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Abstract
The purpose of this paper is to determine the main properties of Laplace contour
integrals

�(z) = 1

2π i

∫
C

φ(t)e−zt dt

that solve linear differential equations

L[w](z) := w(n) +
n−1∑
j=0

(a j + b j z)w
( j) = 0.

This concerns, in particular, the order of growth, asymptotic expansions, the
Phragmén–Lindelöf indicator, the distribution of zeros, the existence of sub-normal
and polynomial solutions, and the corresponding Nevanlinna functions.
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566 N. Steinmetz

1 Introduction

Special functions usually admit several quite different definitions and representations.
For example, Airy’s differential equation

w′′ − zw = 0

has a particular solution, known as the Airy function, that may be written as a Laplace
contour integral

Ai(z) = 1

2π i

∫
C

e−zt+t3/3 dt; (1)

the contour C consists of the straight line from +∞ eiπ/3 to the origin followed by the
straight line from 0 to +∞ e−iπ/3. In [1] the authors G. Gundersen, J. Heittokangas
and Z.-T.Wen investigated two special families of linear differential equations, namely
the three-term equations

L[w] := w(n) + (−1)n+1bw(k) + (−1)n+1zw = 0, 0 < k < n, b ∈ C, (2)

and
L[w] := w(n) − zw(k) − w = 0, 1 < k < n, (3)

with the intention “to make a contribution to this topic which includes a generalization
of the Airy integral [. . .] to have more examples of solutions of complex differential
equations that have concrete properties”. To this end they determined several contour
integral solutions

1

2π i

∫
C

F(z, w) dw

with varying kernels F and contours C. Although [1] does not contain any hint of
how to find appropriate kernels and contours, not to mention appropriate (families
of) differential equations like (2) and (3), the examples in [1] reveal the nature of the
contour integrals: in any case they are equal to or may be transformed into Laplace
contour integrals

1

2π i

∫
C

φ(t)e−zt dt (4)

of particular analytic functions φ over canonical contours or paths of integration C.
We will prove that to each linear differential equation

L[w] := w(n) +
n−1∑
j=0

(a j + b j z)w
( j) = 0, a0 + b0z �≡ 0, (5)

there exists some distinguished Laplace contour integral solution (4) with kernel φL

that is uniquely determined by the operator L and itself determines canonical contours
C. The main properties of these solutions—denoted �L—, which strongly resemble
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the Airy integral, will be revealed. This concerns, in particular, the order of growth,
the deficiency of the value zero, asymptotic expansions in particular sectors, the distri-
bution of zeros, the Phragmén-Lindelöf indicator, the Nevanlinna functions T (r ,�L)

and N (r , 1/�L), and the existence of sub-normal solutions.

2 Kernels and Contours

The following reflections on linear differential equations

L[w] :=
n∑

j=0

Pj (z)w
( j) = 0, (6)

are more or less part of mathematical folklore, but unfortunately not as well-known
as they should be. One can find a few remarks in Wasow [10, p. 123 ff.], where the
method of Laplace contour integrals and the saddle-point method is applied to Airy’s
equation. Hille [4, p. 216 ff.] and Ince [5, Ch. XVIII] deal with linear differential
equations (6) under the constraint deg Pn ≥ deg Pj . This, however, is by no means
necessary and even prevents the discussion of the most important case Pn(z) ≡ 1,
where the solutions are entire functions of finite order of growth.

We start with linear differential equations (6) with polynomial coefficients

Pj (z) =
∑
α

c jαzα, Pn(z)P0(z) �≡ 0, d = max deg Pj ≥ 1, (7)

and are looking for solutions that may be written as Laplace contour integrals (4); the
function φ and also possible paths of integration C have to be determined. Formally
we have

w( j)(z) = 1

2π i

∫
C

φ j (t)e
−zt dt with φ j (t) = (−t) jφ(t)

and

(−1)α
∫
C

zαφ j (t)e
−zt dt =

∫
C

φ j (t)Dα[e−zt ] dt (where D = d/dt)

= [
φ j (t)Dα−1[e−zt ]]

C
−

∫
C

φ′
j (t)Dα−1[e−zt ] dt

(8)

if α ≥ 1; here

[
�(t)

]
C

= lim
t→b

�(t) − lim
t→a

�(t)
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568 N. Steinmetz

denotes the variation of � along C, when C starts at a and ends at b; of course, Cmay
be closed. We demand

[
φ

(α−1)
j (t)e−zt ]

C
= 0, 0 ≤ j ≤ n, 1 ≤ α ≤ max

0≤ j≤n
deg Pj , (9)

to obtain

L[w](z) = 1

2π i

∫
C

[ ∑
j,α

c jα Dα[(−t) jφ(t)]
]

e−zt dt,

hence L[w](z) ≡ 0 if ∑
j,α

c jα Dα[(−t) jφ(t)] ≡ 0. (10)

These calculations are justified if (9) holds and the integrals converge absolutely with
respect to arc-length, and locally uniformly with respect to z. With

Qα(t) =
n∑

j=0

c jα(−t) j , (11)

condition (10) may be written as

d∑
α=0

[
Qαφ

](α)
(t) ≡ 0, d = max deg Pj , (12)

and we have the following theorem, which forms the basis of our considerations.

