Software Fault Injection and Localization
in Embedded Systems

Dissertation

zur Erlangung des Grades eines
DOKTORS DER INGENIEURWISSENSCHAFTEN

der Technischen Universitiat Dortmund
an der Fakultat fiir Informatik

von

Ulrich Thomas Gabor

Dortmund

2021

Tag der miindlichen Priifung: 25. Juni 2021

Dekan: Prof. Dr.-Ing. Gernot A. Fink

Gutachter: Prof. Dr.-Ing. Olaf Spinczyk (Universitidt Osnabriick)
Prof. Dr. Falk Howar (TU Dortmund)

ABSTRACT

Injection and localization of software faults have been extensively researched,
but the results are not directly transferable to embedded systems. The domain-
specific constraints applying to these systems, such as limited resources and
the predominant C/C++ programming languages, require a specific set of
injection and localization techniques. In this thesis, we have assessed existing
approaches and have contributed a set of novel methods for software fault
injection and localization in embedded systems.

We have developed a method based on AspectC++ for the injection of
errors at interfaces and a method based on Clang for the accurate injection of
software faults directly into source code. Both approaches work particularly
well in the context of embedded systems, because they do not require runtime
support and modify binaries only when necessary. Nevertheless, they are
suitable to inject software faults and errors into the software of other domains.

These contributions required a thorough assessment of fault injection tech-
niques and fault models presented in literature over the years, which raised
multiple questions regarding their validity in the context of C/C++. We found
that macros (particularly header files), compile-time language constructs, and
the commonly used optimization levels introduce a non-negligible bias to
experimental results achieved by injection methods operating on any other
layer than the source code. Additionally, we found that the textual specifica-
tion of fault models is prone to ambiguities and misunderstandings. We have
conceived an automatic fault classifier to solve this problem in a field study.

Regarding software fault localization, we have combined existing methods
making use of program spectra and assertions, and have contributed a new
oracle type for autonomous localization of software faults in the field. Our
evaluation shows that this approach works particularly well in the context of
embedded systems because the generated information can be processed in
real-time and, therefore, it can run in an unsupervised manner.

Concluding, we assessed a variety of injection and localization approaches
in the context of embedded systems and contributed novel methods where
applicable improving the current state-of-the-art. Our results also point out
weaknesses regarding the general validity of the majority of previous injection
experiments in C/C++.

iii

PUBLICATIONS

Some ideas and figures have appeared previously in the following publica-

tions:

[23]

[26]

Ulrich Thomas Gabor, Simon Dierl, and Olaf Spinczyk. “Spectrum-
Based Fault Localization in Deployed Embedded Systems with Driver
Interaction Models.” In: Proceedings of the 38rd International Conference
on Computer Safety, Reliability and Security (SAFECOMP ’19). Ed. by
Alexander Romanovsky, Elena Troubitsyna, and Friedemann Bitsch.
Turku, Finland: Springer International Publishing, 2019, pp. 97-112.
ISBN: 978-3-030-26601-1. pOI: 10.1007/978-3-030-26601-1_7.

Ulrich Thomas Gabor, Christoph-Cordt von Egidy, and Olaf Spinczyk.
“Interface Injection with AspectC++ in Embedded Systems.” In: Pro-
ceedings of the 19th IEEE International Symposium on High Assurance Sys-
tems Engineering (HASE "19). IEEE Press, Jan. 2019, pp. 131-138. por:
10.1109/HASE.2019.00028.

Ulrich Thomas Gabor, Daniel Siegert, and Olaf Spinczyk. “High-Accuracy
Software Fault Injection in Source Code with Clang.” In: Proceedings of
the 24th IEEE Pacific Rim International Symposium on Dependable Comput-
ing (PRDC ’"19). Pasadena, CA, USA: IEEE Press, Dec. 2019, pp. 75-84.
por: 10.1109/PRDC47002.2019.00029.

Ulrich Thomas Gabor, Daniel Siegert, and Olaf Spinczyk. “Software-
Fault Injection in Source Code with Clang.” In: Proceedings of the 32th
International Conference on Architecture of Computing Systems (ARCS "19),
Workshop Proceedings. 2019, pp. 1-6. 1sBN: 978-3-8007-4957-7.

https://doi.org/10.1007/978-3-030-26601-1_7
https://doi.org/10.1109/HASE.2019.00028
https://doi.org/10.1109/PRDC47002.2019.00029

ACKNOWLEDGMENTS

Foremost, I thank the Technical University Dortmund for not only providing
me a good education but also offering me multiple possibilities to gather
the rare experience of giving lectures. In that context, I especially thank my
supervisor Prof. Dr. Olaf Spinczyk. He has been a part of my way since the
third bachelor semester and who has finally offered me the possibility to work
in research and pursue this thesis. He not only enabled me to get a good
insight into academic research but, at the same time, leaving enough room for
independent evolvement.

Special thanks also to Prof. Dr. Falk Howar, Prof. Dr. Jens Teubner, and Prof.
Dr. Peter Buchholz for agreeing to be part of the examination board, and Prof.
Dr. Jian-Jia Chen for helpful mentoring comments along my way.

Additionally, I thank Dr. Horst Schirmeier for helping me with various ques-
tions and problems I encountered during my time. I also thank my colleague
Hendrik Borghorst for having no clue regarding my problems but still trying
to help me —and for becoming a very good friend. Many thanks also to Claudia
Graute, who not only supported our whole chair by getting administrative
tasks done but who took care of a lot of social events.

Furthermore, but not less important, I thank my parents, Anneliese and
Wilfried Gabor, for supporting me not only during my thesis but throughout
my whole life. They have always been encouraging regarding my choices and
problems, and this helped a lot.

Additionally, there are a lot of friends and colleagues who helped me when
times got more challenging, and I owe a lot to them (not necessarily in order
of importance): Maurice, Glenn, Cordt, Heiko, Oliver, Thomas, Sebastian,
Mirjam, Jonas, Jan Lukas, Alexey, Geoffrey, Matthias, Kuan-Hsun and Eva,
Boguslaw, Markus, Georg, Alex, Daniel, Lea, Andreas, Michael, Benjamin,
Torsten, Rolf, Mathias and Daniel.

Thank you all!

vii

CONTENTS

1

INTRODUCTION 1
1.1 Motivation 1
1.2 Thesis Outline 2
1.3 Main Contributions 3
1.3.1 Fault Injection into Embedded Systems 3
1.3.2 Interface Error Injection 3
1.3.3 Injection of Source Code Changes 4
1.3.4 Program Spectrum-based Fault Localization 5
1.3.5 Transformation of Model Constraints to Assertions 5
BACKGROUND 7
2.1 Basics of Dependability 7
2.2 Fault Models for Software Fault Injection 8
2.3 Basics of Software Fault Injection 10
2.4 Software Fault Localization 13

2.5 Basics on Aspect-Oriented Programming (AOP) 14
2.6 Specialties of Embedded Systems 15
SFI FOR EMBEDDED SYSTEMS 17
3.1 Practicality of AOP for SFI 17

3.1 AOP for Data Error Injection 18

3.1.2 AOP for Interface Error Injection 18

3.1.3 AOP for Injection of Code Changes 19
3.2 Injection of Code Changes with Clang 21
FAULT MODELS FOR SOFTWARE FAULTS 23
4.1 Coarse-Grained Classification of Software Faults 23
4.2 Fine-Grained Classification of Software Faults 24
4.3 Improving Accuracy of Fault Models for Fault Injection 26
4.4 Concept of an Automatic Fault Classifier 26
4.5 Potential Problems 27
4.6 Potential Applications of the Classifier 28

FAULT LOCALIZATION IN DEPLOYED EMBEDDED SYSTEMS 29

5.1 Program Spectrum-Based Fault Localization 29

5.2 Assertion-based Fault Localization 30
5.2.1 Transformation of Model Constraints to Assertions 31
5.2.2 Applicability of the Approach 33

CONCLUSION AND OUTLOOK 35

6.1 Open Questions 35

6.1.1 SFI for Embedded Systems 35

6.1.2 Fault Models for Software Faults 36

6.1.3 Fault Localization in Deployed Embedded Systems 36
BIBLIOGRAPHY 37

ix

LIST OF FIGURES

Figure 2.1 The dependability chain showing the interaction be-
tween faults, errors and failures [2]. 7

Figure 2.2 Overview of dependability means based on the taxon-
omy of AviZienis et al. [2]. 8

Figure 2.3 Two types of software faults and their characteristics. 10

Figure 2.4 Benchmarking of Application-Level Software, adopted
from Natella et al. [54]. 11

Figure 2.5 Conceptual components of fault injection, adopted from
Hsueh et al. [34] and Natella et al. [54]. 11

Figure 4.1 Steps of envisioned fault classifier. 27

LIST OF TABLES

Table 4.1 Association between defect type and stages of the soft-
ware development process, adapted from Chillarege
etal. [12]. 24

Table 4.2 Fault types used for software fault injection in our ex-
periments [17]. 25

LISTINGS

Listing 2.1 Example advice tracing the signature of each invoked
function. 14

Listing 3.1 Basic example of injecting errors in return value and
parameter. 19

Listing 4.1 Example of an edit script 27

Listing 5.1 Example Object Constraint Language (OCL) rules. 31

Listing 5.2 Example transformation of the OCL rules given in List-

ing 5.1 to AspectC++. 32

ACRONYMS

AOP
API
AST
DIM
DSL
FTAM
IR

IoT
MCSHS
NLP
OCL
ODC
OMG
PDG
POSIX
ROM
RTTI
SBFL
SBG
SFI
SWIFI
UML
VCS

aspect-oriented programming
application programming interface
abstract syntax tree

driver interaction model

domain-specific language

fault tolerance algorithm and mechanism

LLVM intermediate representation
Internet of Things

method call sequence hit spectra
natural language processing

Object Constraint Language
orthogonal defect classification
Object Management Group
program dependence graph
Portable Operating System Interface
read-only memory

runtime type information
spectrum-based fault localization
software behavior graph

software fault injection
software-implemented fault injection
Unified Modeling Language

version control system

xi

INTRODUCTION

As software increases in size and complexity, the number and complexity of
software faults increase too — and often, the severity of caused failures rises
as well. So far, developers and undergraduate courses usually concentrate
on fault prevention and removal techniques at development time. Research,
however, is also interested in so-called residual software faults [53], i. e., faults
that elude the testing phase, and therefore most common practices against
failures. The following two aspects are especially important:

1. to find and remove such faults, and

2. to assess the software to understand how it may fail in the field, to
prevent failures in the field, and to compare the dependability amongst
software.

This dissertation by publication deals with said field, with a particular focus
on embedded systems, which come with additional limitations. Embedded
systems are often smaller in terms of available resources and human-machine
interfaces, i.e., they may comprise smaller processors and no display. Ad-
ditionally, software for embedded systems is regularly custom-tailored to a
specific need. This tailoring often involves the programming languages C/C++
and may be based on embedded operating systems, which can come without
a runtime environment or are otherwise limited in functionality, for example,
missing isolation between operating system and application software.

The thesis contributes solutions in two major fields:

1. the injection of software faults or fault effects called software fault injec-
tion (SFI) to better understand or improve a software system, and

2. the localization of already present faults in software, which eluded
normal testing processes but may be found while observing the system
in the field.

This chapter starts with the motivation for this research in Section 1.1, fol-
lowed by the outline of this thesis in Section 1.2. It ends with a description of
the contributions and the related publications to the current state-of-the-art in
Section 1.3.

1.1 MOTIVATION

Much research effort has been spent in injecting and localizing faults in soft-
ware for formerly so dominant systems like personal computers. However,
rarely have methods been developed explicitly for embedded systems. With
the Internet of Things (IoT'), Industry 4.0 and more interconnected devices
in general in an increasingly globalized world, the question is whether so far
researched methods apply in the domain of embedded systems as well - or if
entirely new and specific methods have to be developed for the more complex
and ever more important embedded systems we see today.

Many software faults, even in this domain, can already be found at compile-
time, e. g., Pathak et al. [57] developed an approach to find no-sleep energy
bugs in Android, which are caused by pairs of on-off system calls where one

INTRODUCTION

call is missing. Such faults, which are easily-reproducible, are often called
Bohrbugs [30]. There have been efforts to combat such faults during devel-
opment already. Modern compilers consist of a frontend to transform the
programming language into an intermediate representation and a backend to
generate an executable from this intermediate representation. LLVM is one of
the well-known compilers of that type at the moment. Much effort has been
invested into the LLVM compiler backend [43] to detect a variety of faults at
compile-time with extended compiler checks, and researchers have developed
additional static analyzers on top of the LLVM framework [62]. Clang, as a
frontend for C/C++ in the LLVM project, provides a static analyzer, which has
been regularly improved at Google’s “Summer of Code” events' and extended
by researchers [66]. There are developments outside of the LLVM project as
well [8, 70]. However, developing and implementing an analyzer in a way
that is easy to use and helpful turns out to be not an easy task [35]. From a
developer’s perspective, these analyzers may still lack a clear indication of the
underlying fault (and how to fix it), or deliver an overwhelming amount of
false positives.

Nevertheless, approaches at compile-time can often be applied to software
for embedded systems as well, because they are run offline during develop-
ment. On the other hand, many faults are hard to detect statically. Therefore,
another field of research is dynamic checking, which executes (often mod-
ified) software and observes its behavior. One example is the well-known
Valgrind [55] to find memory-related faults, but there are others as well [63,
68] —especially in the security domain [74], where overlooked faults often have
severe effects, added canaries are supposed to protect against buffer-overflows.

In the context of embedded systems, additional peculiarities make it even
harder to find bugs. The close relationship between hard- and software, the
regular use of hardware registers or pointers, and the variation in the execution
environments are just some examples. While often static analyzers can be
applied to embedded software as well, the different execution environments
bring challenges but also chances. This thesis will, therefore, concentrate on
measures at runtime, i. e., fault injection and fault localization, which can be
applied either during development or to a deployed embedded system in the
field.

1.2 THESIS OUTLINE

This thesis by publication starts with a brief introduction of the basic concepts
used throughout this work in Chapter 2. Chapter 3 presents our findings re-
garding SFI and is split into the well-known classes (i) injection of data errors,
(ii) injection of interface errors, and (iii) injection of source code changes [54].
SFl into source code led to research regarding appropriate fault models, which
is described in Chapter 4. The following Chapter 5 deals with the localization
of software faults in deployed embedded systems. Chapter 6 contains the con-
clusion, potential future work, and a summary of all open research questions.
Finally, reprints of the published articles this thesis builds on can be found
after Chapter 6.

In the rest of the current chapter, the contributions provided by this disser-
tation are presented. This overview will give the reader a focused impression
on the variety of contributions and novel ideas in contrast to the current state-
of-the-art.

