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Abstract

Among the first steps in a compilation pipeline is the construction of an Intermediate Repre-
sentation (IR), an in-memory representation of the input program. Any attempt to program
optimisation, both in terms of size and running time, has to operate on this structure. There may
be one or multiple such IRs, however, most compilers use some form of a Control Flow Graph
(CFQG) internally. This representation clearly aims at general-purpose programming languages,
for which it is well suited and allows for many classical program optimisations. On the other
hand, a growing structural difference between the input program and the chosen IR can lose
or obfuscate information that can be crucial for effective optimisation. With today’s rise of a
multitude of different programming languages, Domain-Specific Languages (DSLs), and com-
puting platforms, the classical machine-oriented IR is reaching its limits and a broader variety of
IRs is needed. This realisation yielded, e.g., Multi-Level Intermediate Representation (MLIR),
a compiler framework that facilitates the creation of a wide range of IRs and encourages their
reuse among different programming languages and the corresponding compilers.

In this modern spirit, this dissertation explores the potential of Algebraic Decision Diagrams
(ADDs) as an IR for (domain-specific) program optimisation. The data structure remains the
state of the art for Boolean function representation for more than thirty years and is well-known
for its optimality in size and depth, i.e. running time. As such, it is ideally suited to represent
the corresponding classes of programs in the role of an IR. We will discuss its application in
a variety of different program domains, ranging from DSLs to machine-learned programs and
even to general-purpose programming languages.

Two representatives for DSLs, a graphical and a textual one, prove the adequacy of ADDs
for the program optimisation of modelled decision services. The resulting DSLs facilitate
experimentation with ADDs and provide valuable insight into their potential and limitations:
input programs can be aggregated in a radical fashion, at the risk of the occasional exponential
growth. With the aggregation of large Random Forests into a single aggregated ADD, we
bring this potential to a program domain of practical relevance. The results are impressive:
both running time and size of the Random Forest program are reduced by multiple orders of
magnitude. It turns out that this ADD-based aggregation can be generalised, even to general-
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purpose programming languages. The resulting method achieves impressive speedups for a
seemingly optimal program: the iterative Fibonacci implementation.

Altogether, ADDs facilitate effective program optimisation where the input programs allow
for a natural transformation to the data structure. In these cases, they have proven to be an
extremely powerful tool for the optimisation of a program’s running time and, in some cases,
of its size. The exploration of their potential as an IR has only started and deserves attention in
future research.
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Introduction

Among the first steps in a compilation pipeline is the construction of an Intermediate Repre-
sentation (IR), an in-memory model of the input program. On this basis, a compiler analyses
the input program and infers static knowledge that it then uses to optimise the program, both in
terms of expected execution time and also size. There may be one or multiple IRs subsequent
to each other in the pipeline, however, in most modern compilers such as LLVM-based com-
pilers [10][11], these IRs have one thing in common [12][13, 14]: they are variants of Control
Flow Graphs (CFGs), often in Static Single Assignment (SSA) form [15, 16, 17]. These graphs
aim at general-purpose programming languages for which they are well suited. They represent
the program without loss of information and, at the same time, allow for classical program
optimisations [18, 19, 20, 21, 22, 23].

Any attempt at optimisation will have to target one of the IRs and, as a consequence, can only
exploit properties of the input program that remain at this stage. For programs written in a general-
purpose language that is structurally similar to the chosen IR, most of the original structure retains
and consequently, the various optimisations can fully exploit the program structure. With the
growing structural differences between input language and IR, however, properties can already
be lost or obfuscated early in the compilation pipeline.

Consider, for example, matrix transposition: A duplicate matrix transposition is clearly re-
dundant as it has no side-effects and the result will be the same as the original matrix. This
redundancy is easy to detect when the matrix transposition is explicit, however, when compiled
down to a loop nest, it is difficult for a compiler to recognise and thus would require expensive
analysis.

As a consequence, program optimisations are unable to detect patterns that can be crucial for
effective running time or even size improvements. A solution to the problem can be multiple
subsequent IRs that each allow for their respective optimisations techniques. The key to success
is, as so often, the right representation. Many modern programming languages use LLVM as their
compiler backend, however, they often implement their own language-specific IR upfront that
allows them to tackle very specific properties before relying on more general implementations
in LLVM. When done right, this progressive lowering [24] maintains program information as
long as required and lowers the program in multiple steps until it has become highly performant



func @duplicate_transpose(%arg : tensor<?x?xf32>) -> tensor<?x?xf32> {
%perm = constant dense<[1l, 0]> : tensor<2xi32>
%9 = "tf.Transpose" (%arg, %perm)
{T = "tfdtype$DT_FLOAT", Tperm = "tfdtype$DT_INT32"}
(tensor<?x?xf32>, tensor<2xi32>) -> tensor<?x?xf32>
%1 = "tf.Transpose" (%0, %perm)
{T = "tfdtype$DT_FLOAT", Tperm = "tfdtype$DT_INT32"}
(tensor<?x?xf32>, tensor<2xi32>) -> tensor<?x?xf32>
return %1 : tensor<?x?xf32>

S W o0 NO VT A WN -

Figure 1.1: Exemplary TensorFlow IR: A redundant duplicate transposition of a matrix.

executable machine code.

With the growing landscape of programming languages and computation platforms, this pattern
has become so successful that Multi-Level Intermediate Representation (MLIR) [25] [24] has
emerged as a compiler framework aiming at a wide variety of IRs. The framework facilitates the
introduction of many different IRs and encourages their reuse among programming languages
and the respective compilers. Its prime users today are Machine Learning (ML) compilers, which
aim to compile programs that are heavy on linear algebra and, as a consequence, typically data
flow-oriented and highly parallelisable. Their final use is often the device-accelerated training of
Deep Neural Networks (DNNs). Hence, it comes at no surprise that they also target a wide range
of machine architectures, ranging from Central Processing Units (CPUs) to Graphics Processing
Units (GPUs) and other accelerators.

A concrete example of this is TensorFlow [26] which, at its core, comprises a compiler that is
quite different from those for general-purpose programming languages. Its IR, the TensorFlow
graph, is mostly data flow-oriented. The choice of this IR is crucial to TensorFlow’s success in
optimising a given program as it allows it to detect patterns like the aforementioned duplicate
tensor transposition, which could easily be obfuscated in a control flow-oriented IR. Figure 1.1
shows the MLIR-based representation of the redundant transposition. Here, it is quite obvious
how to simplify the given program. Imagine, on the other hand, an equivalent loop nest that
instead copies the elements of the involved tensors: finding the inherent redundancy is nearly
impossible and at the very least, extremely expensive.

While the representation of higher-level operations unlocks new optimisations, this all remains
an extremely local approach to optimisation. Compiler frameworks like LLVM and MLIR do
not grasp the entire semantics of their input programs. Rather, they apply extremely localised
patterns, usually considering only a few neighbouring operations, while missing out on greater
optimisation opportunities that require a more holistic understanding. With the lack of specific
knowledge about their input programs, this heuristic approach is likely the best outcome and it
has proven successful in their respective domains.

In sharp contrast to such local approaches, this dissertation will explore the potential of more
aggressive optimisation techniques. We will focus on Domain-Specific Languages (DSLs) and
exploit the domain knowledge to aggregate the semantics of entire programs into a single concise




data structure: the Algebraic Decision Diagram (ADD) [27, 28]. To this aim, the input program
is decomposed into its essential aspects, which are subsequently reaggregated in a semantics-
preserving fashion. While the decomposed program fragments differ greatly from domain to
domain, the aggregated program will always be some form of an ADD. This decomposition and
reaggregation is so holistic that any adjacent parts of the input program will almost certainly be
separated in the process.

The effect of this aggressive aggregation is twofold:

* The condensed representation of the program is often much smaller than the input program
and allows for a much faster evaluation of its semantics. In this way, we radically optimise
the program’s running time and size, the two of the main goals of any compiler. These
improvements are impressive and can reach several orders of magnitude [1, 3]sp.

» The aggregation is also a concise representation of the program semantics. This reduction
to the essence can allow for a much better understanding of the program. A prime
example for this are machine-learned models, which can perform well in terms of their
purpose but can be hard or impossible to understand at the same time. We applied our
radical aggregation to Random Forests, a model that is considered uninterpretable, with
impressive results. The aggregation reduces the obfuscated model to a single interpretable
ADD. With this, we can solve the three explanation problems for Random Forests: model
explanation, class characterisation, and outcome explanation [29].

ADDs are well suited to represent programs that resemble decision functions, in part or as a
whole. In this case, the data structure has great advantages over other CFG-based forms of IRs:
It is extremely well understood [27, 28] and comes with efficient manipulation algorithms. Its
properties are also ideal for program optimisation as they ensure minimal size and depth of the
structure, which correspond to the size and the running time of the aggregated program. The
algebraic nature of ADDs and their compositionality further lead to elegant transformations of
the program, allowing for partial aggregation and even for semantic abstraction.

The idea of aggressive aggregation originated out of a desire for rapid facial classification
in a previous research project [30, 31] and evolved into a much more general analysis. We
will analyse and discuss its application to a variety of different program domains ranging from
DSLs in recommender systems to machine-learned programs and even to a general-purpose
programming language.

1.1 Scientific Contributions

My scientific contributions in the course of this dissertation (i) explore the potential of Algebraic
Decision Diagrams (ADDs) as an Intermediate Representation (IR) for program optimisation in
diverse program domains, (ii) solve three prevailing explanation problems for Random Forests,
and (iii) facilitate future work in this area through corresponding open-source implementations
of decision diagrams, transformations, and code generation. In particular, this dissertation makes
the following contributions:



* The exploration of ADD-based compilation and optimisation for suitable DSLs. Tai-
lored to ADDs as their IR, the graphical DSLs for decision diagrams and their composi-
tions [6, 7]ap constitute an initial case study. These languages allow their users to develop
decision services in a model-driven fashion and without any base knowledge of program-
ming languages. At the same time, they are a great tool to get a feeling for the potential
and the limitations of ADDs as an IR. With their language design, they exploit the inherent
optimisation potential of ADDs and integrate seamlessly with other graphical DSLs as
well as with Java applications. The proposed languages are also extremely flexible with
regard to the underlying algebraic structures and allow for an entire family of languages in
a generative fashion [7]ap. The case studies prove the usefulness of ADDs in an ecosystem
of DSLs and their seamless integrability into corresponding languages while, at the same
time, maintaining their inherent optimality.

Complementing the graphical DSLs [6, 7]ap, ADD-based program optimisation was also
applied in another case study: the textual rule-based MiAamics DSL. Its language design
was previously found to be useful in the context of recommender systems [32, 33] and the
re-implementation and evaluation that are part of this dissertation prove, once again, the
power of ADDs as an IR for program optimisation.

e ADD-based aggregation of Random Forests. The main contribution is a technique
for the radical aggregation of extremely large Random Forests into a single semantically
equivalent ADD [3, 1, 2]ap. Regarding the Random Forest as an input program, the aim
of its optimisation is to reduce both running time and size of the represented function. The
impressive reduction in running time and size, both by multiple orders of magnitude, prove
the effectiveness of ADDs as an IR for the optimisation in this very program domain.

The technique can even be combined with the graphical DSLs for the same type of
ADDs [5]ap, allowing users to combine the power of machine-learning with expert knowl-
edge. Both Random Forests and ADDs models, can be composed, forming machine-
learned and expert-enhanced decision functions.

e The solution to three explanation problems for Random Forests. Random Forests
are considered an uninterpretable black box model in machine learning [29] that lacks
explainability on multiple levels. By aggregating the convoluted model into a single
ADD, we are representing its semantics concisely. Like a decision tree, the resulting
ADD is interpretable and solves the first of three explanation problems directly: the model
explanation [1, 2]ap. Exploiting the algebraic nature of ADDs, we can go further: Through
straightforward abstraction it is possible to solve a second explanation problem: the class
characterisation, which explains the model relative to one of the possible outcomes. These
ADD:s also allow for a redundancy-free outcome explanation by aggregation of predicates
along paths for any given input sample.

* A generalisation of ADD-based compilation and optimisation for general-purpose
programming languages: With the ADD-based aggregation being so successful for
Random Forests, we generalised the approach to general-purpose programming languages,
exemplified by the while language [4]ap. The generalised technique is, in principle, able



to reproduce the exact same results and is, in this sense, a true generalisation. Here, we use
multiple ADDs to represent sequential execution between cut points of the input program,
an expression DAG to represent arithmetic expressions, and a contracted cut point graph
to trace through the program. This use of three very specific IRs allows us to holistically
restructure the input program and yields impressive first results for the seemingly optimal
Fibonacci implementation, especially when combined with loop unrolling.

¢ The ADD-Lib, a Java library and framework for ADDs and code generation. All
reusable components of the corresponding implementations are bundled in this open-
source project. The ADD-Lib emphasises interchangeability of the ADDs’ underlying
algebraic structure and provides an easy to use, yet efficient, interface for a wide variety
of decision diagrams, and for ADDs in particular. With its collection of code generators,
the framework facilitates the use of ADDs in the context of program optimisation and, in
this way, encourages researchers to explore the potential of ADDs as an IR far beyond the
results of this dissertation.

My contributions have already inspired other scientists to work on related research and to
further explore the potential of ADDs: Alnis Murtovi and Marc Jasper have worked with me
on ADD-based compilation of general-purpose programming languages at the TU Dortmund
University and are following up with this line of research. Also at the TU Dortmund University,
the student researchers Jan Linden and Jan Feider are exploring the potential of ADDs in the
context of Deep Neural Network (DNN) and Binary Neural Network (BNN). Another group
of researchers around Prof. Tiziana Margaria at the University of Limerick focus on ADD-
based compilation in the context of model-driven engineering, following up on the graphical
ADD-based DSLs and the ideas of [6, 7]ap.

1.2 Overview

Chapter 2 reviews decision diagrams in depth, starting at their historic roots. The most pop-
ular variants and generalisations of the data structure will be discussed, each with their key
characteristics in the context of this dissertation. The main chapter, Chapter 3, presents success-
ful ADD-based program optimisations in three program domains: DSLs, Random Forests, and
general-purpose programming languages. Chapter 4 introduces the ADD-Lib, our framework for
decision diagrams that was developed and used in the course of this dissertation. We will discuss
its key features in the context of ADD-based program optimisation including, in particular, code
generation. Chapter 5 points out directions of future research, motivated by the results of this
dissertation. We conclude in Chapter 6 with final remarks.






Landscape of Decision Diagrams

The most widely known form of decision diagrams are, of course, (Ordered) Binary Decision
Diagrams [34]. For more than thirty years now, this data structure remains state of the art for
the representation of Boolean functions. Every computer science student comes into touch with
these diagrams, already within the very first semesters of their course. There are, however, many
more variants of decision diagrams, some of which are generalisations, others are adaptations.
In this chapter, we will discuss the most important variants in the context of this dissertation and
we will point the reader to relevant literature for further detail.

2.1 The History of Decision Diagrams

Although the most popular variant, (Ordered) Binary Decision Diagrams [34] are not the first
occurrence of the data structure. They mark, however, an important breakthrough in their
development and facilitate their use in various domains [35, 36, 37, 38, 39, 40, 41, 42] as well as
the development of many variants [43, 44, 45, 46, 47].

The first form of decision diagrams are, in fact, Binary Decision Programs (BDPs) [48] which
were motivated primarily with the faster evaluation of Boolean formulas. Given some number
of Boolean input variables x = xo, ..., x,—1 € B", these programs compute an equally Boolean
output y € B. BDPs are essentially a list of labelled if-then-else statements, each evaluating one
of the Boolean input variables x; and jumping accordingly to one of two successor labels until a
final decision y is reached.

Figure 2.1a shows the example BDP for the function xg V (=x; A xg). The individual lines
resemble if-then-else statements, e.g. 1 : Txg; 2, [ is the first statement and tests the variable xg.
If xo = 1 the program continues with statement 2, otherwise, the result is given by 1. I and 6 play
a special role and mark the final outcomes true and false respectively. These programs, although
textual, are structurally very similar to later graphical presentations of decision diagrams.