2.1 Theorem Let φ be any non-trivial solution to (12) and C any contour such
that the integrals (8) converge absolutely with respect to arc-length on C and locally
uniformly with respect to z, and also (9) holds. Then the Laplace contour integral
(4) solves the differential equation (6).

Of course, one has to check in each particular case that w is non-trivial. In most
cases this is a corollary of the inverse formula and/or uniqueness theorems for the
Laplace transformation.

3 Equations with Coefficients of Degree One

3.1 The Kernel The method of the previous section turns out to be most useful in
the study of equation (5), in which case

Q0(t) = (−t)n +
n−1∑
j=0

a j (−t) j and Q1(t) = bq(−t)q +
q−1∑
j=0

b j (−t) j ,
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where bq �= 0 and b j = 0 for j > q is assumed. By a linear change of the independent
variable z we may achieve

bq = (−1)n−q+1 (and aq = 0 if desired); (13)

this will be assumed henceforth. Then Q0φ + (Q1φ)′ = 0 gives

φ(t) = 1

Q1(t)
exp

[
−

∫
Q0(t)

Q1(t)
dt

]
(14)

up to an arbitrary constant factor. More precisely,

φ(t) =
m∏

ν=1

(t − tν)
−mν−λν exp

[
R0(t) +

m∑
ν=1

Rν

(
1

t − tν

)]
with

λν = res
tν

[
Q0

Q1

]
, deg Rν ≤ mν − 1, R0(t) = tn−q+1

n − q + 1
+ · · ·

(15)

holds. Sometimes it suffices to know that φ has the form

φ(t) = exp

[
tn−q+1

n − q + 1
+ ψ(t)

]
, (16)

where ψ is holomorphic on {t : |t | > R0, | arg t | < π} and satisfies

|ψ(t)| ≤ C |t |n−q as t → ∞. (17)

Occasionally, any function (14) will denoted φL .

3.2 Appropriate Contours There is some freedom in the choice of the contour C,
which is restricted only by condition (9). Closed simple contours work in particular
cases only, namely when λν is an integer, and yield less interesting examples. More
interesting are the contours CR,α,β that consist of three arcs as follows:

1. the line t = reiα , where r runs from +∞ to R ≥ 0;
2. the circular arc on |t | = R from Reiα via t = Rei(α+β)/2 to Reiβ ;
3. the line t = reiβ , where r runs from R to +∞.

In place of C0,α,β , CR,α,−α , and C0,α,−α we will also write Cα,β , CR,α , and Cα ,
respectively. Note that CR,α,−α passes through R, while CR,α,2π−α passes through
−R. To ensure convergence of the contour integral and condition (9), the real part of
tn−q+1 has to be negative on arg t = α and arg t = β; this will tacitly be assumed. A
canonical and our preferred choice is α = π/(n − q + 1) and β = −α. It is, however,
almost obvious by Cauchy’s theorem that the contour integral is independent of α, β,

and R within their natural limitations. This will be proved later on.
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570 N. Steinmetz

3.3 The Protagonist By w = �L(z) we will denote any solution to Eq. (5) given
by

�L(z) = 1

2π i

∫
CR,π/(n−q+1)

φL(t)e−zt dt (18)

with associated function (14). Of course, �L is (up to a constant factor) uniquely
determined by the operator L and differs from operator to operator, but its essential
properties depend only on n − q. Hence the Airy function is a typical representative
of the solutions �L with q = n − 2, where n may be arbitrarily large.

3.4 Elementary Examples

1. Airy’s Equation w′′ − zw = 0 and �L = Ai: Q0(t) = t2, Q1(t) = −1, φL(t) =
et3/3, and C = Cπ/3. By Cauchy’s theorem, any contour CR,α,β with R ≥ 0,
α ∈ (π/2, π/6), and β ∈ (−π/6,−π/2), is admissible.

2. w(n) + (−1)n+1bw(k) + (−1)n+1zw = 0, see (2): Q0(t) = (−1)ntn −
(−1)n+1+kbtk , Q1(t) = (−1)n , hence

φL(t) = exp

[
tn+1

n + 1
+ (−1)k+1btk+1

k + 1

]

(see [1, (3.2)]). The contour C = Cπ/(n+1) is canonical.
3. w(n) − zw(k) − w = 0, 1 < k < n, see (3): Q0(t) = (−1)ntn − 1, Q1(t) =

(−1)k+1tk , hence

φL(t) = 1

tk
exp

[
(−1)n−k tn−k+1

n − k + 1
+ (−1)k t−k+1

k − 1

]
.

Since φL has an essential singularity at t = 0, one may choose C : |t | = 1; it
is, however, more interesting to choose C = C1,π/(n−k+1) if n − q is even; if
n − q is odd, the differential equation does match our normalisation only after the
change of variable z 
→ −z. We note that the substitution (the conformal map)
t = −1/u transforms the Laplace contour integral with kernel φL up to sign into
some integral

1

2π i

∫
C̃

uk−2 exp

[
z

u
− u−n+k−1

n − k + 1
− uk−1

k − 1

]
du

in accordance with [1, (5.2)].

