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DOMAIN TRUNCATION METHODS FOR THE WAVE

EQUATION IN A HOMOGENIZATION LIMIT

MATHIAS SCHÄFFNER, BEN SCHWEIZER, AND YOHANES TJANDRAWIDJAJA

Abstract. We consider the wave equation ∂2
t v

ε−∇·(aε∇)vε = f on an unbounded
domain Ω∞ for highly oscillatory coefficients aε with the scaling aε(x) = a(x/ε).
We consider settings in which the homogenization process for this equation is well-
understood, which means that vε → v̄ holds for the solution v̄ of the homogenized
problem ∂2

t v̄ − ∇ · (a∗∇)v̄ = f . In this context, domain truncation methods are
studied. The goal is to calculate an approximate solution uε on a subdomain, say
Ω− ⊂ Ω∞. We are ready to solve the ε-problem on Ω−, but we want to solve only
homogenized problems on the unbounded domains Ω∞ or Ω∞ \ Ω̄−. The main task
is to define transmission conditions at the interface to have small differences uε−vε.
We present different methods and corresponding O(ε) error estimates.
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MSC: 35L05, 35B27

1. Introduction

We study the wave equation in a wave-guide geometry: for dimension d ≥ 2
and a cross section domain Γ∗ ⊂ Rd−1 we consider the unbounded domain Ω∞ :=
(−∞,∞)×Γ∗ ⊂ Rd and a time interval (0, T ). The starting point is a homogenization
problem. For a highly oscillatory coefficient field aε : Ω∞ → Rd×d we consider the
wave equation

(1.1) �εv
ε := [∂2

t −∇ · (aε∇)]vε = f

on Ω∞ × (0, T ). We study periodic coefficients aε(x) := a(x/ε), where a = a(y) is a
Y -periodic field on Rd, Y := [0, 1)d. The setting will always be chosen in such a way
that the homogenization process is justified: The solutions vε converge in some sense
to a solution v̄ of the homogenized problem

(1.2) �∗v̄ := [∂2
t −∇ · (a∗∇)]v̄ = f

on Ω∞× (0, T ). Regarding homogenization of the wave equation we refer to Theorem
4.3 in [7] and Chapter 2, 3.2 in [4]. The right hand side is always a given function
f : Ω∞ × [0, T ] → R with compact support. Along the lateral boundaries (for
d = 2 these are ’top’ and ’bottom’ of the domain), we think of either homogeneous
Dirichlet or homogeneous Neumann conditions. To simplify the notation, we choose
vanishing initial data and solve (1.1) with the initial conditions vε(0) = v0 := 0 and
∂tv

ε(0) = v1 := 0. Equation (1.2) is solved with the same trivial initial data.
Our interest is to study domain truncation schemes in this context. When the

solution vε has to be determined numerically, one replaces the domain Ω∞ by a
bounded domain; on the bounded domain, the wave equation is discretized. A rele-
vant research question regards the appropriate choice of boundary condition on the
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artificial boundary that is introduced by the domain truncation. The boundary con-
dition has the task that it does not create artificial reflections, therefore the names
non-reflecting boundary condition and transparent boundary condition are used. The
topic is interesting even in the time harmonic setting and even for homogeneous co-
efficients. Exact transparent boundary conditions can be derived for homogeneous
coefficients in special geometries and good approximations of exact conditions are
available for general geometries (but still homogeneous coefficients).

Our aim is to combine the question of domain truncation with the homogenization
limit. In order to fix a setting, we introduce the two domains Ω− := (−∞, 0)×Γ∗ and
Ω+ := (0,∞)×Γ∗. We regard the left domain Ω− as the domain in which we would like
to know the solution and in which we are ready to solve the ε-problem. The artificial
boundary is then Γ := {0} × Γ∗ ⊂ Ω∞. We assume that f is compactly supported
on Ω− × [0, T ]. In order to construct a boundary condition on Γ, we are ready to
solve the homogenized wave equation on Ω+. Obviously, for a numerical scheme, the
domain truncation must be performed additionally on the left, with another artificial
boundary on, say, {−L} × Γ∗. For notational ease, we restrict ourselves here to the
above setting with a truncation only at Γ = {x1 = 0}.

The schemes of interest have the form that the ε-problem is solved in the left part
with a function uε,

(1.3) �εu
ε = f in Ω− × (0, T ) ,

and the homogenized problem is solved on the right domain with a function u,

(1.4) �∗u = 0 in Ω+ × (0, T ) ,

both with homogeneous initial data. It remains to choose interface conditions on
Γ = {0} × Γ∗ = Ω̄− ∩ Ω̄+. To define a complete system of equations, we have
to introduce one condition that relates the values of uε and u on Γ, and a second
condition that relates the fluxes, i.e., derivatives of uε and of u on Γ.

We emphasize that the task of defining a numerically useful truncation of the
domain can be regarded as solved with a scheme using (1.3)–(1.4), since a truncation
of the wave equation with homogeneous coefficients as in (1.4) can be performed with
well-established methods.

We will introduce and discuss different choices of interface conditions to comple-
ment (1.3)–(1.4). The simplest set of interface conditions is proposed in (2.4)–(2.5).
We use the term half-homogenized problem below for this set of interface conditions,
since they can be understood in a simple way by considering the function wε that co-
incides with uε on the left and with u on the right, see (2.3). The interface conditions
imply that the function wε is of class H1(Ω∞) and solves a wave equation on Ω∞,
namely one with the coefficients bε = aε on the left and bε = a∗ on the right, compare
(2.2). The analysis of (2.4)–(2.5) is one of the aims of this article. We derive an error
estimate that shows, loosely speaking, vε − uε = O(ε) on Ω−. For the precise setting
and the precise error estimate, we refer to Theorem 2.1.

We will also suggest two other sets of interface conditions. One is formally of
higher order and should therefore provide better approximations. Unfortunately,
error estimates for that scheme are only available in the trivial case of (’vertical’)
laminates, in which the scheme coincides with the half-homogenized scheme. We
nevertheless include numerical results for this scheme in Section 5 for a ’horizontal’
laminate. These results indeed show a moderate improvement of the results.
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A quite different approach is analyzed in Section 4. We do solve (1.3), but we
use a boundary condition that is constructed from the solution of a homogenized
problem on the entire domain. For this two-step scheme we present an analytical
error estimate and also numerical results.

Literature and further notation. Homogenization. In the 1970s a new field of
research within mathematical analysis emerged: The foundations were laid to de-
rive simplified models in homogenization problems [4, 22]. The subject became a
huge field, out of the enormous literature we mention just [1] for the introduction of
two-scale convergence and [15] for the fully developed theory for stochastic homoge-
nization, regarding porous media applications we mention [6].

As it turned out, the homogenization of the wave equation is somewhat trickier
than the homogenization of elliptic or parabolic equations. The problem regards
the initial values, which have to be adapted to the coefficient in order to obtain the
expected results. General (smooth) initial data must be decomposed into an adapted
part and an error part; the latter gives contributions to the homogenization error for
all times; in contrast to a parabolic problem, this error is not smeared out by diffusion.
The thorough analysis of these results appeared in [7]. Related are surprising features
in the long time homogenization of the wave equation, where dispersion effects occur,
see [3, 8, 23].

Numerics and domain truncation. Let us turn to the numerical treatment of the
wave equation. The wave equation can be discretized with finite differences or finite
elements, the resulting finite dimensional problems can be solved numerically. The
various aspects of stability and convergence for these schemes is well understood, see
[14, 18] and the references therein.

When the wave equation has to be solved on an unbounded domain, one has to
truncate the domain. Then one has to impose boundary conditions on the artificial
boundary; the aim is to use conditions that do not introduce artificial reflections.
The conditions are therefore called non-reflecting or transparent. We do not attempt
to describe this vast field here, we mention [12] as one of the early references. Still
regarding the time-harmonic case, periodic coefficients in the elliptic operator lead
to interesting radiation conditions; we mention [9, 20], and [13] for more general
background.