In contrast to Boolean formulas, BDPs are "not algebraic in nature" [48], a property that
aggravates their manipulation. Moreover, similarly to gofo programs, BDPs would be considered
hardly readable [49]. From a performance perspective, however, they are easily superior to the
original representation, answering the primary question of the paper: "What procedure should



1:T x0;2,1. 0 0
2:T x133,0.
3:T xp;0,1. 0 1 0 1
(a) BDP. (b) Binary Decision Diagram (c) Ordered Binary Decision
(BDD). Diagram (OBDD).

Figure 2.1: Three representations of the Boolean formula xg V (=x; A xp).

one follow so as to arrive at the decision quickly and without having to go through a large amount
of computation?" [48].

Based on the early textual form, the first graph-based understanding was derived and the term
"Binary Decision Diagram" was coined [50]. BDDs were designed to provide a means for an
"’implementation-free’ description which could still yield meaningful results about the logical
structure” [50]. In other words, the structure seeked to bridge the gap between a functional
description (WHAT) and an optimised implementation (How).

BDDs are essentially analogous to BDPs with the key differences that they (i) represent Boolean
functions as Directed Acyclic Graphs (DAGs), and they (ii) come with powerful reduction rules.
In particular, isomorphic nodes can be merged and those nodes with two equal successors can
be removed without altering semantics.

Figure 2.1b shows an example BDD that is fully reduced in this sense. The represented
formula is the same as for the BDP (Fig. 2.1a) and the two representations are, in this case, fully
analogous. Note, that the representation is by no means optimal, neither in size nor in depth. In
fact, input variables can occur even multiple times on a single path leading to obvious redundant
computations. The reduction rules, however, constitute a significant improvement over BDPs
and are still used today.

Only with the introduction of a fixed variable order, a notion of optimality could finally be
guaranteed. These OBDDs mark a breakthrough in the development of decision diagrams and
are the state of the art data structure that we use today [34]. For a fixed variable order, OBDDs
are a canonical representation of Boolean functions [34]. From this property, their optimality in
size and in depth follows trivially. More importantly, the order allows for efficient operations on
the data structure, achieving the long-seeked "algebraic nature" [48] for the data structure.

Interestingly, the many examples in earlier BDDs often implicitly conform to a variable order
already [50]. It was not until [34] that this property was enforced and used for efficient algorithms
and their main result: canonicity.

Figure 2.1c shows an example OBDD for the same example Boolean formula as before. In



contrast to the other representations in Figure 2.1, the strict variable order allows for exhaustive
simplification of the diagram. The resulting OBDD is not only smaller but also shallower and,
as a result, the underlying Boolean formula can be evaluated much faster.

2.2 Binary Decision Diagrams

As the most widely known and relatively simple variant, BDDs will serve as an example to
discuss decision diagrams and their algorithms in more detail. Most importantly, we will see
how these diagrams can be constructed from Boolean formulas and how Boolean operations can
be efficiently realised directly on the data structure. We will formalise BDDs analogous to the
formalisation in [34] and discuss, in particular, the functions unique, ite, and apply.

A BDD is a graph-based representation for Boolean functions of the form B" — B. In fact,
every node in the graph is associated with its own function, so when we refer to a BDD, we
typically mean a root node in the graph together with its transitive closure.

Definition 1 (Binary Decision Diagram) A BDD over the input variables X = Xy, ..., Xp—1 IS
a DAG with nodes V of two kinds: (i) Internal nodes f € V are associated with a variable
var(f) € x and have exactly two successor nodes, then(f), else(f) € V!. (ii) Terminal nodes
g €V, on the other hand, are associated with a Boolean value(g) € B and have no successor
nodes.

The semantics of these graphs follow naturally. Starting at the root node, we trace down the
diagram until a terminal node is reached. Atevery internal node f, the associated variable var(f)
determines the successor and once a terminal g is reached, the associated Boolean value(g) is
also the final evaluation result.

Definition 2 (Binary Decision Diagram Semantics) For a given assignment of the BDD’s vari-
ables o : x — B, the semantics of its nodes f are defined as

[then(f) o if f is an internal node and o-(var(f)) = 1,
[f1o:=1lelse(f) o iff isan internal node and o-(var(f)) = 0,

value(f) if f is a terminal node.

Already with this definition, we have a graphical representation of Boolean formulas that
even allows for their composition with the usual logic operations. In this form, however, the data
structure lacks the potential for simplification and for efficient evaluation. With the introduction of
a fixed variable order and effective reduction rules, Reduced Ordered Binary Decision Diagrams
(ROBDDs) are finally able to achieve canonicity for Boolean functions.

Let us first consider their fixed variable order. On every path in an OBDD the variables that
are associated with its internal nodes appear in a predefined order. This ensures, in particular,
that a variable may never appear more than once on a path and thus prevents some redundancies,
already on its own.

UIn literature successor nodes are also referred to as high and low respectively.



Definition 3 (Ordered Binary Decision Diagram) For a fixed variable order <, a BDD is
ordered if and only if for every internal node f the following holds: If then(f) is also an
internal node then var(f) < var(then(f)) and analogously if else(f) is an internal node then

var(f) < var(else(f)).

In addition, we want to simplify the OBDD wherever possible. The aim is to maintain, at all
times, a representation that is fully reduced.

Definition 4 (Reduced Binary Decision Diagram) A BDD is reduced if and only if (i) for every
internal node f its successors differ, then(f) # else(f), and (ii) there are no two isomorphic
subparagraphs.

These two properties ensure that none of the nodes in a ROBDD is redundant. Transforming
an OBDD to its equivalent ROBDD is straightforward [34]. Potential duplicate nodes can simply
be merged into one and those nodes whose successors are equal can be eliminated entirely.

With their fixed variable order and being fully reduced, ROBDDs are a canonical and minimal
representation of Boolean functions — the main theorem of BDDs [34]:

Theorem 1 (Reduced Ordered Binary Decision Diagrams are Canonical) Ler < be a fixed
variable order. For every Boolean function f, there is a unique (up to isomorphism) ROBDD.
Every other OBDD contains more nodes.

With these properties ROBDDs are the desirable graph representation for Boolean functions.
Moreover, they are algebraic in nature and allow for efficient composition in a way that respects
all of their properties. Every logic operation, e.g. conjunction, disjunction, and negation, can
easily be lifted to the level of ROBDDs. With that, their construction from logic formulas
becomes a trivial task.

The uniqueness of subgraphs is easily achieved with a simple lookup. We will only create new
nodes if they did not exist previously and use the existing ones otherwise. The function unique
denotes exactly this behaviour, both for terminal nodes as well as for internal nodes:

Definition 5 (Unique) For any Boolean value b € B, let f = unique(b) be the unique terminal
node with value(f) = b. For any variable x; € x and any two BDDs g and h, let f =
unique(x;, g, h) be the unique internal node with var(f) = x;, then(f) = g, and else(f) = h.

With unique alone, the construction of constant Boolean functions is already possible. On
the other hand, non-constant functions can be constructed with the conditional function ize, i.e.
if-then-else, in a recursive fashion. Based on two, possibly constant, decision diagrams, f and
g, and one variable x;, ite constructs the decision diagram that evaluates to f if x; is true, and to
g otherwise.

Definition 6 (If-Then-Else) For any variable x; € x and any two BDDs f and g,

f ff=g

unique(x;, f,g) otherwise.

ite(x;, f,g) := {

10



The ite operation can generally be used to construct BDDs but, as it is defined here, it respects
only the uniqueness property of ROBDDs. In contrast to that, the variable order is not enforced
by definition but rather remains the user’s responsibility. Generalising the ite function to also
enforce the correct variable order is possible and the respective variants do exist.

The two primitives, unique and ite, are sufficient to realise all logic operations directly on
ROBDDs in a recursive fashion. Exploiting Boole’s expansion theorem?[52], we can split the
given ROBDD at its smallest variable and proceed recursively. With ite the respective results
can be reassembled, thus performing the logic operation in a property-preserving fashion. We
define apply generically for all the binary Boolean operations. This subsumes, in particular, the
operations for conjunction and disjunction, A and V.

Definition 7 (Apply) Let (op) € B X B — B be a logic operation and let f and g be two BDD
operands. The definition of {op) generalises to BDDs with

ite(x;, f; {op) g:, f. {op) ge) if f, g are int. nodes with x; = var(f) = var(g)
ite(x;, f; {op) g, fe {op) g)  if f is internal node with x; = var(f) < var(g)

fop) g:=14. o .
ite(x;, f {op) g, f {op) g.) if g is internal node with x; = var(g) < var(f)
unique(f, {op) gv) if f, g are terminal nodes
with f; 1= then(f)
fo = else(f)
fv = value(f)
and g, = value(g).

In the very same way, monadic operations can be lifted to the level of ROBDDs. Although
there are only the two monadic operations for negation — and for the identity, we also formulate
monadic apply in the most general way.

Definition 8 (Monadic Apply) Let (uop) € B — B be a monadic logic operation and let f be
a BDD operand. The definition of (uop) generalises to BDDs with

ite(x;, (uop) fi, (uop) f.) if f is internal node with x; = var(f)
wop) f := {unique((uop) ) if f is terminal node.
with f; .= then(f)
fe = else(f)

and f, = value(f)

2 Also referred to as Shannon expansion [51].
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For brevity, we will, from here on, assume all decision diagrams (i) to be fully reduced and
(ii) to conform to a strict variable order. We will use the terms BDD, OBDD, and ROBDD
interchangeably.

ROBDDs build upon the standard Boolean logic (B, A, V, =) but the definitions for unique, ite,
and apply are really not exploiting any properties of B. We will see that the underlying algebraic
structure can, in fact, easily be replaced, allowing for the generalisation of Algebraic Decision
Diagrams (ADDs).

2.3 Algebraic Decision Diagrams

While BDDs lift the standard Boolean logic to the level of decision diagrams, ADDs® do
this for all other algebraic structures. The generalisation was originally introduced for matrix
representation and manipulation [53, 54] but ADDs were soon adopted for a wider variety of
algebraic structures [27, 28].

Definition 9 (Algebraic Structure) An algebraic structure is a tuple

A = (S, {op1), (op2), ..., {uop1), (uops), ...,e, e ...)

with a carrier set S and a finite number of binary operations {op1),...,{op,) € SXS — S,
monadic operations (uopy), . . ., (uopm) € S — S, and distinguished elements ey, ...,e; € S.

For any such structure, we can derive the corresponding decision diagrams, i.e. the respective
ADDs. All of the definitions concerning BDDs, i.e Definition 1-8, and, most importantly, the
main Theorem 1 naturally carry over to the new generalised data structure. For any algebraic
structure A, the corresponding ADDs form a canonical and size-optimal representation for
functions of the form B" — A. The (monadic) operations of A translate to the corresponding
(monadic) operations on ADDs and the distinguished elements translate to the corresponding
constant ADDs.

As one class of algebraic structures, various logics seamlessly transfer to decision diagrams
analogous to the standard Boolean logic. This allows us to loosen the hard binary nature of
Boolean values to multi-valued logics, e.g. Kleene and Priest logics [55], and even to the various
fuzzy logics [56]. The advantages of the derived ADDs are the same as that of their respective
underlying logics: they allow to model missing knowledge and uncertainty in the represented
functions.

As just two representatives for the various fuzzy logics, consider the probabilistic and the
min-max definition of conjunction, disjunction, and negation. Both logics operate on the interval
[0, 1].

Definition 10 (Probabilistic Fuzzy Logic) The Probabilistic Fuzzy Logic A, = ([0, 1], Ap, Vp, —p)

3 Also called Multi-Terminal Binary Decision Diagrams (MTBDDs).
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Figure 2.2: Example ADDs for the prediction of rainfall. In this example, the conjunction of two
criteria yields the overall prediction.
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is defined with

conjunction ahpb:=ab
disjunction aVpb:=1-(1-a)l-0>b)
and negation —pa:=1-a.

Definition 11 (Min-Max Fuzzy Logic) The Min-Max Fuzzy Logic A, = ([0, 1], Am, Vi, =)
is defined with

conjunction a Ay b := min(a, b)
disjunction aVy b:=max(a,b)
and negation “ma:=1-a.

Figure 2.2 illustrates the semantic differences between the ADDs over the three logics. In
this example, we want to predict whether it will rain and we base this prediction on the two
observations: if it is already dark and cloudy. Both criteria alone are indicators but only
combined, they yield a good predictor for rainfall. In contrast to the BDDs (Fig. 2.2a), the
two ADDs based on fuzzy logics (Fig. 2.2b and 2.2¢) can weight the criteria and, in this way,
model a notion of uncertainty. Both logics aim at the same problem but they yield very different
behaviour which manifests itself in the different topologies of their respective ADDs.

ADDs are by no means limited to logics but they allow for any other algebraic structure in the
very same fashion. In the course of this dissertation, we have used various ADDs with algebraic
structures ranging from logics [6, 7]ap and other lattice-like structures to monoids, groups, and
fields [3, 4, 5S]ap. The data structure is easily adoptable and generally facilitates the aggregation
of functions — a great tool for program optimisation.

2.4 Other Variants of Decision Diagrams

The most important variant of decision diagrams in the context of this dissertation are undoubtedly
ADDs. However, many more variants of the data structure have emerged, three of which we will
discuss briefly.

Like ADDs are a generalisation of BDDs with regard to their co-domain, Multi-Value Decision
Diagrams (MVDDs) [45] generalise the input domain and operate on variables with an arbitrary
but finite input domains. Instead of the binary decisions at its internal nodes, a discrete input
domain 9; per variable x; allows for n-ary decision making. The properties of BDDs are,
again, fully preserved making MVDDs a canonical representation for functions of the form
DoX...xD, 1 — B.

Not all variants of decision diagrams are generalisations of BDDs. The prime example for an
adaptation are Zero-Suppressed Decision Diagrams (ZDDs) [43], a variant that uses a modified
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reduction rule. Instead of eliminating nodes whose two successors are equal, in ZDDs those
nodes are considered redundant whose then-successor points to the O-terminal. Although not
obvious, also this adaptation yields a canonical representation for Boolean functions B" — B.
ZDDs are particularly suited to encode sparse sets where they can drastically reduce the number
of nodes needed, i.e. the data structure’s memory footprint.

In some cases, it is clear whether BDDs or ZDDs are the suitable data structure. However, in
other cases the choice might not be as obvious, yet its impact can be critical for the diagram’s
size. An adaptation that aims at exactly this problem are Chain-Reduced Decision Diagrams
(CDDs) [44]. They combine the power of both reduction rules, those of BDDs and those of
ZDDs, and yield a decision diagram without redundant nodes in both senses. This property
comes at the cost of additional bookkeeping per node, i.e. what reduction rule to apply locally,
making the data structure larger than its equivalent BDD and ZDD by no more than a constant
factor.
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(Domain-Specific) Program Optimisation
with Algebraic Decision Diagrams

This dissertation explores the potential of Algebraic Decision Diagrams (ADDs) for the op-
timisation of programs. The term programs is most widely associated with those written
in some general-purpose programming language like, e.g., C++, Python, or Java. How-
ever, the range of programming languages out there is much more diverse than these few
extremely popular languages that everyone knows. With many language workbenches and
frameworks [57, 58, 59, 60, 61, 62][63, 64, 65, 66] that allow for the rapid development of new
languages, sometimes dedicated to a single purpose, the diversity of the programming languages
landscape has steadily increased [6]ap.

In this dissertation, we focus on languages that can best benefit from decision diagram technol-
ogy for their running time and size optimisation. These languages turn out to be quite diverse and
they range from Domain-Specific Languages (DSLs) that are closely tied to decision diagrams,
to less obviously suited inputs, and even to general-purpose programming languages.

In the classical compiler pipeline, an input program is first parsed and transformed into one,
or sometimes multiple, Intermediate Representations (IRs). On this basis, the program is then
optimised before the final result is emitted as executable code for some target platform. In this
sense, we consistently use ADDs as the IR for our program optimisation. The optimisation aspect
is, in part, obvious here because ADDs inherently optimise the represented function as discussed
in Chapter 2. In addition, domain-specific optimisations can be applied on the bases of ADDs,
just like they would be applied on any other IR.

The representative programming languages that we used to evaluate the potential of ADDs as
an IR each fall into one of three categories:

* Domain-Specific Languages (DSLs): These languages are tailored to (i) their users’
mindsets and here also (ii) with their potential for ADD-based optimisation in mind.