4 Asymptotic Expansions and the Order of Growth

4.1 The Characteristic Equation The information on possible orders of growth
and asymptotic expansions of transcendental solutions to (5) is encoded in the algebraic
equation

123



Laplace Contour Integrals and Linear… 571

yn +
n−1∑
j=0

(a j + b j z)y j = 0, (19)

which justifiablymay be called the characteristic equation. Remember that we assume
bq = (−1)n−q+1 and b j = 0 for j > q. Also let p ≤ q denote the smallest index
such that bp �= 0. As z → ∞, Eq. (19) has solutions

1. y j (z) ∼ γ j z1/(n−q), γ n−q
j = (−1)n−q , 1 ≤ j ≤ n − q, hence

∫
y j (z) dz ∼ γ j z1+1/(n−q)

1 + 1
n−q

.

in any case (n − q odd or even), one γ j equals −1.
2. yn−q+ j ∼ t j , 1 ≤ j ≤ q − p, where t j �= 0 is a root of Q1(−t) = 0 (counting

multiplicities), hence

∫
yn−q+ j (z) dz ∼ t j z;

3. yn−p+ j (z) ∼ τ j z−1/p, τ p
j = −a0/bp, 1 ≤ j ≤ p, hence

∫
yn−p+ j (z) dz ∼ τ j z1−1/p

1 − 1
p

if p > 1 and
∫

yn(z) dz ∼ τ1 log z if p = 1.

By z1/r and log z we mean the branches on | arg z| < π that are real on the positive
real axis. If p = 1, polynomial solutions may exist, but not otherwise.

4.2 The Order of Growth Let

f (z) =
∞∑

n=0

cnzn

be any transcendental entire function with maximum modulus, maximum term, and
central index

M(r , f ) = max{| f (z)| : |z| = r},
μ(r) = max{|cn|rn : n ≥ 0}, and

ν(r) = max{n : |cn|rn = μ(r)},

respectively. Then f has order of growth


( f ) = lim sup
r→∞

log log M(r , f )

log r
= lim sup

r→∞
log logμ(r)

log r
= lim sup

r→∞
log ν(r)

log r
.
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572 N. Steinmetz

The central index method for solutions to linear differential equations (6) is based on
the relation

f ( j)(zr )

f (zr )
=

(
ν(r)

zr

) j

(1 + ε j (r)), j = 1, 2, . . . ,

where zr is any point on |z| = r such that | f (zr )| = M(r , f ). This holds with
ε j (r) → 0 as r → ∞ with the possible exception of some set E j of finite logarithmic
measure; for a proof see Wittich [11, Ch. I] or Hayman [2]. If w = f (z) solves (5),
ν(r)/zr = v(r) satisfies

(1 + εn(r)v(r)n +
n−1∑
j=0

(a j + b j zr )(1 + ε j (r))v(r) j = 0,

hence any such v(r) is asymptotically correlated with some solution to the character-
istic equation (19) as follows:

ν(r) ∼ zr y j (zr )

as r → ∞ holds even without an exceptional set by the regular behaviour of zr y j (zr );
since ν(r) is positive, zr y j (zr ) is asymptotically positive, this giving additional infor-
mation on the possible values of arg zr . Thus the transcendental solutions to Eq. (5)
have possible orders of growth


 = 1 + 1

n − q
: solutions of this order always exist;


 = 1 : necessary for solutions of this order to exist is p < q;

 = 1 − 1

p
: necessary for solutions of this order to exist is p > 1;


 = 0 : necessary for polynomial solutions is p = 1.

4.3 Asymptotic Expansions The differential equation (5) may be rewritten in the
usual way as a first-order system

z−1v′ = (
B + z−1A

)
v (20)

for v = (w,w′, . . . , w(n−1))� with n × n-matrices A and B. The following details
can be found inWasow’s fundamental monograph [10]. The system (20) has rank one,
but the matrix B has vanishing eigenvalues. Thus the theory of asymptotic integration
yields only a local result [10, Thm. 19.1], which makes its applicability unpleasant
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and involved: to every angle θ there exists some sector Sθ : | arg(ze−iθ )| < δ such
that the system (20) has a distinguished fundamental matrix

V(z|θ) = V (z|θ)zGe�(z);

since B + z−1A is holomorphic on |z| > 0, the number δ, the constant n × n-matrix
G, and the matrix � = diag (�1, . . . ,�n) are universal, that is, they do not depend
on θ . The entries of � are polynomials in z1/r for some positive integer r , and V (z|θ)

has an asymptotic expansion

V (z|θ) ∼
∞∑
j=0

Vj z−1/r on Sθ ; (21)

the latter means

‖V (z|θ) −
m∑

j=0

Vj z−1/r‖ = o(|z|−m/r ), m = 0, 1, 2, . . . ,

as z → ∞ on Sθ , uniformly on every closed sub-sector; again the matrices Vj are
independent of θ . The fundamental matricesV, that is, the matrices V (z|θ) may vary
from sector to sector.1 Returning to Eq. (5) this means that given θ , there exists a
distinguished fundamental system

◦
w1 (z|θ), . . . ,

◦
wn (z|θ) (22)

such that ◦
w j (z|θ) = e� j (z1/r )zρ j � j (z|θ) on Sθ ; (23)

� j is a polynomial in z1/r , ρ j is some complex number, and � j is a polynomial
in log z with coefficients that have asymptotic expansions in z1/r on Sθ . The triples
(� j , ρ j ,� j ) are mutually distinct. Again this system may vary from sector to sector,
but only in the coefficients of � j (z|θ)! The leading terms of the � j can be found
among those of the algebraic functions

∫
yν dz at z = ∞.