Regarding the time-dependent case, the situation is less satisfactory. We men-
tion the influential papers [10, 16] for typical results for the homogeneous equation.
More recent results and numerical aspects can be found in [2, 11, 19, 24]. For the
wave equation in, e.g., periodic media, to our knowledge, no transparent boundary
condition is known.

Finally, we mention the recent study [21], where truncations of domains in elliptic
problems are considered. There, large-scale regularity properties of random elliptic
operators are used to construct suitable boundary conditions in the truncated domain.

Our approach in this context. We have the aim to study domain truncations for
the wave equation in periodic media. Our approach is to assume that the periodicity
ε is small and to make use of homogenization theory.

In all our schemes, we suggest to solve an ε-problem on the truncated (bounded)
domain. This, of course, requires a fine numerical resolution on that domain. We
furthermore suggest to solve a homogenized wave equation either on the complemen-
tary (unbounded) domain, or on the entire domain. We emphasize that this is always
possible with little numerical effort: On the one hand, one does not have to use fine
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grids for the homogeneous problem. On the other hand, one has the possibility to
truncate the outer domain again, since transparent boundary conditions for homoge-
neous coefficients are available. In our experiments, we will actually simply solve the
exterior domain problems on sufficiently large domains (with any boundary condition
on the newly introduced outer boundary); by finite speed of propagation, this gives
accurate solutions.

Notation. In our mathematical results, we restrict to the case of a rectangular cross
section Γ∗ = (0, 1)d−1. This choice makes it possible to study periodicity conditions
along the lateral boundary of the wave guide.

We use summation convention: without writing a summation symbol
∑

, we mean
a summation over every index that occurs twice in an expression. The notation Lpx
is used as a short-hand for Lp-spaces of x-dependent functions, such as Lp(Ω), and
Lpt as a short-hand for Lp-spaces of t-dependent functions, such as Lp((0, T )).

The cross sectional unit cube is Y ′ := [0, 1)d−1. Spaces of periodic functions are
introduced as H1

per(Y ) := {u ∈ H1
loc(Rd) : u(x + ek) = u(x) for a.e. x ∈ Rd,

∀k ∈ {1, . . . , d}}, the norm is that of H1(Y ). For (macroscopically) periodic functions
on Ω∞ we use H1

per(Ω∞) = {u ∈ H1
loc(Rd) : u(x1, ·) ∈ H1

per(Y
′) for a.e. x1 ∈ R } .

Standard elliptic cell solutions are denoted as φj(y), j = 1, ..., d.

2. Three possible truncation schemes

2.1. Half-homogenized problem. The half-homogenized problem was already sketched
in the introduction. We look for a solution wε of the equation

(2.1) �̂εw
ε := [∂2

t −∇ · (bε∇)]wε = f

on Ω∞ × (0, T ), where the coefficient bε is given as

(2.2) bε(x) :=

{
aε(x) for x ∈ Ω− ,

a∗ for x ∈ Ω+ .

We note that the problem can be equivalently expressed with (1.3) and (1.4). The
solution wε of the half-homogenized problem (2.1) satisfies

(2.3) wε(x) =

{
uε(x) for x ∈ Ω− ,

u(x) for x ∈ Ω+ ,

when we impose the following interface conditions on Γ (continuity of values and
continuity of the flux):

uε = u ,(2.4)

e1 · aε∇uε = e1 · a∗∇u .(2.5)

The main result of this article is the following error estimate for the interface
conditions (2.4)–(2.5).

Theorem 2.1 (Error estimate for the half-homogenized problem). We consider the
rectangular cross section Γ∗ = (0, 1)d−1 and periodic boundary conditions on the lat-
eral boundary of the wave guide Ω∞ = R × Γ∗. Let a ∈ C0,α(Rd) be Y -periodic with
Hölder exponent α ∈ (0, 1) satisfy the following estimates of uniformly ellipticity with
parameter λ > 0 and boundedness:

(2.6) λ|ξ|2 ≤ a(x)ξ · ξ, |a(x)ξ| ≤ |ξ| for all ξ ∈ Rd and a.e. x ∈ Rd .
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There exists c = c(α, d, λ) > 0 such that the following is true: Let T > 0, let
f : Ω∞ × [0, T ] be sufficiently smooth with compact support, and let ε ∈ (0, 1] be with
1
ε
∈ N, let vε and wε be solutions to (1.1) and (2.1) respectively, both with vanishing

initial data. Then, for some κ = κ(d, λ) > 0 and the distance rε = κ−1ε log(1 + ε−1),
there holds

sup
t∈[0,T ]

‖∇vε(t)−∇wε(t)‖L2(Ω−,rε )

≤ c ε
(
T (‖∇f |t=0‖L2

x
+ ‖∇∂tf‖L1

tL
2
x
) + ‖f‖L1

tL
2
x

+ ‖∇f‖L1
tL

2
x

)
,

(2.7)

where we used slightly reduced domains defined by

Ω−,r := (−∞,−r)× Γ∗ .

The proof of Theorem 2.1 is given in Section 3. It is based on the observation
that both solutions vε and wε have a distance of order O(ε) to the homogenized
solution v̄. As a warning, we mention that, more precisely, the comparison is with an
oscillatory limit function that is constructed from v̄; the construction uses correctors
and is therefore different for vε and wε. The principal aim is therefore to quantify
homogenization errors in the periodic case and in the case of an interface between a
periodic and a homogeneous medium. For periodic media, we recover known results;
we use a modern language that allows to treat the non-periodic case within the same
framework. The non-periodic case is treated with the help of recent estimates for
extended correctors by Josien [17].

2.2. Two-step schemes. Another scheme determines the solution in two steps; we
emphasize that this scheme is not using (1.3)–(1.4). In a first step, we calculate the
solution v̄ of the homogenized problem. This solution is used to define a boundary
condition for uε on Γ.

We have two choices: Extracting from v̄ Dirichlet data, we can impose a Dirichlet
condition for uε on Γ. Another choice is to do the same with Neumann data. We will
concentrate on the latter and analyze the following scheme:

Calculate the solution v̄ of the homogenized problem

�∗v̄ = f in Ω∞ × (0, T ) ,

and use v̄ to formulate the following boundary value problem for uε: With the cor-
rectors φj of periodic homogenization problems we impose

�εu
ε = f in Ω− × (0, T ) ,

aε∇uε · e1 = aε(ei +∇φi)∂iv̄ · e1 on Γ× (0, T ) .
(2.8)

This two-step scheme also allows for O(ε)-estimates. We perform the analysis of the
scheme in Section 4.

2.3. Higher order interface conditions. It is tempting to improve the interface
conditions (2.4)–(2.5) by using an expansion of the solution to a higher order. We
treat here only periodic media, i.e., coefficients aε(x) = a(x/ε) with a Y -periodic
field a, and again use the correctors φj. Given a homogenized solution u on the right
domain Ω+, we expect that a better approximation of vε on the right domain is given
by

(2.9) uε := u+ ε∂juφj ,
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we recall that summation convention is used throughout this paper. Furthermore,
the flux through the interface is e1 ·aε∇vε. Given u, this flux should be approximated
with e1 · aε(ej +∇φj)∂ju. We are thus led to the interface conditions

uε = u+ ε∂juφj ,(2.10)

e1 · aε∇uε = e1 · aε(ej +∇φj)∂ju .(2.11)

We note that, formally, this improves the interface conditions (2.4)–(2.5). While uε

necessarily has oscillations on scale ε (on the left hand side), with (2.10)–(2.11), we
can hope to find u without small scale oscillations.

Our analysis for the scheme with transmission conditions (2.10)–(2.11) did not
yield satisfactory results. The only exception is the case of laminates. In the case
aε = aε(x1), the functions φj vanish for j ≥ 2 and φ1 is a one-dimensional function,
φ1 = φ1(y1). We can choose the interface to be at a position with φ1 = 0. Then
(2.10) reduces to (2.4). The right hand side of the second condition is in this case
e1 ·aε(ej +∇φj)∂ju = e1 ·a∗∇u, and (2.11) reduces to (2.5). We therefore obtain that
the scheme is identical to the half-homogenized scheme for (’vertical’) laminates. In
particular, our analysis yields error estimates for the scheme in the case of laminates.