1 https://summerofcode.withgoogle.com/

https://summerofcode.withgoogle.com/

1.3 MAIN CONTRIBUTIONS

1.3 MAIN CONTRIBUTIONS

The main contributions to the current state-of-the-art provided by this thesis
have been presented in multiple publications. In this section, these publica-
tions will be presented arranged by the contributions to which they relate. All
of the articles were presented at internationally recognized and peer-reviewed
conferences and workshops on dependability and published in their proceed-
ings. Additionally, this thesis contains some other ideas, which have not been
published yet.

The developed methods were all implemented and are available as open-
source tools in the interest of sustainability. Furthermore, these tools all come
with tests, documentation, and were implemented according to current best-
practices of software development. All these measures ensure that other re-
searchers will be able to pick up and expand the work were needed.

1.3.1 Fault Injection into Embedded Systems

Each of the published articles concerning fault injection into embedded sys-
tems deals with one approach of the presented injection classes, i. e., injection
at interface or source code level. The method for injections at interfaces makes
use of AspectC++, whereas the method for injections into source code is based
on Clang, as presented in the next sections. Additionally, this thesis discusses
the idea of using aspect-oriented programming (AOP) and particularly As-
pectC++ for the injection of data errors and source code changes and why the
idea has not been pursued further.

1.3.2 Interface Error Injection

Ulrich Thomas Gabor et al. “Interface Injection with AspectC++ in Embed-
ded Systems.” In: Proceedings of the 19th IEEE International Symposium on High
Assurance Systems Engineering (HASE "19). IEEE Press, Jan. 2019, pp. 131-138.
por: 10.1109/HASE.2019.00028

The first publication deals with the injection of errors at interfaces, one of
the injection classes we will discuss in this thesis. Previous methods to per-
form interface error injection were based on runtime modification by replacing
dynamic libraries [7, 33]. Within the domain of embedded systems, such meth-
ods are often not applicable because there is often no runtime environment
providing the function to load dynamic libraries.

Our approach utilizes AspectC++ to inject at compile-time without modifi-
cation of the source code. This approach provides two advantages:

1. the developer does not have to modify the source code only to be able to
perform injection campaigns, and

2. the approach works in any runtime environment.

The publication was a joint work with Christoph-Cordt von Egidy and Olaf
Spinczyk. A prototype was developed as a Bachelor thesis by von Egidy. The
author of this thesis conceived the underlying concept for the work, brought the
software to a releasable state based on the developed prototype, and integrated
the AspectC++ attribute functionality to further extend the application of the
software to real software projects. The AspectC++ attribute functionality was
developed as joint work with Olaf Spinczyk and Uriel Elias Wiebelitz.

https://doi.org/10.1109/HASE.2019.00028

INTRODUCTION

1.3.3 Injection of Source Code Changes

Ulrich Thomas Gabor et al. “Software-Fault Injection in Source Code with
Clang.” In: Proceedings of the 32th International Conference on Architecture of
Computing Systems (ARCS ’19), Workshop Proceedings. 2019, pp. 1—6. ISBN:

978-3-8007-4957-7

Ulrich Thomas Gabor et al. “High-Accuracy Software Fault Injection in
Source Code with Clang.” In: Proceedings of the 24th IEEE Pacific Rim In-
ternational Symposium on Dependable Computing (PRDC “19). Pasadena, CA,
USA: IEEE Press, Dec. 2019, pp. 75-84. por: 10.1109/PRDC47002.2019.00029

These publications are about fault injection of code changes into source
code, another class of approaches for SFI. Such injections can be performed
at different abstraction layers: into assembly [13], into LLVM intermediate
representation (IR) [28, 41], and directly into source code [53]. To be able to
perform fault injections, it is necessary to have a model of faults. In the past,
multiple publications gathered information to define fault models, which were
supposed to represent real-world faults [4, 15, 17, 27, 29, 39, 40, 53, 61]. With
injections into source code, it should be easiest to simulate a programmer’s
fault accurately compared to the chosen fault model.

Our work shows that, despite these past efforts, it is at least questionable if
injections were really performed according to the fault model. Most developers
use the optimization level -02, which is the recommended optimization level
(e.g., by Debian?), and which can result in quite different binaries from the
original. Injections performed on the binary level are, therefore, subject to
biases. Furthermore, macros and C/C++ compile-time language constructs can
have an enormous effect because of their (nearly) Turing-completeness [69].
In the publications related to this class of SFI, we presented a new Clang-
based injection approach, which performs injections closer to the selected fault
model.

Furthermore, the methods presented in literature often come with additional
support code to perform the injections [28, 41]. Additional code might come
with additional dependencies or compiler requirements, which can pose a
problem in the context of compilers for embedded systems. Also, additional
code increases the size of the image, which can be a problem for devices with
only limited available memory. Our approach takes these constraints into
account and is therefore especially useful in the context of embedded systems.

This was a joint work with Daniel Siegert and Olaf Spinczyk. An already
existing prototype by the author of this thesis was finished as a Bachelor thesis
by Daniel Siegert. The author of this thesis brought the software to a releasable
state and contributed most of the evaluation, assessing the accuracy of the
injection tool regarding the fault model.

2 https://www.debian.org/doc/debian-policy/ch-files.html

https://doi.org/10.1109/PRDC47002.2019.00029
https://www.debian.org/doc/debian-policy/ch-files.html

1.3 MAIN CONTRIBUTIONS

1.3.4 Program Spectrum-based Fault Localization

Ulrich Thomas Gabor et al. “Spectrum-Based Fault Localization in Deployed
Embedded Systems with Driver Interaction Models.” In: Proceedings of the
38rd International Conference on Computer Safety, Reliability and Security (SAFE-
COMP ’19). Ed. by Alexander Romanovsky et al. Turku, Finland: Springer
International Publishing, 2019, pp. 97—112. 1sBN: 978-3-030-26601-1. DOI: 10.
1007/978-3-030-26601-1_7

While the previous contributions deal with the introduction of faults into
software, this one regards the localization of bugs already present in a software.
One approach to locate faults is spectrum-based fault localization (SBFL),
where the so-called spectrum is used to pinpoint a fault. A spectrum encom-
passes execution information, e. g., the executed functions.

We have brought SBFL to embedded systems with the idea of using an
isolated additional embedded system to monitor the observed system in-
field. Furthermore, we evaluated multiple spectrum-types and suspiciousness
metrics in the real-world scenario of a simulated combustion engine. For the
autonomous assessment of runs as failing or succeeding, we also developed a
new type of oracle called driver interaction model (DIM).

The resulting publication was a joint work with Simon Dierl and Olaf
Spinczyk. Simon Dierl developed the software in the context of his Master
thesis. The author of this thesis conceived the concept, especially regarding
the novelty to execute this approach on a second embedded system, and the
underlying idea to use the interaction between soft- and hardware as an oracle.

1.3.5 Transformation of Model Constraints to Assertions

Additionally to the main contribution of spectrum-based fault localization, we
discuss the implementation of a fault localization approach based on Object
Constraint Language (OCL) in C++. With OCL annotated Unified Modeling
Language (UML) diagrams should be automatically transformed to AOP
code, which then can check the validity of the OCL rules at runtime and
report deviations. While the idea to transform OCL to AOP is not new [18],
we additionally explain why an implementation in AspectC++ should be
possible, highlight potential pitfalls and assess existing solutions regarding
their applicability in the context of embedded systems.

https://doi.org/10.1007/978-3-030-26601-1_7
https://doi.org/10.1007/978-3-030-26601-1_7

BACKGROUND

The current chapter gives the reader an overview of the used terminology and
provides some background regarding the topics of this thesis.

The first Section 2.1 introduces concepts of dependability and basic terminol-
ogy. Section 2.2 then presents perspectives of faults and possibilities to model
them, primarily for the use of software fault injection. In Section 2.3, basic
concepts of software fault injection (SFI) and especially its applications are de-
scribed. Since some concepts of this thesis are based on AspectC++, Section 2.5
gives an introduction to aspect-oriented programming (AOP) and AspectC++.
The chapter closes with an overview of the specialties of embedded systems
in comparison to desktop computers or servers in Section 2.6

2.1 BASICS OF DEPENDABILITY

A standard taxonomy regarding dependability has been presented by AviZzienis
et al. [2], and this thesis makes use of the terms as presented in that article. In
this context, the three terms fault, error, and failure are of topmost importance.
Their relationship in the form of a chain is shown in Figure 2.1. A failure
is defined as a deviation of a service from its expected behavior, which can
manifest, for example, in unavailability or wrong responses. In the context
of this thesis, this can be, for example, a crash of a software system or wrong
messages being sent to other components. While a failure is observable, it is
caused by a deviated state of the system which we call error and which is not
observable from outside the system. For software systems, one example of an
error is unexpected modification of memory contents. The underlying cause of
an error is called fault. In software systems, this is what is colloquially known
as a bug and can, for example, be wrong handling of input or a deviation
between implementation and intended function of an algorithm. A fault can
be triggered by a failure of another component or system; therefore, multiple
chains can be connected.

Faults are present in nearly all software systems but manifest differently
depending on the system and their location. Most readers will be familiar with
faults that they introduced themselves as a deviation between what should be
implemented and what was implemented. Even in software that was proven to
be implemented correctly, there is potential for faults, for example, a deviation
between the formalized functionality and what should have been formalized.

It is evidently necessary to deal with the presence of faults, which can be
done at different stages of the software development process. A short overview
of the related terminology is shown in Figure 2.2. Fault prevention means all
efforts to avoid the introduction of faults in the first place, for example, by
training developers. Fault removal is aimed at the removal of faults, for exam-

tivati ti . ti
...—> fault M) error’w fallure(M) fault —> ...

Figure 2.1: The dependability chain showing the interaction between faults, errors and
failures [2].

8

BACKGROUND

Dependability Means

— Fault Prevention
— Fault Removal
— Verification
— Diagnosis

— Correction

L Non-Regression Verification

— Fault Tolerance
Error Detection

Recovery

'— Fault Forecasting

Figure 2.2: Overview of dependability means based on the taxonomy of AviZienis et al.

[2].

ple, by utilizing compiler checks or test processes. Since it is often impossible
to get rid of all faults, fault tolerance aims at avoiding failures, for example,
by introducing redundancy and voting mechanisms [42]. Lastly, it may be of
interest to anticipate how many failures and what deviating behavior are to
be expected, which is known as fault forecasting.

2.2 FAULT MODELS FOR SOFTWARE FAULT INJECTION

For multiple of the dependability means mentioned earlier, it is helpful to sim-
ulate the presence of faults, which is the goal of SFI. For that, it is necessary to
have an adequate model of software faults. This fault model should be as close
to real software faults as possible, so that evaluation results are trustworthy.

One possible distinction of different types of faults is shown in Figure 2.3 [30,
53]. In general, the fault space can be divided into residual and non-residual
faults. On the one hand, residual faults regularly occur in the field and are
hard to find during development. On the other hand, non-residual faults can
be easily found while testing. Whereas residual faults are often Mandelbugs,
i.e., bugs which are hard to reproduce, for example, because they require
complex environment conditions to be activated, non-residual faults are often
easy to reproduce and are also called Bohrbugs [31]. The former are hard to
detect at development time, whereas the latter can often be found through
testing.

For both types of faults, research has parted ways regarding their methods
and goals. On the one hand, research related to non-residual faults, which can
be easily found with testing, concentrates on mutation testing. The latter is
an approach to improve the test coverage of software by introducing changes
to it and check if any test notices this modification. If this is not the case, this
is taken as a sign that the tests should be improved to spot such a change.
On the other hand, research regarding residual faults concentrates on SFI,
introducing faults which are hard to detect at development time.

2.2 FAULT MODELS FOR SOFTWARE FAULT INJECTION

Based on this distinction, the methods dealing with non-residual faults can
rather be classified as fault avoidance mechanisms, whereas the methods to
deal with residual faults can rather be classified as fault tolerance mechanisms.

It must be said though that such classifications are never perfect. In practice,
it can happen that a simple fault, which could have been found by tests, was
not found and only showed itself in the field after deployment. Just the fact
that one cannot know in advance which faults are present in the software and
therefore are to be expected is reason enough to question any classification
which promises perfection.

In the domain of embedded systems, it is possible to explain potential faults
more concretely. Possible faults are various, though, because the range of sys-
tems that are classified as “embedded” is wide, for example, interconnected
microcontrollers in cars, systems controlling the production in factories (In-
dustry 4.0), and devices in the Internet of Things (IoI') domain are all called
embedded systems.

First, often there is some form of basic software in an embedded system,
i.e., an operating system or surrounding library code, which can be shared
across different systems. Such basic software is susceptible to all known faults
in such software systems, for example:

e accessing wrong memory locations,
e insufficient isolation between applications and basic software, and

e unfair assignment of CPU (or other resources) to applications, maybe
leading to starvation.

Second, there are regularly applications, which provide the desired func-
tionality of the embedded system. These applications can suffer from a variety
of potential faults known from regular software development, for example:

e buffer overflows,
e unexpected input values, and
e wrongly implemented algorithms.

However, the variety is regularly more restricted compared to other software
systems. Embedded systems must often fulfill critical tasks and are, therefore,
often subject to firm programming practices. For example, MISRA-C is a
standard coming from the automotive domain, restricting the usable language
features of the programming language C [50]. Strict application of these rules
will likely erase some classes of faults. Which faults are erased depends on
the concrete programming practices applied.

Third, embedded systems often interact with the surrounding environment,
either by reading sensor data, by communicating with other (embedded)
systems, or by controlling physical mechanisms. This peculiarity enables an
additional range of potential software faults, which may be unknown to soft-
ware developers not familiar with this domain, for example:

e wrong handling of unreliable communication channels,
e missing mechanisms to cope with broken attached hardware, and

e incorrect interaction with periphery.

10

BACKGROUND
Software
Faults
(non-residual) C residual)
% mostly Bohrbugs ‘ % mostly Mandelbugs ‘
% found by testing ‘ % escape testing ‘
tematicall - .
|| (Si};sc ;)r;;a ically repro % lusive ‘
% mutation testing ‘ % software fault injection ‘
% fault avoidance ‘ % fault tolerance ‘

Figure 2.3: Two types of software faults and their characteristics.

Even though it is now clear what faults a fault model should represent,
it is still unclear what a fault model must contain, so that it can be used for
the injection of faults. For SFI, it is essential to know what modifications to
perform and what frequency to use. For example, it may often be the case that
an IF statement plus some source code lines are missing. A tool can quickly
generate all possible modifications of that type for a piece of software. If one
wants to sample from the available fault space due to time constraints on the
runtime of experiments, which is often the most problematic part of such an
assessment, it may be desirable that the sample has the same distribution as
real software faults.

