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Abstract

This thesis investigates methods for traffic scene perception with monocular cameras
as a foundation for a basic environment model in the context of automated vehicles.
The developed approach is designed with special attention to the practical application
in two experimental systems, which results in considerable computational limitations.
For this purpose, three different scene representations are investigated. These consist
of the prevalent road topology as the global scene context and the drivable road area,
which are both associated with the static environment. In addition, the detection and
spatial reconstruction of other road users is considered to account for the dynamic
aspects of the environment. In order to cope with the computational constraints, an
approach is developed that allows for the simultaneous perception of all environment
representations based on multi-task convolutional neural networks.
For this purpose methods for the respective tasks are first developed independently
and adapted to the special conditions of traffic scenes. Here, the recognition of the
road topology is realized as general image recognition. Furthermore, the perception
of the drivable road area is implemented as image segmentation. To this end, a gen-
eral image segmentation approach is adapted to improve the incorporation of the
a-priori class distribution present in traffic scenes. This is achieved through the inclu-
sion of element-wise weight factors through the Hadamard product, which resulted
in increased segmentation performance in the conducted experiments. Also, a task
decoder for the perception of vehicles is designed based on a compact 2D bounding
box detection method, which is extended by auxiliary regressands. These are used
for an appearance-based estimation of the orientation and dimension ratio of de-
tected vehicles. Together with a subsequent method for the reconstruction of spatial
object parameters based on constraints derived from the backprojection into the image
plane, a scene description with all measurements for a basic environment model and
subsequent automated driving functions can be generated. From the examination of
alternative multi-task approaches and considering the computational restrictions of
the experimental systems, an integrated convolutional neural network architecture
is implemented, which combines all perceptual tasks in a single end-to-end trainable
model. In addition to the definition of the architecture, a strategy is developed in which
alternated training of the perception tasks, changing with each iteration, enables si-
multaneous learning from several single-task datasets in one optimization process. On
this basis, a final experimental evaluation is performed in which a systematic analysis
of different task combinations is conducted. The obtained results clearly show the im-
portance of a combined approach to the perception tasks for automotive applications.
Thus, the experiments demonstrate that the integrated multi-task architecture for all
relevant representations of the scene is indispensable for practical models on realistic
embedded processing hardware. Regarding this, especially the existence of common,
shareable image features for the perception of the individual scene representations,
which are clearly evident from the results, is to be mentioned.



Kurzfassung

Die Arbeit untersucht Wahrnehmungsmethoden mit monokularen Kameras für die
Erzeugung eines grundlegenden Umfeldmodells im Kontext automatisierter Fahr-
zeuge. Der entwickelte Ansatz wird dabei mit Fokus auf die praktische Anwendung
in zwei Versuchssystemen ausgelegt, woraus strikte Beschränkungen der rechentech-
nischen Ressourcen resultieren. Zu diesem Zweck werden drei verschiedene Szenen-
repräsentationen untersucht. Diese bestehen aus der Straßentopologie als globalem
Szenenkontext und dem befahrbaren Straßenbereich, welche beide dem statischen Um-
feld zugerechnet werden. Darüber hinaus wird die Detektion und Rekonstruktion von
anderen Verkehrsteilnehmern zur Berücksichtigung der dynamischen Umfeldanteile
einbezogen. Um die rechentechnischen Einschränkungen zu berücksichtigen, wird ein
Ansatz basierend auf Multi-task Convolutional Neural Networks entwickelt, welcher
die gleichzeitige Wahrnehmung aller Umfeldrepräsentationen erlaubt.
Hierzu werden Ansätze für die Wahrnehmungsaufgaben unabhängig voneinander
ausgearbeitet und an die Gegebenheiten von Verkehrsszenen angepasst. Die Erken-
nung der Straßentopologie wird dabei als allgemeine Bilderkennung realisiert. Darüber
hinaus wird die Wahrnehmung des befahrbaren Straßenbereichs als Bildsegmen-
tierung umgesetzt. Hierfür wird ein allgemeiner Ansatz zur Bildsegmentierung ange-
passt um eine stärkere Berücksichtigung der in Verkehrsszenen vorhandenen a-priori
Klassenverteilung zu erzielen. Dies erfolgt durch elementweise Gewichtungsfaktoren
mittels des Hadamard Produkts, was im Experiment zu einer gesteigerten Segmen-
tierungsgüte führte. Ebenso wird zur Wahrnehmung anderer Fahrzeuge ein Verfahren
zur Detektion von 2D Bounding Boxen um zusätzliche Hilfsregressanden erweitert.
Diese dienen zur Erscheinungs-basierten Schätzung der Dimensionen sowie der Orien-
tierung detektierter Objekte. Zusammen mit einer Rekonstruktion der räumlichen Pa-
rameter durch aus der Rückprojektion in die Bildebene abgeleitete Zwangsbedingun-
gen kann eine für nachfolgende Fahrfunktionen geeignete Objektbeschreibung erzeugt
werden. Weiterhin erfolgt, hergeleitet aus der Betrachtung alternativer Multi-task An-
sätze und unter Berücksichtigung der rechentechnischen Beschränkungen, die Integra-
tion in ein Convolutional Neural Network welches alle Wahrnehmungsaufgaben kom-
biniert. Zudem wird eine alternierende Trainingsstrategie vorgestellt, welche durch
mit jeder Iteration wechselnde Wahrnehmungsaufgaben das simultane Anlernen von
mehreren Single-task Datensätzen ermöglicht. Auf dieser Grundlage erfolgt eine ab-
schließende Evaluation, bei welcher eine systematische Untersuchung verschiedener
Aufgabenkombinationen erfolgt. Die erzielten Ergebnisse zeigen klar die Bedeutung
einer kombinierten Betrachtung der Wahrnehmungsaufgaben für eine Anwendung
in der Fahrzeugtechnik auf. So ergibt sich in Hinsicht auf die betrachteten Versuchs-
systeme, dass eine integrierte Wahrnehmung aller Szenenrepräsentationen für praxis-
taugliche Modelle unabdingbar ist. In diesem Zusammenhang ist besonders das aus
den Ergebnissen ersichtliche Vorhandensein gemeinsamer, mehrfach nutzbarer Bild-
merkmale für die Wahrnehmung der einzelnen Szenenrepräsentationen zu nennen.
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Nomenclature

AOS average orientation score
α observation angle
b, b, B bias scalar, bias vector, bias tensor
β position angle
CS cosine similarity
concat (�) concatenation operator, stacks tensors along the u3 dimension
�C marks the use of camera coordinates in [m]
χ count of frequent classes according to the 85%-15%-rule
d = (dx1 , dx2 , dx3)

> vector of 3D bounding box dimensions and its elements in [m]
diag (�) diagonal matrix
E local environment in image space, receptive field
f focal length of the camera system
F1 F1-score, harmonic mean of precision and recall
FP number of false positive samples
FN number of false negative samples
φ roll angle
ϕBP (�) camera backprojection-line in parametric form
ϕa (�) nonlinear activation function
ϕs (�) softmax function
γ learning rate for gradient descent optimization
gMA moving average of the squared gradients
h, h, H feature scalar, feature vector, feature tensor (feature map)
H� feature map with additional rows and columns of zeros
HRec set of features relevant for the topology recognition task
HSeg set of features relevant for the road segmentation task
HDet set of features relevant for the vehicle detection task
IoU intersection over union, Jaccard index
IoU2D 2D bounding box IoU in image space
IoUBEV 2D BEV bounding box IoU in world coordinates
IoU3D volumetric cuboid IoU in world coordinates
i gradient descent iteration count
�I marks the use of image coordinates in [px]
η road topology class weight
j general counter index
K intrinsic camera calibration matrix
κ class index, discrete category in classification problems
l indicates the depth of a given neural network layer
L (�) optimization loss
LL1 (�) smooth L1 optimization loss
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Nomenclature

Lnll (�) negative log likelihood optimization loss, multi-class cross en-
tropy

LRec (�) topology recognition task optimization loss
LSeg (�) road segmentation task optimization loss
LDet (�) vehicle detection task optimization loss
L2Dbox (�) 2D bounding box optimization loss
L$ (�) vehicle dimension ratio optimization loss
Ltotal total optimization loss that combines all perception tasks
Lα (�) observation angle optimization loss
λMA moving average decay factor
λLR learning rate decay factor
mAP mean average precision, area under the pre-rec curve
�µ index denoting a per-sample average, micro average
�M index denoting a per-class average, macro average
NP number of neurons in a neural network layer
NL number of layers in a neural network
Nbatch batch size
NΘ number of all trainable model parameters
Ntrain number of samples in the training dataset
Ntest number of samples in the test dataset
Nval number of samples in the validation dataset
Nk convolution kernel dimensions
NDet number of detected bounding boxes
Ni total number of gradient descent iterations
Nκ number of distinguished classes
nC scene point position vector in camera coodinates
nI scene point position vector in image coodinates
nW scene point position vector in world coodinates
∞
nW vanishing point to a given scene point in world coordinates
nC

W centroid of a 3D bounding box in world coordinates
ν free parameter of the backprojection line in parametric form
oC camera center in camera coodinates in [m]
oW camera center in world coodinates in [m]

oI = (ou1 , ou2)
> principal point of the camera system

P =
(
p1, p2, p3, p4

)
=
(
p1 , p2 , p3

)> camera projection matrix of size 3× 4 and its column and row
vectors

pre precision, positive predictive value
preinterp interpolated precision
ψ yaw angle
q integer multiple of 2π, e.g. q ∈ 2π ·Z
R general rotation matrix of size 3× 3
rec recall, true positive rate
ρκ segmentation class a-priori probability
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Nomenclature

$ aspect ratio of 3D bounding box width and length, e.g. $ =
dx2

dx1
$NMSE normalized mean squared error of the vehicle dimension ratio
s stride, sliding window step size
TP number of true positive samples
TN number of true negative samples
t general translation vector
τ decision threshold
θ general notation of a trainable model parameter
Θ = {θ1, θ2, . . . θNΘ} entirety of all trainable model parameters
ϑ pitch angle
�̃ accentuation for indicating the use of homogeneous coordinates
u = (u1, u2, u3)

> horizontal, vertical and feature channel dimension in image or
feature map coordinates

umid = (u1,mid, u2,mid)
> 2D bounding box midpoint

v general counter index
vec (�) vectorization operator, converts a tensor into a column vector
w, w, W weight scalar, weight vector, weight tensor
Wk convolution kernel
wk convolution kernel element
wRec weight of the topology recognition task in the optimization loss
wSeg weight of the road segmentation task in the optimization loss
wDet weight of the vehicle detection task in the optimization loss
�W marks the use of world coordinates in [m]
x1, x2, x3 position in spatial world or camera coordinates in [m]
ξ road topology class occurrence frequency
y, y, Y target value, target vector, target tensor
ymid,u1 , ymid,u2 2D bounding box midpoint target variables
yw, yh 2D bounding box dimensions target variable
ζ gradient momentum weight factor
◦ Hadamard product, element-wise product
b�c , d�e floor and ceiling functions, Gauss brackets

Abbreviations and acronyms
ACC adaptive cruise control
ADAS advanced driver assistance system
BEV bird’s-eye-view
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CNN convolutional neural network
CPU central processing unit
CRF conditional random field
CUDA compute unified device architecture
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FL front left
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KITTI Karlsruhe Institute of Technology, Toyota Technological Institute
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LLS linear least squares
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1
Introduction

The present dissertation investigates the topic of semantic scene understanding from
monocular camera images. To this end, the focus is on automotive applications in the
context of the future development of fully automated road vehicles. In the introductory
chapter, firstly, a motivation of this research field is presented and secondly, a descrip-
tion of the goals and contributions of the present dissertation is given. Furthermore, a
short overview of the subsequent structure of the thesis is outlined.

1.1 Motivation

Road vehicles are one of the most important means of transport in Germany and world-
wide. Consequently, the number of vehicles in active use has been rising continuously
for years. For example, [Fed20a] describes an increase of 16.5 % for the number of
registered passenger cars in Germany from 1995 to 2019. Due to the resulting increase
in traffic density, it could be assumed that the requirements for safe vehicle guidance
have also risen equally. Counter intuitively, the traffic statistics indicate a contrary
development of the reported number of accidents. This becomes particularly clear
when the relative change in the number of registered passenger cars and the number
of fatal accidents is considered. A corresponding illustration of these developments is
shown in Figure 1.1. The statistics reveal that during the above-mentioned increase in
the number of registered passenger cars, a reduction of 67.6 % in the number of road
fatalities was recorded over the same period.
An often stated reason for this seemingly contradictory trend is the increased market
penetration of modern vehicles with advanced safety systems. In the past, this devel-
opment initially took place in the area of passive safety systems such as seat belts and
airbags, which are intended to protect vehicle passengers in the event of accidents.
In the further progress, a growing number of active systems were introduced, which
aim to prevent or mitigate accidents. Their range of action is thus set in the early pre-
collision accident phase before the first impact. Some examples of early active safety
systems are the anti-lock braking system and the electronic stability program. These
primarily serve to stabilize the vehicle and are activated only in emergency situations
such as emergency braking or loss of control in curves. The development of active
safety systems has then continued to evolve towards even earlier accident phases, to be

1
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Figure 1.1: Development of the number of registered passenger cars and traffic fatalities in
Germany up to the year 2019, relative to the level of 1995. Data taken from [Fed20a] and
[Fed20b].

able to prevent critical situations from arising in advance. Examples of such systems
include lane keeping assist and adaptive cruise control (ACC). The latter, for example,
prevents the vehicle from falling below the safety distance, so that the occurrence of
accidents based on insufficient distance can be completely avoided.
A characteristic feature of these systems is that, in addition to a safety effect, they
also offer a certain increase in comfort by supporting the driver in everyday driving
situations. Technologically, their development is accompanied by incorporating en-
vironment information about the present traffic scene into the systems. Moreover, a
trend is apparent in current developments that gives rise to the requirement of an
increasingly detailed and comprehensive perception of the given traffic scene. For
example, existing implementations of an ACC focus on the perception and tracking
of the vehicle directly in front of the ego vehicle. In this respect, newer systems such
as emergency evasion or lane change assistant need to take all potential road users
into account and also require a detailed acquisition of the drivable road area and the
course and topology of the road.
Additionally, it is expected that the trend towards further increased demands on the
perception of traffic scenes will continue in the future. Towards this, an analysis of
the remaining potential for increased traffic safety through automatic systems reveals
that further opportunities for improvement are almost exclusively based on systems
with high demands on environment perception. For example, a study conducted by the
German Federal Highway Research Institute (Bundesanstalt für Straßenwesen) expects
the most significant effect on traffic safety from the market penetration of universal
chauffeur systems in the sense of fully automated vehicles [Rös+19]. The Society
of Automotive Engineers draws a similar course of the future development with its
definition of the stepwise increase of automation levels up to the final vision of fully
automated vehicles [Soc18]. These envisioned systems place the highest demands on
the automatic perception of traffic scenes, which are equal to or exceed those of human
drivers. Beyond the actual perception, further requirements have to be considered,

1From 2008 onwards, cars with a temporary deregistration were excluded from the official statistics of
registered passenger cars.

2



1.1 Motivation

which result from technical restrictions due to the use of mobile-capable hardware and
the intended integration into mass products. These, in part contradictory, requirements
can be summarized as follows:

• Provide a detailed and high performance environment perception sufficient for
the safe execution of the driving task

• Compliance with the computational constraints of embedded automotive hard-
ware systems with respect to computing power and runtimes

• Consideration of economic limitations regarding the unit costs in large-scale
series production

Although these initial requirements are stated in very general terms, they already
indicate the unique potential of camera-based systems for the practical perception of
traffic scenes, which will be discussed in detail in the following.

Traffic scene perception with automotive cameras

One of the main questions in developing the perception of traffic scenes for automated
vehicles is that of sensor technology. Here, cameras have significant cost advantages
compared to other technologies. This is due to the advance in the technological de-
velopment of image sensors but also due to the economies of scale resulting from
the ubiquitous use of imaging sensors within the last years. As a result, high-quality
cameras are now available at low cost in numerous, widely used electronic devices
such as laptops, tablets, and smartphones. Apart from economics, there are also other
arguments in favor of cameras for traffic scene perception.
This becomes particularly apparent by a comparison with the biological predecessors
of automated vehicles. For example, the horse-drawn carriage, the preferred vehicle of
earlier centuries, has been known to mankind for a long time as a highly autonomous
means of transport. Here, the horses have their own sensory organs allowing them
to perceive their surroundings. This enables them to exhibit appropriately adapted
behavior and to perform the driving task with an increased degree of autonomy
compared to today’s cars. For instance, horses can recognize impending dangers and
prevent accidents largely by themselves. Likewise, horses do not deviate from the road
even without intervention by the coachman. In familiar surroundings, horses can even
perform navigation and find the way home on their own.
To this end, the perception of traffic elements in their surroundings, such as the course
of the road or the position of other road users, is predominantly based on visual
information [Fle+03]. Also, the comparison with human drivers, e.g. in user studies
on teleoperated driving [Geo+18], indicates that visual data contains basically all
relevant information required for the driving task. Even if the actual image sensors are
already fully developed and available at low cost, a crucial challenge of the perception
task remains, which is the extraction of the information relevant for the driving task
from the image data. In fact, it is the prevailing opinion among most experts that
environment information extraction is one of the greatest remaining challenges in the

3



Chapter 1 Introduction

Figure 1.2: Illustration of three camera-based environment representations. Red: enclosing 3D
bounding box of other present road users. Green: segmentation of the drivable road area. Top
left: global context of the prevailing road topology

technological development of automated driving, see for example [Mat+15, p. 1145]
or [Van+18].

From the perspective of a typical system architecture, the essential information about
the traffic scene extracted by the perception system is passed on to downstream pro-
cessing systems such as sensor fusion, maneuver or trajectory planning, etc. Therefore,
the concrete goal consists in finding a representation of the relevant information that
can easily be passed on to and be parsed by subsequent systems. Thus, the generated
representation should be as compact and as meaningful as possible. To accomplish
this goal, the principle of divide and conquer is applied to achieve a modularization
into sub-problems. To this end, meaningful and compact representations of a traffic
scene are firstly identified and secondly combined into a so-called environment model.
The optimal combination of environment representations is still the subject of ongoing
research. However, some representations can be named which are used particularly
often in existing applications and research projects due to their outstandingly high
relevance.

The corresponding camera-based environment representations, which will also be
considered throughout the present dissertation, are illustrated in Figure 1.2. Here, the
dashed lines (red) indicate the detection of an enclosing 3D bounding box around other
road users within a scene as the first important representation of the environment. Fur-
thermore, the Figure indicates the pixel-wise segmentation of the drivable road area in
the image with a highlighted overlay (green). In addition, a third representation of the
environment is given in the upper left corner of the image, which represents the global
context of the prevailing road topology (here: intersection). For further clarification,
an additional distinction is often discussed between dynamic, object-based representa-
tions (e.g. bounding boxes) and representations of the static environment components
(e.g. free space map, road topology). Besides the definition of the environment rep-
resentations, the consideration of methods and procedures which can generate these
representations from camera images plays a vital role. Here, the biggest shortcoming
of camera sensors becomes apparent, namely the complex data processing associated
with their use. This is due to the comparatively large amounts of data due to the mil-
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1.2 Outline and contributions

lions of image pixels of a camera, which all generate new measurements several times
per second. This large amount of data results in complex processes for the extraction
of the actually useful information. To address this challenge, again, the comparison
with biological models found in nature can be helpful. For example, the visual cortex,
which is part of the brain of higher mammals, is a known powerful visual processing
system [Goo+16, pp. 353–359]. Following on from this, biologically inspired machine
learning methods enable the highest quality of camera-based environment perception
according to the current state of research. In particular, approaches based on so-called
convolutional neural networks (CNNs) became popular, in which camera images are
filtered through a hierarchical, multi-level network of simulated neurons. However,
their increased perception performance is also accompanied by an increase in model
complexity, which results in a substantial computational burden. This contradicts the
limited computational resources available in embedded hardware systems used for
driver assistance systems and automated driving.
Furthermore, it can be observed that significant development steps towards improving
the perceptual ability have been made in the past by independently improving the
methods of perception for individual environment representations. This was often
based on a general formulation of the perception problem, without taking unique
aspects of an application in the automotive field into account. However, as will be
shown in the further course of this work, these aspects enable approaches that allow
for a computational simplification or provide other advantages for the perception
system. In this regard, particularly the simultaneous perception of several environment
representations offers a promising opportunity to exploit synergy effects through
a systematic avoidance of repeated computations. Through this, the computational
burden of powerful CNN methods can be influenced positively towards practical
automotive hardware requirements. The goals and contributions of the present thesis,
which are established in relation to these preceding considerations, are discussed in
detail below.

1.2 Outline and contributions

The goal of this thesis is the systematic development of a resource-constrained system
for camera-based environment perception in the context of automotive applications
in driver assistance and automated driving. The main focus here is on the practical
applicability to the utilized experimental systems, which are geared to the techni-
cal requirements of common industrial applications in terms of hardware selection
and accessible computational resources. In addition to computational efficiency, the
emphasis is on the full integration of the scene representations and perception tasks
required for a basic environment model. To achieve this goal, firstly, approaches for
the independent prediction of individual scene representations are investigated and
adapted to the specific conditions of traffic scenes. Secondly, a multi-task CNN ar-
chitecture is developed, which consists of a common encoder stage and task specific
decoders. The purpose of the encoder stage is to compute common image features
that allow the simultaneous extraction of multiple scene representations. Compared

5



Chapter 1 Introduction

to using separate models for each task, this avoids a redundant computation of image
features and thus drastically increases the computational efficiency in comparison to
the use of single-task models. The remaining structure of the present thesis is given as
follows:

Chapter 2: This chapter contains a presentation of the current state of the art in the
field of image processing with a focus on methods based on deep neural net-
works. Furthermore, it relates these methods to the most prevalent environment
representations used in automotive applications. Moreover, a short overview of
the fundamental definitions and principles in the context of CNNs is given.

Chapter 3: The practical implementation of the environment perception system pre-
sented in this thesis was carried out with two experimental systems, which are
presented in this chapter. In addition to the technical overview, a short definition
of the perspective projection model is given.

Chapter 4: This chapter covers the development of the basic CNN architecture used
throughout this thesis. In this context, the general architecture decisions are dis-
cussed, and the multi-task approach is reviewed with respect to its impact on
the network architecture and under consideration of its computational implica-
tions. Furthermore, a comparison of alternative encoder architectures and the
final selection of the feature encoder are discussed.

Chapter 5: To represent the global context of a given traffic scene, firstly, the general
context term is explained and the specific taxonomy used to represent the road
topology is elaborated. Secondly, the classifier for road topology recognition
is described. This is followed by a presentation of a road topology annotation
dataset and a detailed evaluation to estimate the achieved recognition perfor-
mance.

Chapter 6: The perception of the drivable road area through image segmentation is
the subject of this chapter. First, the available alternatives are discussed, and the
decoder architecture used for the subsequent implementation is selected. Next,
an extension of the decoder architecture by explicit incorporation of the spatial
class distribution is developed, and a comprehensive evaluation of the road area
segmentation performance is carried out.

Chapter 7: For the perception of road users within a given traffic scene, an object
detection is realized and described in this chapter. For this purpose, again, the
discussion of possible alternatives, and the initial selection of the general decoder
architecture is carried out. Subsequently, an approach to extend the 2D object
detection decoder with auxiliary regressands for the purpose of geometrically
reconstructing object viewpoints and spatial parameters is presented. Finally, an
evaluation is performed to estimate the detection performance.

Chapter 8: A description of the implemented multi-task CNN architecture, including
a discussion of the practical training strategy, is given. Furthermore, a compre-
hensive evaluation of all tasks for the fully integrated CNN and an investigation
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of the effects of different task combinations in the sense of an ablation study are
carried out.

Chapter 9: This chapter summarizes the main results, supplements concluding re-
marks on the developed approaches, and suggests possible directions for future
work.

In the course of these considerations, some particularly noteworthy insights have
emerged. These main contributions of the present work can be summarized as follows:

• Comprehensive investigations on the recognition of the global traffic scene con-
text are carried out. For this purpose, the scene context is classified to reflect the
prevailing road topology. Furthermore, a dataset with corresponding annotations
is prepared for the experimental evaluation.

• Studies on spatial priors present in traffic scenes as part of the drivable road area
segmentation are conducted. To this end, a novel approach to explicitly model
the spatial priors by integrating a position-dependant weight matrix (Hadamard
multiplication) into a CNN architecture is developed.

• A thorough experimental analysis of a concrete CNN architecture following this
approach and its impact on the drivable road area’s segmentation performance
is performed. In this context, particular emphasis is placed on compact and
shallower CNN architectures that can maintain sub-sampled and thus computa-
tionally efficient feature maps.

• An exploration of possible assumptions and simplifications in the context of the
spatial reconstruction of object detections is carried out. Here, special attention
is paid to the particular requirements of traffic scenes.

• Based on this, a procedure for the spatial reconstruction of detected vehicles in
traffic scenes is developed and analyzed. In doing so, a distinction is established
between 3D parameters that can be reconstructed through geometric considera-
tions and those that can be derived from the visual appearance of objects.

• A novel architecture that, by integrating multiple perception tasks, provides all
image processing capabilities for a basic automotive environment model in one
combined CNN is developed. Due to the resulting elimination of repeated com-
putations, it can be demonstrated that this architecture can run even under the
computational limitations of embedded hardware systems suitable for automo-
tive applications.

• A systematic experimental analysis of the integrated multi-task architecture is
performed. For this, firstly, the examination of hypothetical interactions between
the perceptual tasks is made by leaning on the method of an ablation study.
Secondly, the beneficial effects on the computational efficiency of the resulting
system are investigated by means of a runtime analysis. Most notably, the results
reveal that the integrated multi-task model requires 53 % less runtime compared
to the sequential execution of single-task models.
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2
Related Work and Fundamental

Background

Due to, among other reasons, its high relevance for environment perception in the
automotive context, image processing continues to arouse a high level of research
interest. The development of modern methods based on CNNs can be traced back
several decades, and only the accumulated knowledge of many incremental improve-
ments enables models on par with today’s state of research. Therefore, this chapter
first gives an overview of the recent developments in image processing research. Sub-
sequently, a description of the formal basis for the exact specification of CNNs, as they
are applied in this work, is given. Moreover, the state of research is further divided
into a presentation of the general developments on the one hand, and a grouping of
specialized inventions in the context of automotive environment representations on
the other hand.