We refer to Section 5 for numerical tests with the scheme.

3. Analysis for the half-homogenization scheme

In this section, we provide the proof of Theorem 2.1. We therefore study solutions
uε of (1.1) and wε of (2.1). But before we start the analysis, we have to discuss a
quite general assumption.

Assumption 3.1. Let the coefficient field be given by a ∈ L∞(Ω∞;Rd×d). We con-
sider two properties:

(i) Uniform ellipticity. There exists λ > 0 such that

(3.1) λ|ξ|2 ≤ a(x)ξ · ξ, |a(x)ξ| ≤ |ξ| for all ξ ∈ Rd and a.e. x ∈ Rd.

(ii) Decomposition. For some a∗, φi, and σi, the following decomposition of a is
valid almost everywhere in Ω∞ and for every i ≤ d:

(3.2) aei = a∗ei − a∇φi +∇ · σi .

Here a∗ ∈ Rd×d is a single matrix (the homogenized matrix), φi ∈ H1
per(Ω∞)

(the correctors) are functions that respect the macroscopic periodicity conditions.
The correctors satisfy

(3.3) ∇ · a(ei +∇φi) = 0 .

Finally, the functions σi ∈ H1
per(Ω∞;Rd×d) (the flux-correctors) are matrix-

valued and respect the macroscopic periodicity conditions. We demand skew-
symmetry in the sense σijk = −σikj. The divergence of σi is defined by (∇·σi)j =
∂kσijk.

Note that condition (3.3) is equivalent to 0 = ∇ · ∇ · σi = ∂j∂kσijk and hence a
consequence of the skew-symmetry of σi.

Remark 3.2. Assumption 3.1 (ii) is satisfied for Y -periodic coefficient fields a. In
this case, φi is the (unique up to constants) periodic solution of (3.3) in the unit cell
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Y , a∗ is obtained by taking the average of (3.2), a∗ei =
´
Y
a(ei+∇φi). In the periodic

case, the flux-corrector σ can be constructed such that

(3.4) −∆σijk = ∂jqik − ∂kqij where qi := a(ei +∇φi)− a∗ei .

We recall the construction in the appendix, see Step 3 in the proof of Lemma 3.4.
For Y -periodic a, the extended corrector (φ, σ) are also Y -periodic and, moreover,

can be obtained by a rescaling: For aε = a( ·
ε
) with 1

ε
∈ N, a decomposition (3.2) is

obtained with φi,ε := εφi(
·
ε
) and σi,ε := εσi(

·
ε
). The assumption 1

ε
∈ N ensures the

macroscopic periodicity φi,ε ∈ H1
per(Ω∞).

Our first lemma is of a very general nature. We assume the existence of an extended
corrector (φ, σ) and derive an error estimate in the form of an energy estimate. The
method of proof is to multiply the equation with the time derivative of the solution
and to integrate. This provides an estimate of the energy of the solution difference
in terms of norms of the correctors. In this result, we define an “energy-norm” of a
sufficiently smooth function g : Ω× [0, T ] ⊂ Rd × R→ R as

(3.5) Ea(g; Ω, t) :=

(
1

2

ˆ
Ω

|∂tg(x, t)|2 + |∇g(x, t)|2a dx
) 1

2

.

Here, for every x, we set |ξ|a = ξ · a(x)ξ. We suppress the index when the standard
Euclidian norm is used, i.e., E := E1.

We emphasize that the coefficient a in the subsequent lemma is the highly oscilla-
tory coefficient a that is treated in Assumption 3.1. In the periodic setting, we would
write aε instead of a in the lemma below. Correspondingly, we now use the wave
operators � := ∂2

t −∇ · a∇ and �∗ := ∂2
t −∇ · a∗∇.

Lemma 3.3 (Energy error estimate in homogenization in terms of correctors). Let
Assumption 3.1 be satisfied. There exists c = c(d, λ) > 0 such that the following is
true: For T > 0 let f : Ω∞ × [0, T ]→ R be sufficiently smooth with compact support.
Suppose that v and v̄ satisfy

(3.6) �v = ∂2
t v −∇ · a∇v = f , �∗v̄ = ∂2

t v̄ −∇ · a∗∇v̄ = f ,

with initial conditions v|t=0 = v̄|t=0 = 0 and ∂tv|t=0 = ∂tv̄|t=0 = 0. Moreover, suppose

v(·, t), v̄(·, t) ∈ Ḣ1
per(Ω∞) for all t. Then

z := v − (v̄ + φi∂iv̄)

satisfies

(3.7) sup
t∈[0,T ]

E(z; Ω∞, t) ≤ c‖(φ, σ)∇2∂tv̄‖L1
tL

2
x
+c‖|φ|∇∂2

t v̄‖L1
tL

2
x
+c‖(φ, σ)∇2v̄‖L∞t L2

x
,

where (φ, σ) is shorthand for |φi|+ |σi|.

Proof. Throughout the proof we write . if ≤ holds up to a positive multiplicative
constant that depends only on λ and d.

Step 1. We claim that the difference z = v − (v̄ + φi∂iv̄) satisfies

(3.8) �z = g with g = ∇ · ((aφi − σi)∇∂iv̄)− φi∂2
t ∂iv̄ .
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Indeed, we compute

�z = f −�(v̄ + φi∂iv̄)

= �∗v̄ −�(v̄ + φi∂iv̄)

= −∇ · (a∗∇v̄ − a(∇v̄ + ∂iv̄∇φi + φi∇∂iv̄))− φi∂2
t ∂iv̄

= −∇ · ((a∗ei − a(ei +∇φi))∂iv̄) +∇ · aφi∇∂iv̄ − φi∂2
t ∂iv̄ .

Using (3.2), we obtain

∇ · ((a(ei +∇φi)− a∗ei)∂iv̄) = ∇ · ((∇ · σi)∂iv̄) = ∇ · (σi∇∂iv̄) ,

where in the last equality we used ∇ · (∇ · σ) = 0 and the skew-symmetry of σi. The
calculation with indices reads, for every sufficiently smooth function η,

∇ · ((∇ · σi)η) =(∂j∂kσijk)η + (∂kσijk)∂jη = ∂k(σijk∂jη)− σijk∂k∂jη = ∂k(σijk∂jη) .

Step 2. Multiplication of equation (3.8) with ∂tz and integrating yields, using
φi ∈ H1

per(Ω∞) to see that the integration by parts does not involve boundary terms,

d

dt
Ea(z; Ω∞, t)

2 =

ˆ
Ω∞

g(x, t)∂tz(x, t) dx

=

ˆ
Ω∞

(σi − aφi)∇∂iv̄(x, t) · ∇∂tz(x, t)− φi∂2
t ∂iv̄(x, t)∂tz(x, t) dx .

Since z = ∂tz = 0 for t = 0, we obtain for every t > 0

E(z; Ω∞, t)
2 .

∣∣∣∣ˆ t

0

ˆ
Ω∞

(σi − aφi)∇∂iv̄ · ∇∂tz + φi∂
2
t ∂iv̄∂tz dx dt

∣∣∣∣
≤
∣∣∣∣ˆ t

0

ˆ
Ω∞

(σi − aφi)∇∂i∂tv̄ · ∇z − φi∂2
t ∂iv̄∂tz dx dt

∣∣∣∣
+

∣∣∣∣ˆ
Ω∞

(σi − aφi)∇∂iv̄(x, t) · ∇z(x, t) dx

∣∣∣∣
.
ˆ t

0

ˆ
Ω∞

|(φ, σ)|(|∇2∂tv̄||∇z|+ |∂2
t∇v̄||∂tz|)

+

ˆ
Ω∞

|(φ, σ)||∇2v̄(t)||∇z(t)| .

Using Young’s inquality and absorbing the norm of ∇z(t) into the left hand side, we
obtain

E(z; Ω∞, t)
2 .
ˆ t

0

ˆ
Ω∞

|(φ, σ)|(|∇2∂tv̄||∇z|+ |∂2
t∇v̄||∂tzε|)

+

ˆ
Ω∞

|(φ, σ)|2|∇2v̄(x, t)|2 dx .