Both parts of a fault model — types and distribution of faults — can only
be approximated by assessing what is known about faults. Some researchers
have examined bug reports of large software projects, classified the required
changes by hand, and then created models that are usable by others [4, 17].
Despite the efforts, it can often be shown that such models are not as repre-
sentative as one might desire [39]. It is not proven but likely that the different
types of software, software development processes, involved human develop-
ers, and even the people involved in modeling a fault model have a significant
impact on the representativeness of the fault model.

2.3 BASICS OF SOFTWARE FAULT INJECTION

SFI has been introduced as a method for multiple use cases. The following
three are currently known and relevant:

FAULT REMOVAL FROM FTAMS: This application aims at improving a fault tol-
erance algorithm and mechanism (FTAM) mostly during development
by qualitatively using the results of an injection campaign to improve its
implementation.

DEPENDABILITY BENCHMARKING: Dependability benchmarks help to com-
pare the dependability properties of multiple components or systems.
A benchmark should fulfill multiple prerequisites to be helpful, for ex-

2.3 BASICS OF SOFTWARE FAULT INJECTION

System Under Benchmark

Fault

Injection)

Target Application Applications .,
J e

f " Benchmark

Fault N Target
Injection Basic Software (OS, Middleware,
Target Runtime Support, Library Code)

[Hardware }

Figure 2.4: Benchmarking of Application-Level Software, adopted from Natella et al.

[54].
¢Fault Model
Fault Generator Controller
Commands
Faultload
Library Workload
Library
v A4 v ‘ v
Fault Injector Load Generator Monitor
A
Fault(s) Inputs
v
> Target
Behavior and

Outputs

Figure 2.5: Conceptual components of fault injection, adopted from Hsueh et al. [34]
and Natella et al. [54].

ample, precise experimental steps that support the reproducibility of
results.

FAULT FORECASTING: This use case encompasses quantitative evaluations of
fault-tolerance properties of systems, often based on probability theory,
e. g., Markov models. For example, it might be of interest how much
delay is caused by an FTAM and how often this is to be expected.

All three use cases have in common that the underlying idea is to inject
faults into those components which are currently not under review. Figure 2.4
shows an example where faults are injected either into applications running
on the system or the underlying system software, causing an effect on the
benchmark target. In case of fault removal from an FTAM, faults are injected
into the software while the FTAM is under review.

Furthermore, all SFI experimental setups follow a similar pattern, which is
shown in Figure 2.5. First, a faultload library must be created. In the context of
fault injection into source code, this could be a list of patch files, each emulating

11

12

BACKGROUND

a faulty situation. During an experiment, a controller controls an injector
component, a load generator, and a monitor. The fault injector component
introduces the faulty situation into the target-under-test. The load generator
generates the inputs to run the software, for example, some binary input. All
information regarding the experiment is gathered by the monitor, e. g., the
introduced fault, the workload, and the behavior of the software. It can then
generate a report for further evaluation of the injection campaign.
Approaches regarding SFI can be split into three classes:

INJECTION OF DATA ERRORs Corrupt memory or registers similar to hard-
ware fault injection.

INJECTION OF INTERFACE ERRORs Corrupt input and output values of com-
ponent interfaces, be it inside a piece of software or at interfaces to other
systems, i. e., other hard- or software.

INJECTION OF CODE CHANGEs Corrupt code to closely emulate programming
bugs.

There exist various methods to perform injection in each of the classes. For
example, injection of code changes can happen on multiple abstraction layers:

e into source code,
e into intermediate code of a compiler, or
e into binary code.

The approaches have different properties. For example, on the binary level,
language constructs of the programming language must first be found, which
can be a difficult task, but modifications on this level are fast because they do
not require recompilations for each experiment. On the other hand, injections
into source code are more straightforward, but for each new experiment, the
software must be recompiled, which can take much time.

Considering the domain of embedded systems, all three use cases for SFI
are relevant. An FTAM should regularly be in place to allow the software to
cope with degrading periphery or software faults. The removal of faults from
such mechanisms is important to improve the robustness of the system. Bench-
marking the dependability of such systems is necessary, for example, when
multiple software systems are available to fulfill a task. Fault forecasting allows
to assess the potential damage a malfunctioning system can cause, especially
when it is interconnected with other devices or physical mechanisms.

The available classes of SFI can be used to emulate various faults in an
embedded system, see Section 2.2 for details regarding faults in embedded
systems. Injection of data errors can be used to simulate broken hardware, for
example, when the periphery is mapped into the memory, and therefore be
used to remove faults from an FTAM. Injection of interface errors can be used
to simulate faults crossing components of the systems, for example, from the
application to the system software and vice versa or passing of messages to
interconnected devices or periphery. This may be especially helpful when com-
paring the dependability of software components. Injection of code changes
can be used to emulate a programmer’s faults.

However, we will later see that most approaches of SFI have been used to
inject multiple types of faults. There is no clear guideline stating which class
of SFI to use when emulating a specific fault type.

2.4 SOFTWARE FAULT LOCALIZATION

2.4 SOFTWARE FAULT LOCALIZATION

Whereas the previous sections dealt with the introduction of faults, it is also
of interest how to localize faults that are already present in software. There
are numerous localization techniques [73]:

PROGRAM LOGGING: Developers add instructions to output logging informa-
tion. These instructions are often removed after a bug has been localized.

ASSERTIONS: Assertions are statements that check specific conditions at run-
time and stop execution otherwise. They can be used, for example, to
check invariants.

BREAKPOINTS: Breakpoints are statements that stop the execution at a specific
code position to allow a developer to examine the current state.

PROFILING: Proﬁling uses runtime metrics, such as memory usage, to detect
unexpected behavior.

SLICE-BASED TECHNIQUES: These techniques try to remove parts of software,
so that it still behaves like the original software in some aspects but is
easier to understand.

SPECTRUM-BASED TECHNIQUES: A spectrum comprises specific runtime in-
formation, for example, the list of executed functions. Together with in-
formation on whether the corresponding execution succeeded or failed,
the approach tries to identify suspicious parts of the software, which
may be responsible for failing executions.

STATISTICS-BASED TECHNIQUES: Predicates are added to the software, and
with statistical mechanisms, a score between failures and predicates is
computed. These scores should help a developer pinpoint the responsible
fault.

STATE-BASED TECHNIQUES: The idea here is to use the state of a program, i.e.,
values of variables, to debug programs. One possibility is, for example,
to compare the state with a reference state to recognize deviations.

MACHINE LEARNING-BASED TECHNIQUES: Machine learning can also be used
to localize bugs. One possible technique involves the training of a back-
propagation network with coverage data of test cases and their execution
result. Later, virtual test cases, each only covering a single statement,
can be used so that the output is the probability that the corresponding
statement contains a bug.

DATA MINING-BASED TECHNIQUES: Due to the sheer amount of data that can
be gathered when tracing bugs, e. g., multiple complete execution traces,
data mining techniques may be helpful to detect patterns, e. g., executed
statements, which lead to a failure.

MODEL-BASED TECHNIQUES: Models can be of multiple uses to localize bugs.
For example, if a model of the correct behavior of software is available, it
can be used to spot differences when executing a faulty implementation.
On the other hand, it is also possible to create models of a faulty software
to then identify model components, which may be responsible for an
observed failure.

This thesis makes use of techniques coming from the areas of assertions,
spectrum-based, and model-based techniques.

13

14

BACKGROUND

Listing 2.1: Example advice tracing the signature of each invoked function.

aspect Tracing {
pointcut match() = "bool %::%(...)" || derived("MyClass");
advice execution(match()) : before() {
cout << JoinPoint::signature() << endl;

2.5 BASICS ON ASPECT-ORIENTED PROGRAMMING (AOP)

Part of this thesis is the assessment of how useful AOP language features are
for fault injection processes. The current section will give an overview of AOP
and its available implementations.

The goal of AOP is to provide language features, which allow a structured
implementation of so-called crosscutting concerns [21]. Crosscutting concerns
are those which affect multiple functions of a software similarly, for example,
error detection and correction mechanisms. While previously, it was necessary
to respect such details at all necessary source locations, with AOP, it is possible
to gather this functionality in a single implementation artifact and specify
where it should apply. This is not restricted to the execution of code, but can
also affect data structures; for example, it is possible to add member variables
to classes or execute code when accessing variables.

Such a language extension can help solve various problems. For C++, there
exists the AspectC++* [64] language extension, which was used in many arti-
cles [5, 6, 22, 45-47], especially regarding embedded systems and software
product lines, i.e., software that can be tailored at compile-time to multi-
ple use cases. For Java, there exists an implementation called Aspect] [38],
which formed the basis for many research articles regarding AOP features and
software architectural difficulties [9, 16, 32, 38, 67].

Besides endianness and software product lines, there are also various other
application scenarios for AOP. Examples include locking, synchronization,
tracing, character set settings, and caching, only to name a few.

Listing 2.1 shows an example tracing aspect written in AspectC++ that
adds tracing output to C++ functions that return a boolean value or methods
of a class that is derived from a class with the name MyClass. The general
structure is similar to how a class is implemented in C++, but for aspects,
the keyword aspect is used to introduce a new crosscutting concern and,
instead of functions, code to be executed is gathered in advices introduced
with the keyword advice. The part after the advice keyword describes where
and when the functionality should be applied to and can also be outsourced
for reusability in other advices with the keyword pointcut. The code inside of
advices can make use of the built-in object tjp and the built-in class JoinPoint
to get information regarding the current location which is augmented, i.e.,
the source code line number or the return type of the augmented function.
AspectC++ therefore provides introspection extensions to C++ additionally to,
for example, type_traits and runtime type information (RTTT).

AQP and AspectC++ provide even more functionality than we use through-
out this thesis. While in this thesis the attribute functionality of AspectC++ was
only used to specify pointcuts, Friesel et al. have shown that AspectC++ can be

1 https://aspectc.org
2 https://www.eclipse.org/aspectj/

https://aspectc.org
https://www.eclipse.org/aspectj/

2.6 SPECIALTIES OF EMBEDDED SYSTEMS

used to replace non-portable C++ attributes and how portable attributes can be
extended with domain-specific knowledge, and that AspectC++ can support
co-development of source code and corresponding models [22]. AspectC++
can also affect C++ templates [45] and can be used for whole-program analy-
sis [6]. The order in which aspects are applied to a pointcut can be specified
in AspectC++ and Aspect]. Both language extensions also provide pointcut
functions to select pointcuts based on the current control flow at runtime.

2.6 SPECIALTIES OF EMBEDDED SYSTEMS

Injecting and localizing faults or errors in software for embedded systems
pose some difficulties not relevant for injections and localization in other types
of software. The current section will give an overview of potential differences,
although it must be noted that the field of embedded systems is vast and
different embedded systems have different specialties.

In general, development for embedded systems requires the use of embed-
ded operating systems. These often provide little to no runtime environment,
while, for example, most of the proposed methods for interface injection
require dynamic libraries and operating system functions to replace them.
Additionally, often not only the software environment poses limitations but
the hardware as well. Hardware limitations may include smaller processors,
less memory, missing displays, and other human-machine interfaces.

While some of the specialties, particularly regarding access to the system,
can be circumvented when using a simulator, the current trend seems to
move development for embedded systems away from simulators and onto
so-called development boards. Texas Instruments has declared that it would
move away from simulators to low-cost development boards, which affects,
for example, the well-known MSP430 family of microcontrollers. We were not
able to find information regarding a simulator for the other microcontroller
used during working on this thesis, the Wandboard Quad, which hosts an
i.MX6 CPU based on the ARM Cortex-Ag instruction set. Apple provides
a simulator for its operating system iOS, which is used on the iPhone and
iPad. However, although the ecosystem is already quite large in comparison to
systems considered more embedded, even this simulator can only be used for
rudimentary development. It does not simulate all components real hardware
provides —e. g., no camera support, no Bluetooth, no sensors —nor all operating
system functionalities — e. g., no push notifications, no framework support.
Google provides an emulator for Android, but it also has some limitations —
e.g., no Bluetooth, no NFC, no SD-card support, no USB.

For the simulation of faults or errors on real hardware, injections must be
performed into the executable or via hardware mechanisms during runtime,
e.g., breakpoints. Localization of faults in software deployed on real hardware
requires that either information must be processed on the embedded system
itself, which may pose a problem given only limited computational resources,
or must be transmitted to another system with additional effort.

In general, investigating an embedded system can be complicated because
it may not be possible or desirable to run additional software to inspect the
current status, including an operating system. One alternative is to examine its
interaction with its surroundings, e. g., peripheral devices. Another possibility
can be to use development mechanisms of the development board, which, for
example, may allow accessing the current contents of the memory.

Additionally, it may not only be a problem to investigate an embedded sys-
tem, but often the embedded system as a whole, including its operating system

15

16

BACKGROUND

and applications, is tailored to its particular needs. This tailoring may result in
no isolation between the operating system and applications. A malfunctioning
application may then draw the whole system unusable and make it hard to
investigate the current status of the system after injecting an error.

Concluding, there are multiple potential pitfalls when applying known
methods to embedded systems, which we will discuss in this thesis. Further-
more, we develop new approaches when necessary, such that fault injection
and localization can happen in embedded systems with their given specialties.

In summary, this chapter has given an overview of basic terminology regard-
ing dependability, fault models, fault injection, and localization. Additionally,
AOP has been introduced briefly, as it is used throughout this thesis, and
the specialties of embedded systems have been discussed, which render the
applicability of known approaches complicated.

SFI FOR EMBEDDED SYSTEMS

The first main contribution of this thesis deals with software fault injec-
tion (SFI), especially in the context of embedded systems, which requires
special care because of additional limitations regarding runtime environment,
programming languages in use, and available computational power and mem-
ory, as laid out in Section 2.6.

In such a restricted environment centered mainly around the programming
languages C/C++, the language extension AspectC++ is useful for solving
various problems, as presented in Section 2.5. It is immediately apparent that
aspect-oriented programming (AOP) can be used for the injection of errors
at software interfaces. In contrast, it is not apparent if AOP can be used for
injections according to the other classes as well and how beneficial the use of
AOP is.

The first part of this chapter laid out in Section 3.1 will, therefore, assess
AOP across the multiple classes of SFI approaches to answer how useful AOP
and particularly AspectC++ are for fault injection methods. The injection of
errors at interfaces with AspectC++ constitutes one of the major contributions
of this thesis. The second part of this chapter in Section 3.2 then focuses on
the injection of code changes based on mechanisms Clang provides and is
another major contribution of this thesis.

Two of the topics are covered in the following articles. We expect the reader
to know its contents for the rest of this chapter, but we will give summaries at
appropriate points during this chapter. Additionally, we will evaluate further
ideas in this chapter, which did not fit into either of the articles.