2.1 Advances in CNN architectures for image processing

The current great interest in CNNs for image processing in research and industry
began with the work of [Kri+12]. It achieved a reduction in the error rate of the annual
ImageNet large scale visual recognition challenge (ILSVRC) [Rus+15] from 26% to 16%. This
success is mainly due to two important factors. Firstly, extensive annotated datasets
were now publicly available for the training, so that the problem of overfitting became
manageable even with complex high capacity2 models with many free parameters.
Secondly, a high parallelization of the computations employed in CNNs using GPUs
(graphics processing units) had a very advantageous effect.
As a result, the relative computational speedup on common hardware can be more
than one order of magnitude, which accordingly supported the training of more com-
plex networks. In the following time, CNNs became the general state of the art for
image processing and camera perception, while new innovations were now driven by
more sophisticated architecture design choices and training methods. Important ar-
chitectural advances include [Lin+14], which proposes 1× 1 convolutions, and [SZ15],

2The model capacity controls the scope of the types of mapping functions that the model can learn,
see [Goo+16, pp. 107–113] or [Sha+17] for a detailed discussion.
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2.2 Traffic scene representations from monocular cameras

which reveals the importance of network depth. Expanding on these works, [Sze+15]
won the ILSVRC in 2014 by using the newly proposed inception-v1 architecture for
CNNs. It employs submodules dubbed inception modules, and one of its major features
is its efficiency in terms of computational resources. In [IS15] this architecture is re-
fined to build the inception-v2 architecture. Furthermore, [He+16] introduces residual
network connections that are utilized to feasibly train deeper CNNs than previously
possible. The authors provide experimental results and theoretical foundations to jus-
tify their method, proposing a variant of their architecture that involves 152 layers
and 60 million parameters. Following this, [Sze+17b] introduces residual inception
modules and derives the inception-resnet-v2 architecture, which set a new record on
the ILSVRC benchmark.
Unfortunately, as networks become deeper and larger, they require more memory and
computation time, which oftentimes exceeds the capability of automotive embedded
systems. Consequently, this was followed by introducing new architectures focusing
specifically on computational efficiency and embedded applications. Notable examples
include SqueezeNet [Ian+16], MobileNet [How+17], ShuffleNet [Zha+18], and Xcep-
tion [Cho17]. A common feature of these architectures is the separation of pixel wise
and dense convolutions by applying grouped and 1× 1 kernels, and their competi-
tive accuracy with smaller memory consumption and processing times compared to
previous works.
Another more current trend is termed as neural architecture search (NAS) in the respec-
tive literature. This refers to the process of generating efficient network architectures
within a carefully designed search space through an automatic search algorithm. The
existing approaches differ primarily in the employed search strategy. Among others,
there are methods based on evolutionary optimization [Rea+17; Rea+19], reinforce-
ment learning [ZL17; Zop+18; TL19], and gradient based methods [Liu+19a; Xie+19].
The NAS-generated architectures have shown promising results, but they are subject
to the major limitation of highly increased computational demands during the training
phase compared to manually designed architectures.

2.2 Traffic scene representations from monocular cameras

In addition to the image processing methods, how the traffic scene is represented
internally in an environment model is of great importance for implementing auto-
mated driving functions. Following [Die+05], an environment model is understood
as a knowledge base that describes a theoretical and model-like representation of
traffic elements in the real world. Usually, an automotive environment model com-
bines several representations that differ according to the properties or effects of certain
subsets of real world traffic elements. Road-related representations, as well as the
representation of dynamic objects, offer both the highest relevance and the highest
generalizability for the implementation of subsequent automated driving functions.
This is evident not only from the discussions in [Die+05] but also from the fact that
these representations have been included in practically all relevant research work
throughout the last years, see for example [Kas+11; Gre+12; Gre+14a; Sch+15; Eng+18;
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Figure 2.1: General structure of a basic automated driving processing stack with emphasis
on the environment model according to [Gre+14a] and [Lie+19], supplemented by the global
scene context as part of the static environment.

Lie+18; Aeb19], among others. To this end, road-related representations include the
dimensions of the road surface, but oftentimes also extend to other classification pa-
rameters such as the general road topology or the number of lanes. Typically, the
road-related representations are associated with the static environment components.
In contrast, the description of dynamic objects usually contains different object model
classes such as pedestrians or vehicles to represent other road users.

In addition to the comprehensive and complete representation of the traffic scene,
the uniform abstraction of sensor data is an essential goal of environment models.
An illustration of this uniform abstraction is shown in the generalized structure of a
basic automated driving processing stack in Figure 2.1. This data processing structure
has proven advantageous in particular due to the reusability of submodules and the
independence of implemented functions from specific sensor configurations. Since this
thesis addresses the efficient inference of scene representations from camera images
for use in automotive environment models, the following sections contain further
explanations on the corresponding state of research with respect to specific traffic
scene representations.
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2.2 Traffic scene representations from monocular cameras

Scene recognition for global-scale context information

In the literature, global context information on traffic scenes is often given as a tax-
onomy of discrete sets of characteristic properties [Fas+95]. Thus, the perception of
context information is given by a classification of traffic scenes into typical categories
representing some discrete properties of the scenes. Depending upon the application
or driving function, the desired information can differ substantially. It may comprise,
for example, the general road topology, the number of lanes, the presence of a con-
struction site, or other predominant characteristics. For practical applications, global
context information has been used both to implement plausibility checks for addi-
tional validation and to directly support driving functions [Wei+13; Rui+15; Sch16].
Primarily due to the safety requirement of self-contained operation, but also because
the global context information may be subject to changes in the medium-term, e.g.
when considering construction sites, the need for context perception with online sen-
sors arises. Accordingly, several approaches for camera-based acquisition of context
information are known in the literature. For clarity and since the general problem
of image recognition has already been covered in the previous section, the following
discussion focuses on works related explicitly to automated vehicles.
Towards this, the study in [Ess+09] analyses a two-step approach, in which a superpixel
representation defines characteristic scene features. The context classification is carried
out with respect to distinct road topology classes. With a similar objective, the work
in [Kas+09] presents a different method for camera-based road type perception. It
is based on feature engineering using the bag of visual words concept [FP05]. In the
considered application, three different road types are distinguished and evaluated for a
context-dependant adaptation of subsequent advanced driver assistance systems (ADAS).
In another approach, [Sik+14; Sik+19] examine traffic scene context recognition for a
vehicle fleet management application. They focus on compact feature descriptors to
enable computation in remote back-end systems.
[Di+16; Di+17] examine global traffic scene context for landmark location recognition,
using images taken under different weather or light conditions. Their approach is to
extract CNN features and transfer the annotations from the retrieved, best fitting image
based on a cross-domain, dense correspondence, where the domains reflect different
light and weather conditions. The works in [Sch16; Tei+18] both consider global road
type perception, here [Sch16] examines four context classes using traditional feature
engineering while [Tei+18] employs a CNN-based approach to distinguish between
two road type classes, e.g. highway and non-highway.
Moreover note, that the perception of global context information is not limited to
camera sensors. To this end, the studies in [See+16; Hsu+17] present approaches for
road type perception based on alternative or fused sensor data.

Semantic segmentation for spatial environment layout perception

Grid-based environment modeling was originally developed in the field of mobile
robotics [Elf89] but was later also established in the automotive industry [Kas+11;
Gre+14b; Sch+15; Eng+18]. The fundamental idea of this representation is to divide
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the environment into discrete cells on a horizontal 2D grid. The cells are assigned one
of the states free, occupied, or unknown, often using the Dempster–Shafer framework
[Dem68; Sha76]. Thus, measurements are not assigned to objects but to subregions of
the vehicles environment. The absence of geometric or kinematic assumptions helps
prevent false positive classifications (ghost targets) and the choice of simple features
such as the cell-states enables simple sensor data fusion schemes [Gre+14a]. The
generation of such a representation from camera data naturally corresponds to the
problem of semantic segmentation. Here, semantic segmentation refers to the problem
of assigning categories of objects or traffic elements to all image pixels.
Towards this, [Bru+15] proposes to run an ordinary recognition CNN multiple times
for different sections of an image to obtain a dense segmentation output. A more
sophisticated approach is presented by [She+17], who introduces a CNN architecture,
named the fully convolutional network (FCN), that is designed to solve the task of seg-
mentation in an end-to-end trainable manner. Herein, a recognition CNN is adapted
for the task of segmentation by branching the network at intermediate layers and
combining these branches into a pixel-dense new output path with preserved spatial
resolution. Building on this, another approach combines CNNs and conditional random
field models (CRFs) to perform semantic segmentation, see [Lin+16; Che+17]. Here,
it is generally argued that CNNs perform especially well for feature representations,
while CRFs capture contextual relation modeling.
Another semantic segmentation method relies on the FCN architecture in conjunction
with dilated convolutions [YK16] and very deep residual models. [Wu+19c] refines
the ResNet architecture by inserting additional residual units in a parallel manner and
dub their approach as wide ResNet. [Zha+17] also builds upon the ResNet architec-
ture, adding parallel computation of multiple pooling layers of different dimensions.
An alternative approach is proposed by [Hon+15]. Here, the classification and seg-
mentation tasks are decoupled and independently performed by two CNN models.
Both models are trained separately such that a scalar class label is determined first,
and the object contours are computed afterward. Additionally, [Har+15] introduces an
approach termed hypercolumn that, similar to [She+17], combines information from
coarsely resolved deeper layers and information from finer resolved shallow layers to
form pixel descriptors. These descriptors constitute the input for the final classification
step that obtains a dense segmentation output. More recently, [Wu+19b] addresses
the heavy computational demand of dilated convolutions by replacing them with
an approximation strategy based on regular convolutions. The approach is dubbed
as joint pyramid upsampling and shows promising results by being able to reduce
computation times many times over.
Related to semantic segmentation is the problem of instance segmentation, which is
the task of detecting and delineating each individual object that appears in an image.
Thus, unlike regular semantic segmentation, objects that are close to each other are
not assigned to the same region. The approach in [Pin+15] learns to propose candi-
date segments, which are subsequently classified by an object detector stage. Another
approach, which has been dubbed as Mask R-CNN [He+17], uses the exact reverse
processing sequence by first evaluating an object detector stage and subsequently us-
ing an additional FCN-like network branch to predict object contours. Furthermore,
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a mixed approach dubbed panoptic segmentation has been proposed, which only
provides explicit instance information for countable object categories [Kir+19]. Other
(background) categories are dealt with using regular semantic segmentation. Therefore
panoptic segmentation is a combination of instance and semantic segmentation. How-
ever, examples of automotive applications that benefit from instance-based contour
information are hardly documented in the literature.
The scene representation predicted by semantic segmentation yields a 2D description
of the environment in the image space. As explained before, it is often necessary
to derive a geometric description in the form of a grid-based occupancy map for
further use in subsequent driving functions. Moreover, a full semantic segmentation
is unnecessarily complicated for the desired representation since it results in a rather
detailed differentiation of categories, see for example [Cor+16; Sen+12]. In fact, a
binary differentiation into free or occupied areas is sufficient for the generation of
occupancy grids. Therefore, in the automotive context, semantic scene segmentation
is often defined differently by considering only the binary problem and evaluating
performance measures on a geometric scene description instead of an image space
description [Fri+13].

Bounding box detection for object-based environment modeling

Object-based environment modeling aims to detect dynamic traffic elements such as
road users in the ego vehicles surroundings and determine a spatial description of
their position and, in some cases, also their orientation and dimension. An object
representation from camera images is obtained using bounding box detection meth-
ods; however, these often focus on 2D bounding boxes in the image space as a first
intermediate representation.
Modern image-based bounding box detection methods using CNNs fall into one
of two categories: region-based detectors and non-region-based detectors. Generally,
region-based detectors are accurate but relatively slow [Hua+17]. Their fundamental
idea is to frame localization as a classification problem by finding image regions
that correspond to object hypotheses and classifying each region individually. For
example, the R-CNN method [Gir+14] generates region proposals, uses a CNN to
extract features from these proposals and an output classifier for the final evaluation.
Fast-RCNN [Gir15], Faster-RCNN [Ren+17], and Mask-RCNN [He+17] are modified
versions that improve certain steps but generally share the same logic.
In contrast, the main idea of a non-region-based detector is to directly map image
pixels to coordinates of bounding boxes. This category includes the approach of
[Liu+16a] dubbed as single shot detection (SSD) and [Red+16] dubbed as you-only-look-
once (YOLO). Another more recent work modifies the YOLO approach by using a
deeper and more sophisticated CNN for feature encoding [RF18]. In comparison,
these methods are more efficient in terms of speed and memory consumption. How-
ever, non-region-based models do not perform as well due to the background-class
imbalance problem, which stems from the fact that many image locations are evaluated,
but only few locations contain objects. The work in [Lin+20] addresses this problem
with notable success by modifying the standard cross entropy loss to decrease the
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weight assigned to background locations.

Several methods are known in the literature to move from 2D bounding boxes to a
spatial reconstruction purely based on image cues. [KK19] performs 2D bounding box
detection after first applying a bird’s-eye-view (BEV) transformation. Thus the spatial
layout can be directly recovered. Similarly, [Rod+19] uses BEV features for bounding
box detection. Another method is to apply point cloud object detection methods after
first generating pseudo point cloud features from a learned depth map. Some notable
examples among the works exploring this idea are [XC18], [Wan+19a], and [WK19].

The works in [Lep+09], [Kun+18], [Man+19], and [HS19] all follow the general pattern
of predicting correspondences between image keypoints and a 3D model and fit the
3D pose. An alternative approach is to render 3D object models at different poses,
backproject into the image plane and measure the similarity between the rendering
and the detection window online, see for example [Mot+15], [Cha+17], and [Bar+20].

Another basic idea is to assume a tight fit between 2D bounding boxes and backpro-
jected 3D bounding boxes and exploit this as an additional geometric constraint, as
introduced by [Mou+17]. The works in [Liu+19b] and [Nai+19] somewhat relax the
tight fit assumption by allowing for explicit offsets of the backprojected bounding box.
In a related approach, [Ku+19] establish geometric constraints based on the backpro-
jection of the bounding box centroid coordinates. [Li+19] presents an approach where
the tight fit constraint is augmented by an additional orientation prediction based on
the object’s visual appearance.

To directly predict 3D bounding boxes, [Che+16b] lends from the idea of proposal
based 2D detectors by sampling proposal boxes in 3D space. In another approach,
[Sim+19] modifies the traditional object detection loss functions to include a 2D IoU
(intersection over union) component and a 3D corner alignment component that are
trained alternatingly. Similarly, [BL19] directly predicts all necessary information for
3D bounding box detection within one end-to-end model.

2.3 Fundamental principles and general framework

The subject of this section is to provide a general understanding of CNNs as a basis for
the present work, with some simplifications for the sake of clarity. Many fundamen-
tal concepts can be explained using the historical perceptron neuron model [Ros58].
According to this, a multi-layered perceptron (MLP) consists of several layers of simu-
lated neurons arranged as nodes in a directed acyclic graph. In a MLP, all neurons of
one layer are fully connected to all neurons of the following layer. Furthermore, each
neuron computes a weighted linear combination of the previous layers output values
and subsequently applies a nonlinear activation function. The notation used in the
following is inspired by the works [Far+13; Vog18], where scalars are given as italic
letters, vectors as bold lowercase letters, and matrices and tensors as bold uppercase
letters. Accordingly, the mapping of a layer l with NP neurons can be described as:
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hl =

 h1,l
...

hNP,l

 =

 ϕa (w1,l · hl−1 + b1,l)
...

ϕa
(
wNP,l · hl−1 + bNP,l

)
 = ϕa (Wl · hl−1 + bl) . (2.3.1)

The respective feature maps (input and output values) are given by h. The vector b
contains the bias and the matrix W the weights, which together form the model’s
trainable parameters. The nonlinear activation function is represented by ϕa (�). The
description of a MLP with NL network layers is therefore given as follows.

hl = ϕa (Wl · hl−1 + bl) ∀ l ∈ {1, 2, . . . , NL} (2.3.2)

From this formal description, it can be seen that basic neural networks are mathemat-
ically rather simple entities consisting mostly of stacked matrix-vector multiplications
interleaved with nonlinear activation functions.

Convolutional neural networks and their components

CNNs have some specific characteristics that distinguish them from regular MLP
networks. Compared to MLPs, CNN architectures consist not only of the matrix vec-
tor multiplication and the nonlinear activation function but additionally incorporate
pooling (sub-sampling) and convolution components. Usually, these components are
referred to as layers, synonymous with the MLP network’s previously discussed layers.
Furthermore, when applied to camera data, it becomes clear that the input measure-
ments are structured in two dimensions. It follows that the features are now repre-
sented by H to reflect the multi-dimensional nature of the data.
In fact, in any practical implementation H becomes a tensor with at least three di-
mensions (u1, u2, u3). This is because, additionally to image coordinates, camera data
is usually also structured along a channel dimension, which is encoded in the third
tensor coordinate u3. For the input images, this corresponds to the color channels, in
the network’s remainder the term feature channels is used. Furthermore, the pooling
and convolution layers are characterized by the fact that only input values within a
local environment are evaluated for the computation of an output value. Originally, a
similar structure has been termed as the receptive field in neurophysiological studies
[HW59; HW62] and it can be illustrated as shown in Figure 2.2. A detailed description
of the individual components is provided in the following paragraphs.

Convolutional layers: As the name indicates, these layers perform a convolution oper-
ation on the input feature maps Hl−1. The convolution kernels Wk form the trainable
model parameters of this layer, which creates the local connectivity consistent with
Figure 2.2. The convolution kernel’s elements are identical for all image positions,
a mechanism also known as weight sharing. Formally, the relationship between the
input and output data of a convolutional layer is given by:

Hl = Hl−1 ∗Wk,l + Bl . (2.3.3)

Note that the 2D convolution can be formulated as a matrix multiplication using the
im2col approach [RX15], so that CNNs too can be considered as stacked matrix multi-
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receptive field affected output pixel

Figure 2.2: Illustration of the local connectivity pattern resulting from two successive 3× 3
convolutions. Inspired by biological analogies, these are referred to as receptive fields.

plications. In convolutional layers, the requirement for identical parameters in all local
environments also holds for the bias B. Due to this, the convolutional layer becomes
spatially invariant, since a spatial translation of the input data leads to a corresponding
translation of the output data but otherwise leaves the output unchanged. The number
of free parameters therefore corresponds to the size of the convolution kernel Wk and
the number of independent elements of B.

Fully connected layers: These correspond to conventional MLP neural networks, since
every neuron processes all outputs from the previous layer. Therefore, receptive fields
do not apply in this type of layer. As noted previously, the full connection of suc-
ceeding network layers corresponds to a matrix-vector multiplication. In the case of
multidimensional data, the feature maps therefore have to be considered in vectorized
form. If vec (�) denotes a vectorization operator, the fully connected layer is defined
by:

hl = vec (Hl−1) ·Wl + bl . (2.3.4)

The number of trainable parameters of the fully connected layer is equivalent to the
product of its input and output dimensions accounting for the weight matrix W, plus
the bias parameters b. The comparably huge increase in computational complexity
means that typically only a small part of the network is implemented as fully connected
layers.

Activation functions: In the historical developments on neural networks, the step
function and later the hyperbolic tangent function were used as activation functions
due to their high similarity with biological models. However, these activation functions
are not well suited for gradient-based training of the model parameters due to their
non-existing or extremely small gradients. This is particularly problematic since, in
deep neural networks, gradients are generally computed by the chain rule. Effectively,
this results in a multiplication of many small gradient values, leading to the vanish-
ing gradient problem [Hoc91]. Therefore, in recent works, the activation function is
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more closely selected according to its mathematical properties. Towards this, [Hah+00]
propose the use of the rectified linear unit function (RELU). Other variants include the
leaky RELU function [Maa+13], the parametric RELU [He+15a] and the exponential
linear unit function [Cle+16]. Due to its empirical success for image processing prob-
lems, the original RELU function still is most widely used today for CNNs [Nwa+18].
Mathematically, it can be described as follows.

Hl = ϕa (Hl−1) = max(0, Hl−1) (2.3.5)

Herein, ϕa denotes the respective activation function. Even though their primary mo-
tivation stems from their mathematical properties, they have also been related to
biological processes [Glo+11].

Pooling layers: This type of layer is commonly used to reduce the spatial dimensions
of the input feature maps for the following layers. Note that the number of feature
channels u3 is not affected by pooling. The dimension reduction is achieved through
sub-sampling, which results in a loss of information. However, it also leads to a reduc-
tion of the overall computational demand, which can play a decisive role and outweigh
any information loss. Similar to the convolutional layer, pooling operates on a local
environment of the feature map. Various strategies for this are documented in the
relevant literature. The obvious approach is to implement pooling by averaging over
a local environment. Other variants discussed in the literature are stochastic pooling
[WG15] and spatial pyramid-pooling [He+15b]. It is, however, more common to im-
plement pooling using the plain maximum operator [Sch+10; Bou+10]. Following the
notation of [Gra14], a local environment (receptive field) of size s is given by E . Then,
the maximum pooling layer can be expressed as:

hl (u) = max
(∆u1,∆u2)∈E

hl−1

(
u + (∆u1, ∆u2, 0)>

)
,

E =
{

0−
⌊ s

2

⌋
, 1−

⌊ s
2

⌋
, . . . , s− 1−

⌊ s
2

⌋}2
. (2.3.6)

Herein, u = (u1, u2, u3)
> applies. The effect of sub-sampling is achieved by shifting

the local environment of the input feature maps using a sliding window with a fixed
step size. Often this step size is equal to s, then s is also referred to as stride.

Concatenation: Besides, the concatenation of features will become relevant in various
places throughout this thesis. Here, no actual processing of the input features occurs,
as the input feature’s values are retained and merely rearranged to form the output
feature tensor. More precisely, concatenation describes the stacking of several input
tensors along the dimension of the feature channels u3. If concat (�) describes the
concatenation operator, its effect can be illustrated as follows.

concat (HA, HB) = concat
(

HA

u1

u2

u3

, HB

u1

u2

u3 )
= HA

u1

u2

u3

HB (2.3.7)
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Chapter 2 Related Work and Fundamental Background

Identification and loss functions

All network layer’s parameters are learned based on a set of Ntrain input images
{H0,1, H0,2, . . . , H0,Ntrain}, the corresponding output data {HNL,1, HNL,2, . . . , HNL,Ntrain},
and a ground truth annotation of the desired output data {YNL,1, YNL,2, . . . , YNL,Ntrain}.
For this purpose, a loss function L (�) is minimized using the training examples. If
the entirety of all trainable model parameters (weights W and biases B) is denoted as
Θ = {θ1, θ2, . . . θNΘ}, then this is formally expressed as follows.

Θ∗ = argmin
Θ

(
1

Ntrain

Ntrain

∑
j=1

L
(
YNL,j, HNL,j

))
(2.3.8)

For continuous target variables, the smooth L1 norm is commonly used as a loss
function. If yNL,j and hNL,j denote the elements of YNL,j and HNL,j, it is given as follows.

LL1
(
YNL,j, HNL,j

)
= ∑

u

{
0.5 ·

(
yNL,j (u)− hNL,j (u)

)2 , if
∣∣yNL,j (u)− hNL,j (u)

∣∣ < 1∣∣yNL,j (u)− hNL,j (u)
∣∣− 0.5, else

(2.3.9)

For classification tasks, the distinguished classes κ are typically encoded in the u3 di-
mension of the last feature map HNL and its ground truth YNL . The values of yNL , hNL

are interpreted as confidence scores. This corresponds to a one-hot encoding where
κ = u3 applies, e.g. assume the case that for a given sample of a dataset, the classifi-
cation into seven different categories is examined. Then, for an example ground truth
class κ = 2, the following 1× 1× 7 vector yNL

results.

κ = 2 → yNL
= (0, 1, 0, 0, 0, 0, 0) (2.3.10)

Generally, the confidence scores are normalized using the softmax function ϕs (�) so
that the model outputs can be interpreted as class probabilities.

ϕs (hNL (u)) =
ehNL (u)

∑Nκ
κ=1 ehNL (u1,u2,κ)

(2.3.11)

Herein, again u = (u1, u2, u3)
> applies and Nκ denotes the total number of distin-

guished classes. Training the model then corresponds to a maximum likelihood (ML)
problem, since the model parameters are selected to maximize the likelihood across all
training examples. In practice, the negative log likelihood, also known as multi-class
cross entropy, is minimized because of its advantages for representing the joint proba-
bility distribution of multiple independent variables [Goo+16, p. 128]. For classification
tasks, a suitable loss function therefore is given by:

Lnll
(
YNL,j, HNL,j

)
= −∑

u
ln
(
yNL,j (u) · ϕs

(
hNL,j (u)

))
. (2.3.12)

By repeatedly applying the chain rule, the gradient of the optimization loss with re-
spect to the model parameters can be determined for all layers of the network. An
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2.3 Fundamental principles and general framework

iterative gradient-descent approach is then used to minimize the loss and fit the model
parameters to the training data. In practice, using all available training examples to
determine the gradient is very inefficient. Therefore, it turned popular not to use the
entire training dataset but only a (pseudo-)random subset to determine the loss gradi-
ent. This method is called stochastic gradient descent (SGD), and the subset of training
examples is referred to as a mini-batch with size Nbatch. Since only an approximation
of the gradient can be determined this way, further measures are used to support a
robust convergence. For this, the standard SGD is extended by a momentum term,
so that parameter updates also consider information about gradients of past itera-
tions [Pol64]. Different adaptation strategies were proposed to facilitate the manual
choice of the learning rate and the momentum term’s weight, which scale the loss
gradient. Prominent methods for this are AdaGrad [Duc+11], RMSProb [TH12], and
Adam [KB15]. In the context of this thesis, the update rule according to [TH12] is
employed. Herein, a weighted moving average, denoted as gMA, is computed for the
squared gradient in each iteration i with respect to each trainable model parameter θj
as follows.

gMA,j,i = λMA · gMA,j,i−1 + (1− λMA) ·
(

∂Li

∂θj

)2

(2.3.13)

When determining the parameter update, the gradient is then divided by the root
of the corresponding moving average value, which yields the following parameter
update per iteration.

∆θj,i = −γ · ∂Li

∂θj
· 1√gMA,j,i

+ ζ · ∆θj,i−1 (2.3.14)

The optimization parameters are thus given by the learning rate γ, the moving average
decay parameter λMA, and the momentum parameter ζ. It has also been shown to be
advantageous if feature maps consist of values from approximately the same range.
This has consequences for the initialization of the model parameters, which are often
adapted to the layer sizes of the network [GB10; He+15a]. Furthermore, it is state of
the art to normalize the feature maps batchwise to explicitly generate values in the
same range [IS15].
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3
Experimental Setup and Data Acquisition

A camera system was set up and integrated into both a mobile and a static test platform
to record the traffic scene images for the experimental investigations carried out within
this work. A discussion of these two test platform’s logical and physical structure is the
subject of this chapter. Also, the used coordinate systems are defined, and a description
of the transformations between these coordinate systems is given.

