, 1], where the function f(x)

is f(x) = 16
3πx− 1 + 2

3π ·
(
3 arccos(x) + x · sin(arccos(x)) ·

(
2x2 − 5

))
. It is f(0) = 0. Note

that sin(arccos(x)) =
√

1− x2, for x ∈ [0, 1]. Then, we have

f ′(x) =
16

3π
+

2

3π
·
(
−3√

1− x2
+
(
6x2 − 5

)
sin(arccos(x)) +

(
2x3 − 5x

)
· x · −1√

1− x2

)
=

16

3π
+

2

3π
·

((
2x2 − 3

) (
1− x2

)
√

1− x2
+
(
6x2 − 5

)√
1− x2

)
=

16

3π
+

16

3π
·
√

1− x2 ·
(
x2 − 1

)
≥ 16

3π
− 16

3π
= 0,

for x ∈ [0, 1]. This implies that f(x) ≥ 0, as claimed.

Claim A.7. It holds for x ∈ [0, 1] that

1− 1

8

(
−3x5 + 10x3 − 15x+ 8

)
≤ 15

8
x. (A.14)

Proof. Equation (A.14) can be transformed into 3x5−10x3 +15x ≤ 15x. Since for x ∈ [0, 1],

it is 3x5 ≤ 10x3, Equation (A.14) is satisfied for all x ∈ [0, 1]. We note that the constant
15
8 on the right-hand side of Equation (A.14) is the best possible for x ∈ [0, 1]. Namely,

for the function f(x) = αx− 1
8

(
3x5 − 10x3 + 15x

)
, for some constant α ≥ 0, it holds that

f ′(x) = α− 15
8

(
x2 − 1

)2
. For x ∈ [0, 1], it is f ′(x) ≥ 0 for α ≥ 15

8 .
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[3] M. R. Ackermann, J. Blömer, and C. Sohler. Clustering for metric and nonmetric dis-

tance measures. ACM Transactions on Algorithms, 6(4):59:1–59:26, 2010. Previously

appeared in the 19th ACM-SIAM Symposium on Discrete Algorithms, SODA 2008.

[4] P. Afshani and A. Driemel. On the complexity of range searching among curves.

In Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms, SODA,

pages 898–917, 2018.

[5] P. K. Agarwal, R. Ben Avraham, H. Kaplan, and M. Sharir. Computing the discrete
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[43] K. Buchin, J. Chun, M. Löffler, A. Markovic, W. Meulemans, Y. Okamoto, and

T. Shiitada. Folding free-space diagrams: Computing the Fréchet distance between 1-
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CD-TR 94/64, Christian Doppler Laboratory, 1994.

[76] I. Z. Emiris and I. Psarros. Products of Euclidean metrics and applications to

proximity questions among curves. In B. Speckmann and C. D. Tóth, editors,
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