¢ Machine-learned models: Also machine-learned models can be considered a form of a

domain-specific input language. It turns out that Random Forests are particularly suited
for radical ADD-based aggregation and optimisation.
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* General-purpose programming languages: Moving from domain-specific to general-
purpose languages, we use the while language as a representative to explore a radically
new optimisation paradigm — again based on ADDs as an IR.

3.1 Domain-Specific Languages

With ADDs being suited for a particular class of functions, namely B" — (A, they are naturally
suitable for DSLs that aim at expressing exactly this kind of function. These languages are
therefore a prime example and a good starting point for ADD-based program optimisation. One
could expect all of these languages to be structurally extremely similar as they are closely related
to their IR, the ADDs. However, the contrary is the case: In the course of this dissertation, we
will explore two quite different languages:

* Graphical decision diagram language: What is actually a small collection of graphical
DSLs can be used to model decision services as acyclic graphs, compose them in a
hierarchical fashion, and also to experiment with the semantics of different algebraic
structures.

* Rule-based language: Quite different in its mindset, MiAamics [67][8] ap is a textual DSL
for extremely large systems of conditional rules. It aggregates these rules into a single
ADD and, in this way, partially evaluates them at compile time.

Graphical Domain-Specific Decision Diagram Languages

A DSL that closely matches the structure of ADDs can obviously greatly benefit from their
inherent optimisation potential already at compile time. For this reason, it is the natural and
promising starting point for ADD-based program optimisation that we will discuss in this section.
Like every other DSL, also this language should capture its users mindset, in this case an ADD-
centred way of thinking. The target group for such a language is probably not too large but,
we found enthusiastic users during a summer school [7]ap. In fact, the resulting graphical DSL
was a great tool to experiment with ADDs and to quickly get a feeling for their capabilities and
limitations in different contexts and based on varying algebraic structures. Many of the ideas in
the more sophisticated ADD-based program optimisations (Sec. 3.1, 3.2, and 3.4) were built on
top of this expertise.

Modern software development paradigms, such as Language-Driven Engineering (LDE) [6]ap
and Language-Oriented Programming (LOP) [60], encourage exactly this development of, pos-
sibly single purpose, DSLs — paradigms that have become possible with the increasingly cheap
development of new DSLs using modern language and meta-modelling frameworks [59, 68].
For our decision diagram language, we utilise Cinco [59], a meta-modelling framework that
allows for the rapid development of graph-based DSLs. Cinco generates an entire mIDEs fully
automatically in which the desired DSL can be used visually (Fig. 3.1).

Our decision diagram language provides a means for the creation of ADDs, or decision services
as we call them when embedded in a larger software project. The result is always a decision
function, may it be in the form of a visualisation or as generated program code. Its input domain
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is arbitrary, other than that of ADDs, but, also here, it must be discretised eventually. The DSL is
actually a collection that consists of three sub languages, each referencing elements in the others:

* Predicates are used to describe the input domain in a way that translates seamlessly to
our chosen form of representation, to ADDs. This is where the translation from the
arbitrary input domain to that of the underlying ADDs is realised. The corresponding
models (Fig. 3.2a) in the DSL are extremely simple as they provide no more than the later
referenceable predicate names and links to their respective implementation if needed.

* Decision diagrams are the central kind of model (Fig. 3.2b) and they resemble the structure
that we know from ADDs, however, with a few crucial differences. Other than the data
structure, the DSL enforces neither (i) an order on predicates, nor (i) canonicity of the
modelled decision diagram. These crucial properties are later enforced fully automatically
at compile time through corresponding model transformations.

* Composition models built on top of decision diagram models. They utilise the underlying
algebraic structure and allow for the composition of decision diagrams (Fig. 3.2c). These
models are structurally similar to syntax trees with the difference that they are actually
Directed Acyclic Graphs (DAGs) that do allow for reuse.

We will sketch the expressiveness of this language collection with the help of an email
classification example that was also used in [6]ap and [7]ap. In this example, the aim is to
automatically find emails that are of particular importance to a user — a task that is often
encountered in email applications. The function to be realised takes an email as its input and
produces, in its simplest form, a Boolean output.

In the first step, an incoming email is described by some predicates, each of which may be
implemented in Java or some other general-purpose programming language. For an incoming
email, the predicates seen in Figure 3.2a are only some of the indicators used in [6]ap. An
email that, for example, contains the string "Newsletter" already in its subject would usually not
be of particular importance to any user. Based on this collection of predicates, more complex
decision logic can be realised in the decision diagrams. The example rule in Figure 3.2b aims
to detect emails whose subject line appears alerting. While all of these rules alone are probably
not particularly strong indications for an important email, their composition can yield a powerful
classification service. Figure 3.2c shows just one possible example of such a composition.

All of the models are valid input programs to our DSL and their structural proximity to
ADDs allows for a direct transformation to the data structure. This step yields a canonical
and fully reduced ADD as the IR of the compilation process. On this basis, the correspond-
ing implementation in various general-purpose programming languages can be generated. An
embedding software project, for example an email application, can then take advantage of this
highly optimised implementation in a service-oriented fashion.

Just like ADDs, also our DSL allows for interchangeable algebraic structures. In fact, yet
another DSL allows defining a custom algebraic structure on a meta-level [7]ap. With its degree
of flexibility — both on the meta-level with regard to the algebraic structure and on the modelling
level with regard to the concrete decision diagrams — our decision diagram DSL has proven to
be a great tool for the experimentation with ADDs. The small example of email classification
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may be performance critical only for very high throughputs. However, all of the subsequently
discussed ADD-based optimisation techniques are in principle expressible with this collection
of DSLs.

On a side note, many email applications realise the here discussed email classification in the
form of a rule-based DSL. In this spirit, our second DSL, MiAamics, may be utilised to tackle
the exact same problem in a completely different way.

MiAamics: A Rule-Based Domain-Specific Language

A second, quite different example for an ADD-based DSL is MiAamics, a textual specification
language for recommender systems [8]ap. Based on some description of a given situation,
MiAamics allows for the definition of the system’s recommendation behaviour by means of a
potentially large set of recommender-style rules. Each of these rules individually gives no more
than a hint for a good decision but together the outcome can be quite powerful. In this way, the
system can, e.g., recommend matching products based on a user’s previous behaviour, the time
of the day, or other environment variables.

The objective of MiAamics is to provide domain experts, who are well-versed with the se-
mantics of recommender systems but may otherwise be unfamiliar with programming languages,
with a specification means that suits their already established mindset. Rule-based realisations
are indeed already used to define the behaviour of recommender systems [69, 70]. They allow
domain experts to utilise their expertise and to define all behaviour in a declarative fashion,
without having to worry about performance at all. The highly efficient implementation is then
generated fully automatically by the MiAamics compiler.

This rule-based approach is a good example for the simplicity principle proposed in [71]. The
allowed rules are not fully general, but they elegantly capture a bulk of decision problems for
which they are much better suited than any general-purpose language. In previous experience,
marketing and campaign managers with no ability to program nor familiarity with databases or
query languages were perfectly able to master the MiAamics rule formats [33, 32].

The primary concern of MiAamics is, of course, to capture its users’ mindset but it was also
designed with its potential for optimisation in mind. The central question is how to transform a
potentially large system of rules to an efficient representation and implementation that, ideally,
saves both memory and evaluation time relative to the original system of rules.

We will sketch the MiAamics approach [8]ap with the help of a small example: a recommender
system that suggests an appropriate wine to serve with a given dish. In this example, the function’s
arguments describe the situation, i.e. the dish that is served, and its result is a wine suggestion.
For simplicity, we characterise dishes by whether or not they contain cheese, meat, and fish. The
wine, on the other hand, is described with the three attributes red, white, and sweet. With its
small size, the example is nicely suited for illustration, however, the real optimisation potential
comes into play for much larger collections of rules.

There are many rules for a good choice of wine, but some of them are more important than
others. In this example we give high priority to serving white wine with every meal that contains
cheese or fish. The recommender system can select from a set of possible recommendations,
the so called target elements. For the wine example, let us consider three different wines, each
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characterised by a unique name and some Boolean attributes:

& = { (sauvignon blanc,{ white }),
(riesling, { sweet, white }),
(merlot,{red}) }.

Analogous to the definition of the possible outcomes &, also the textual DSL requires the users
to define these elements. The format is analogous to the mathematical definition but could also
easily be realised with some graphical interface.

With the wine collection in place, we can now embed our wine expertise in MiAamics rules
and, in a sense, teach the recommender system. Every rule consists of three parts:

* Condition: Based on the situation variables, a rule’s condition describes the situations in
which it is applicable in the form of a Boolean expression. For a given situation — here
the description of a dish — the rule is applicable if its condition evaluates to true and we
ignore the rule otherwise.

* Selection: The selection describes the affected target elements based on their Boolean
attributes — here the wines from our collection. The selected ones are recommended by
this particular rule but not yet by the overall recommender system.

* Weight: Because some rules may be more important than others, every rule is associated
with a weight which is a real number that may even be negative. The higher the weight,
the more this rule contributes to the overall recommendation.

I am admittedly not an expert for wines but, with some advice, came up with a reasonable set
of recommendation rules:

R :={if (cheese Vv fish) add 1.0 to (white),
if (meat) add 1.0 to (red),
if (cheese) add 0.5 to (sweet A white),
if (meat A cheese) add 0.5 to (sweet A red) }.

Most importantly, we ensure, with a high priority, to serve whife wine with dishes that contain
cheese or fish. In the very same way, we ensure that red wine is served together with meat.

There is an obvious way to evaluate these rules which is to process them one after the other
and to accumulate the weights per target element, i.e. per wine. However, if we did that we
would neglect the inherent optimisation potential of these rules. This is where the strength of
the MiAamics approach comes into play: With partial evaluation of the given rules R and under
consideration of the available target elements &, it is possible to drastically speed up the overall
evaluation process.

The key technique to partial evaluation are, again, ADDs and MiAamics utilises multiple kinds
with varying underlying algebraic structures. The original rules are step-wise transformed to
intermediate ADDs before the final optimised representation is derived.
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(a) Aggregated rule ADD.

sauvignon_blanc riesling

(c) Filtered rule ADD with highest-scoring elements
only.

{ riesling, sauvignon_blanc } { merlot, riesling, sauvignon_blanc } {merlot} | {riesling }

(d) Final decision ADD.

Figure 3.3: The MiAamics pipeline step-wise transforming the system of rules into a single
decision ADD.
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In the first step, every rule in R is transformed to its own ADD over the real numbers (R, +, 0).
These diagrams essentially represent the conjunction of their respective rule’s condition and
selection expression. If this conjunction holds, the ADD yields the rule’s weight and 0, the
neutral element of summation, otherwise. The obtained collection of ADDs allows for natural
composition by summation and thus aggregates the potentially large set of rules R into a single
ADD. Figure 3.3a shows this aggregated rule ADD for our running example. The obtained
function yields the accumulated weight for a given description of the situation and for one
particular target element, i.e. for a given dish and wine description. The structure is, however,
far from performance-friendly: For its evaluation at runtime only the situation description, i.e.
the description of a dish, is known. Finding the highest-scoring target elements, i.e. the best
wines, on the other hand, requires one iteration over all of the possibilities in &.

To resolve this shortcoming three subsequent transformations are necessary all of which are
pure ADD transformations. Filtering the ADD for those target elements that actually exist in
& eliminates the necessity to iterate over &. The resulting ADD is shown in Figure 3.3b. Its
function is the exact same as that of the previously aggregated ADD except for those target
elements that do not exist in & These cases are now marked with the dedicated L which
simplifies subsequent transformations. It is for the newly introduced L symbol, that this second
stage in the optimisation pipeline operates on ADDs over the accordingly extended real numbers
(RuUu{L},+0).

In the final decision structure, we are no longer interested in the accumulated weight, but rather
in the highest-scoring target element, i.e. the best wine. For this reason, the third step in the
transformation pipeline maps the terminal values of all paths that lead to a highest score in their
respective situation to their corresponding target element. All other paths that are not associated
with a target element are merged into the L terminal. The resulting ADD represents the function
that still depends on situation and target variables, however, if a target element is reached, it is
actually a highest-scoring target element. Figure 3.3c shows the corresponding ADD for our
running example where the recommended wines are now held directly in the terminal nodes. At
this stage, the ADDs are again over a new algebraic structure with the target elements & as its
carrier set.

The remaining indirection in the evaluation process are the target variables that, until now,
remain in the ADD. When evaluating the structure for a given situation, i.e. a description of
a dish, we can simply trace down the top-half of the ADD. With respect to target variables,
however, we are interested in all reachable target elements, i.e. all of the present highest-
scoring elements. Again, we can collect these target elements effectively with simple ADD
transformation at compile time. The resulting ADD holds sets of highest-scoring elements in its
terminal nodes and depends solely on situation variables. This final ADD is associated with yet
another algebraic structure, in this case a power set lattice P(&).

Figure 3.3d shows the final aggregated ADD. Already for this extremely small example, it
is obvious that its evaluation requires fewer steps than the original collection of rules R. The
diagram depends only on the situation variables and, per the properties of ADDs, ensures that
each of them is evaluated at most once. For a given description of a dish, we can trace down
the diagram starting at its root until a set of recommended wines is reached. For example,
a fish dish is ideally served with riesling or sauvignon blanc according to our collection of
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recommendation rules.

The MiAamics optimisation process is presented in a slightly simplified variant here. For
more details on the four transformations and for the different kinds of ADDs involved in the
process, please refer to [8]ap.

The speedup that we achieved with this approach is impressive. In our experiment, we
aggregated more than 200, 000 randomly generated rules each reasoning over 5 situation variables
and 5 target variables. A naive evaluation of these rules would consider every rule’s condition and
selection criterion separately to accumulate the weights per target element. With the aggregated
ADD, on the other hand, we reach a final decision with no more than 5 steps through the data
structure. In our experience, the MiAamics is limited only by the number of variables used to
describe the situation and the target element. On the other hand, it scales extremely well with the
number of rules. The number of rules in our experiments was chosen arbitrarily and we could
have easily continued to millions.

The random source of these rules arguably induces a bias in the experiment but the results
are nevertheless drastic speedups that motivate further investigation of the underlying potential.
Although not exactly MiAamics, but nevertheless highly influenced, we will see how these ideas
lead to impressive speedups in a real-world application with Random Forests (Sec. 3.2).

The MiAamics rule-based DSL is naturally suited for recommender systems as they are
prominently used in online shops [72, 73] or on video streaming platforms [74, 75]. Even
in the context of smart cities "recommendation techniques become essential tools assisting
consumers in seeking the best available services" [76]. In fact, the MiAamics approach was first
explored, prior to this dissertation, in this context personalisation of advertisement and offers in
online shops [33, 32]. The then award-winning approach was developed from 2000 to 2001 by
METAFrame Technologies GmbH, meanwhile patented [9], and also used to solve the Semantic
Web Service Challenge problems [77, 67]. Building on the ideas of this earlier implementation,
the new realisation adds the final transformation steps in the optimisation pipeline. Rather than
a description of the desired outcome, we can retrieve the selected elements directly at runtime
and with no further indirection.

The range of applications for this optimisation approach is by no means limited to recommender
systems. In fact, any system that reasons over an input domain that can be characterised in the
form of predicates and that produces a discrete outcome can be modelled with MiAamics-style
rules. One particularly impressive example for this is the transformation of Random Forests into
a semantically equivalent ADD which will be discussed in the following section.

3.2 A Machine-Learned Program: The Random Forest

A particularly impressive result of this dissertation is the ADD-based aggregation of Random
Forests [3, 1, 2]ap, a widely-known and popular classifier in machine learning. The aim here is
to optimise the running time as well as the size of the machine-learned models which, in this
case, allows for impressive speedups and reductions in size by multiple orders of magnitude.

In contrast to ADD-based optimisation for DSLs, here, we apply the same underlying ideas to
a widely-known and well-established use case rather than creating a new language with ADDs
already in mind. The results show that the specific properties of Random Forests allow for a
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Figure 3.4: Random Forest learned from the Iris dataset [89].

tailor-made optimisation of the implicit program, beyond what a general-purpose compiler could
possibly resemble. In this sense, Random Forests can be seen as their own very focused DSL
that allows them to express nothing but collections of decision trees.