4.4 The Phragmén–Lindelöf Indicator The following facts can be found in
Lewin’s/Levin’s monographs [6–8]. Let f be an entire function of positive finite order

 such that log M(r , f ) = O(r
) as r → ∞. Then

h(ϑ) = lim sup
r→∞

log | f (reiϑ)|
r


, ϑ ∈ R (24)

is called Phragmén–Lindelöf indicator or just indicator of f of order 
; it is continuous
and always assumed to be extended to the real axis as a 2π -periodic function. Having

1 Independence of the matrices Vj and dependence of V (z|θ) on θ do not contradict each other. Asymptotic
series may represent different analytic functions on sectors.
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574 N. Steinmetz

h(ϑ) at hand, the Nevanlinna functions may be computed explicitly (for definitions
and results we refer to Hayman [3] and Nevanlinna [9]):

T (r , f ) = m(r , f ) ∼ r


2π

∫ 2π

0
h+(ϑ) dϑ,

2

m

(
r ,

1

f

)
∼ r


2π

∫ 2π

0
h−(ϑ) dϑ, and N

(
r ,

1

f

)
∼ r


2π

∫ 2π

0
h(ϑ) dϑ,

where as usual x+ = max{x, 0} and x− = max{−x, 0}. In connection with our
distinguished fundamental system (22) only local indicators

h j (ϑ) = − 1



cos

(

ϑ + 2 jπ

n − q

)
, 0 ≤ j < n − q, and hn−q(ϑ) = 0 (25)

have to be considered.

5 Results on Normal and Sub-Normal Solutions

The Airy integral has an asymptotic representation

Ai(z) ∼ 1

2
√

π
e−(2/3)z3/2 z−1/4

∞∑
j=0

c j z
− j/2 even on | arg z| < π,

hence

1. satisfies
logAi(z)

z3/2
∼ −2

3
as z → ∞ on | arg z| ≤ π − ε for every ε > 0;

2. has Phragmén–Lindelöf indicator h(ϑ) = −2

3
cos

(3
2
ϑ

)
on |ϑ | < π ;

3. has infinitely many zeros, all on the negative real axis.

4. T (r ,Ai) ∼ 8

9π
r3/2 and N (r , 1/Ai) ∼ 4

9π
r3/2.

In the general case one cannot expect results of this high precision, but the following
theorem seems to be a good approximation.

5.1 Theorem Any Laplace contour integral �Lof order 
 = 1+ 1/(n − q) ≤ 3/2
(hence n − q ≥ 2)

1. satisfies
log�L(z)

z

∼ − 1



on | arg z| ≤ π − ε for every ε > 0;

2. has Phragmén-Lindelöf indicator h(ϑ) = − 1



cos

(

ϑ

)
on |ϑ | < π ;

3. has only finitely many zeros in | arg z − π | < ε for every ε > 0;

2 ψ1(r) ∼ ψ2(r) as r → ∞ means ψ1(r)/ψ2(r) → 1.
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4. T (r ,�L) ∼ 1

π
2 (1 + | sin(π
)|)r
 and N (r , 1/�L) ∼ 1

π
2 r
.

�L has ‘many’ zeros by the last property; they are distributed over arbitrarily small
sectors about the negative real axis. The analogue of Theorem 5.1 for q = n −1 reads
as follows.

5.1a Theorem. Suppose q = n − 1. Then either �L(z) = e−z2/2P(z), Psome non-
trivial polynomial, or else the following is true:

1.
log�L(z)

z2
∼ −1

2
on | arg z| <

3

4
π − ε;

2. h(ϑ) = −1

2
cos(2ϑ) on |ϑ | <

3

4
π and h(ϑ) = 0 on

3

4
π ≤ |ϑ | ≤ π ;

3. �L has only finitely many zeros in | arg z| ≤ 3

4
π − ε, and at most

o(r2) zeros in | arg z − π | <
π

4
− ε, |z| < r , for every ε > 0;

4. T (r ,�L) ∼ 1

2π
r2 and N (r , 1/�L) ∼ 1

4π
r2.

In the second case, �L again has ‘many’ zeros; they are distributed over arbitrarily
small sectors about arg z = ±3π/4.

The proof of Theorem 5.1 and 5.1 a will be given in Sect. 9.

5.2 Subnormal Solutions Solutions of maximal order 
 = 1+ 1/(n − q) always
exist, while the question of the existence of so-called sub-normal solutions having
order 
 = 1, 
 = 1− 1/p, and 
 = 0 (polynomials), respectively, remains open; nec-
essary but by far not sufficient conditions are q > p, p > 1, and p = 1, respectively.
Sufficient conditions are coupled with the poles of Q0/Q1 and their residues. We note
that at t = 0, Q0/Q1 either has a pole of order p ≥ 1 or is regular (p = 0). We have
to distinguish two cases.