We take the supremum over t ∈ [0, T ] and obtain

sup
0≤t≤T

E(z; Ω∞, t)
2 . sup

0≤t≤T
E(z,Ω∞, t)(‖(φ, σ)∇2∂tv̄‖L1

tL
2
x

+ ‖|φ|∇∂2
t v̄‖L1

tL
2
x
)

+ ‖(φ, σ)∇2v̄‖2
L∞t L

2
x
,

and the claim follows. �
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Let us note what the above estimate implies in the case of periodic coefficients. By
Remark 3.2, the correctors φi,ε and σi,ε are of order ε in the periodic case. Therefore,
in this case, Lemma 3.3 provides the familiar estimate ‖∇(vε− v̄)‖L∞t L2

x
. ε whenever

v̄ is sufficiently smooth.
Our aim is to estimate a difference of functions vε and wε that satisfy

∂2
t v

ε −∇ · aε∇u = f and ∂2
tw

ε −∇ · bε∇wε = f

with aε = a( ·
ε
) and bε given by (2.2). The idea is that both solutions vε and wε

converge to the same limit solution v̄. Indeed, aε and bε satisfy the decomposition
(3.2) with the same constant coefficient field a∗. We estimate the difference between
vε and wε by appealing twice to Lemma 3.3, using once a = aε and once a = bε. The
key in the proof is to control the extended correctors of bε. The next lemma contains
the necessary estimates for the extended corrector of the coefficient field b for ε = 1.

Lemma 3.4 (Extended corrector for b, [17]). Let the coefficient field a : Rd → Rd×d

be macroscopically periodic in the sense that a(x+ ek) = a(x) for almost every x and
every k ∈ {2, ..., d}. For some α ∈ (0, 1) we assume the regularity a ∈ C0,α(Rd). Let
Assumption 3.1 be satisfied with ellipticity constant λ, homogenized matrix a∗, and
extended correctors (φi, σi). Let the coefficient field b be given as: b(x) = a(x) for
x1 = e1 · x < 0 and b(x) = a∗ for x1 ≥ 0. Then b can be decomposed as

bei = a∗ei − b∇φ̃i +∇ · σ̃i ,
where all φ̃i ∈ W 1,∞(Rd,Rd), σ̃i ∈ L∞(Rd;Rd×d×d) ∩H1

loc(Rd;Rd×d×d) satisfy

∇ · b(ei + φ̃i) = 0, ∇ · σ̃i = b(ei + φ̃i)− a∗ei .
There exists C = C(α, d, λ) ∈ [1,∞) and κ = κ(d, λ) > 0 such that

|∇(φj(x)− φ̃j(x))| ≤C exp(−κ|x1|) for x1 < −1 ,(3.9)

|∇φ̃j(x)| ≤C exp(−κ|x1|) for x1 > 1 .(3.10)

As indicated above, Lemma 3.4 is essentially contained in [17], see Propositions 5.3
and 5.4, which cover a more general situation. Since it is not obvious how to translate
the statements of [17, Proposition 5.3, 5.4] to the present situation, we provide a proof
of Lemma 3.4 in the appendix.

We can prove our main result my combining Lemma 3.3 with Lemma 3.4.

Proof of Theorem 2.1. Throughout the proof we write . if ≤ holds up to a multi-
plicative constant that depends only on α, d and λ. We use the solution v̄ of the
homogenized problem �∗v̄ = f in Ω∞ × (0, T ) with periodicity boundary conditions
on ∂Ω∞ × (0, T ), trivial initial conditions and the operator �∗ defined through the
coefficient a∗.

Step 1. We claim that

sup
t∈[0,T ]

‖∇vε(t)−∇wε(t)‖L2(Ω−,r)

. ε(‖∇2∂tv̄‖L1
tL

2
x

+ ‖∇∂2
t v̄‖L1

tL
2
x

+ ‖∇2v̄‖L∞t L2
x
) + exp(−κ r

ε
)‖∇v̄(t)‖L2(Ω−,r) .

(3.11)

We have to study the extended correctors for a and b. For 1
ε
∈ N, the coeffi-

cients aε := a( ·
ε
) and bε := b( ·

ε
) satisfy Assumption 3.1 and the correctors and flux-

correctors are given by φi,ε := εφi(
·
ε
), φi,ε := εσi(

·
ε
) and φ̃i,ε := εφ̃i(

·
ε
), σ̃i,ε := εσ̃i(

·
ε
),
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respectively. By standard (elliptic) regularity and Lemma 3.4 we have

(3.12) ‖(φ, σ)‖L∞(Rd) + ‖(φ̃, σ̃)‖L∞(Rd) . 1 .

The triangle inequality allows to calculate

‖∇vε(t)−∇wε(t)‖L2(Ω−,r)

= ‖∇(vε − (v̄ − φi,ε ∂iv̄))(t)‖L2(Ω∞) + ‖∇(wε − (v̄ − φ̃i,ε ∂iv̄))(t)‖L2(Ω∞)

+ ‖∇((φi,ε − φ̃i,ε)∂iv̄)(t)‖L2(Ω−,r) .

The first two terms on the right-hand side above can be estimated with help of
Lemma 3.3, (3.12) and the scaling property of the correctors,

‖∇(vε − (v̄ − φi,ε∂iv̄))(t)‖L2(Ω∞) + ‖∇(wε − (v̄ − φ̃i,ε∂iv̄))(t)‖L2(Ω∞)

. ε(‖∇2∂tv̄‖L1
tL

2
x

+ ‖∇∂2
t v̄‖L1

tL
2
x

+ ‖∇2v̄‖L∞t L2
x
) .

In the remaining term we evaluate the derivative of the product and use a triangle
inequality. For the first term we use once more (3.12) and the scaling property of the
correctors. For the second term, we use (3.9) of Lemma 3.4.

‖∇((φi,ε − φ̃i,ε)∂iv̄)(t)‖L2(Ω−,r) . ε‖∇2v̄(t)‖L2(Ω∞) + exp(−κr/ε)‖∇v̄(t)‖L2(Ω−,r) .

This provides (3.11).

Step 2. Standard regularity results for solutions to the homogeneous wave equation
are obtained by testing the wave equation with ∂tv̄ and with ∂t∇·a∗∇v̄. Furtheremore,
one can differentiate the wave equation with respect to t and then test the result with
∂2
t∇ · a∗∇v̄. These steps provide

‖∇v̄‖L∞t L2
x
. ‖f‖L1

tL
2
x
, ‖∇2v̄‖L∞t L2

x
. ‖∇f‖L1

tL
2
x
,

‖∇∂2
t v̄‖L∞t L2

x
+ ‖∇2∂tv̄‖L∞t L2

x
. ‖∇f(0)‖L2 + ‖∇∂tf‖L1

tL
2
x
.

Together with estimate (3.11), they imply

sup
t∈[0,T ]

‖∇vε(t)−∇wε(t)‖L2(Ω−,r)

. ε(T (‖∇f(0)‖L2
x

+ ‖∇∂tf‖L1
tL

2
x
) + ‖∇f‖L1

tL
2
x
) + exp(−κ r

ε
)‖f‖L1

tL
2
x
.

(3.13)

In the theorem, we use the distance r = rε = κ−1ε log(1 + ε−1). The elementary
estimate

exp(−κ r
ε
) = exp(− log(1 + ε−1)) ≤ 1

1 + ε−1
≤ ε

provides (2.7) and concludes the proof of the theorem. �

4. Analysis for the two-step scheme

The two-step scheme has an O(ε) error estimate just as the half-homogenized
scheme. We note that the estimates for the two-step scheme provide the error up to
the interface, which is slighty better than in the half-homogenized scheme.