The optimisation of a Random Forest’s running time is not a new problem but was, in fact,
addressed multiple times, though with moderate success in the past. The simplest approaches gen-
erate code rather straightforwardly [78, 79][80, 81] and benefit mostly from native performance
when compared to an in-memory interpretation. Other approaches achieve greater performance
impacts through model simplification, however, this comes at the obvious cost of an undesired
semantic change [82]. The aggregation of Random Forests, or more generally machine-learned
models, was also tackled with semantic aggregation [83, 82, 84, 85]. These approaches, how-
ever, focus on a semantic aggregation and generally neglect the final running time and model
size entirely — both criteria they were not aimed at in the first place. Also the reduction in size
is a recognised problem that was addressed previously and with limited success [86, 87] — an
approach interestingly sharing some similarities with the common ADD reduction techniques.

The only paper on Random Forests we know of that uses decision diagrams similar to our
ADDs is [88]. However, they use these diagrams only to compact the individual tree and not to
aggregate an entire Random Forest. In fact, the reported speedup by a factor of up to 61 seems
more to rely on technical and even hardware details than on the use of decision diagrams. In
contrast to that, our approach focuses on a holistic aggregation of entire Random Forests which,
due to its globality, has a much greater impact. In fact, we obtain speed-ups already at the
hardware-independent level that are orders of magnitude higher than those reported in [88].

All of these results, both for running time and size optimisation, are comparably small im-
provements when compared to the results that we achieve with our ADD-based aggregation.

For tangibility, we will discuss Random Forests and their transformation into an equivalent
ADD with the help of a running example: Figure 3.4 shows a small Random Forests consisting
of only three trees that were learned from the popular Iris flower dataset [89]. The dataset lists
dimensions of Iris flowers’ sepals and petals for three different species. Based on the given flower
measurements, the task is to determine the corresponding flower species correctly. The problem
at hand is a typical classification problem and can be approached with many classification

27



methods in the field of machine learning — one of which are Random Forests. The algorithm
is relatively simple and yields good results for many real-world applications. Its decision model
generalises the training dataset that holds examples of input data labelled with the desired Iris
species, also called class.

As its name suggests, a Random Forest consists of some number of decision trees, in this case
three. Each of these trees is itself a classifier that was learned from a random sample of the
training dataset. As a consequence, all trees are different in structure, they represent different
decision functions, and can yield different decisions for the very same input measurements.

To apply a Random Forest to previously unseen input data, every decision tree is evaluated
separately: Tracing the trees from their root down to one of the leaves yields one decision per
tree, i.e. the predicted class or, in this case, the Iris species. The overall decision of the Random
Forest is then derived as the most frequently chosen class, an aggregation commonly referred
to as majority vote. Key advantage of this approach, compared to single decision trees, is the
reduced variance. A more detailed introduction to Random Forests, decision trees, and their
learning procedures can be found in [90, 91, 92].

When evaluation is performed in a per tree fashion, it is obvious that the computational effort
involved grows linearly with the number of decision trees, i.e. the size of the Random Forest.
While our illustrative example consists of only three trees there is essentially no limit to the
number of trees. In fact, increasing its size can only improve the Random Forest and will, in
contrast to other classifiers, not lead to overfitting [91].

The question arises if and how we can reduce the running time of this evaluation procedure
to allow for a greater number of trees with no additional cost in running time. The solution
to the problem requires a suitable representation that allows for effective program optimisation.
Other than direct code generation approaches that use no IR at all, we have explored the potential
of ADDs in this context. With their (i) predicates and binary branching at internal nodes and
(ii) results on at leaf or terminal nodes, the Random Forests’ individual trees share two important
characteristics with ADDs, making them a promising candidate for ADD-based optimisation. It
turns out that they not only allow us to seamlessly transform individual trees but their algebraic
nature allows us to aggregate the entire collection of trees effectively. As a result the Random
Forest is partially evaluated at compile time which often leads to a much smaller and faster to
evaluate program structures.

The suitable kind of ADDs must represent the same decisions that the original Random Forest
yields. The most conservative choice here is an ordered sequence of class labels, one for each tree.
This sequence preserves all information and remains independent of any particular aggregation
method, e.g. majority vote.

To formalise this, let C be the set of classes, e.g. the three Iris flower species. An individual
tree’s decision is one class ¢ € C, a Random Forest’s decision is a word over these classes
¢ € C*. Note that we can describe the results of any Random Forests this way, no matter its
size. In particular, we can represent the decision made by the empty Random Forest with the
empty word € and the results of a single decision tree with a word of length one. Moreover, this
representation naturally allows for composition: we can simply concatenate the results of two
distinct Random Forests, maintaining a one-to-one association between the word’s symbols, i.e.
the classes, and the corresponding tree in the original forest. With that in mind, we can define
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the algebraic structure class words as a monoid:

Definition 12 (Class Word Monoid) Let C be the set of class labels. The class word monoid
W = (C%, o, €) is then defined with concatenation o and the empty word e.

With the definition of the algebraic structure (Def. 12) we have also implicitly defined the
corresponding ADDs which allow to represent functions that are very similar to that of the
original Random Forest. The only difference is that the original Random Forest takes continuous
features as its input while the ADD reasons over already evaluated predicates, i.e. its Boolean
variables. Assuming an a-priori evaluation of all predicates for now, we already know that the
Random Forest can be represented as an equivalent ADD.

The transformation of a given Random Forest to its equivalent ADD remains to be defined. In
this process, we must guarantee the unique properties of decision diagrams:

* they enforce an order of predicates along all paths, and
* they are directed acyclic graphs that share common substructures where possible.

The natural way to achieve this is to rely solely on primitive ADDs, operations on them, and
the ite operation. All of the corresponding algorithms ensure the invariant properties of ADDs
(Chap. 2).

With the compositionality of the algebraic structure ‘W (Def. 12) and the corresponding ADDs,
we can transform any Random Forest incrementally. Starting with the empty Random Forest,
we consider one tree after the other, aggregating a growing sequence of decision trees until the
entire forest is entailed in the new decision diagram. We will first find a semantically equivalent
decision diagram for the empty Random Forest, the neutral element of this aggregation procedure.
Subsequently, we will describe a semantics-preserving transformation for single decision trees
and a join operation to incorporate these decision diagrams into the overall aggregation.

No matter the input it was given, the empty Random Forest with O trees can only result in one
outcome: the empty word €. Hence, it resembles the constant function, also denoted € for brevity,
that is semantically equivalent to the constant decision diagram with e as its only terminal node.
This diagram forms the neutral element of our aggregation procedure.

To transform a single decision tree, we can build upon the well-known ADD construction
operation ite (Chap. 2). For a predicate p and two decision diagrams f and g, ite(p, f, g)
constructs the diagram that evaluates to f if p holds and to g otherwise. We derive the decision
diagram recursively along the tree structure, effectively delegating the entire transformation to
well-known and efficient algorithms in a service-oriented fashion. The algorithm implementing
ite ensures a strict predicate order and automatically shares substructures where possible. In fact,
the resulting decision diagram is a canonical representation of the function for a given predicate
order. Formally, this defines a function dw mapping decision trees to decision diagrams over
class words w € C*:

tval if ¢ is leaf,

ite(tpred, dW (tthen)a dW (telse)) otherwise.

dw(t) := {
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Figure 3.5: Partially evaluated Random Forest.

Having transformed every decision tree individually leaves us with the task to compose the
resulting sequence of decision diagrams. This is where the above-mentioned compositionality
of the class word monoid ‘W (Def. 12) comes into play: Analogous to concatenation o of class
words, we can also apply concatenation to the derived ADDs. To ease readability, we also denote
this terminal-wise concatenation of decision diagrams with the same symbol o.

The desired decision diagram aggregating an entire sequence of decision trees fg, t1, . . ., fy—1,
can now be defined as

dw (to, 11, . . ., ta—1) = dw(to) o dw(t1) o - - - o dw(tp-1).

Figure 3.5 shows the aggregation of our example Random Forest (Fig. 3.4). Already, for this
extremely small example, the average running time for classification is reduced. Its true impact,
however, becomes apparent with increasing forest size.

Being the direct representation of the Random Forest’s outcome, class words faithfully rep-
resent the information about the decisions of each individual tree. However, when the aim is
to determine the most frequent class, i.e. the majority vote, this is far more than necessary. To
this aim, only the frequency of each class is needed. The algebraic structure to represent this
elegantly is the class vector monoid, where each component represents one class and its value
the frequency with which that class was chosen.

Definition 13 (Class Vector Monoid) Let C be the set of class labels. The class vector monoid
V = (NIC| +,0) is then defined with summation + and the neutral vector 0.

Based on this structure we can replay the development of the previous section by replacing ‘W
by V, o by +, and € by 0. Indexing the class vectors directly with the class labels ¢ € C rather
than integers, this reads as follows:

The required representation of the empty decision is again provided by the neutral element,
here the 0 vector, and a single class ¢ € C can be represented naturally by a vector i(c) that is
0 everywhere except for position ¢, where it is 1. Also the construction of the corresponding
ADDs with class vectors as their terminal values can simply be transcribed, as can the new
transformation function dy which differs only in its mapping from the tree’s leaves to the new
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Figure 3.6: Class vector abstraction of aggregated Random Forest.

carrier set:

i(tval) if ¢ is leaf,

dy(t) :=
V( ) ite(tpred, dV(tthen), dV(telse)) otherwise.

Having adopted the underlying algebraic structure, all operations are seamlessly applicable to
the corresponding ADDs as well. In this case, vector summation + is lifted to the new decision
diagrams and we can again easily aggregate the Random Forest incrementally:

n—1
dv(l(), Hyoo's ln_1) = Z dv(li).
i=1

The new transformation abstracts from the order of class labels but maintains all the information
required to construct and aggregate decision diagrams incrementally.
Abstracting from the order of class labels has two important advantages:

1. Size is reduced as many leaf nodes that differed only in the order of class labels are now
unified. In fact, this effect can ripple up the entire decision diagram, i.e. the structure can
partially collapse. Moreover, the vector representation itself also becomes more compact.

2. Running time for classification based on the new ADD is reduced as a result of the partial
collapse of the structure: Where a predicate was previously needed to differentiate between
two class words that differed only in the order of their class labels, this evaluation step
becomes redundant. Moreover, the final aggregation step reduces to finding the maximal
component of a single class vector.

Figure 3.6 shows the result of the class frequency abstraction for our running example.
The question arises if we can push the idea of abstraction further, i.e. if there exists an algebraic
structure that abstracts from V and, at the same time, maintains its compositionality. It turns out
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Figure 3.7: Most frequent label abstraction of aggregated Random Forest (majority vote).

that maintaining only the result of the majority votes violates the compositionality requirement.
In fact, knowing the result of the majority votes for two distinct Random Forest gives no clue
about the majority vote of the combined forest. Thus the most frequent class abstraction can only
be applied at the very end, after the entire aggregation has been computed compositionally. The
class frequency abstraction based on class vectors V provides the most concise compositional
abstraction. Any further reduction directly leads to potential compositionality violations or, as
we say, the class frequency abstraction is fully abstract for this scenario. Thus taking the formerly
defined model transformation dy to iteratively aggregate the trees of a Random Forest is provably
the best we can do.

Only the subsequent monadic transformation mv that transforms a given class vector ADD
to a pre-evaluated class ADD, holding the majority vote already in its terminals, remains to be
defined. With ADDs, we can define this monadic transformation simply on the carrier set, i.e.
on the class vectors. For any class vector v € NICI the majority vote is defined as

mv(V) 1= argmax,.cVe.

Note that mv does not project into the same carrier set but rather from one algebraic structure
V into another C. However, these transformations can be applied to the corresponding ADDs in
the very same way as other operations can be. We can therefore define the final transformation
of a Random Forest with its decision trees t = fo, #1, ..., t,_1 as

dc(t) := mv(dy(1)).

Post-processing vector ADDs in this way has, again, quite an effect: Both size and running
time are reduced for the same reasons as before, however, the coarser abstraction leads to stronger
reductions. Moreover, the aggregation step for determining the final decision of the Random
Forest, the majority vote, is no longer necessary.

Fig. 3.7 shows the result of the most frequent class abstraction for our running example.
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Figure 3.8: Most frequent label abstraction of aggregated Random Forest (majority vote) without
semantically redundant nodes.

It turns out that the transformations discussed so far are not yet sufficient to guarantee true
scalability, and this is despite the fact that they are optimal. The reason for this shortcoming is
that all predicates are interpreted symbolically and their semantics are not taken into account.

When aggregating the trees of a Random Forest they all use varying sets of predicates.
In contrast to simple Boolean variables, predicates are not independent of one another, i.e.
evaluation of one predicate may yield some degree of knowledge about other predicates. For
example, the predicate petallength < 2.45 induces knowledge about other predicates that
reason over petallength: When the petal length is smaller than 2.45 it cannot possibly be greater
or equal to 2.7 at the same time. This interplay is not taken care of by the symbolic treatment of
predicates we followed until now.

Unsatisfiable path elimination, as illustrated by the difference between Figure 3.7 and Figure 3.8
for our running example, leverages the potential of a semantic treatment of predicates with
significant effect:

* The size of decision diagrams is drastically reduced, and even

* the running times for classification further improves because semantically redundant
decisions are eliminated.

Unsatisfiable path elimination depends on previous powerful abstraction: The trees in the
original Random Forest have no unfeasible paths by construction. They are introduced in the
course of our symbolic aggregation, which is insensitive to semantic properties.

The compositionality of the Random Forest transformation is fully preserved. Unsatisfiable
path elimination can be applied at any time in the process and, in particular, during the stepwise
transformation, before the final most frequent label abstraction, and also at the very end. This
avoids that intermediate decision diagrams grow too large which would inhibit the scalability.

In contrast to the previous transformations, the elimination of unsatisfiable paths is not de-
terministic and, as a consequence, normal forms are no longer guaranteed. Thus our approach
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may yield different decision diagrams depending on the order of tree aggregation. It is, however,
guaranteed that the resulting decision diagrams are minimal.

Unsatisfiable path elimination is a hard problem in general but in the here considered cases it is
polynomial. ! Our corresponding implementation uses SMT solving to eliminate all unsatisfiable
paths.

All transformations build upon ite and algebraic operations on ADDs, all well-known proce-
dures on the data structure. From the correctness of these primitives follows also the correctness
of the here proposed transformations. The corresponding proofs are straightforward and essen-
tially delegate the correctness argument to correctness proofs of the ADD primitives. Specific
are here only the considered algebraic structures:

* class words (Def. 12) with concatenation to faithfully resemble the individual outcomes
of the votes of the individual decision trees,

* class vectors (Def. 13) with addition to aggregate the outcome to an accumulated frequency
per class, and

* the maximum frequency operation to precompute the majority vote.

A heuristic factor remains, the choice of predicate ordering, however, it impacts only the size
of the resulting ADDs. We rely on the established technology implemented in the ADD-Lib [93]
and in CUDD [94] to obtain good results also in this sense. Please note, that all transformations
are semantics-preserving independent from the chosen ordering.

Theorem 2 (Correctness of Random Forest Transformation) The transformations of a Ran-
dom Forest to a class word ADD, to a class vector ADD, and to a class ADD are semantics-
preserving.

Unsatisfiable path elimination is its own field of research and, in contrast to the transformations
above, there exist no normal forms in these cases. This is due to the fact that infeasible paths are
treated as don’t cares, and it is well-known that such a treatment does not lead to normal forms.

On the other hand, it is straightforward to step-wisely check the satisfiability of a path whenever
the individual steps, i.e. the predicates, are decidable. This is obvious for the relation-based
class of predicate considered here and for Random Forests in general. As each normal form has
only finitely many paths, eliminating all unsatisfiable paths can be done effectively. In fact, this
analysis is not a bottleneck of our construction.

Thus the correctness of unfeasible paths reduction only relies on the correctness of the used
SMT solver for, in this case, quite simple predicates.

Theorem 3 (Correctness of Unsatisfiable Path Elimination) The transformations of a Ran-
dom Forest to a class word ADD, to a class vector ADD, and to a class ADD with subsequent
elimination of unsatisfiable paths are semantics-preserving and every path in the resulting dia-
grams is feasible.

IThere are of course other theories for which it becomes an exponentially hard or even undecidable problem.
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Figure 3.9: Average running time for classification over all examples in the Iris dataset [89].

Verifying the underlying ADD implementation is clearly a topic on its own. We can, however,
check the correctness of the transformations via exhaustive testing:

* In the purely discrete case, we can simply compare the results for all possible cases in the
original Random Forest with those in the derived ADD.

