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Abstract: Data driven schemes introduced a new perspective in
elasticity: While certain physical principles are regarded as invariable,
material models for the relation between strain and stress are replaced
by data clouds of admissible pairs of these variables. A data driven
approach is of particular interest for plasticity problems, since the
material modelling is even more unclear in this field. Unfortunately,
so far, data driven approaches to evolutionary problems are much
less understood. We try to contribute in this area and propose
an evolutionary data driven scheme. We present a first analysis of
the scheme regarding existence and data convergence. Encouraging
numerical tests are also included.
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1 Introduction

Solid mechanics describes deformations of extended bodies. A large variety of models
exists to describe small, large, or plastic deformations. The common basis was laid
by Euler and Cauchy and can be described as follows: Let Ω ⊂ Rn be the volume at
rest and let u : Ω→ Rn describe the deformed state due to applied loads f : Ω→ Rn.
Then there is a symmetric stress tensor field σ : Ω → Rn×n such that −∇ · σ = f
(balance of forces). The system is closed by a material law that relates the strain
tensor ε = ∇u : Ω→ Rn×n and the stress tensor, we write σ = G(ε) for the material
law. Both, Piola-Kirchhoff finite elasticity and linearized elasticity are of this form.
In order to treat a plastic evolution problem, we may interpret the material law as
a map G that maps an evolution of strains, ε : [0, T ] → Rn×n, to an evolution of
stresses, σ = G(ε) : [0, T ] → Rn×n. When we interpret the material law G in this
form, most plasticity models also have the above form.
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2 A data driven setting for evolutionary problems

In the data driven approach to solid mechanics, initiated in [7] and [8], one
distinguishes sharply the two types of laws. The fundamental laws are accepted
as invariable: The set (ε, σ) ∈ E ⊂ L2(Ω,Rn×n × Rn×n) comprises functions that
satisfy balance of forces and the constitutive relation ε = ∇u for some admissible
u. On the other hand, the material law σ = G(ε) comes with uncertainties and
is therefore replaced by a cloud of data points. The data points ideally come from
measurements; they define a second set (ε, σ) ∈ D ⊂ L2(Ω,Rn×n×Rn×n). In a static
problem, the data driven approach is to seek a pair (ε̄, σ̄) ∈ E that (approximately)
minimizes the distance dist((ε̄, σ̄),D) to the data set D.

The data driven approach was outlined and illustrated with numerical tests in
[7, 8]. The mathematical foundation in the setting of linear elasticity was laid in
[3], finite elasticity was treated in [2]. Besides relaxation results for non-monotone
laws and data convergence results, [3] establishes the topologies that are appropriate
in data driven elasticity. Loosely speaking, the right notion of convergence is one
in which strains and stresses converge weakly in L2-spaces and, at the same time,
differences of (ε, σ) ∈ E and (ε′, σ′) ∈ D converge strongly in L2. The corresponding
Kuratowski-limits are explained and analyzed in [3].

In [2], the authors establish an existence and consistency result for finite plastic-
ity. Let us mention the notational differences in the two settings: In finite plasticity,
one often writes Φ, F = ∇Φ, and P , for deformation, gradient, and stress; the rela-
tions to the quantities u, ε, and σ of linearized elasticity are given by u = Φ − id,
ε = 1

2
(F + F T ) − id, σ = P . The geometrical background is that the manifold

of rotations SO(n) is replaced by its tangent space in the identity, which is the
space Rn×n

s of symmetric n × n-matrices. Accordingly, in linearized elasticity (and
in plasticity), one typically uses Rn×n

s instead of Rn×n as a target space for both
ε and σ, and one sets ε = ∇su := 1

2
(∇u + (∇u)T ). Mathematically, the main dif-

ference between linearized and finite elasticity is that the monotonicity of the map
G : Rn×n

s → Rn×n
s can reasonably be assumed in linear elasticity (positivity of Lamé

constants), while the frame indifference of G makes every monotone law G unphysical
in finite elasticity.

The aim of this article is to discuss a data driven framework for evolutionary
problems, in particular, for the description of plastic deformations. As noted above,
a history dependent map G can be used to describe plastic deformations. We discuss
the question of how to adapt the data driven ideas to the evolutionary setting. One
of the crucial mathematical observations is that strong L2-convergence must be
used at most places where weak L2-convergence was the right tool in the stationary
problem. The reason is that we need a good control of the convergence of histories
in order to find convergence of actual states.

We are interested in time-dependent problems, but will restrict ourselfs to a time
discrete setting. From now on, 0 < T ∈ R, a number K ∈ N, and a family of time
instances 0 = t0 < t1 < ... < tK = T are fixed. We use NK := {0, ..., K} as an
index set and seek solution vectors q = (q0, ..., qK), where qk = (εk, σk) for every
k ∈ NK . Let Ω ⊂ Rn for n ∈ N be a bounded Lipschitz domain, and let Γ ⊂ ∂Ω a
non-empty and (relative) open subset of the boundary. We assume that, for every
k ∈ NK , Dirichlet boundary data on Γ are prescribed by a function Uk ∈ H1(Ω,Rn).
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On deformations (uk)k∈NK
we impose, for every k ∈ NK , that

uk − Uk ∈ H1
Γ(Ω) :=

{
v ∈ H1(Ω)

∣∣ v|Γ = 0 in the sense of traces
}
.

Loads are given by a family (fk)k∈NK
such that fk ∈ (H1

Γ(Ω))′ for every k ∈ NK . On
solutions (qk)k∈NK

, we demand qk = (εk, σk) ∈ Ek∗ for every k, where

Ek∗ :=
{

(ε, σ) ∈ L2(Ω;Rn×n
s × Rn×n

s )
∣∣−∇ · σ = fk, ∃uk : ε = ∇suk

}
, (1.1)

and it is understood that the function uk satisfies uk − Uk ∈ H1
Γ(Ω).

The data set D has a quite different nature than Ek∗ . The set Ek∗ describes
physically admissible states at a single time instance. The subscript star is used
here to indicate that functions in this space have no time dependence. By contrast,
in the material law, the stress σk at time instance k depends on the whole history of
strains, i.e., on ε0, ..., εk. The data set is therefore a subset of the space of evolutions,

D ⊂ Z := `2(NK ;L2(Ω;Rn×n
s × Rn×n

s )) . (1.2)

Usually, the material law is local in nature. If the law is, additionally, independent
of the position x (homogeneous material), then the data set is given by a subset

Dloc ⊂ Zloc := `2(NK ;Rn×n
s × Rn×n

s ) . (1.3)

Even in this simplest case, the data set is contained in the space of evolutions. The
local material laws may also depend on x, in which case we write Dloc(x). The
relation between local and global space is given by

D = {(ε, σ) ∈ Z|(ε, σ)(x) ∈ Dloc(x) for a.e. x ∈ Ω} . (1.4)

Our aim is to define a data driven scheme corresponding to spaces Ek∗ and D as
above. The scheme should provide solutions (qk)k∈NK

with qk ∈ Ek∗ for all k, such
that some kind of distance to D is minimized (or: approximately minimized) in the
space of evolutions. We demand that the new scheme is local in time. By that we
mean that qk = (εk, σk) can be calculated from some information on the history
ε0, ..., εk−1, and with two spaces Ek∗ and D∗ in the spirit of a stationary data driven
scheme. An appropriate space D∗ for a single time step needs to be constructed.
We will perform such a construction by compressing the information contained in an
evolution ε0, ..., εk−1 into a new variable ηk−1. We refer to η as the history surrogate.
The construction uses a new function which updates the history surrogate in each
time step; the function is called the propagator and we use the letter H for this
function.

Literature. We have already described the fundamental articles [7, 8, 3, 2]. Re-
garding further theoretical analysis in terms of relaxation of data sets, we mention
[13]. Regarding the practical use of data driven algorithms, many recent contribu-
tions are available, as we will see in the following.