5.2a Theorem. Let t = 0 be a pole of Q0/Q1of order p ≥ 1with integer residue λ0.
Then the solution

w(z) = res
0

[
φL(t)e−zt]

has order of growth 
 = 1− 1/p if t = 0 is an essential singularity of φL , that is, if
p > 1, and otherwise (p = 1) is either a non-trivial polynomial of degree λ0 ≥ 0
or else vanishes identically (λ0 < 0).

5.2b Theorem. Let t = t0 �= 0 be a pole of Q0/Q1 of order m with integer residue
λ0. Then the solution

w(z) = res
t0

[
φL(t)e−zt]

has the form

w(z) = e−t0z W (z),
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576 N. Steinmetz

where W is a transcendental entire function of order of growth at most 1 − 1/m if
m > 1, and otherwise is a polynomial of degree λ0 ≥ 0 or vanishes identically
(λ0 < 0).

Proof of 5.2a. First assume that t = 0 is a simple pole of Q0/Q1. Then p = 1
(since Q0(0) = a0 �= 0) and

φL(t)e−zt = H(t)e−zt

(t − t0)1+λ0

holds, where H is holomorphic at t = 0 and H(0) �= 0. Then (assuming λ0 ≥ 0)

w(z) =
λ0∑

k=0

H (λ0−k)(0)

k!(λ0 − k)! (−z)k

is a polynomial of degree λ0. If, however t = 0 is an essential singularity for φL , then
p > 1 and

|φL(t)| ≤ AeB|t |−p+1

|t |1+λ0

holds on |t | < δ, hence

|w(z)| ≤ 1

2π

∫
|t |=|z|−1/p

AeB|t |−p+1+|z||t |

|t |1+λ0
|dt | ≤ A|z|λ0/pe(B+1)|z|1−1/p

holds as z → ∞. This yields 
(w) ≤ 1 − 1/p. Since w is not a polynomial, the only
possibility is 
 = 1 − 1/p. This proves 5.2a.

To deal with 5.2b write

w(z) = res
t0

[
φL(t)e−zt ] = e−t0z res

t0

[
φL(t)e−z(t−t0)

] = e−t0z W (z).

Then by part a of the proof, either W is a polynomial of degree λ0 ≥ 0 or vanishes
identically (λ0 < 0) or is a transcendental entire function of order of growth at most
1 − 1/m; the value zero is a Borel or even Picard exceptional value of w. ��

Remark. By w = e−t0z W (t0 �= 0), Eq. (5) is transformed into

W (n) +
n−1∑
j=0

(A j + B j z)W ( j) = 0 (26)

with Aν+Bνz = ∑n
j=ν

( j
ν

)
(−t0) j−ν(a j +b j z); in particular, Bq = bq and A0+B0z =

Q0(t0) + Q1(t0)z hold, hence q, bq , and the maximal order of growth 1+ 1/(n − q)

are invariant under this transformation, but not necessarily the index p. If in Theorem
5.2b, t0 is not a zero of Q0(t) and m > 1, then in (26) we have Bm �= 0, but B j = 0
for j < m, hence W has the order 1 − 1/m by part a.
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6 Rotational Symmetries

The functions Ai(ze−2νπ i/3) also solve Airy’s equation and coincide up to some non-
zero factor with the Laplace contour integrals

1

2π i

∫
C(2ν+1)π/3,(2ν−1)π/2

et3/3e−zt dt;

obviously the sum over the three integrals vanishes identically, while any two of these
functions are linearly independent; this is well-known, and will be proved below in a
more general context. In the general case there are two obvious obstacles:

1. �L(ze−2νπ i/(n−q+1)) is not necessarily a solution to L[w] = 0.
Nevertheless one may consider the contour integral solutions

�ν(z) = 1

2π i

∫
CR,θ2ν+1,θ2ν−1

φL(t)e−zt dt, θk = kπ

n − q + 1
, (27)

and their Phragmén-Lindelöf indicators hν for 0 ≤ ν ≤ n −q, but one has to take care
sinceφL may bemany-valued. The next theorem is just a reformulation of Theorem5.1
and 5.1a. We assume the indicator h0 of �0 = �L is extended to the real line as a
2π -periodic function. Although �ν(z) is distinct from �L(ze−2νπ i/(n−q)) in general,
both functions share their main properties as are stated in Theorem 5.1 and 5.1a for
�L .

6.1 Theorem Each contour integral (27) of order 
 = 1+1/(n −q) has the same
properties2 as the corresponding function �L(e−2νπ i/(n−q+1)z) in Theorem 5.1 and
5.1a.

If φL has no finite singularities, the sum

�(z) = �L(z) + �1(z) + · · · + �n−q(z) = − 1

2π i

∫
|t |=R

φL(t)e−zt dt (28)

vanishes identically. On the other hand, poles tk of Q0/Q1 are poles or essential
singularities of φL ; if these singularities are non-critical, that is, if the residues λk =
restk [Q0/Q1] are integers, the following holds.