* In the continuous case, like in the running Iris example, we can semantically partition the
input space according the distinguishing power of the involved predicate thresholds: In
this case we compared the results for inputs covering all feasible paths in the derived ADD.

In this way, we can verify that the implementation worked correctly in all cases that we report in
our experiments.

The three tree accompanying example is useful to explain the concepts but inadequate to
illustrate the impact of our radical aggregation. For the same Iris dataset, we can build much
larger Random Forests and compare their size and running times for the various transformations
discussed (Fig. 3.9 and 3.10). In addition to that, we analysed the approach on various other
datasets from the UCI Machine Learning Repository [95] (Tab. 3.1 and 3.2). All the reported
classification time and size results were determined as the average over the entire corresponding
data sets. For the Iris flower example these are 150 records, a number also explaining the smooth
result graphs.

Our implementation relies on the standard Random Forest implementation in Weka [80] and
on the ADD implementation of the ADD-Lib [93]. Please note that the considered datasets have
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100
Dataset Random Forest Final ADD
Balance Scale 802.21 7.71 (-99.04%)
Breast Cancer 1,298.72 | 17.12 (-98.68%)
Lenses 452.50 | 3.67 (-99.19%)
Iris 436.11 | 6.82 (-98.44%)
Tic-Tac-Toe 1,066.66 | 14.25 (-98.66%)
Vote 693.57 | 9.02 (-98.70%)
1,000
Dataset Random Forest Final ADD
Balance Scale 8,014.12 | 7.73 (-99.90%)
Breast Cancer 13,020.03 | 17.11 (-99.87%)
Lenses 4,431.42 | 3.67 (-99.92%)
Iris 4,395.77 | 6.97 (-99.84%)
Tic-Tac-Toe 10,733.68 | 14.22 (-99.87%)
Vote 6,921.56 | 8.33(-99.88%)
10,000
Dataset Random Forest Final ADD
Balance Scale 80,277.03 | 8.16(-99.99%)
Breast Cancer 130,361.20 | 17.73 (-99.99%)
Lenses 43,883.79 | 3.67 (-99.99%)
Iris 44,043.89 | 7.01 (-99.98%)
Tic-Tac-Toe 107,300.69 | 14.18 (-99.99%)
Vote 69,216.62 | 8.30(-99.99%)

Table 3.1: Running time improvements for classification with Random Forests of size 10.000 for
other datasets [95].

been developed with evaluations of this kind in mind, by independent parties, and that we are not
using any additional data for our transformation. Thus our analysis can be considered unbiased.

Optimising the classification time is the primary goal of our approach. As wall clock time
measurements are very sensitive to implementation details and machine profiles, we decided
for the, in our eyes, more objective measure of step count for performance analysis. As steps
we consider here the steps through the corresponding data structures, and in cases where the
most frequent class must be computed at runtime, we account for one additional step per read.
For both, the original Random Forest and the class word-based decision diagram these are n
additional steps and the class vector variant needs |C| additional steps.

Figure 3.9 shows the average evaluation times of the decision models for Random Forests of up
to 10,000 trees. The evaluation time of the original Random Forest grows linearly as expected:
every new tree contributes approximately the same running time. Due to the large number of
trees relative to their individual sizes our measurements appear as an almost straight line.

Already, the class word-based diagrams (see Class word DD in Fig. 3.9) reduce the classifica-
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Figure 3.10: Sizes of the Random Forest and its semantically equivalent decision diagrams.

tion time significantly in comparison to the original Random Forest. This is due to the suppression
of redundant predicate evaluations. In fact, the overall classification time is dominated by the
linearly growing time to compute the most frequent class in each terminal word.

The reduction to just |C| terminal nodes of the class vector-based variants has two effects:

* A partial collapse of the decision diagram: it is no longer essential which tree proposes
which class, unifying all cases where the various classes are equally often proposed.

¢ Reduction to a constant overhead for the final aggregation step, in this case |C]|.

The evaluation time reductions are again quite significant, only the space requirement got, like
for the class word-based variant, out of hand very soon (Fig. 3.10), explaining the cut-off in
Figure 3.9.

Whereas the previous two model structures can directly be computed compositionally, the
most frequent label abstraction, i.e. the evaluation of the majority vote at compile time, can only
be applied at the very end. Thus its construction has the same limitation as the class vector
variant, and its impact on the size of the corresponding decision model is moderate (Fig. 3.10).
Its impact on the evaluation time is, however, quite substantial (Fig. 3.9): Many of the internal
decision nodes have become redundant by just focusing on the results of the majority vote.

Breathing semantics into the decision diagrams by unsatisfiable path elimination overcomes
the scalability problems that are due to the enormous space requirements. In fact, it avoids the
exponential blow-up in size in all three variants, with these diagrams even becoming significantly
smaller than the original Random Forest (see DD* in Fig. 3.10). Moreover, classification times
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100
Dataset Random Forest Final ADD
Balance Scale 21,720 137 (-99.37%)
Breast Cancer 55,172 | 3,501 (-93.65%)
Lenses 1,518 11 (-99.28%)
Iris 1,312 722 (-44.97%)
Tic-Tac-Toe 55,232 | 1,563 (-97.17%)
Vote 9,768 | 1,337 (-86.31%)
1,000
Dataset Random Forest Final ADD
Balance Scale 214,844 139 (-99.94%)
Breast Cancer 546,504 | 3,647 (-99.33%)
Lenses 14,132 11 (-99.92%)
Iris 13,492 | 1,458 (-89.19%)
Tic-Tac-Toe 570,976 | 1,593 (-99.72%)
Vote 97,770 | 1,168 (-98.81%)
10,000
Dataset Random Forest Final ADD
Balance Scale 2,158,330 144 (-99.99%)
Breast Cancer 5,494,682 | 3,760 (-99.93%)
Lenses 136,986 11 (-99.99%)
Iris 135,952 | 1,267 (-99.07%)
Tic-Tac-Toe 5,670,532 | 1,529 (-99.97%)
Vote 988,358 | 1,148 (-99.88%)

Table 3.2: Decision diagram sizes for Random Forests of size 10.000 for other datasets [95].

are drastically reduced in all three cases (Fig. 3.1). In fact, the classification times eventually
stabilise, illustrating the key feature of Random Forests, the reduction of the learner’s variance
(see DD* in Fig. 3.10). As sketched in Tables 3.1 and 3.2 these observations carry over to other
popular data sets in the UCI Machine Learning Repository [95].

ADD-based program optimisation allows for quite substantial improvements in an application
of practical relevance: Random Forests. Both, the reduction in running time and size of the
final machine-learned model are impressive and exceed our initial expectations. This success
was achieved on multiple popular datasets and proves the power of ADDs as an IR for program
optimisation. Where the input format, in this case the Random Forest, facilitates a transformation
to ADDs, the inherent optimisation and additional semantic optimisation unfold the true potential
of the data structure. The hope is that this success is not limited to Random Forests but that it
generalises further, to other implicit programs in the field of machine learning and beyond.
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Figure 3.11: Explanation Binary Decision Diagram (BDD) for the class Iris setosa (15 nodes).

3.3 Towards Explainability

The initial motivation for the aggregation of Random Forests was to improve their running time
and to reduce their size. However, the developed approach to aggregation and abstraction is also
a powerful tool for another independent discipline: Explainability [2, 1]ap. Unlike the original
Random Forest, which is considered an uninterpretable black box model [29], the aggregated
ADD condenses its semantics concisely. Like decision trees, the resulting tree-like structure can
be considered an interpretable white box model [29]. Continuing the sequence of abstracting
ADD transformations, we can generate even better explanations for the classification models,
which focus on specific aspects.

Explainability is one of the hot topics in Machine Learning (ML) today. With increasingly
complex machine-learned models like Deep Neural Networks (DNNs) and ensemble methods
like Random Forests, it has become difficult to understand the decisions made by these models.
At the same time, it is crucial to understand and explain exactly these decisions when they directly
impact people’s lives, may it be for credit standing, medical diagnosis, or automated driving.

With the ADD-based aggregation, we can achieve exactly this explainability goal for Random
Forests and solve the following three problems [29]:

* The Model Explanation Problem is solved with the aggregated ADD that realises precisely
the same classification function as the original Random Forest (see Fig. 3.8).

» The Class Characterization Problem is solved with a derived BDD that precisely charac-
terises the forest’s classification semantics with regard to one fixed class (See Fig. 3.11).

* The Outcome Explanation Problem is solved with a minimal conjunction of (negated)
predicates that are sufficient to guide the sample into its result class according to the
model.

The solution to the model explanation problem was essentially discussed in Section 3.2. The
final aggregation is a single redundancy-free ADD that is as easy to understand as the usual
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decision trees. For this reason, it can be considered the most concise ADD and an ideal form
of model explanation for random forests [29]. Figure 3.8 shows this model explanation for the
running example of the Iris classification.

Continuing the sequence of abstracting transformations, we can also address a new notion
of explainability, the class characterisation problem [1]ap. Here, the model explanation is
limited to just one of the classes, allowing for a simpler explanation of just one aspect. Class
characterisation is based on a transformation of the model explanation model into a BDD that
characterises only the chosen class, e.g. Iris sefosa. Moving from the majority vote algebra
to the standard Boolean logic via class projection naturally continues our line of abstraction.
The resulting BDD is an explanation of the original Random Forest’s behaviour that provides a
precise and very focused explanation for when a certain class is chosen.

Figure 3.11 shows the class characterisation for the class Iris sefosa which has only 15 nodes,
in comparison to the 50 nodes of the model explanation (Fig. 3.8). In fact, the sum of the number
of nodes in the class characterisations for all three classes is smaller than 50, which indicates the
potential for a corresponding semantic decomposition of the model explanation.

Class characterisation is particularly interesting because it allows us to reverse the classification
process: instead of determining a class for a certain sample, we obtain a characterisation of the
set of all samples that will be classified as the given class. This change of perspective may
have an important impact, e.g., in marketing contexts for switching from a customer to a product
perspective [2].

For a responsible use of automatically derived classifications, the OQutcome Explanation Prob-
lem is essential [29]. Class characterisations allow us to solve this problem in two further
steps:

» Path-based explanation. Focusing on just one input at a time allows us to further refine
the obtained explanation. When evaluating the aggregated BDD resulting from the first
step, the conjunction of the components of the corresponding predicate path, i.e., of the
(negated) predicates along the classification trace, provides a sufficient condition for the
decision made. E.g., considering the sample

petallength = 2.6, petalwidth = 1.5, petallength = 2.65, sepallength = 6.9,
we obtain

petallength > 2.45
A petalwidth > 1.45 A petalwidth < 1.65
A petallength > 2.6 A petallength < 2.7
A sepallength < 7.05.

» Simplifying conjunctions. The collected predicates along a trace may yield redundancies
— even when unsatisfiable paths were eliminated from the ADD. Removing choices from
the conjunction as long as redundant choices exist yields a minimal explanation of the
finally predicted class. In our example, petallength > 2.45 is redundant relative to
the stricter predicate petallength > 2.6, which overall leads to a conjunction with five
predicates.
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3.4 General-Purpose Programming Languages

ADDs have already proven their potential as an IR for suitable program domains, exemplified by
the discussed DSLs as well as the machine-learned model of a Random Forests. In both cases,
the input program is of a very specific domain whose specific properties could be exploited for
the transformation to ADDs and even for subsequent optimisations on that IR. These results are
quite impressive, however, they are focused on the very specific program domains that they were
developed for. The question arises if these approaches are applicable to more general program
domains, and possibly to programs written in some general-purpose programming language.

With the shift from a specific domain to a general-purpose programming language, there are
no longer any specific properties known about the program domain that naturally relate to ADDs
as an IR in the compilation pipeline. Hence, we cannot exploit any specific properties of the
input program but only those that come with the most general of all programming languages.
The while language [96] is a common representative for such a general-purpose programming
language and, for this reason, also serves as an input format here. Although the techniques
in [3, 8, 6, 7]ap very directly rely on the relation between their input programs and the chosen
IR, i.e. the ADDs, it is surprising how seamlessly some ideas generalise to the while language
and consequently to many similar languages.

Traditionally, program optimisation techniques like redundancy elimination [18, 19, 20], code
motion [21], strength reduction [97], constant propagation/folding [22], and loop invariant code
motion [23] are quite syntax-oriented and mostly preserve program structure. Programs such as
an iterative implementation of computing the n-th Fibonacci number typically remain untouched
by such optimisations.

A transformation to ADDs as an IR, on the other hand, is quite different: It constitutes a new
paradigm for program optimisation which is based on aggressive aggregation, i.e. on a partial
evaluation-based decomposition of acyclic program fragments into a pair of computationally
optimal structures: an ADDs to capture conditional branching and parallel assignments that refer
to an Expression DAG (ED) which realises a redundancy-free computation.

The point of this decomposition is to obtain large program fragments which can be optimised
using ADD technology, SMT solving, and expression normalisation without being disturbed
by side effects. Not only are multiple occurrences of a term guaranteed to be semantically
equivalent, like in Static Single Assignment (SSA) form [15], but the large size of the arising
aggregated expressions further increases the optimisation potential.

This approach uses ADDs at its core and enables provably optimal transformations with some
heuristic aspects in a transparent fashion:

1. First, cut points, similar to the ones in Floyd’s inductive assertion method [98], are used to
split the program into acyclic fragments. This step is heuristic and may be enhanced by,
e.g., loop unrolling to increase the optimisation potential.

2. Second, the resulting acyclic fragments are symbolically executed, decomposing them into
a path condition and a computational part in terms of a parallel assignment, a canonical
procedure.

3. Finally, the path conditions are transformed into ADDs which are symbolically canonical
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1 if =(1 < n) {

2 fib = 1

3 } else {

4 prev := 1;

5 fib := 1;

6 while 2 < n {
7 tmp := prev + fib;
8 prev := fib;
9 fib := tmp;
10 n :=n -1
11 }

12 }

Figure 3.12: Iterative Fibonacci program in the while language (Def. 14)

for a fixed predicate order. The terminals of the ADDs hold the corresponding pairs of
parallel assignment and successor cut point, allowing for program execution on the bases
of this IR. Expressions that occur during this decomposition are stored in a dedicated data
structure, the ED. Predicates of the ADD and right-hand sides of parallel assignments both
simply reference nodes in this ED.

4. Optionally, further optimisations are applied such as a removal of infeasible paths in the
ADD and a normalisation of the ED, both using an SMT solver, in our case Z3 [99]. This
optimisation is similar to the elimination of infeasible paths in the transformed Random
Forest ADDs.

Like all ADD-based program optimisations, we present also this one with the help of a running
example: the well-known iterative implementation of the Fibonacci function (Fig. 3.12). This
program is typically considered to lack any optimisation potential, yet with our ADD-based
optimisation we can drastically improve its running time. The point here is that our technique
supports loop unrolling as a first class optimisation technique: It is tailored to optimally aggregate
large program fragments — especially those resulting from multiple loop unrollings — while
only incurring the expected linear increase in size. In fact, we are able to achieve a performance
improvement during the computation of the n-th Fibonacci number of more than an order of
magnitude.

The running example is implemented in a simple while language [96] that we chose as a
representative formalism for input programs.

Definition 14 (While Language) Let V be a set of integer variables with x € V. The while
language comprises programs S according to the following Backus-Naur Form (BNF):

S 1= x:=AE | skip | S; S | ifBE {S} else{S} | while BE {S}
AE == V | Z | AE+AE | AE — AE | AE « AE | AE/AE
BE := BEVBE | BEABE | -BE | AP
AP = AE < AE | AE = AE | true | false
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We refer to program expressions of the form AE as arithmetic expressions, BE as Boolean
expressions, and AP as atomic propositions.

In Figure 3.13, the Fibonacci program (Fig. 3.12) is equivalently presented in the form of a
program graph [100]. Node st represents its start and node te its termination.

The key idea of our compilation approach is the radical decomposition of an input program
into side-effect-free fragments that represent its control and data flow independently from one
another. This decomposition involves three main steps:

» decomposition of the program graph into acyclic fragments using cut points along the lines
proposed in Floyd [98],

* path-wise separation of the conditional control flow and the computational aspect through
symbolic execution, and

* path aggregation to represent an entire acyclic program fragment in a single ADD.