An article that is closely related to the research presented here is [4]. It also
treats time dependent problems in a data driven perspective. The authors describe
the fundamental problems of this setting, we refer here to their Equation (16): The
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data set in time instance k is constrained to the past local history. Later on, in
equation (26), an internal variable q is used; it corresponds to our η. Furthermore,
a propagator Pe is used in their equation (28); it corresponds to our propagator Hloc

of (1.8). Beginning with Section 3.4 of [4], the perspective becomes different to ours.
The aim in [4] is to develop a differential formalism. That formalism is used to find
relations to calculate solution updates for the variables ε, σ, and q. Our approach
somehow remains in the spirit of global minimization: We still want to find the
variables in the new time instance by solving a minimization problem. We therefore
focus, in contrast to [4], on the following two aspects in the general description:
(i) Creating a single data set that can be used for all time instances. (ii) Using a
distance functional in a space that incorporates also the history variable.

Time dependent problems are also considered in [9], but not in the sense of
history dependent material laws.

A classical finite element scheme is used in [14] to calculate the deformation of a
plate with a hole. The results are used to extract data points at the different points
of the geometry. Adaptations to nonlinear elasticity models is the interest in [11].
Brittle fracture mechanics is considered in [1].

In [5], the authors develop a technique to improve data driven schemes in the case
of sparse data sets. The approach is based on the construction of local tangent spaces
in the data set, obtained through the machine learning tool of tensor voting. Since
this technique applies to the original data driven scheme, but also to the maximum
entropy scheme, it is an interesting question whether or not the technique can be
applied also in the evolutionary setting. The contribution [10] points in a somewhat
similar direction. The aim there is to improve data sets with a model-free procedure
and with methods that are related to data driven solvers.

Fundamental observations are contained in the short paper [6]. The essential
solution step in the data driven approach is to minimize a distance functional. This is
usually done with iterated projections: An approximate solution q ∈ D is projected
onto the set E , the result is then projected onto D. This is repeated until a fixed
point of this iteration is found. If E and D were two orthogonal affine subspaces with
non-empty intersection, then this iteration would converge and provide a minimizer
of the distance functional (actually: the iteration would find the minimizer in one
step and the fixed point would not only be a minimizer of the distance, but a point
in the intersection of the two spaces). Since D is not even a manifold, it is by no
means clear why the iteration process should provide a solution. Kanno describes
in [6] with intuitive simple examples that, in general, the iteration process indeed
does not provide a minimum. Another contribution of [6] is the description of the
minimization problem as a mixed-integer programming task. In that form, global
minimizers can be found with branch-and-bound algorithms. We emphasize that
this approach allows only a very limited numbers of unknowns.

Also [12] deals with a reformulation of the minimization task as a constrained
optimization problem.

Two naive data driven evolution schemes. The problems in the construction
of an evolutionary scheme can be conceived best when we investigate a naive exten-
sion of the static approach. Given a history q̂k−1 := (q0, ..., qk−1) in a point x, let
us consider the time independent data set that consists of those elements qk that
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possess a data-wise permitted extension: For every x,

Dloc,k(q̂k−1) := {qk | ∃qk+1, ..., qK such that (q0, ..., qk−1, qk, qk+1, ..., qk) ∈ Dloc} .

For a given history q̂k−1 and the corresponding data set Dk(q̂k−1), we can then
consider the task

inf
q̄∈Ek∗

dist2(q̄,Dk(q̂k−1)) . (1.5)

We claim that Scheme (1.5) is not useful in a practical application: Let us assume
that the data set consists of discrete points, which means that its elements are of
the form ((εi0, σ

i
0), ..., (εiK , σ

i
K)) with i running in a finite index set. When a specific

pair (εik, σ
i
k) is chosen at level k, there is typically only one index i that has exactly

this pair at entry k. The above construction then demands the scheme to follow
the data pair with index i for the rest of the process, no matter what the process
demands in terms of loads or boundary conditions.

The above scheme can easily be improved in the spirit of the data driven ap-
proach. To be less rigid in the choice of qk, we need not demand that the history, as
chosen up to this point, is continued. Instead, we allow to switch to other histories
as long as the distance is not too large. With

D̃loc,k := {(q0, ..., qk) | ∃qk+1, ..., qK such that (q0, ..., qK) ∈ Dloc} ,

we may solve, in each time step,

inf
q̄∈E∗

dist2((q0, ..., qk−1, q̄), D̃k) . (1.6)

The idea of this scheme is that we search a pair q̄ = (ε̄k, σ̄k) which is close to a pair
of time level k in the data set, but we only consider those pairs in the data set that
have a history that is similar to (q0, ..., qk−1).

This scheme certainly improves (1.5), since now a new data index i can be chosen
at time instance k. Nevertheless, the scheme still does not seem to be practical: One
has to choose a distance functional in the high dimensional space of evolutions. How
important is a difference in the history? If the distance punishes deviations in the
history too much, then the scheme will try to follow a single data entry, just as
scheme (1.5) did. It is not clear how to adjust the scheme such that only relevant
informations on the histories are used.

The new scheme with history surrogates

We start from a data set of evolutions D ⊂ Z. Our aim is to compress the relevant
information about a history q̂k−1 = (q0, ..., qk−1) in a new variable ηk−1. In every
spatial point x ∈ Ω, the variable ηk−1 should be an element of Rm, for some fixed
m ∈ N. Accordingly, the global variable is η ∈ L2(Ω,Rm). A notable compression
is achieved when the dimension m is much smaller than the dimension of the space
for q̂k−1, which is 2 · k · n(n+ 1)/2.

Our assumption is that the history surrogate η can be computed recursively with
a propagator H:

H : L2(Ω;Rn×n
s )× L2(Ω;Rm)→ L2(Ω;Rm) ,

(εk, ηk−1) 7→ ηk .
(1.7)
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Usually, the function H will be given again by local functions,

Hloc( . ;x) : Rn×n
s × Rm → Rm ,

(εk(x), ηk−1(x)) 7→ ηk(x) ,
(1.8)

and H is defined by the pointwise application of Hloc. We always assume that H is
a continuous function.

At least two motivations can be given to use a function H of the recursive form
as above. One motivation is the form of classical plasticity models. These use a
plastic strain p as an additional variable, possibly also other hidden variables, e.g.,
to model isotropic hardening. The relevant information on the history is stored in
these variables. The models have the property that the updates are given by the
old values and the new strain, for example: pk can be calculated from pk−1 and εk.
When pk contains all relevant information on the history, then ηk := pk can be used
as a history surrogate and a propagator function H as above is defined.

Another motivation has to do with the structure of recurrent neural networks.
With our assumption onH, the system can be regarded as a recurrent neural network
which can be trained with a data set Dloc to learn a useful map H.

We note that the map H allows to calculate the evolution (ηj)j≤k for every strain
history (εj)j≤k. More precisely, for a strain history ε̂k−1 = (ε0, ..., εk−1), we obtain
ηk with the memory function

ηk = M(ε0, ..., εk−1) := H(εk−1, H(εk−2, H(...H(ε0, 0)...) . (1.9)

We assumed here that we always start with trivial initial data for the surrogate
function: η−1 := 0. Note that we leave the number of arguments of M free; in that
sense the mathematical terminology Mk would be more appropriate, but we do not
see the danger of misunderstandings.

With the memory map M we now define the reduced data set. We use the
collection of all triples (ε, σ, η) such that (ε, σ) occurs in the data set for some time
instance k and η is the corresponding history surrogate,

DM∗,loc(x) := {(εk, σk,M(ε̂k−1;x)) | (ε, σ) ∈ Dloc(x), k ≤ K} ⊂ Rn×n
s × Rn×n

s × Rm .
(1.10)

We emphasize that the space DM∗,loc uses the information of all data points and of
all time instances k. At this point, we exploit that the system is time invariant.

