o
%
O
-
%
L
O
=
=
o)
=
®
)

Online monitoring of dynamic
networks using flexible
multivariate control charts

Jonathan Flossdorf, Roland Fried,
Carsten Jentsch

Nr.33/2021

SFB
823






Online Monitoring of Dynamic Networks Using
Flexible Multivariate Control Charts
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Abstract—The identification of differences in dynamic net-
works between various time points is an important task and
involves statistical procedures like two-sample tests or change-
point detection. Due to the rather complex nature of temporal
graphs, the analysis is challenging which is why the complexity
is typically reduced to a metric or some sort of a model. This
is not only likely to result in a loss of relevant information,
but common approaches also use restrictive assumptions and are
therefore heavily limited in their usability. We propose an online
monitoring approach usable for flexible network structures and
able to handle various types of changes. It is based on a sound
choice of a set of network characteristics under consideration
of their mathematical properties which is crucial in order to
cover the relevant information. Subsequently, those metrics are
jointly monitored in a suitable multivariate control chart scheme
which performs superior to a univariate analysis and enables both
parametric and non-parametric usage. The user also benefits
from a handy interpretation of the structural reasons for the
detected changes which is a crucial advantage in the rather
complex field of dynamic networks. OQur findings are supported
by an extensive simulation study.

Index Terms—Change-point detection, multivariate control
chart, network analysis, online monitoring, temporal graphs

I. INTRODUCTION

YNAMIC networks play an important part in many

different application fields nowadays, ranging from bi-
ological [1]l, [2] and social sciences [3]], [4] to logistic and
transportation processes [S]]. Suppose we observe a dynamic
network D = {D;,t = 1,...,T} which is a sequence of
snapshots of the network of interest at various time points ¢.
Each of those single networks D, consist of a set of nodes V;
that may be connected through a set of links F;. It is often of
interest to decide whether there are any meaningful differences
in the network structure between different time points, e.g. due
to a changed consumer behavior in marketing networks, an
increased communication in social networks, or a failure of a
working machine in a manufacturing process. Other scenarios
involve financial market analysis [[6]], network traffic monitor-
ing [7]], or connectomic applications [8]]. Relevant statistical
analysis procedures for such tasks are two-sample tests and
change-point detection. Although parts of our results can be
used for classical testing procedures as well, we focus on the
latter one in our work.
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The goal of change-point detection [9]], [10] is to reliably
identify time points at which the structure of a dynamic
network changes in a meaningful way. Traditionally, there are
two perspectives towards this issue. One approach is to observe
the whole sample D of interest first and to decide afterwards
if one or more changes have happened (offline change-point
detection). Another approach is to monitor the process sequen-
tially in real-time in order to make an immediate decision
at each newly observed time point (online monitoring). Our
results hold for both scenarios, but for clarity of exposition
we mainly focus on the usually more difficult and, in practice,
often more relevant task of online monitoring in the following.

Statistical network theory is a quite complex field, since
it covers a lot more information compared to normal data
(relationships, intensities etc.). Dynamic networks even add
another dimension by the consideration of the time component.
A direct transfer of traditional monitoring approaches is there-
fore not feasible. Beside the actual construction of a suitable
monitoring procedure, there are, in our view, two main issues:
a) the definition of possible changes in network data and b)
approaches for complexity reduction to handle the monitoring
process.

A. Related work

Regarding problem a), it is not intuitively clear how a
change may look like, since there is not only one but
many, partly dependent, components which may trigger a
change in network structure. A straightforward definition is
presented in [[11f] by assigning a change to time point ¢, if
|f(De) = f(De—1)| > co and |f(Dy) — f(Dey1)| < co for
some scoring function f : D; — R and a threshold cy.
However, this approach is largely limited to the suitability of
the applied scoring function as it addresses only those changes,
for which f(.) is able to capture the relevant information. In a
more comprehensive context, the need of categorizing network
changes with respect to their structural levels including nodes,
communities or subgraphs is mentioned in [12]. In a former
work [13]], we presented such a general categorization in order
to handle this issue. It covers global as well as local changes
of single components (e.g. nodes and links) and addresses
their combinations such that more complex structural changes
(e.g. in blockmodels) are also considered.

Regarding problem b), there exist various approaches to
reduce the complexity of dynamic networks in order to apply
traditional monitoring schemes. They can be subdivided in
model-based and metric-based approaches. For the former
one, a dynamic network model is fitted and the specific
parameters or residuals are then monitored with a traditional



control chart. Examples are state space models [14]], degree-
corrected stochastic blockmodels [15]], temporal exponential
random graph models [[16]], or Poisson regression models [|17].
However, the model-based approach normally requires strict
assumptions like a fixed node set (same nodes for each time
point, no node dynamics) or knowledge of the underlying
network structure. These assumptions are strongly restrictive,
since they can only be used for a small field of applications.
Furthermore, they can only detect a limited number of changes
while ignoring those which does not affect the fitted model.