Ulrich Thomas Gabor et al. “Interface Injection with AspectC++ in Embed-
ded Systems.” In: Proceedings of the 19th IEEE International Symposium on High
Assurance Systems Engineering (HASE "19). IEEE Press, Jan. 2019, pp. 131-138.
por: 10.1109/HASE.2019.00028

Ulrich Thomas Gabor et al. “Software-Fault Injection in Source Code with
Clang.” In: Proceedings of the 32th International Conference on Architecture of
Computing Systems (ARCS ’'19), Workshop Proceedings. 2019, pp. 1—6. ISBN:

978-3-8007-4957-7

Ulrich Thomas Gabor et al. “High-Accuracy Software Fault Injection in
Source Code with Clang.” In: Proceedings of the 24th IEEE Pacific Rim In-
ternational Symposium on Dependable Computing (PRDC ’19). Pasadena, CA,
USA: IEEE Press, Dec. 2019, pp. 75-84. por: 10.1109/PRDC47002.2019.00029

3.1 PRACTICALITY OF AOP FOR SFI

This section discusses the practicality of AOP for SFI. An introduction to AOP
was already given in Section 2.5. Since AOP allows separation of concerns and
augmentation of runtime execution, it can be used to modify the behavior of
software without the need to modify the source code. Additionally, because
aspects are woven in by the compiler, it requires no runtime support and is
an excellent candidate to work in the restricted environment of embedded
systems.

17

https://doi.org/10.1109/HASE.2019.00028
https://doi.org/10.1109/PRDC47002.2019.00029

18

SFI FOR EMBEDDED SYSTEMS

The rest of this section is parted into three subsections, each dealing with
one of the classes of SFI and the possible benefits of using AOP to inject
corresponding faults or errors.

3.1.1 AOP for Data Error Injection

Data error injection is the first class of SFI, and is the closest to hardware-fault
injection. Actually, first approaches originate in software-implemented fault
injection (SWIFI) for hardware faults. The goal of data error injection is to
emulate the effects of faults by modifying the content of the memory before
or during the execution of a program.

C++ is a language that grants much freedom to access the memory. There-
fore, assessing AspectC++ for the injection of data errors makes sense. While
it is possible with C++ and, therefore, also with AspectC++ to modify its
own code during execution of a program, this approach comes with multiple
problems:

1. In the context of embedded systems, the software is typically stored
in read-only memory (ROM) and is therefore not modifiable at run-
time. Nevertheless, it is possible to use get () /set() advice of AspectC++
to redirect data access and modify it at runtime, but this incurs non-
negligible overhead and may therefore be not desirable.

2. As we have shown [25], it is hard to emulate software faults on that level
of abstraction correctly. For example, it is hard to find patterns matching
a specific structure of the source code.

3. Modifying memory directly requires an understanding of the encod-
ing of data types to bytes and the architecture, which often requires
cumbersome architecture-specific coding for multiple architectures.

Other features provided by AOP do not improve this situation, as they
are directed at higher levels of abstraction, i. e., the separation of concerns of
implementation artifacts. Therefore, and since other options already exist [3,
37, 54], we did not pursue this path.

3.1.2 AOP for Interface Error Injection

Injecting interface errors into software is used to simulate errors in inputs and
outputs of components. In the context of software, these can be parameters
or return values of functions, methods, or interactions with hardware. It is
regularly used in robustness testing, which tests to which degree software
operates correctly in the presence of invalid inputs or faulty environments.
The injection of interface errors is possible with AOP as it provides access to
parameters and return values of functions and methods. A simple example of
a possible injection implemented in AspectC++ is shown in Listing 3.1, which
is a concept of the approach we have contributed with this thesis and the
corresponding article [24]. The advice code redirects each call to the function
myfunction, which returns a value of type int and takes arbitrary arguments,
so that the return value and parameter are processed by a provided function
inject. The inject function checks for an activation trigger and, if an error
should be injected, it modifies or replaces the return value or parameter.
Our contribution, which is available as an open-source implementation®,
provides further functions around this underlying mechanism. Foremost,

1 https://ulrichgabor.de/r/aofit

https://ulrichgabor.de/r/aofit

3.1 PRACTICALITY OF AOP FOR SFI

Listing 3.1: Basic example of injecting errors in return value and parameter.

advice call("int myfunction(...)") && result(resultvar)
: after(int * const resultvar) {
inject(tjp, resultvar);
}
advice call("void myfunction(int)") && args(a)
: before(int * const a) {
inject(tjp, a);

we solved multiple issues regarding the transformation of given interface
specifications in JSON syntax into automatically generated aspects. Automatic
transformation is not only convenient but allows for the easy application of
injection campaigns at interfaces conforming to the Portable Operating System
Interface (POSIX) standard without knowledge of AOP.

Regarding the domain of embedded systems, we also depicted and evalu-
ated multiple methods to perform injection experiments, which is a non-trivial
task given that software must often be run on isolated development hardware.
The most straightforward variant is to flash a patched image to the hardware
for each new experiment. Other variants to reconfigure an image for the next
experiment include GDB — the GNU debugger — or arbitrary protocols which
are connected via serial port, ethernet, or JTAG, which is an industry-standard
for debugging embedded systems. These approaches improve the time re-
quired for an injection campaign because flashing can be a time-consuming
process. Details can be found in our publication [24].

We compared our approach to state-of-the-art approaches, which use dy-
namic library interception to inject errors at such interfaces, for example,
LD_PRELOAD [7, 33]. While this mechanism is comfortable, it can only inject
errors at interfaces to dynamic libraries. Since embedded systems often make
no use of dynamic libraries, this mechanism cannot be applied to them. We
counted interfaces of some standard software and found that regularly the
number of interfaces of dynamic libraries is only around 5 % to 10 % in com-
parison to the total number of interfaces. Therefore, up to 90 % of interfaces
are left, which cannot be injected with approaches based on dynamic libraries.

Not all interfaces may signal errors. We, therefore, explicitly considered
those interfaces again that return a pointer or integer and can, in theory, return
an error. We found that for a binary of size 20,732 kB, there are 97 interfaces
returning a pointer and 34 interfaces returning an integer value. Instrumenting
all of them results in a binary of size 22,628 kB and, therefore, a growth of 9 %
in size, which seems appropriate.

Concluding, we have contributed a new method to inject errors at arbitrary
interfaces. We have taken special care for embedded systems and have depicted
multiple variants to perform injection campaigns efficiently and to generate
campaigns automatically based on a POSIX specification.

3.1.3 AOP for Injection of Code Changes

The previous section has shown that AOP and particularly AspectC++ is an
excellent addition to the C++ language to perform interface error injection,
but the current section will show that AOP and AspectC++ cannot be used

19

20

SFI FOR EMBEDDED SYSTEMS

to inject code changes in its current form — and why this also might not be
desirable.

Code changes and programmer faults are syntactical differences in com-
parison to correct code. Often, it is hard or even impossible to specify what
semantical change follows from a syntactical change; see Rice’s theorem [60].
Therefore, staying on the syntactical level to emulate software faults is the
preferred way.

AOP languages, in comparison, do not work on the level of syntactical
structures but a semantical level. They allow for augmentation of code by
specifying pointcuts and code that should be executed at the pointcuts or
modify data structures. Such pointcuts are specified in a syntax-agnostic
language; for example, they allow to augment function calls filtered by the
current control flow. Besides filtering, there is no way to tell how a function
was called, e. g., normally, via a pointer or reflection mechanism, and it is not
of relevance for the semantic level AOP languages operate on.

Despite this fundamental discrepancy between the level AOP operates on,
and the level injections are performed, we assessed whether it is possible to
inject code changes with AspectC++, as one of the prominent AOP language
extensions used in embedded systems. For the selection of potential source
locations to inject faults at, AspectC++ provides pointcut functions to match
accesses to global variables with get () /set() and uses of built-in operators,
e.g., +, with builtin().

At first glance, it is, therefore, possible to inject different behavior in multiple
positions in the code, at least for some fault types. However, a closer look
reveals that the pointcut functions for variables currently work only with global
variables and members of classes. Local variables cannot be augmented, which
is essential for modifying basic local algorithms, e. g., a sorting algorithm. This
limitation is, to our best knowledge, of technical nature, so it could be solved
by changing the AspectC++ parser. However, the primary purpose of AOP
is to implement crosscutting concerns, and these are often not affected by
local variables. Therefore it is unclear if there are enough good reasons to
implement pointcut functions for local variables.

Another problem is that context is required to perform injections. Consider
a matched built-in operator & which may be subject for an injection of the
type “missing AND condition in branch condition”, see Table 4.2 on page
25 for an early overview of potential fault types. Only with context, i. e., the
types of the parent nodes, it is possible to determine if the built-in operator is
used in a branch condition or if it is part of an assignment. The joinpoint API
of AspectC++ provides only basic information regarding the structure of the
code. Among the ones seeming most helpful at first glance are JPID, JPTYPE,
*signature(), *filename() and line().

However, all this information still does not provide enough context to per-
form accurate injections. Consider, for example, a minified C++ file, which
often boils down to only one line of source code, then *filename() and line()
are not helpful anymore. The signature of a method provides no context for
built-in operators at all. The only remaining possibility is JPID, an id unique to
each joinpoint. One solution to acquire the required context based on this fea-
ture is a technique used for more complex reflection tasks in AspectC++. The
idea is to integrate the information AspectC++ gathered during a first parsing
pass into the aspects and then compile the final executable. This technique
could be used to obtain necessary information for each JPID, e. g., the types of
the parent nodes of the currently matched joinpoint, which could then be inte-
grated into the final executable. Unfortunately, this idea entails the problem of

3.2 INJECTION OF CODE CHANGES WITH CLANG

identifying the type and context for each token of the source code. Since this is
not possible with AspectC++, otherwise we could use this mechanism directly,
one would have to utilize another tool to get this information, i. e., some kind
of parser. Now the question is, why implement a parser to obtain this context
information, and then integrate this information into aspects, when the new
software could just inject the fault itself? Considering that the motivation to
use AspectC++ for fault injection is not to need to use specialized software,
this idea seems flawed.

Considering all these problems and the difference between syntactical fault
injection and the semantical level AOP operates on, we instead concentrated
on developing a method for the injection of code changes, which is not based
on AOP and AspectC++.

3.2 INJECTION OF CODE CHANGES WITH CLANG

While injection of code changes with AspectC++ is not easily done, as shown
in the previous section, the modern compiler frontend Clang for C/C++ lan-
guages, based on the LLVM backend [43], provides features that are useful
for the implementation of an injection method.

Foremost, it provides a domain-specific language (DSL) to specify abstract
syntax tree (AST) Matchers?, which allows coarse-grained matching of AST
nodes. Together with callback functions that have fine-grained access to the
AST nodes, it is possible to match exactly those syntactical structures that
need to be found for the used fault model. Furthermore, it provides rewriting
mechanisms of source code, which allow for the injection of faults according
to the fault model.

We used these techniques to implement clang-sfi3, a software-fault injection
method based on Clang [25, 26]. Our publications show that the use of Clang
and the described features already led to a significant improvement regarding
the accuracy of the tool. In this context, accuracy means the proximity between
generated faults to inject and the faults which should have been injected
according to the underlying fault model. We further improved the accuracy
by allowing to inject faults into macros, which is normally not possible with
the Clang rewriter functionality, and by respecting headers and C++ project
structures.

A qualitative examination of multiple examples shows that neglecting these
C++ peculiarities can lead to a drastic rift between the desired injections and
the actual injections, which inevitably must have an impact on the observed
failures for affected projects. However, such a quantitative evaluation is still
future work, see Section 6.1.

If the impact is as drastic as envisioned, it might render many results of other
articles questionable. For example, comparisons between the injections inside
components and at interfaces of components [52] are based on injections on
the binary level, which we have shown to be not accurate in many current
development scenarios. Actually, all results which are based on injections on
lower levels than source code and which are generalized to arbitrary software
compiled in modern development environments should be viewed with cau-
tion. Additionally, injections into the source code of projects making heavy
use of headers or macros are likely biased.

The latter is especially severe in the context of embedded systems, where
programming often makes heavy use of macros and transformations of macros

2 https://clang.llvm.org/docs/LibASTMatchersReference.html
3 https://ulrichgabor.de/r/clang-sfi

21

https://clang.llvm.org/docs/LibASTMatchersReference.html
https://ulrichgabor.de/r/clang-sfi

22

SFI FOR EMBEDDED SYSTEMS

to C++ source code regularly require features of new C++ standards, which
might not be implemented by compilers for embedded systems.

In this chapter, we have discussed three classes of fault injection into em-
bedded systems: data error injection, interface error injection, and injection of
code changes. Notably, we have contributed insights on how useful AOP is
for each of these classes and concluded that it is most helpful for the injection
of interface errors. We have further contributed a method based on Clang to
inject code changes. All of our methods surpass the current state-of-the-art of
fault injection in the context of embedded systems.

FAULT MODELS FOR SOFTWARE FAULTS

While the previous chapter dealt with the injection of faults regarding embed-
ded systems from a more technical point of view, the current chapter explores
the underlying fault model. Having a method to inject arbitrary software faults
is not enough, but one must also have a model of the faults to inject, possibly
bundled with a distribution of such faults to improve the performance or
accuracy of injection campaigns.

Intuitively, the first step towards a software fault model is to assess bugs
which have been fixed in existing software. Chillarege et al. [12] presented
the orthogonal defect classification (ODC), which is based on the idea of
classifying occurred errors and will be presented in the next Section 4.1. Since
this classification is too vague to be used to emulate software faults, a more fine-
grained classification coming from the literature is presented in Section 4.2.
Finally, Section 4.3 will discuss our contribution regarding the state-of-the-
art, followed by a novel concept in Section 4.4, potential problems of our
envisioned approach in Section 4.5 and potential applications of our approach
in Section 4.6.

4.1 COARSE-GRAINED CLASSIFICATION OF SOFTWARE FAULTS

Chillarege et al. presented the ODC to classify faults according to a classifi-
cation which allows for an unambiguous mapping [12]. First, they classify
faults according to their underlying fix out of the following options. Each of
the categories can be further divided into missing or incorrect.

FUNcTION Faults which affect the end-user interfaces, product interfaces,
interfaces to hardware, or similar serious issues, which require a formal
design change to modify the so-called requirements specification.

INTERFACE Faults in interacting with components, modules, or hardware not
covered in the requirements specification.

cHECKING Faults affecting the proper validation of data before usage.

AssIGNMENT Faults related to a small part of the code responsible for the
initialization of a data structure, or similar.

TIMING/SERIALIZATION Faults involving the use of shared and real-time re-
sources.

BUILD/PACKAGE/MERGE Faults related to library systems, management of
changes, version control, and build processes in general.