For every acyclic fragment, these first three steps result in one ADD whose terminal nodes
determine the next effect on the concrete program state and the point of continuation. An ED
that comprises all the computations required anywhere in the fragment eliminates redundant
arithmetic expressions. These two data structures together constitute the optimised program and
allow for its rapid evaluation.

In the following, we show how to decompose a while program (Def. 14) into its control and
data flow. In order to achieve this and also reason about the correctness of our decomposition,
we introduce a Structural Operational Semantics (SOS) that combines concrete and symbolic
domains and which processes a tuple (S, ¢, cg o, o) containing

1. a while program S (Def. 14),

2. aBoolean variable c called path-taken indicator that states if the current path is the actually
executed path w.r.t. the concrete program state,

3. a Boolean expression cy (Def 14) called path condition that symbolically aggregates
branching conditions on the current path,

4. a concrete program state o that stores the current (integer) values of program variables,
and

9

. a symbolic program state oy called parallel assignment that stores variable values as
arithmetic expressions based on the initial program state.

The path-taken indicator ¢ (second component) and concrete program state o (fourth com-
ponent) are only added to our representation in order to facilitate reasoning on the correctness
of our approach. Only the third and fifth components, namely the path condition and parallel
assignment, are required for our decomposition-based compilation.

We distinguish concrete and symbolic program states along with their corresponding semantics
as follows:
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Figure 3.13: Program graph of our iterative Fibonacci program (Fig. 3.12).



Definition 15 (Concrete and Symbolic State) LerV be a set of integer variables and AE denote
arithmetic expressions (Def. 14) over symbolic versions of variables in V. Then a function
o : V. — Z is called concrete program state whereas a function oy : V — AE is called
symbolic program state.

For any expressiont € (AE UBE), [ t |(0) denotes the evaluation of expression t with respect
to the concrete program state o, and [ t |(oy) denotes the Herbrand interpretation [101, 102]
of expression t with respect to the symbolic state og.

The semantic evaluation [ - | extends naturally to symbolic program states because the latter
map variables to expressions. For any x € V, the resulting function is defined as

(L oa 1(0))(x) = [ ou(x) J(0).

The difference between symbolic and concrete state is best illustrated with the help of an
example. Let x and y be two variables and let # = x + y be an arithmetic expression. For
a concrete program state o = { x +— 5,y +— 4 }, the semantics of ¢ yield a numeric value
[t (o) =9. With a symbolic program state oy = { x — 3 +2,y — X }, on the other hand, the
very same term evaluates to a symbolic term [[ 7 [|(cy) = (3 +2) + X that is not further evaluated
(Herbrand interpretation).

Note that the notions of symbolic execution [103] and iterated Herbrand interpretation are
strongly related. We choose the latter for presentation due to its clear formal roots. Other than
symbolic execution, our main approach does not partially evaluate expressions, for example the
sum of two integer constants. However, such optimisations can of course be incorporated into
our compilation.

For the two domains of concrete and symbolic states, respectively, we can define an SOS that
executes a while program concretely and symbolically at the same time:

Definition 16 (Combined-Domain SOS) For any (concrete or symbolic) program state o, let
o{y/x} denote the substitution of x by y in o. Let "o’ above a Boolean operator denote that this

45



operation is evaluated semantically. Then our Combined-Domain SOS is defined as follows:

assign (x:=t,c,cg,0,0n) — {c,cg,o{[ t |(o)/x},ou{l t 1(orn)/x})

ip -
(skip,c,cq,0,00) — {c¢,CH,0,0H)

St e,cn,o,0m) — (81, ¢ ey 0’ 0g)

comp
Y (Si S ccm o on) — (S) S el o o)

(St.c.cn.0.0m) — (s cp o oh)

comp,

<S1’ SZ’ ¢, CH, O, O—H> — <SZ9 C/’ C, ) a—l9 O-I,_I

l:f .
1 (1fb{S1} else{S2},c,cy,0,0q) — (Si,cAlb(o),cyg Al b1(oy), o, o)

i

(ifb (S} else {Sa}.c.cm.0.om) — (Spc AS[bNo)en A=l b Ion).onom)

(while b {S},c,cy,o,0y) — (ifb{S; while b {S}} else {skip},c,cy,o,0H)

while

As usual, the notation (S, c, cy, o, og) —* (8, ¢/, C}r o’, 0'1’{) denotes a sequence of SOS rule
applications.

Figure 3.14 illustrates the application of our SOS rules based on the fragment
n:=n-1; while 2 < n {tmp := prev + fib; prev := fib; fib:=tmp, n:=n- 1}

of our Fibonacci program up to the program’s termination (left branch) or a repetition of that
fragment (right branch). Only the right branch would be taken based on the concrete program
state. This fragment therefore represents the paths from node 7 to nodes te and 7 in the program
graph of Figure 3.13. Corresponding program fragments (first component of the SOS tuple)
are omitted in favour of edge annotations. Upper case letters represent initial symbolic values
of program variables, e.g. F is the initial symbolic value of the program’s variable fib. The
difference between concrete and symbolic semantics becomes apparent when comparing the
program states o and og. The Combined-Domain SOS (Def. 16) is equivalent to the common
concrete SOS [104] when (i) ignoring the components ¢, cy, and oy as well as (ii) adding the
side condition [[ & JJ(o7) = #t to rule if] and [[ b ]J(o7) = ff to rule if,. Note that any path of the
Combined-Domain SOS would be part of the common concrete SOS if and only if ¢ = .

Based on these SOS rules, we can formulate the main correctness theorem of this decomposi-
tion:
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c=1t
cy = true
oc={n—>4,prev 5, fib+ 8 tmpr— 8}
og={n— N,previ> P, fib— F,tmp+— T }

n:=n-1

c=ff c=tt
C1-1=2<ﬁN—1 C1-1=2<N—1
oc={...} o={...,preve 5 fib—38§,...}
og={...} og={....,prev> P, fib— F,...}
tmp = prev + fib
c=1t
CH=2<N—1

o={...,fib— 8tmp— 13}
og={...,fib— F,tmp— P+ F}

prev := fib

c=1
CH=2<N—1
o={...,prev 8 tmpm— 13}

og={...,prev> F,tmp— P+ F}

fib:=tmp

c=1

cg=2<N-1
o={...,fib—13,... }
og={....fib—>P+F, ...}

Figure 3.14: Execution of SOS rules (Def. 16) based on a loop program fragment of the iterative

Fibinacci program (Fig. 3.12). This fragment extends from node 7 to nodes te (left
branch) and 7 (right branch) in Figure 3.13.
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Theorem 4 (Correctness of Control-Data-Decomposition) Let id denote the symbolic pro-
gram state that maps each x € V to its symbolic version. Let

(S,c,cq, 0,idy —" (S, ¢/, e, 0, o)
with ¢ = [ cg (o). Then the following holds for all expressions t € (AE U BE):
[z1c") =111 1(cy) No)

Intuitively, Theorem 4 states that the evaluation of an expression ¢ interpreted via oy with
respect to the initial state o~ is semantically equivalent to evaluating ¢ in the current state o’
The theorem holds regardless of whether or not a given chain of SOS rule applications is part of
the traditional concrete SOS semantics. A corresponding proof follows from a straightforward
induction over the SOS rules (Def. 16) and the corresponding expressions (Def. 14).

The following corollary follows directly from Theorem 4 and the fact that our path-taken

indicator ¢ could alternatively be stored as a Boolean variable in the program state:

Corollary 1 Let V be the set of program variables and let id denote the symbolic program state
that maps each x € V to its symbolic version. Let tt denote the semantic value of Boolean
constant true and let

(S, 1t true, o, idy —" (S',c’, ey, o', 0pp).
Then, the following holds:

¢ = cy o)

and o’ = [ o 1(0).

The first part of this corollary asserts that our path condition is correct, the second part is
the reason why we call the symbolic program state parallel assignment: Each variable can be
updated independently of others because for each such x € V, the expression o7, (x) is only based
on symbolic versions of variables in V and constants. This side-effect-free update mechanism
together with our aggregated path condition yields a decomposition of our program into data and
control flow, respectively.

In the end, we want to apply the discussed decomposition to entire programs of the while
language. The goal is a static transformation of a given program into a version where control
and data are fully decomposed. Alone with the SOS rules (Def. 16), this is not possible: We do
not have a bound for the length of an execution path and a static decomposition would therefore
not terminate.

In order to circumvent this problem, we segment a given input program into acyclic fragments
which we then decompose individually. Our method is similar to the path variant of Floyd’s
inductive assertion method [98] for program verification: We choose as cut points

e the start node,

2This is an instance of a well-known substitution lemma.
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¢ the termination node, and
¢ one node for each while construct

of a given while program (Def. 14) to ensure that they interrupt all loops. Based on such a
choice, every cut point has a statically known number of outgoing paths to successor cut points,
and these outgoing inter-cut point paths have a statically known length. Because of these static
bounds, a purely symbolic execution of such an acyclic fragment starting at a cut point u is
guaranteed to terminate. To execute a program fragment S symbolically means to execute the
SOS rules (Def. 16) while (i) ignoring the path-taken indicator ¢ and concrete program state o,
and (ii) starting with (S, -, true, -, id).

We can use these acyclic program fragments between cut points to execute the original program
while preserving its semantics:

Theorem 5 (Compositionality) Let

(S, tt,true, o, idy —* (S’ tt,cy, o', opp)s

(8", tt, true, o', idy —" (S”, tt,cpy, ", opp).
Then the following holds:
o” = oy I og 1))

This theorem follows straightforwardly from two applications of Corollary 1.

In a while program, every node in the corresponding program graph [100] can be annotated
with a fragment of that program. 3 As a consequence, we can specify cut points visually as
nodes in that graph.

Figure 3.13 illustrates a choice of cut points for our Fibonacci program as nodes that are
coloured grey. In addition to start node st and termination node te, we choose node 7 as a cut
point in order to interrupt the only while loop3 —- 4 — 5 — 6 — 7 — 3 in this program.
The program fragment corresponding to cut point 7 and the matching SOS rule application up
to successor cut points are the same as used in Figure 3.14.

The actual choice of cut points for a given input program is fundamental for later steps in our
optimisation process. This set of cut points therefore serves as a parameter of our optimisation
relative to which we can achieve optimal results, but which we choose heuristically. Usually, the
longer the fragments of a given program based on chosen cut points are, the more potential for
optimisation exists.

Note that in our Fibonacci program, choosing node 7 (instead of 3) to interrupt its loop results
in the path st - 1 — 2 — 3 — fte to be kept uninterrupted by cut points. This means that our
approach allows us to bypass a loop’s cut point if that loop’s body will not be entered.

With the segmentation of the original program into acyclic fragments and their subsequent
piecewise symbolic execution, we have obtained a finite number of program fragments, each
characterised by the symbolic execution traces up to their successor cut points:

3Note that due to the SOS rule for the while construct, a fragment of a program does not necessarily have to be a
substring of that program.
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1<NA2<N,

{ prev — 1,

fib—1+1,
t 1+1
I <NA2Z£N, mpr>1+1} Nt
< - L
revie— 1,
{p. {n—N-1,
fib— 1}
previ— F,
14N fib— P+ F,
{fib!—;l} tmp+— P+ F}

Figure 3.15: Contracted cut point paths for our Fibonacci program (Figure 3.12).

Definition 17 (Contracted Cut Point Path) Let u be a cut point associated with the program
fragment S and let u’ be one of its successor cut points associated with the program fragment S’.
Moreover, let

(S, true, -, id)y —"* (S, cH, TH).

We call

CH,OH ,
u — u

a (contracted cut point) path from u to u’ with the path condition cy and the parallel assignment
OH.

Figure 3.15 illustrates this contracted view on our running example, the Fibonacci program
(Fig. 3.12). For brevity, we omit all variables in the parallel assignments that remain unaffected,
i.e. those that map variables to their respective symbolic version.

Because contracted cut point paths are free of side effects, the compositional aggregation
of a cut point’s outgoing paths yields a very natural fragment-wise transformation of the input
program:

* We will first transform these paths individually to ADDs.

* On this basis, we are able to aggregate them into a single ADD per cut point that completely
defines the corresponding program fragment’s behaviour. This aggregation is very similar
to the aggregation of a Random Forest’s trees into a single aggregated ADD (Sec. 3.2).

Just like we considered one tree after the other in the Random Forest transformation, we will
here consider one contracted cut point path after the other. Let us first consider one such path
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, 7, { prev > 1,

1 fib— 1+1,
tmpr—1+1}

J

7

Figure 3.16: Exemplary ADD for the contracted cut point path from node st to node 7 in Fig-
ure 3.15 with the path condition 1 < N A2 < N.

and its respective path condition. The Boolean expression over atomic propositions (Def. 14)
can be represented by means of a BDD.

Because the atomic propositions that appear in our path conditions are not necessarily in-
dependent from one another, canonicity and minimality are only guaranteed on the level of
their Herbrand interpretation. Despite this, decision diagrams have proven to be an effective
representation, already in the Random Forest transformation.

Figure 3.16 visualises the decision diagram that results from the example path condition
1 < N A2 < N (Fig. 3.15). Note that this diagram is not exactly a BDD as its terminal nodes
differ from Boolean values. Instead, we use ADDs for two reasons:

* For every path, we intend to store its effect on the program state, i.e. (i) the parallel
assignment and (ii) the subsequent cut point, directly in the terminal nodes.

* We associate these decision diagrams with an algebraic structure that facilitates their
composition. This is in fact key to our aggregation of a cut point’s outgoing paths.

Both, parallel assignment and successor cut point, are applicable in case the path condition
holds and they are irrelevant otherwise. Hence, it is only natural to substitute them for the BDD’s
1-terminal and, for distinguishability, we also replace the BDD’s O-terminal with a dedicated L
element. In this way, any contracted path can be transformed to an ADD and we denote this
transformation with dd. The result is an ADD that is structurally analogous to the path condition
BDD. The underlying algebraic structure is, in this case, a lattice:
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Definition 18 (Path Aggregation Lattice) Ler U be a set of cut points and let Ly be a set of all
parallel assignments. We define the path aggregation lattice A = (UXZg)U{ L, T },0) with
its supremum

a ifa=b# 1L

a ifb=1L+#a
aob:=

b ifa=L1+#b

T otherwise.

A forms a flat lattice with L and T as its least and greatest element, respectively. Note
that T serves no purpose here other than the natural completion of the structure and will never
appear in our aggregation process. The least element L on the other hand does appear, but only
in intermediate results. Intuitively, we understand L as the undefined case in which the path
condition does not hold.

The transformations of path conditions to BDDs and finally to ADDs constitutes a change in
granularity. Where predicates were previously expressed by means of possibly complex Boolean
expressions (BE in Def. 14), they are now based on atomic propositions only (AP in Def. 14).
Any complexity of Boolean formulas beyond its APs is delegated to well-studied and efficient
ADD routines in a service-oriented fashion.

To allow for a simultaneous evaluation of path conditions, we aggregate all outgoing paths per
cut point. With the supremum operation o we can achieve this in a very simple way: We collect
the most concrete information among all paths. If either of them is undefined, i.e. L, we adopt
the other, more concrete definition.

Being defined on their co-domain, we can easily apply o to the previously constructed path
ADDs. For a given cut point u# with its outgoing paths pg, p1, ..., pn—1, We can construct the
aggregated path ADD for u as the repeated application of o:

dd(u) := dd(po) o dd(py) o - - - o dd(py-1).

Figures 3.17a and 3.17b show the final ADDs per cut point for our running example. Every non-
termination cut point yields one ADD with exactly one terminal node for each of its successor
cut points. Note that these ADDs are not necessarily trees but DAGs that share common
substructures to keep the data structure small — an effect that becomes important for more
complex path conditions.

Because the path conditions induce a partitioning on the Herbrand interpretation of atomic
propositions, the T element will never appear in the aggregation process. For the same reason,
all undefined cases L will eventually dissolve and the resulting ADDs yield only concrete pairs
of parallel assignment and successor cut point.

With ADDs, we have found a program representation that allows us to simultaneously evaluate
all relevant path conditions. At the same time, the program’s semantics remain untouched. Let
[ - 1a(o) denote the standard semantic function to evaluate an ADD that, in our case, yields a
parallel assignment based on some concrete program state o (Def. 15). The correctness of the
aggregated path ADDs follows directly from Theorem 5:
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te, { fib— 1}
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(a) ADD for the start cut point sz.
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te 7

(b) ADD for the inner cut point 7.