Metric-based approaches reduce the network by assigning
a single metric or a combination of different metrics to each
D,. Hence, they are more flexible as they can be applied to
most kind of networks. Exceptions are similarity measures like
DeltaCon [[18] or Graph Edit Distance [19]] which sequentially
compare each D, to a reference network. For those approaches
a fixed node set is required. This is not the case for any other
network metric that is calculated with the sole information
of D,. Recent works used centrality metrics [20], matrix
norms [21]] or scan statistics [22]. The application under the
consideration of time dependency is discussed in [23]. In a
former work [13]], we evaluated such metrics in dependent and
independent setups and evaluated their individual suitability to
detect changes in various situations.

B. Contribution

We expand on our univariate results of [13]] and propose
a monitoring approach which is based on the usage of a
multivariate set of metrics. In our view, the joint monitoring
of multiple network characteristics promises to strongly miti-
gate the information loss of metric-based procedures, because
the network information can be covered by various metric
types of different sensitivities. Furthermore, as the univariate
interpretations still hold, all advantages are maintained which
is particularly a broad flexibility and applicability. While a
multivariate procedure is a logical extension of the univariate
case and is partially mentioned in the univariate literature [[13]],
[20], there does not exist - to the best of our knowledge
- a thorough multivariate method able to handle the main
challenges that are crucial for a successful application. From
our perspective, those are a sound choice of a set of network
metrics, the combination with a suitable choice of control
charting procedures and the final interpretation of the results.
To support the flexibility of our approach, we combine it with
both distribution-free and parametric monitoring schemes.

The paper is organized as follows: Section II offers a
short recap of the suitability of univariate network metrics
for monitoring purposes and extends them to a proper mul-
tivariate usage. In Section III, suitable multivariate control
chart procedures are defined and adapted to our metric sets.
The results are supported by an extensive simulation study in
Section IV which underlines the reliability of the procedure in
flexible change situations. Section V contains some concluding
remarks.

II. DETECTING CHANGES IN DYNAMIC NETWORKS

We start by demonstrating the complexity and challenges to
reliably monitor changes in dynamic networks ranging from

TABLE I
EXAMPLES AND APPLICATION SCENARIOS
Type Examples
GLC increased/decreased communication in social networks
changed activity in cyber networks (e.g. due to malware)
LLC formation of new hotspots in disease networks
changed route layout in transportation networks
GNC new advertising strategy in customer networks
addition of new destinations in tourism networks
LNC restructuring of supply chains in logistics networks
creation of new leading positions in profession networks

the basic definition of a change in network data to the actual
monitoring strategy. We recap the suitability of univariate
network characteristics in different change situations and ex-
tend the existing foundations to a more flexible multivariate
conception.

A. Changes in Network Data

The first challenge is to understand which type of changes
may happen in network data. Because a dynamic network
consists of various structural elements, a simple shift of
location or scale parameters like in traditional scenarios does
not exist. As explained, we focus on a flexible setup and
prefer general type of changes [12] rather than specialized
changes and therefore follow the change definition of [13].
In this context, the idea is to consider the influence of each
structural network element to obtain a thorough categorization
of possible changes. These elements are a) links, b) nodes, and
c¢) extra information that may be put on either nodes or links
(i.e. covariates). Each element is assumed to be able to trigger
a change either in a global or local manner. A short summary
of all scenarios is listed below. Note that we do not consider
changes due to covariates here, since their type of occurrence
is hugely dependent on the underlying application field.

¢ Global Link Change (GLC): The change is triggered
by a significantly increased or decreased link amount.
This is assumed to happen globally, i.e. the changed link
probability affects each node equally.

o Local Link Change (LLC): Similar to GLCs, but the
changed link behavior only affects a few nodes which
either get more or less influence, i.e. the network structure
changes to a more centralized or flat hierarchy

o Global Node Change (GNC): The node amount in-
creases or decreases significantly, because new nodes
enter the network or existing ones leave it.

o Local Node Change (LNC): Only a few influential nodes
enter or leave the network which results in a significant
impact on the network structure.

Typical examples and relevant application scenarios for
these types of changes are given in Table [} While all of those
changes may occur individually, it is likely that some of them
happen simultaneously, e.g. a global increasement of links may
be the consequence of the entry of new nodes in the network.
This is referred to as mixed-type changes (MTC), which also
enables capturing more complex change scenarios like those
in blockmodels or subgraphs.



TABLE I

CONSIDERED NETWORK METRICS

Matrix-based
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B. Metric-based Network Monitoring

We already briefly discussed possible complexity reduction
procedures in order to monitor a temporal series of graphs
which involves model-based and metric-based approaches. The
former one is quite restrictive and not applicable ad hoc,
e.g. parametric assumptions have to be met. This also affects
that only a few model-specific change types can be detected,
e.g. LNCs and GNCs are ignored due to the common as-
sumption of a fixed node set. Those restrictions are especially
unfavorable, if the structure and behavior of the network of
interest is not explicitly known beforehand. Dynamic networks
are commonly quite prone to this issue due to their high
dimensionality and potentially high dynamics.