DOCUMENTATION Faultsregarding (internal) documentation, release of change
notes or similar.

ALGoRITHM Faults affecting the efficiency or proper function of a task but
without the need for a formal design change request.

These categories can be associated with different stages of the software
development process, where they are likely to occur. Table 4.1 shows some of

23

24

FAULT MODELS FOR SOFTWARE FAULTS

STAGE DEFECT TYPE

Function Checking Timing Algorithm

Design

Low-Level Design

|

|

|
Code ‘ . .
High-L. Design Insp. ‘ .
Low-L. Design Insp. ‘ .
Code Inspection ‘ . °
Unit Test | . .
Func Test ‘ . .
System Test ‘ .

Table 4.1: Association between defect type and stages of the software development
process, adapted from Chillarege et al. [12].

these associations, as presented in the original article. Each category can be
associated with design phases, actual programming activities, or inspection
phases. The association gives hints where faults of a specific defect type are
most likely to occur. If they occur at different stages, this can be interpreted as
a hint that verification stages are not properly working.

Additionally, a defect trigger is identified for each classified defect. It char-
acterizes the circumstances which allow a fault to cause an error and finally
a failure. While the defect type can be specified only when the underlying
fault has been identified, the defect trigger can be specified very early when
encountering a defect.

4.2 FINE-GRAINED CLASSIFICATION OF SOFTWARE FAULTS

The coarse-grained classification of ODC is not useful for emulating software
faults because it is unclear how to modify software to emulate a fault. Durédes
et al. therefore proposed a more fine-grained classification based on the ODC
classification, which is based on necessary modifications to source code to
emulate a fault [17]. Table 4.2 shows a subset of the proposed fault types,
although the original article lists more. Later research has shown that many
types are so rare that they can be ignored [53].
We recommend to read the following article before this chapter:

Ulrich Thomas Gabor et al. “High-Accuracy Software Fault Injection in
Source Code with Clang.” In: Proceedings of the 24th IEEE Pacific Rim In-
ternational Symposium on Dependable Computing (PRDC “19). Pasadena, CA,
USA: IEEE Press, Dec. 2019, pp. 75-84. por: 10.1109/PRDC47002.2019.00029

In our article, we have listed multiple problems current methods for the
injection of code changes suffer from:

MACROS AND COMPILE-TIME LANGUAGE CONSTRUCTS Most approaches ne-
glect compile-time language constructs like C++ templates, although
they are a Turing-complete addition to the C++ language. Even macros,

https://doi.org/10.1109/PRDC47002.2019.00029

4.2 FINE-GRAINED CLASSIFICATION OF SOFTWARE FAULTS

FAULT TYPE

EXPLANATION

MFC Missing function call

MIA Missing IF construct around statements

MIEB Missing IF construct+statements+ELSE before statements
MIES Missing IF construct+statements+ELSE+statements
MIFS Missing IF construct+statements

MLAC Missing AND clause in branch condition

MLOC Missing OR clause in branch condition

MLPA Missing small and localized part of the algorithm
MVAE Missing variable assignment with an expression
MVAV Missing variable assignment using a value

MVIV Missing variable initialization using a value

WAEP Wrong arithmetic expression in function call parameter
WPFV Wrong variable used in parameter of function call
WVAV Wrong value assigned to variable

Table 4.2: Fault types used for software fault injection in our experiments [17].

which have been around for a long time and are also practically Turing-
complete, are often ignored. Some approaches operate directly on the
assembly, while others operate on preprocessed code. We have demon-
strated that especially the ability of macros to impact many source code
positions at once can have a dramatic effect if there is a fault in a macro.
A tool operating on a preprocessed or binary file should inject the fault
at all macro expansions to correctly emulate the fault.

IMAGE MODIFICATIONS AND THEIR IMPACT ON FAILURES COHCQI‘Hil’Ig image

modifications, we have shown that some approaches, especially those
that add support code for executing a fault injection campaign into the
injection target, can have a dramatic effect on the size of the resulting
binary. In our experiments, the binary size doubled to tripled in size.
Especially in the context of embedded systems, such growth may be a
problem for the restricted memory of these systems. The changes can
additionally have an effect on the faulty behavior of the injection target
due to wild pointers or changes in execution.

RECOGNIZING CODE IN OPTIMIZED ASSEMBLY Especially approaches that op-

erate directly on the binary, but also those operating on an intermediate
representation of a compilation, suffer from the problem that structures
of the source code, where faults should be injected, must first be found.
Most authors seem to use unoptimized code for their evaluations, but
the second optimization level -02 is used in practice regularly. We have
shown by examples, that it is impossible to identify some injection tar-
gets in such an optimized code because the corresponding source code
was optimized away. The latter can stem from basic optimizations like
inlining of functions to more complex operations like loop-unrolling.

Additionally to these problems of injection methods, we have identified
problems in the specification of the currently used fault model [17]. While the
authors have provided extensive specification of faults in text form and even

25

26

FAULT MODELS FOR SOFTWARE FAULTS

published an appendix for their article with more details, we encountered
several uncertainties when implementing our injection tool. We doubt that it
is possible to compose an unambiguous specification in text form covering
all possibilities, especially since programming languages and development
processes evolve.

The rest of this chapter is based on our findings regarding the specification
of fault models and the accuracy of injections, i. e., proximity between gener-
ated faults to inject and the faults which should be injected according to the
underlying fault model [25], but will take the ideas a little bit further than
what has already been published.

4.3 IMPROVING ACCURACY OF FAULT MODELS FOR FAULT INJECTION

We already questioned the accuracy of injection tools regarding the underlying
fault model in Chapter 3, i. e., how close the generated injections are to those
which should have been generated according to the fault model.

In this section, another form of accuracy comes into play: the accuracy of
fault models in comparison to real software faults. We already published
findings related to this form of accuracy [25, 26], arguing that fault types and
distributions may change and that a textual description of fault types might
lead to ambiguities when implementing software fault injection (SFI) tools.
Therefore, we propose a solution closer to source code.

Our vision is an automatic fault classifier, which is capable of characterizing
faults automatically according to some preset classification. A tool like this
faces two main obstacles:

1. determining which source code modifications constitute a bug, and
2. mapping the source code modifications to an abstract model.

Luckily, software development processes have improved a lot in recent
years. For example, Github* provides a ticket system with version control
system (VCS) integration for all projects, which allows for a mapping of
source code changes to a specific bug report.

Furthermore, there have been improvements regarding the determination of
differences between source code, notably the so-called Gumtree algorithm [20],
which computes differences between two source code files represented as
graphs and works on the so-called abstract syntax tree (AST). With the intro-
duction of Clang, source code handling of C++ code has improved in general,
and also the Gumtree algorithm has been ported to Clang.

Having an automatic fault classifier would allow for the classification of
many more bugs than manually. The interaction with a ticket system allows for
a mapping of bugs to specific project phases. Additionally, since classification
happens automatically, there exists an unambiguous decision-maker regarding
the fault types. Such a decision-maker should help when implementing SFI
tools, for example, because a generated fault can be classified again to check if
it was correctly generated.

4.4 CONCEPT OF AN AUTOMATIC FAULT CLASSIFIER

We already envisioned the process to automatically classify faults according
to a given classification, see Figure 4.1 for an overview.

1 https://github.com

https://github.com

4.5 POTENTIAL PROBLEMS 27

Obtain .| Identify AST Classify
Patches | Differences Differences

Figure 4.1: Steps of envisioned fault classifier.

Listing 4.1: Example of an edit script

Insert BinaryOperator: &&(10) into BinaryOperator: =(8) at 1
Insert ParenExpr(1l) into BinaryOperator: &&(10) at ©

Insert BinaryOperator: ==(12) into ParenExpr(11l) at 0

Insert DeclRefExpr: argc(13) into BinaryOperator: ==(12) at 0
Insert IntegerLiteral: 5(14) into BinaryOperator: ==(12) at 1
Move ParenExpr(15) into BinaryOperator: &&(10) at 1

The first step of this process is to obtain patches which fixed bugs. We will
use Github as an example of a current hoster for the VCS Git. Github provides
an application programming interface (API)? to obtain not only information
regarding existing issues but also which Git commits are affected. It is also
possible to label issues, for example with a label called “bug”. Even if labels are
not used for a project, it is possible to search the issue text for the occurrence
of the word “bug” (or similar words) to select only issues dealing with bugs
and not questions or feature requests.

The second step of our envisioned process is to gather the AST differences
caused by the commits related to an issue. One standard notation is a so-called
edit script, see Listing 4.1 for an example. These scripts consist of a sequence
of operations that transform one AST to the other, where the operations are
one of four types — insert, update, move and delete. To obtain such an edit
script, first, a mapping between the two ASTs must be established from which
an edit script can be built [10].

Obtaining a mapping between AST nodes can be done, for example, with
the Gumtree algorithm [20], which builds a mapping in two steps similar to
how a human would infer a mapping. The first step is a top-down algorithm
to find the largest isomorphic subtrees, which are then mapped and called
anchors. In the second step, a bottom-up algorithm tries to map nodes with
a large number of common anchors, and if two nodes are matched, another
algorithm will try to match the nodes of the two subtrees.

The third step is to classify edit scripts, so that each is mapped to a fault
type, if this is possible. Building the classification on top of edit scripts allows
to replace the mapping algorithms.

4.5 POTENTIAL PROBLEMS

It may be hard or impossible to differentiate between the obtained ticket types
automatically. Modern software project management services like Github
provide labels for issues. These can be set by the creator of an issue or members
of the corresponding project. Using these labels thoroughly would already
suffice to enable a distinction between bugfixes and other issue types. An
alternative could be natural language processing (NLP).

It may be adequate or necessary to build the classification algorithm not on
top of edit scripts but directly on the output of the mapping algorithm, because

2 https://developer.github.com/v3/

https://developer.github.com/v3/

28

FAULT MODELS FOR SOFTWARE FAULTS

the classification might require more information regarding the concrete AST
than the condensed information edit scripts provide.

Consider, for example, a condition in the head of a loop construct. If the
change only adds tokens to the source code at a specific location, then the edit
script will only contain Insert operations and a reference to the parent node.
If this was not the outermost operator, then this parent node can be another
binary operator node by which one cannot tell if the whole condition is part
of a loop header or only part of a boolean assignment. One would need to
traverse the parent nodes up until a statement node is reached, which gives
enough context to distinguish different fault types. This information regarding
parent nodes is not present in an edit script.

4.6 POTENTIAL APPLICATIONS OF THE CLASSIFIER

Implementing our idea as a tool would allow us to answer multiple research
questions, and the findings could improve the current situation regarding
software fault injection and especially software fault models. Consider the
following list for an impression on what questions such a tool could answer:

1. Research might lead to insights into which additional information should
be gathered in a ticket system to ease the automatic classification of
existing bugs for modeling purposes.

2. Itis unclear if the fault model set up multiple years ago is still valid for
current software projects.

3. Furthermore, it is unclear if the fault types and their distribution apply
to all types of software projects equally. Especially software coming from
the embedded system and the operating system field might be subject
to special fault types or distributions.

4. Additionally, it is unclear if fault types or the distribution of the changes
during the lifetime of a software project.

5. The fault types seem too simplistic to emulate what occurs as bugs in
current software projects correctly. Often a patch consists of more than
one type of fault. An automatic classifier could be used to split patches
and obtain statistics on which fault types regularly occur together to
form one fault.

In this chapter, we highlighted potential pitfalls when specifying fault mod-
els and raised multiple questions regarding their validity, given the change
of software development processes in recent years. Additionally, we demon-
strated the concept of an automatic fault classifier, which could be used to
answer multiple of the raised research questions and, therefore, could improve
the accuracy of fault injection experiments.

FAULT LOCALIZATION IN DEPLOYED EMBEDDED
SYSTEMS

As described in Section 2.4, there exist various approaches for fault localization.
We wanted to know if it is possible to localize faults in-field, i. e., in a deployed
embedded system. These systems come with additional difficulties, because
often embedded systems are context-aware or must at least run in different
and potentially unknown environments, but are at the same time not easily
accessible.

We present two possible methods to achieve this goal. The first one is based
on a program spectrum analysis, where information gathered at runtime, the
so-called spectrum, is used together with information about succeeding and
failing results to pinpoint potential fault locations. This idea has already been
published and will be presented in Section 5.1. The second method is only
presented as a concept in this thesis and uses models and assertions to verify
the execution at runtime, see Section 5.2.

5.1 PROGRAM SPECTRUM-BASED FAULT LOCALIZATION

Most of the state-of-the-art approaches from literature require high compu-
tational power or much storage. They inspect all statements [36], data and
control dependencies in programs in the form of a program dependence
graph (PDG) [59], or are traditionally based on the results of the execution
of failing or even all test cases of a test suite [73], which requires many re-
sources by design. A few authors also focus on efficiency, for example, by
using dynamic code coverage starting with more coarse instrumentation [58].

Regularly, high resource consumption is no problem on desktop computers,
but it is not adequate to pair an embedded system with a desktop computer
in-field. For an analysis at runtime, we came up with the idea to pair two
embedded systems, where one is the system-under-test, and the other one is
tasked to monitor the system-under-test.

The idea of using two small systems comes with multiple advantages com-
pared to other solutions. It is cheap, because often embedded systems are
made out of small commodity hardware, and it is possible to leave the sys-
tem in-field without the need for desktop computers or continuous access to
the system-under-test. Having a separate system monitoring events helps to
maintain a flawless report in case of deviating behavior. A separate system
is more isolated and, therefore, safer against error propagation. If isolation
can be achieved by other means, e. g., virtualization, both functions can be
deployed on one piece of hardware as well.

As most of the presented approaches in Section 2.4 require high computa-
tional power or storage, we decided to assess spectrum-based fault localiza-
tion (SBFL) in combination with models as oracles to decide when runs were
successful or failing. We recommend reading our article with the published
results at this point.

29

30

FAULT LOCALIZATION IN DEPLOYED EMBEDDED SYSTEMS

Ulrich Thomas Gabor et al. “Spectrum-Based Fault Localization in Deployed
Embedded Systems with Driver Interaction Models.” In: Proceedings of the
38rd International Conference on Computer Safety, Reliability and Security (SAFE-
COMP ’19). Ed. by Alexander Romanovsky et al. Turku, Finland: Springer
International Publishing, 2019, pp. 97-112. 1sBN: 978-3-030-26601-1. DOI: 10.
1007/978-3-030-26601-1_7

In summary, we assessed failure-detection oracles, transaction detectors,
and suspiciousness metrics in the context of embedded systems, i. e., a sim-
ulated combustion engine. We compared two failure-detection oracles: the
software behavior graph (SBG) [44], which is a graph representation of the
call hierarchy of functions, and the driver interaction model (DIM) [23], our
contribution, which is an automaton modeling the interaction with periph-
ery. We split the execution in slices based on time and used each slice as a
separate transaction, as done by others [1], and we used multiple available
suspiciousness metrics from literature [73]. For the generation of spectra, we
viewed each called function as component and also compared it to method call
sequence hit spectra (MCSHS) [14], an approach again taken from literature.