Theorem 4.1 (Error estimate for the two-step scheme). We consider the cross
section Γ∗ = (0, 1)d−1 and periodic boundary conditions on the lateral boundary
of the wave guide Ω∞ = R × Γ∗. Let a ∈ C0,1(Rd) be Y -periodic and satisfy
the ellipticity condition (2.6) with parameter λ > 0. For all T > 0 there exists
c = c(d, λ, ‖a‖C0,1(Y ), T ) > 0 such that the following is true: Let f : Ω∞ × [0, T ] be
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sufficiently smooth with compact support, and let ε ∈ (0, 1] be with 1
ε
∈ N, let vε and

v̄ be solutions to (1.1) and

�∗v̄ = f ,

both with vanishing initial data. Moreover, let uε be the solution to

�εu
ε = f in Ω− × (0, T )

aε∇uε · e1 = aε(ei +∇φi,ε)∂iv̄ · e1 in Γ× (0, T )
(4.1)

with vanishing initial data. Here, φi,ε denotes the rescaled periodic corrector: φi,ε =
εφi(

·
ε
) with φi ∈ H1

per(Y ) solving (3.3) and
´
Y
φi dx = 0. Then

sup
t∈[0,T ]

(
‖∂t(vε − uε)(t)‖L2(Ω−) + ‖∇(vε − uε)(t)‖L2(Ω−)

)
≤ c ε

(
‖f‖L∞t W 1,2

x
+ ‖∂tf‖L∞t W 2,2

x
+ ‖∂2

t f‖L∞t L2
x

)
.

(4.2)

Proof. Throughout the proof we write . if ≤ holds up to a multiplicative constant
that depends only on d, λ and ‖a‖C0,1(Y ).

Our aim is to derive an estimate for zε := vε − uε. We will obtain an energy type
estimate, i.e., an estimate for

Eε(t) := Eaε(z
ε; Ω−, t) ,

where Eaε is defined in (3.5). Loosely speaking, the energy controls ∇zε and ∂tz
ε in

the space L∞t L
2
x.

We make use of the flux-corrector σε,i. They are given by σi,ε = εσi(
·
ε
), where

σi ∈ H1
per(Y,Rd×d×d) satisfies (3.2) and the antisymmetry condition σijk = −σikj.

Step 1. We claim that the difference zε satisfies the following estimate:

sup
t∈[0,T ]

Eε(t) .‖∇vε − (ei +∇φi,ε)∂iv̄‖L∞t L2
x

+ ‖∇∂tvε − (ei +∇φi,ε)∂i∂tv̄‖L1
tL

2
x

+ ‖∂2
t (v

ε − v̄)‖L1
tL

2
x

+ ε(1 + T )(‖∇2v̄‖L∞t W 1,2
x

+ ‖∂t∇2v̄‖L1
tW

1,2
x

) .(4.3)

We will obtain (4.3) by testing the equation �εzε = 0 with ∂tz
ε. The wave equation

for zε is a consequence of (1.1) and (2.8). We exploit the boundary conditions for uε

and the divergence theorem to calculate

Eε(t)
2 =

ˆ t

0

ˆ
Γ

(∂tz
ε)aε(∇vε −∇uε) · e1 dHd−1 ds

=

ˆ t

0

ˆ
Γ

(∂tz
ε)aε(∇vε − (ei +∇φi,ε)∂iv̄) · e1 dHd−1 ds

=

ˆ t

0

ˆ
Ω−

∇ · ((∂tzε)aε(∇vε − (ei +∇φi,ε)∂iv̄)) dx ds

=Iε1(t) + Iε2(t) ,(4.4)

with

Iε1(t) :=

ˆ t

0

ˆ
Ω−

∇∂tzε · (aε(∇vε − (ei +∇φi,ε)∂iv̄)) dx ds

Iε2(t) :=

ˆ t

0

ˆ
Ω−

∂tz
ε∇ · (aε(∇vε − (ei +∇φi,ε)∂iv̄)) dx ds .
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Treatment of Iε1 . We use an integration by parts in time to rewrite the term as

Iε1(t) =

ˆ
Ω−

∇zε(t) · aε(∇vε(t)− (ei +∇φi,ε)∂iv̄(t)) dx

−
ˆ t

0

ˆ
Ω−

∇zε(s) · aε(∇∂tvε(s)− (ei +∇φi,ε)∂i∂tv̄(s))) dx ds .

With Hölder’s inequality we obtain

|Iε1(t)| .Eε(t)‖∇vε − (ei +∇φi,ε)∂iv̄‖L2(Ω−)

+

ˆ t

0

Eε(s)‖∇∂tvε − (ei +∇φi,ε)∂i∂tv̄‖L2(Ω−) ds .(4.5)

Treatment of Iε2 . In order to estimate Iε2(t), we use �εvε = f = �∗v̄ in the form

∇ · aε∇vε = ∂2
t v

ε − f = ∂2
t v

ε − ∂2
t v̄ +∇ · a∗∇v̄ ,

and rewrite Iε2(t) as

Iε2(t) =

ˆ t

0

ˆ
Ω−

∂tz
ε(∂2

t v
ε − ∂2

t v̄) dx dt+ Iε3(t)

with

(4.6) Iε3(t) :=

ˆ t

0

ˆ
Ω−

∂tz
ε∇ · ((a∗ei − aε(ei +∇φi,ε))∂iv̄) dx dt .

Treatment of Iε3 . We use an integration by parts in time and the identity

∇ · ((a∗ei − aε(ei +∇φi,ε))g) = ∇ · ((∇ · σi,ε)g) = ∇ · (σi,ε∇g)

with g = ∂iv̄ and g = ∂i∂tv̄. The divergence theorem allows to calculate

Iε3(t) =

ˆ
Ω−

zε(t)∇ · (σi,ε∂i∇v̄(t)) dx−
ˆ t

0

ˆ
Ω−

zε∇ · (σi,ε∂i∂t∇v̄) dx ds

=

ˆ
Γ

zε(t)(σi,ε∂i∇v̄(t)) · ei dHd−1 −
ˆ

Ω−

σi,ε∂i∇v̄(t) · ∇zε(t) dx

−
ˆ t

0

ˆ
Γ

zε(σi,ε∂i∂t∇v̄) · ei dHd−1 ds+

ˆ t

0

ˆ
Ω−

σi,ε∂i∇∂tv̄ · ∇zε dx ds .

We next use the smallness of the flux-corrector in the form supx∈Rd |σi,ε(x)| . ε
for all i = 1, . . . , d (which follows from Remark 3.2 and elliptic regularity using the
assumption a ∈ C0,1(Y )), and the trace estimate

‖g‖L2(Γ) . ‖g‖W 1,2(Ω−) ∀g ∈ W 1,2(Ω−) .

We continue the above calculation with

|Iε3(t)| . ε‖zε(t)‖W 1,2(Ω−)‖∇2v̄(t)‖W 1,2(Ω−)

+ ε

ˆ t

0

‖zε(s)‖W 1,2(Ω−)‖∂t∇2v̄(s)‖W 1,2(Ω−) ds .(4.7)

Finally, we use zε(0) = 0, which implies

‖zε(t)‖L2(Ω−) ≤ t sup
s∈[0,t]

‖∂tzε(s)‖L2
x(Ω−) ,
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and hence also

‖zε(t)‖W 1,2(Ω−) ≤ ‖∇zε(t)‖L2(Ω−) + t sup
s∈[0,t]

‖∂tzε(s)‖L2(Ω−) . (1 + t) sup
s∈[0,t]

Eε(s) .

This estimate allows to conclude from (4.7):

|Iε3(t)| . ε(1 + t) sup
s∈[0,t|

Eε(s)‖∇2v̄(t)‖W 1,2(Ω−)

+ ε

ˆ t

0

(1 + s) sup
s′∈[0,s|

Eε(s
′)‖∇2∂tv̄‖W 1,2(Ω−) ds .(4.8)

Conclusion for Iε2(t) and proof of (4.3). Estimate (4.8) allows to conclude for Iε2(t):

|Iε2(t)| . ε(1 + t) sup
s∈[0,t]

Eε(s)‖∇2v̄(t)‖W 1,2(Ω−)

+ sup
s∈[0,t]

Eε(s)

ˆ t

0

(‖∂2
t (v

ε − v̄)(s)‖L2(Ω−) + ε(1 + s)‖∇2∂tv̄(s)‖W 1,2(Ω−) ds .(4.9)

Estimate (4.3) follows from (4.4) together with (4.5) and (4.9) by taking the supre-
mum over t ∈ [0, T ].