The complexity reduction step of the metric-based pro-
cedure is even more radical, but those approaches provide
a more flexible monitoring tool without restrictions for a
broad application field. Consider that each network D, of the
dynamic network D is reduced to a scalar f(D;) = s;. Thus,
the vector s = (sq,...,s7) contains the captured information
of the applied metric to D. See Table [[I] for an overview of
the used metrics in this work which are also common choices
when dealing with network monitoring [20], [21]]. Note that
the matrix norms are calculated based on the temporal series of
adjacency matrices A; € R™*™ of the networks D;, where
ng is the number of nodes at time point ¢. For the sake of
simplicity, we mainly focus on undirected and unweighted
networks which means that a matrix entry a;;; = 1, if a link
between nodes 7 and j exists, and a; ;; = 0 otherwise.

Whereas the matrix norms are global metrics for the whole
network D, the centrality scores are locally defined for each
node. To transform them into a global network metric, we
consider two approaches. This involves the average score over

all nodes, i.e.
1
Cavg = g § Ci,
eV

and some scale metric by taking the deviation to the largest
observed score

Cdey = Z(max(cj) —¢).

v
iev 7

We specity the used version in the following by noting an Av-
and De- prefix (e.g. AvCl for Average Closeness). Note that
for the eigenvector centrality, both versions are affine linear
transformations to each other and therefore achieve equal
monitoring performances. Thus, we only consider AvEi for
this centrality and, hence, nine metrics in total. It is possible
to use any other network metric as well, but many are strongly
related to the proposed ones and do not contribute added value
(e.g. Average Path Length, Density) [13]].

C. Extensions to the Multivariate Scenario

The most crucial step in the metric-based monitoring setup
is to choose a suitable metric which covers as much of the
relevant information of D, as possible. Because the complex
network structure gets reduced to a single scalar value, the
information loss is typically quite high in comparison to a
well-fitted model-based approach. It is therefore of utmost
importance to be aware of the information a metric is able
to capture in order to understand which type of changes it
is able to detect. This topic is extensively discussed in our
related work [[13]] which serves as a theoretical foundation
for the derivations in the following. See Table [III| for a short
summary of the suitability of the considered metrics in the
presented change scenarios.

Due to the described information loss, it is not too surprising
that no single metric is able to perform well in every scenario.
However, for each type of change there exist multiple metrics
that work reasonably. Hence, it is a logical step to use
multiple metrics jointly in order to capture various pieces of
information to mitigate the loss. Formally, for each D, a vector
st = (S¢1, ..., 81p) of p different scores is calculated at each
time point ¢. This promises to result in a more flexible monitor-
ing procedure which has an improved performance for flexible
change types. Furthermore, it still maintains the advantages of
the univariate setup, since it is directly applicable as it does
not require restrictions regarding the network data. Hence, the
interpretation of a detected change keeps handy, because the
univariate interpretations still hold.

In the practical examination, there are a few challenges
including a) the determination of the number of considered



TABLE III
PERFORMANCES OF THE METRICS IN VARIOUS SITUATIONS.

Change Type [ Fr [ Sp [ AvCl [ DeCl [ AvDe | DeDe | AvBe | DeBe | AvEi |
GLC |+ - ++ | - + - 0
LLC + o - + o + o + ++
GNC —— |+t |+ - + - + - 0
LNC — [ - Jo + - + - + ++

++4 = suitable, + = mostly suitable, o = moderate performance/dependent on other circumstances,

— = rather not suitable, —— = not suitable

metrics p and b) the choice of a suitable set of metrics.
Regarding a), we would like to note that a higher value of p is
in theory helpful for capturing more information, but is also
more likely to generate flexibility and interpretation issues.
Moreover, some metrics might be highly correlated due to a
similar definition which would make the monitoring procedure
(see Section III) more difficult for higher p. Hence, we set
p = 3 in this work as this seems to be a good trade-off between
information capturing and maintaining flexibility.

Regarding b), it is crucial to be aware of the suitability
of each metric in each situation. In this context, the main
statement of Table is that most metrics either perform
reasonable in change situations that affect the network globally
(i.e. GLC, GNC) or in local change scenarios (i.e. LLC,
LNC). Based on this, we may classify most metrics into two
different performance groups A = {Sp, AvCl, AvDe, AvBe},
which perform well in global change scenarios, and group B
= {DeCl, DeDe, DeBe} that perform superior in local setups.
Remaining are Fr, which can handle link changes but ignores
node changes, and AvEi that is theoretically affected by all
change types but sometimes to a lesser extent.

The final choice of a suitable set of metrics is dependent on
the goal and the expectations of the application. We propose
the consideration of six different sets which are denoted in
Table [Vl The idea behind Set 1 is to use one metric out
of both classes A and B, in order to capture various types
of information. The usage of the average eigenvector then
provides some neutral perspective. This balanced setup seems
to be a promising candidate for an ad-hoc application in
which users do not know what to expect and how a change
might look like (e.g. networks with high dynamics like social
networks). The other sets offer some more unbalanced setups
by 2 vs. 1 and 3 vs. 0 combinations. These are constructed
for more specialized cases where the user might be interested
in detecting some particular changes which frequently occur
in the corresponding application (see examples in Table [I).
Finally, Set 6 emphasizes link changes more by taking the
Frobenius norm into account.