6.2 Theorem Suppose the residues λkare integers. Then the sum �either vanishes
identically or may be written as a linear combination of sub-normal solutions

res
tk

[φL(t)e−zt ] = e−tk z Wk;

Wkhas order of growth less than one.
2. φL may be many-valued on C\{poles of Q0/Q1}.

2 Concerning asymptotics, Phragmén–Lindelöf indicator, distribution of zeros, and Nevanlinna functions.
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This is the case if some of the residues λk are not integers. Nevertheless φL may
be single-valued on |t | > R0: if t goes around once the positively oriented circle
|t | = R > R0, (t −tk)λk takes the value (t −tk)λk e2π iλk , hence analytic continuation of
φL(t) along |t | = R yields the valueφL (t)e−2π i

∑
k λk (see the general form (15) ofφL ),

and φL is single-valued on |t | > R0 if
∑

k λk is an integer. Assuming this, � is a sub-
normal solution of order at most one. This follows from (28) and |φL(t)e−zt | ≤ AeR|z|
on |t | = R, hence

|�(z)| ≤ AReR|z|.

We have thus proved

6.3 Theorem If the sum of residues
∑

k λk is an integer, the sum � either vanishes
identically or is a sub-normal solution to L[w] = 0.

The next theorem is concerned with the linear space spanned by the functions �ν ,
0 ≤ ν ≤ n − q.

6.4 Theorem Any set of n − q functions �ν is linearly independent.
Proof. Set

h(ϑ) = max
0≤ν≤n−q

hν(ϑ) = max
0≤ν≤n−q

h0(ϑ − θ2ν)

and Iν = (−π + θ2ν,−π + θ2ν+2), 0 ≤ ν ≤ n − p. Then

hk(ϑ) = hk+1(ϑ) = h(ϑ) > h j (ϑ) holds on In−p−k

for every j �= k, k + 1 mod (n − p + 1). Now let

n−p∑
ν=0

cν�ν

be any non-trivial linear combination of the trivial solution, if any, and assume ck �= 0
for some k. Then

hk(ϑ) ≤ max{hν(ϑ) : cν �= 0, ν �= k}

holds on one hand, and

hk(ϑ) = h(ϑ)

on In−p−k ∪ In−p−k+1 on the other. This implies ck±1 �= 0, hence cν �= 0 for
every ν, and proves that any collection of n − q functions �ν is linearly independent
(Fig. 1). ��
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Fig. 1 The indicators hk on [−π, π ] (0 ≤ k ≤ n−q, frombottom to top), and the intervals Iν (0 ≤ ν ≤ n−q,
from left to right) for n − q = 2, 3, 4

Remark. Note that φL has no singularities at all only in the case of

L[w] = w(n) +
n−1∑
j=0

a jw
( j) + (−1)n+1zw = 0

(with our normalisation). The most simple three-term example is Eq. (2). The Laplace
solutions to

w(n) + (−1)n+1zw = 0

seem to be qualified candidates to be named special functions. We do not know what
happens if

∑
k λk is not an integer. Can one guarantee the existence of sub-normal

solutions? Is the sum � itself sub-normal?

7 More Examples

1. The differential equation w(5) − zw′′′ + 7w′′ + zw′ − 2w = 0
with n = 5, q = 3, p = 1, Q0(t) = −t5 + 7t2 − 2, Q1(t) = t3 − t has the
fundamental system

w1 = �L(z) = 1

2π i

∫
C π

3

et3/3+t−zt

t3(t − 1)3(t + 1)4
dt

w2 = �1 or �2

w3 = (2z3 − 39z2 + 264z − 635)ez

w4 = (z2 + 6z + 15)e−z
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580 N. Steinmetz

w5 = z2 + 7.

The functions �0, �1, and �2 are linearly dependent.
2. The differential equation w(6) − zw(4) − zw′′ + w = 0

with n = 6, q = 4, p = 2, Q0(t) = t6 + 1 and Q1(t) = −t4 − t2, hence

φL(t) = 1

t4 + t2
exp

[
t3

3
− t − 1

t

]
,

has solutionsw1,2 = e±i z (associated with the poles at t = ∓i) of order 
 = 1 and
three solutions of order 
 = 3/2, namely �0, �1, and �1. The residue theorem
yields one more solution w3(z) = res0

[
φL(t)e−zt

]
that has order of growth 2/3.

It is not clear how complete the five solutions just discussed for obtaining a basis
since

�0(z) + �1(z) + �2(z) = i

2
ei(z+1/3) − i

2
e−i(z+1/3) − w3(z)

is a linear combination of w1, w2, and w3.
3. [1, Sect. 6] is devoted to the differential equation

v(4) − zv′′′ − v = 0

(unfortunately not with our normalisation). The authors found three contour inte-
gral solutions denoted H(z), H(−z), andU (z) = H(z)+H(−z) of order 3/2; any
two of them are linearly independent. The transformationw(z) = v(i z) transforms
this equation into

w(4) + zw′′′ − w = 0

with Q0(t) = t4−1, Q1(t) = −t3, andφL(t) = 1

t3
exp

[ t2

2
+ 1

2t2

]
. The solutions

� j (z) = 1

2π i

∫
C1,(2 j−1)π/2,(2 j+1)π/2

φL(t)e−zt dt, j = 0, 1,

have order of growth 2, and the sum

−�0(z) − �1(z) = 1

2π i

∫
|t |=1

φL(t)e−zt dt = res
0

[φL(t)e−zt ]

is sub-normal with order of growth 2/3 (n = 4, q = p = 3); it corresponds to the
solution U in [1] and has power series expansion