3.1 Outline of the camera system and test platforms

An overview to illustrate the interaction of the camera system’s various components
is shown in Figure 3.1. The Figure shows the distinction of the employed systems
into an offline part and an online part. For the training of the developed models, the
offline part performs the corresponding parameter optimization based on a database
of annotated camera images using desktop PC hardware. For the execution of the
trained models on real-time video data recorded by the camera system, the embedded
hardware mentioned above is used by contrast.
The development of a reliable perception of the traffic environment sets unique chal-
lenges for the utilized camera. As a result, the image sensors used in automotive
applications generally differ significantly from conventional cameras or smartphones.
For example, unlike in consumer hardware, it is irrelevant for the application whether
the camera system can produce visually appealing, good-looking images. Instead,
machine perception of the traffic environment requires an image that is as close to
reality as possible. For instance, the image sensor must have sufficient dynamic range
to display scenes outdoors and in changing light and weather conditions. In addition,
advanced features for adjusting the exposure time control and for synchronizing the
acquisition play an important role. It should also be noted that the wide adoption
of camera systems in the automotive field is only possible with particularly robust,
durable, and cost-effective sensors.
A corresponding sensor was selected for the experimental setup taking these require-
ments into account, whose detailed technical specifications are listed in the appendix
in Table A.2.a. At the time of writing, these conform to the state of the art available
to the automotive industry, especially concerning dynamic range and color depth, see
also [Cor17, p. 59]. However, it must be noted that this sensor is particularly suitable
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3.1 Outline of the camera system and test platforms
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Figure 3.1: Technical overview of the employed camera system. First, the CNN models are
generated in an offline part, then they are used in an online part for processing live camera
views.

for use at low speeds and less for highway scenarios due to its operating principle
of the rolling shutter3. The image sensor is used as an integral part of an industri-
al-grade camera. Furthermore, appropriate lenses for traffic scene perception should
have as little optical distortion as possible, so that a pinhole camera model can easily
reproduce their properties. This is to ensure that the captured image’s peripheral areas
remain usable for the environment perception and that the available image resolution
can be fully utilized. Also, the achievable detection range resulting from the aperture
angles of the lenses must be taken into account. For the employed camera system,
the technical details of the lenses are given in the appendix in Table A.2.b. These are
characterized by fixed aperture angles and a particularly low optical distortion.
Since automotive applications are often safety critical, a camera system must also pro-
vide the computing power required for highly accurate models and fast processing
times. At the same time, restrictions in installation space and power consumption
must be taken into account. Given this conflict of objectives, the choice of processing
hardware is an important factor. A promising way to meet these requirements is to
use embedded multicore systems, which can accelerate mathematical calculations re-

3A detailed investigation of the sensor characteristics was conducted in the master’s thesis “Entwick-
lung einer Multi-Sensor-Datenfusion zur Umfelderfassung automatisierter Fahrzeuge” written in
2018 by A. Dikarew at the TU Dortmund Institute of Control Theory and Systems Engineering.
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Chapter 3 Experimental Setup and Data Acquisition

lated to signal and image processing through massive parallelization. In fact, several
manufacturers have taken note of the emerging market for embedded machine learn-
ing applications and started developing specific multicore hardware for automated
vehicles. In addition to the provided computing power, the available solutions also
differ in their support for common machine learning libraries. At the time of writing
of the present thesis, the processing hardware termed as Jetson TX2 and detailed in
the appendix in Table A.2.c represents one of the leading available embedded systems.
It is based on a multicore CPU + GPU setup and supports the CUDA (compute unified
device architecture) programming interface’s full instruction set [Nic+08]. This allows
the use of virtually all state of the art machine learning libraries without extensive
customization, especially without reducing the set of supported functions as is com-
mon with other alternatives [Goo19a; Goo19b]. Therefore, this processing hardware is
used as the online application system in the following.
The implementation of the developed image processing models is largely based on the
open source Tensorflow software framework [Aba+16] for the definition, training, and
execution of deep neural network models. Here, the decisive advantage of Tensorflow
over other alternatives is the support of the large community of active researchers
and developers. This is also reflected in statistics such as the analysis of search engine
trends or the number of development projects forked from Tensorflow [SJ19].

Mobile platform: test vehicle

The examination of the image processing models developed throughout this work is
carried out mainly using two different test platforms. The described online part of the
camera system was integrated into a test vehicle of the type Nissan Leaf ZE0 to set
up the first test platform. Thus, the test vehicle’s main purpose is to record some of
the required datasets for training and evaluation of the developed perception system.
For the positioning of the camera, multiple different aspects need to be considered.
On the one hand, the mounting position should be as high as possible, since from this
perspective, the mutual occlusion of road users occurs less frequently, thus enabling a
more robust perception. On the other hand, the camera should be protected as much
as possible from dirt and weather influences. This is why the installation behind the
windscreen at the rear-view mirror’s height has proven itself in practice. This position

Figure 3.2: Overview of the used test vehicle with the camera fixture. The camera is positioned
as high as possible while still being covered by the windscreen wiper’s cleaning area.
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3.1 Outline of the camera system and test platforms

allows the recording of the traffic scenes in the direction of travel, which is the most
relevant area for the driving task. Furthermore, it is advantageous that this position
is covered by the cleaning area of the windscreen wiper, so that disturbances caused
by rain and other weather influences are reduced. Therefore, the camera is attached
to the rear-view mirror mount using a specially designed fixture. An overview of
the setup in the test vehicle is shown in Figure 3.2. This mobile platform allows to
capture the traffic scene while driving, which has the advantage of allowing a realistic
examination of the developed models with recordings from actual road traffic. In
contrast, the influence of ego-movements on the measurements is disadvantageous. In
particular, any rolling and pitching movements of the test vehicle can have substantial
effects on the obtained spatial reconstructions of the scene representations.

Static platform: road side unit

The second employed test platform was developed in the context of the interim field
test of the InVerSiV project4. This platform is referred to as road side unit. It is in-
tended for sensor-based traffic monitoring using elements of the permanently installed
traffic infrastructure such as traffic lights or street lamps. Within the framework of a
radio-supported, cooperative perception of the traffic scene, the road side units pro-
vide a means of extending the detection range of a vehicle’s own sensors. Thus it
becomes possible to also detect occluded road users, for example, behind the corner
of a building at an intersection. For this purpose, the camera system was set up in a
field experiment on a closed-off test track, whereby a truss construction was used for
mounting the camera system and other sensor components.
Figure 3.3 gives an impression of the field test. This illustration shows that the operat-
ing conditions are different from those of the mobile test platform. In this regard, the
road side unit concept represents a purely static platform with no inherent movements.
Correspondingly, the sensor platform’s orientation does not change and a static trans-
formation can be used to estimate distances and spatial positions within the depicted
scene. Furthermore, the installation is again carried out in a custom housing that min-
imizes weather influences such as rain or direct sunlight through a protective screen.
Compared to the moving test platform, the intended mounting position on common
infrastructure elements such as traffic lights, lanterns, or overhead sign gantries offers
considerable advantages. Generally, the traffic scene is shown from a much higher per-
spective when viewed from this position. Therefore, when the camera system is used
in the road side unit, direct lines of sight to most road users exist even in crowded
scenes, so that mutual occlusions occur less frequently and have fewer adverse ef-
fects. Due to the closed-off test track and the synthetic traffic scenes simulated by test
drivers, a disadvantage is that the resulting image data generally offers less variety
and realism. For this reason, the second test platform is mainly used for a qualitative
assessment of the generalizability of the developed image processing models towards
altered operating conditions.

4Intelligente Verkehrsinfrastruktur für sicheres vernetztes Fahren in der Megacity, see https://www.inversiv.de/ .
Accessed August 6th, 2020
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Chapter 3 Experimental Setup and Data Acquisition

Figure 3.3: Overview of the InVerSiV field test with the road side unit camera platform. The
cameras monitor the traffic scene from a stationary truss structure.

3.2 Inferring scene points from image space measurements

Since the planning of driving maneuvers and vehicle control algorithms typically
work in metric 2D space aligned to the road surface, it is necessary to describe the
location of relevant traffic elements within the scene in spatial coordinates. In the
camera’s perspective image, the spatial relationship between traffic elements cannot
be determined directly. Instead, it is constrained indirectly from their 2D positions in
the image.
This applies regardless of the type of representation. Therefore, this section first dis-
cusses the definitions of the used coordinate systems and the mapping of scene points
from a 3D coordinate system into a 2D image coordinate system. Subsequently, the
actually desired inverse mapping of image coordinates to spatial 3D coordinates is
considered, and it is discussed how this mapping can be realized depending on the
scene representation.

Camera model and coordinate systems

The mapping of 3D scene points to image coordinates is described by a camera model.
The explanations in the following are based on [Pri12, pp. 359–363] and [HZ03, pp.
153–161].
The pinhole camera model is conceptually simple but widely used in practice. It
essentially makes use of projective geometry to describe the coordinate mappings.
This can be easily understood using an example object positioned at the 3D scene
point nC, as shown in Figure 3.4. The depicted 3D coordinate system (x1, x2, x3)

> is
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Figure 3.4: Schematic illustration of the central projection in the pinhole camera model. The
object at the spatial position nC is mapped to the image point nI.

named the camera coordinate system and marked as �C. In the 2D representation
of the scene, measurements are available in image coordinates (u1, u2)

>, which are
denoted as �I respectively. This image coordinate system is aligned with the image
plane, such that the origin lies in the upper left corner. As in a real pinhole camera, an
optical axis is defined orthogonal to the center of the image plane, and a focal length
f is specified, which indicates the distance between the camera center and the image
plane. If the camera coordinate system is aligned with the optical axis and the camera
center, as shown in Figure 3.4, the mapping can be obtained by the following equation:

ñI =

 f 0 ou1

0 f ou2

0 0 1

 nx1

nx2

nx3

 = K · nC , (3.2.1)

wherein the focal length f and the image coordinates of the principal point
oI = (ou1 , ou2)

> represent the camera model’s parameters. The vector nI denotes the
resulting image point and �̃ marks the use of homogeneous coordinates. Furthermore,
the matrix K is referred to as the intrinsic calibration matrix. Apart from inexact cali-
bration parameters, the accuracy of the outlined camera model is also limited because
it does not take sufficient account of all occurring phenomena. For instance, lens dis-
tortion or a skew between the image plane and the optical axis due to manufacturing
tolerances are not sufficiently considered. For this reason an extended camera model
is used in practice, which allows a more precise mapping, see [KB17, pp. 637–687].
For the following explanations, however, it is assumed that all effects were taken into
account, and that equation 3.2.1 applies.
In general, subsequent motion planning and driving functions make use of a coor-
dinate system that is not aligned with the camera sensor. Instead, world coordinates
�W are defined that are measured in a right-handed coordinate system aligned at
fixed points. For the considered test platforms, these are given by the base of the road
side unit or, in the case of the test vehicle, by a road-level point below the number
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Chapter 3 Experimental Setup and Data Acquisition

plate’s center. Consequentially, a rotation and a translation component must be taken
into account to describe the relative offset from the world to the camera coordinate
systems. Based on the equation 3.2.1, the following expression can be established to
map between world and image coordinates.

ñI = K · nC = K · (R | t) · ñW = P · ñW (3.2.2)

Herein R is the rotation matrix and t = −R · oW describes the translation of the ro-
tated camera center in world coordinates. Together they represent the extrinsic camera
parameters, and the combined matrix P is termed as the camera projection matrix.

Inverse perspective mapping of image points

Next, it has to be considered how the scene representations measured in image co-
ordinates can be transformed back into the spatial world in order to be usable for
driving functions. It should be noted that capturing a 3D scene in a 2D image is al-
ways associated with a loss of information. Therefore, it is impossible to determine
spatial coordinates directly, but only a backprojection line can be determined. This
line describes the set of all points nW that are mapped to a given image point nI. The
backprojection line is defined to run through the camera center oW of the camera
system. Note that P can be rewritten as:

P = K · (R | t) = (K ·R | K · t) . (3.2.3)

Furthermore, the translation vector t can be expressed with p4, the fourth column
vector of P, as follows.

p4 = K · t
⇔ t = (K)−1 · p4 (3.2.4)

Then, with t = −R · oW, it follows that the camera center can be expressed as:

oW = − (R)−1 · t = − (R)−1 · (K)−1 · p4 = − (K ·R)−1 · p4 . (3.2.5)

The vanishing point (
∞
nW, 0)> belonging to a given nI provides another point on the

backprojection line. It can be expressed as:

ñI = P ·
(∞

nW, 0
)>

= (K ·R) · ∞
nW (3.2.6)

⇔ ∞
nW = (K ·R)−1 ñI . (3.2.7)

The set of all scene points mapped to nI is then defined by the backprojection line in
parameter form ϕ̃BP as follows.

ϕ̃BP (ν) =

(
oW
1

)
+ ν

(
∞
nW
0

)
=

(
− (K ·R)−1 · p4

1

)
+ ν

(
(K ·R)−1 ñI

0

)
(3.2.8)

As is obvious from these considerations, additional constraints have to be formulated
to derive concrete scene coordinates.
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3.2 Inferring scene points from image space measurements

Bird’s-eye-view through pixel-dense inverse perspective mapping

So far, a selective mapping of image points to scene coordinates was discussed. For the
representation of shape-based scene elements such as the drivable road area, however,
a pixel-dense reconstruction is more feasible. For this purpose, it can be specified
that all points depicting the road area must lie on a common, flat ground surface in
3D space. By assuming a constant value for the road surface’s vertical position and
then intersecting ϕ̃BP with the corresponding plane, actual 3D world coordinates can
be obtained. From the previous descriptions, it is obvious that this initially leads to
a sparse representation of the road due to the finite image resolution. Therefore, to
obtain a dense spatial representation of the drivable road area, bilinear interpolation
is used.
As shown in Figure 3.5, the obtained image gives the impression of a view of the scene
from above. This is why this pixel-dense inverse perspective mapping is also referred
to as bird’s-eye-view (BEV). It is apparent that this technique produces a feasible
reconstruction especially of those image areas that depict the road surface. However, it
can also be seen that for image areas depicting other road users, significant distortions
arise due to the violated assumptions about the vertical position of the scene points.
Therefore, these require a more sophisticated analysis, which will be discussed in more
detail later.

Figure 3.5: Example image of a traffic scene recorded from the test vehicle and the correspond-
ing image after applying the BEV transformation.
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4
Network Architecture for Multi-task Feature

Sharing

An important design consideration for neural networks is the determination of the
architecture, which is the subject of this chapter. In this context, the term architecture
describes the general network structure regarding the number of neurons and how they
are connected. Besides the general principles of designing deep CNN architectures,
this chapter also discusses suitable strategies to reduce the experimental burden to a
practical level during the design phase. Furthermore, the unique potential of multi-
task architectures for traffic scene perception is discussed, and the encoder architecture
used in the further course of this thesis is determined.

4.1 General design considerations

The basic composition of CNNs follows a layer-wise interconnected structure. In such a
network architecture, several essential design decisions have to be made. An important
design aspect is given by the network’s depth, i.e. the number of successive layers
NL. Furthermore, the size of the individual network layers has to be determined. This
includes, for example, the number of neurons NP which for convolutional layers results
from the size and number of filter kernels Wk, or the resolution of the feature maps
computed by the pooling layers. Primarily, these design choices concern the network’s
part, which generates the intermediate representations serving as features for the
output predictions.
This part of the network is dubbed as the feature encoder and typically accounts for
the largest share of the computational cost. It is detrimental for the actual architecture
design that only general estimates and empirical results are known so far in many re-
spects. Often, these tend to have the character of broad guidelines, and their theoretical
or even empirical validation is incomplete, see for example the remarks in [Sze+16] or
[He+19] on general design principles. Most notably, the current state of research does
not allow to formulate theoretical proof (or disprove) of the superiority of specific net-
work architectures. Moreover, the universal approximation theorem [Cyb89; Hor+89]
is often seen as an example of how, in some cases, theoretical considerations even
suggested conclusions that were somewhat misleading in the light of later empirical
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4.1 General design considerations

findings [Goo+14]. Therefore, a network architecture’s practical development is still
commonly based on extensive experimentation, guided by monitoring the test set error
[Goo+16, p. 192]. This inevitably implies a respective burden in terms of development
time and trial-and-error effort. While there are approaches to automate this process
[Zop+18; TL19], they have been successfully applied only to a limited number of tasks,
and their computational demand remains a decisive disadvantage.
As an alternative strategy, which is able to reduce the associated experimental burden
somewhat, it is suggested to align the design of the architecture heavily with known
effective approaches, whose performance was already adequately investigated. This
general technique is also known as transfer learning [Yos+14]. Due to the outlined prac-
tical benefits, a corresponding approach will be pursued in the following. Therefore,
the further design procedure’s main objective is the selection of a network architecture
under consideration of existing empirical findings.
For this, general design considerations and strategies are reviewed first to make the
underlying rationale for the final architecture choice transparent. To this end, similar-
ities and frequently used design elements in common CNNs can provide a basis for
deriving effective architectural concepts, some of which are discussed below. Further-
more, any real-world experimental system is subject to certain practical and technical
restrictions, which are also examined.

Expressive features from repeated network submodules

Meaningful and expressive features that make a given task accessible to an automatic
solution are at the core of any image processing or general machine learning system.
This immediately raises the question of how such features can be characterized and
how they can be computed. Both studies from the field of neurophysiology [IK04;
Hyv+05] and studies in the field of machine learning [Lee+11; Far+13] show that
meaningful visual features have an inherent hierarchical structure. Furthermore, this
hierarchy can also be explained by intuition. For instance, in pictures of a certain object,
it is easy to identify parts of the object that, in turn, consist of simple shapes, geometric
primitives, and finally of the simplest contours such as edges or local curvatures. For
example, suppose a task requires the detection of vehicles as an object class. In that
case, it is useful to discover class-specific patterns (e.g. wheels or body panels) as fea-
tures5. These considerations already suggest that models for image processing should
have a hierarchical structure. In fact, this corresponds well to the outlined layered
structure of CNNs, and this fact is often held responsible for their high performance in
computer vision applications. When reviewing common successful CNN architectures,
this hierarchical structure can also be identified at a more general level.
More precisely, it can be stated that the most performant architectures virtually always
consist of repeating submodules [Mil+02; San+17], which can be understood as small,
fundamental building blocks of complex architectures and are sometimes also referred
to as microarchitectures. In a CNN, these submodules define patterns that include
the various processing layers and a careful design of the connections between them.

5See for example [Lee+11] for more examples and empirical findings.

29



Chapter 4 Network Architecture for Multi-task Feature Sharing

input
image

repeat×NA

su
bm

od
ul

e-
A

su
bm

od
ul

e-
B

repeat×NB desired output
representation

poolingpooling

Figure 4.1: Repeated network submodules in common CNN feature encoder architectures. A
repeating structure of identical microarchitectures connected in a sequence is interrupted by
pooling layers for sub-sampling.

The resulting general architecture is illustrated in Figure 4.1. Herein, an architecture
takes on a form in which identical repeating submodules are connected in a sequence
interrupted by pooling layers that implement a gradual sub-sampling.
Notable examples of this general principle include [Sze+16; He+16; Ian+16; How+17]
and [Zop+18]. Due to their empirical support, it is argued that the employed feature
encoder should have a corresponding architecture to achieve an optimal performance.
Conversely, approaches that do not consider this general structure, as in [Kri+12; SZ15;
Tei+18], should be excluded.

Practical view on network depth and translation invariance

Practical limitations in implementing CNNs often pose a decisive factor that introduces
constraints for a technically feasible network architecture.
Generally, empirical results indicate a connection between the network complexity,
given by its number of successive layers NL, and the resulting classification perfor-
mance, see for example [Zop+18]. In addition to empirical results, there are also more
intuitive arguments for the choice of deeper CNNs, as such a choice generally reflects
the idea that a combination of many simple functions can solve a complex task. This
corresponds well to the previously discussed inherent hierarchical structure of use-
ful and expressive features in image processing. The consequential tendency towards
deeper architectures gives rise to an essential technical constraint, which is given as the
conflict of objectives between the computational cost of a CNN and its achieved perfor-
mance. The computational cost is reflected in the computation time and the memory
requirements, which are both related. The exact estimation of computational require-
ments depends on the individual implementation and architectural details. However,
for common implementations, excluding dedicated approaches for very specialized
applications, an approximately linear relationship between network depth NL and the
associated memory and computation time can be inferred [Che+16a]. For the memory
requirement, this is largely determined by the feature maps [Rhu+16], the number of
which increases linearly with increasing depth.
In addition, deep network architectures have more free parameters requiring par-
ticularly large datasets to avoid overfitting. Corresponding publicly available large
datasets mainly exist for the problem of image recognition, since this is a relatively
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simple image representation with comparatively low annotation effort. Consequently,
the architectures of large, high-performance networks are usually characterized by the
task of image recognition, which involves maximal sub-sampling up to a scalar class
label. Since the present work follows the transfer learning strategy, it is necessary to
employ pre-trained image recognition networks and modify them for other perception
tasks through a partial transfer of the learned parameters. Here it should be noted
that the strong sub-sampling mainly stems from the translation invariance present in
the task of image recognition [Zhu+19]. When adapting recognition architectures for
other tasks that require a more precise localization of scene elements, this invariance
must therefore be explicitly compensated.
Overall it can be stated that the network’s depth is technically limited by the employed
computing hardware. Furthermore, due to the availability of datasets, there are mainly
image recognition architectures available for the transfer learning approach, which
require an explicit adaptation to other perception tasks.

Residual skip connections and consecutive images

In deep CNNs, the training gradients are computed by applying the chain rule, which
can result in very small gradient values. These can lead to a slowing or stagnation of the
training process, which has been termed as the vanishing gradient problem [Hoc91]. As
a possible mitigation approach, so-called residual skip connections [He+16] can bridge
network layers in parallel, which breaks up the chained network structure. However,
some empirical studies report inconclusive results [Sze+17b], and it is unclear whether
significant benefits can be achieved specifically in a transfer learning approach, which
already eases the model training due to the associated knowledge transfer.
In the context of traffic scene perception, it can also be assumed that measurements are
given in the form of a video stream. Therefore, it is obvious to examine whether an ex-
plicit consideration of successive measurements in the sense of a structured prediction
offers advantages over the independent processing of single images. The underlying
rationale is that supplementary information from slightly different perspectives in
consecutive images can be exploited to increase the perception performance.
Both strategies were examined in a preliminary study associated with the present
thesis6. The investigation of residual skip connections was based on the work of
[Sze+17b]. For the causal processing of image sequences, a recurrent network structure
according to [Fay+16] and a structure with external dynamics following the works of
[Tra+15] were investigated. However, the obtained results did not indicate a decisive
benefit, so these strategies are not further considered in the following.

4.2 Multi-task learning and architectural implications

Multi-task learning aims at simultaneously predicting multiple output representations
from an integrated model so that input data and (some of the) intermediate feature

6Further details are described in the master’s thesis “Deep residual networks for causal semantic
segmentation of traffic scene videos” written in 2017 by D. Jiang at the TU Dortmund Institute of
Control Theory and Systems Engineering.
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Figure 4.2: The multi-task concept, according to [Car97], illustrated for traffic scene perception.
Different tasks share the same input as well as some of the intermediate features. However,
they involve different target values for their respective output representations. HSeg, HDet and
HRec denote the feature sets relevant for the respective tasks.

representations are shared. As a motivation for this approach, it has been hypothe-
sized that shared representations can offer some form of beneficial knowledge transfer
between multiple tasks [Car93; Thr95; Car97]. Put simply, the basic assumption is that
what is learned from one task is also useful for other tasks. This view resonates well
with the concept of hierarchical features, that shift from simple, generic patterns to
more complex and specific features. In the context of traffic scenes, the simultaneous
determination of multiple complementary perception tasks offers a unique potential
for a multi-task architecture. Figure 4.2 illustrates the basic concept where the tasks
are given as the various considered environment representations.
Herein, the different tasks share the same input, and some of the feature maps gen-
erated by the intermediate CNN layers. However, they differ in their output repre-
sentations and their associated target values, which are specific to each respective
task. Following [Goo+16, pp. 237–239], the multi-task approach and its parameters can
therefore be divided into two types of components:

1. The first type refers to the encoder part, which consists of the shallow to inter-
mediate network layers. Since, as shown in Figure 4.2, it is shared across all tasks
and its purpose is to generate expressive features, this part is termed the shared
feature encoder.

2. The second type represents the components that are not shared and consist of
the task specific layers located after the branch in the architecture outlined in
Figure 4.2. As their function is to generate the output representations, they are
termed task specific decoders.
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Note that the overall objective of the simultaneous perception of complementary traf-
fic scene representations already narrows the possible multi-task architectures as a
matter of principle. Under this constraint, some of the general multi-task learning
approaches are not applicable or not feasible for technical reasons. For instance, due
to the previously discussed reasons, it is necessary to use the transfer learning ap-
proach with pre-trained models to achieve a practicable perception performance with
realistic experimental and annotation effort. As a result, approaches based on fully cus-
tomized multi-task model architectures, which cannot integrate previous knowledge
from pre-trained models, are not suitable in this context. This applies, for example, to
the approaches from [Lu+17] and [Has+17].
Furthermore, several existing strategies are based on homogeneous task structures
with similar output variables, see for example [BS03] and [Arg+08]. Regarding auto-
motive environment perception, some applications indeed exhibit homogeneous task
structures, for example, when considering multi-sensor object detection [Lia+19]. How-
ever, in the case of the perception of complementary environment representations, this
prerequisite is generally not met. Eventually, a differentiation can be made in terms of
the extent of feature sharing, which is discussed in more detail below.

Efficient feature sharing architecture

Another design decision is the concrete form of the feature sharing within the multi-
task architecture. In this context, [Rud19, pp. 48–49] distinguishes between hard and
soft parameter sharing strategies, see Figure 4.3 for an illustration. Hard parameter
sharing generally refers to an architecture, where all feature encoder layers are directly
shared between all tasks. In fact, this strategy is most commonly applied in the con-
text of traffic scenes, see for example [CC17; Tei+18; Rod+19; Wan+19b], and it was
originally introduced by [Car93].
In contrast, in the case of soft parameter sharing, a separate model with its own model
parameters is maintained for each task, and an additional regularization minimizes
only the deviation of the parameters between the tasks. Corresponding work can be
found, for example, in [Duo+15] and [YH17].
Generally, the main advantage of the multi-task approach is its increased efficiency,
which has been discussed in the context of computational resources and prediction
performance. In systems for visual scene perception that are based on embedded
hardware and, at the same time, require compliance with runtime constraints, the
computational advantages of multi-task learning are of particular importance.
This relates to the multi-task model’s characteristic, that all task specific decoders
are based on a shared set of features. Thus, compared to the use of separate models,
the computational demands can be reduced if repeated computations of redundant
features can be avoided. In this context, redundant features are given if some of the
relevant features associated with the different tasks can be shared between two or
more tasks, see also [Goo+16, pp. 237–239]. As long as it can reasonably be assumed
that some redundant features exist, this can formally be expressed as:∣∣HSeg ∩HDet ∩HRec

∣∣ > 0 , (4.2.1)
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Figure 4.3: Comparison of the concepts of hard and soft parameter sharing, see also [Rud19, pp.
48–49]. Hard parameter sharing directly shares all hidden layers between the tasks, whereas
soft parameter sharing minimizes the deviation of the model parameters Θ between the tasks.

wherein HSeg,HDet and HRec denote the respective feature sets relevant for the road
segmentation, vehicle detection and topology recognition tasks. Therefore, it is benefi-
cial to use a multi-task approach solely for the increased efficiency of shared feature
computations.
It is already evident from the illustration in Figure 4.3 that this computational advan-
tage of the shared features does not apply in the case of soft parameter sharing. This
is because the parameters for the tasks are similar but not identical, and thus repeated
computation of the shared features cannot be omitted. For this reason, the multi-task
approach used in this thesis follows the hard parameter sharing strategy shown in
Figure 4.3 on the left.
Besides the computational efficiency, it is also essential to consider the effects of a
multi-task approach on the resulting model performance. However, the related effects
are less apparent, and a distinction can be made between potentially beneficial and
detrimental influences on the model’s performance. For example, it has been hypoth-
esized that the aggregation of training examples from different tasks helps to learn
the shared features better than it would be possible for a single-task model, due to the
larger relevant training dataset, see [Bax00] and [Goo+16, p. 237]. Similarly, multi-task
architectures inherently exhibit a preference for features that are useful for all tasks.
This effect has been termed as inductive bias [Car97, p. 52], and some empirical results
suggest that there is a relationship between features that are shareable between tasks
and features that generalize well to unseen data [Tei+18; Kok17]. However, in contrast

34



4.3 Comparison and choice of the feature encoder architecture

to the previous reasoning, it can be argued that the total model capacity in several
separate single-task models can be higher than in one integrated multi-task model.
Here, the capacity of a model is its ability to perform a wide variety of functions. In
the discussion it should be noted that the term model capacity is not a theoretically
founded and directly measurable quantity. Rather, it is an abstract concept, which is of-
ten associated with network depth NL or the number of model parameters NΘ, see also
[Goo+16, pp. 111-112]. Since a multi-task architecture potentially reduces the available
model capacity per task, this effect may adversely affect the resulting performance.
Therefore, the performance effects in a multi-task approach largely depend on whether
sufficient similarities exist between the different tasks, such that the model can make
use of a significant amount of shared features. Moreover, it is decisive whether the
total model capacity available for all different tasks becomes a limiting factor.