III. MULTIVARIATE CONTROL CHARTS FOR NETWORK
DATA

We now move on to the practical implementation of a
monitoring setup for network data by combining and adapting
traditional control chart schemes with an intelligent choice of
a set of the presented network metrics. We shortly recap the
required theory in the traditional scenario first and explain the
expansion to the multivariate network scenario afterwards.

TABLE IV

USED SETUP CHOICES IN THIS WORK
No. Name Set of Metrics
1 SBE Sp DeBe | AvEi
2 SDC Sp AvDe | DeCl
3 BDS DeBe | DeDe | Sp
4 CDS AvCl | AvDe | Sp
5 BCD DeBe | DeCl DeDe
6 FSB Fr Sp DeBe

A. General Online Monitoring Procedure

The main goal of online monitoring is to detect anomalies in
a process as soon as possible after their occurrence. Typically,
the process of interest is subdivided into two phases. In Phase
I, it is assumed that the process is somewhat stable and reliably
represents the typical state of the underlying system without
meaningful deviations. The system is then called to be in-
control. In Phase II on the other hand, the actual monitoring
takes place by deciding if an incoming signal sufficiently
matches the in-control state. An alarm is triggered if this is
not the case and the signal is classified as out-of-control [9].

Consider {Y;,t = 1,...,T} to be a sequence of
a random variable of interest with conditional density
Py(Y:|Yi—1,...,Y1) and 7 to be the unknown change time.
If 7 > ¢, then the conditional density parameter 6 is constant
with @ = 6;. For 7 < ¢, it applies # = 605. The goal is to
detect the anomaly as soon as possible with a fixed rate of
false alarms before 7. An estimation of #; and 6, is often
not necessary, but might be useful for interpretation purposes
regarding possible reasons for a change.

In terms of the practical usage, so-called control charts are
applied. First, a metric z; is chosen which a) can be calculated
for each time point ¢, b) covers and represents most relevant
aspects of the behavior of the system (i.e. Y;), and c) is able to
identify all considered changes by a sensitive reaction to them.
This metric serves as the main input for the control statistic
z¢ which is calculated for the process at each time point ¢.
Depending on the setup, z; can be the metric itself (e.g. in
memory-free Shewhart charts) or some sort of transformation
2zt = g(x¢) (e.g. in memory-based EWMA or CUSUM charts).
In Phase I, z; is expected to represent the in-control state of the
system and, hence, to be a stable process without meaningful
deviations. This information is used to define the upper and
lower control limits A, and h;. Those limits are chosen under
the consideration of the desired rate of false alarms and can
be derived by parametric or distribution-free procedures. In



Phase II, if we observe h; < z; < h,, the process is deemed
in-control. Otherwise an alarm is triggered at time point ¢ to
signalize a detected change.

B. Control Charts for Traditional Multivariate Data

In practice, it is customary to improve the monitoring
procedure by taking more process metrics into account. Their
independent usage in a univariate manner is possible but
not recommended, since it is inefficient and may result in
erroneous conclusions [[10]. Hence, the construction of multi-
variate control charts, which consider the metrics jointly, are
of interest.

In this context, the most basic multivariate chart is the
Hotelling T2 chart. Suppose we observe a vector x; =
(@¢1, ..., xp) Of p different process metrics at each time point
t, then the corresponding control statistic is calculated by

2 = (x¢ — X)'S7(x¢ — ),

where X and S are the sample mean vector and covariance
matrix of the underlying observations. Since z; mainly takes
the squared deviation to the sample mean into account, it is
non-negative and we expect values near zero if the process
is in-control. Therefore, only an upper control limit has to be
derived. This can be done under parametric assumptions with
an approximation via the F'-distribution which yields

p(n+1)(n—1) 7

hu = a,p,n—
n2 — np PP

where n is the number of observations in Phase I and « the
desired false alarm rate.

In many practical applications the met distributional as-
sumption might be unjustified which can have a strong neg-
ative impact on the monitoring quality. To avoid such issues,
the usage of non-parametric techniques seems promising. In
this context, a bootstrap approach was proposed [24f, which
is able to efficiently handle the monitoring process, even if the
observed data is non-normal or unknown. It works as follows.
First, the statistic z; is calculated for all T" observations of
Phase 1 as before, which yields the vector z = (z1, ..., 27).
Subsequently, B Bootstrap samples with sample size T are
drawn from z and for each of those samples the (1 — «)-
quantile is calculated. The upper control limit A, is then
determined by taking the average over those values.