Step 2. Derivation of (4.2) and conclusion of the proof.
From the abstract homogenization estimate in Lemma 3.3 we conclude

‖∇vε − (ei +∇φi,ε)∂iv̄‖L∞t L2
x
. εC(T )(‖∇2∂tv̄‖L1

tL
2
x

+ ‖∇∂2
t v̄‖L1

tL
2
x

+ ‖∇2v̄‖L∞t L2
x
) .

We note that the term φi,ε∇∂iv̄ does not appear explicitly, since it is included in the
right hand side.

We can also obtain estimates for time derivatives. By a differentiation in time we
have

�ε∂tv
ε = ∂tf = �∗∂tv̄ .

Since f vanishes at t = 0, there holds ∂2
t v̄(0) = ∂2

t v
ε(0) = 0. Thus, we can apply

Lemma 3.3 to the time derivatives with the effect that

‖∂2
t (v

ε − v̄)‖L∞t L2
x

+ ‖∇∂tvε − (ei +∇φi,ε)∂t∂iv̄‖L∞t L2
x

. εC(T )
(
‖∇2∂2

t v̄‖L1
tL

2
x

+ ‖∇∂3
t v̄‖L1

tL
2
x

+ ‖∂t∇2v̄‖L∞t L2
x

+ ‖∂tv̄‖L∞t L2
x

)
.

Combining the two estimates gives

‖∇vε − (ei +∇φi,ε)∂iv̄‖L∞t L2
x

+ ‖∇∂tvε − (ei +∇φi,ε)∂t∂iv̄‖L∞t L2
x

+ ‖∂2
t (v

ε − v̄)‖L∞t L2
x

. εC(T )
(
‖∂2

t∇v̄‖L1
tW

1,2
x

+ ‖∇∂3
t v̄‖L1

tL
2
x

+ ‖∂tv̄‖L∞t W 2,2
x

+ ‖∇2v̄‖L∞t L2
x

)
.

(4.10)

The combination of (4.3) and (4.10) yields

sup
t∈[0,T ]

Eε(t) . εC(T )
(
‖∂tv̄‖L∞t W 3,2

x
+ ‖∂2

t∇v̄‖L∞t W 1,2
x

+ ‖∇2v̄‖L∞t L2
x

+ ‖∇∂3
t v̄‖L∞t L2

x

)
.

Estimate (4.2) follows from basic regularity estimates for solutions v̄ of �∗v̄ = f . �

5. Numerical results

In order to validate the different schemes, we develop two test cases and we compute
the L2-error for each method.
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5.1. One space dimension. As our first problem, we consider (1.1) in one space
dimension with f = 0, complemented with the initial conditions

vε = g = 0 in Ω− × {0} ,(5.1)

∂tv
ε = h in Ω− × {0} ,(5.2)

with

(5.3) h =

{
1 + cos(πx1) in {−3 ≤ x1 ≤ −1} × {0} ,
0 elsewhere.

The coefficient aε is given by:

(5.4) aε(x) =
√

2 + sin(2πx1/ε) ,

such that the corresponding homogenized coefficient is

(5.5) a∗ = 1 .

To implement the various methods, we discretize equation (1.1) using P1 finite
elements both in space and time, with a regular mesh with ∆x = 0.01 and ∆t = 0.002
for all methods. Thanks to the principle of finite propagation of the solution of wave
equation, we can simply truncate the domain and apply a homogeneous Neumann
boundary condition on a sufficiently large domain in order to calculate a reference
solution vε.

The various solutions obtained by the different methods are superposed with the
reference solution in Figure 1 for t = 2.5 and t = 5. For the value ε = 0.2, Table 1
lists the errors for the various methods.

Figure 1. One-dimensional test. We plot solutions in Ω−, the solu-
tions are obtained with different methods. The wave starts to see the
artificial boundary at x = 0 at time t = 1. The left graphs show the
solutions at time T = 2.5, on the right we see the solutions at time
T = 5. We see that, in all schemes, the reflection error travels from the
artificial boundary to the left. The smallest errors in the max-norm
are obtained for the half-homogenized scheme.

Figure 2 shows how fast the error converge as ε tends to zero. The curves show that
the error from the two-step Neumann method is less than those of other methods.
The error increases when ε becomes too small, since the chosen ∆x is not small
enough to capture the oscillations of the coefficient field.
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Method ‖ · −vε‖ ‖ · ‖ ‖ · −v̄‖
vε 0 2.6030 0.0180
v̄ 0.0180 2.6064 0

HH 0.0116 2.6090 0.0199
2S - D 0.0206 2.6134 0.0253
2S - N 0.002 2.6038 0.0179

Table 1. L2-norms of the errors at T = 5 and for ε = 0.2 in one space
dimension. We always evaluate norms in the domain of interest, i.e.,
in Ω−. For a comparison, we include differences with the homogenized
solution v̄.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
·10−1

ε

L
2

er
ro

r

half-homogenized

two-step Dirichlet

two-step Neumann

Figure 2. L2-norm of the error at t = 5 in one space dimension. The
different curves show the different methods.

5.2. Two space dimensions. For the 2D case, we use the domain Ω∞ with the
cross section Γ∗ = [0, 1], and we impose periodic boundary condition on ∂Ω∞. As
data we use once more f = 0 and g = 0, and for the initial time derivative h the
condition
(5.6)

h(x, y) =

{
cos
(

2π
√

(x+ 0.5)2 + (y − 0.5)2
)

in {(x+ 0.5)2 + (y − 0.5)2 ≤ 0.0625} ,
0 else.

In one of our experiments, the coefficient field is given by

aε(x1, x2) =

(√
2 + sin(2πx1/ε) 0

0
√

2 + sin(2πx2/ε)

)
,

which leads to

a∗(x1, x2) = Id =

(
1 0
0 1

)
.

We discretize the domain with a regular mesh with ∆x = 0.02 and ∆t = 0.001.
Figure 3 shows the exact solution vε (calculated on the entire domain with the oscil-
lating coefficient) for ε = 0.2.
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Figure 3. The exact solution for ε = 0.2 at time T in two space
dimensions. Left: T = 0.25. Right: T = 2.

Table 2 shows the errors for the different methods for ε = 0.2. The exact solution
vε and the homogenized solution v̄ is computed with a finer discretization, we use
∆x = 0.01. Once more we see that the solutions of our proposed approximate schemes
are closer to the exact solution than the homogenized solution.

Method ‖ · −vε‖ ‖ · ‖ ‖ · −v̄‖
vε 0 0.0718 0.0072
v̄ 0.0072 0.0719 0

HH 0.0028 0.0721 0.0064
2S - D 0.0029 0.0717 0.0066
2S - N 0.0045 0.0728 0.0071

Table 2. L2-norm of errors for different methods. We use t = 2 and
ε = 0.25 and consider the solution in Ω−.

Figure 4 the behavior of the error as ε → 0. In contrast to the 1D experiment,
now the half-homogenized method gives the best solution.

We studied additionally another coefficient field. We use the discontinuous and
isotropic coefficient a that is given by the scalar field a(y) = 2 for max{y1, y2} < 0.5,
and a(y) = 1 for max{y1, y2} ≥ 0.5. The results for this coefficient are comparable to
the smooth coefficient field, but we now observe a weak performance of the two-step
scheme with Neumann conditions. See Figure 5 for the results.

We have performed numerical experiments for various schemes. The half-homo-
genized method and two variants of the two-step method. We can observe that the
half-homogenized scheme provides always a good choice as an approximate system:
It is easy to implement and it provides errors that are never significantly larger than
the errors of the two-step schemes.