∞∑
m=0

Cm

2m−1m! z2m with Cm =
∑

k

1

4kk!(k + m − 1)! ;
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k runs over every non-negative integer such that k + m − 1 ≥ 0.
4. To every n ≥ 2 there exist a unique family of differential equations

w(n) + zw(n−1) +
n−2∑
j=0

(a j + b j z)w
( j) = 0

depending on n − 2 parameters with solution w = e−z2/2.
5. The differential equation w(4) + (z − 1)w′′′ − 8w′′ − zw′ + 2w = 0

with n = 4, q = 3, Q0(t) = t4+t3−8t2+2, Q1(t) = −t3+t has the fundamental
system

w1(z) = �L(z) = 1

2π i

∫
C2, π

2

et2/2+t−zt

t3(t − 1)3(t + 1)4
dt

w2(z) = (2z3 − 27z2 + 150z − 324)ez

w3(z) = (z2 + 6z + 14)e−z

w4(z) = z2 + 8.

�0 + �1 is a non-trivial linear combination of w2, w3, and w4.
6. The differential equation w(5) − (z +1)w′′′ +w′′ + (z +1−λ−2μ)w′ +λw = 0

with Q0(t) = −t5 + t3 + t2 + (λ + 2μ − 1)t + λ, Q1(t) = t3 − t (λ and μ

arbitrary) has the distinguished solutions �0 = �L , �1 and �2. Although

φL(t) = et3/3

t1−λ(t − 1)1+λ+μ(t + 1)2−μ

may have transcendental singularities at t = 0, 1,−1, φL is single-valued on
|t | > 1, and �0(z) + �1(z) + �2(z) has order of growth at most 1.

8 Preparing the Proof of Theorem 5.1

Our proof of Theorem 5.1 will be based on the following.

8.1 Proposition Suppose

φ(t) = exp

[
tm+1

m + 1
+ ψ(t)

]
(29)

is holomorphic on {t : |t | > R0, | arg t | < π}, where ψ satisfies |ψ(t)| ≤ C |t |m and
m ≥ 1 is an integer. Then the Phragmén-Lindelöf indicator of

f (z) = 1

2π i

∫
CR,π/(m+1)

φ(t)e−zt dt
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of order 
 = 1 + 1/mis negative on

|θ | <
mπ

2(m + 1)
. (30)

Remark. Actually Proposition 8.1 was stated and proved in [1, Thm. 3] for

φ(t) = exp

[
tm+1

m + 1
+ (−1)k+1btk+1

k + 1

]
, 0 < k < m,

without reference to the Phragmén-Lindelöf indicator. Examining the proof shows that
it works for any φ given by (29) and m ≥ 2, but not for m = 1, which was out of sight
in [1]. For the proof of Theorem 5.1 we only need m ≥ 2 (m = n −q in our notation),
but for the addendum to this theorem we need the case m = 1.

Proof of Proposition 8.1 for m = 1. Our object now is

1

2π i

∫
CR, π

2

φ(t)e−zt dt (31)

with

φ(t) = exp

[
t2

2
+ ψ(t)

]
and |ψ(t)| ≤ C |t |.

First of all we notice that R > R0 may take any value since for R1 ≥ R2 > R0, the
simple closed curve CR2,π/2 � CR1,π/2 is contained in the domain of φ. We choose
R = ε|z|, where ε > 0 depends on θ = arg z and will be determined during the proof.
Secondly we choose λ > 1 such that λθ < π/4 and show that for 0 < θ < π/4,
say, the contour Cε|z|,π/2 may be replaced with Cε|z|,π/2−λθ,−π/2 (of course, nothing
has to be done if θ = 0). To this end we have to show that the integral over the arc
�r : t = ire−iϑ , 0 ≤ ϑ ≤ λθ vanishes in the limit r → ∞. This follows from

∣∣∣∣ 1

2π i

∫
�r

φ(t)e−zt dt

∣∣∣∣ ≤ r

2π

∫ λθ

0
exp

[
−r2

2
cos(2ϑ) + |z|r + Cr

]
dϑ

≤ r

8
exp

[
−r2

2
cos(2λθ) + r(|z| + C)

]
→ 0 as r → ∞

since cos(2λθ) > 0. To finish the proof we have to estimate the integrals

∫
C

|φ(t)e−zt | |dt |

over

1. C : t = −iε|z|τ , 1 ≤ τ < ∞;
2. C : t = iε|z|τe−iλθ , 1 ≤ τ < ∞;
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3. C : t = ε|z|eiϑ , −π/2 ≤ ϑ ≤ π/2 − λθ .
ad 1. From Re t2 = −ε2|z|2τ 2 ≤ −ε2|z|2τ , Re(−zt) = −ε|z|2τ sin θ ≤ 0 (since

0 ≤ θ < π/4), and |dt | = ε|z| dτ we obtain the upper bound

ε|z|
∫ ∞

1
exp

[
− 1

2
ε|z|(ε|z| − 2C)τ

]
dτ ≤ 1

C
e−ε2|z|2/4, |z| ≥ 4C/ε.