The Hotelling 72 charts are multivariate extensions of a
univariate Shewhart-type control chart, because they only use
information of the current observation which makes them
rather insensitive to small shifts. Memory-based control charts
like exponential weighted moving average charts (EWMA)
overcome this issue and it also exists a multivariate version
(MEWMA) [25]], for which the control statistic is defined as

Zt = mQStflmt,
where my is recursively defined as
m; = )\(Xt — )_() + (1 — )\)mt,l.

The estimation of the covariance matrix is given by

_ A o o 2t

where S is the estimated covariance matrix given all observa-
tions from Phase I. While the formula of the control statistic
is quite similar to the Hotelling 7 chart, the main difference
lies in the intermediate step of calculating m,, where the
smoothing parameter A € [0, 1] serves as a factor for providing
weights to past observations and the current one. For A = 1,
the MEWMA setup corresponds to the Hotelling T2 chart.
Optimal control limits depending on A, the number of variables
p and the desired false alarm rate can be found in several works
[26], [27]. In general, MEWMA charts with small values of A
are rather robust to the normal assumption yielding satisfying
results for different distributions of the underlying data [[10].

C. Adaption to Dynamic Network Data

After the recap and the described extensions of the the-
oretical background in Sections [l and we now move
on to the combination of traditional control chart schemes
with the proposed multivariate metric sets. Our recommended
procedure is listed step by step below.

1) Selection of p and a suitable set of metrics

2) Univariate calculation of each metric

3) Selection of a suitable control chart procedure

4) Calculation of the corresponding control statistic and
control limits (Phase I)

5) Monitoring of new observations (Phase II)

6) Stop at a detected change

7) Interpretation of the change with the help of univariate
behavior

While 2), 4), 5), and 6) are relatively straightforward steps
of common statistical process control, the quality of the
procedure is hugely dependent on a careful execution of steps
1), 3), and 7).

We already discussed our recommended procedure for step
1) in Section where we provided multivariate metric sets
for various situations under consideration of the suitability of
the univariate metrics in various change situations.

Regarding step 3), the choice of a suitable control chart
setup is as important as the choice of a metric set. The
monitoring performance of the parametric Hotelling 7 chart
is dependent on the quality of the fit of the applied F-
distribution. To the best of our knowledge, no complete asymp-
totic inference was yet derived for the considered network
metrics due to their complex nature. Consequently, putting
parametric assumptions on their joint distribution seems rather
implausible. The parametric Hotelling 72 chart is known
to react rather sensitive to violations of its distributional
assumption [28] and might suffer from reliability issues in this
context. We expect that this is especially the case for rather
unbalanced multivariate sets of metrics, since their marginal
distributions tend to be more similar to each other and are
sensitive to the same impact factors, which may result in a
more skewed joint distribution. For more balanced setups, this
effect is likely to be weakened, because different sensitivities
are involved. Furthermore, we expect a worse performance
of the Hotelling 72 chart for lower false alarm rates a,
because the corresponding control limit h, is dependent on
the (1 — a)-quantile of the applied distributional assumption.



The higher quantile is likely to be a bad approximation for the
corresponding quantile of the empirical distribution, which is
- for very low « - sensitive to the observed extreme values
that might especially play a role for rather unstable and high-
dynamic processes like networks. Overall, this effect tends
to be smoothened for larger values of o as the quantile of
interest is shifted more towards the center of the distribution.
The explained impacts affect the MEWMA chart as well, but
to a lesser extent. Due to the smoothing of the control statistic
that involves the consideration of past observations, the chart
is noticeably more robust against non-normal behavior. This
is particularly the case for lower values of the smoothing
parameter A which weakens the individual influence of the
current observation. However, note that inertia issues might
be a consequence of this [25]]. The non-parametric Hotelling
T? chart might be the safest choice for a reliably constructed
control chart when using the considered metric sets. As the
bootstrap procedure is directly dependent on the empirical
distributions, we expect the chart to be more robust against
various type of metric sets, i.e. to perform on the same level
for all sets. Obviously, its quality increases for larger sample
sizes (i.e. longer in-control phase), and the bootstrap procedure
ensures that it works reasonable in most cases of lower sample
sizes as well. However, in the latter cases its performance
might not be superior to the parametric candidates anymore
as we will see in Section [Vl

Regarding step 7), note that we aim to monitor a temporal
series of networks D = {D;,t = 1,...,T} instead of a simple
process variable Y;. Hence, the change parameter 6 gets more
complex (see Section [[lI-A), which makes its interpretation in
a change situation all the more important. This especially con-
cerns the purpose of maintaining transparency and reliability
of the monitoring tool. In practice, we propose to stop after
a detected change and to analyze the corresponding network
D, carefully. This can be handily done by descriptively ana-
lyzing the univariate values of the used metrics and applying
their interpretations given in [[13]. While focussing on time-
independent setups and the related challenges in this paper,
the presented procedure can be handily extended to allow also
for time-dependency. For instance, this can be done by adding
an intermediate step between 2) and 3), where an ARIMA
model is fitted to the multivariate series of metrics in order to
monitor its residuals similar to [[13]], [23]], [29]].