5.3. Higher order interface conditions. Even though an analytical treatment did
not give satisfactory results, we made numerical tests with the interface conditions
(2.10)–(2.11). The tests were performed in the case of a scalar a describing horizontal
laminates, which means that the coefficient is a = a(x2) and the correctors satisfy
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Figure 4. L2 error of the different approximations at t = 2 in two
space dimensions. We recall that errors are always evaluated in Ω−.
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Figure 5. L2(Ω−)-error in two dimensions for t = 2 and an isotropic
coefficient aε. Here, a discontinuous coefficient field is considered. Left:
Comparison of all three methods. We see that the two-step Neumann
scheme produces much larger errors than the other two schemes. Right:
Zoom of the left figure, showing only the two methods that perform
better. We can see again the O(ε) behavior of the error, at least in the
region where the discretization is fine enough to resolve the ε-scale.

φ1 ≡ 0, φ2 = φ2(y2). In this setting, the conditions (2.10)–(2.11) simplify to

uε = u+ ε∂2uφ2 ,(5.7)

e1 · aε∇uε = aε∂1u .(5.8)

Our experiments are with the 1-periodic coefficient (ε = 1) determined by a(ξ) = 2
for ξ ∈ [0, 1/2) and a(ξ) = 1 for ξ ∈ [1/2, 1). In all numerical experiments, we solve
the aε-wave equation on the domain Ω := (0, 4) × (0, 4) and the a∗-wave equation
on the domain R := (4, 6) × (0, 4). The interface is Γ = {4} × (0, 4). The two
problems are either coupled through the half-homogenized coupling conditions uε =



18 M. SCHÄFFNER, B. SCHWEIZER, AND Y. TJANDRAWIDJAJA

Figure 6. Left: A snapshots of the concatenated solution (uε|u) of
(5.7)–(5.8); in particular, the correction is included. The solution is
shown at some time instance t0. The wave was generated by continuous
initial condition u0 with support around the point (2, 2). Right: For
the same time instance t0, a snapshot of the difference between solution
(uε|u) and the true ε-solution vε. Errors are large for x1 > 4, since
different equations are solved in R. Errors for x1 < 4 are due to
incorrect reflections at the artificial interface Γ.

u and e1 · aε∇uε = a∗∂1u along Γ (in this case, we write “without correction”),
or by (5.7)–(5.8) (“with correction”); typical solutions are shown in Figure 6. In
order to measure solutions and, more importantly, differences of solutions, we use
‖v‖∗ := ‖v|Ω‖L2(Ω). Here, the “true solution” is the numerical solution vε of the
aε-problem on the combined domain Ω ∪ Γ ∪ R. As a measure for errors we use
errε = ‖uε − vε‖∗/‖vε‖∗. For results see Figure 7.

We conclude that the numerical tests for higher order interface conditions are
promising, at least for horizontal laminates and if one is satisfied with a 30% reduction
of the error. The analytical treatment turns out to be more challenging than one
might expect.

Appendix A. Argument for Lemma 3.4

As mentioned above, Lemma 3.4 is a special case of [17, Proposition 5.3, 5.4] (see
also [5] for related results). We mainly follow the argument of [17], but treat the
construction of the flux-corrector σ with special care.

Proof of Lemma 3.4. In order to express the macroscopic periodicity in terms of func-
tion spaces, we set

(A.1) Lpper(Ω∞) :=
{
u ∈ Lploc(R

d)
∣∣u(x+ ek) = u(x)∀k ∈ {2, . . . , d}, ∀x ∈ Rd

}
.

We can define additionally H1
per(Ω∞) := H1

loc(Rd)∩L2
per(Ω∞). The norms in these two

function spaces are defined with integrals over Ω∞, i.e., we use the standard norms
‖.‖Lp(Ω∞) and ‖.‖H1(Ω∞). When no Lp decay property of the values is demanded, we

use the notation with a dot: Ḣ1
per(Ω∞) :=

{
u ∈ H1

per(Ω∞)
∣∣∇u ∈ L2(Ω∞)

}
. Through-

out the proof we write . if ≤ holds up to a multiplicative constant that depends only
on α, d and λ.
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Figure 7. Left: The error errε over time for the coupled set of wave
equations, with and without correction. We observe that the error is
descreased by including the correction. The error vanishes up to the
time instance when the wave hits the interface at x1 = 4. Right: We
consider the solution uε with correction. The graphs show the two
functions uε|Γ and u|Γ. We see that the difference is small, hence the
correction in (5.7) is not pronounced. Nevertheless, we can observe
that the curve u|Γ seems to be somehow smoother than uε|Γ, a result
that one can expect: u solves a homogenized problem and should have
better regularity than uε.

Step 1. Existence. We show the existence of φ̃j ∈ H1
per(Ω∞) satisfying

(A.2) −∇ · b(∇φ̃j + ej) = 0 .

We choose a smooth cutoff function η− that depends only on the first coordinate,
η−(x) = η−(x1), with η− = 1 on (−∞,−1) and η− = 0 on (−1

2
,∞). A cutoff function

η+ for the complementary domain is defined as η+(x) := η−(−x). We search for φ̃j
in the form

(A.3) φ̃j = φjη− + z .

This ansatz expresses that φ̃j is close to φj in the left part of the domain and small
in the right part of the domain. The equation for z can be derived from (A.2) and
(A.3) using ∇ · b∗ej = 0:

−∇ · b∇z (A.3)
= −∇ ·

[
b∇(φ̃j − φjη−)

]
= −∇ ·

[
b(∇φ̃j + ej)− b(ej + η−∇φj + φj∇η−)

]
(A.2)
= −∇ · [b∗ej − b(ej + η−∇φj + φj∇η−)]

= −∇ · [b∗ej − b(ej +∇φj)η− − bej(1− η−) + bφj∇η−]

= −∇ · [(b∗ej − b(ej +∇φj))η− + (1− η−)(b∗ − b)ej − bφj∇η−]

= −∇ · g −∇ · f ,
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with the two functions

f :=(b∗ − b)ej(1− η−)− bφj∇η− ,
g :=(a∗ej − a(ej +∇φj))η− .

The above formula for g exploits that b = a on the support of η−. The identity
a∗ = b∗ holds everywhere. It implies, in particular, that the function f has a compact
support. As such, by our regularity assumptions, it satisfies f ∈ Lpper(Ω∞) for all
p ∈ [1,∞].

For the subsequent analysis, our aim is to write −∇ · b∇z as the divergence of a
function with compact support. Regarding g, this still requires some more calcula-
tions. Appealing to (3.2), (3.3), and the skew-symmetry of σj, we can write

∇ · g = ∇η− · (a∗ej − a(ej +∇φj))
= ∇η− · (−∇ · σj) = −∇ · (σj∇η) = ∇ · g̃

for g̃ := σj∇η. This brings the equation for z to the final form

(A.4) −∇ · b∇z = −∇ · h , with h := f + g̃ ∈ Lpper(Ω∞)

for every p ∈ [1,∞].
In order to construct the corrector, we can now reverse the argument. We define z

as the unique Lax-Milgram solution to problem (A.4) and define φ̃j with the identity

(A.3). Then φ̃j satisfies (A.2).

Step 2. Decay and regularity properties of φ̃. We show (3.10), the argument for
(3.9) is analogous. We recall that the cross section of Ω∞ = R × Γ∗ is given by
Γ∗ = (0, 1)d−1.

We start with an observation on (A.4). The divergence theorem can be applied on
subdomains of the form {x ∈ Ω∞ | r1 < x1 < r2}. Together with the fact that h is
supported on {|x1| ≤ 1}, it implies that the integral in the subsequent equation (A.5)
is independent of r for |r| > 1. The property ∇z ∈ L2(Ω∞) implies that the value of
the integral vanishes,

(A.5)

ˆ
{r}×Γ∗

b∇z · e1 dx = 0 ∀|r| > 1 .

Multiplication of (A.4) with z and integrating over {x ∈ Ω∞ |R < x1 < R′} for
1 < R < R′, exploiting once more that h is supported on {|x1| ≤ 1}, we findˆ

(R,R′)×Γ∗

b∇z · ∇z dx =

ˆ
{R′}×Γ∗

zb∇z · e1 dx−
ˆ
{R}×Γ∗

zb∇z · e1 dx .