4.3 Comparison and choice of the feature encoder
architecture

As described in the previous sections, an approach based on transfer learning and
using a multi-task architecture provides an effective means of achieving a robust per-
ception of traffic scenes with reasonable development effort and practical hardware
constraints. For a multi-task architecture, as outlined in Figure 4.2, the computational
burden is assumed to lie mostly with the shared feature encoder. Therefore, the choice
of the feature encoder is of great importance, as it has a decisive influence in balanc-
ing the conflicting objectives of low computational requirements and high perception
performance. Furthermore, a sufficient measurement accuracy should be ensured re-
garding the perception performance and also the spatial resolution of the resulting
scene description.
Note that the employed image resolution also affects the computational requirements
significantly. In practice, the image resolution specification determines the achievable
spatial reconstruction accuracy, but it also needs to take the observable part of the
scene into account. Consequently, aspects such as cropped traffic elements in the near
field or slopes and grades in the course of the road should also be considered. Due to
this, an estimation of the required resolution can be made based on well established
and proven effective parameters from existing applications. For example, the system
in [Gei+13] uses an image resolution of 1242× 375 px. For the mobile experimental test
platform presented in section 3.1, this results in a longitudinal resolution of ≈ 25px

m
and a lateral resolution7 of ≈ 1.5px

m at a distance of x2 = 30 m.
Due to the comparatively slightly smaller opening angle of the employed camera sys-
tem (cf. Table A.2.b in the appendix), this accuracy is slightly higher than in [Gei+13].
However, to allow for a consistent and comparable evaluation of the model architecture,
an image resolution of 1242× 375 px is adopted in the following. With the discussed
constraints, the choice of a possible feature encoder architecture is already significantly

7This estimate was determined based on the camera model in section 3.2 for positions on the ground
plane.
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Figure 4.4: Performance versus computational resources of selected feature encoder architec-
tures measured on the ILSVRC benchmark [Rus+15]. Left: the total number of free model
parameters NΘ. Right: the total number of multiply-accumulate (MAC) operations measured
at the originally reported resolutions. The dashed line marks Pareto optimal approaches. The
data stems from the corresponding publications as well as [Zop+18; Sze+17a] and [TL19].

narrowed. The performance of the model can be used as a further basis for a more
comprehensive assessment. The main goal here is that the best possible performance
is achieved for a given computational load. More precisely, none of the alternative
architectures should require the same or a less computational resources while provid-
ing better performance. The feature encoder should, therefore, be Pareto optimal with
respect to the conflict of objectives between performance and computational load.
In addition, the chosen approach should be designed according to the previously
established general architecture guidelines. With this pre-selection criterion, several
known architectures can be considered as alternatives for choosing the feature encoder.
Instead of directly measuring the runtime and memory requirements of a particular
feature encoder, the architecture selection can more easily be based on an indirect esti-
mate by comparing characteristic parameters. For this purpose, the number of trainable
model parameters NΘ and the number of required multiply-accumulate (MAC) oper-
ations are considered. A corresponding comparison of potential architectures based
on the benchmark of [Rus+15] for general image recognition is included in Figure 4.4.
This again shows the general conflict of objectives as well as the relationship between
the architecture complexity and the achieved perception performance. Furthermore, it
is apparent that no linear relationship exists between the architectural complexity and
the achieved performance, but instead the curve shows a flattening trend.
From the set of Pareto optimal alternatives, the architecture according to [Sze+16],
which has been termed as inception-v2, can utilize the employed online hardware
platform to the fullest extent while still maintaining the desired image processing res-
olution. Larger architectures generally exceed the memory resources of the available
hardware system, while for smaller architectures, it can be assumed that the model
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Figure 4.5: The employed feature encoder based on the inception-v2 architecture according
to [Sze+16]. The inception modules reflect the idea of repeated network motifs. Separated
convolutions used in the original architecture are illustrated as single blocks, and activation
layers are not shown for clarity.

performance is overly limited due to unused computational resources. Besides, this
architecture is located at a prominent bend in Figure 4.4, so that a favorable compro-
mise of the conflicting goals can be assumed. Consequently, this architecture is used
in the present work8 as a basis for all considered perception tasks.
A simplified overview of the inception-v2 architecture is shown in Figure 4.5, note
that the stride s here denotes the sub-sampling factor of the corresponding feature
maps with respect to the input resolution. From the illustration it is evident, that this
architecture makes use of several of the outlined design strategies. Thus, it follows
the basic structure of successive sub-sampling and relies heavily on the so-called
inception submodules, which are illustrated in the top left part of Figure 4.5. Within
these inception submodules, convolutional layers with different receptive fields and a
maximum pooling layer are computed in parallel. Subsequently, their output feature
maps are concatenated along the channel dimension u3. Furthermore, the gradual
subsampling in deeper layers is not exclusively done by pooling, but by a combination
of pooling and convolution layers (see Figure 4.5 top right).

8this work employs a variant of the architecture published at
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v2.py .
Accessed: September 21st, 2020
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5
Global Road Topology from Scene Context

Recognition

The general objective addressed in this chapter is to classify the wider context of a
given traffic scene. Although the definitions of what is considered relevant context in-
formation may vary depending on the intended application, they all have in common
that the context information has a global character, as opposed to local information that
only describes a particular region in the image. The following section discusses how
the global context can be defined to categorize traffic scenes, how the context informa-
tion can be used to support subsequent driving functions and how the corresponding
image recognition can be implemented in a practical model. Also, an evaluation of
the proposed model is presented. Parts of the considerations in this chapter have been
published in the papers [Oel+14; Oel+15a; Oel+16b; Oel+17] and [Oel+18b].

5.1 Use and taxonomies of the traffic scene context

Since the concrete form of context information may vary with the intended applica-
tion, a definition of what can be considered as context information is discussed first.
Concerning traffic scenes, [Fas+95, p. 44–45] defines the subjective situational context
as the directly perceivable part of the traffic-related influences from the driver’s per-
spective. Similarly, [CK00] define that “context is the set of environmental states and
settings that either determines an application’s behavior or in which an application
event occurs and is interesting to the user”. [Mat+15] notes that for the purpose of
automotive engineering, the user is given by the ego vehicle.
To further concretize the examined context information, it is helpful to take a closer
look at the possible objectives associated with its perception. Here, among others, the
following objectives are identified:

• Situational adjustment of the executed driving strategy

• Additional supplementary input features for other perception tasks

• Cross-checks and plausibility tests to support a safe function
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The most important objective results from the need for adaptive, situational adjust-
ments of subsequent driving strategies build on top of an environment perception.
With regard to ADAS it can be observed that on the one hand, the number of available
functions has strongly increased over time, while on the other hand single, specialized
ADAS functions cannot support the driver permanently during the whole journey. In-
stead, the activation of ADAS depends on the context of the respective scene [Kas+11;
Wei+13]. In contrast, modern approaches in automated driving often pursue an in-
tegrated system architecture, in which a strict differentiation into individual ADAS
functions is no longer feasible. Nevertheless, it can be assumed that the traffic scene’s
context has a significant influence on the execution of the driving task, see also [Sch12;
Fra+15].
Besides, global context information also plays an important role in the task of envi-
ronment perception itself. Firstly, this can be verified by an explicit examination of
the occurrence frequencies of certain objects, which can vary depending on the global
scene type, see for example [Hoi+08; Nie14]. Secondly, empirical observations on
models with integrated global context information also support this argument, where
the incorporation of context information can improve the generalization capabilities
through an additional inductive bias [Liu+16b; Sch16; Tei+18].
Moreover, another objective concerns the often discussed problem of functional safety
of automated driving systems [Win15; Lüt+18]. Here, global context information pro-
vides an opportunity to implement additional cross-checks and plausibility tests,
which are particularly useful for dealing with rare situations and corner cases. Espe-
cially in this context, the necessity of context perception with online sensors becomes
apparent, for example with regard to the safety requirement of self-contained oper-
ation or the possibility of medium-term changes in global context information, e.g.
when considering construction sites.

Traffic scene related global context taxonomies

Early on, [Fas+95] demonstrated that the driving task is affected by the discrete class
of the given traffic scene. The same assumption about the discrete nature of context
information was also adopted in several later studies, see for example [Wei+13; Sch16;
Sch+18].
For further differentiation, it can therefore be assumed, that a discrete taxonomy with
clear semantic meaning can represent global information relevant to the driving task
and perceivable by cameras. A model for camera-based context perception, therefore,
generally resembles a global image recognition classifier. Some examples of corre-
sponding traffic scene context attributes include the lane count [Sch+18], the road type
[Kas+09; Tei+18; Sch16], weather and visibility information [Wei+13], and the road
topology [Ess+09], among others. These examples suggest that the objectives of the
given application determine the context taxonomy.
However, it can be stated that context information is particularly useful in complex
scenes and that among the discussed examples, road topology information generally
offers a very direct benefit for subsequent driving functions. For example, this is evi-
dent from the discussions in [Sti+15] on the intersection perception module employed
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Figure 5.1: The traffic scene taxonomy used for global context recognition throughout the
present thesis. Seven distinct classes describe the road topology in urban, inner-city traffic
scenes.

in the Bertha Benz drive [Zie+14]. As a further example, the work in [Sch12] demon-
strates that the set of feasible driving maneuvers depends on the road topology, i.e. the
presence of junctions or intersections. Therefore the following investigations consider
a taxonomy that describes the road topology in urban, inner-city traffic scenes. Due to
the diversity of the occurring traffic elements and the high variability of the visual ap-
pearance of inner-city scenes, context perception here is particularly meaningful. The
corresponding traffic scene taxonomy is presented in Figure 5.1. Here, roads without
junctions are distinguished from those with one, two, or three junctions, and further
the course of the road, e.g. to the left or right, is taken into account. However, it shall
be noted that the general approach of image recognition is also directly applicable
to most other taxonomies, except for hierarchical context attributes [Bin+09; Wu+19a]
which require dedicated approaches.

5.2 Recognition decoder and architecture integration

In the employed feature encoder architecture, the resolution of the computed interme-
diate feature maps decreases with increasing depth of the network layer. Furthermore,
since the problem of road topology recognition requires the prediction of scalar context
class confidences, no spatially resolved feature maps are required for this task. There-
fore, the last (deepest) layer of the feature encoder is well-suited to derive the scene
context recognition. A corresponding illustration of this decoder architecture, which
again omits the nonlinear activation functions for clarity, is provided in Figure 5.2.
In order to predict scalar class labels from the low-resolution features, the dimen-
sions must be further reduced. For this purpose, confidence scores are generated by
applying a fully connected layer that eventually discards 2D resolution information.
Since the original approach of the inception-v2 architecture also investigates the prob-
lem of image recognition, the findings reported in [Sze+16] were taken into account
for the design of the road topology recognition decoder. This concerns, in particular,
the number of fully connected layers that are used. Although approaches that built
recognition decoders from a sequence of multiple fully connected layers have also
been proposed [Kri+12; SZ15], image recognition with a single fully connected layer
reportedly yields just as good performance [Sze+15; Sze+16]. Due to this and also for
its lower computational complexity, this design is adopted in the following.
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Figure 5.2: Schematic overview of the recognition decoder. A fully connected layer computes
the classification confidence scores for the seven distinguished road topologies. It is preceded
by a 1× 1 convolutional bottleneck, which compresses the feature channel dimension u3 to the
fixed value of u3 = 100.

As a fully connected layer resembles the inner matrix product, which is computation-
ally expensive and adds a large number of free parameters to the model, an additional
1× 1 convolutional layer is first used as a preceding step. This convolutional layer re-
duces the feature channel dimension u3. Therefore, it acts as an additional bottleneck
to augment the computational burden of the output classification stage. If Hl denotes
the recognition decoder’s input feature map, the corresponding prediction of the road
topology is thus obtained as follows.

hNL = ϕa (vec (ϕa (Hl ∗Wk,l+1 + Bl+1)) ·WNL + bNL) (5.2.1)

Here, Wk,l+1 and Bl+1 are the kernel and bias parameters of the convolutional bottle-
neck layer, WNL and bNL denote the weight and bias parameters of the fully connected
output classifiers, and ϕa is the activation function. Furthermore, hNL contains the
class confidence scores in one-hot notation and without softmax normalization.

End-to-end recognition network architecture

Due to the seven different considered road topologies, the dimension of hNL is given as
1× 1× 7. Furthermore, the bottleneck layer is chosen such that the channel dimension
of its output feature map takes a value of u3 = 100. This value was found to be
convenient in preliminary studies [Oel+17] as it results in a good compromise between
runtime and classification performance, as the follow-up evaluation will show.
With these arrangements, it is possible to define an end-to-end CNN architecture for
implementing the road topology recognition. Here, the term end-to-end refers to an
architecture with one continuous processing path from the recorded input image to
the final classification result. Consequently, all model parameters of this architecture
can be optimized in one single training process.
Figure 5.3 depicts an overview of the resulting architecture with the inclusion of the
recognition decoder. For the sake of clarity, the illustration of the encoder in the left
part of the Figure condenses subparts of equal spatial resolution into single blocks. This
is because the architecture can be represented mainly by the feature map connections,
while the details of the feature encoder are generally interchangeable. Note that the
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Figure 5.3: Overview of the end-to-end trainable recognition CNN architecture. The underly-
ing inception-v2 feature encoder is condensed into subparts of equal stride s (equal spatial
resolution). The deepest feature map with s = 32 of the encoder provides the input to the
recognition decoder.

stride s denotes the sub-sampling factor of the corresponding feature maps with
respect to the input resolution.

5.3 Road-topology recognition experiments

The following sections provide an examination of the presented approach’s perfor-
mance in the task of road topology recognition. For this, first, the description of a
corresponding dataset is given. Subsequently, the corresponding experimental evalua-
tion is carried out.

Utilized dataset and labeling strategy

At the time of conducting the following experiments, no specific dataset with the nec-
essary annotations for road topology recognition in urban environments was publicly
available. However, since this type of traffic scene was already investigated for other
perception tasks, a corresponding dataset can be supplemented by annotating the road
topology. For this purpose, a subset of the Cityscapes dataset [Cor+16] is used in con-
junction with the annotation available from [Oel+17]. The new dataset thus obtained
is used for the subsequent experimental investigations. The contained images result
from a front facing camera, such that the setup roughly corresponds to the test vehicle
described in section 3.1.
Furthermore, all images were recorded during daytime and in clear weather, and the
considered images stem from multiple German cities, whose share of the dataset is
illustrated in the appendix in Figure A.1. Moreover, the diversity of the inner-city
traffic scenes contained in the dataset has to be highlighted. For example, the roads are
partly demarcated by buildings and partly by landscaped areas. Furthermore, specific
traffic elements such as pedestrian crossings, parking lanes, or traffic lights are present
in some but not all of the images. Altogether 1599 images were supplemented by an
annotation of the road topology, which were further divided into Ntrain = 1199 training
and Ntest = 400 test images. The original dataset of [Cor+16] was furthermore cropped
and scaled to allow for a consistent image resolution. [BT12] found that the intuitive
visual understanding of human annotators often is subjective and ambiguous when
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Figure 5.4: Statistics of the road topology recognition dataset with respect to the distinguished
topology classes. Notably, the occurrence frequencies are not equally balanced.

semantically meaningful terms are assigned to an image. Therefore, creating feasible
image annotations firstly requires the definition of a clear, objective labeling protocol.
In order to achieve a reproducible and objective definition of class categories, the
respective annotations were thus determined according to fixed criteria. To this end,
using the original resolution of [Cor+16], the road topology predominantly visible in
the lower third of the image was annotated. In the real spatial scene, this corresponds
to a distance of about ≈ 20 m and also accurately reflects the subjective impression
when viewing the scene. Besides, similar strategies for defining the topology categories
can also be found in other works [Ess+09].
The number of recorded examples for each road topology class is shown in Figure 5.4.
From this, it can be deduced that the dataset is unbalanced with respect to the occur-
rence of the various considered road topologies. For instance, most of the images depict
intersection scenes. The statistics also reveal that left and right turns and junctions are
included with slightly different occurrence frequencies.
Therefore, the loss function is adjusted to weight training samples according to their
class frequency in the dataset, accounting for the unbalanced class occurrences. How-
ever, [Shu+16] observed a classification performance deterioration if class weights
are merely adjusted according to their inverse frequencies. Thus they propose the
85%-15%-rule introduced in [Mos+15] to define class weights. Following [Shu+16] the
weight ηκ of class κ is defined as:

ηκ = 2dlog10

(
χ
ξκ

)
e . (5.3.1)

Herein χ is the count of the most frequent classes that account for at least 85% of the
dataset (thus the 85%-15%-rule), and ξκ denotes the class occurrence frequencies as
given in Figure 5.4. To account for these weighting factors during model training, the
negative log likelihood loss function according to equation 2.3.12 needs to be ade-
quately modified. The modified loss function for the task of road topology recognition
is thus obtained as follows:

LRec

(
yNL,j, hNL,j

)
= −∑

u
ηκ · ln

(
yNL,j (u) · ϕs

(
hNL,j (u)

))
, (5.3.2)
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where again u = (u1, u2, u3)
> and κ = u3 holds, the vector yNL,j denotes the road

topology ground truth, hNL,j the output feature map, yNL,j and hNL,j their respective
elements, and ϕs denotes the softmax function.

Classification performance evaluation

For an experimental examination, the model parameters of the network architecture
shown in Figure 5.3 are trained on the dataset described in the previous section. Note-
worthy, common data augmentation techniques, such as performing a mirror or crop
operation on the original images, may alter the road topology depicted in the scene.
Therefore, no data augmentation techniques were used for the following experiments.
All model parameters belonging to the original inception-v2 architecture are initial-
ized from a model pre-trained on the ILSVRC dataset [Rus+15] of 2012 and published
alongside the works of [Aba+16] to make use of the transfer learning technique. The
remaining model parameters of the recognition task decoder were initialized from a
uniform distribution according to the method of [GB10]. Furthermore, the RMSprop
method [TH12] with momentum term is used to determine the model parameters.
Additionally, an exponentially decaying learning rate γ is employed to scale the pa-
rameter updates according to the following formula.

γi = γ0 · (λLR)
i/Ni (5.3.3)

Following the works of [Aba+16], and in reference to equation 2.3.14, the initial learn-
ing rate is chosen to γ0 = 0.004, the learning rate decay factor is chosen to λLR = 0.95,
the moving average decay factor is chosen to λMA = 0.9, and the momentum weight
factor is set to ζ = 0.9. The batch size is chosen to Nbatch = 12, and the recognition
CNN is trained for a total number of Ni = 100 000 iterations.
The resulting model is evaluated with respect to the test partition of the road topology
dataset to assess the achieved performance. Since the recognition of the road topology
is a multi-class problem, the use of performance measures for binary classification is
not feasible without further adaptations. To this end, the obtained classifications are
distinguished into the cases true positive (TP), true negative (TN), false positive (FP),
and false negative (FN), analogous to binary classification tasks. The different cases
are evaluated first combined for all samples, termed as the micro-strategy and denoted
as �µ. Secondly, each of the different cases is counted separately for all investigated
classes, dubbed as the macro-strategy �M respectively. In the case of the macro-strategy,
another distinction must be made between the one-vs.-all and the one-vs.-one setting
[Bis06, pp. 182–183].
Furthermore, the works in [HT01] and [DG06] argue that multi-class classifiers gen-
erally result in a disproportionate number of TN samples. This especially applies to
unbalanced datasets such as the one considered here, see Figure 5.4. Due to this effect,
the conclusiveness of performance measures that evaluate these TN cases should be
considered as impaired. Therefore, the following evaluation is initially focused on
the measures pre (precision) and rec (recall), as they do not include TN samples. For
the derivation of a single comprehensive performance measure, the F1 score is re-
ported as well. It is defined as the harmonic mean of pre and rec. To asses the overall
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5.3 Road-topology recognition experiments

performance of the obtained model, the average values of these performance measures
are considered. Here, the aforementioned cases of the micro and macro average are
examined. For the macro average, the values resulting from the one-vs.-all setting are
reported. The corresponding formulas for all three performance measures preM, recM,
and F1M are given as follows.

preM =
1

Nκ

Nκ

∑
κ=1

(
TPκ

TPκ + FPκ

)
, recM =

1
Nκ

Nκ

∑
κ=1

(
TPκ

TPκ + FNκ

)
,

F1M =
1

Nκ

Nκ

∑
κ=1

2

(
TPκ

TPκ+FPκ

)
·
(

TPκ
TPκ+FNκ

)
(

TPκ
TPκ+FPκ

)
+
(

TPκ
TPκ+FNκ

) (5.3.4)

Herein, Nκ = 7 denotes the number of all considered classes, κ denotes the road
topology class encoded in the feature channel dimension u3 of hNL and TPκ, FPκ and
FNκ the respective cases for the class κ. Note, that the definition of F1M is not consistent
in the literature, as a minority of publications uses a different formula that calculates
F1M based on the averaged values of preM and recM, see [SL09].
Also, observe that the total number of FP samples equals the total number of FN
samples. Therefore, for the micro-average preµ, recµ, and F1µ are identical, and only
F1µ is considered in the following. It can be computed as follows.

F1µ = 2
preµ · recµ

preµ + recµ
=

∑Nκ
κ=1 TPκ

∑Nκ
κ=1 (TPκ + FPκ)

=
∑Nκ

κ=1 TPκ

∑Nκ
κ=1 (TPκ + FNκ)

(5.3.5)

A further performance measure results from the observation that often not all mis-
classifications are equally severe in the considered application context. For example,
the correct classification of the number of road junctions can be of greater importance
for landmark-based global planning and localization algorithms than the correct road
curvature classification. To account for this, a decision threshold τ can be applied to
the predicted class probabilities so that more severe misclassifications can be avoided
at the expense of a higher number of less severe classification mistakes. By sampling
different τ, pre and rec can be plotted against each other, so that the model’s ability to
balance between the different error cases can be evaluated.

To determine a pre-rec curve in a multi-class setup, a feasible strategy is to derive
the pre-rec curve on the basis of a one-hot notation of the class probabilities ϕs (hNL)
analogous to the binary case. In this way, the fact that topology recognition is indeed
a multi-class problem is effectively ignored, so that all calculations are performed in a
class-agnostic manner. In addition to assessing the actual pre-rec curve, the area under
this curve is regarded as a further performance measure and is referred to as mAPµ

(mean average precision). Following [Eve+10], pre is interpolated for each point on the
rec axis by determining the maximum pre with a higher rec:

preinterp (rec) = max
rec�≥rec

pre (rec�) , (5.3.6)

where rec� is an auxiliary variable to cover the range of higher rec levels. Then, again
following [Eve+10], mAPµ is determined using 11 equidistantly distributed points
according to the formula:
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Table 5.1: Multi-class pre, rec, F1 and mAP measures for the examined road topology recog-
nition problem. The first row reports the results obtained from the proposed approach. Ad-
ditionally, alternative approaches are included to provide a comparative basis. The runtimes
were measured on the hardware system outlined in Table A.2.d

model # classes
micro-average macro-average

mAPµ F1µ preM recM F1M runtime

this work 7 74.97 % 70.61 % 69.02 % 66.85 % 67.39 % 22.4 ms
[Oel+17] 7 71.39 % 68.02 % 67.30 % 64.22 % 64.82 % 20.3 ms
[Ess+09] 8 n/a n/a 45.00 % n/a n/a n/a

mAPµ =
1

11 ∑
rec∈ 0,0.1,...,1

preinterp (rec) . (5.3.7)

With these definitions, the performance measures reported in Table 5.1 result. Note
that Table 5.1 also includes alternative approaches for a further assessment of the
results. To this end, an additional road topology recognition CNN with a less complex
feature encoder is trained and evaluated on the same dataset for comparison. Due to
the similar architecture and based on the investigations in [Oel+17], the inception-v1
encoder according to [Sze+15] is used for this purpose. Thus, the recognition decoder
remains unchanged as in the Figures 5.2 and 5.3, and only the encoder part is modified.
As another comparative basis, the work of [Ess+09] is considered due to the similarly
formulated problem. It examines a related problem of road topology recognition with
eight distinct classes, which are the seven classes shown in Figure 5.1 and an eighth
class for roundabout scenes.
Table 5.1 reveals that the proposed approach consistently outperforms the other results.
In the case of the work from [Ess+09], this is presumably because the approach there is
based on manually designed image features instead of learned or optimized features.
Therefore, compared to the recognition CNN investigated in the present work, it can
meanwhile be regarded as obsolete. The relative difference in performance compared
to a similar CNN based on [Oel+17] is indeed significantly smaller. The reason for the
remaining margin is most likely the relatively higher model capacity, which offers an
advantage over more compact CNN architectures due to more expressive and robust
features.
Furthermore, the obtained results reveal slightly higher values for preM compared to
recM. However, an overall balanced behavior of the model is apparent. Compared with
other image recognition problems, such as the one described in [Rus+15], the achieved
model performance may initially appear beneath expectations. However, it should be
noted that the investigated traffic scenes exhibit a significantly higher degree of visual
similarity and the examined classes differ only in fewer and smaller but nevertheless
decisive scene elements. Also, it has to be mentioned that the used dataset can be
described as comparatively small, which may act as a limiting factor. For the sake
of clarity, the further evaluation is again based on one combined pre-rec curve, as
explained above. The corresponding curve is shown in Figure 5.5. From this, it can
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Figure 5.5: Interpolated pre-rec curve of the proposed road topology recognition CNN. Based
on a one-hot notation, the curve was calculated per-sample in a class agnostic manner.

be seen that the shape of the curve generally approaches a step pattern. Furthermore,
the curve indicates that the model does indeed provide some flexibility for balancing
misclassifications. This is evident from the fact that the curve does not form a strict
step (e.g. the maximum F1 score is not reached in a straight line), and a significant
part of the curve lies in the area of high F1 values.
Moreover, the end point of the curve in the low pre range reveals that this evaluation
is also subject to a certain bias due to the high number of TN cases. This is because the
curve is determined from class-agnostic one-hot vectors, which produce a high share
of negative ground truths. Note, that the full presentation of all pre-rec curves for the
considered classes, determined in the one-vs.-all setting can be found in the appendix
under section A.3.
In addition to the combined evaluations, the analysis is also supplemented by a con-
sideration of the individual classes. For this purpose, Table 5.2 presents the complete
confusion matrix for all investigated road topologies. In conjunction with Figure 5.4,
it becomes evident that the classification accuracy is slightly better for classes with
a comparatively large number of samples. Thus, the best results are obtained for the
classes straight road and intersection, which are also the most frequent classes in the
used dataset. In contrast, the least frequent class turn right yields the lowest classifi-
cation accuracy.
These findings indicate again, that the overall size of the given dataset is a limiting
factor that negatively affects the resulting classification accuracy. Furthermore, it is
also evident that erroneous classifications are particularly often assigned to the two
most frequent road topology categories. It can therefore be assumed, that a significant
share of misclassifications results from an inherent bias of the obtained model towards
frequent classes. The second highest percentage of misclassifications concerns the case
of fork junctions, which are confused with left turns. This may be explained by the
high degree of visual similarity between these two classes. It should be noted, however,
that the spread of misclassifications between the categories is not overly large and thus
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Table 5.2: Per-class confusion matrix of the proposed road topology recognition CNN. The
numbers indicate the percentage of the corresponding classifications with respect to the total
number of samples of a class. Furthermore, the numbers in parentheses indicate the absolute
number of classifications respectively.
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does not unduly affect the viability of the obtained road topology predictions.