The local spaces may also depend explicitly on the spatial position x. In any
case, the global space consists of functions,

DM∗ :=
{

(ε, σ, η) ∈ L2(Ω)
∣∣ (ε(x), σ(x), η(x)) ∈ DM∗,loc(x) ∀x ∈ Ω

}
. (1.11)

Our scheme will be based on the spaces Ek∗ and DM∗ .

Scheme for data driven evolutionary problems. We can now formulate the
scheme that is proposed and analyzed in this paper. In time step k we seek for
q̄ = (ε̄, σ̄) ∈ Ek∗ that is close to some pair (εl, σl) in the data set. Additionally,
we want to make sure that the history surrogate ηk−1 of the calculated evolution
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is close to the history surrogate that corresponds to the pair (εl, σl). In order to
achieve both aims, we consider the minimization problem

inf
q̄∈Ek∗

dist2
(
(q̄, ηk−1),DM∗

)
. (1.12)

An adequate distance function must be chosen. Here, we use the L2(Ω)-norm in
space and an `2-type distance in the finite dimensional target space Rn×n

s ×Rn×n
s ×

Rm. Our analysis of scheme (1.12) for data driven evolution problems embraces an
existence result and a data convergence result in the context of plasticity.

We will use also the following notation that highlights the analogy to the sta-
tionary data driven framework:

(ε, σ) ∈ DM∗,loc(η;x) :⇐⇒ (ε, σ, η) ∈ DM∗,loc(x) . (1.13)

The corresponding (global) set DM∗ (η) (of functions) is defined as in (1.11).

2 Admissible data sets and propagators H

This section has two goals. One is to define properties of the set DM∗,loc(η) that
admit, e.g., results on the existence of solutions. The second goal is to provide an
example. More precisely, we cast a classical plasticity problem in the framework of
sets D and DM∗ and show that DM∗ satisfies all the desired properties, see Definition
2.2 and Lemma 2.3.

In order to make the overall procedure clear, let us list three options to describe
a time-discrete evolutionary system:

1. We are given a set of equations that provides, for every strain history ε1, ..., εk
a corresponding stress evolution σk. Typically, the system will define such a
mapping with the help of internal variables, say, pk.

2. A data set D contains all admissible paths (ε1, σ1), ..., (εK , σK). The data set
might come from measurements, it might as well come from equations as in
1.; in the latter case, there is an infinite number of paths.

3. A data set D can be compressed with a propagator function H to a set DM∗
as in (1.10). The evolutionary system is entirely described by the two objects
DM∗ and H.

We use the three concepts as follows: With equations as in 1. we generate data
sets D as in 2. Equations as in 1. also define a propagator H that we can use to
compress the data set as in 3. Important is the following: When a data set D was
generated by measurements, we have no knowledge about an appropriate propagator
H. In our numerical tests we will therefore also work with propagators H that are
not those of the data generation.

Our considerations imply the following: Generating D from well-defined equa-
tions and applying the “correct” propagator H produces sets DM∗ with good prop-
erties. Applying a “wrong” propagator H can have two very different results: The
“wrong” history surrogate η might still contain all the necessary information about



8 A data driven setting for evolutionary problems

the history; in this case, the compressed data set DM∗ might still have all the desired
properties. On the other hand, the “wrong” history surrogate η might miss relevant
information; in this case, we cannot expect that εk and ηk−1 allow to calculate σk
and DM∗ will not have the desired properties.

Let us now collect the fundamental assumptions on the limit problem, which is
assumed to be described by DM∗ and H as in 3. We essentially demand a graph
property and some kind of monotonicity on DM∗ . Later on, we turn to data conver-
gence results. There, we will demand that the limit model is approximated fine and
uniformly when more and better data points are collected. We emphasize that each
approximate model (discrete data set) is also described by some set DM∗ and some
propagator H, but that discrete set DM∗ will not satisfy the assumptions that are
collected below.

Assumption 2.1 (Properties of a limiting data set DM∗ ). We consider the following
properties of the limiting material data set DM∗ , defined by a family of local sets DM∗,loc.

1. Monotonicity. There exists a constant γ ≥ 0 such that the following holds: For
every η ∈ Rm and every x ∈ Ω,

DM∗,loc(η;x) ⊂ Rn×n
s × Rn×n

s (2.1)

is the graph of a γ-monotone map. More precisely: For every ε ∈ Rn×n
s , there

exists a uniquely determined σ ∈ Rn×n
s such that (ε, σ) ∈ DM∗,loc(η;x). The

graph is monotone with constant γ in the sense that

(σ − σ′) · (ε− ε′) ≥ γ|ε− ε′|2 (2.2)

for all (ε, σ), (ε′, σ′) ∈ DM∗,loc(η;x).

2. Growth. For some constant γ0 > 0, independent of η and x, and a constant
Cg = Cg(η) ≥ 0, independent of x, the data set DM∗,loc(η, x) satisfies the growth
assumptions

γ0|σ|2 ≤ |ε|2 +Cg(η) and ε ·σ ≥ γ0|ε|2−Cg(η) ∀(ε, σ) ∈ DM∗,loc(η;x) . (2.3)

We assume that the map η 7→ Cg(η) has at most quadratic growth.

3. Continuity. For every x and every sequence (qh, ηh) ∈ DM∗,loc(x) with (qh, ηh)→
(q, η) as h→ 0, there holds (q, η) ∈ DM∗,loc(x).

In the remainder of this section we describe one set of equations such that the
corresponding set DM∗,loc satisfies all the above properties. Regarding the properties
of the dual convex functions Ψ and Ψ∗ we recall that, in a rate independent system,
Ψ is the characteristic function of a convex set and Ψ∗ is 1-homogeneous.

Definition 2.2 (Plasticity with kinematic hardening). We consider the local data
set Dloc for a specific continuous model, plasticity with kinematic hardening. The
model relies on two positive symmetric linear maps A,B : Rn×n

s → Rn×n
s , and a

convex function Ψ : Rn×n
s → R̄ with conjugate convex function Ψ∗. We assume

continuity of Ψ∗ and Ψ∗ ≥ 0, Ψ∗(0) = 0. The plastic deformation is measured with
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a plastic strain p ∈ Rn×n
s . Given pk−1 and the new strain εk, the other two variables

in times instance k are defined with the two equations

σk = A(εk − pk) , (2.4)

A(εk − pk) ∈ ∂Ψ∗(pk − pk−1) +Bpk . (2.5)

The first equation is a Hooke’s law between stress and elastic strain. The second
equation can equivalently be written as pk − pk−1 ∈ ∂Ψ(A(εk − pk) − Bpk) and
expresses the flow rule for the plastic strain.

The data set Dloc is the set of all families (εk, σk)k∈NK
where the matrices εk ∈

Rn×n
s are arbitrary and all σk, pk ∈ Rn×n

s are determined by (2.4)–(2.5). The corre-
sponding propagator is H : (εk, pk−1) 7→ pk.

The plasticity system (2.4)–(2.5) can be solved with variational methods, for
notational simplicity we use here fk = 0. With norms defined by |ε|2A := ε · Aε and
|p|2B := p ·Bp, one considers

Epk−1
(εk, pk) :=

1

2
|εk − pk|2A + Ψ∗(pk − pk−1) +

1

2
|pk|2B (2.6)

and the reduced functional

Ik(εk) := inf
pk
Epk−1

(εk, pk) . (2.7)

The system (2.4)–(2.5) is obtained from the partial derivatives ∂εkEpk−1
(εk, pk) =

A(εk − pk) and ∂pkEpk−1
(εk, pk) = −A(εk − pk) + ∂Ψ∗(pk − pk−1) +Bpk.