Both failure-detection oracles are models of correct software behavior. These
models can either come from the specification phase, can be learned from
correct software, or be developed interactively during the implementation
phase. Some origins might require special care, and the use cases of our
approach depend on the specific setting. Further details can be found in the
corresponding publication [23].

Our evaluation revealed that using MCSHS regularly generates so much
data that it cannot be assessed in real-time. Therefore, we stuck to using only
the currently executed function as a component in the spectrum. In comparison,
our contribution — the DIM - detected around 50 %, whereas the SBG only
detected 0.05 % of the failures. Evaluating multiple available configurations
with the well-known EXAM metric [72] showed that using the time-based
transaction detector works quite well, i.e., in 80 % of our experiments, the
first reported location to the developer to search for the fault was indeed the
location of the fault.

Concluding, we have shown that our approach works in the context of
embedded systems, that our monitoring approach can keep up with the gen-
eration of data by the system-under-test in real-time and that it often provides
the exact location of the fault as the first result. Additionally, we have shown
that our oracle type DIM can detect failures better in comparison to the SBG.

5.2 ASSERTION-BASED FAULT LOCALIZATION

While the first method already utilized models to decide when a run was
succeeding or failing, the gathered runtime information and its evaluation
are used to give only a probabilistic location of the underlying fault. While
this works well in some cases, it might not yield good results in cases of more
complex software and interaction, where execution is not that repetitive.

The alternative presented as a concept in the current section requires prede-
fined software models — in contrast to the first approach where corresponding
models could be learned. Having a thorough software model at hand allows us
to construct assertions, which check invariants at runtime. This, in turn, allows
us to give more pinpointed locations if a failure is detected. The underlying
idea is to automatically generate the assertions that check that the execution
happens according to modeling rules.

https://doi.org/10.1007/978-3-030-26601-1_7
https://doi.org/10.1007/978-3-030-26601-1_7

5.2 ASSERTION-BASED FAULT LOCALIZATION

Listing 5.1: Example OCL rules.

context Company
inv: self.manager->size() =1

context List:items : Collection(Items)
init: Collection{}

context List::removeElement(d:Data)
pre: oclIsInState(notEmpty)
post: size@pre = 1 implies oclIsInState(empty)

The basics for this approach were developed by Meyer when developing
the Eiffel programming language and the design-by-contract approach [48,
49]. When applying this approach, software designers define formal, precise,
and verifiable interface specifications. Regularly, this involves information
regarding the allowed input values, return values, invariants, pre- and post-
conditions. Such information can be transformed into assertions so that they
can be checked at runtime.

5.2.1 Transformation of Model Constraints to Assertions

The de facto standard for software modeling is the Unified Modeling Lan-
guage (UML), which comes with the Object Constraint Language (OCL).
OCL is a declarative language to annotate rules in UML models, especially
invariants, pre- and postconditions [56]. It was initially developed by IBM and
is now standardized by the Object Management Group (OMG). In contrast to
specification documentation, which may be semi-formal text, OCL is a precise
language underpinned by a formal description of its syntax. It is, therefore,
possible to write parsers for it.

Multiple examples of OCL rules are shown in Listing 5.1. The first rule
specifies the invariant that for each instantiation of a class Company, exactly
one manager must be associated. The second rule specifies that, given a List
implementation with the list items saved in a variable items, the variable
items should be empty at the point of creation of an object of that class. The
third rule specifies pre- and postconditions for the execution of the method
removeElement of the list implementation. It uses so-called predefined prop-
erties, here oclIsInState(), to make sure that the object is in the appropriate
state specified by a supporting UML state-chart before and after the execution
of the method.

These examples already show many of the features OCL provides, although
there are more, which we do not present for brevity. The question is how such
specifications can be used to generate code, which checks the rules at runtime.

Aspect-oriented programming (AOP) can be used to augment every method
execution and surround the execution with extra code, which can be used
to check invariants as well as pre- and postconditions. Other programming
languages like C# provide dedicated design-by-concept language constructs.
While such a language feature has been proposed for addition to the C++ stan-
dard multiple times already, it has also been rejected multiple times and is
now planned for C++23. Until then, AOP provides a good alternative, and
even when first-class language constructs are available, AOP might provide
additional benefit, as we will discuss later in this section.

31

32

FAULT LOCALIZATION IN DEPLOYED EMBEDDED SYSTEMS

Listing 5.2: Example transformation of the OCL rules given in Listing 5.1 to AspectC++.

aspect OCL_Company {
advice execution("% Company::%(...)") : around() {
assert(manager->size() = 1);
*tjp->proceed();
assert(manager->size() = 1);

+

aspect OCL List {
advice construction("List") : after() {
assert(items->empty());

}

advice execution() : around() {
oclIsInState(notEmpty);
*tjp->proceed();
oclIsInState(empty);

+

A devised transformation of the OCL examples of Listing 5.1 to AspectC++
aspects can be seen in Listing 5.2. While the example code requires some imple-
mentations which currently do not exist, the straightforward transformation of
OCL rules to AspectC++ should become clear. One missing implementation is,
for example, that of oclIsInState, which requires that the state of the object
is traced somewhere.

The idea to transform OCL rules to AOP language constructs is not new [18],
but we do not know of anyone who has thought about doing this for AspectC++.
A general approach to transform OCL rules to any implementation language
was presented by Moiseev et al., which generates pseudo-code fitting the
structural similarities of a class of programming languages and then converts
this into the target language [51]. They evaluate their approach using four
languages: Java, Python, Haskell, and O'Haskell. Furthermore, they claim that
it should be possible to add C++ to this list. However, they do not discuss how
assertions generated by their approach can be integrated into a software project
or how changes to the OCL rules can be propagated into already augmented
source code.

Other approaches make use of source-to-source transformation, thereby
allowing to keep code written by developers and automatically generated asser-
tions separated and allowing to redo the process, when OCL rules change. One
approach uses C++ templates [65]; another one is facilitating OpenC++ [11].
None of these solutions is still maintained today, and since OCL changed sub-
stantially between versions 1 and 2 and these approaches were all presented
before the release of version 2, they are — in general — rendered unusable for
current software models. Therefore, only the concepts of these approaches
remain today. In contrast, AOP is a multi-purpose source-to-source transfor-
mation approach, and methods using it are not prone to be abandoned like
special-purpose tools.

Willink has identified multiple problems when transforming current OCL
rules given in version 2 to Java, e. g., regarding the problem of implementing
OCL’s unlimited numbers [71]. To the best of our knowledge, this is the most

5.2 ASSERTION-BASED FAULT LOCALIZATION

current overview of limitations when transforming modern OCL rules to
implementation languages. Since the standard libraries of Java and C++ are
similarly powerful, similar limitations will apply when transforming modern
rules to C++.

Concluding, despite all these alternatives, we were not able to find any main-
tained software to extend modern C++ source code with assertions coming
from OCL constraints given in an up-to-date version of OCL. A transformation
of OCL rules to AspectC++ code seems to be the most reasonable approach cur-
rently, because it would not require special-purpose implementations. Instead,
most requirements can be easily fulfilled because aspects have access to all
C++ features and all methods and attributes of the classes. Nevertheless, trans-
forming all the state changing rules and all OCL features to C++ code remains
an open challenge. Solving this challenge requires not only an OCL parser but
also the implementation of various data structures/algorithms to implement
all OCL features and a transformation of a state-chart to a corresponding state
tracer. However, we do not expect significant problems implementing this
with AspectC++ in contrast to pure C++.

5.2.2 Applicability of the Approach

If an implementation of a transformer from OCL to AspectC++ existed, it
would allow for the inline generation of checking code, which could check for
deviating behavior at runtime. As soon as such a deviation was recognized,
the system could notify a second embedded system, which only keeps track of
occurred errors and the rule which discovered the problem. A developer could
use this information to pinpoint the underlying fault. A second isolated system
for monitoring improves the reliability of the monitoring system, as the system-
under-test might behave unexpectedly in case of an error. If other isolation
mechanisms are available, it might be possible to combine both functions on
the same hardware.

It remains unclear if our proposed approach is feasible. Dzidek found that
when transforming OCL rules to Aspect] for Java applications, the size of the
binary tripled in their example, and the execution time increased between
50 % and 100 %, while the memory footprint increased unsubstantially [18].
Although this seems high, the overhead varies and is mainly affected by the
number of transformed OCL rules, i. e., more rules result in more code and
more execution time. It can be expected that the overhead of an implementation
using AspectC++ will be similar.

For embedded systems, it is likely not possible to activate all assertions at
the same time. Checking assertions can have a significant effect on the runtime,
and converting all OCL rules to assertions can result in binaries that are too
large for the embedded device. Therefore, we propose an approach which
sorts classes topologically in a tree structure (ignoring circular dependencies
for now) and activates assertions only on the upper layers. Each time a failure
is detected, one assertion should have been violated. Further search for the
fault then can concentrate on that subtree of classes and allows to activate
corresponding assertions on lower levels. This approach can be repeated until
the assertion has been found that cannot be unfolded further. Depending on
if it was possible to integrate all assertions at once, this search process could
either be orchestrated by the monitoring system automatically, or it might
require new compilations and, therefore, likely requires human interaction.

Another problem might be that a failing system might not be capable any-
more of verifying assertions or logging violations. A possible solution to this

33

34

FAULT LOCALIZATION IN DEPLOYED EMBEDDED SYSTEMS

problem might be that assertions are checked on another system, which re-
quires the transmission of data to verify them.

In summary, we presented two approaches in this chapter to localize faults,
especially in deployed embedded systems. Both approaches make use of two
isolated functional units, one being the system-under-test and the other one
being a monitor, which can be deployed on two separate embedded systems
or hardware providing other appropriate isolation mechanisms. The first ap-
proach uses aggregated execution information to give a probabilistic location
of the root cause. The second approach uses assertions generated from a
software model to give an exact location of the deviating behavior.

CONCLUSION AND OUTLOOK

This thesis by publication presented our contributions to the current state-of-
the-art regarding fault injection and localization in embedded systems. First,
we have shown how useful aspect-oriented programming (AOP) is for the
three classes of software fault injection (SFI), especially in the context of em-
bedded systems, which have additional limitations in comparison to a desktop
computer or server. Then, a thorough assessment of the currently used fault
models revealed multiple problems. While we have solved some problems,
we left others as questions for future research and envisioned concepts for
this research. Additionally, contrasting the injection of faults, we have also
examined how faults in deployed embedded systems can be localized by using
program spectrum or assertions.

In detail, we have contributed a fault injection procedure for interface in-
jection based on AspectC++ and have demonstrated that AOP, in general, is
especially useful for this application. Additionally, we assessed how useful
AOP is for the injection on the other abstraction layers and concluded that
other approaches are more promising. While contributing a method to inject
faults into source code based on Clang, we assessed the state-of-the-art fault
models and found multiple limitations. We concluded that an automatic fault
classifier would allow us to answer various research questions brought up
while working on this thesis and described our concept of such a classifier.

Furthermore, while spectrum-based fault localization techniques are not
new, it was unknown if it is possible to implement such algorithms on de-
ployed embedded systems. We have shown that these algorithms can run on
embedded systems and are also useful to detect faults in deployed embedded
systems by using automatic oracles, i. e., automata, which are a model of cor-
rect interaction with the periphery. Additionally, we depicted a concept on how
constraints given in a software model, i. e., Object Constraint Language (OCL)
constraints, can be transformed into assertions by using AspectC++, which
enables non-probabilistic fault localization techniques in deployed embedded
systems.

6.1 OPEN QUESTIONS

We identified multiple open questions throughout this thesis that leave room
for future work. Although most of them were already mentioned throughout
this thesis, the current section will give a focused overview.

6.1.1 SFI for Embedded Systems

Most of the open questions brought up in this thesis regarding SFI are related
to the injection of code changes into C++ source code.

1. While we have shown that ignoring C++ peculiarities can have drastic
effects on experimental results, it is unclear how these effects manifest
for real software projects. Future work should evaluate the differences
between, on the one hand, experiments ignoring compile-time constructs,
e.g., macros and shared headers, and, on the other hand, experiments,

35

36

CONCLUSION AND OUTLOOK

which perform injections as a human would introduce faults on the
source-code level.

2. Depending on results regarding the first problem, it might be necessary
to assess again how close injections into binary/intermediate code are to
injections into source code. If even the negligence of macros turns out to
be problematic, then injections into binary/intermediate code should be
problematic as well.

6.1.2 Fault Models for Software Faults

The implementation of a fault injection tool on the source code level for em-
bedded systems required an assessment of the fault model and its description,
which in turn led to multiple questions mainly regarding the adequacy of
precious models to modern software engineering:

1. It is unclear if the currently used fault types are still relevant given
developments of software engineering techniques in the last years.

2. The currently used fault types are quite basic. From our experience with
fixing bugs, a patch often consists of multiple fault types, which are
fixed simultaneously. An in-depth assessment of performed bug fixes
should show if current bugs can be simulated given single fault types or
if combinations of fault types are required.

3. Furthermore, it is unclear if the currently used distribution of fault types
is still correct, and if the distribution can be applied to every software
project in every domain. Different domains, e. g., operating system and
application software, might pose quite different distributions of fault

types.
6.1.3 Fault Localization in Deployed Embedded Systems

As presented, our work enriched the current state-of-the-art regarding fault
localization by assessing current techniques in the context of deployed embed-
ded systems [23]. Since the assessment showed room for improvement, we
contributed a new type of oracle, the driver interaction model (DIM), which is
especially useful for embedded systems, and discussed assertion-based fault
localization in this thesis. While our results were promising, we also identified
possible future work:

1. The presented DIM, which defines the interaction of drivers with the
underlying hardware, worked already well regarding our evaluation.
Nevertheless, it might be possible to extend the representativeness, for
example, by using extended probabilistic automata [19] instead.

2. Other techniques can be used as oracles too. For example, the OCL-
based assertions presented in Section 5.2 can be used in combination
with spectrum-based fault localization (SBFL). It is still unclear if the
use of other oracles might improve the localization accuracy, i. e., the
EXAM score.

Considering the variety of open research questions, it becomes evident that
the research area of fault injection and localization, especially in the domain
of embedded systems, still offers room for future research efforts.

BIBLIOGRAPHY

[1]

Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. Program Spec-
tra Analysis in Embedded Software: A Case Study. Tech. rep. TUD-SERG-
2006-007. Software Engineering Research Group, Delft University of
Technology, 2006. arXiv: ¢s/0607116.