Observation (A.5) allows to modify this equation by subtracting averages z∗R :=´
{R}×Γ∗

z. We obtain

ˆ
(R,R′)×Γ∗

b∇z · ∇z dx =

ˆ
{R′}×Γ∗

(z − z∗R′)b∇z · e1 dx−
ˆ
{R}×Γ∗

(z − z∗R)b∇z · e1 dx .

The Poincaré inequality in the (d− 1)-dimensional slices allows to conclude

(A.6)

ˆ
(R,R′)×Γ∗

b∇z · ∇z dx .
ˆ
{R′}×Γ∗

|∇z|2 dx+

ˆ
{R}×Γ∗

|∇z|2 dx .
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Sending R′ →∞ in the above estimate, using once more ∇z ∈ L2(Ω∞), we obtain

F (R) :=

ˆ
(R,∞)×Γ∗

|∇z|2 dx .
ˆ
{R}×Γ∗

|∇z|2 dx ∀R > 1 .

This implies the differential inequality F (R) ≤ −κF ′(R) for all R > 1 and some

κ = κ(d, λ) > 0. We rewrite this as d
dR

log(F (R)) = F ′(R)
F (R)

≤ −κ and thus, for all

R > 1,

log(F (R))−log(F (1)) ≤ −κ(R−1) , which yields F (R) ≤ F (1) exp(κ) exp(−κR) .

Appealing to local regularity theory, we obtain for x1 > 1

(A.7) |∇z(x)| . exp(−κx1) .

We have thus deduced (3.10) from (A.4).

Step 3. Construction of σ̃. Let us first recall the construction of σ, i.e., the
construction for periodic coefficients a. One seeks σ in the form

(A.8) σijk = ∂jNik − ∂kNij ,

where N is the solution of class N ∈ H1
per(Y,Rd×d) of the elliptic problem

(A.9) −∆Nij = (a(ei +∇φi)− a∗ei) · ej =: qij .

The ansatz (A.8) already implies the skew-symmetry σijk = −σikj. Furthermore, we
can calculate in the sense of distributions

(A.10) −∆(∂kσijk − qij) = −(∂j∂k∆Nik −∆∆Nij −∆qij) = ∂j∂kqik = 0 ,

where we used first (A.9) and then the corrector equation in the form ∂kqik = ∇ ·
a(ei + ∇φi) = 0. Combining Weyl’s Lemma with the computations of (A.10), we
deduce that ∂kσijk − qij is smooth and harmonic. Since, by construction, ∂kσijk − qij
is periodic with vanishing average

´
Y
∂kσijk − qij = 0, we obtain ∂kσijk = qij. This is

the desired property of the corrector σ, compare (3.2).

We now turn to the construction of σ̃ for the coefficient b. Our goal is to construct

Ñ satisfying

(A.11) −∆Ñij = (b(ei +∇φ̃i)− b∗ei) · ej =: q̃ij .

We do not seek a Y -periodic solution, but we do impose the macroscopic periodicity

conditions and demand Ñ ∈ H2
per(Ω∞;Rd×d). Furthermore, we require the bounded-

ness

(A.12) ∀α ∈ (0, 1) : sup
x∈Rd
‖∇Ñij‖C0,α(x) ≤ c(α, d, λ) <∞ .

Once we have constructed Ñ , we can define σ̃ ∈ H1
per(Ω∞;Rd×d×d) as in the periodic

case as
σ̃ijk := ∂jÑik − ∂kÑij .

Let us first argue that this construction indeed provides σ̃ with the desired prop-
erties. As in the periodic case, we find that ∂kσ̃ijk− q̃ij is harmonic and smooth. The
function has is 1-periodic in every direction k ∈ {2, ..., d} because of the macroscopic

periodicity of Ñ and φ̃. In the positive x1-direction (i.e., direction of e1, k = 1) we
observe that q̃ij has exponential decay by (A.7) and ∂kσ̃ijk is bounded by (A.12).
In the negative x1-direction, q̃ij has exponential decay towards a periodic solution
and ∂kσ̃ijk is bounded by (A.12). All these facts together imply that ∂kσ̃ijk − q̃ij is
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bounded. Liouville’s theorem implies that this harmonic function must be constant.
The exponential decay of q̃ij and boundedness of σ̃ijk for x1 → +∞ implies that the
constant is 0. We therefore find that ∂kσ̃ijk = q̃ij.

It remains to construct Ñ . We make the following ansatz:

(A.13) Ñ = η−N + V .

The equation for V reads

−∆Vij =−∆Ñij + η−∆Nij + 2∇η− · ∇Nij + ∆η−Nij =: gij .(A.14)

We observe that the last two terms have bounded support in x1 since they contain
derivatives of η−. The first two terms can be calculated using (A.9), (A.11), and
a = b on {η− 6= 0}:

−∆Ñij + η−∆Nij = (1− η−)(b(ei +∇φ̃i)− b∗ei) · ej + η−b(∇φ̃i −∇φi) · ej .

This implies gij ∈ Lpper(Ω∞) for all p ∈ [1,∞]; we use here the exponential decay
properties (3.9) and (3.10), and the fact that b = b∗ on {x1 > 0}.

The Lp-property of g allows to find V ∈ H2
per(Ω∞) solving (A.14) and satisfying

supx∈Rd ‖∇Vij‖C0,α(x) ≤ c(α, d, λ) < ∞; this is shown in the next step of this proof.

Having V with these properties, Ñ can be defined via (A.13), it satisfies (A.11) and
(A.12), and we have thus constructed σ̃ijk.

Step 4. We claim the following: For given g ∈ L1
per(Ω∞) ∩ L∞per(Ω∞) there exists

v ∈ H1
per,loc(Ω∞) satisfying

(A.15) −∆v = g and sup
x∈Rd
‖∇v‖C0,α(B1(x)) . ‖g‖L1(Ω∞) + ‖g‖L∞(Ω∞) .

Case 1. Suppose that g has vanishing averages in cross sections in the sense that

(A.16)

ˆ
Γ∗

g(x1, x
′) dx′ = 0 ∀x1 ∈ R .

In this case, g can be written as a divergence. Indeed, for every x1 ∈ R, there exists
a function wx1 ∈ H1

per(Γ∗;R) such that

−∆′wx1 = g(x1, ·) in Γ∗ and ‖∇′wx1‖L2(Γ∗) . ‖g(x1, ·)‖L2(Γ∗) ,

where we used the operators ∇′ = (∂2, ∂3, . . . , ∂d) and ∆′ = ∇′ · ∇′. With the choice
f(x1, .) := ( 0 ,∇′wx1(.)), there holds f ∈ L2

per(Ω∞;Rd) and

(A.17) −∇ · f = g and ‖f‖L2(Ω∞) . ‖g‖L2(Ω∞) .

Using f , the function v is defined as the unique Lax-Milgram solution v ∈ Ḣ1
per(Ω∞)

of

−∆v = −∇ · f .
It satisfies ‖∇v‖L2(Ω∞) . ‖f‖L2(Ω∞) . ‖g‖L2(Ω∞). Standard elliptic regularity implies
(A.15).

Case 2. The general case. We decompose the g as

g = g1 + g2 where g1 = g1(x1) :=

ˆ
Γ∗

g(x1, x
′) dx′ .
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Appealing to the first case, we find v2 satisfying (A.15) with g replaced by g2. The
(one dimensional) function

v1(x) := v1(x1) := −
ˆ x1

0

ˆ s

0

g1(h) dh ds ,

satisfies (A.15) with g replaced by g1. Thus v = v1 + v2 satisfies (A.15). �

Acknowledgements. This work was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under grant SCHW 639/11-1, “Strahlungs-
bedingungen für Wellen in periodischen und stochastischen Medien”.

References

[1] G. Allaire. Homogenization and two-scale convergence. SIAM J. Math. Anal., 23(6):1482–1518,
1992.

[2] G. Bao, , M. Zhang, B. Hu, and P. L. and. An adaptive finite element DtN method for the
three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B,
26(1):61–79, 2021.

[3] A. Benoit and A. Gloria. Long-time homogenization and asymptotic ballistic transport of clas-
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avec défauts. C. R. Math. Acad. Sci. Paris, 353(3):203–208, 2015.
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