Lemma 2.3 (Properties of the plasticity data set). Let Dloc be given by plastic-
ity with kinematic hardening as in Definition 2.2, let H be the corresponding map
H(εk, pk−1) = pk. Then DM∗,loc satisfies the properties of Assumption 2.1 with γ > 0.
The propagator H satisfies a linear growth condition.

Proof. Since the propagator H produces, in every time instance, the correct pk of
the plasticity equations, we have to analyze the set

DM∗,loc(pk−1) = {(εk, σk) | ∃pk : (σk, pk) solves (2.4)–(2.5) for εk} ⊂ Rn×n
s × Rn×n

s .
(2.8)

This set is defined by a map in the sense that all εk ∈ Rn×n
s are admitted and a

solution σk ∈ Rn×n
s exists for all εk ∈ Rn×n

s .
Regarding monotonicity, we calculate with the inverse map C = A−1. We write

|.|C and |.|B for the norms that are induced by C and B. We consider two solutions
(εk, σk, pk) and (ε′k, σ

′
k, p
′
k) to the same pk−1 and calculate

(σk − σ′k) · (εk − ε′k) = (σk − σ′k) · C(σk − σ′k) + (σk − σ′k) · (pk − p′k)
= |σk − σ′k|2C + (σk −Bpk − σ′k +Bp′k) · (pk − p′k) + |pk − p′k|2B
∈ |σk − σ′k|2C + |pk − p′k|2B + [∂Ψ∗(pk − pk−1)− ∂Ψ∗(p′k − pk−1)] · (pk − p′k)
≥ |σk − σ′k|2C + |pk − p′k|2B ,

where we used monotonicity of the subdifferential ∂Ψ∗ in the last inequality. This
shows monotonicity for some γ > 0 and Item 1.
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We turn to the growth properties of Item 2. We set η := pk−1 and consider
a special solution of (2.4)–(2.5), namely p′ = η, σ′ = Bη, ε′ = η + A−1Bη. One
readily verifies that this yields a solution, since A(ε′− p′) = Bη = σ′ and σ′−Bp′ =
0 ∈ ∂Ψ∗(0) = ∂Ψ∗(p′ − η). Using this special solution in the monotonicity formula
(σ − σ′) · (ε− ε′) ≥ |σ − σ′|2C + |p− p′|2B we find, with D = id + A−1B

(σ −Bη) · (ε−Dη) ≥ |σ −Bη|2C + |p− η|2B . (2.9)

Upon rearrangement, using σ = A(ε− p) and Young’s inequality, we find the condi-
tion ε · σ ≥ γ(|σ|2 + |p|2)− Cg(η) for some γ > 0 and with Cg of quadratic growth.
This, in turn, implies also the growth condition ε · σ ≥ γ0|ε|2 − Cg(η).

Relation (2.9) yields also the first growth condition, γ0|σ|2 ≤ |ε|2 + Cg(η), and
the linear growth condition for the propagator H : (ε, η) 7→ p.

The continuity of Item 3 follows from the continuous dependence of solutions.
We consider sequences ηh → η and εh → ε and solutions (εh, σh, ph) of system
(2.4)–(2.5), where pk−1 is replaced by ηh. The solutions are bounded by the above
growth estimates. Upon choosing a subsequence, we may therefore also assume
the convergences ph → p and σh → σ. The limits are again a solution of the
time step plasticity system: In order to verify this fact, we write relation (2.5),
σ − Bp ∈ ∂Ψ∗(p− η), in an equivalent variational form: Ψ∗(y) ≤ Ψ∗(p− η) + (y −
(p − η)) · (σ − Bp) ∀y. Continuity of Ψ∗ provides that limits can be taken in this
relation. We recall that, here, we are analyzing the local situation (no dependence
of a spatial variable) such that all convergences are strong convergences in finite
dimensional vector spaces.

3 Existence results

In this section, we analyze scheme (1.12) for general data sets. We recall that the
domain Ω is bounded.

Existence for the limiting data set

Lemma 3.1 (Existence of time-discrete solutions for limit data sets). Let DM∗ be a
(limiting) data set that satisfies Assumption 2.1 and let H be a propagator. Then,
for every k ≤ K and every ηk−1, the scheme (1.12),

inf
q̄∈Ek∗

dist2
(
(q̄, ηk−1),DM∗

)
, (3.1)

possesses a solution q̄ = (εk, σk). Upon setting η−1 = 0 and ηk = H(εk, ηk−1) for
every k ∈ NK, the scheme defines a solution sequence (εk, σk)k∈NK

. The sequence
satisfies, for every k ∈ NK,

(εk, σk)(., t) ∈ Ek∗ , and (εk, σk, ηk−1) ∈ DM∗ . (3.2)

We note that (3.2) implies that the infimum in (3.1) is actually a minimum and
that the minimal distance vanishes.
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Proof. By Assumption 2.1, Item 1, the set DM∗,loc(ηk−1(x);x) is the graph of a mono-
tone map Sk,x : Rn×n

s → Rn×n
s . Our aim is to conclude with the Theorem of Browder

and Minty the existence of a function q̄ ∈ Ek∗ ∩ DM∗ .

The maps Sk,x allow to consider also the corresponding map on function spaces.
We recall that Uk ∈ H1(Ω,Rn) prescribes boundary values on Γ ⊂ ∂Ω in time step
k. With the homogeneous space H1

Γ(Ω) we therefore consider functions u = uk such
that v = u− Uk ∈ H1

Γ(Ω). A nonlinear map F = Fk can be defined by

F : H1
Γ(Ω)→ (H1

Γ(Ω))′ , F (v)(ϕ) :=

∫
Ω

Sk(∇s(Uk + v)) · ∇sϕ , (3.3)

where we use the natural notation (Sk(w))(x) = Sk,x(w(x)). By the first growth
assumption on DM∗ (., ηk−1), the map Sk has at most linear growth. More precisely,
we find the estimate

γ0

∫
Ω

|Sk(∇s(Uk + v))|2 ≤
∫

Ω

|∇s(Uk + v)(x)|2 + Cg(ηk−1(x)) dx ,

and the quadratic growth of Cg provides that F of (3.3) is well-defined. The mono-
tonicity of the set DM∗ (., ηk−1) yields the monotonicity of the maps Sk,x : Rn×n

s →
Rn×n
s and, in turn, the monotonicity of F which reads 〈F (w)− F (v), w − v〉 ≥ 0.

The second growth assumption on DM∗ (., ηk−1) provides

〈F (v), v〉 =

∫
Ω

Sk(∇s(Uk + v)) · ∇s(Uk + v)−
∫

Ω

Sk(∇s(Uk + v)) · ∇sUk

≥ γ0

∫
Ω

|∇s(Uk + v))|2 −
∫

Ω

Cg(ηk−1)−
∫

Ω

Sk(∇s(Uk + v)) · ∇sUk

≥ γ0

2

∫
Ω

|∇s(Uk + v))|2 − C(ηk−1) ≥ γ0

4

∫
Ω

|∇sv|2 − C ′(ηk−1) .

Together with Korn’s inequality for given boundary data, we obtain the coercivity
of the map F , which requires that ‖vj‖H1

Γ(Ω) →∞ implies 〈F (vj), vj〉 → ∞.

We finally have to check that F is continuous on finite-dimensional subspaces of
H1

Γ(Ω). Assumption 2.1, Item 3, provides the continuity of almost every map Sk,x
(those x are permitted where |ηk−1(x)| < ∞ is satisfied). As a consequence, F is
continuous on finite-dimensional subspaces.

The existence theorem of Browder and Minty on monotone maps can now be
applied. It yields, for fk ∈ (H1

Γ(Ω))′, the existence of a solution v of the equation
F (v) = fk.