Note that every ε > 0 works and λ doesn’t appear.
ad 2. Here it follows from Ret2 = −ε2|z|2τ 2 cos(2λθ) ≤ −ε2|z|2τ cos(2λθ) and

Re(−zt) = −|z|2τ 2 sin((λ − 1)θ) ≤ 0 that

ε|z|
∫ ∞

1
exp

[
− 1

2
ε|z|(ε|z| cos(2λθ) − 2C)τ

]
dτ ≤ 1

C
e−ε2|z|2/4

is an upper bound provided |z| ≥ 4C/(ε cos(2λθ)). Again we note that every
ε > 0 works and λ does not play an essential role.

ad 3. We first assume 0 < θ < λθ < π/4. From Re t2 ≤ ε2|z|2, Re(−zt) =
−ε|z|2 cos(ϑ + θ), and |dt | = ε|z| dϑ we get the bound

ε|z|
∫ π/2−λθ

−π/2
exp

[1
2
ε|z|2(ε − 2 cos(ϑ + θ)) + εC |z|

]
dϑ

To control the term cos(ϑ + θ) note that

−π

2
< −π

2
+ θ ≤ ϑ + θ ≤ π

2
− λθ + θ = π

2
− (λ − 1)θ <

π

2
,

hence cos(ϑ + θ) ≥ min{sin θ, sin((λ − 1)θ)} = κ(θ) > 0; here we need λ!
This yields the upper bound

πε|z| exp
[
1

2
ε|z|2(ε − 2κ(θ)) + εC |z|

]

for our integral, and all we have to do is to choose ε = κ(θ) to obtain the bound
πε|z|e−ε2|z|2/4 for |z| ≥ 4C/ε. It remains to discuss the case θ = 0, hence
z = x > 0, where we can work with ε = 1. From

Re
[ t2

2
− xt

]
= 1

2
Re(t − x)2 − 1

2
x2 = 2x2(cosϑ − 1) cosϑ − 1

2
x2 ≤ −1

2
x2

we obtain the very last upper bound

π exp
[

− 1

2
x2 + Cx

]
≤ π exp

[
− 1

4
x2

]
, x ≥ 4C .

This proves Proposition 8.1 for m = 1. To verify the case m ≥ 2 the reader is referred
to [1]. ��
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9 Proof of Theorem 5.1 and 5.1a

Let h denote the Phragmén–Lindelöf indicator of our special solution �L . To prove

h(ϑ) = − 1



cos(
ϑ) (32)

on −π/(2
) ≤ ϑ ≤ π/(2
) we use the following facts taken from [8, p. 53 ff.] which
hold for arbitrary indicators of order 
.

1. h has one-sided derivatives everywhere, and h′(ϑ−) ≤ h′(ϑ+) holds;
2. h is 
-trigonometrically convex;
3. h(ϕ) + h(ϕ + π/
) ≥ 0 holds for every ϑ .

Since, however, h(±π/(2
)) ≤ 0, the third property implies h(±π/(2
)) = 0, and
the second leads to

h(ϑ) = h(0) cos(
ϑ) on|ϑ | ≤ π

2


(again [8, p. 53 ff.]). Then h(0) = −1/
 follows from the fact that the only local
indicators available are given by (25). By the third property (note h′(π/(2
)) = 1),
(32) remains true on (π/(2
), θ ], where θ > π/(2
) is the smallest number such that

h0(θ) = hk(θ), h′
0(θ) < 0, and h′

k(θ) > 0

holds for some k �= 0. This happens soonest at θ = π . Finally, the claim about the
distribution of zeros follows from the fact that

h(ϑ) = lim
r→∞

log |�L(reiϑ)|
r


holds uniformly on |ϑ | ≤ π − ε, and

log�L(z)

z

→ − 1



as z → ∞ on | arg z| ≤ π − ε.

Thus all but finitely many zeros are contained in | arg z − π | < ε for every ε > 0.
This proves Theorem 5.1, and the arguments may be repeated step-by-step to prove
Theorem 5.1a until ϑ = ±3π/4 is reached. Then either h(ϑ) = −(1/2) cos(2ϑ)

holds on [−π, π ] or only on [−3π/4, 3π/4], while h(ϑ) = 0 on 3π/4 ≤ |ϑ | ≤ π .
Then

log�L(z)

z2
→ −1

2
as z → ∞

either holds on the whole plane or on | arg z| ≤ 3π/4− ε. In the first case�L has only
finitely many zeros and �L(z) = e−z2/2P(z) holds. In the second case, �L has only
finitely many zeros on | arg z| ≤ 3π/4 − ε, and from
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log |�L(reiϑ)| = o(r2)

as r → ∞, uniformly on |ϑ | ≤ π/4 − ε, it follows that �L has o(r2) (probably only
O(r)) zeros on | arg z − π | ≤ π/4 − ε, |z| ≤ r (cf. [6,7, p. 150]). The asymptotic
formulae for T (r ,�L) and N (r , 1/�L) are obvious. ��
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