As a qualitative assessment, individual example images and their corresponding clas-
sifications will be examined in the following. For this purpose, Figure 5.6 illustrates a
selection of images of the test partition of the dataset with an overlay of the predicted
classifications. These first of all confirm once again the great diversity of the recorded
inner city-scenes. For instance, in some pictures, there are no lane markings, or the
road boundary is characterized by parking strips with stationary vehicles in some but
not in all images. In general, the selected examples demonstrate a qualitatively accu-
rate prediction of the predominant road topology. As an exception, the center right
example image contains a typical misclassification, in which a right turn was wrongly
assigned to a straight road. This is presumably due to an over-representation of the
straight road class in the training dataset, which further confirms the earlier conclu-
sions. Overall, it is apparent that an adequate characterization of the road topology as
a global context attribute of the traffic scene can be determined.
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Figure 5.6: Example images from the test partition of the dataset with overlayed road topology
predictions. From top left to bottom right, the corresponding ground truth classes are: junction
right, straight road, intersection, turn right, intersection and turn right.

49



6
Drivable Road Area from Semantic Image

Segmentation

Semantic segmentation identifies regions in the image that correspond to specific object
categories. More precisely, it consists of assigning a class to each pixel corresponding to
its surrounding object or area, so that segmentation can be understood as a pixel-wise
classification. Thus, this representation is capable of capturing the exact contours of
objects or scene elements. Generally, segmentation has the effect that scene elements
that have the same class and are close to each other are grouped in one common region.
Due to this, it is most suitable for the representation of traffic elements that cannot
be distinguished solely by their position and size, but instead, the exact shape defines
the essential information, and instance separation is negligible. Thus it naturally lends
itself to the perception of the drivable road area, which indeed is one of the most
relevant applications of image segmentation in the automotive field.
Figure 6.1 shows an example image recorded in the vicinity of TU Dortmund Uni-
versity. The perception of the illustrated road area segmentation is the subject of
the present chapter. For this, the applicable methods are discussed, followed by the
selection and design of the specific segmentation architecture used in this thesis. Fur-
thermore, an evaluation of the obtained results is conducted. Some excerpts from this
chapter have been published in the papers [Oel+15b; Oel+16a; Oel+17; Oel+18b] and
[Oel+18a].

Figure 6.1: Example image recorded from the test vehicle near TU Dortmund University. The
ground truth annotations of the drivable road area are highlighted in green.
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6.1 Traffic scene segmentation as dense classification

6.1 Traffic scene segmentation as dense classification

From a technical point of view, segmentation corresponds to a dense classification.
Instead of a single output path, as discussed for the road topology recognition, one
classification output path is created for each image pixel. Furthermore, the transfer
learning strategy is generally of crucial importance for image segmentation as the
annotation effort is much higher when compared to other perception tasks. How-
ever, typical architectures for CNNs that are applicable to transfer learning include a
successive sub-sampling up to a scalar output path. This contradicts the high-reso-
lution output path required for segmentation. Since a semantic segmentation usually
requires the same resolution as the input data, the feature maps following the first
sub-sampling step thus require additional adjustments.
To this end, the following discusses methods to adapt common recognition CNNs into
architectures that provide high-resolution output paths.

Discussion of segmentation strategies and general method

Various concepts are feasible for adapting a CNN architecture to the problem of
segmentation in general. Below some of the basic alternative ideas are discussed and
compared. Following this, a suitable approach for road segmentation is selected. The
considered approaches, that will be discussed in the following, are given as:

• Patch-wise classification through an unmodified image recognition architecture

• Elimination of the gradual sub-sampling through dilated convolutions

• Skip connections and bilinear interpolation for fully convolutional fusion of high-
and low-resolution features

Regarding patch-wise classification [Gir+14; Bru+15], a simple approach towards seg-
mentation is to run an ordinary recognition network multiple times for different
sections of an image. The repeated execution evaluates all network layers for multiple
image patches, similar to a sliding window approach. Thus, this procedure allows
the generation of a densely resolved output image. However, the sub-sampling stages
contained in the architecture remain unchanged, so the resolution of the segmentation
output cannot reasonably match that of the input images. Also, the naive implementa-
tion with repeated inference execution is very inefficient, because overlapping image
areas must be evaluated for a practicable resolution of the obtained segmentation.
This has the effect of re-computing the exact same image features multiple times. The
main disadvantages of this approach are thus its computational inefficiency and the
insufficient resolution of the obtained segmentation.
Another viable method is dilated convolution as in [YK16]. Herein, the convolution
filter kernels are inflated and interleaved by additional rows and columns of zeroes.
This approach allows applying the filter kernels to feature maps that have not been
sub-sampled, without mathematically changing the results of the convolution. As a
result, the respective pooling layers can be omitted entirely. All features, therefore,
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need to be computed only once and this method does not involve redundant compu-
tations. The high resolution of the feature maps also allows for a comparatively high
segmentation performance. However, this characteristic also massively increases the
memory requirements of the corresponding CNN architectures. Therefore, it is hardly
applicable for embedded hardware systems as the ones considered throughout this
work.
Another approach, which maintains sub-sampling and at the same time does not
involve any re-computation of feature maps, are the so-called fully convolutional net-
works (FCNs) [She+17]. FCNs constitute an end-to-end trainable CNN architecture de-
signed specifically for the task of semantic segmentation. Herein, a recognition CNN is
adapted for the task of segmentation, by branching the network at intermediate layers
and combining these branches to form a pixel-dense new output path with preserved
spatial resolution. For this, an adjustment of the feature resolutions is implemented
through bilinear interpolation. The feature maps are thus scaled to match a specific
resolution and then merged into combined features in a fusion step. The approach is
inspired by the idea to combine high level semantic information from deep, low-res-
olution layers, with highly resolved spatial information from shallow layers near the
network input. Similar to the dilated convolutions, a re-computation of the feature
maps can be avoided due to the end-to-end nature of the approach. In addition, FCNs
result in less high-resolution feature maps, since the pooling layers remain in place.
The need for computational resources, especially the memory requirements during
online execution, is thus substantially lower than with the other discussed approaches.
FCNs, therefore, offer good prerequisites for the considered application in embedded
systems. Due to this, they are used as a basis for the drivable road area segmentation
in the following.

6.2 Segmentation decoder architecture and spatial priors

As outlined, the road segmentation approach is based on combining the intermediate
feature maps by parallel network paths and thus generating a high-resolution out-
put path. Consequently, it is necessary to align the dimensions of the feature maps
step-wise, so that only features of the same dimension are combined and the output
path can reach the original resolution of the input image. An overview of the decoder
architecture designed according to these principles is shown in Figure 6.2. Herein, the
1× 1 convolutions serving as input bottleneck layers in the segmentation decoder are
chosen to compress the input features to u3 = 10. Following the one-hot class encod-
ing, the number of feature channels generated by the last bottleneck layer corresponds
to the number of distinguished segmentation classes. For the examined segmentation
of the drivable road area, this corresponds to u3 = 2, accounting for the road area and
the background class respectively.
The alignment of the feature map dimensions is based on bilinear interpolation, sim-
ilar as described in section 3.2. However, a strict bilinear interpolation unnecessarily
restricts the flexibility of the model. According to [She+17], it is advantageous in prac-
tice to use bilinear interpolation only for the initial model. Then, during the training
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Figure 6.2: Schematic overview of the general segmentation decoder. Multiple inputs are fused
through tensor concatenation. All bottlenecks layers compress the feature channel dimension
to u3 = 10.
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process, deviating forms of interpolation are explicitly allowed.
For the technical implementation, the transposed convolution can be used, which
switches the prediction inference (forward) and gradient (backward) computation of
the regular convolution and is therefore also termed as deconvolution. This results
in a mapping analogous to a regular convolution, however, the input features are
interleaved with additional rows and columns of zeros. For a bilinear scale factor of
two, the resulting modified feature map H�l can thus be determined as follows9.

H�l =


hl (0, 0, u3) 0 hl (1, 0, u3) 0 . . . hl (u1,max, 0, u3)

0 0 0 0 . . . 0
hl (0, 1, u3) 0 hl (1, 1, u3) 0 . . . hl (u1,max, 1, u3)

...
...

...
... . . . ...

hl (0, u2,max, u3) 0 hl (1, u2,max, u3) 0 . . . hl (u1,max, u2,max, u3)

 (6.2.1)

In analogy to the regular convolution, filter kernels Wk are then evaluated for all
coordinates of the feature map.

Hl = H�l−1 ∗Wk,l + Bl (6.2.2)

Again, Hl denotes the output feature map and Bl accounts for the respective bias
parameters. The weight initialization for the elements wk,l of the Nk × Nk × u3 filter
kernel Wk,l then results as follows.

wk,l (u1, u2, u3) =
1⌈

Nk
2

⌉2 ·
(⌈

Nk

2

⌉
− |2u1 − Nk + 1|

2

)
·
(⌈

Nk

2

⌉
− |2u2 − Nk + 1|

2

)
(6.2.3)

For the merging of the parallel paths, [She+17] employ a simple addition of the feature
maps. However, this does not take into account that the feature maps value ranges
may differ, which would lead to an unintended preference for certain network paths.
Furthermore, the addition is done element-wise, so that those features with the same
channel dimension u3 are added. Therefore, features may be combined even if they
don’t fit well semantically and better pairings would be available. These considera-
tions suggest that improved approaches to feature fusion can support an enhanced
segmentation performance.
Tensor concatenation along the u3 dimension can be used instead to merge the feature
maps, which mitigates the described disadvantages. A drawback of this approach,
however, is the higher memory requirement resulting from the preservation of all
original features. As compensation, bottleneck layers are again used to reduce the
feature channel dimensions u3. Bottleneck compression through a 1× 1 convolutional
layer results in a weighted sum of the concatenated features. The bottlenecks thus
introduce another effect in that the weighting factors are learned during the training
phase, which enables the fusion of semantically appropriate pairings of features. Hence,
the precise mapping of the fusion is left to the optimizer.

9Note, that this simplified expression ignores some effects such as padding, for further details the
interested reader is referred to [DV16].
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Note, that this general segmentation decoder architecture results in significantly more
loss function signals per image than in the case of the image recognition architecture.
However, when constructing a multi-task network architecture, it is not desirable to
prefer individual tasks through larger gradients. To account for this, the cross entropy
loss function from equation 2.3.12 is normalized by the dimensions of the feature maps.
Consequently, the segmentation loss results as follows.

LSeg
(
YNL,j, HNL,j

)
= − 1

u1,max · u2,max
∑
u

ln
(
yNL,j (u) · ϕs

(
hNL,j (u)

))
(6.2.4)

Herein, YNL,j and HNL,j denote the road segmentation ground truth and output feature
map tensors of training sample j, yNL,j and hNL,j their respective elements and ϕs is
the softmax function. Altogether, the decoder used in this thesis for predicting the
drivable road area follows a FCN architecture, in which tensor concatenation with a
subsequent bottleneck layer is used for feature fusion.

Class distributions and spatial priors in traffic scenes

The segmentation decoder described so far was designed for a general problem def-
inition. Special characteristics of traffic scenes, that can be exploited to improve the
segmentation performance, have not yet been taken into account. An obvious charac-
teristic is that in road area segmentation, the class distribution depends on the pixel
position within the image. For example, it can be assumed that in a typical traffic scene
the area directly in front of the ego vehicle belongs to the road area, whereas this is not
the case for areas near the side of the image. Similar considerations can also be made
for other traffic elements so that it generally seems sensible to take the spatial class
distribution into account for the segmentation of traffic scene images. Therefore, even
without knowledge of the image content, a position-dependant a-priori probability ρκ

for the occurrence of certain classes κ can be empirically determined.

ρκ (u1, u2) =
1

Ntrain
·

Ntrain

∑
j=0

yNL,j (u1, u2, u3 = κ) (6.2.5)

Again, yNL,j denotes the respective ground truth and Ntrain is the size of the training
dataset. To ensure that this information can be utilized, a network architecture should
therefore be designed to explicitly capture this spatial class distribution. In classical
CNNs, the mappings of the different network layers have defined receptive fields that
determine the influence of spatial information on the feature maps and thus also on
the classification result. With the segmentation decoder outlined in Figure 6.2, only
mappings whose receptive fields are significantly smaller than the typical resolution of
the input images are incorporated. In theory, the stacking of multiple receptive fields
can increase the global receptive field size of the overall model.
However, typical global receptive field sizes are still considerably smaller than the re-
solution of modern ADAS cameras. This holds especially, as practically observed
global receptive fields are even smaller than their theoretical sizes. For example,
[Zho+15] observed global receptive fields with a diameter of fewer than 100 px for
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Chapter 6 Drivable Road Area from Semantic Image Segmentation

a typical CNN, similar observations are also reported by [Liu+15; Luo+16]. Also, con-
volutional layers replicate identical weights at every spatial location of an image, an
effect which is also known as weight sharing. This prevents efficient utilization of
spatial priors, as they are neither captured in sufficiently large receptive fields nor
encoded in position-dependant weights. Therefore a corresponding extension of the
segmentation decoder described so far is outlined below.

Hadamard layer for pixel-wise weighting

An obvious attempt to improve the model architecture for the effective utilization of
spatial priors would be to increase the receptive field sizes. The naive implementation
leads to convolutional layers whose filter matrices Wk have significantly increased di-
mensions. Maximum size convolution kernels are identical with fully connected layers
and their number of parameters is the product of the input and output dimensions.
This curse of dimensionality limits the practical applicability of this approach.
A more feasible method is the introduction of position-dependant feature encodings.
For this, [Bru+15] proposes the inclusion of constant feature maps that directly encode
the image coordinates. However, this manual engineering contradicts the concept of
optimization-based feature learning, which is why a different approach is proposed
in the following. As an alternative method, position-dependant weight factors can be
introduced. These allow encoding the spatial class distribution directly in the form
of a heatmap representation. This becomes apparent, when the connectivity patterns
of the common network layers are compared with those of the Hadamard layer, see
Figure 6.3 for an illustration. Since no adjacent image coordinates are evaluated for
the calculation of the output features, the size of the receptive fields of the CNN is
not affected. The heatmap can be multiplied element-wise with the feature maps, the
resulting relationship is known as the Hadamard product. The corresponding notation
of the Hadamard operator is shown below.

Hl = Hl−1 ◦Wl−1

hl (u1, u2, u3) = hl−1 (u1, u2, u3) · wl−1 (u1, u2, u3) (6.2.6)

fully
connected

Hadamardconvolution
(Nk = 3)

Figure 6.3: Comparison of the common connectivity patterns and the proposed Hadamard
layer. Element-wise connections only influence features at the same spatial position, therefore
they do not affect on the resulting receptive field sizes.
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◦ road
segmentation

segmentation decoder

1×1 convolution
156×47×2

∗
transposed convolution

1242×375×2
Hadamard
156×47×2

Figure 6.4: Modification of the segmentation decoder with the Hadamard layer (the full il-
lustration can be found in the appendix in Figure A.4). The element-wise weights are added
near the segmentation output. For reduced computational complexity, the Hadamard layer is
located in-between the final fusion and the upsampling stage.

It follows, that the dimensions of the input feature map Hl−1, the weighting matrix
Wl−1, and the output feature map Hl are identical. As a result, the Hadamard Layer
can be understood as a mask, which emphasizes or suppresses certain image areas
depending on their position.
An overview of the segmentation decoder with incorporation of the a priori class
distribution is shown in Figure 6.4. Since the Hadamard layer aims to encode the
position-dependant class distribution, it is reasonable to use this layer in conjunction
with the final class representation near the output of the network. An integration
before the last interpolation step of the generic segmentation decoder is suitable for
this purpose, as the corresponding feature map already represents the output classes
and the reduced resolution before the final interpolation positively influences the
computational requirements of the resulting model.

End-to-end segmentation network architecture

For the implementation of this approach, the integration into an end-to-end architec-
ture consisting of the inception-v2 feature encoder and the described segmentation
decoder is carried out first. Analogous to the previous illustrations, Figure 6.5 shows
the corresponding overview of the integration of the segmentation decoder. It can be
seen, that the features of the first block of the inception-v2 architecture are omitted
for the use in the segmentation decoder, which makes sole use of the feature blocks

input
image

inception-v2 feature encoder

segmentation
decoder

road
segmentation

block 1
s = 4

block 2
s = 8

block 3
s = 16

block 4
s = 32

Figure 6.5: Schematic overview of the integration of the segmentation decoder with the
inception-v2 feature encoder using intermediate feature maps of different spatial resolutions.
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Chapter 6 Drivable Road Area from Semantic Image Segmentation

two to four. This design choice is again mainly due to computational reasons, as the
features of the first block have a prohibitively high spatial resolution. To investigate
the effect of the element-wise weights, it is useful to compare both variants of the
model architecture. For this purpose, the segmentation decoder indicated in Figure 6.5
is interchangeable. An end-to-end model can thus be implemented either with the
segmentation decoder without the Hadamard layer, as illustrated in Figure 6.2, or
with element-wise Hadamard weights for he explicit encoding of spatial class pri-
ors, as illustrated in Figure 6.4. For the variant with existing Hadamard layer the
term Hadamard-FCN is used in the following, while the model architecture without
Hadamard layer is termed as Plain-FCN.

6.3 Experiments on drivable road area segmentation

With the discussed design of the segmentation decoder, the two model variants are
evaluated and compared in the following. For further assessment, a comparison with
other works from the relevant literature is also carried out. The evaluation is focused
on the segmentation of the drivable road area since this is one of the main objectives
of image segmentation in automotive environment models.

Benchmark datasets and evaluation protocol

The comparative assessment is carried out based on datasets annotated for the binary
problem of road segmentation. Firstly, the evaluation is based on the KITTI road
benchmark dataset [Fri+13], which has been well established in the relevant literature,
so that numerous comparable results of alternative approaches are directly available.
This dataset comprises 579 images (Ntrain = 289, Ntest = 290) from a front facing
camera recorded in urban traffic environments taken on 5 different days and with a
minimum distance of 20 m to avoid overly correlated images.
Secondly, a corresponding dataset was created with the Nissan Leaf test vehicle pre-
sented in section 3.1, which is dubbed as InVerSiV dataset in the following. For this
purpose, the test vehicle was used to acquire images near the city of Dortmund on
two different days. To avoid correlated recordings, a time delay between successive
images was ensured and a separate manual inspection of the obtained dataset was
performed. Afterwards, as part of the present work, the images were supplemented
by a manual annotation of the road area. Compared to the KITTI road benchmark,
the annotation of the road area is however less precise since only a rough outline of
the contours in the form of a polygonal chain was registered. The InVerSiV dataset
contains Ntrain = 240 images of traffic scenes for training and Ntest = 60 images for
testing (300 total).
Following [Fri+13], pixel-based performance measures are evaluated. Note that, in
contrast to road topology recognition, the binary performance measures can be eval-
uated directly for road area segmentation. This specifically applies to the calculation
of the pre, rec, and F1 values analogous to equation 5.3.4. According to the evalua-
tion protocol of [Fri+13], however, the pixel class prediction is not determined solely
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6.3 Experiments on drivable road area segmentation

by the pixel confidence scores. Instead, a decision threshold τ∗ is firstly chosen by
maximizing F1 as given in the following equation.

τ∗ = argmax
τ

F1 = argmax
τ

(
2

pre · rec
pre + rec

)
(6.3.1)

Subsequently, the binary performance measure F1max and the corresponding pre and
rec values are calculated based on the optimized threshold value τ∗ and examined for
the following evaluation.
Also, the intersection-over-union (IoU, sometimes also termed as Jaccard index) mea-
sure is taken into account, which provides a direct measure of the overlap between the
generated road segmentation and the annotated ground truth road area. It is calculated
as follows.

IoU =
TP

TP + FP + FN
(6.3.2)

For a conclusive evaluation, the mean IoU is determined over the images of the test
partitions of the datasets. Furthermore, similar to the road topology recognition task,
the mAP measure is also examined based on the pre-rec curve. For the calculation of
the mAP measure, the interpolation according to equation 5.3.6 and the calculation
based on 11 equidistantly distributed points as in equation 5.3.7 is again employed.
To evaluate the performance of the road area segmentation with respect to a practical
application for automated driving functions, a transformation of the segmentation map
into a BEV image according to the relationship elaborated in chapter 3.2 is carried
out. Note that in the perspective view, areas near the camera in front of the ego
vehicle occupy a proportionally larger area in the image. After performing the BEV
transformation, a more balanced representation emerges, so that near and far areas
have an identical weight when evaluating the segmentation performance measures.
Since the close areas usually exhibit a more homogeneous appearance, it can therefore
be assumed that the performance measures resulting in BEV-space are generally lower.
Furthermore, note that in contrast to [Fri+13], no cropping of the BEV images near the
ego vehicle is performed for the InVerSiV dataset.

Comparative study on road segmentation performance

For analyzing the effect of the element-wise weights, both the Hadamard-FCN as well
as the Plain-FCN are trained on the two datasets respectively. The optimization setup
is chosen identical to the one described in section 5.3, except for the batch size that
is chosen to Nbatch = 1 as well as the Hadamard weights that are initialized to the
constant value of one. The choice of the smaller batch size stems from the added
memory consumption of the segmentation model due to the added high-resolution
feature maps. Again, no data augmentation was used to not affect the spatial priors in
the dataset. The resulting performance measures are given in the following Table 6.1,
additionally a more detailed breakdown of the KITTI road results can be found in the
appendix under section A.5. For further assessment, the general relevance of spatial
priors for the perception of the drivable road area is examined. For this purpose, the
average distribution of the ground truth annotations was determined and accordingly
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Table 6.1: Comparison of the pixel-based performance metrics of the Hadamard-FCN and Plain-
FCN, evaluated on the test splits of the used datasets. The runtimes stem from the publications
or, if no publication was specified, were measured with a desktop GPU (see Table A.2.d).

InVerSiV dataset (perspective view)
F1max pre rec mAP IoU runtime

Hadamard-FCN 92.33 % 90.45 % 94.29 % 91.26 % 85.76 % 19.8± 1.1 ms
Plain-FCN 89.92 % 88.63 % 91.26 % 90.52 % 81.70 % 19.4± 1.7 ms

prior-baseline 84.48 % 76.49 % 94.33 % 86.13 % 73.12 % n/a

InVerSiV dataset (BEV)
F1max pre rec mAP IoU runtime

Hadamard-FCN 90.70 % 90.22 % 91.18 % 90.58 % 82.98 % 19.8± 1.1 ms
Plain-FCN 88.35 % 87.42 % 89.29 % 89.99 % 79.12 % 19.4± 1.7 ms

prior-baseline 69.63 % 60.30 % 82.37 % 74.12 % 53.40 % n/a

KITTI road benchmark dataset (BEV)
F1max pre rec mAP IoU runtime

Hadamard-FCN 94.85 % 94.81 % 94.89 % 91.48 % n/a 19.8± 1.1 ms
Plain-FCN 92.26 % 92.80 % 91.72 % 91.83 % n/a 19.4± 1.7 ms

prior-baseline10 73.63 % 69.98 % 77.69 % 78.84 % 58.27 % n/a
[Han+17] 91.57 % 90.02 % 93.19 % 84.68 % n/a 6000 ms
[Tei+18] 93.99 % 94.51 % 93.48 % 93.24 % n/a 98.1 ms

evaluated as a constant prediction independent from the actual image contents. This
analysis is used to estimate the importance of the spatial priors and will be referred
to as prior-baseline in the following.
Additionally, results from the relevant literature are also included for the KITTI road
dataset. Moreover, the respective runtimes are included where available. Note, that
since the evaluation for the KITTI dataset was carried out with the help of the provided
evaluation server, the IoU measure as well as an evaluation in perspective space was
not possible here.
Notably, the Hadamard-FCN model outperforms the Plain-FCN model without the
Hadamard layer consistently for both datasets. Furthermore, the comparison with the
prior baseline shows, that even this simple estimation of the road area can solve a
significant amount of the perception task, which is also confirmed by similar findings
reported in [Fri+13; Bru+15]. Both results underline the significance of spatial priors
for the segmentation of traffic scenes and demonstrate, how FCN networks can benefit
from the proposed element-wise Hadamard weights.
Again, the obtained pre and rec measures demonstrate an overall balanced behavior,

10The baseline for the a-priori class distribution was measured on the training split of the KITTI road
dataset.
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6.3 Experiments on drivable road area segmentation

however, in the case of the InVerSiV dataset, a slightly increased tendency towards FP
errors is observed. Besides, the results show a generally lower performance for the
InVerSiV dataset. It can therefore be assumed that the task of road segmentation is
more difficult to learn with this dataset, presumably due to its smaller size and more
coarse annotations.
In general, it can also be stated that the achieved model performance is on par with
other current methods from the literature. However, when comparing the average run-
times, it becomes apparent that the present work achieves considerable fast runtimes
and is thus better suited to enable real-time processing in automotive applications.
Furthermore, as expected from the previous discussions, the resulting measures in
BEV-space are slightly lower than in perspective space.
Since the segmentation of the drivable road area comprises a binary problem, the pre
and rec values can directly be weighted against each other. Again, the corresponding
pre-rec curves provide an assessment of the model’s ability to balance the respective FP
and FN cases. Due to its superior performance, only the Hadamard-FCN is considered
in the following, such that Figure 6.6 provides the respective curves only for this model.
First of all, it is noticeable that the resulting plots show a clear tendency to follow the
ideal, step-like curve. Due to the similar shape of the curves, Figure 6.6 additionally
shows a zoomed in view of the particularly relevant area. Here, it is again notable that
a slightly superior curve is obtained for the evaluation in the perspective space than
in BEV. Furthermore, a slightly superior curve is again obtained for the KITTI dataset,
which also turns out generally smoother. Here, a significant difference between the two
datasets becomes apparent, as the KITTI dataset has considerably more test images.
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Figure 6.6: pre-rec curves for the Hadamard-FCN obtained from the test images of the KITTI
road and InVerSiV datasets. The results for the KITTI road dataset were determined on the
official evaluation server.
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TP FP FN

Figure 6.7.a: Example segmentation maps of
the Hadamard-FCN on the InVerSiV test dataset.