From the solution v we construct uk = Uk + v and, furthermore, εk := ∇suk ∈
L2(Ω) and σk := Sk(∇suk) ∈ L2(Ω). By choice of Sk, the solution qk = (εk, σk)
is in the surrogate data set DM∗ (., ηk−1). The definition of F and the set-up of the
minimization problem provides (εk, σk) ∈ Ek∗ . In particular, it realizes the distance
0 in the infimum problem (3.1). This yields the existence result for each time step.

With a finite number of iterations, we obtain the desired solution sequence:
Given (ε0, σ0, η0), ..., (εk−1, σk−1, ηk−1), we solve the infimum problem (3.1) for k to
obtain (εk, σk) and set ηk = H(εk, ηk−1).
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Existence and boundedness of approximate solutions

We next study scheme (3.1) for data sets that need not satisfy Assumption 2.1. For
finite data sets we cannot expect that the scheme can be solved with the distance
0. The situation is even worse: It is not even clear whether or not the infimum is
attained (typically, for space continuous problems, there is no minimizer, for spa-
tially discrete problems, there is a minimizer). We therefore investigate for general
data sets (not necessarily a map, not necessarily monotone) approximate solutions
to scheme (3.1).

An existence result for approximate solutions can be obtained for general sets
DM∗ ⊂ Rn×n

s ×Rn×n
s ×Rm and general propagators H : Rn×n

s ×Rm → Rm. In order
to study sequences, let (hl)l∈N, h = hl ↘ 0. We study reduced data sets DM∗,h and
propagators Hh.

We recall that, in an application, we are given data as a subset of evolutions,

Dh,loc =
{

(ε̃j,h, σ̃j,h)
∣∣ j ≤ J(h)

}
⊂ Zloc . (3.4)

With a propagator Hh, this data set is pre-processed to obtain DM∗,h. For a finite
number of measurements J(h), the set DM∗,h contains at most K · J(h) triples, one
triple for each time-instance and for each measured evolution.

The definition of an approximate solution requires some care since we have to
distinguish between the elements (ε̄k, σ̄k) of Ek∗ , the elements (εk, σk) related to the
data set, the elements η̃k = Hh(ε̄k, η̃k−1) that are calculated in the iteration, and the
elements ηk which are such that (εk, σk, ηk−1) is indeed in the reduced data set.

Lemma 3.2 (Existence of time-discrete quasi-minimizers of (3.1)). Let h ↘ 0 be
a sequence of real numbers, let a reduced data set DM∗,h ∈ L2(Ω;Rn×n

s × Rn×n
s × Rm)

and a propagator Hh : L2(Ω;Rm) → L2(Ω;Rm) be given for every h. Then there
exist sequences qh = (εh, σh), q̄h = (ε̄h, σ̄h) ∈ Z together with ηhk , η̃

h
k ∈ L2(Ω,Rm) for

every k such that:

q̄hk = (ε̄hk, σ̄
h
k ) ∈ Ek∗ , qhk = (εhk, σ

h
k ) , ηhk−1 with (qhk , η

h
k−1) ∈ DM∗,h ∀k . (3.5)

Setting η̃hk := Hh(ε̄
h
k, η̃

h
k−1) for every k ∈ NK and η̃h−1 := 0, for every k holds

dist2((q̄hk , η̃
h
k−1), (qhk , η

h
k−1)) ≤ h+ inf

q̄∈Ek∗
dist2((q̄, η̃hk−1),DM∗,h) . (3.6)

Let the sets DM∗,h satisfy the growth conditions (2.3) of Assumption 2.1 with a
single value γ0 > 0 and a single function Cg. Let furthermore the family Hh satisfy
a uniform linear growth condition. Then the solution sequence is L2(Ω)-bounded,
independent of h.

Proof. Step 1: Existence. For the existence result, we only have to use K times the
definition of the infimum.

Let η̃k−1 be given. The infimum on the right hand side of (3.6) defines some
non-negative real number Ak = inf q̄∈Ek∗ dist2((q̄, η̃k−1),DM∗,h) ≥ 0. By definition of

the infimum, there exists q̄hk = (ε̄hk, σ̄
h
k ) ∈ Ek∗ such that the infimum is realized up to

a small error, dist2((q̄hk , η̃
h
k−1),DM∗,h) < Ak + h/2.
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The distance to a set is defined as the infimum over all distances; this implies
that, given the tupel (q̄hk , η̃

h
k−1), there exists (qhk , η

h
k−1) ∈ DM∗,h such that the distance

is realized up to another small error, dist2((q̄hk , η̃
h
k−1), (qhk , η

h
k−1)) < Ak + h. Together

with η̃hk := Hh(ε̄
h
k, η̃

h
k−1), this provides the desired sequence.

Step 2: Boundedness. Since (ε̄hk, σ̄
h
k ) is in E∗, there exists a potential ūhk with

ε̄hk = ∇sūhk and there holds −∇ · σ̄hk = fk. Multiplication of this equation with
uk − Uk provides ∫

Ω

σ̄hk · ε̄hk =

∫
Ω

fk (uk − Uk) +

∫
Ω

σ̄hk · ∇Uk .

The pair (ε̄hk, σ̄
h
k ) is not in DM∗,h, we therefore have to transform the above relation

into a relation containing (εhk, σ
h
k ). We rewrite the left hand side as∫

Ω

σ̄hk · ε̄hk =

∫
Ω

[σhk + (σ̄hk − σhk )] · [εhk + (ε̄hk − εhk)] .

We find∫
Ω

σhk · εhk ≤ ‖fk‖(H1
Γ)′‖uk − Uk‖H1

Γ
+ ‖σ̄hk‖‖Uk‖H1

Γ

+ C(‖σhk‖+ ‖εhk‖) (‖σ̄hk − σhk‖+ ‖ε̄hk − εhk‖) + ‖σ̄hk − σhk‖ ‖ε̄hk − εhk‖ .

We can now exploit the pointwise estimate |σ|2 + |ε|2 ≤ C(ε · σ+Cg(η)) for (ε, σ) ∈
DM∗,loc(η;x). Together with the boundedness of differences ‖σ̄hk − σhk‖ and ‖ε̄hk − εhk‖,
which follows from (3.6), we obtain∫

Ω

|σhk |2 + |εhk|2 ≤ C

(
C +

∫
Ω

Cg(η
h
k−1) + ‖uk‖H1

Γ
+ ‖σhk‖+ ‖εhk‖

)
.

Upon an application of the Cauchy-Schwarz inequality, this provides the uniform
boundedness of the solution sequence. We note that the uniform linear growth
condition on Hh yields the bound for ηhk in L2(Ω). This also provides, by the
quadratic growth of Cg, the boundedness of

∫
Ω
Cg(η

h
k−1).

4 Data convergence

The next aim is to analyze data convergence. We think of a situation where a limiting
data set D is approximated by data sets Dh. Following the above reasoning, the
limit analysis is performed with reduced data sets DM∗,h. Our aim is to show that
the approximate solutions of scheme (3.1), introduced in Lemma 3.2, converge to a
solution of the scheme for the limiting data set.

Assumption 4.1. We assume that the sequence DM∗,h of reduced data sets approxi-
mates the limiting reduced data set DM∗ finely and uniformly. Here, fine approxima-
tion is defined by

∀(q, η) ∈ DM∗ ∃ sequence (qh, ηh) ∈ DM∗,h : (qh, ηh)→ (q, η) . (4.1)

Uniform approximation is defined by

∀ sequence (qh, ηh) ∈ DM∗,h : dist((qh, ηh),DM∗ )→ 0 . (4.2)
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We recall that the distances are L2(Ω)-distances.