Figure 3.17: Aggregated path ADDs of the Fibonacci program.



Figure 3.18: Expression DAG (ED) for our Fibonacci program (Figure 3.12).

Theorem 6 (Correctness of Path Aggregation) Let u be some cut point associated with the
program fragment S, let pg, p1, - . ., Pn—1 denote its outgoing paths, and let

(S, 1, true, o, idy —" (S',1t, cpy, 0, 07py).
Then the following holds:
o’ = [ [ dd(po) o dd(p1) o -+ o dd(pu-1) Ja(c) [(c).

Intuitively, Theorem 6 justifies the use of the aggregated ADD representation to evaluate all
relevant path conditions simultaneously. Its proof is straightforward but tedious by induction
over the aggregated paths and the ADD structure.

The aggregation of paths into equivalent ADDs resolves redundancies among the path condi-
tions per cut point. The problem of duplicate arithmetic expressions, however, remains. These
appear not only in the parallel assignments of the ADDs’ terminals but also in their inner nodes’
predicates, i.e. in the atomic propositions. In fact, the duplication of arithmetic terms is a typical
outcome of symbolic substitution, an operation that we heavily rely on during the course of our
partial evaluation. It is therefore crucial to also eliminate these redundancies.

Achieving this goal is simple: We resolve duplications in the form of an Expression DAG
(ED). Every constant and every program variable becomes a unique node — the atoms of this
data structure. Based on these, the remaining expressions can be represented uniquely and with
references to their respective sub-expressions.

Figure 3.18 shows the ED for our Fibonacci program (Fig. 3.12). With additional optimisations,
especially loop unrolling and expression normalisation, the number of expressions may grow
quite drastically.

With ADDs and the ED, we have found an aggregated representation that finally reaches our
goal: the efficient execution of a given program.

For any given cut point u# and concrete program state o, we can execute the optimised
representation of the corresponding program fragment: We start at the root of u’s aggregated
path ADD and evaluate its atomic propositions based on the concrete program state o. The
effect of the program fragment is not applied until a terminal is reached. Only then, the parallel
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assignment is applied to the program state o~. This execution is semantically equivalent to that
of the original program fragment (Theorem 6).

This fragment-wise execution is sufficient to also execute the original program in its entirety.
Starting with some program state o~ at the initial cut point st, we effectively jump from cut point
to cut point until the termination node te is reached (Fig. 3.15). This iterative piecewise execution
is then semantically equivalent to that of the entire input program (Theorem 5).

The program decomposition introduces a radically new compilation paradigm. It is therefore
not surprising that this method benefits from different optimisation techniques than classical
compilers do.

As we optimise the program on the bases of acyclic program fragments, loop unrolling
becomes a boosting factor to the success of this program optimisation. The resulting larger
acyclic fragments facilitate the success of subsequent optimisation. Its effect is the possibility
for direct jumps over multiple loop iterations in the optimised program representation. This
technique and its effect in this context is discussed in more detail in [4]p.

Similarly to the Random Forest transformation [3]ap, also here, infeasible path elimination
has the potential to greatly simplify our aggregated program representation, the ADDs. Loop
unrolling and predicate reordering, in particular, yield infeasible paths and subsequent treatment
can greatly reduce the diagrams’ depths and sizes. In general, their origin is threefold:

» Already the input program may contain infeasible paths between its cut points, or even
dead code.

* As aresult of loop unrolling, longer paths are considered, some of which may be infeasible.

* Enforcing a particular predicate order may swap atomic propositions which, again, may
result in infeasible paths — this time, however, only the aggregated path ADDs are affected.

It is desirable to detect infeasibilities early in the optimisation pipeline. Already at the stage of
symbolic execution, we can validate path conditions for their satisfiability using an SMT solver.
Rather than fully expanding the execution tree, we discard irrelevant paths early and effectively
cut off all their continuations. This speeds up not only the optimisation process, but, more
importantly, yields smaller ADDs that are faster to evaluate.

The repeated symbolic substitution, especially through multiple iterations of a loop, generates
a great amount of unique arithmetic expressions. Moving from a purely syntactic view to a more
semantic understanding, we can exploit their inherent potential for simplification and condense
these terms to a close to normal form. We delegate this generally non-trivial task to established
SMT solving techniques.

As a result, the overall number of arithmetic operations is reduced. This normalisation also
evaluates expressions already at compile time where possible. At its core, SMT technology
essentially exploits common arithmetic laws and, in case of the Fibonacci example, typically
transforms expressions to their equivalent polynomials:

((h-1)-1)-1)=n-3
(P+F)+(F+(P+F))=3F+2P.
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At the same time, this simplification serves a second purpose: Semantically equivalent ex-
pressions become unified, also syntactically. This effect cascades to atomic propositions and
reduces the overall number of syntactically different predicates in the ADDs where expression
normalisation allows for a smaller and shallower representation. EDs are affected in a similar
fashion: Where the normalisation unifies terms, it also merges nodes in the EDs.

We have discussed four additional optimisations and their anticipated interplay with one
another. Figure 3.19a shows the effect of loop unrolling, predicate reordering, and expression
normalisation on our Fibonacci program. In this example, the loop was unrolled twice and the
predicate order was chosen at random. Arithmetic expressions were condensed to simple forms
such as N — 3 or 3F + 2P, both of which were originally nested.

The resulting ADD contains two infeasible paths that, in this case, result solely from the loop
unrolling. When 2 < N — 3 holds, the truth value of the following two predicates 2 < N — 1
and 2 < N - 2 is already determined. Paths like these unnecessarily complicate the ADD and
are, for this reason, subsequently eliminated. The result is shown in Figure 3.19b: a smaller and
shallower equivalent. An important effect of the presented predicate order is that the biggest step
through the unrolled loop can be evaluated with only one atomic proposition: 2 < N — 3.

To give an impression of the capabilities of this ADD-based program optimisation technique,
we chose the iterative implementation of the Fibonacci function (Fig. 3.12) that appears to
lack any potential for optimisation. We evaluate our aggregated ADD representation under
consideration of the additional optimisations — loop unrolling in particular. Our goal here is a
machine-independent evaluation of the running time to not rely on implementation details at this
stage. We achieve this with a simulated infinite register machine where we account cost of one
per instruction:

* arithmetic and logic operations,
* conditional jump, and
¢ assignment.

We first examine the execution time measured for the original program in comparison to
optimised versions produced by our compiler in which the program’s loop was unrolled up
to 4, 16, or 64 times, respectively. In cases in which our predicate reordering that involves
randomisation is applied, we report the average of 1000 unique measurements. Figure 3.20 shows
the execution times for the original program and the aggregated versions that were optimised by
our compiler with all of the discussed optimisations: expression normalisation, infeasible path
elimination, and our predicate reordering.

Already in the case of 4 loop unrollings, we can observe a declining execution time in
comparison to the original program. Figure. 3.20 clearly shows that variants in which a higher
amount of loop unrolling was performed entail a larger speedup if n exceeds the number of
unrollings. While for small 7, loop unrolling might incur minor execution time overhead due to
an increased average path length from the ADD’s root to its terminals, this overhead is easily
compensated by a drastic speedup for larger n. For the case of 64 loop unrollings and the
computation of fib(150), the measured execution time can be reduced by a factor of 13 in
comparison to the original program.
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Figure 3.19: Impact of additional optimisations on the aggregated path ADD.

57



103 -

102

Execution time of fib(n)

107 -

-------- Aggregated (Unsat, ExprNorm, Reorder, Unroll 16)
== QOriginal

—— Aggregated (Unsat, ExprNorm, Reorder, Unroll 64)
—-—- Aggregated (Unsat, ExprNorm, Reorder, Unroll 4)

20 40 60 80 100 120 140
n

Figure 3.20: Execution times of versions with different numbers of loop unrolling while enabling
all optimisations.
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Figure 3.21: Execution times of different combinations of optimisation techniques, all based on
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In contrast to the comparison in Figure 3.20 where all of our optimisations are enabled,
Figure 3.21 shows the effect of different optimisations on the resulting execution time. The
fastest execution time is achieved when all optimisations are enabled.

Predicate reordering alone has a slightly negative effect as it introduces infeasible paths and
might lead to a redundant evaluation of predicates. Moreover, the infeasible path elimination
alone has no effect as the original input program does not contain any infeasible paths. The
combination of these two optimisations is beneficial as the infeasible path elimination removes
paths in the ADDs which are unnecessarily introduced by our predicate reordering. Expression
normalisation turns out to be essential for the Fibonacci program as it simplifies the expanded
expressions resulting from loop unrolling. This is reflected in Figure 3.21 as the execution times
of variants without expression normalisation are higher compared to those where our expression
normalisation is enabled.

In summary, we have observed that

* loop urolling is crucial to enable the full potential of the considered optimisations with a
large number of unrollings being preferable,

* expression normalisation accelerates the execution because it simplifies expanded expres-
sions that result from loop unrolling, and

* the combination of predicate reordering and infeasible path elimination is beneficial,
whereas individually, these techniques are only helpful in specific cases, e.g. when the
original input program already contains infeasible paths.

Where standard compilers struggle to optimise the example Fibonacci program (Fig. 3.12), our
optimisation approach allows for a drastic speedup of more than an order of magnitude compared
to the original program.

The decomposition of the original program into ADDs with an ED as its auxiliary data structure
constitutes a true generalisation of the previously discussed Random Forest transformation [3]sp.
This generalisation optimises while programs, a representative for general-purpose programming
languages, and applies a very similar transformation. Any Random Forest can naturally be
expressed in the form of an equivalent acyclic while program such that the resulting ADD is
the exact same with both transformations — the Random Forest-specific transformation and the
general while program transformation. In this sense, the here discussed compilation approach
does not only build upon previous ideas but is, in fact, a true generalisation.

The discussed Fibonacci program was chosen as an example that appears hard to optimise.
As such it gives a good impression of the potential for this new compilation paradigm but is by
no means an extensive evaluation. The work on this and other ADD-based program optimisa-
tions continues and some particularly interesting aspects will be discussed in the corresponding
Chapter 5.
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ADD-Lib: A Highly Flexible Framework for Decision Diagrams
and Code Generation

The ADD-Lib [93] is a framework for decision diagrams and constitutes an integral part of this
dissertation. It is the key enabler for all implementations and evaluations that complement the
scientific contributions. The framework is designed with flexibility and ease of use in mind and,
as such, seamlessly adapts to the various algebraic structures.

There exist many implementations of the standard algorithms for Binary Decision Diagrams
(BDDs), Algebraic Decision Diagrams (ADDs), and even for Zero-Suppressed Decision Dia-
grams (ZDDs) [94, 105, 106][107, 108, 109]. However, these realisations lack flexibility at their
core: The underlying algebraic structures, e.g. the standard Boolean logic, are hard coded —
even for ADDs. In CUDD [94], e.g., ADDs are limited to real numbers' and standard arithmetic
operations. The framework is, in fact, so rigid that a change of the algebraic structure imposes a
non-trivial adaptation of the library’s core at compile time — a change that would affect major
parts of the code base.

With the ADD-Lib, we provide a framework that overcomes these limitations: Our decision
diagram framework is highly flexible and puts emphasis on the interchangeability of the un-
derlying algebraic structure. At the same time, the implementation delegates computationally
expensive operations to the well-established and robust C implementation of CUDD in a service-
oriented fashion. In this way, the ADD-Lib inherits its broad range of functions and provides an
easy-to-use yet flexible interface for the most common use cases.

The advantages of the ADD-Lib over other existing decision diagram libraries are threefold:

» The algebraic structure underlying the various ADDs is interchangeable in a service-
oriented fashion. With only a few lines of code, it is possible to fully define a new ADD
variant that takes advantage of the extensive collection of ADD algorithms in the ADD-Lib.

 For analysis, debugging, and presentation purposes, the ADD-Lib comes with visualisa-
tion capabilities that allow its users to get an immediate impression of their in-memory
diagrams.

IReal numbers are represented as double values.
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e Particularly important in the context of program optimisation, the ADD-Lib comes with
code generation capabilities that allow embedding optimal decision diagrams in various
general-purpose programming languages.

Figure 4.1 shows an overview of the ADD-Lib’s architecture. The most important parts of
the API are the XDD nodes and the respective XDDManagers. They represent ADDs in the most
general sense and allow for derived ADD implementations with custom algebraic structures.
Individual nodes, or functions, are exposed through the XDD node interface and provide methods
to invoke all of the defined operations directly. The XDDManager conceptually contains all of
the XDD nodes and ensures their uniqueness and predicate order. It also provides means to create
constants and other primitives.

Many of the common algebraic structures are already implemented in the ADD-Lib. This
extensive example set of ADD implementations is based on the XDD node and XDDManager
interfaces through inheritance.

The library comes with code generators for various languages. These are completely indepen-
dent of the XDD implementations and treat them as data. The visualisation tools are similar in
this sense and utilise the DOT code generator for their renderings.

The ADD-Lib also exposes three other kinds of decision diagrams: ADDs, BDDs, and ZDDs, all
of which are tied to a fixed algebraic structure. The ADD interface represents ADDs as they are
implemented in CUDD with arithmetic operations on floating point values, while BDDs and ZDDs
both operate on the Boolean algebra. These diagram types are exposed for performance reasons
only as they are directly implemented in CUDD and do not require any bookkeeping overhead.
Each of these diagrams can be translated to an XDD with the respective algebraic structure.

At its core, the ADD-Lib is based on CUDD [94]. The low-level API exposes a Java interface
that closely resembles that of the CUDD library. Using this interface gives access to more
functions of the underlying implementation at the cost of complexity. In contrast, the high-level
API is more convenient to use, comes with code generators and visualisation, and delegates all
computationally expensive tasks to CUDD through the low-level APIL.

4.1 Algebra as a Service: Algebraic Decision Diagrams in the
ADD-Lib

The definition of a new algebraic structure requires no more than a specification of its carrier
set and the associated operations. The algebraic structure can be defined directly on the later
co-domain of the ADDs (Chap. 2). That very definition is then plugged into the algorithms for
the corresponding operations on the decision diagram data structure.

In exactly the same way, the ADD-Lib realises its ADDs. Based on a concise description of
the algebraic structure, it provides the corresponding ADDs with the full range of functions on
them. No additional effort is required by the user and ADD operations, visualisation, and code
generation work seamlessly with any custom algebraic structure.

Consider, for example, the list monoid that was used in [3]ap. The definition of this algebraic
structure is simple and defines the monoid with its join operation o and a neutral element €.
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1 public class ListMonoidDDManager extends MonoidDDManager<List<String>> {
2

3 @Override

4 protected List<String> neutralElement () {

5 return new ArrayList<>();

6 }

7

8 @Override

9 protected List<String> join(List<String> lhs, List<String> rhs) {
10 ArrayList<String> joined = new ArrayList<>();

11 joined.addAll (lhs);

12 joined.addAll(rhs);

13 return joined;

14 }

Figure 4.2: Java code to define ADDs over a List Monoid (Def. 19) in the ADD-Lib.

Definition 19 (List Monoid) The List Monoid A; = (X%, o, €) over an alphabet ¥ is defined with

concatenation [ ag,...,an-1]°[bo,....bm-1]1:=1ao,...,an-1,b0,...,bm-1 |
€:

[ ]

and the neutral element

The definition in the ADD-Lib is exactly as simple and can be realised with only a few lines of
Java code. Figure 4.2 shows the complete code needed to implement ADDs over the List Monoid
(Def. 19).

To facilitate the implementation of a wide range of custom algebraic structures, the ADD-Lib
comes with templates for the most common use cases. The categorisation into

* groups and group-like structures,
* rings and ring-like structures, and
* varijous lattices and logics

allows us to determine the required operations already at compile time. For example, a Boolean
lattice will require conjunction, disjunction, and negation as well as the distinguished 0 and 1
elements.

Technically, these templates are realised as abstract classes that enforce a concrete imple-
mentation for the required elements per algebraic structure. The ListMonoidDDManager in
Figure 4.2, e.g., extends the super class for monoids, MonoidDDManager. Already at compile
time, this allows us to ensure that the List Monoid indeed implements a join operation as well as
a neutral element.

