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A finite element formulation for a simplified, relaxed micromorphic
continuum model
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We discuss a simplified problem derived from the relaxed micromorphic continuum model in two dimensions. The model
captures important aspects of the micromorphic approach even as a degeneration of the bulk model. Typically, the employed
mechanical strain combines the gradient of displacements with the microdistortion field. The interaction between both fields is
ruled by the minimization of the overall free energy, where we employ the Curl of the microdistortion. The Curl significantly
influences the resulting equations for the balance of linear and angular momentum. Further, we explain the necessity of an
extended finite element method. Finite elements based on solely the H 1-Hilbert space are not sufficient for the efficient
approximation of the Curl based microdistortion. Therefore, we suggest using a hybrid scheme employing both, H 1 and
H (Curl) based functions. The resulting hybrid element formulation is successfully tested for a problem with a predefined
Dirichlet boundary condition.
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1 The simplified relaxed micromorphic continuum

In classical continuum models each material point can undergo translation in three directions, i.e. has three degrees of freedom.
The relaxed micromorphic continuum model extends this kinematic, such that each material point can also rotate and deform
with a total of 12 degrees of freedom. This characteristic translates to more complex mechanical behaviours, commonly
present in metamaterials. In the relaxed micromorphic continuum [1, 2] the free energy functional takes the form

I(u,P ) =
1

2

∫

Ω

〈Ce sym(∇u− P ), sym(∇u− P )〉+ 〈Cmicro symP , symP 〉

+ 〈Cc skew(∇u− P ), skew(∇u− P )〉+ µmacro L
2
c ‖CurlP ‖2 − 〈f ,u〉 − 〈M ,P 〉dX , Ω ⊂ R3 ,

∇u =



u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3


 , CurlP =




curl
[
P1,1 P1,2 P1,3

]T

curl
[
P2,1 P2,2 P2,3

]T

curl
[
P3,1 P3,2 P3,3

]T


 , curlv = ∇× v , (1)

with u : Ω ⊂ R3 → R3 and P : Ω ⊂ R3 → R3×3 being the displacement and microdistortion, respectively. External loading
is denoted by f and M . Further, Ce and Cmicro are standard elasticity tensors and Cc is a positive semi-definite rotational
coupling tensor. µmacro is a typical shear modulus and Lc > 0 is the characteristic length scale.

For our formulations we consider a simplified 2D version of the relaxed micromorphic continuum. In this model the elastic
free energy functional reads

I(u, ζ) =

∫

Ω

µe||∇u− ζ||2 + µmicro||ζ||2 + µmacro
L2

c

2
(curl ζ)2 − 〈f, u〉 − 〈m, ζ〉dX ,

u : Ω ⊂ R2 → R ,
ζ : Ω ⊂ R2 → R2 ,
µe, µmicro,
µmacro

> 0 ,
(2)

where f : Ω ⊂ R2 → R and m : Ω ⊂ R2 → R2 are the body forces and couple moments, respectively. We define u = u(x, y)
as a displacement field perpendicular to the x, y plane, and ζ = ζ(x, y) as the microdistortion. The curl operator in 2D is
given by curl ζ := ζ2,1 − ζ1,2 , ζ ∈ R2 . From Eq. (2) the variational principle yields

∀ δu :

∫

Ω

2µe〈∇u− ζ,∇δu〉 − 〈f, δu〉dX = 0 , (3)

∀ δζ :

∫

Ω

2µe〈∇u− ζ,−δζ〉+ 2µmicro〈ζ, δζ〉+ µmacro L
2
c〈curl ζ, curl δζ〉 − 〈m, δζ〉dX = 0 . (4)

From Eq. (3) and Eq. (4) we obtain the weak form for further numerical investigation
∫

Ω

2µe〈∇u− ζ,∇δu− δζ〉+ 2µmicro〈ζ, δζ〉+ µmacro L
2
c〈curl ζ, curl δζ〉 − 〈f, δu〉 − 〈m, δζ〉dX = 0 . (5)

∗ Corresponding author: e-mail: adam.chejanovsky@tu-dortmund.de,
This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

PAMM · Proc. Appl. Math. Mech. 2020;20:1 e202000336. www.gamm-proceedings.com 1 of 2

https://doi.org/10.1002/pamm.202000336 © 2021 The Authors Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fpamm.202000336&domain=pdf&date_stamp=2021-01-25


2 of 2 Section 18: Numerical methods of differential equations

Existence and uniqueness follows from the Lax-Milgram theorem in the combined space H 1(Ω)×H (curl,Ω).

2 Numerical examples and conclusions

(a) Analytical solution

(b) Front view with 144 H 1 ×H (curl) elements

(c) Front view with 144 H 1 ×H 1 elements

Fig. 1: Solutions of the displacement u(x, y).
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Fig. 2: Convergence of the H 1 × H 1 element in the
Lebesgue norm over the domain.

For the finite element formulation we employ H 1(Ω) nodal base func-
tions for u and Nédélec H (curl,Ω) edge base functions [3, 4] for ζ. For
comparison, we also derive a purely H 1(Ω) × H 1(Ω) element. We set
Ω = [−4, 4]× [−4, 4] ⊂ R2 and impose the lift and material constants

u(−4, y) = u(4, y) = 0 , u(−2, y) = u(2, y) = 2 ,
µe, µmicro,
µmacro , Lc

= 1 ,

for which the analytical solution reads

ũ =





4 + x for −4 ≤ x < −2
2 for −2 ≤ x < 2

4− x for 2 ≤ x ≤ 4
, ζ̃ =





[
0.5 0

]T
for −4 ≤ x < −2

[
0 0

]T
for −2 ≤ x < 2

[
−0.5 0

]T
for 2 ≤ x ≤ 4

.

The microdistortion field takes in fact the form ζ̃ = ∇ũ/2. The so-
lution is C 0(Ω) continuous. Thus, its gradient is discontinuous. The
microdistortion ζ formulated using H 1(Ω)× H 1(Ω) requires continuity
across both its tangential and normal components and is therefore inca-
pable of correctly capturing the discontinuity of the analytical solution,
see Fig. 1c. However, it is capable of approximating the correct solu-
tion and further localize the error via mesh refinement, see Fig. 2. The
element formulation using H 1(Ω)× H (curl,Ω) requires only tangential
continuity across element boundaries and finds the exact solution directly
as seen in Fig. 1b. Its errors in both u and ζ are not listed in Fig. 2 as
they are always at a factor of 10−14.

In conclusion, we recognize that the H 1×H (curl) element repro-
duces discontinuous gradients of the displacement field without difficulty.
Thus, the finite element formulation combining both H 1 and H (curl)
Hilbert spaces can represent folds in the displacement field of the relaxed
micromorphic theory, as shown in our numerical example. As the re-
laxed micromorphic theory aims to capture more complex mechanical
behaviour from e.g. micro effects, the approach using Nédélec finite ele-
ments is promising.
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