IV. SIMULATION STUDY

To underline our findings, we execute an extensive simula-
tion study in the following. We generate numerous example
situations of each described change type and analyze the per-
formances of all proposed metric sets in combination with the
described control chart procedures. We compare their results
with the univariate approach and demonstrate performance
differences. Recall that a classical model-based approach is not
feasible here, because we aim to detect flexible changes and
set no assumptions to the network structure (e.g. no fixed node
set). In a second part, we extend the study by analyzing more
practical relevant mixed-type changes in different situations of
stochastic blockmodels.

TABLE V
DATA GENERATION PROCESSES USING ERDOS-RENYI (ER) GRAPHS.

Type Data Generation

GLC

In-Control: ER graph with probability p and n nodes
Out of Control: ER graph with probability p and n nodes

In-Control: ER graph with probability p and n nodes
LLC Out of Control: heterogenous ER graph with a changed

probability p for k£ central nodes

In-Control: ER graph with at each time point a randomly
chosen node size in [n —n - d,n 4+ n - d] and a randomly
GNC || chosen link amount in [m —m - d,m +m - d].

Out of Control: ER graph with at each time point a
randomly chosen node size in [t — 7t - d, 7 + 7 - d] and a
randomly chosen link amount in [m —m - d,m + m - d].

In-Control: ER graph with probability p and at each time
point a random node size ngex € [0 —n - d,n+n - d).
Out of Control: heterogenous ER graph with at each time
point a random node size figex € [ — 7 - d, 0 + 70 - d]
and changed probability p for k central nodes and a

LNC

probability of % for all other nodes.
flex

TABLE VI
PARAMETER SETUP FOR EACH SITUATION ACCORDING TO TABLEMWITH
n = 100.

Intensity Parameter Setup

p=0.3,p=0.31

p=0.7,p=0.68

p=04,p=045

p=02p=03Ek=5
p=04,p=0.55k=3
p=03p=06 k=1

d = 0.05, m = 1500, n = 115

d = 0.05, m = 1500, n = 130

d = 0.05, m = 1500, 7 = 150
d=0.03,p=02n=105p=03,k=5
d=0.03,p=0.7n=102,p=0.85 k=2
d=003,p=03n=101,p=0.7, k=1

Type

small
GLC moderate

heavy

small
LLC moderate

heavy

small
GNC moderate

heavy

small

LNC moderate

heavy

A. Setup

We generate sampling data for each of the four described
change-types of Section (GLC, LLC, GNC, and LNC).
For each of those, we execute three sub-situations with varying
change intensities (small, moderate, and heavy). This results
in 12 scenarios in total, which are repeated 1000 times to
obtain a reliable performance analysis. The data generating
processes as well as their different parameter setups to control
the intensity are given in Tables |V|and respectively. Note
that those are similar to our former study [13] in order to
maintain comparability across both works.

For each situation, we simulate dynamic networks of length
T = 1400 and use the first 1000 observations as Phase I in
order to reliably calibrate the control chart. The change time
is set to happen at time point 7 = 1050. The control limits of
the control charts are set with a false alarm rate of oo = 0.5%.
While the rather large number of observations in Phase I is
interesting to obtain meaningful findings about the theoretical
performances, we are aware that, from a practical point of
view, those numbers are hard to provide in some applications
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Fig. 1. Average empirical false alarm rates for all simulated situations.

with rather high dynamics. To this purpose, we examine the
performances in a more practical setting in Section [[V-C]

For all scenarios, we evaluate the performances of the
proposed multivariate metric sets in combination with the
three presented control chart procedures. We compare their
results with the univariate approach and use ARLy and ARL;
as performance measures. The ARL is defined as the in-
control average run length which can reach an optimal value
of é = 200 in our setup. On the other hand, ARL; calculates
the post-change average run length which measures the delay
to detection, i.e. the number of time points an alarm is sent
after the actual change has occurred.

To maintain comparability across the univariate and multi-
variate setups, we compare memory-free settings and memory-
based procedures separately. Hence, the parametric and non-
parametric Hotellings 72 charts are compared with the She-
whart chart and the MEWMA chart with the EWMA proce-
dure. For the latter ones, we try different smoothing parameters
A €{0.1,0.2,...,0.7} and report the ones with the best results.

B. Performances

We begin with the evaluation of the in-control state. Fig.
illustrates the empirical false alarm rates for all consid-
ered multivariate control charts in each of the 72 examined
scenarios. The results largely meet our expectations as the
parametric Hotelling 72 procedure tends to yield relatively low
control limits. This particularly seems to be the case for more
unbalanced setups (e.g. CDS, BCD) which tend to generate
more skewed joint distributions as explained in Section
Overall, however, the desired fit is not reached for more
balanced sets as well, since their false alarm rates lie above
the desired v and above the ones of the other two procedures.
See Fig. [2| for an example of the quality of the fit where
the deviation of the empirical distribution to the assumed F
assumption is clearly visible, particularly at the tails of the

0.8
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Density
0.4 0.6
1 1
—1
=
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Fig. 2. Example situation for a comparison of the simulated empirical distri-
bution with the corresponding F'-approximation of the parametric Hotelling
T2 chart.

distribution. Regarding the other control charts, the results
support the statement that MEWMA is more robust against
possible parametric violations. However, the non-parametric
bootstrap approach yields the most reliable in-control results
for the rather long in-control phase and the small value of a.