On a more technical note, the ListMonoidDDManager acts as a container for the unique nodes
of the ADDs over the List Monoid. It provides interfaces to construct, manipulate and compose
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these ADDs and also manages the required memory. Using this factory-like construction ensures
the immutability and finally the key properties of decision diagrams: canonicity and size-
optimality.

The List Monoid is just one example and many others require no more code to realise in the
ADD-Lib. All of the logics discussed in Chapter 2 can be realised in the exact same way. In fact,
the ADD-Lib comes with a wide range of predefined algebraic structures ranging from various
logics, to vector spaces and even to power set lattices.

4.2 Decision Diagram Visualisation

Besides being an extremely flexible framework for ADDs, the ADD-Lib comes with powerful
tools that facilitate experimentation with various forms of decision diagrams. A crucial aspect
of this is visualisation. Exploiting the graph nature of decision diagrams, the ADD-Lib is
able to give visual insights into the decision diagram structure. A visual presentation helps
understanding the often complex structure of these diagrams. This helps, in particular, to present
ideas, not least for the figures in publications and in this dissertation.

The instant visualisation features of the library are also helpful for debugging. They allow
to inspect intermediate ADDs as well as the final result and, in this way, help verifying that
transformations are implemented as intended.

There are generally two ways, to render decision diagrams with the ADD-Lib:

* The DotViewer is a tool to quickly render the in-memory decision diagram. From within
the user code, the viewer is invoked with a single line of code and displays the diagram in a
dedicated window. In this way, the tool allows for quick and easy debugging. The viewer
comprises functions for navigating in the diagram and also to save the diagram as a file.

» Alternatively, the ADD-Lib can export decision diagrams in various formats, including
image formats and also DOT code that is suitable for subsequent processing. This feature is
what we use for most visualisations needed in publications. In this way, chosen aspects of
the diagrams could be highlighted and the formatting could be further customised beyond
what is possible automatically. All of these export functions are in fact also accessible
through the DotViewer’s interface.

Figure 4.3 shows a screenshot of the DotViewer rendering an example ADD from [3]ap.
The ADD operates on the List Monoid (Def. 19) and predicts a flower’s species based on four
measurements. This example diagram is relatively small and can be inspected with the viewer
based on the in-memory data structure. The diagram’s terminal nodes hold the lists of strings in
this case as can be seen, e.g., in the highlighted terminal node.

4.3 Code Generation: From Decision Diagrams to Executable Code
Another extremely useful feature in the context of program optimisation that sets the ADD-Lib

apart from other decision diagram frameworks is its code generation capability. With this, we
close the circle back to the original idea of Binary Decision Programs (BDPs) [48], however,
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Figure 4.3: Screenshot of the ADD-Lib viewer showing an Iris species predicting ADD.

with some notable improvements through the evolution of decision diagrams: Most notably, the
generated programs inherit the key properties of ADDs: They are

* optimal in the same sense as ADDs are, i.e. they are canonical and size-optimal, and
* represent functions with an arbitrary co-domain of the form B" — A.

The various code generators take an ADD and generate its function implementation in one of
many supported general-purpose programming languages, e.g. C/C++, C#, Java, Python, etc.
With this, the generated code can be (i) interpreted by the language’s corresponding interpreter,
or (ii) compiled and executed at native speed. In this way, we can take advantage not only of the
inherent running time optimisation of ADDs but additionally of native compilation speedups.

All of the ADD-Lib’s code generators follow a common pattern: They generate the graph
structure of decision diagrams as gofo programs where every node is rendered as one label in the
resulting implementation. Although generally perceived as an anti-pattern in programming [49],
goto programs have one important advantage: they allow for general graph-like program struc-
tures other than, e.g., while programs. For this reason, they are ideally suited to embed the
structure of decision diagrams in program code without any loss. While goto programs are gen-
erally regarded as hard to ready, this property is irrelevant in the generated code. When reasoning
about one of these program, we would focus on the input specification, i.e. the format that a user
actually manipulates, not the automatically generated and highly optimised and compiled code.

Some programming languages like Java and Python have abandoned goto statements altogether.
In this way, they prevent programmers from writing unreadable gofo programs. While this is
generally not a bad idea, the downside of the decision is that some performance optimisations
are no longer possible without additional variables, and thus some degree of indirection. It may
be for this reason that programming languages avoiding goto statements are, unlike C and C++,
not primarily aimed at performance.
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1 std::vector<std::string> predictIrisSpecies() {
2 goto evall40349844102272;

3

4 evall40349844102272:

5 if (petallength_LT_2_45()) goto evall40349844099616;
6 else goto evall40349844102208;

7

8

9

10 evall40349844100416:

11 return {"Iris-virginica", "Iris-virginica"};
12

13

14 }

Figure 4.4: Excerpt of generated C++ code for the previously seen Iris species predicting ADD
(Fig. 4.3).

An alternative pattern for code generation is one additional state variable that keeps track of
the current state. This way, the missing goto statement is essentially simulated and importantly
the computational advantage of the original decision diagram is fully preserved.

Figure 4.4 shows an excerpt of the generated C++ code for the running example of an aggregated
ADD. There are, of course, many more internal and terminal nodes rendered than seen in this
excerpt. The code is hardly readable but highly optimised for running time, both results of
the ADD structure. Interestingly, the generated gofo programs very closely resemble the idea
of BDPs [48] but, of course, they fully embrace the evolution of decision diagrams since
then [50, 34, 28].

The ADD-Lib comes with a collection of code generators for a multitude of target languages.
Most notably, general-purpose languages like Java, C#, Python, JavaScript, C, and C++ are
supported but code generators also exist for some export formats like images and DOT code. As
an open-source project, the ADD-Lib encourages its users to add their own target languages and
even comprises a code generator generator.
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Future Work

The exploration of Algebraic Decision Diagrams (ADDs) as an Intermediate Representation
(IR) for program optimisation in the three program domains yielded some impressive results
and motivates future research: The ADD-based Domain-Specific Languages (DSLs) will, e.g.,
benefit from semantic predicate treatment, other machine-learned programs are likely to benefit
from ADD-based optimisations, and the exploration of the IR’s potential in the context of general-
purpose programs must be analysed on an extensive benchmark suite. In this chapter, we will
discuss open questions and opportunities for future research per the three program domains.

5.1 Domain-Specific Languages

The starting point for ADD-based program optimisation were DSLs tailored to the targeted IR, the
ADDs. We have explored their potential in the context of an email classification system [6, 7]ap
with a fully functional implementation. The basis for decision making was a Boolean description
of the incoming emails. Each of these predicates could be used in the modelled ADDs and the
resulting data structure is optimal under the assumption that these predicates are independent
of one another. However, in reality, this might not be the case which can lead to infeasible
paths in the data structure. The effect of this is similar to that observed in the Random Forest
transformation: unnecessarily large ADDs and potentially redundant predicate occurrences. The
solution is, again, the elimination of infeasible paths [110][3, 4]ap.

In this case, the interplay of predicates may not be as obvious. The implications among
them are not given and cannot be derived from a known theory. As a consequence, a compiler
will not be able to resolve resulting infeasibilities automatically without additional information.
The necessary information can easily be given through the predicate language where a user
could incorporate his or her expert knowledge directly in the model. These can be simple
implications between predicates or possibly more complex relations. On the basis of such
a feasibility model, the compiler can then resolve infeasible paths in the ADDs in a similar
fashion as was successfully done in the Random Forest transformation [3]4p and in the while
transformation [4]ap, respectively.
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The second rule-based DSL, MiAamics, can equally benefit from this improvement with the
anticipated results being the exact same. Again, the implications among predicates must be
given as part of the input format. In the case of MiAamics, some standard theories may also be
incorporated in the language to simplify its use.

Both DSLs were evaluated with examples and automatically generated input, however, their
application in industrial-size decision problems would help to further evaluate strengths and
weaknesses of the approach. Recommender systems are a prime area for application here, but
really any performance-critical decision procedure is a candidate for another case study. Enabling
domain experts to capture their ideas in a mindset-oriented language and apply fully automatic
and holistic optimisations during code generation can prove to be a powerful tool.

Another aspect of interest in the context of model-driven development [68, 59] is the DSLs’
embedding into the ecosystem of DSLs. At this point, some manual work in the form of adapters
is needed to bridge the gap between these DSLs. The seamless integration of our ADD-based
DSLs is a topic for future research. It is, however, not specific to these DSLs but rather a general
problem in the Cinco context [59][63].

5.2 Machine-Learned Models

As a popular classifier, Random Forests have served as a representative for machine-learned
programs. There are, however, many more classifiers, some of which may benefit from very
similar optimising transformations. Interesting classifiers are, in particular, those that allow for
a semantics-preserving transformation to ADDs, i.e. those that allow for discretisation by means
of predicates.

The Random Forest transformation can be naturally generalised to Decision Jungles [111], a
classifier that learns a single Directed Acyclic Graph (DAG) instead of many trees. In contrast
to ADDs, this DAG is not constrained in its predicate order and it is solely motivated from
a machine-learning perspective. Thus, the generalised transformation will still restructure the
input program entirely. While the transformation is straightforward, the resulting effect in terms
of running time and size might differ drastically.

The dominating trends in machine learning today are, of course, Deep Neural Networks
(DNNS5) [112, 113]. These neural networks represent highly non-linear functions and are learned
with the help of large datasets. Their success in many important domains, in computer vision and
beyond, has made them a vivid area of research [114, 115, 116, 117]. DNNs are computationally
intensive so that it is well established to use Graphics Processing Units (GPUs) for their learning
and inference at runtime. Setting the computational effort of learning aside, the evaluation
of these functions at runtime is a problem that could potentially be targeted with a suitable
model transformation along the lines of our Random Forest transformation. DNNs are not only
of interest to many researchers and practitioners equally, but they involve highly performance
critical tasks. A challenge will be the continuous nature of these models which makes it difficult
to transform them to a discrete structure like ADDs.

A promising variant of DNNs are Binary Neural Networks (BNNs) [118] where each percep-
tron can yield only one of two values. The discrete values of their perceptrons translate well to
the binary nature of predicates in ADDs allowing for a semantics-preserving transformation. The
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main challenge here is to tame the size of the resulting ADDs, may it be through the elimination of
infeasible paths or a simplification of the model. Ideally, the semantics would be fully preserved
but in cases where this is not possible, the simplification must be justified with experiments on
actual data in a fashion machine learning researchers are well familiar with.

This line of research on semantics-preserving transformations of BNNs has already started
with the help of Jan Linden and Jan Feider. Building on our experience and also on previous work
by [119, 120, 121, 122], we were able to transform small networks trained on MNIST dataset
for handwritten digits [123] into semantically equivalent ADDs. We were able to evaluate the
resulting ADD about 20 times faster than the original neural network. These initial impressions
motivate further investigation of this application area.

5.3 General-Purpose Programming Languages

The work on general-purpose programming languages is a radically different compilation
paradigm. The initial experiments with the iterative Fibonacci implementation are very promis-
ing but an extensive evaluation with more representative benchmark programs is needed. Ideally,
this benchmark suite comprises programs of industrial relevance.

A particularly promising class of programs are Programmable Logic Controller (PLC) pro-
grams [124]. These programs are acyclic in nature and would therefore not rely on the choice
of good cut points. The work on this has already started with the help of Alnis Murtovi, Marc
Jasper, and David Schmidt.

For a broad coverage of benchmarks, the new compilation paradigm must be implemented in
a compiler for some widely used general-purpose programming language. Ideally, this would
be based on LLVM, covering a range of different programming languages. This would allow to
target, e.g., C for which benchmark programs are widely available.

The current evaluation is based on a machine-independent measure which is a good way to
evaluate the potential on a conceptual level without relying on details of implementation or even
the executing machine. In addition to this, an evaluation based on wall clock time would give
an insight into the interplay of this program optimisation approach and machine-specific details.
These measurements would take into account the varying costs among arithmetic operations as
well as machine-specific caching behaviour.

The current optimisation technique optimises on the bases of acyclic fragments. A more global
extension following the paradigm would also allow for inter-program fragment optimisations.
Cut points would still remain the anchor points of the program but rather than jumping only
between cut points and their successor, arbitrary paths could be evaluated at compile time. This
allows, for example, to speed up loops even more without considering every possible number of
iterations. For example, 0, 1, 2, 4, 8, etc. iterations could be selected and only the corresponding
paths aggregated. The anticipated result are aggregated path ADDs of smaller size that, at the
same time, can still jump over multiple iterations of the loop. In fact, this generalisation could
allow for arbitrary shortcuts in the original program.

With the aggregation of entire program fragments into the three complementing IRs, the
approach allows for extensive parallelisation. In order to evaluate the ADD, all predicates along
the taken path must be evaluated, meaning that the corresponding subset of the Expression DAG

71



(ED) must be available. While the specific subset is unclear, the evaluation can also be performed
speculatively for all the predicates. This can be done in parallel per layer of the ED, raising the
question if and how this speculative evaluation can effectively take advantage of accelerators
like GPUs. If successful, this transformation would restructure the input program entirely and it
would effectively implement an automatic parallelisation of iteratively specified programs.
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Conclusion

In the modern spirit of Intermediate Representation (IR) families in compilers, as encouraged
by frameworks like MLIR, this dissertation explored the potential of Algebraic Decision Dia-
grams (ADDs) as an IR for (domain-specific) program optimisation. We presented successful
applications in a variety of quite different program domains. Exploiting the data structure’s
inherent optimality in size and depth, i.e. running time, we were able to transfer these traits
to quite different program structures and use cases. In this way, the corresponding optimising
compilers could, quite effectively, optimise the programs at hand and on the bases of the right
representation, in this case on the bases of ADDs.

Initially, we targeted graphical Domain-Specific Languages (DSLs) that are structurally quite
similar to ADDs which allows for a straightforward transformation of the program to its IR and,
as a consequence, effective running time optimisation of the decision procedure [6, 7]ap. There
is, however, great potential beyond this simple case: We also targeted and extended a textual
DSL, MiAamics, that is in structure quite different from ADDs [8]ap. This rule-based DSL was
initially designed for recommender systems. With MiAamics, we were able to rapidly evaluate
extremely large systems of rules. Although structurally quite different from ADDs, ADD-based
aggregation and optimisation was quite successful — a success that is likely transferrable to
many other discrete decision DSLs. In both cases, graphical and textual DSLs, we were able
to transform the input program to an equivalent ADD and subsequently to an implementation
through code generation.

A program domain that benefits to the extreme from ADD-based optimisation are Random
Forests [3, 5]ap. Here, we targeted a well-established domain of programs. The ADD-based
aggregation also transforms this input program to a semantically equivalent ADD and allows for
an efficient implementation through code generation. The Random Forest’s running time and
size grow linearly with the number of trees. We were able to achieve impressive speedups here:
Aggressive aggregation allows us to reduce both, running time and size, by multiple orders of
magnitude.

Although the initial motivation was to reduce running time and size, the developed aggregation
technique is also an extremely useful tool for a different discipline: explainability. With the
aggregated ADD, we were able to solve three explainability problems for Random Forests:
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model explanation, class characterisation, and outcome explanation.

The success of the Random Forest transformation also inspired its generalisation to general-
purpose programming languages [4]ap. The while language serves as a representative and
we were able to fully generalise the concepts and compile these programs in the very same
fashion. Also here, we were able to achieve surprising reductions in running time, illustrated for
a seemingly optimal implementation of the Fibonacci numbers.

The aggregation of entire program fragments and their representation by means of three
complementing IRs holds great potential for parallelisation. A highly speculative and parallel
execution built on this idea is subject of an already started follow-up research project at the TU
Dortmund. The project will explore the realisation of such a radically different compilation to
target not only Central Processing Units (CPUs) but also accelerators like Graphics Processing
Units (GPUs).

Of course, ADDs are not the solution to every problem. The most pressing issue is their size
that can grow exponentially with the number of predicates. In some cases, ADDs can outright
explode. However, we have seen in multiple cases that this issue can be tamed with the right
predicate order and the right treatment of their predicates’ semantics.

This dissertation has only started to explore the ADDs potential as an IR and has already
inspired fellow researchers to explore their potential further. With the ADD-Lib, they are given
an extensive toolkit and can take full advantage of our work to date. ADDs have already proven
their potential as an IR for (domain-specific) program optimisation in various program domains
— a success that can likely be extended to further program domains in the future.
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