We can expect that the following holds: Let Dh,loc be a sequence of evolution
subsets as in (3.4) and assume that this sequence approximates finely and uniformly
the limit set Dloc. Let H be a fixed propagator. Then Assumption 4.1 is satisfied for
the reduced data sets as defined by (1.10). A further analysis of such implications
is part of another project.

Theorem 4.2 (Data convergence of solutions). Let Assumption 2.1 hold for the
limit data set DM∗ with a monotonicity coefficient γ > 0. Let the sets DM∗,h converge
to the limit data set as in Assumption 4.1. We assume a uniform growth condition
on the sets DM∗,h. Finally, let the propagator H and the family of propagators Hh be
continuous with uniform linear growth and with uniform convergence Hh → H.

Let (ε, σ)(.) ∈ Z be the solution to the limit problem as found in Lemma 3.1. Let
(ε̄h, σ̄h), (εh, σh) ∈ Z be sequences of quasi-minimizers as in Lemma 3.2. Then there
holds

ε̄h → ε and εh → ε in `2(NK , L
2(Ω)) . (4.3)

Proof. Step 0. Since we are treating only finitely many time instances k ≤ K, it
is sufficient to show the following: The convergences ε̄hl → εl and εhl → εl for every
l ≤ k − 1 imply ε̄hk → εk and εhk → εk.

We note that our convergence assumption for the previous time steps together
with our assumptions on Hh → H implies also η̃hk−1 → ηk−1. Indeed, a simple
induction argument shows that η̃hl = Hh(ε̄

h
l , η̃

h
l−1) → H(εl, ηl−1) as h → 0 for every

l ≤ k − 1.

Let us conclude our preparations of the proof with the observation that the
growth assumptions on DM∗,h together with the linear growth assumption on Hh

imply the boundedness of the approximate solution sequence by Lemma 3.2.

Step 1. By construction, q̄hk ∈ Ek∗ and (qhk , η
h
k−1) ∈ DM∗,h satisfy (3.6). We claim

that, as h→ 0, the right hand side of (3.6) actually converges to 0 and, hence,

dist2(q̄hk , q
h
k )→ 0 and dist2(ηhk−1, η̃

h
k−1)→ 0 . (4.4)

A consequence of (4.4) is ηhk−1 → ηk−1.

In order to prove our claim about the right hand side of (3.6), we use the solution
of the limit problem. We recall that (qk, ηk−1) ∈ DM∗ with qk ∈ E∗ is constructed
by solving the monotone problem F (vk) = fk and setting uk = Uk + vk, εk = ∇suk
and σk = Sk(εk), where the map Sk is determined by ηk−1. Because of the fine
convergence of the data set DM∗,h to DM∗ according to Assumption 4.1, there exists

(q̌hk , η̌
h
k−1) ∈ DM∗,h with dist((qk, ηk−1), (q̌hk , η̌

h
k−1))→ 0. Since the infimum is not larger

than one of the values, there holds

inf
q̄∈E∗

dist2((q̄k, ηk−1),DM∗,h) ≤ dist2((qk, ηk−1), (q̌hk , η̌
h
k−1))→ 0 . (4.5)

Because of η̃hk−1 → ηk−1, the claim follows.

Since we obtain relation (4.4), it is now sufficient to show only the first conver-
gence in (4.3).
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Step 2. Since both (εk, σk) and (ε̄hk, σ̄
h
k ) are in E∗, there exist potentials uk and

ūhk and there holds 0 = −∇ · σk +∇ · σ̄hk . Multiplication of the latter equation with
uk − ūhk provides

0 =

∫
Ω

(σk − σ̄hk ) · (εk − ε̄hk) .

We now exploit the fact that (qhk , η
h
k−1) ∈ DM∗,h. The data sets DM∗,h converge

uniformly to DM∗ . This implies that we can find (q̂hk , η̂
h
k−1) ∈ DM∗ such that the

distance satisfies dist((qhk , η
h
k−1), (q̂hk , η̂

h
k−1))→ 0.

We have already obtained ηhk−1 → ηk−1 and hence also η̂hk−1 → ηk−1. We now
define ε̌hk := ε̂hk and define σ̌hk as the corresponding stress, more precisely: q̌hk =
(ε̌hk, σ̌

h
k ) satisfies (q̌hk , ηk−1) ∈ DM∗ . The continuity assumption on the limiting data

set, Item 3 in Assumption 2.1, allows to conclude dist(q̌hk , q̂
h
k ) → 0. This allows to

calculate, for each k,

0 =

∫
Ω

(σk − σ̄hk ) · (εk − ε̄hk)

=

∫
Ω

(σk − σ̌hk ) · (εk − ε̄hk) + (σ̌hk − σ̄hk ) · (εk − ε̄hk)

=

∫
Ω

(σk − σ̌hk ) · (εk − ε̌hk) + (σk − σ̌hk ) · (ε̌hk − ε̄hk) + (σ̌hk − σ̄hk ) · (εk − ε̄hk)

=

∫
Ω

(σk − σ̌hk ) · (εk − ε̌hk) + o(1)
(
‖εk − ε̄hk‖+ ‖σk − σ̌hk‖

)
,

where, in the last step, we exploited (4.4) and the constructions of q̂hk , and q̌hk : All
the pairs qhk , q̄hk , q̂hk , and q̌hk , are close to each other.

We now exploit that (εk, σk) and (ε̌hk, σ̌
h
k ) satisfy the same strictly monotone

relation, namely

(εk, σk), (ε̌
h
k, σ̌

h
k ) ∈ DM∗ (ηk−1) .

The uniform monotonicity of DM∗ (ηk−1) provides

γ‖εk − ε̌hk‖2 ≤
∫

Ω

(σk − σ̌hk ) · (εk − ε̌hk) ≤ o(1)
(
‖εk − ε̄hk‖+ ‖σk − σ̌hk‖

)
.

Boundedness of all solution sequences provides

γ‖εk − ε̌hk‖2 ≤ o(1) .

By construction of q̌hk we also have ‖εk − ε̄hk‖ → 0 and thus the result.

5 Numerical experiments

Our numerical experiments have the aim of investigating the potential of data driven
schemes for time-dependent problems. We use the setting as described above. This
means, in particular, that, given a data set of evolutions of (ε, σ)-pairs, we enrich
the data set with an η-variable and determine the values of this variable with a
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propagator H that is chosen by the solver; we recall that the model is unknown to
us, hence the “correct” propagator is unknown. The choice of the propagator H in
the solver will be one of the most important parameters in our experiments.

In all data driven experiments, we generate the data set with one of the standard
pde-models, using either elasticity or plasticity. The plasticity model defines the
“correct” propagator Hmodel. The process of generating data leaves us some freedom.
On the one hand, we are free how to choose ε-matrices (in elasticity) or time-
dependent ε-paths (in plasticity). With the choice of the ε-entries the model yields
σ-values, but we are free to add some stochastic perturbation to the latter.

In all cases, we use the standard data driven solver technique of [7] and [8],
namely an iterated projection (once or in each time step): Loosely speaking, an
approximate solution in D is projected onto E , the result is projected back onto D;
a fixed point of this iteration is used as an approximate solution. We note that, by
the analysis in [6], this approximate solution does typically not coincide with the
correct solution, defined as the (ε, σ)-pair that minimizes a distance functional.

Reference solution

We consider the isothermal, isotropic, quasi-static elastoplastic model problem with
Prandtl-Reuss flow rule and von Mises yield criterion and both kinematic and
isotropic hardening. We use the isotropic stiffness tensor Ce := 2µe + λ(tr e)I.
The flow rule reads

(ṗ, ȧ, ḃ) ∈ ∂IS(σ, α, β) (5.1)

where IS is the support function of the elastic domain

S := {(σ, α, β) : | dev(σ + β)| < σy(1 + α+)}

and α = −hisoa, β = −hkinb. The stress-strain relation is σ(ε) = C(ε− p).
Given a sequence length T ∈ N and a path εt ∈ Rn×n

s , 1 ≤ t ≤ T , we can
calculate the corresponding stress path with a discretization of the flow rule (5.1).
We set p0 = a0 = b0 = 0 and iteratively compute (pt, at, bt) such that(

pt − pt−1

∆t
,
at − at−1

∆t
,
bt − bt−1

∆t

)
∈ ∂IS(C(εt − pt),−hisoat,−hkinbt) .