We saw that the charts produce quite different ARL values,
although they were designed to hold a fixed false alarm rate.
Obviously, charts with a lower ARLy will produce lower
values of ARL; on the same data set, since the control limit h,,
is lower. For the ARL; analysis, we therefore only report the
ones of the bootstrap chart and concentrate on the performance
differences of the applied metric sets. See Table for an
overview of the results.

Overall, the results meet our expectations. The univariate
metrics might perform reasonable in special scenarios, but are
having clear weaknesses in others. The multivariate proce-
dures, on the other hand, perform clearly more reliable over
all situations and are more robust to the underlying change-
type which underlines the improved flexiblity compared to the
univariate approach. On a further note, the results are handily
interpretable. We can e.g. take a closer look at the performance
of the most balanced set SBE (consisting of Sp, BeDe, and
AvEi). Regarding the involved univariate performances, Sp is
able to handle global changes, but is having problems with
LLCs and especially LNCs. For BeDe the behavior is vice
versa. Their joint monitoring, however, leads to promising
results for all scenarios, since their effects are combined. The
additional consideration of AvEi, which is in theory sensitive
to all types but to a lesser extent, serves slightly supportive to
all impacts and as an overall smoothing factor. The behavior
for more unbalanced multivariate setups is similar as they
provide more flexibility overall compared to the involved
univariate candidates. Particularly, the ARL; for the “non-



TABLE VII
ARL7 FOR UNIVARIATE AND MULTIVARIATE PERFORMANCES. BEST ARL; FOR EACH SCENARIO IS PRINTED IN BOLD.

Univariate Setup Multivariate Setup
Type Intensity Fr Sp AvCl DeCl AvDe DeDe AvBe DeBe AVEi SBE SDC BDS CDS BCD FSB
small 9.68 1023 | 965 | 13252 | 9.68 | 14333 | 9.61 121.84 | 12027 | 3301 | 2524 | 3898 | 4449 | 5593 | 51.67
GLC || moderate | 1.77 1.69 176 | 13607 | 177 | 13293 | 1.79 10442 | 7021 | 303 | 329 | 28 | 176 | 17.13 | 3.10
heavy 1.00 1.00 100 | 12629 | 1.00 | 162.48 | 1.00 8042 | 2221 | 1.00 | 1.00 | 1.00 | 1.00 | 193 | 1.00
small 631 4.14 699 | 6.19 747 | 935 631 5.57 1148 | 418 | 454 | 485 | 828 | 497 | 7.88
LLC || moderate | 1650 | 11.04 | 1455 | 2.77 16.50 | 3.84 1650 | 2.92 3.88 247 | 250 | 575 | 1261 | 2.18 | 2.06
heavy 3314 | 1406 | 29.06 | 1.01 33.63 | 1.02 3314 | 1.02 1.02 101 | 1.01 | 105 | 1336 | 1.01 | 1.01
small 313.74 | 1.26 101 | 2163 | 100 | 8332 | 126 4196 | 3716 | 307 | 3412 | 145 | 138 | 391 | 19.87
GNC || moderate | 312.89 | 1.00 .00 | 889 100 | 27.17 | 1.00 8.08 8.54 100 | 767 | 100 | 1.00 | 105 | 201
heavy 311.25 | 1.00 1.00 | 10387 | 1.00 | 1516 | 1.00 231 2.87 100 | 289 | 1.00 | 1.00 | 1.00 | 1.00
small 13998 | 4172 | 1.85 | 1.81 106 | 175 1142 | 2.06 1.77 151 | 152 | 102 | 112 [ 160 | 150
LNC || moderate | 14348 | 1158 | 1.07 | 1.30 113 | 112 1007 | 1.21 1.13 100 | 767 | 100 | 1.00 | 105 | 201
heavy 149.93 | 127.78 | 65.00 | 1.00 1497 | 1.00 115.68 | 1.00 1.00 100 | 1.00 | 1.00 | 1.04 | 1.00 | 1.00
specialized” cases (i.e. the cases, for which all involved metrics TABLE VIII
are not really suitable) improved as the small sensitivities of SBM PARAMTER SETUPS FOR THE COMMUNITY CHANGES
Fh.e single metrics have a larger impact if they are considered No. T In-Control Changes
jointly, see e.g. the BCD perf(?rmance'for GNCs or the CDS K =3,p1=07,p2=06, | pr=0.9,ps =07,
performance for LLCS.. Despite the improved performance 1 p3 =0.8,p;; = 0.1, p3 =0.9,p;; =0.2,
compared to the univariate metrics, the values are 0bV10usly n1 =no =33,n3 =34 n1 =ng =ng =40
higher than those of more balanced setups in these situations. K =3,p1 =0.7,p2 = 0.6,
Moreover, it is somewhat surprising that they also do not 2 p3 = 0.8,p;; = 0.1, p1=04,p2 =09
clearly outperform the more balanced sets in “specialized” n1 =mng =33,n3 =34
cases, for which they are mainly constructed. K =3,p1 =0.7,p2 =0.6,
3 p3 = 0.3,p;; = 0.1, K =4,ps = 0.3,
. . ni = 30,n2 = 20 n3 = 30,n4 = 20
C. Extension to mixed-type changes g — 50 ' ’
While this examination under rather rigid settings gave K =3,p1 =0.7,p2 = 0.6,
us crucial insights on the theoretical performance limits of 4 p3 =0.3,p;; =0.1, K =4,p3 =ps =049
the considered monitoring applications, we now examine if n1 = 30, n2 = 20, ng = 30,n4 = 20
the studied behaviors still hold in more practical application n3 = 50