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr.
“Basic Concepts and Taxonomy of Dependable and Secure Computing.”
In: IEEE Transactions on Dependable and Secure Computing 1.1 (Jan. 2004),
Pp- 11—33. ISSN: 1545-5971. DOL: 10.1109/TDSC.2004. 2.

James H. Barton, Edward W. Czeck, Zary Z. Segall, and Daniel P. Siewiorek.
“Fault Injection Experiments Using FIAT.” In: IEEE Transactions on Com-
puters 39.4 (Apr. 1990), pp. 575-582. 1ssN: 0018-9340. por: 10.1109/12.
54853.

Tania Basso, Regina L. O. Moraes, Bruno P. Sanches, and Mario Jino.
“An Investigation of Java Faults Operators Derived from a Field Data
Study on Java Software Faults.” In: Workshop de Testes e Tolerdncia a Falhas
(2009), pp. 150—155. IsSN: 2325-6648. por: 10.1109/DSNW. 20160.5542602.

Christoph Borchert, Daniel Lohmann, and Olaf Spinczyk. “CiAO/IP: A
Highly Configurable Aspect-Oriented IP Stack.” In: Proceedings of the
10th International Conference on Mobile Systems, Applications, and Services
(MobiSys "12) (Low Wood Bay, Lake District, UK). New York, NY, USA:
ACM Press, June 2012, pp. 435-448. 1SBN: 978-1-4503-1301-8. DOL: 10.
1145/2307636.2307676.

Christoph Borchert and Olaf Spinczyk. “Hardening an L4 Microker-
nel Against Soft Errors by Aspect-Oriented Programming and Whole-
Program Analysis.” In: ACM Operating Systems Review 49.2 (Jan. 2016),
PP- 37—43. 1ssN: 0163-5980. por: 10.1145/2883591.2883600.

Pete Broadwell, Naveen Sastry, and Jonathan Traupman. “FIG: A Pro-
totype Tool for Online Verification of Recovery.” In: In Workshop on
Self-Healing, Adaptive and Self-Managed Systems. 2002.

Fraser Brown, Andres Notzli, and Dawson Engler. “How to Build Static
Checking Systems Using Orders of Magnitude Less Code.” In: Proceed-
ings of the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems (Atlanta, Georgia,
USA). ASPLOS “16. New York, NY, USA: ACM, 2016, pp. 143—157. ISBN:
978-1-4503-4091-5. DOI: 10.1145/2872362.2872364.

Maarten Bynens, Eddy Truyen, and Wouter Joosen. “A System of Pat-
terns for Reusable Aspect Libraries.” In: Transactions on Aspect-Oriented
Software Development VIII. Ed. by Shmuel Katz, Mira Mezini, Chris-
tine Schwanninger, and Wouter Joosen. LNCS 6580. Berlin, Heidelberg:
Springer, 2011, pp. 46-107. 1sBN: 978-3-642-22031-9. DOI: 10.1007/978-
3-642-22031-9_2.

Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and
Jennifer Widom. “Change Detection in Hierarchically Structured Infor-
mation.” In: SIGMOD Rec. 25.2 (June 1996), pp. 493-504. 1sSN: 0163-5808.
por: 10.1145/235968.233366.

37

https://arxiv.org/abs/cs/0607116
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/12.54853
https://doi.org/10.1109/12.54853
https://doi.org/10.1109/DSNW.2010.5542602
https://doi.org/10.1145/2307636.2307676
https://doi.org/10.1145/2307636.2307676
https://doi.org/10.1145/2883591.2883600
https://doi.org/10.1145/2872362.2872364
https://doi.org/10.1007/978-3-642-22031-9_2
https://doi.org/10.1007/978-3-642-22031-9_2
https://doi.org/10.1145/235968.233366

38

BIBLIOGRAPHY

[16]

Shigeru Chiba and Takashi Masuda. “Designing an Extensible Dis-
tributed Language with a Meta-Level Architecture.” In: ECOOP’ 93 —
Object-Oriented Programming. Ed. by Oscar M. Nierstrasz. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1993, pp. 482—501. 1sBN: 978-3-540-
47910-9. DOI: 10.1007/3-540-47910-4_24.

Ram Chillarege, Inderpal S. Bhandari, Jarir K. Chaar, Michael J. Halliday,
Diane S. Moebus, Bonnie K. Ray, and Man-Yuen Wong. “Orthogonal
Defect Classification — A Concept for In-Process Measurements.” In:
IEEE Transactions on Software Engineering 18.11 (Nov. 1992), pp. 943-956.
1SSN: 0098-5589. por: 10.1109/32.177364.

Domenico Cotroneo, Anna Lanzaro, Roberto Natella, and Ricardo Bar-
bosa. “Experimental Analysis of Binary-Level Software Fault Injection
in Complex Software.” In: Ninth European Dependable Computing Confer-
ence (EDCC). May 2012, pp. 162—-172. por: 10.1109/EDCC.2012.12.

Valentin Dallmeier, Christian Lindig, and Andreas Zeller. “Lightweight
Defect Localization for Java.” In: ECOOP 2005 - Object-Oriented Program-
ming: 19th European Conference, Glasgow, UK, July 25-29, 2005. Proceedings.
Ed. by Andrew P. Black. Berlin, Heidelberg: Springer, 2005, pp. 528-550.
ISBN: 978-3-540-31725-8. por: 10.1007/11531142 23.

Pedro Delgado-Pérez, Inmaculada Medina-Bulo, Juan José Dominguez-
Jiménez, Antonio Garcia-Dominguez, and Francisco Palomo-Lozano.
“Class mutation operators for C++ object-oriented systems.” In: annals
of telecommunications - annales des télécommunications 70.3 (2015), pp. 137-
148. 1SN: 1958-9395. DOI: 10.1007/512243-014-0445-4.

Jessica Diaz, Jennifer Pérez, Carlos Ferndndez-Sanchez, and Juan Garba-
josa. “Model-to-Code Transformation from Product-Line Architecture
Models to Aspect].” In: Proceedings of the 2013 39th Euromicro Confer-
ence on Software Engineering and Advanced Applications. SEAA "13. USA:
IEEE Computer Society, 2013, pp. 98-105. 15BN: 9780769550916. DOI:
10.1109/SEAA.2013.11.

Jodo A. Durdes and Henrique S. Madeira. “Emulation of Software Faults:
A Field Data Study and a Practical Approach.” In: IEEE Transactions on
Software Engineering 32.11 (Nov. 2006), pp. 849-867. 1ssN: 0098-5589.
por: 10.1109/TSE.2006.113.

Wojciech Dzidek. “Using Aspect-Oriented Programming to Instrument
OCL Contracts in Java.” PhD thesis. Carleton University Research Vir-
tual Environment, 2004.

S.S. Emam and J. Miller. “Inferring Extended Probabilistic Finite-State
Automaton Models from Software Executions.” In: ACM Trans. Softw.
Eng. Methodol. 27.1 (June 2018), 4:1-4:39. 1SSN: 1049-331X. DOI: 10.1145/
3196883.

Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez,
and Martin Monperrus. “Fine-grained and Accurate Source Code Differ-
encing.” In: Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering. ASE '14. Vasteras, Sweden: ACM, 2014,
PpP- 313—324. IsBN: 978-1-4503-3013-8. por: 10.1145/2642937.2642982.

Robert E. Filman, Tzilla Elrad, Siobhdn Clarke, and Mehmet Aksit.
Aspect-oriented Software Development. 1st. Boston, MA, USA: Addison-
Wesley, Oct. 2004. 1sBN: 978-0321219763.

https://doi.org/10.1007/3-540-47910-4_24
https://doi.org/10.1109/32.177364
https://doi.org/10.1109/EDCC.2012.12
https://doi.org/10.1007/11531142_23
https://doi.org/10.1007/s12243-014-0445-4
https://doi.org/10.1109/SEAA.2013.11
https://doi.org/10.1109/TSE.2006.113
https://doi.org/10.1145/3196883
https://doi.org/10.1145/3196883
https://doi.org/10.1145/2642937.2642982

BIBLIOGRAPHY

Daniel Friesel, Markus Buschhoff, and Olaf Spinczyk. “ Annotations in
Operating Systems with Custom AspectC++ Attributes.” In: Proceedings
of the gth Workshop on Programming Languages and Operating Systems
(PLOS ’17). PLOS’17. Shanghai, China: ACM, 2017, pp. 36—42. ISBN:
978-1-4503-5153-9. Dor: 10.1145/3144555.3144561.

Ulrich Thomas Gabor, Simon Dierl, and Olaf Spinczyk. “Spectrum-
Based Fault Localization in Deployed Embedded Systems with Driver
Interaction Models.” In: Proceedings of the 38rd International Conference
on Computer Safety, Reliability and Security (SAFECOMP ’19). Ed. by
Alexander Romanovsky, Elena Troubitsyna, and Friedemann Bitsch.
Turku, Finland: Springer International Publishing, 2019, pp. 97-112.
ISBN: 978-3-030-26601-1. DOL: 10.1007/978-3-030-26601-1 7.

Ulrich Thomas Gabor, Christoph-Cordt von Egidy, and Olaf Spinczyk.
“Interface Injection with AspectC++ in Embedded Systems.” In: Pro-
ceedings of the 19th IEEE International Symposium on High Assurance Sys-
tems Engineering (HASE '19). IEEE Press, Jan. 2019, pp. 131-138. por:
10.1109/HASE.2019.00028.

Ulrich Thomas Gabor, Daniel Siegert, and Olaf Spinczyk. “High-Accuracy
Software Fault Injection in Source Code with Clang.” In: Proceedings of
the 24th IEEE Pacific Rim International Symposium on Dependable Comput-
ing (PRDC ’"19). Pasadena, CA, USA: IEEE Press, Dec. 2019, pp. 75-84.
por: 10.1109/PRDC47002.2019.00029.

Ulrich Thomas Gabor, Daniel Siegert, and Olaf Spinczyk. “Software-
Fault Injection in Source Code with Clang.” In: Proceedings of the 32th
International Conference on Architecture of Computing Systems (ARCS '19),
Workshop Proceedings. 2019, pp. 1-6. 1sBN: 978-3-8007-4957-7.

Luca Gazzola, Leonardo Mariani, Fabrizio Pastore, and Mauro Pezze.
“An Exploratory Study of Field Failures.” In: 2017 IEEE 28th International
Symposium on Software Reliability Engineering (ISSRE). Oct. 2017, pp. 67—
77.DoL 10.1109/ISSRE.2017.10.

Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. “EDFI:
A Dependable Fault Injection Tool for Dependability Benchmarking
Experiments.” In: 2013 IEEE 19th Pacific Rim International Symposium on
Dependable Computing. Dec. 2013, pp. 3—140. por: 10.1109/PRDC.2013.
12.

Rahul Gopinath, Carlos Jensen, and Alex Groce. “Mutations: How close
are they to real faults?” In: 2014 IEEE 25th International Symposium on
Software Reliability Engineering. Nov. 2014, pp. 189—200. por: 10.1109/
ISSRE.2014.40.

Michael Grottke, Dong Seong Kim, Rajesh Mansharamani, Manoj Nam-
biar, Roberto Natella, and Kishor S. Trivedi. “Recovery From Software
Failures Caused by Mandelbugs.” In: IEEE Transactions on Reliability 65.1
(Mar. 2016), pp. 70-87. 1ssN: 0018-9529. por: 10.1109/TR.2015.2452933.

Michael Grottke and Kishor S. Trivedi. “Software Faults, Software Aging
and Software Rejuvenation.” In: The Journal of Reliability Engineering
Association of Japan 27.7 (Oct. 2005), pp. 425-438. 1SSN: 09192697. DOL:
10.11348/reajshinrai.27.7_425.

Stefan Hanenberg and Stefan Endrikat. “Aspect-orientation is a reward-
ing investment into future code changes — As long as the aspects hardly
change.” In: Information and Software Technology 55.4 (2013), pp- 722~
740. 1SsN: 0950-5849. por: 10.1016/j.infsof.2012.09.005.

39

https://doi.org/10.1145/3144555.3144561
https://doi.org/10.1007/978-3-030-26601-1_7
https://doi.org/10.1109/HASE.2019.00028
https://doi.org/10.1109/PRDC47002.2019.00029
https://doi.org/10.1109/ISSRE.2017.10
https://doi.org/10.1109/PRDC.2013.12
https://doi.org/10.1109/PRDC.2013.12
https://doi.org/10.1109/ISSRE.2014.40
https://doi.org/10.1109/ISSRE.2014.40
https://doi.org/10.1109/TR.2015.2452933
https://doi.org/10.11348/reajshinrai.27.7_425
https://doi.org/10.1016/j.infsof.2012.09.005

40

BIBLIOGRAPHY

[33]

Lena Herscheid, Daniel Richter, and Andreas Polze. “Hovac: A Con-
figurable Fault Injection Framework for Benchmarking the Depend-
ability of C/C++ Applications.” In: 2015 IEEE International Conference
on Software Quality, Reliability and Security. Aug. 2015, pp. 1-10. DOL
10.1109/QRS.2015.12.

Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K. Iyer. “Fault
Injection Techniques and Tools.” In: Computer 30.4 (Apr. 1997), pp. 75—
82. 155N: 0018-9162. por: 10.1109/2.585157.

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bow-
didge. “Why Don’t Software Developers Use Static Analysis Tools to
Find Bugs?” In: Proceedings of the 2013 International Conference on Software
Engineering. ICSE "13. San Francisco, CA, USA: IEEE Press, 2013, pp. 672—
681. 1sBN: 978-1-4673-3076-3. por: 10.1109/ICSE.2013.6606613.

James A. Jones and Mary Jean Harrold. “Empirical Evaluation of the
Tarantula Automatic Fault-localization Technique.” In: Proceedings of
the 20th IEEE /ACM International Conference on Automated Software Engi-
neering. ASE ‘05. Long Beach, CA, USA: ACM, 2005, pp. 273-282. 1sBN:
1-58113-993-4. por: 10.1145/1101968.1101949.

Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abraham. “FER-
RARI: A Flexible Software-Based Fault and Error Injection System.”
In: IEEE Transactions on Computers 44.2 (Feb. 1995), pp. 248—-260. 1ssN:
0018-9340. por: 10.1109/12.364536.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. “An Overview of Aspect].” In: Proceedings of
the 15th European Conference on Object-Oriented Programming (ECOOP
‘01). Ed. by]. Lindskov Knudsen. Vol. 2072. Lecture Notes in Computer
Science. Berlin, Germany: Springer, June 2001, pp. 327-354. por: 10.
1007/3-540-45337-7_18.