Note that this relation does not depend on the value of ∆t > 0 and we might as
well choose ∆t = 1.

In our experiments we use the following material parameters:

λ =
Eν

(1− 2ν)(1 + ν)
, µ =

E

2(1 + ν)
, E = 210000 , ν = 0.3 ,

σy = 500 , hkin = 20000 , hiso = 0.2 .

Here and in the following we omit physical units, all numbers are in the S.I. sys-
tem: Length in mm (millimeter), time in s (second), mass in t = 103kg (ton), force
in N=t mm/s2 (Newton), stress in MPa = N/mm2 (Mega-Pascal), see Table 1.
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Geometry

Our calculations are performed in space dimension n = 2. We consider an experi-
ment in which a plate with a hole in the center is pulled on two opposite sides. The
plate is quadratic with side length 200 (we recall that the unit is mm), the hole is a
circle with radius 50. Using the symmetries of the domain, we can restrict the com-
putation on one quadrant, (x1, x2) ∈ (0, 100)×(0, 100). The circle B = B50((100, 0))
is removed from the domain. We prescribe the force with a force density parameter
f ∈ R. With the unit outer normal vector ν, the boundary conditions are:

σe1 = fe1 on {x1 = 0} ,
u1 = 0 and e2 · σe1 = 0 on {x1 = 100} ,
u2 = 0 and e1 · σe2 = 0 on {x2 = 0} ,
σe2 = 0 on {x2 = 100} ,
σν = 0 on ∂Ω ∩ ∂B .

The finite element discretization uses 206 nodes and 348 triangular elements. For a
given material model and a given geometry, a reference solution can be calculated
in a finite element framework. Figure 2 indicates how reference solutions behave
and, in particular, where plastic deformation takes place. Table 2 shows norms of
the reference solution. Figure 1 shows the deformation u of the solution at time
instance t = 4.

Quantity Unit

Length mm
Force N=(103kg mm)/s2

Mass 103kg
Time s
Stress MPa (N/mm2)

Table 1: Units for the different quantities.

We fix a loading path for all our experiments: The force f is increased in 4 steps
from 0 to 1000, then we unload the specimen and decrease the load in 2 steps to
500. This loading path is chosen in order to generate plastic deformations and in
order to see memory effects. Given the plasticity material model and the geometry,
a reference solution can be calculated in a finite element framework. Results are
shown in Figure 2 and Table 2.

Data generation

Loosely speaking, we generate paths (εt)t≤T by setting ε0 = 0 and choosing random
increments εt−εt−1. The more detailed description is as follows: We first generate the
reference solution from the model and evaluate the statistics of the strain entries. We
then generate strain paths which match these statistics. In this step, we evaluate
the (matrix component-wise) mean values and standard deviations of the strain
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Figure 1: Left: Plot of the finite element grid. Right: All grid-points are moved
according to the solution u at time t = 4; we multiplied all deformations with the
scale factor 5 in order to have a clearly visible deformation.

f max |u| ‖u‖ ‖ε‖ ‖σ‖

1 250 0.43 0.27 0.93 0.89
2 500 1.06 0.68 2.30 1.79
3 750 1.91 1.23 4.16 2.68
4 1000 2.87 1.85 6.33 3.57
5 750 2.46 1.60 5.48 2.69
6 500 2.05 1.34 4.64 1.81

Table 2: Norms of the reference solution. For the domain Ω, we table shows(
|Ω|−1

∫
Ω
‖ε(x)‖2

C dx
)1/2

and
(
|Ω|−1

∫
Ω
‖σ(x)‖2

C−1 dx
)1/2

, such that the entries are
typical values of normalized strain and normalized stress. When we calculate errors
in data driven experiments, we calculate with the same norm. When we report
relative errors, we divide norms of differences by the corresponding values in this
table.

increments across the elements of the finite element discretization. We then generate
N strain paths (typically N = 106) by sampling strain increments from normal
distributions with these statistics. This guarentees that the generated dataset covers
the relevant portions of phase space.

In some experiments, we enrich the dataset with the data from the reference
solution, i.e., for each element of the finite element discretization, we add the strain
path of that element in the reference solution to the set of sampled paths.

Once a strain path is chosen, we generate the corresponding stress path according
to the reference plasticity model.

When we include stochastic perturbations, we add Gaussian noise to the sigma
values, the amount is regulated with the parameter cnoise > 0. More precisely,
we generate symmetric matrices E with entries from independent standard normal
distributions. We then add cnoiseC1/2E to the stress matrix. The effect of cnoise is
shown in Figure 7.

Once that a path is generated, we “forget” the model variables p, a, b and only
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Figure 2: The finite element reference solution at time t = 6. We use the norms
‖ε(x)‖2

C = ε(x) : Cε(x) and ‖σ(x)‖2
C−1 = σ(x) : C−1σ(x) in order to have the two

quantities of the same order. The color/grey level at point x indicates the norm of
the solution components ε(x, t), σ(x, t), and p(x, t) for t = 6.

store the evolutions of (ε, σ). The idea is that only evolutions of (ε, σ) are measur-
able, no internal variables are accessible in experiments. The size of of the dataset
depends on the number N of sampled paths and the length T of the individual
paths. Regarding the dependence of solutions on N we refer to Figure 5.

Data driven solver and propagator functions

The data consists of strain-stress paths. The underlying idea of our approach is to
enrich the data set with a history surrogate η in which the relevant history is stored.
In a pre-processing step we therefore enrich the data set with some propagator H
to generate triples {(εt, σt, ηt−1)|t ≤ T}. In this data set, we apply a minimization
scheme in each time step.

For the minimization, we must fix a norm in Rn×n
s ×Rn×n

s ×Rp for triples (ε, σ, η).
As noted above, this norm should induce an `2-type distance. We fix a stiffness tensor
C and a constant vector A ∈ Rm

>0 and define

‖(ε, σ, η)‖2 := Cε : ε+ σ : C−1σ + cη|η|2A .

The weight vector A is important, since, in general, the order of magnitude of η is
arbitrary. We therefore evaluate the statistics of the η-variable in our data set and
then choose A such that Aiηi has a unit standard deviation for each component i ≤
m. We introduced additionally a relative weight cη > 0, which implements a tradeoff:
A large value of cη puts a large penalty on any mismatch of the history variable η so
that only datapoints with an almost-correct value of η are used. These, however, will
be scarce which may necessitate large errors in the ε−σ space. We investigated how
the method depends on cη, see Figure 6 for results. Loosely speaking, the choice cη =
1 (equal weight for η-differences and stress-strain differences after normalization) is
indeed a good choice.