Figure 6.7.b: Example segmentation maps of the
Hadamard-FCN on the KITTI road test dataset.

For an additional qualitative assessment of the road segmentation, example segmen-
tation images of the Hadamard-FCN from the respective test datasets are considered.
A corresponding representation is given in Figure 6.7.b and Figure 6.7.a. Herein, the
road segmentation is shown both for the original images in perspective space and after
the transformation into BEV-space. To distinguish the segmented pixels into the cases
TP, FP, and FN, they have been highlighted in different colors. From the illustrations,
it can be seen that the drivable road area is segmented correctly for the most part. In
this way, misclassifications occur mostly at the contours of the road area.

A comparison of the images in perspective and BEV-space further shows that the
existing misclassifications take up a larger area in the BEV images. This effect of the
BEV transformation again illustrates the somewhat lower values of the performance
measures for the BEV in Table 6.1. Furthermore, it can be seen from Figure 6.7.b and
Figure 6.7.a, that the most significant misclassifications are in those image regions
that represent far away areas of the scene. This can be explained by the fact that the
traffic elements located at a higher distance only take up a few pixels in the original
image and therefore comparatively less information is available for their respective
segmentation.
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6.3 Experiments on drivable road area segmentation

For a further qualitative assessment, a visualization of the spatial distribution of the
pixels belonging to the road area is considered. For this purpose, Figure 6.8 shows the
average ground truth annotations for the two datasets respectively, as well as a rep-
resentation of the element-wise weights of the Hadamard layer of the trained models.
At first sight the relatively noisy Hadamard weights are noticeable in direct compari-
son. Besides the generally lower resolution, this can be attributed mainly to stochastic
influences during model optimization, such as the stochastic batch optimization or the
random initialization of some of the weight parameters. In general, however, it can
be clearly seen that the average spatial distribution of the road area is reflected in the
optimized Hadamard weights.

Figure 6.8: Heatmaps of the average drivable road area. Top left: InVerSiV dataset, top right:
KITTI road dataset, bottom: Hadamard weights Wl learned on the respective datasets.
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7
Road Users from Bounding Box Detection

Object detection aims to locate objects in an image by means of bounding boxes. Gen-
erally, this type of representation is suitable for those traffic elements where individual
object instances can be clearly distinguished from each other. This is especially the
case for other road users present in a given scene so that in the context of automotive
applications an object detection can be used for example to detect other vehicles. For
this, a challenge arises from the fact that subsequent processing steps require a recon-
struction of the 3D parameters that describe the object’s spatial properties. Thus, it is
not sufficient to determine enclosing bounding boxes of objects in the image space.
In the spatial reconstruction, the object’s position is determined by the observer’s point
of view, which is defined by the observation angle and the distance. To realize object
detection with a CNN, the feature encoder is extended by a detector stage. The design
of this detection stage is the subject of this chapter. For this purpose, some general
considerations regarding the basic approach to locate objects in 2D image coordinates
are given first. Following this, a procedure for the reconstruction of viewpoints and
spatial descriptions of the detected objects is elaborated. Furthermore, the chapter
concludes with a comparative experimental evaluation of the obtained results. Parts
of the following explanations have been published in the papers [Oel+18a; Oel+19b]
and [Oel+19a].

7.1 Classification and localization of 2D bounding boxes

For the realization of a bounding box decoder, it is necessary to define a numerical
description of the bounding boxes suitable for CNNs. A description of the 2D bound-
ing box requires at least four parameters corresponding to the four boundaries in the
image space. A naive implementation would directly perform a regression on these
boundaries u1,min, u1,max, u2,min, u2,max. However, a direct regression is not advisable,
if discontinuities in the depicted scene contents are to be expected. For this reason,
mixed approaches consisting of a discrete classification and a continuous regression
represent a superior alternative for object detection. Herein, a discretization of the
object position is combined with a regression of the remaining discretization error, as
illustrated in Figure 7.1. Thus, the determination of 2D bounding boxes requires two
output paths of the detection decoder.
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Figure 7.1: Multimodal regression for object detection. The space of possible bounding boxes is
divided into several discrete modes, which are mapped into a coarse grid heatmap classification.
In another output path, the regression of the continuous discretization offset is performed,
which is applied to each cell of the heat map to determine the final bounding boxes.

The classification of the discrete object position is done by mapping it to a feature
map which, similar to a heatmap, assigns higher activation values to positions with
existing objects and lower values to positions without objects. This procedure is similar
to a sliding window, where the image contents are scanned with prototypical window
boxes. Usually, a fixed size is assumed for the windows boxes, which are also referred
to as anchors, see Figure 7.2 for an illustration. This general scheme has proven re-
markably effective in numerous recent research results [Gir+14; Liu+16a; Ren+17]. As
a concise explanation for these observations, [Mou+17] argue that for the position of
objects with clear contours, there is a hard transition between object and background
at the boundaries, rendering object localization into a multi-modal regression problem.
For a practical implementation, it is essential to incorporate multiple different pa-
rameterizations of the bounding box anchors to detect objects of different sizes and
shapes. This is evident for example from the works of [Liu+16a], which found that
features with multiple scales are better suited to ensure the detection of large and
small objects. This property is of particular importance in the context of automotive
environment perception, since the size of the objects in the image can vary greatly in
typical traffic scenes due to the large distance variations. Thus, different aspect ratios
and dimensions of bounding box anchors can be taken into account by providing a
separate heatmap for each parameterization of the anchors.

anchor windows coarse heatmap classification

Figure 7.2: Visualization of an example street scene and the corresponding classification
heatmap for the detection of vehicle bounding boxes. Each position in the heatmap repre-
sents the midpoint of one corresponding 2D bounding box.
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Figure 7.3: Illustration of the regression target variables. The deviations of the actual bounding
box from the anchor bounding box are given by the midpoint displacement and the width and
height offsets.

The computation of the heatmaps in a fixed grid inevitably leads to a discretization
offset, the influence of which is even greater if a reduced resolution is used for the
corresponding feature map. For reasons of computational efficiency, however, this is
regularly the case in any practical implementation. To compensate for this remaining
discretization offset, the relative displacement of the current object is additionally
estimated for all coordinates of the heatmap, see also Figure 7.3 for an illustration. For
this purpose, the mapping according to [Ren+17] is used, in which the encoding of the
displacement of the midpoint of the bounding box as well as of the deviations in height
u1,max− u1,min and width u2,max− u2,min takes place. It is furthermore advantageous to
normalize these regression targets with respect to the size of the bounding box, since
this allows the universal application of the bounding box decoder without adjustments
when processing different image resolutions. Moreover, the regression of the size of
the bounding boxes on a logarithmic scale is numerically advantageous according
to [Ren+17], due to the wide range of bounding box dimensions. Thus, the target
variables for the bounding box offset regression are given as follows.
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) (7.1.1)

Here, ymid,u1 and ymid,u2 account for the displacement of the 2D bounding box mid-
point, and yw and yh for the respective deviations in width and height.

Discussion and preliminary selection of the detection method

To implement the general approach outlined above, a concrete decoder architecture
needs to be defined. Two different approaches are considered for this:

• A single-stage decoder architecture for the direct derivation of object detections
from the feature maps
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7.1 Classification and localization of 2D bounding boxes

• A two-stage architecture for the indirect determination of bounding boxes via
intermediate object hypotheses

A characteristic feature of the first approach is that an end-to-end architecture is
formed from the input images to the target variables defined in the previous sec-
tion, which exclusively uses the basic network components specified in section 2.3.
Furthermore, in the direct approach, no explicit intermediate representations are in-
herently enforced by the architecture, but instead, the composition of all feature maps
is determined solely during the optimization process.
In the case of two-stage detectors, a rough determination of object hypotheses takes
place first, which are only refined to an exact object detection in a second step. This
is done by explicitly specifying object hypotheses as representations of intermediate
feature maps through an additional term in the overall loss function. Based on the in-
dividual object hypotheses, the feature maps are sampled through a pooling operation,
and from this the actual bounding boxes are determined.
In general, the two-stage approaches achieve higher detection accuracies. This is
mainly the result of the more sophisticated data processing, as the consideration of
object hypotheses allows gradual filtering of the bounding boxes. Thus, a rough pre-
selection is established first, which is subsequently refined. At the same time, however,
the computational effort is also correspondingly increased, see for example the investi-
gation in [Hua+17]. For this reason, a single-stage approach is used for the architecture
of the detection decoder.
Examples that follow this scheme include the works in [Liu+16a], [RF18], and [Wu+17].
The respective architectures differ in the choice of the anchors, the decoder layers (e.g.
convolutional or fully connected), and the exact choice of multi-scale features. The
SSD approach of [Liu+16a] uses a particularly wide variety of anchor boxes and more
comprehensive multi-scale features and can be considered as a fairly universal method.
Therefore a decoder architecture based on this approach is used. The following Fig-
ure 7.4 contains an illustration of the employed implementation. The generation of the
output paths for the classification step as well as for the regression step is apparent
through 1× 1 convolutions. Besides, the multi-scale features are generated by sub-
sampling, except for the highest resolution features, which are directly formed from
an intermediate layer of the feature encoder. Note, that the feature map of the 2D box
encodings provides a channel dimension of u3 = 4, corresponding to the four target
variables ymid,u1 , ymid,u2 , yw and yh.
Due to their importance for the driving task, but also for the availability of datasets
and comparative performance analyses, the object detector is further implemented for
the detection of other vehicles as typical road users. In principle, however, the method
is also applicable to other types of objects, such as pedestrians or bicyclists. The chan-
nel dimension of the heatmap features for object classification is u3 = 2 to accordingly
reflect the vehicle and background class. The loss function used for object detection
results as a superposition of the normalized smooth L1 loss and the negative log like-
lihood. Following [Liu+16a], both loss components are weighted equally. If YCls, HCls
denote the targets and output features for the classification heatmap and YLoc, HLoc
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Figure 7.4: General architecture of the detection decoder based on the single shot method ac-
cording to [Liu+16a]. Heatmap classifications as well as offset regression outputs are generated
through 1× 1 convolutions.

68



7.2 Auxiliary regressands and decoder architecture for spatial reconstruction

the respective tensors for the offset localization output path, then the combined loss
function is given as:

L2Dbox
(
YCls,j, HCls,j, YLoc,j, HLoc,j

)
= − 1

NDet

NDet

∑
v=1

ln
(
yCls,j (uv) · ϕs

(
hCls,j (uv)

))
+

1
NDet

NDet

∑
v=1

{
0.5 ·

(
yLoc,j (uv)− hLoc,j (uv)

)2 , if
∣∣yLoc,j (uv)− hLoc,j (uv)

∣∣ < 1∣∣yLoc,j (uv)− hLoc,j (uv)
∣∣− 0.5, else

,

(7.1.2)

where NDet is the number of anchor boxes that overlap with annotated ground truth
bounding boxes, uv denotes their respective feature map coordinates and ϕs is again
the softmax function. In the discussions so far, only the determination of detections in
2D image space is considered. The further generation of a spatial object description is
examined in the following.

7.2 Auxiliary regressands and decoder architecture for spatial
reconstruction

The determination of the spatial parameters for the detected vehicles forms an essential
processing step in the context of automotive applications since any subsequent driv-
ing functions necessarily require a spatial scene description. For the investigation of
possible solutions towards this, some fundamental ideas are discussed and compared
below. These are given as:

• Representation transformation to derive low level 3D features

• Matching features with offline created shape models

• Utilization of constraints based on a back projection of the scene

• Direct prediction of 3D parameters through a learned model

With representation transformation, the reconstruction of the scene is performed at the
feature level. The idea is to transform some or all of the feature maps into the BEV, or
to perform an intermediate estimation of depth images. With this approach, however,
leveraging the high level of maturity of 2D detection methods is rendered difficult.
Matching 2D detections with offline generated and stored shape models provides
another alternative approach, which however yields a complex extension of the pro-
cessing chain. If, as in [Mot+15], a grid search across all 3D parameters is performed,
this approach also requires considerable additional computation effort. Furthermore,
variations in the shape of different vehicle classes, such as small cars, vans, or coupés
have to be taken into account in the implementation. This either requires additional
annotation effort if the variations are incorporated in the learned model, or it causes
a further increased search space if an exhaustive search across all vehicle classes is
performed. Thus, substantial practical disadvantages arise from this approach, which
contradicts the intended application.
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Chapter 7 Road Users from Bounding Box Detection

When making use of constraints based on a back projection of the scene, the fact
that many 3D parameters enter linearly into the camera model is exploited. Thus,
known corresponding points in 2D image space and 3D world coordinates can be
used to determine the 3D parameters using a linear least squares method. The compu-
tational costs of this method are small enough to be essentially negligible. However, 2D
bounding boxes alone do not generate a sufficient number of measurements. Therefore,
backprojection constraints can only be used with further assumptions about the scene
or by combining them with other methods into a hybrid approach.

The direct estimation of the 3D parameters of the detected objects by the learned model
is possible, too. Here, general statements about the applicability of this strategy are
hardly possible. This is because the prerequisites for this approach strongly depend
on the exact choice of the predicted 3D parameters. In this respect, especially those 3D
parameters are suitable for a direct prediction that have a decisive and unambiguous
effect on the visual appearance of the object and thus the image features. Furthermore,
the availability of annotated training data influences the choice of the predicted 3D
parameters in practice. The direct prediction of the 3D parameters can often be inte-
grated into a CNN analogous to the 2D bounding box parameters, which enables an
implementation with little additional computational demands.

Based on these considerations, an approach is pursued which combines backprojection
constraints and a direct prediction of 3D parameters. The division of the full 3D recon-
struction across these two prediction schemes pays special attention to the nonlinear
parts of the camera model, the influence of individual 3D parameters on the visual
appearance, and any introduced manual annotation effort.

Constraint and appearance-based viewpoint and 3D reconstruction

For the following consideration of the 3D detection method, some aspects of the recon-
struction task are firstly reviewed in more detail. Analogous to the 2D bounding box,
which is determined in image coordinates, the 3D bounding box defines an enclosing
cuboid in the spatial scene description. The following Figure 7.5 shows an illustrative
representation of the described relationships. In total nine parameters are required
for the complete description of the 3D bounding box. They define the coordinates of
the 3D object centroid nC

W =
(
nC

x1
, nC

x2
, nC

x3

)>, the orientation angles φ, ϑ, ψ (roll, pitch,
yaw), and the object’s length, width and height d = (dx1 , dx2 , dx3)

> (measured in a
right-handed and vehicle aligned coordinate system). For the mathematical repre-
sentation of the orientation angles, a 3× 3 rotation matrix R (φ, ϑ, ψ) is used in the
following. With these definitions, a description of the 3D coordinates of the bounding
box nodes can be derived.

The 3D world coordinates can be converted into 2D image coordinates with the known
camera model and extrinsic calibration. The result is a vector that yields the image
position in homogeneous coordinates. For example, consider a node nFR positioned
at the front right (FR) bottom of the 3D bounding box enclosing a detected vehicle.
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Figure 7.5: Schematic illustration of the tight-fit constraint of backprojected vehicles. Image
coordinates of 3D bounding box nodes correspond to 2D box boundaries.

Then, the following equation indicates the relationship between its spatial and image
coordinates.

ñFR
I = P · ñFR

W = P ·
(

R nC
W

0 1

)
·
(

dx1
2 ,− dx2

2 ,− dx3
2 , 1

)>
(7.2.1)

Herein, P again denotes the camera projection matrix, see section 3.2. Assuming that
the node’s backprojection corresponds with the bottom border of the 2D bounding
box, then the resulting constraint is given by:

p2 · ñFR
W

p3 · ñFR
W

= u2,max

⇔ 0 =
(
u2,max · p3 − p2

)
ñFR

W

⇔ 0 =
(
u2,max · p3 − p2

)
·
(

R nC
W

0 1

)
·
(

dx1
2 ,− dx2

2 ,− dx3
2 , 1

)>
. (7.2.2)

Herein, p� are the respective row vectors of P. From this mathematical relationship it
can be seen, that equation 7.2.2 depends linearly on the 3D parameters given by nC

W, d,
and all elements of R. Therefore, several constraints can be formulated under the basic
assumption that the backprojection of the 3D bounding box into the image plane fits
tightly into the 2D bounding box determined by the detection model. Provided that P
is known from camera calibration, it is possible to directly solve for the 3D bounding
box parameters. However, it is not possible to determine all 3D parameters in this
way. This is firstly because the system of equations is under-determined and secondly
only the elements of the rotation matrix R but not the actual orientation angles enter
equation 7.2.2 linearly. Therefore, the following paragraph will examine additional
assumptions that allow for a simplified 3D reconstruction to ensure that the system of
equations is indeed solvable.
Towards this, note that some 3D parameters are of subordinate relevance in any prac-
tical automotive application whereas other parameters can directly be derived from
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the learned model and do not require a constraint-based reconstruction. For instance,
the observed vehicles φ and ϑ angles can be approximated to φ = ϑ ≈ 0 without many
practical implications, since in typical traffic scenes vehicles are usually oriented in an
upright pose. This simple assumption reduces the number of unknowns by two. Sim-
ilarly, an assumption can be made that all existing vehicles are on a horizontal, level
road surface. Therefore, the vertical vehicle position is aligned with the road surface,
so that nC

x3
≈ dx3/2 follows for the 3D bounding box centroid, which again reduces the

number of unknowns by one. Furthermore, the observed vehicle’s height dx3 adds little
information for subsequent driving functions like path planning or collision avoidance.
Thus, an average value can be assumed for this parameter dx3 ≈ d̄x3 without affecting
the viability of the obtained reconstruction. It should be noted, however, that especially
the assumption of coplanar vehicle positions on a common road surface is sometimes
violated in real traffic scenes, which becomes more relevant the further away a detected
vehicle is located [Ans+18].
Five unknowns still remain, which means that the resulting system of equations is
yet under-determined. Therefore further analyses are necessary to find a solvable
system of equations. Also, the considerations have so far neglected that the required
world-image correspondences depend on the vehicle pose. The following explanations
therefore first of all supplement how the estimation of additional auxiliary variables
can serve to obtain a fully determined system of equations. This is followed by a section
dealing in detail with a case discrimination that determines point correspondences
based on the viewing direction of the camera.

Definition and prediction of auxiliary regressands

For the above-mentioned estimation of additional auxiliary regressands, it is appro-
priate to investigate, which additional information about detected vehicles can be
determined directly through a learned CNN. More precisely, it must be considered
which of the sought variables have particularly significant effects on the visual ap-
pearance of an object and therefore on the CNN feature maps. Based on [Mas+16], it
can be established that the visual appearance of vehicles varies greatly depending on
their orientation. However, the determining parameters for this are not the previously
considered orientation angles φ, ϑ, and ψ, but instead the so-called observation angles.
Since ψ remains as the only unknown orientation angle, the relevant relationship is
illustrated in Figure 7.6 for the BEV. Here, the observation angle corresponding with
ψ is denoted as α and β is termed as the position angle.
Note, that β is naturally estimated from the 2D bounding box with high accuracy.
As introduced by [LM11], the 2D midpoint of the bounding box is projected into
a horizontal plane 1 m above the ground using inverse perspective mapping (see
section 3.2), β is then estimated through trigonometry from the obtained coordinates,
measured relative to the camera, as follows.

β = arctan
(

x1

x2

)
(7.2.3)

Thus, the integration of the observation angle α as an auxiliary regressand and the
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β

α ψC

x2

x1

x3

Figure 7.6: Definition of the yaw angle ψC, observation angle α, and position angle β in the
BEV (top view), measured relative to the camera coordinate system. The left symbol depicts
the test platform with the camera system, the right vehicle indicates the detected object.

estimation of the position angle β using the aforementioned procedure also allows for
direct reconstruction of the objects yaw orientation ψ.

ψC = π − α− β (7.2.4)

In addition to the vehicle orientation, [Mou+17] shows that especially the vehicle
dimensions can be derived from the visual appearance. This follows from the fact
that within certain vehicle classes, such as station wagons, small cars, or vans the
exterior dimensions vary only slightly between different models. Instead of a direct
prediction of the vehicle dimensions, the corresponding aspect ratios are considered in
the following. This design choice is based on the idea that the aspect ratios are more
characteristic of certain vehicle classes and additionally a remaining degree of freedom
to distinguish between large and small vehicles of a given class can be maintained.
Furthermore, the dimension ratios can be directly integrated as additional regressands
instead of an explicit classification of vehicle classes. This way, a definition of vehicle
classes as well as the manual annotation of additional data labels supplementing the
3D bounding boxes can be omitted, which simplifies the overall approach. Since the
vehicle’s height dx3 was already determined, the ratio is formed of the remaining
dimensions $ = dx2/dx1 and this value is included as an auxiliary regressand.

Correspondences

The considered correspondence problem consists of assigning the nodes of the back-
projected 3D bounding box to the edges of the 2D bounding box. If no further restric-
tions are formulated, the number of possible combinations is 84. However, the previous
assumptions made to simplify the linear equation system also allow to narrow down
the possible node-edge correspondences. From the restriction of the 3D orientation
to an upright position aligned to the road surface, it can be concluded that the lower
edge of the 2D bounding box can only correspond to the bottom nodes of the 3D
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Table 7.1: Case discrimination to establish the node-edge correspondences required for the
constraint-based reconstruction. α denotes the observation angle and β denotes the position
angle. Note, that this table assumes an upright camera and a definition of the angles as in
Figure 7.6, e.g. measured relative to the camera coordinate system.

−π

2
≤ α ≤ 0

β
<

0

FR FL
FR

BR FL
FR

BR FL
BR

BR FR
BR

β
>

0

FR FL
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BR FL
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bounding box. An analogous restriction can also be formulated for the upper edge of
the 2D bounding box. However, the previous simplifications for the vertically oriented
3D parameters, among other things, neglect the reconstruction of the vehicle height.
Due to this, the assumption of a tight fit for the upper edge of the 2D bounding box
no longer seems appropriate. Therefore, only the remaining edges of the 2D bounding
box should be assigned to the bottom nodes of the 3D bounding box so that now only
43 possible configurations have to be distinguished.
For the remaining node correspondences, further restrictions can be made by examin-
ing which sides of the vehicle can face the camera at the same time. As an example,
consider the configurations from Figure 7.5 where u2,max → FR applies. Then, the FL
node can be excluded from the possible correspondences of u1,min. Generally, the cor-
respondences depend on the vehicle’s observation angle α and the position angle β. A
respective estimation of these angles can readily be obtained as outlined in the previ-
ous section. However, the correspondences also depend on the vehicles dimensions d,
which is evident for example from equation 7.2.2. These are yet unknown, which is the
reason why the correspondences can be obtained only with some remaining ambiguity.
However, based on the known position angle β and observation angle α of the detected
vehicle, a meaningful case discrimination can be established. For this, eight different
cases can be distinguished in which the vehicle rotates between two configurations
that are aligned with the viewing direction. The relationships are shown in Table 7.1.
The proposed approach then evaluates all possible correspondences according to this
case distinction in analogy to equation 7.2.2. Following [Mou+17], the resulting four
sets of correspondences are evaluated for each detected object and the backprojection
error is calculated accordingly. The underlying assumption is, that wrong assignments
result in a 3D bounding box whose backprojection violates the tight fit constraint.
The final selection of the reconstructed 3D parameters is therefore determined on
this basis. In comparison to the rest of the processing chain, this evaluation of all
possible correspondences based on the linear least squares method does not introduce
significant additional computational effort. This applies all the more since the solutions
for the different resulting systems of equations can be predetermined offline.

Network architecture integration

For further clarification, the integration of the overall processing chain for spatial object
detection is considered. A corresponding illustration is shown in Figure 7.7. Here,

input
image CNN

$

α

2D box IPM
β

correspondences

ψ reconstruction

LLS
spatial

parameters
ψ

Figure 7.7: Illustration of the spatial object detection pipeline. Besides the CNN, the inverse
perspective mapping (IPM) module, the node-edge correspondences, the reconstruction of the
yaw angle ψ, and the final linear least squares (LLS) step are depicted.
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1×1 convolution
78×24×4

∗ ∗

box offset
localization

coarse heatmap
classification
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Figure 7.8: Excerpt from the modified detection decoder (the full illustration can be found in
the appendix in Figure A.6). Here, the additional convolutional layers for the direct prediction
of the auxiliary regressands α and $ are shown. These are determined through direct regression
based on the feature maps and thus based on the visual appearance of the vehicle.

the interaction of the individual steps of the previously outlined method for spatial
parameter reconstruction is illustrated once again. In addition to the 2D bounding
boxes, the CNN also generates the estimates of the auxiliary regressands α and $. The
2D position of the bounding box is used to estimate the position angle β through
inverse perspective mapping (IPM, see section 3.2). The yaw angle ψ is reconstructed
from α and β. Furthermore, the necessary correspondences to establish the linear
system of equations are determined based on Table 7.1. Subsequently, this system
of equations is solved using the linear least squares (LLS) method and taking the
dimension aspect ratio $ into account.
For the combination of the outlined object detection and reconstruction with the fea-
ture encoder, the integration into a fully end-to-end trainable network architecture is
again considered. For this purpose, the detection decoder according to Figure 7.4 is
first extended by a prediction of the previously discussed auxiliary regressands. This
adapted bounding box decoder architecture is illustrated in Figure 7.8. In the SSD
detection method, simple 1× 1 convolutions perform classifications and anchor offset
localizations of 2D bounding boxes. Building upon that, another 1× 1 convolution is
added whose outputs are fitted to the ground truth observation angle α. Thus, instead
of performing a discrete classification followed by a continuous offset regression as in
the case of bounding box locations, a direct regression infers the observation angles.
This is motivated by the works of [Mou+17], which argues that the viewpoint distribu-
tion in traffic scenes is generally less diverse in comparison to standard applications,
which limits the benefits of a discrete-continuous approach.
Similarly, the ratio of the object dimensions can be determined by another 1× 1 con-
volutional layer. Since, as shown in the previous section, an explicit classification of
vehicle categories would cause additional annotation effort and also only a very lim-
ited range of values results for $, an estimation through direct regression is used again.
For the auxiliary variables, the regression loss according to equation 2.3.9 is used.
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7.2 Auxiliary regressands and decoder architecture for spatial reconstruction

Since the definition of α ∈ [−π/2, π/2 [ involves a discontinuity, the regression loss
can however not be applied directly. Instead, it needs to be adapted to explicitly take
the discontinuity of α into account. Accordingly, the loss function for the detection
decoder is defined as follows:

LDet
(
YCls,j, HCls,j, YLoc,j, HLoc,j, Y$,j, H$,j, Yα,j, Hα,j

)
=

L2Dbox
(
YCls,j, HCls,j, YLoc,j, HLoc,j

)
+ L$

(
Y$,j, H$,j

)
+ Lα

(
Yα,j, Hα,j

)
, (7.2.5)

where L2Dbox is defined as in equation 7.1.2 and the added loss components are given
as:

L$

(
Y$,j, H$,j

)
=

1
NDet

NDet

∑
v=1

{
0.5 ·

(
y$,j (uv)− h$,j (uv)

)2 , if
∣∣y$,j (uv)− h$,j (uv)

∣∣ < 1∣∣y$,j (uv)− h$,j (uv)
∣∣− 0.5, else

Lα

(
Yα,j, Hα,j

)
=

1
NDet

NDet

∑
v=1

 0.5 ·min
q

∣∣yα,j (uv)− hα,j (uv) + q
∣∣2, if min

q

∣∣yα,j (uv)− hα,j (uv) + q
∣∣ < 1

min
q

∣∣yα,j (uv)− hα,j (uv) + q
∣∣− 0.5, else

.