Nobuo Kikuchi, Takeshi Yoshimura, Ryo Sakuma, and Kenji Kono.
“Do Injected Faults Cause Real Failures? A Case Study of Linux.” In:
2014 IEEE International Symposium on Software Reliability Engineering
Workshops. Nov. 2014, pp. 174-179. por: 10.1109/ISSREW.2014.104.

Erik van der Kouwe, Cristiano Giuffrida, and Andrew S. Tanenbaum.
“Evaluating Distortion in Fault Injection Experiments.” In: 2014 IEEE
15th International Symposium on High-Assurance Systems Engineering. Jan.
2014, pp- 25—32. pOL: 10.1109/HASE.2014.13.

Erik van der Kouwe and Andrew Tanenbaum. “HSFI: Accurate Fault
Injection Scalable to Large Code Bases.” In: 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). June
2016, pp. 144-155. por: 10.1109/DSN.2016.22.

Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine
Generals Problem.” In: ACM Trans. Program. Lang. Syst. 4.3 (July 1982),
pp- 382—401. 1ssN: 0164-0925. por: 10.1145/357172.357176.

Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation.” In: Proceedings of the
International Symposium on Code Generation and Optimization: Feedback-
directed and Runtime Optimization. CGO "04. Palo Alto, California: IEEE
Computer Society, 2004, pp. 75-88. 1sBN: 0-7695-2102-9. DOI: 10.1109/
CG0.2004.1281665.

https://doi.org/10.1109/QRS.2015.12
https://doi.org/10.1109/2.585157
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1109/12.364536
https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1109/ISSREW.2014.104
https://doi.org/10.1109/HASE.2014.13
https://doi.org/10.1109/DSN.2016.22
https://doi.org/10.1145/357172.357176
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665

BIBLIOGRAPHY

Chao Liu, Xifeng Yan, Hwanjo Yu, Jiawei Han, and Philip S. Yu. “Mining
Behavior Graphs for “Backtrace” of Noncrashing Bugs.” In: Proceedings
of the 2005 SIAM International Conference on Data Mining. Society for
Industrial and Applied Mathematics, 2005, pp. 286—297. 1sBN: 978-0-
89871-593-4. por: 10.1137/1.9781611972757.26.

Daniel Lohmann, Georg Blaschke, and Olaf Spinczyk. “Generic Ad-
vice: On the Combination of AOP with Generative Programming in
AspectC++." In: Proceedings of the 3rd International Conference on Gen-
erative Programming and Component Engineering (GPCE “04). Ed. by G.
Karsai and E. Visser. Vol. 3286. Lecture Notes in Computer Science.
Berlin, Germany: Springer, Oct. 2004, pp. 55—74. por: 10.1007/978-3-
540-30175-2 4.

Daniel Lohmann, Olaf Spinczyk, and Wolfgang Schroder-Preikschat.
“On the Configuration of Non-Functional Properties in Operating Sys-
tem Product Lines.” In: Proceedings of the 4th AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software (AOSD-ACP4IS ’o5).
Chicago, IL, USA: Northeastern University, Boston (NU-CCIS-05-03),
Mar. 2005, pp. 19—25.

Daniel Lohmann, Olaf Spinczyk, and Wolfgang Schroder-Preikschat.
“Lean and Efficient System Software Product Lines: Where Aspects
Beat Objects.” In: Transactions on AOSD II. Ed. by Awais Rashid and
Mehmet Aksit. Lecture Notes in Computer Science 4242. Springer, 2006,
pPp- 227-255. DOL: 10.1007/11922827_8.

Bertrand Meyer. “Eiffel: A Language and Environment for Software
Engineering.” In: Journal of Systems and Software 8.3 (1988), pp. 199—246.
ISSN: 0164-1212. pOL: 10.1016/0164-1212(88)90022-2.

Bertrand Meyer. “Applying "Design by Contract’.” In: Computer 25.10
(Oct. 1992), pp. 40-51. 1ssN: 1558-0814. por: 10.1109/2.161279.

MIRA Limited. MISRA C:2012. Nuneaton, UK: MIRA Limited, 2013.

Rodion Moiseev, Shinpei Hayashi, and Motoshi Saeki. “Generating
Assertion Code from OCL: A Transformational Approach Based on
Similarities of Implementation Languages.” In: Model Driven Engineer-
ing Languages and Systems. Ed. by Andy Schiirr and Bran Selic. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 650—-664. 1sBN: 978-3-
642-04425-0. DOL: 10.1007/978-3-642-04425-0 52.

Regina L. O. Moraes, Ricardo Barbosa, Joao A. Durdes, Nathan Mendes,
Eliane Martins, and Henrique S. Madeira. “Injection of faults at compo-
nent interfaces and inside the component code: are they equivalent?” In:
2006 Sixth European Dependable Computing Conference. Oct. 2006, pp. 53—
64. por: 10.1109/EDCC. 2006. 16.

Roberto Natella, Domenico Cotroneo, Joao A. Duraes, and Henrique S.
Madeira. “On Fault Representativeness of Software Fault Injection.” In:
IEEE Transactions on Software Engineering 39.1 (Jan. 2013), pp. 80-96.
ISSN: 0098-5589. por: 10.1109/TSE.2011.124.

Roberto Natella, Domenico Cotroneo, and Henrique S. Madeira. “As-
sessing Dependability with Software Fault Injection: A Survey.” In:
ACM Comput. Surv. 48.3 (Feb. 2016), 44:1—44:55. 1SSN: 0360-0300. DOI:
10.1145/2841425.

41

https://doi.org/10.1137/1.9781611972757.26
https://doi.org/10.1007/978-3-540-30175-2_4
https://doi.org/10.1007/978-3-540-30175-2_4
https://doi.org/10.1007/11922827_8
https://doi.org/10.1016/0164-1212(88)90022-2
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/978-3-642-04425-0_52
https://doi.org/10.1109/EDCC.2006.16
https://doi.org/10.1109/TSE.2011.124
https://doi.org/10.1145/2841425

42

BIBLIOGRAPHY

[55]

(58]

Nicholas Nethercote and Julian Seward. “Valgrind: A Program Supervi-
sion Framework.” In: Electronic Notes in Theoretical Computer Science 89.2
(2003). RV 2003, Run-time Verification (Satellite Workshop of CAV
'03), pp- 44—66. 1ssN: 1571-0661. por: 10.1016/51571-0661(04)81042-9.

OMG. OMG Object Constraint Language (OCL), Version 2.4. Object Man-
agement Group, Feb. 2014. urL: http://www.omg.org/spec/0CL/2.4/.

Abhinav Pathak, Abhilash Jindal, Y. Charlie Hu, and Samuel P. MidKkiff.
“What is Keeping My Phone Awake?: Characterizing and Detecting
No-sleep Energy Bugs in Smartphone Apps.” In: Proceedings of the 10th
International Conference on Mobile Systems, Applications, and Services. Mo-
biSys "12. Low Wood Bay, Lake District, UK: ACM, 2012, pp. 267—-280.
ISBN: 978-1-4503-1301-8. DoI: 10.1145/2307636.2307661.

Alexandre Perez, Rui Abreu, and André Riboira. “A dynamic code
coverage approach to maximize fault localization efficiency.” In: Journal
of Systems and Software 9o (2014), pp. 18—28. 1sSN: 0164-1212. poL: 10.
1016/j.js5.2013.12.036.

Manos Renieres and Steven P. Reiss. “Fault Localization With Nearest
Neighbor Queries.” In: 18th IEEE International Conference on Automated
Software Engineering, 2003. Proceedings. Oct. 2003, pp. 30—39. por: 10.
1109/ASE.2003.1240292

H. G. Rice. “Classes of Recursively Enumerable Sets and Their Decision
Problems.” In: Transactions of the American Mathematical Society 74.2
(1953), Pp- 358-366. 1SSN: 00029947. DOL: 10.2307/1990888.

Bruno Pacheco Sanches, Tania Basso, and Regina Moraes. “J-SWFIT: A
Java Software Fault Injection Tool.” In: 5th Latin-American Symposium on
Dependable Computing (LADC). Apr. 2011, pp. 106—115. por: 10.1109/
LADC.2011.20.

Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. “PhASAR:
An Inter-procedural Static Analysis Framework for C/C++.” In: Tools
and Algorithms for the Construction and Analysis of Systems. Ed. by Tomas
Vojnar and Lijun Zhang. Cham: Springer International Publishing, 2019,
PP- 393—410. 1sBN: 978-3-030-17465-1. porL: 10.1007/978-3-030-17465-
1 22.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. “AddressSanitizer: A Fast Address Sanity Checker.” In:
Presented as part of the 2012 USENIX Annual Technical Conference (USENIX
ATC 12). Boston, MA: USENIX, 2012, pp. 309—318. 1sBN: 978-931971-
93-5. URL: https://www.usenix.org/conference/atcl2/technical-
sessions/presentation/serebryany.

Olaf Spinczyk and Daniel Lohmann. “The Design and Implementation
of AspectC++.” In: Knowledge-Based Systems, Special Issue on Techniques
to Produce Intelligent Secure Software 20.7 (Oct. 2007), pp. 636-651. pOI:
10.1016/j . knosys.2007.05.004.

Kurt Stirewalt and Spencer Rugaber. “Automated Invariant Mainte-
nance Via OCL Compilation.” In: Model Driven Engineering Languages
and Systems. Ed. by Lionel Briand and Clay Williams. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 616—632. 1sBN: 978-3-540-32057-9.
por: 10.1007/11557432_46.

https://doi.org/10.1016/S1571-0661(04)81042-9
http://www.omg.org/spec/OCL/2.4/
https://doi.org/10.1145/2307636.2307661
https://doi.org/10.1016/j.jss.2013.12.036
https://doi.org/10.1016/j.jss.2013.12.036
https://doi.org/10.1109/ASE.2003.1240292
https://doi.org/10.1109/ASE.2003.1240292
https://doi.org/10.2307/1990888
https://doi.org/10.1109/LADC.2011.20
https://doi.org/10.1109/LADC.2011.20
https://doi.org/10.1007/978-3-030-17465-1_22
https://doi.org/10.1007/978-3-030-17465-1_22
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.1016/j.knosys.2007.05.004
https://doi.org/10.1007/11557432_46

[74]

BIBLIOGRAPHY

Yulei Sui and Jingling Xue. “SVF: Interprocedural Static Value-flow
Analysis in LLVM.” In: Proceedings of the 25th International Conference on
Compiler Construction. CC 2016. Barcelona, Spain: ACM, 2016, pp. 265-
266. 1SBN: 978-1-4503-4241-4. por: 10.1145/2892208.2892235.

Kevin Sullivan, William G. Griswold, Yuanyuan Song, Yuanfang Cai,
Macneil Shonle, Nishit Tewari, and Hridesh Rajan. “Information Hiding
Interfaces for Aspect-Oriented Design.” In: ESEC/FSE-13: Proceedings
of the 10th European Software Engineering Conference held jointly with the
13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. Lisbon, Portugal: ACM Press, 2005, pp. 166—175. IsBN: 1-
59593-014-0. DOI: 10.1145/1081706.1081734.

Martin Siiflkraut and Christof Fetzer. “Automatically Finding and Patch-
ing Bad Error Handling.” In: 2006 Sixth European Dependable Computing
Conference. Oct. 2006, pp. 13—22. por: 10.1109/EDCC. 2006. 3.

Todd L. Veldhuizen. C++ Templates are Turing Complete. Tech. rep. 2003.

David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken.
“A First Step Towards Automated Detection of Buffer Overrun Vulner-
abilities.” In: Proceedings of the Network and Distributed System Security
Symposium (NDSS) (California, USA). Reston, VA, USA: Internet Soci-
ety, 2000, pp. 1-15.

E. D. Willink. “An Extensible OCL Virtual Machine and Code Genera-
tor.” In: Proceedings of the 12th Workshop on OCL and Textual Modelling.
OCL "12. Innsbruck, Austria: ACM, 2012, pp. 13—18. 1SBN: 978-1-4503-
1799-3. DOIL: 10.1145/2428516.2428519.

W. Eric Wong, Vidroha Debroy, and Dianxiang Xu. “Towards Better
Fault Localization: A Crosstab-Based Statistical Approach.” In: IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews) 42.3 (May 2012), pp- 378-396. 1sSN: 1094-6977. por: 10.1109/
TSMCC.2011.2118751.

W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa.
“A Survey on Software Fault Localization.” In: IEEE Transactions on
Software Engineering 42.8 (Aug. 2016), pp. 707—740. IssN: 0098-5589. por:
10.1109/TSE.2016.2521368.

Qiang Zeng, Mingyi Zhao, and Peng Liu. “HeapTherapy: An Efficient
End-to-End Solution against Heap Buffer Overflows.” In: 2015 45th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks. June 2015, pp. 485-496. por: 10.1109/DSN.2015.54.

43

https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1145/1081706.1081734
https://doi.org/10.1109/EDCC.2006.3
https://doi.org/10.1145/2428516.2428519
https://doi.org/10.1109/TSMCC.2011.2118751
https://doi.org/10.1109/TSMCC.2011.2118751
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/DSN.2015.54

	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Thesis Outline
	1.3 Main Contributions
	1.3.1 Fault Injection into Embedded Systems
	1.3.2 Interface Error Injection
	1.3.3 Injection of Source Code Changes
	1.3.4 Program Spectrum-based Fault Localization
	1.3.5 Transformation of Model Constraints to Assertions

	2 Background
	2.1 Basics of Dependability
	2.2 Fault Models for Software Fault Injection
	2.3 Basics of Software Fault Injection
	2.4 Software Fault Localization
	2.5 Basics on Aspect-Oriented Programming (AOP)
	2.6 Specialties of Embedded Systems

	3 SFI for Embedded Systems
	3.1 Practicality of AOP for SFI
	3.1.1 AOP for Data Error Injection
	3.1.2 AOP for Interface Error Injection
	3.1.3 AOP for Injection of Code Changes

	3.2 Injection of Code Changes with Clang

	4 Fault Models for Software Faults
	4.1 Coarse-Grained Classification of Software Faults
	4.2 Fine-Grained Classification of Software Faults
	4.3 Improving Accuracy of Fault Models for Fault Injection
	4.4 Concept of an Automatic Fault Classifier
	4.5 Potential Problems
	4.6 Potential Applications of the Classifier

	5 Fault Localization in Deployed Embedded Systems
	5.1 Program Spectrum-Based Fault Localization
	5.2 Assertion-based Fault Localization
	5.2.1 Transformation of Model Constraints to Assertions
	5.2.2 Applicability of the Approach

	6 Conclusion and Outlook
	6.1 Open Questions
	6.1.1 SFI for Embedded Systems
	6.1.2 Fault Models for Software Faults
	6.1.3 Fault Localization in Deployed Embedded Systems

	 Bibliography