In the pre-processing step, the data set is enriched with η-entries; this requires
some propagator function H. Since the “true” propagator of the model is not known
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Figure 3: A data driven solution when the propagator of the data generating model
is used in the data pre-processing. The experiment is run with N = 106 data points,
no stochastic perturbation, and cη = 1. The figure shows the solution components
at t = 6. We see the qualitative agreement with the reference solution of Figure
2. Regarding the history surrogate we emphasize that η has now more components
and no canonical norm; we use some `2-norm to show concentrations in this figure.

for real life data, we perform experiments for various choices of the propagator
function H. Since our data are artificially generated, we can use the propagator
function H of the model. We do this in most of our experiments to investigate the
sources of errors. We investigave two other choices of propagators. One possibility
is to use the propagator H of the model where the model parameters are altered.
Another possibility is to use a neural network propagator H. Details on the latter
are described in the next subsection. For results regarding the three different choices
of the propagator see: Table 3 (propagator from the data generating model), Table
4 (propagator from a model with altered material parameters), Table 5 (neural
network propagator).

u error u error (%) ε error ε error (%) σ error σ error (%)

1 0.00 0.1% 0.01 0.9% 0.01 1.1%
2 0.01 0.0% 0.02 1.0% 0.02 1.3%
3 0.03 0.2% 0.06 1.6% 0.06 2.2%
4 0.04 0.2% 0.13 2.0% 0.12 3.3%
5 0.08 0.3% 0.16 3.0% 0.19 7.0%
6 0.26 1.3% 0.22 4.6% 0.23 12.8%

Table 3: Data driven scheme with a data set that is pre-processed with the propaga-
tor of the data generating model. The numbers measure the errors that are shown
in Figure 4. We use N = 106 paths to generate the data, no stochastic perturbation,
an optimal initialization in each time step, and cη = 1. The loading path is as in the
reference solution. The absolute errors are norms of the differences to the reference
solution, we use the natural norms that are imposed by C. The relative errors are
computed by dividing the absolute errors by the norm of the reference solution.
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Figure 4: Differences of reference solution and data driven solution as shown and
described in Figures 2 and 3. We see that the error in strain is concentrated in
a corner where strains are large. Slightly different is the distribution of the stress
error, which is more scattered. The corresponding norms of the error are reported
in Table 3.

The neural network propagator

We use basic methods from deep learning to generate a propagator function H purely
from data. In addition to H, which computes ηt := H(εt, ηt−1) = ηt−1 + Ĥ(εt, ηt−1),
we also learn a stress funcion S with σ̂t := S(εt, ηt) ≈ σt. We optimize Ĥ and S by
stochastic gradient descent with the objective to minimize the `2-loss ‖σ̂t−σt‖. We
optimize S in the space of linear functions and Ĥ in a space of feedforward neural
networks. In our experiments we use 3 affine transformations for Ĥ with rectified
linear units in between. The dimension of the two hidden layers is 64. The learned
parameters are the matrices and vectors of the affine transformations (known as
weights and biases in deep learning lingo).

The kind of neural network we implement is known as a recurrent neural network
since the function H is repeatedly applied to its own output. In our experiments we
use m = 8 as the dimension of the η-space.

It is worthwhile to ponder the relationship of S and H. In the end, we are
only interested in H. But the quality of H cannot be evaluated in and of itself:
It is of good quality when the hidden variables η which it produces are predictive
of the ε − σ relationship. We thus learn H and S simulateneously and evaluate
the σ-predictions. With S and H we have a full material model which could be
used directly in computations without making any further use of the material data.
However, in order to remain in the framework proposed by Kirchdörfer and Ortiz,
we discard S an only use H. The advantage of this method is that it evades the
danger of wrong extrapolations in the learned function S by always referencing back
to the actual material data.
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Figure 5: Dependence on the number N of paths in the data set. We use here the
propagator of the data generating model and the parameter cη = 1. No stochastic
perturbation is included and we use an initialization with the reference solution in
each time step.

Discussion of the numerical results

Let us summarize our findings. In an idealistic data driven solver (initialization of
the solver with the reference solution, using the correct model for pre-processing the
data, no stochastic perturbation), typical errors of u are about 1%, errors of ε are
about 5%, errors of σ are about 13%. These errors are not very small.

A positive observation is that the errors are not very sensitive to the choice of
the model for the data pre-processing: With the wrong model and with the neural
network, the errors are of similar order, see Tables 3–5.

Also stochastic perturbations do not have a dramatic impact. With a factor
cnoise = 0.2, we perturb the data by about 20% of their values, which we consider
a quite large perturbation. Nevertheless, the errors are still of the same order, see
Figure 7.

The dependence on the size of the data set is shown in Figure 5. We observe
a logarithmic dependence. We also observed that the errors are not due to a non-
optimal coefficient cη, see Figure 6.

The above observations do not clearify the source of the error, since it does
neither seem to be the model, nor the noise, nor the amount of data. To investigate
the source of the error, we generated Table 6. One way of “helping” the minimization
algorithm is to initialize the iteration with the reference solution. We emphasize
that, if the algorithm were finding optimal solutions, this initialization would not
change anything in the results. We observe that the error in ε is about a third when
a good initialization is performed. This means that, indeed, the algorithm by itself
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Figure 6: Many solutions of the data driven time dependent scheme, each solution
is calculated on the basis of the same data set, which is generated with N = 100000
paths. We do not include stochastic perturbation and use the propagator of the
data generating model. Plotted is the relative error of strains and stresses in the
last time step in the usual norm. We vary the η weighting factor cη from 10−1 to
103. The least errors are optained for cη between 1 and 3.

does not find good solutions.

Another test of the quality of the solver is to include the data of the reference
solution in the data set. Of course, when this is done and the iteration is initialized
with the reference data, then the reference solution is found — this explains the
vanishing errors in the right bottom. Interesting is the top row: When only the
reference data are included in the data set, then errors produced by the minimization
algorithm are not decreased. This is another hint that the minimization algorithm
of iterated projections is indeed performing quite poorly.

Our conclusion is that the overall method is very promising. Storing a history
surrogate and thus compressing the data set seems to be an adequate idea in the
data driven analysis of evolutionary systems. Currently, the weakness of the method
seems to be the solver of the minimization problem.
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u error u error (%) ε error ε error (%) σ error σ error (%)

1 0.01 0.1% 0.01 1.0% 0.01 1.1%
2 0.01 0.1% 0.03 1.3% 0.03 1.5%
3 0.05 0.3% 0.07 1.7% 0.07 2.5%
4 0.08 0.3% 0.13 2.1% 0.12 3.5%
5 0.23 1.0% 0.16 2.9% 0.19 7.2%
6 0.36 1.8% 0.22 4.7% 0.24 13.3%

Table 4: Same calculations as in Table 3, but here the data are pre-processed with
an altered model. We use the propagator H that is implied by the plasticity model
with the parameters σy = 200, hkin = 5000, and hiso = 0. We observe that, choos-
ing wrong material parameters in the data processing, we do not increase errors
significantly.

u error u error (%) ε error ε error (%) σ error σ error (%)

1 0.01 0.3% 0.02 1.9% 0.01 1.5%
2 0.03 0.3% 0.04 1.7% 0.04 2.3%
3 0.10 0.5% 0.08 1.9% 0.08 2.9%
4 0.08 0.3% 0.14 2.2% 0.13 3.7%
5 0.26 1.1% 0.19 3.4% 0.21 7.8%
6 0.31 1.6% 0.23 5.0% 0.27 14.9%

Table 5: Same calculations as in Tables 3 and 4, but here the data are pre-processed
with a neural network. We observe comparable orders of the error.
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[10] A. Leygue, M. Coret, J. Réthoré, L. Stainier, and E. Verron. Data-based deriva-
tion of material response. Computer Methods in Applied Mechanics and Engi-
neering, 331:184–196, 2018.

[11] L. T. K. Nguyen and M.-A. Keip. A data-driven approach to nonlinear elasticity.
Computers & Structures, 194:97–115, 2018.

[12] L. T. K. Nguyen, M. Rambausek, and M.-A. Keip. Variational framework for
distance-minimizing method in data-driven computational mechanics. Comput.
Methods Appl. Mech. Engrg., 365:112898, 39, 2020.



26 A data driven setting for evolutionary problems

|ε|C |σ|C−1 |η|

5

10

15

20

25

2

4

6

8

10

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 8: The data driven solution for a neural network propagator that was trained
with the data.
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