(7.2.6)

Herein, Y$, H$ denote the targets and output features for the prediction of the dimen-
sion ratio $ and Yα, Hα the respective targets and outputs for the observation angle
α. Furthermore, q ∈ 2π ·Z in conjunction with the min (�) function accounts for
the discontinuity of α in the corresponding part of the loss function, NDet is again
the number of anchor boxes that overlap with ground truth bounding boxes, and uv
denotes their respective feature map coordinates.
To solve for the actual 3D bounding box parameters, the remaining unknowns must
first be specified. Since the yaw orientation ψ was already reconstructed through other
means, and since solving for ψ is disadvantageous anyway due to the nonlinear ex-
pressions in the rotation matrix R, the existing prediction of ψ is maintained. The
remaining parameters are dx1 , dx2 , nC

x1
and nC

x2
. Since dx2 = $ · dx1 applies, the system

of equations is set up based on the described constraints and solved for the unknowns
dx1 , nC

x1
, nC

x2
. For the sake of convenience, the symbolic computer algebra system pub-

lished in [Meu+17] is used in the practical implementation.
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Figure 7.9: Overview of the end-to-end architecture for the detection of other road users. Two
feature maps of the encoder are used to determine the 2D boxes and auxiliary regressands.
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An overview of the integrated end-to-end network architecture is shown in Figure 7.9.
It can be seen, that two of the intermediate feature maps of the inception-v2 encoder
are evaluated as input for the decoder stage. Further lower-resolution features are gen-
erated internally within the decoder stage through sub-sampling. The resulting object
representation is then derived for coarse-resolution object classification, fine-resolution
offset regression, and the corresponding auxiliary regressands.

7.3 Object detection and reconstruction experiments

In this section, the presented approach towards vehicle detection and their respec-
tive 3D reconstruction is evaluated. Furthermore, the results will be related to the
comparative results of alternative approaches known from the literature. Due to the
step-by-step processing chain, the individual detection steps are evaluated separately.
Furthermore, the same optimization setup as in section 5.3 is used for the experiments.

Benchmark datasets and evaluation protocol

The analysis requires respective datasets of traffic scenes for which annotations of
vehicles with bounding boxes are available. This affects both the analysis of 2D object
detection and the analysis of spatial 3D reconstruction. The evaluation of the 2D
detection in image space is carried out both, based on a dataset recorded with the
test platform Nissan Leaf (see section 3.1) and annotated as part of the present work,
and based on the public KITTI object dataset [Gei+12] for better comparability. In
the case of the Nissan Leaf, Ntrain = 2789 training and Ntest = 700 testing images
were recorded in traffic scenes near the city of Dortmund and annotated with 2D
bounding boxes. The corresponding dataset is again dubbed as InVerSiV dataset
in the following. However, the annotation of ground truths for the 3D parameters
requires a corresponding reference sensor system, which is not part of the employed
test platforms.
Therefore, the evaluation of the spatial reconstruction is exclusively based on the
KITTI object dataset, since for this dataset the corresponding annotations of the 3D
object parameters are available. For a conclusive analysis and to be consistent with the
literature, the evaluation is carried out analogously to [Gei+12; Sim+19]. Towards this,
a threshold for the overlap of the predicted 2D bounding box and the ground truth
2D bounding box is first defined, which determines the detections that are counted as
TP, FN and FP respectively. This threshold value is based on the IoU measure, which
is evaluated for a pair of bounding boxes as follows.

IoU2D = ||
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))
Herein, uy and uh denote the respective coordinates of the ground truth and predicted
output 2D bounding boxes. Following [Gei+12], an IoU score of 70 % is required for
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a correct detection, from this the corresponding TP, FP, and FN cases can be derived
directly. Furthermore, a distinction is made between three difficulty levels for the
evaluation. For the easy difficulty level, truncated or occluded vehicles are ignored
and only those vehicles are evaluated whose bounding boxes have a minimum height
of 40 px. For the medium difficulty level, bounding boxes with a minimum height of
25 px are included and for the hard difficulty level, truncated or occluded vehicles are
also counted.
The 2D detection performance can then be assessed by examining the resulting mAP
based on the pre-rec curve. In order to obtain values that are again consistent with the
literature [Sim+19], note that the increment that is used to compute the mAP measure
is defined differently than in the previous chapters.

mAP =
1

40 ∑
rec∈ 1

40 , 2
40 ,...,1

preinterp (rec) (7.3.2)

Furthermore, the mean IoU2D value of all ground truth bounding boxes and max-
imized with respect to the confidence score threshold is given to estimate the 2D
localization accuracy.
For the analysis of the spatial reconstruction, firstly the reconstruction of the viewpoint
and vehicle orientation is considered. For this, [Gei+12; Mou+17] define the AOS
(average orientation similarity) measure, which is the product of mAP and the cosine
similarity (CS). Therefore:

CSinterp (rec) = max
rec�≥rec

(
1

NDet

NDet

∑
j=1

1 + cos
(
∆ψj (rec�)

)
2

)
(7.3.3)

AOS = mAP · 1
40 ∑

rec∈ 1
40 , 2

40 ,...,1

CSinterp (rec) , (7.3.4)

where NDet denotes the number of detected objects and ∆ψj (rec�) denotes the yaw
orientation error for a given detection j. Additionally, the reconstruction of the di-
mension ratio $ is assessed for all ground truth bounding boxes using the normalized
mean squared error (NMSE) as follows.

$NMSE =
∑Ntrain

j=1

(
$

y
j − $h

j

)2

∑Ntrain
j=1

(
$

y
j − $y

)2 (7.3.5)

Herein, $y is the aspect ratio ground truth, $y denotes the arithmetic mean of the
ground truth, and $h is the aspect ratio predicted by the detection decoder. For the
further analysis of the reconstruction of the 3D parameters, it is necessary to modify
the evaluation protocol specified in [Gei+12]. The reason is that the criteria set out in
[Gei+12] are geared towards approaches combining cameras and other environment
sensors such as LIDAR. In comparison, purely monocular camera-based methods do
not include any active depth measurement. Thus, they operate under fundamentally
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different conditions, which must be taken into account when defining the evaluation
criteria. In this regard, the evaluation method of counting only those detections with
IoU > 70 % towards the TP cases does not allow a comprehensive assessment of the
reconstruction performance. Moreover, a restriction of the KITTI object dataset is given
by the fact, that only a fixed extrinsic calibration measured once offline is included, so
that dynamic pitch ϑ and roll φ movements of the ego vehicle cannot be compensated.
For this reason, most comparable works on monocular reconstruction of 3D bounding
boxes exclude a true assessment of the actual reconstruction performance and instead
focus on the AOS measure only, see for example [Gäh+18; Gui+18]. However, for
the sake of completeness, the mean overlaps IoUBEV and IoU3D are also evaluated in
the following. For this, IoUBEV and IoU3D are determined from the intersected and
combined areas and volumes respectively, analogous to the perspective image space.
Since the ground truth annotations are not made public for the test partition of the
KITTI object dataset and the official evaluation server does not provide all discussed
performance measures, the described evaluation cannot be performed on this basis.
Therefore, following [Xia+15], the training partition of the KITTI dataset is further
divided into reduced training and validation sets, with Ntrain = 3682 and Nval = 3799
images respectively. All reported values for the KITTI dataset are therefore evaluated
on this validation partition of the dataset, however, the evaluation on the test set in
[Oel+18a] confirms similar results.

Performance evaluation of 2D detection and localization

When evaluating the 2D detection performance, it is first examined whether the auxil-
iary regressands as additional output paths of the model have significant effects on the
2D detection performance. For this purpose, a model without auxiliary regressands,
corresponding to the architecture shown in Figure 7.4, is evaluated as a comparative
basis. This model will be referred to as Plain-SSD hereafter. Furthermore, a model is
evaluated, which implements the architecture for a complete 3D reconstruction ac-
cording to Figure 7.8, which is termed as SSD+AUX. The respective results for both
the KITTI object dataset and the InVerSiV dataset are presented in Table 7.2. Please
note that for the InVerSiV dataset, no systematic registration of truncated or occluded
vehicles was performed, so that only the difficulty levels easy and moderate are eval-
uated. Furthermore, only the Plain-SSD variant is evaluated on this dataset due to the
available annotations.
The results show, that the additional auxiliary regressands seem to have no significant
influence on the 2D detection performance. Moreover, the expected performance in-
crease with decreasing degree of difficulty is evident as well as a generally high IoU2D
overlap which on average is well above the specified threshold.
For further assessment of the performance, results from other works in the literature
are cited. From this analysis, the comparatively fast computation times of the pro-
posed approach are evident. Additionally, the results indicate a generally comparable
performance on par with other recent approaches. However, the proposed approach
seemingly does not benefit from relaxing the test criteria in the easier difficulty levels
as much as other approaches.
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Table 7.2: Comparison of the 2D bounding box detection performance metrics of the SSD+AUX
and Plain-SSD models, evaluated on the test/validation splits of the used datasets. The run-
times stem from the publications or, if no publication was specified, were measured with a
desktop GPU (see Table A.2.d).

InVerSiV dataset
mAP

(hard)
mAP

(moderate)
mAP
(easy)

IoU2D
(hard) runtime

Plain-SSD n/a 67.48 % 85.07 % 75.16 % 25.2± 0.9 ms

KITTI object dataset
mAP

(hard)
mAP

(moderate)
mAP
(easy)

IoU2D
(hard) runtime

SSD+AUX 71.94 % 83.55 % 86.38 % 74.73 % 24.8± 1.2 ms
Plain-SSD 72.14 % 83.62 % 86.48 % 74.68 % 25.2± 0.9 ms
[Tei+18] 67.59 % 83.35 % 92.80 % n/a 98.1 ms
[Gui+18] 68.79 % 82.00 % 92.91 % n/a 90.0 ms

Figure 7.10.a: Example 2D detections of the
Plain-SSD model on the InVerSiV test dataset.

Figure 7.10.b: Example 2D detections of the
SSD+AUX model on the KITTI object valida-
tion dataset.
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Chapter 7 Road Users from Bounding Box Detection

Example detections from samples not utilized during training are illustrated in Fig-
ure 7.10.a and Figure 7.10.b. From this, it is evident, that the reliability of detections
decreases with distance, which might originate from the exclusion of overly small
bounding boxes in the datasets. However, a generally high performance is observable,
which indicates a subjectively accurate detection of the other vehicles within the traffic
scene.

Analysis and comparison of the spatial reconstruction

As discussed previously, the evaluation of the spatial reconstruction is based on differ-
ent measures using the KITTI object dataset. The resulting values are given in Table 7.3.
Most notable are the seemingly modest scores for the IoU criterias. In addition to the
aforementioned shortcomings of the dataset regarding dynamic ego movements, it
should also be noted that in the presented method the 3D estimation is made at the
end of a multistage processing chain. Therefore, the spatial reconstruction is subject
to error propagation. For example, for partially occluded vehicles or for vehicles that
are only partially within the camera’s area of coverage, truncated 2D bounding boxes
are produced. In these cases, the tight fit assumption is violated, resulting in a corre-
sponding deviation of the reconstructed 3D parameters. For comparison, results from
the literature are again listed. For the given reasons, the evaluation of these works is
however limited to the AOS measure. Again, the similar performance levels are on
par with other state of the art approaches, however, the general conflict of objectives
between computation time and performance is also evident. To this end, the approach
of [Gui+18] achieves a significantly better reconstruction performance for the relaxed
difficulties at the expense of a higher runtime.
In addition to the evaluation of the performance measures, an examination of indi-
vidual images from the validation dataset is also carried out to enable a qualitative
assessment of the results and a closer examination of individual effects and shortcom-
ings. For this purpose, selected detections with superimposed 3D bounding boxes are
shown in Figure 7.11. From this, it can first of all be seen that a predominantly plausible
and apparently accurate spatial reconstruction of the detected vehicles can be deter-

Table 7.3: 3D bounding box detection performance metrics of the SSD+AUX model. The pro-
vided runtimes stem from the publications or, if no publication was specified, were measured
with a desktop GPU (see Table A.2.d).

KITTI object dataset
AOS

(hard)
AOS

(moderate)
AOS

(easy)
IoUBEV
(hard)

IoU3D
(hard)

$NMSE
(hard) runtime

SSD+AUX 67.83 % 79.07 % 82.29 % 18.37 % 16.25 % 23.80 % 24.8 ms
[Gäh+18] 59.84 % 76.12 % 85.38 % n/a n/a n/a 22.5 ms
[Gui+18] 67.49 % 80.57 % 91.50 % n/a n/a n/a 90.0 ms
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7.3 Object detection and reconstruction experiments

Figure 7.11: Example 3D detection boxes of the SSD-AUX model on the KITTI object validation
dataset.

mined. Furthermore, it is shown that the orientation can be reconstructed with high
accuracy and that no major outliers are obvious from the qualitative assessment. This
positive qualitative impression is caused in particular by the enforced compliance with
the backprojection constraints. However, the relatively good visual impression seems
to contradict the remaining significant deviations of the reconstructed 3D bounding
boxes that are evident from the IoU scores in Table 7.3. From this, it can be concluded
that these deviations are primarily due to the inaccurate camera calibration with no
correction of dynamic pitch ϑ and roll φ movements, and presumably also to the
violation of the assumption of a flat road surface.
Additionally, in the bottom left example, a further fundamental effect of the inves-
tigated method is apparent. This refers to the error propagation in the case of only
partially visible vehicles. In this case, truncated 2D bounding boxes are generated for
which a corresponding 3D bounding box is fitted. This mechanism, due to in this case
inappropriate assumptions about the tight fit constraints, potentially leads to displaced
and incorrect 3D bounding boxes, as is clearly evident from the mentioned example.
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8
Multi-task Integration and Conclusive

Experimental Analysis

The perception tasks considered in the previous chapters already form a sufficient
framework for a basic environment model. However, the CNN models discussed so
far do not yet utilize the previously discussed concept of shared feature maps. Yet,
due to the advantages in terms of computational efficiency, this is indispensable for
the practical applicability in the used test platforms.
For this, the integration into a combined multi-task CNN is essential, as it allows better
utilization of the available resources due to the elimination of repeated computations.
Therefore, the subject of the present chapter is the design of an integrated CNN archi-
tecture, the discussion of an appropriate training strategy as well as a comprehensive
evaluation of the effects resulting from simultaneous incorporation of the considered
perception tasks.

8.1 Multi-task decoder and architecture integration

After having dealt with the methods for the individual perception tasks, the combined
decoder architecture for the simultaneous generation of all environment representa-
tions of the individual tasks is discussed below. For this, the following considerations
are based exclusively on the task decoders including all previously discussed adap-
tations. This concerns in particular the decoder for the segmentation of the drivable
road area. Thus, the segmentation decoder is integrated using the variant with explicit
consideration of the a-priori spatial class distribution according to Figure 6.4. Fur-
thermore, this affects the decoder for vehicle detection, which is integrated including
the auxiliary regressands that enable the spatial parameter determination, as given in
Figure 7.8.
As part of the final evaluation, the investigation of possible interactions and recip-
rocal effects through the integration of different task combinations will be examined.
Therefore, it is desirable to implement the architecture of the multi-task decoder with
a modular design, which allows to activate and deactivate single tasks in a flexible way
in order to investigate the different model variants. For evaluation in practical experi-
ments, it is necessary to integrate the multi-task decoder with the inception-v2 feature
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Figure 8.1: Overview of the integrated multi-task CNN architecture. For the task decoders, all
previously discussed adaptations are taken into account.

encoder. Due to the choice of the hard parameter sharing approach, this integration
is in close analogy to the single-task models discussed in the previous chapters. For
this purpose, a single instance of the encoder is used to determine the feature maps
once for all tasks. The inputs of the decoder are given as the set of all feature maps{
HDet,HRec,HSeg

}
used for the individual tasks. This results in the same computa-

tional constraints as with the single-task models, so that ultimately the feature maps of
the blocks two to four are used due to their spatial resolution. Altogether, this yields
the end-to-end architecture according to Figure 8.1. Note, that the modular deacti-
vation of individual tasks mentioned above can result in individual decoder inputs
remaining unused. This also means, that not all inputs are active and receive learning
signals in all conducted experiments.

8.2 Practical strategy for the joint training of all perceptual
tasks

For the implementation of a multi-task architecture using the hard feature sharing
approach, one has to consider the duality of the forward propagation of activation
values and the backward propagation of gradient values. The basic relationship is
apparent from Table 8.1. It shows, that on the one hand, a summation node in the
network architecture leads to a branching of the gradient propagation. On the other
hand, a branching of the network architecture corresponds to a summation of the
gradients during the training phase. With this basic relationship, the learning of several
tasks according to the hard feature sharing approach can be performed, provided a
loss signal is available for all perception task outputs. Mathematically, the problem
of model training turns into an optimization with respect to multiple objectives. In
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Chapter 8 Multi-task Integration and Conclusive Experimental Analysis

Table 8.1: The duality of the forward inference of output predictions (solid lines) and the
backward propagation of gradient values (dashed lines), see also [Ran13]. A summation of
feature maps results in a branch of the gradient flow (copy) during backward propagation and
vice versa.

forward inference
of output predictions

backward propagation
of gradient values

sum copy

copy sum

reference to equation 2.3.8, the total loss function thus results from a linear combination
of the loss functions of the individual tasks in a weighted sum.

Ltotal = wRec · LRec + wSeg · LSeg + wDet · LDet (8.2.1)

With these considerations, the effects of a multi-task approach on the network archi-
tecture are already defined. For practical implementation, however, additional factors
should be taken into account. For a start, there is the inevitable matter of the choice of
weighting factors.
This significantly influences the contributions of the loss functions of the individual
tasks on the gradient flow and thus on the change of the model parameters. Ultimately,
the choice of the weight factors should ensure, that no task takes priority over another
task. For the choice of the weights, two suitable strategies will be examined in more
detail:

• Definition of constant weight factors using general heuristics

• Training the loss weight factors through optimization as (regularized) model
parameters

Empirical results known from the literature indicate that often the use of general,
simple heuristics already yields promising results, leaving little room for improvement
to more sophisticated techniques. Examples of corresponding studies can be found in
[Ser+14; EF15; Lia+16; Uhr+16; Kok17; CC17; Tei+18], and [Wan+19b].
The investigation in [Ken+18] on the explicit integration of the weighting factors as
part of the model optimization provides further guidance on the applicability of both
strategies. From this, it can be stated that the value ranges of the individual loss terms
are decisive. To this end, [Ken+18] describes an increased model performance when
using learned weight factors for specific problems where individual tasks involve the
regression of unbounded quantities. Such an example is the prediction of geometric
quantities, such as those that occur when estimating a depth image. As described
in [Ken+18], this task even proves to be sensitive to the choice of the measurement
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8.3 Experimental results and comparison

scale (e.g. m, cm, mm, ...). However, a regression of unbounded target variables is not
included in the examined perception tasks. For this reason, and also based on the
known empirical findings, uniform constant factors are used to weight the individual
perceptual tasks in the loss function.
Another aspect concerns the availability of annotated training data, for which some
special considerations must be taken into account in the multi-task case. This is due
to the fact, that combined multi-task problems have been investigated comparatively
less often so that the majority of the available datasets do not devote special attention
to them. Possible approaches to compensate for this fact are limited. Essentially, they
are given by either the tedious process of creating the missing annotations by hand
or by switching the individual tasks in each iteration and thereby training the CNN
in an alternating manner. The biggest advantage of alternated training is the reduced
manual annotation effort. A further advantage is the ease of a task-dependant use
of data augmentation techniques [SK19]. Based on these practical considerations, an
approach based on task alternated training is pursued in the following. Formally, task
alternated training can be described as follows.

wRec,i =

{
1, if i mod 3 = 0
0, else

, wSeg,i =

{
1, if i mod 3 = 1
0, else

,

wDet,i =

{
1, if i mod 3 = 2
0, else

(8.2.2)

Herein, i denotes again the current iteration count. With this strategy, alternated train-
ing allows combining datasets for multi-task models from several single-task datasets.
However, following the above formalism, an identical number of training examples is
required to consistently switch between the tasks. This can be achieved by oversam-
pling or undersampling the individual single-task datasets, with oversampling being
preferable in the sense that it allows the best possible utilization of the available data.

8.3 Experimental results and comparison

The subject of this section is the final evaluation of the combined multi-task architecture
according to Figure 8.1. For this purpose, the focus will be on the analysis of effects
and influences, which emerge as a result of the multi-task approach in particular. To
investigate potential reciprocal effects, the results of a comparative analysis of different
task combinations will be evaluated. Therefore, leaning on the method of ablation
studies [Mey+19], variants in which individual tasks are omitted are evaluated in
addition to the full multi-task CNN.
For this, a possible positive inductive bias effect due to the additional features of dif-
ferent tasks will be considered. Furthermore, the opposite effects are also plausible, for
instance through the effect of capacity exhaustion. The precise assessment is made in
the ensuing analysis, in which the considered perceptual tasks are examined succes-
sively. Therefore, the objectives and measures for evaluating the model performance,
as discussed in the previous chapters for the individual tasks, are largely retained in
the following.
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Chapter 8 Multi-task Integration and Conclusive Experimental Analysis

Compared to the procedure for the single-task experiments, a slightly different train-
ing setup is used for technical reasons. To this end, the integration of the segmentation
decoder again requires the batch size to be set to Nbatch = 1, so that this value is
also used for other tasks. Furthermore, preliminary experiments revealed a pattern
in which the vehicle detection performance for the multi-task architecture was sig-
nificantly lower than in the single-task case. Presumably, this can be attributed to
the task switching strategy which leads to an overall less smooth loss function that
might negatively impact the optimization convergence. In this context, however, it has
proven useful to compensate for this effect by initializing the CNN parameters from
the trained single-task detection model (see chapter 7), contrasting with the previously
used training setup. Nevertheless, the remaining configuration of the optimization
solver is unchanged with respect to the single-task experiments.

Road topology recognition

The following evaluation of the road topology recognition is carried out analogously
to section 5.3. Thus, the dataset based on a subset of Cityscapes [Cor+16] and supple-
mented by an annotation of the road topology is retained as the basis. Likewise, the
criteria and performance measures remain identical, which consist of the F1 and mAP
measure averaged over all samples as well as the pre, rec, and F1 measure averaged
over all classes according to equations 5.3.5, 5.3.7, and 5.3.4. Hence, two dual-task mod-
els are compared, which in addition to the topology recognition integrate the other
tasks once each, as well as the complete multi-task model, introduced in Figure 8.1. An
overview of the respective results is given in the following Table 8.2. These results show
that the achieved performance of all compared models is generally on a similar level.
The same assessment is also found when comparing the corresponding single-task
results (see Table 5.1). Thus, the results indicate that the model capacity of the incep-
tion-v2 feature encoder is not a limiting factor with respect to the investigated road
topology recognition. Furthermore, in comparison to the multiple execution of the sin-
gle-task models, significantly fewer calculations have to be performed for roughly the
same performance. This suggests, regarding the existence of shareable features, that
these do indeed contribute to the intended increase in computational efficiency. At the

Table 8.2: Road topology recognition results, measured as mAP, F1, pre, and rec using per
sample micro-averaging and per class macro-averaging. The tested model variants reflect the
different task combinations.

model
micro-averaged macro-averaged
mAPµ F1µ preM recM F1M

Rec+Seg 74.66% 70.86% 69.07% 67.11% 67.68%
Rec+Det 74.79% 71.11% 67.14% 68.24% 67.33%

Rec+Seg+Det 74.68% 71.14% 69.36% 67.83% 67.92%
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8.3 Experimental results and comparison

Table 8.3: Per-class road topology recognition confusion matrix with the full multi-task CNN.
The numbers indicate the percentage of the corresponding classifications with respect to the
total number of samples of a class. Furthermore, the numbers in parentheses indicate the
absolute number of classifications.
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same time, however, it must be noted that increased generalizability of the multi-task
model is not apparent from the results.
Alongside the aggregated performance measures, the breakdown of the results into
the individual road topology categories is again considered. For a clearer presentation,
only the most relevant model variant is used here, which is given by the full multi-task
model. The corresponding confusion matrix is presented in Table 8.3, note that the
class definitions are identical to those from chapter 5. A direct comparison with the
results of the single-task model (see Table 5.2) again reveals a highly similar pattern.
Thus, the general range of the results is again similar and the largest concentration of
misclassifications is found in the FP cases of class g (intersection). In detail, however,
the class imbalance of the dataset seems to have a somewhat stronger effect, since there
is a slightly greater dispersion between the maximum and minimum TP values. For
further assessment, the confusion matrices of the dual-task models and the complete
set of pre-rec curves can be found in the appendix from section A.7 to A.10.

Drivable road area segmentation

The evaluation of the results for the task of drivable road area segmentation is carried
out according to the procedure established in section 6.3. Thus, the evaluation is based
on the InVerSiV dataset in image space and BEV-space and additionally on the KITTI
road dataset [Fri+13] in BEV-space only. Consequently, the F1 measure maximized
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Chapter 8 Multi-task Integration and Conclusive Experimental Analysis

Table 8.4: Comparison of the pixel-based performance metrics for the task of drivable road
area segmentation. The results were measured for the different variants of the multi-task
architecture using the test splits of the employed datasets.

InVerSiV dataset (perspective view)
F1max pre rec mAP IoU

Seg+Rec 92.26% 91.78% 93.79% 91.12% 85.63%
Seg+Det 91.88% 89.31% 94.61% 91.02% 84.98%

Seg+Rec+Det 91.93% 90.86% 93.09% 91.14% 85.06%

InVerSiV dataset (BEV)
F1max pre rec mAP IoU

Seg+Rec 90.69% 89.41% 92.01% 90.78% 82.97%
Seg+Det 90.29% 88.78% 91.85% 90.51% 82.30%

Seg+Rec+Det 90.35% 89.23% 91.50% 90.57% 82.40%

KITTI road benchmark dataset (BEV)
F1max pre rec mAP IoU

Seg+Rec 94.81% 94.76% 94.86% 91.97% n/a
Seg+Det 94.45% 94.92% 93.99% 91.86% n/a

Seg+Rec+Det 94.41% 94.63% 94.19% 91.98% n/a

with respect to the decision threshold, the corresponding values of pre, rec, IoU, and
also the mAP of the pre-rec curve are evaluated. Once again, the comparison focuses
on the evaluation of the different task combinations. The corresponding results are
listed in Table 8.4, a more detailed breakdown of the KITTI road results can again be
found in the appendix under section A.11. Here too, the measured performance of the
models is generally similar and there appear to be no prominent outliers.
On closer inspection, the Seg+Rec model achieves slightly higher performance on
most measures compared to the other models. A further review of Table 6.1 re-
veals, that this statement can be maintained even when comparing the results of
the single-task model. However, the measured differences are only marginal, so that
this result is unlikely to be of systematic importance, but is rather the outcome of
random processes during the model training. Altogether, no performance limitation
due to an exhausted model capacity is observable for the task of drivable road area
segmentation. By achieving consistent performance in the multi-task case, the in-
creased efficiency of this approach is also again evident. Moreover, the earlier con-
clusions are reaffirmed, in that the increased efficiency yields a decrease in com-
putational demands, but no improvement of the generalization capability is appar-
ent. The results on the test partition of the InVerSiV dataset are slightly worse than
for the KITTI road dataset, which is again attributed to its smaller size. Addition-
ally, the results indicate that in the case of the InVerSiV dataset the values for pre
and rec are less balanced. Thus, the multi-task models have the same tendency to-
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Figure 8.2: pre-rec curves for the Seg+Rec+Det multi-task CNN obtained from the test parti-
tions of the KITTI road and InVerSiV datasets. The results for the KITTI road dataset were
determined on the official evaluation server.

wards FP errors as the single-task variants when evaluated on the InVerSiV test
data. For further analysis, Figure 8.2 shows the pre-rec curves of the most relevant
Seg+Rec+Det model as well as the zoomed in view of the most relevant part of
the curves. Similar to the single-task case, the curves are again close to the optimal,
step-shaped curve. The results determined in the perspective space show a slightly
superior curve in comparison. The described tendency of the model to FP errors is
reflected in the curves by a slightly off-centered trend due to the early decrease of
the pre values. As in Table 8.4, no comparable effect is observed for the results on the
KITTI road dataset.