examples. For this purpose, we consider mixed-type changes
(MTC) in the popular scenario of community changes in
stochastic blockmodels (SBM) [30]. The explicit setups can
be found in Table where K represents the number of
communities, p; the intra-group link probability of group
i € {1,...,K}, p;; the inter-group link probability between
groups ¢ and j, and m; the number of nodes in group 7.
Furthermore, we reduce the length of the in-control phase to
100 in order to examine the performance of the charts in more
data-restrictive circumstances. Due to the shorter in-control
length, we set the false alarm rate to o = 5%.

The in-control results shown in Fig. [3|are different to before.
Whereas the non-parametric version clearly outperformed the
parametric control charts in Section the performances
are more equal now. The non-parametric approach suffers
from the shorter in-control length, because the estimation
of the theoretical distribution becomes more unreliable by
applying a smaller data sample to the bootstrap procedure.
However, the chart still performs reasonable as it only lies
approx. 0.5% above the desired «. Another advantage is the
robustness against different metric sets. Overall, the parametric
control charts perform better than before and reach similar
performances for more balanced metric sets to the non-
parametric candidate. An explanation is the higher value of
o, for which the charts are designed, as explained in Section
However, the sensitivity to the applied metric set still

holds as the performance gets quite unstable for unbalanced
sets.

The ARL; results in Table can be interpreted similarly
to before. Siuation 1 describes a change with an increased
popularity of the whole network with an increased inter-
and intra-communication (link amount) and the arrival of
new members which can be seen as a MTC of GNC and
GLC. Apart from some univariate deviation centralities, all
considered metric sets perform well. The second scenario
addresses changes, where the importance between two groups
is shifted, which results in an increased communication of
one group and a decreased communication in the other. While
most univariate metrics are not able to handle this change type
as their ARL; does match their set ARL(, the multivariate
sets perform reasonable, particularly the more balanced ones.
The last two situations address changes in the number of
communities, e.g a split of one group into two different ones.
For the third situation, the link probability in both new groups
stays the same as before which results in an overall decreased
link amount due to decreased link probability of those nodes,
which were in one group before and are in different ones
now. Hence, it is an relatively easy GLC situation and all
applied metrics achieve a satisfactory performance. We de-
signed the last scenario such that the overall link probability



TABLE IX
ARL1 FOR THE COMMUNITY CHANGES. BEST ARL; FOR EACH SCENARIO IS PRINTED IN BOLD.

Univariate Setup

Multivariate Setup

Case | Fr Sp AvCl | DeCl | AvDe | DeDe | AvBe

DeBe | AvEi SBE | SDC BDS CDS | BCD | FSB

1 1.00 1.00
22.13 | 10.04
1.01 2.78
20.30 | 18.44

1.00
20.24
1.01
7.97

19.50 | 1.00 14.16
26.30 | 22.17 | 24.56
1.86 1.01 3.06

15.02 | 21.30 | 22.22

1.00
20.09
1.01
7.68

EE VNI S

1.89
12.20
3.09
14.89

1.08
1.58
1.48
21.38

1.00
1.61
1.39
4.94

1.00
3.43
1.00
13.85

1.00 1.00
9.63 2.08
1.94 1.00
1438 | 3.90

1.00
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1.42
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Fig. 3. Average empirical false alarm rates for all simulated situations.

stays the same after the split. This makes the detection more
challenging which results in higher ARL; values. However,
the multivariate sets again underline their superior flexibility
as they achieve better performances in this situation than their
univariate counterparts.

V. CONCLUSION

The detection of temporal differences in a time series of
graphs is a rather challenging task due to the complex nature
of dynamic networks. We proposed an extension of a metric-
based approach to a multivariate setup and its combination
with suitable control charting procedures involving parametric
as well as non-parametric setups. We explicitly explained
the challenges of such a multivariate design and presented
recommendations including a sound choice of a suitable set
of metrics, its combination with a suitable control chart, and
the final interpretation of the results. We further underlined
our statements with the help of a simulation study in which
a thoroughly designed multivariate approach outperforms the
univariate procedure by offering a more flexible solution to
the problem of change detection in dynamic networks.
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