Vehicle detection and reconstruction

For the analysis of the detection of traffic objects with multi-task models the proce-
dure according to section 7.3 serves as a reference. Therefore, the detection of vehicles
through 2D bounding boxes and their respective viewpoint and full spatial reconstruc-
tion are considered. Note, that the following experiments are based on the SSD+AUX
detection decoder architecture that requires 3D annotations. Therefore, the evaluation
and comparison of the mAP, AOS, and IoU performance measures is based on the
corresponding validation data of the KITTI object dataset [Gei+12]. The results for 2D
vehicle detection for all different task combinations are shown in Table 8.5. As with the
other scene representations, the performance is again comparable to that of the single-
task models. In three of the four considered performance measures, the Det+Seg model
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Chapter 8 Multi-task Integration and Conclusive Experimental Analysis

Table 8.5: 2D vehicle detection performance measures on the KITTI object validation dataset
for all task combinations. All presented models use the SSD+AUX decoder stage to implement
vehicle detection and reconstruction.

mAP (hard) mAP (moderate) mAP (easy) IoU2D (hard)
Det+Rec 71.99% 83.50% 86.42% 74.73%
Det+Seg 72.11% 83.58% 86.05% 74.78%

Det+Rec+Seg 71.95% 83.41% 86.34% 74.68%

is slightly superior. However, the difference is within the range of general performance
variations due to the non-deterministic factors in the training process. The average
IoU2D overlap of the predicted bounding boxes with the ground truths is slightly
above the specified threshold of 70 % when considering the hard difficulty level with
the largest number of samples. The consistent performance compared to the use of the
single-task models confirms once again the ability to increase the computational effi-
ciency of the simultaneous prediction of multiple environment representations due to
shared features. However, the hypothesis of a further increased generalization ability
through a multi-task inductive bias effect, as observed for example in [Tei+18; Kok17],
can again not be affirmed.
For further analysis, the performance measures for the evaluation of the spatial recon-
struction will be examined. The reconstruction of the viewpoint through the obser-
vation angle α is thereby assessed with the AOS measure. The actual reconstruction
is again evaluated by determining the IoUBEV values in the BEV-space and the volu-
metric IoU3D of the full 3D bounding boxes. It should be noted in this context, that
the same limitations set out in section 7.3 regarding ϑ and φ correction must again be
taken into account when assessing the results. Table 8.6 contains the resulting values
of the reconstruction performance measures. As can be anticipated from the previous
analysis of the 2D performance measures, again no significant deviation from the re-
sults of the single-task model is found in the evaluation of the spatial reconstruction.

Table 8.6: 3D vehicle reconstruction performance measures on the KITTI object validation
dataset for all task combinations. The SSD+AUX decoder stage is used in all models to imple-
ment the reconstruction of the vehicle orientations and 3D bounding boxes.

AOS
(hard)

AOS
(moderate)

AOS
(easy)

IoUBEV
(hard)

IoU3D
(hard)

Det+Rec 67.89% 79.11% 82.37% 18.08% 15.91%
Det+Seg 68.09% 79.33% 82.08% 17.76% 15.74%

Det+Rec+Seg 67.90% 79.09% 82.33% 18.17% 15.97%
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Noteworthy, when assessing the spatial IoU measures an opposite situation arises,
where in contrast to the 2D performance measures the Det+Seg model now performs
slightly worse than the other task combinations. However, the differences are again
marginal, hence a systematic tendency cannot be concluded. In summary, after con-
sidering the vehicle detection and reconstruction task, primarily the striking gains in
terms of computational efficiency due to the multi-task approach can be postulated.
Yet, no further positive effect on generalizability towards unseen test samples can be
observed.

Qualitative evaluation of selected test samples

In addition to the quantitative analysis of the individual perceptual tasks, a qualitative
analysis through example images is conducted in the following. Since the training
annotations of two of the three perceptual tasks are available for the KITTI dataset,
corresponding examples from the KITTI object validation set will be examined to
maintain consistent image characteristics. The obtained output representations based
on the simultaneous perception by the Det+Seg+Rec model are illustrated in Figure 8.3.
For better comparability, the selected example images correspond to those previously
used for Figure 7.11. The visualization firstly confirms the general conclusion of an
accurate perception of the depicted traffic scenes. In detail, from the middle left and
bottom left examples it is noticeable, that the results of the drivable road area segmen-
tation show remaining FN errors. This is obvious in the middle left example especially
in the left part of the image and between the signposts. For the bottom left example, it
is apparent that a large area of the road section depicted on the left side of the image
could not be captured correctly.

Figure 8.3: Visualization of the environment representations generated with the full multi-task
CNN. The example images originate from the validation partition of the KITTI object dataset.
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Concerning the detection results, there are no significant deviations from the visu-
alizations of the single-task model (see Figure 7.11). Once again, mainly the general
shortcomings of the approach based on backprojection constraints are evident for ve-
hicles that are only partially depicted in the image. The results of the road topology
recognition appear mostly plausible, except for the bottom left example. Here, the
model has assigned the category of a right turn with the highest confidence, whereas
for a human observer the category of a fork junction seems more appropriate. Inter-
estingly, this example also shows the most striking errors in the drivable road area
segmentation, which might hint at an underlying relation of these effects.
As another aspect of the qualitative evaluation, the transferability of the learned model
towards altered operating conditions will be considered hereafter. For this purpose,
example images will be considered in the following, which were recorded with the
help of the second test platform road side unit in the context of the of the InVerSiV
project. The altered operating conditions result from an observation of the traffic
scene from a higher perspective so that the views of the various scene elements differ
significantly from the views contained in the training dataset. Thus, this examination
aims to investigate, whether the changed perspective already exceeds the systems
generalization capabilities, or whether the perception tasks were learned with sufficient
robustness so that a generally feasible scene description can still be maintained. For
this purpose, corresponding images are given in Figure 8.4. Note, however, that due
to the changed perspective and the fact that the environment of the road side unit test
platform is given by one large paved area, no definite road topology can reasonably
be determined according to the definition from section 5.3.
These results show, that despite the different perspective a mostly accurate scene de-
scription can be captured. This is especially noticeable for the segmentation of the
drivable road area, which is captured correctly despite the changed spatial priors of

Figure 8.4: Visualization of the environment representations generated with the full multi-task
model in the InVerSiV road side unit setup. Due to the altered operating conditions, the input
images differ significantly from those of the used training dataset.
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the class distributions. From this, it can be concluded that the generated segmentation
is still largely based on the local visual appearance despite the adapted decoder archi-
tecture. Furthermore, it is noticeable that the contiguous road areas are segmented in
part with some remaining gaps and that vegetation areas above the fence are captured
as roads in the upper example images. Thus, in detail, a slight degradation of the seg-
mentation can be noted compared to the previous results, which is presumably due
to the different operating conditions. Furthermore, the determined road topologies
appear generally plausible, despite the limitations mentioned above. In particular, in
the lower example images the determination of a road topology seems subjectively
difficult. Nevertheless, these images show a wide road area extending to the edge of
the image, which is generally characteristic for intersection scenes and may explain
the obtained topology class.

Runtime analysis on dedicated and embedded hardware

Besides the performance of the individual perception tasks, the achieved runtime of
the developed approach is also of crucial importance according to the application for
ADAS and automated driving systems. Hence, in the following a comprehensive anal-
ysis of the runtimes of the different task combinations is carried out. For this purpose,
Figure 8.5 presents the corresponding measurements for all task configurations, which
were determined through the evaluation of 100 randomly selected images. Addition-
ally, the raw data as well as details on the spread of the measurements can be found
in the appendix in Table A.12. The runtimes were measured once for common PC
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Figure 8.5: Runtimes of the single-task and multi-task CNNs compared to sequential execution,
measured on a dedicated desktop GPU (see Table A.2.d) and on the embedded hardware
platform Jetson TX2 (see Table A.2.c). The runtime evaluation is based on 100 randomly
selected images.
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Chapter 8 Multi-task Integration and Conclusive Experimental Analysis

hardware using a dedicated GPU as well as for the actual embedded target system of
the camera platform, c.f. Figure 3.1. The comparison of the single-task results reveals,
that the decoder for the task of road area segmentation is the fastest to compute, while
the decoder for vehicle detection requires the most computation time. However, it
should be noted that the single-task runtimes are generally similar due to the specific
design of the bottleneck layers in the decoders. Moreover, the results indicate that
the runtimes achieved on the PC hardware scale almost linearly to the embedded
hardware, but are generally slower by a factor of about seven. The applicability of the
approach is also generally evident, but it must be noted that the runtimes achieved on
the embedded hardware are still slower than the commonly used control clock cycles
in automotive applications. Strikingly, when considering the multi-task models, the
significant increase in efficiency of the integrated approach becomes apparent. Thus,
the computation of the full multi-task model requires about 53 % less runtime com-
pared to the sequential execution of the single-task models. For this reason, the strategy
of integrated perception of multiple environment representations can be regarded as
an important cornerstone for the applicability of CNN-based methods on practical
hardware systems. For the considered test platforms it can even be postulated, that
the multi-task strategy is essential for the perception of a comprehensive environment
model consisting of several complementary representations. This applies all the more,
since the previous analyses did not reveal any significant deterioration in the achieved
perception performance of the multi-task architecture.
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9
Summary, Conclusion, and Outlook

This thesis investigates methods for traffic scene perception with monocular cameras
as a foundation for a basic environment model in the context of automated vehicles.
The developed perception system is designed with a special focus on the practical
application in two experimental systems, which results in significant restrictions of
computational resources. For this purpose, three distinct scene representations are
investigated. These consist of the prevalent road topology as the global scene context
and the perception of the drivable road area, which are both associated with the static
environment. Furthermore, the detection and spatial reconstruction of vehicles present
in a given scene is considered in order to take the dynamic aspects of the environment
into account. In order to cope with the computational constraints, an approach is
followed that allows the simultaneous perception of all environment representations
with methods based on a multi-task CNN architecture. The implementation with a
shared encoder stage and task specific decoders enables a systematic avoidance of
repeated computations through shared features for all perception tasks to ease the
overall computational burden.
Moreover, the approach allows to separately perform an initial examination of the
individual perception tasks. For this purpose methods for the respective tasks are
first developed independently and adapted to the special conditions of traffic scenes.
Here, the recognition of the road topology is realized as general image recognition. In
addition, the perception of the drivable road area is implemented as image segmen-
tation. To this end, an approach based on the FCN architecture [She+17] is adapted
to improve the incorporation of the a-priori class distribution present in traffic scenes.
This is achieved through the inclusion of element-wise weight factors through the
Hadamard product, which resulted in increased segmentation performance in the
conducted experiments. Also, a task decoder for the perception of other road users is
designed based on the compact SSD method for 2D detections according to [Liu+16a],
which is extended by auxiliary regressands. These are used for the appearance-based
estimation of the orientation and dimension ratio of detected objects. Together with a
subsequent method for the reconstruction of spatial object parameters based on con-
straints derived from the back projection into the image plane, a scene description
with all measurements for a basic environment model and subsequent ADAS and
automated driving functions can be generated. From the examination of alternative
multi-task approaches and considering the computational restrictions of the experi-
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Chapter 9 Summary, Conclusion, and Outlook

mental systems, an integrated CNN architecture is implemented, which combines all
perceptual tasks in a single end-to-end trainable model. In addition to the definition
of the architecture, a strategy is discussed in which alternated training of the percep-
tion tasks, changing with each iteration, enables simultaneous learning from several
single-task datasets in one optimization process. On this basis, a final experimental
evaluation is performed in which a systematic analysis of different task combinations
is conducted and the computational efficiency of the integrated multi-task architecture
is demonstrated.

In conclusion, it can be stated that the incorporation of the specific properties of traf-
fic scenes into the perception system can often offer potential for improvement or
a simplification of the employed methods. Thus, the mere adoption of the general
approaches for individual perception tasks is not advisable with regard to the goal
of appropriate perception performance. Instead, a practical implementation requires
a systematic consideration of application-specific adaptations. This can be seen, for
example, from the evaluations in section 6.3 concerning the inclusion of the a-priori
class distribution for the segmentation of the drivable road area through element-wise
weights. Furthermore, the considerations from chapter 7.2 also confirm this conclu-
sion, which discuss the simplifying assumptions possible in traffic scenes regarding
the orientation and other spatial parameters of detected vehicles. In particular with
respect to the spatial reconstruction of detected road users, however, the experimental
assessment also reveals the remaining shortcomings of the implemented method. This
refers in particular to the degradation of the estimated spatial parameters in case of
a violation of the tight fit assumption of the backprojection into the image plane. In
the course of the evaluations, it became obvious that this case is a common error in
real traffic scenes. Furthermore, the strong sensitivity of the reconstruction based on
the geometry of the camera model with respect to current and precise ego calibration
data can be considered as a shortcoming. In light of this, the breakdown of the object
reconstruction into appearance and constraint-based estimates could eventually be
reconsidered.
Furthermore, the obtained results clearly show the importance of a combined approach
to the perception tasks for automotive applications. Thus, the investigated multi-task
CNN makes it possible to utilize existing synergies in order to control the compu-
tational complexity of the system. Within this context, the conducted experiments
demonstrate that the integrated multi-task CNN for all relevant representations of the
scene is indispensable for practical models on realistic embedded processing hardware.
Regarding this, especially the existence of common, shareable image features for the
perception of the individual scene representations, which are clearly evident from the
results, is to be mentioned. At the same time, it should be noted that the investiga-
tions in this work cannot reproduce the effect of an additional inductive bias effect for
increased perception performance solely due to the multi-task approach, which has
been described previously in parts of the relevant literature [Kok17; Tei+18].

As an outlook on future work, first of all, the remaining processing steps for a fully
operational environment model should be mentioned, which particularly refers to
sensor data fusion. In line with the considered scene representations, this concerns
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the aggregation of measurements, for example as part of a tracking of the detected
road users in the scene or a causal mapping of the drivable road area. Furthermore,
methods for scene reconstruction based on an appearance-based depth estimation have
made significant progress in the recent past, see for example [Jör+19; Din+20]. Thus,
they offer a systematic way of compensating or circumventing the shortcomings of the
constraint-based scene reconstruction in the case of incompletely depicted road users
as well as with regard to the sensitivity to current and precise camera calibration. This
could possibly further improve the performance of the perception system and a sub-
sequent environment model in future work. Furthermore, the idea of systematically
adapting the methods for the individual perception tasks to the specific conditions of
traffic scenes offers further entry points for future research. This results mainly from
the general machine learning guideline, that the highest possible correlation between
the considered task and the loss function, which is used for the optimization of the
model parameters, should be aspired. In this context, the current state of research often
reveals a discrepancy between the 2D scene descriptions in the image plane, which
have been investigated primarily, and the actually required spatial scene descriptions.
An example could be the determination of the loss function for the segmentation
of the drivable road area directly in BEV-space or a corresponding weighting of the
image pixels in the image space loss function. Besides, recent advances have been
made in hardware systems so that more and increasingly mature systems are now
commercially available and accessible to the test platforms. For example, the costs
for reference 3D sensors based on the LIDAR principle have decreased significantly,
which expands the possibilities for a further focused development and evaluation of
the spatial reconstruction of scene descriptions and thus offers approaches for future
research. Likewise, significant further progress has been made in the meantime in
processing hardware, and advances in the development of efficient CNN and encoder
architectures are still emerging. Thus, for the computing hardware used in the online
system of the test platforms, a successor product is now available on the market, which
in some aspects has doubled computational resources, and with regard to efficient fea-
ture encoders and network architectures, for example, the works in [Yan+19; Tan+20]
offer corresponding entry points for further research. In light of this, a re-evaluation of
some of the implemented design decisions might become advisable for future work.
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Appendix

A.1 Road topology dataset statistics
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Figure A.1: Statistics of the road topology recognition dataset based on Cityscapes [Cor+16]
with respect to the recording locations in eight different German cities.

A.2 Technical specifications of the camera system

Table A.2.a: Camera and sensor specifications

model mvBlueFOX3
interface USB3
sensor OnSemi AR0331
type CMOS
shutter rolling
size 1

3 inch

Table A.2.b: Lens specifications

model Lensagon B5M29740NDC
hor. FoV 82◦

ver. FoV 61◦

focal length f = 2.97 mm
aperture F4.0
optical distortion11 ≤ 1 %

11The ratio between the difference of the ideal and distorted image diagonals to the ideal image diagonal
is measured.
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A.3 Single-task pre-rec curves for all road topologies

Table A.2.c: Online processing hardware specifications

model
Nvidia

Jetson TX2

co
re

s CPU 2 ×ARM A57
GPU 256 ×GP10B (Pascal)

RAM 8GB DDR4

Table A.2.d: Desktop GPU hardware specifications

model GeForce GTX Titan X

manufacturer Nvidia/Gainward
GPU 3072 ×GM200 (Maxwell)

RAM 12 GB GDDR5

A.3 Single-task pre-rec curves for all road topologies
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Figure A.3.a: Road topology a.: straight road
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Figure A.3.b: Road topology b.: turn right
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Figure A.3.c: Road topology c.: turn left
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Figure A.3.d: Road topology d.: junction right
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Figure A.3.e: Road topology e.: junction left
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Figure A.3.f: Road topology f.: fork junction
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Figure A.3.g: Road topology g.: intersection
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A.4 Overview of the segmentation decoder with Hadamard layer

A.4 Overview of the segmentation decoder with Hadamard
layer
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Figure A.4: Overview of the segmentation decoder with Hadamard layer.
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A.5 Detailed breakdown of the single-task KITTI road
segmentation results

Table A.5.a: Detailed breakdown of the single-task KITTI road segmentation results of the
Hadamard-FCN into the road types defined in [Fri+13].

Benchmark F1max mAP pre rec FP-rate FN-rate
UM_ROAD 94.06 % 90.89 % 94.62 % 93.50 % 2.42 % 6.50 %

UMM_ROAD 96.26 % 93.32 % 95.63 % 96.90 % 4.86 % 3.10 %
UU_ROAD 93.14 % 90.00 % 93.31 % 92.98 % 2.17 % 7.02 %

URBAN_ROAD 94.85 % 91.48 % 94.81 % 94.89 % 2.86 % 5.11 %

Table A.5.b: Detailed breakdown of the single-task KITTI road segmentation results of the
Plain-FCN into the road types defined in [Fri+13].

Benchmark F1max mAP pre rec FP-rate FN-rate
UM_ROAD 91.47 % 86.14 % 93.56 % 89.48 % 2.80 % 10.52 %

UMM_ROAD 95.38 % 94.26 % 95.03 % 95.73 % 5.51 % 4.27 %
UU_ROAD 87.15 % 82.36 % 88.61 % 85.74 % 3.59 % 14.26 %

URBAN_ROAD 92.26 % 91.83 % 92.80 % 91.72 % 3.92 % 8.28 %
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A.6 Overview of the SSD decoder with auxiliary regressands

A.6 Overview of the SSD decoder with auxiliary regressands
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Figure A.6: Overview of the SSD decoder with auxiliary regressands (SSD+AUX).
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A.7 Dual-task Rec+Seg pre-rec curves for road topology
recognition

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1=0.2

F1=0.4

F1=0.6

F1=0.8

rec [·]

pr
e in

te
rp
[· ]

Figure A.7.a: Road topology a.: straight road
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Figure A.7.b: Road topology b.: turn right
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Figure A.7.c: Road topology c.: turn left
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Figure A.7.d: Road topology d.: junction right
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A.7 Dual-task Rec+Seg pre-rec curves for road topology recognition
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Figure A.7.e: Road topology e.: junction left
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Figure A.7.f: Road topology f.: fork junction
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Figure A.7.g: Road topology g.: intersection
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A.8 Dual-task Rec+Det pre-rec curves for road topology
recognition
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Figure A.8.a: Road topology a.: straight road
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Figure A.8.b: Road topology b.: turn right
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Figure A.8.c: Road topology c.: turn left
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Figure A.8.d: Road topology d.: junction right
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A.8 Dual-task Rec+Det pre-rec curves for road topology recognition
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Figure A.8.e: Road topology e.: junction left
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Figure A.8.f: Road topology f.: fork junction
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Figure A.8.g: Road topology g.: intersection
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A.9 Multi-task pre-rec curves for road topology recognition
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Figure A.9.a: Road topology a.: straight road
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Figure A.9.b: Road topology b.: turn right

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1=0.2

F1=0.4

F1=0.6

F1=0.8

rec [·]

pr
e in

te
rp
[· ]

Figure A.9.c: Road topology c.: turn left

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1=0.2

F1=0.4

F1=0.6

F1=0.8

rec [·]

pr
e in

te
rp
[· ]

Figure A.9.d: Road topology d.: junction right
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Figure A.9.e: Road topology e.: junction left
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Figure A.9.f: Road topology f.: fork junction
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Figure A.9.g: Road topology g.: intersection
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A.10 Dual-task road topology confusion matrices

Table A.10.a: Full confusion matrix for the dual-task Rec+Seg model

.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

prediction
[%] a. b. c. d. e. f. g.

gr
ou

nd
tr
ut
h

a.
79.7 0.0 4.1 1.4 0.0 4.1 10.8
(59) (0) (3) (1) (0) (3) (8)

b.
4.0 60.0 4.0 8.0 12.0 4.0 8.0
(1) (15) (1) (2) (3) (1) (2)

c.
10.7 3.6 60.7 0.0 3.6 7.1 14.3
(3) (1) (17) (0) (1) (2) (4)

d.
1.9 1.9 5.7 66.0 3.8 7.5 13.2
(1) (1) (3) (35) (2) (4) (7)

e.
13.2 0.0 5.3 2.6 60.5 7.9 10.5
(5) (0) (2) (1) (23) (3) (4)

f.
6.5 6.5 3.2 9.7 3.2 64.5 6.5
(2) (2) (1) (3) (1) (20) (2)

g.
5.9 0.0 3.0 3.0 4.0 5.9 78.2
(6) (0) (3) (3) (4) (6) (79) 0%
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Table A.10.b: Full confusion matrix for the dual-task Rec+Det model

.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

prediction
[%] a. b. c. d. e. f. g.

gr
ou

nd
tr
ut
h

a.
78.4 0.0 2.7 4.1 4.1 4.1 6.8
(58) (0) (2) (3) (3) (3) (5)

b.
4.0 64.0 8.0 0.0 12.0 4.0 8.0
(1) (16) (2) (0) (3) (1) (2)

c.
10.7 3.6 67.9 3.6 0.0 3.6 10.7
(3) (1) (19) (1) (0) (1) (3)

d.
0.0 7.5 5.7 64.2 0.0 9.4 13.2
(0) (4) (3) (34) (0) (5) (7)

e.
10.5 5.3 5.3 2.6 60.5 7.9 7.9
(4) (2) (2) (1) (23) (3) (3)

f.
3.2 9.7 6.5 6.5 6.5 64.5 3.2
(1) (3) (2) (2) (2) (20) (1)

g.
5.0 3.0 4.0 2.0 3.0 5.0 78.2
(5) (3) (4) (2) (3) (5) (79) 0%
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A.11 Detailed breakdown of the multi-task KITTI road
segmentation results

Table A.11.a: Detailed breakdown of the dual-task KITTI road segmentation results of the
Seg+Rec model into the road types defined in [Fri+13].

Benchmark F1max mAP pre rec FP-rate FN-rate
UM_ROAD 94.10 % 91.58 % 94.52 % 93.67 % 2.47 % 6.33 %

UMM_ROAD 96.33 % 93.60 % 95.75 % 96.90 % 4.72 % 3.10 %
UU_ROAD 92.81 % 90.59 % 93.44 % 92.19 % 2.11 % 7.81 %

URBAN_ROAD 94.81 % 91.97 % 94.76 % 94.86 % 2.89 % 5.14 %

Table A.11.b: Detailed breakdown of the dual-task KITTI road segmentation results of the
Seg+Det model into the road types defined in [Fri+13].

Benchmark F1max mAP pre rec FP-rate FN-rate
UM_ROAD 93.82 % 91.38 % 94.88 % 92.79 % 2.28 % 7.21 %

UMM_ROAD 96.07 % 93.57 % 95.78 % 96.36 % 4.67 % 3.64 %
UU_ROAD 92.23 % 90.40 % 92.77 % 91.70 % 2.33 % 8.30 %

URBAN_ROAD 94.45 % 91.86 % 94.92 % 93.99 % 2.77 % 6.01 %

Table A.11.c: Detailed breakdown of the multi-task KITTI road segmentation results of the
Seg+Rec+Det model into the road types defined in [Fri+13].

Benchmark F1max mAP pre rec FP-rate FN-rate
UM_ROAD 93.71 % 91.30 % 94.26 % 93.17 % 2.59 % 6.83 %

UMM_ROAD 96.00 % 93.91 % 95.69 % 96.30 % 4.77 % 3.70 %
UU_ROAD 92.24 % 90.33 % 93.16 % 91.33 % 2.19 % 8.67 %

URBAN_ROAD 94.41 % 91.98 % 94.63 % 94.19 % 2.94 % 5.81 %
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Appendix A Appendix

A.12 Full runtime measurement data

Table A.12: Runtimes of the single-task, dual-task, and full multi-task CNNs measured on a
dedicated desktop GPU (see Table A.2.d) and on the embedded hardware platform Jetson TX2
(see Table A.2.c). The runtime evaluation is based on 100 randomly selected images.

desktop GPU Jetson TX2

Rec 22.4± 1.3ms 167.1± 1.4ms
Seg 19.8± 1.1ms 145.2± 1.6ms
Det 24.8± 1.2ms 183.3± 1.0ms

Rec+Seg 23.4± 1.2ms 175.5± 1.5ms
Rec+Det 28.0± 0.8ms 207.8± 1.2ms
Seg+Det 25.1± 0.7ms 187.9± 1.4ms

Rec+Seg+Det 31.4± 1.6ms 233.7± 1.3ms
sequential execution 67.0ms 495.6ms
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