QcLAB: A FRAMEWORK FOR QUERY COMPILATION ON
MODERN HARDWARE PLATFORMS

Dissertation
zur Erlangung des Grades eines

Doktors der
Ingenieurwissenschaften

der Technischen Universitit Dortmund
an der Fakultat fur Informatik

von

HENNING FUNKE

Dortmund

2022

Tag der miindlichen Prifung: 25.03.2022
Dekan/Dekanin: Prof. Dr.-Ing. Gernot Fink
Gutachter/Gutachterinnen: Prof. Dr. Jens Teubner

Prof. Dr. Thomas Neumann

Abstract

As modern in-memory database systems achieve higher and higher processing
speeds, the performance of memory becomes an increasingly limiting factor. Al-
though there has been significant progress, the bottleneck only has shifted. While
earlier systems were optimized for memory latencies, current systems are rather
affected by the limited memory bandwidth.

Query compilation is a proven technique to address bandwidth limitations.
It translates queries via Just-In-Time compilation to native programs for the tar-
get hardware. The compiled queries execute with very high efficiency and only
with a bare minimum of communication via memory. Despite these important
improvements, the benefit of query compilation in certain scenarios is limited.

On the one hand query compilers typically use standard compiler technology
with relatively long compilation times. Therefore the overall execution time can be
prolonged by the additional compilation time. On the other hand, not all emerging
database technology is compatible with the approach. Query compilation uses a
tuple-at-a-time processing style that departs from the column-at-a-time or vector-
at-a-time approaches that in-memory systems typically use. Especially data-parallel
processing techniques, e.g. SIMD or coprocessing-techniques, are challenging to
use in combination with the approach.

This work presents QCLab, a framework for query compilation on modern hard-
ware platforms. The framework contains several new query compilation techniques
that allow us to address the mentioned shortcomings and ultimately to extend the
benefit of query compilation to new workloads and platforms. The techniques
cover three aspects: compilation, communication, and processing. Together they
serve as basis for building highly efficient query compilers. The techniques make
efficient use of communication channels and of the large processing capacities
of modern systems. They were designed for practical use and enable efficient
processing, even when workload characteristics are challenging.

1ii

v

Contents

Abstract

1 Introduction

2

1.1 Query Translation and Execution
1.2 OpenChallenges.
1.3 Contributions and Outline
Compilation
2.1 Introduction
2.1.1 Intermediate Representation Levels
2.1.2 Contributions Lo L
213 Outline.
22 QueryTranslation
221 QueryPlantoIR
222 IRtoMachineCode.
2.2.3 ReSQL Translation Mechanisms
2.3 Lightweight Abstractions
23.1 Virtual Registers
232 FunctionCalls.
233 ConstantLoads
2.3.4 Transparent High-Level Constructs
24 Machine Code Translation
24.1 RegisterLayouto oL
2.4.2 Translation Algorithm
2.5 Getting More Out of Flounder
2.5.1 Utilizing Additional Database Knowledge
2.5.2 Higher-LevelIRs
2.6 Evaluation
2.6.1 Compilation Times
2.6.2 Machine Code Quality
2.6.3 Post-Projection Optimizations
2.6.4 Overall Performance for Characteristic Workloads
2.6.5 Real World Performance
27 FutureWork

iii

AN U1 N

2.7.1
2.7.2

Communication
3.1 Introduction

311

3.21
3.2.2
3.2.3

331
3.3.2

341
34.2
343
344

3.5.1
3.5.2
3.5.3

3.6.1
3.6.2

3.8.1
3.8.2
3.8.3
3.8.4
3.8.5
3.8.6

Processing

4.1 Introduction
State of the Art
System: DogQC

4.1.1
4.1.2

Domain-Specific Processing
Hardware Architectures
2.8 Engineering Query Compilers

2.9 Summary

Contributions and Outline
3.2 Macro Execution Model
Run-To-Finish (Not Scalable)
Kernel-At-A-Time
Batch Processing
3.3 Micro Execution Model

Vector-At-A-Time
Query Compilation
3.4 Data-Parallel Query Compilation
Fusion Operators
Micro-Level Pipeline Layout
Instancing Relational Code Templates
Memory Access and Limitations
3.5 Processing Pipelines in One Pass
Pipelining Data-Parallel Reductions
Code Generation for Compound Kernels
Memory Access and Limitations
3.6 Efficient Pipelined Reductions
Local Resolution, Global Propagation
Local Resolution Mechanisms
3.7 DBMS Integration
3.8 Evaluation
Pipelined Prefix Sum
Pipelined Group By
Star Schema Benchmark
TPC-H Queries
Scalability
End-to-End Performance
3.9 Discussion
3.10 More Related Work
3.11 Engineering Query Compilers
3.12 Summary

CONTENTS

CONTENTS

413 Contributions and Outline
4.2 Non-Uniform Pipelines
421 LaneActivity oo
43 Expansion Divergence
431 PosterCasel
43.2 Push-down Parallelism
43.3 Implementation
434 Planning for Push-down Parallelism
435 UsageScenarios
44 Filter Divergence
441 PosterCase2,
442 LaneRefillo oo
443 Implementation
444 Planning for LaneRefill
445 UsageScenarios
45 Evaluation
4.5.1 Effect of Push-down Parallelism
45.2 EffectofLaneRefill
45.3 Push-down Parallelism vs. Lane Refill
454 Overall Performance
4.5.5 Usage Scenario: String Pattern Matching
4.6 MoreRelated Work oo oo
4.7 Engineering Query Compilers
4.8 SUMMATY o e e e e e

5 Conclusions
5.1 Compilation vs. Interpretation
5.2 Hardware Platforms for Query Processing
5.3 Impact of the Covered Research

Acknowledgements

vii

68
68
69
69
69
71
72
74
74
75
76
77
79
80
31
82
83
85
88
89
93
93
94
95

97
98
99
99

101

viii CONTENTS

Introduction

Increasing main memory capacities have led to the development of in-memory
database systems. Instead of using hard disk drives (disks) for storage, in-memory
database systems keep their entire database in main memory. This approach has
removed the disk access bottleneck, which previously was the strongest limiting
factor for database processing. Systems that are optimized for in-memory pro-
cessing, however, show a much greater potential [34]. In-memory technology has
increased the relevance of database systems in existing [27] and new domains,
e.g. data science [92]. A major benefit of such optimized systems are the high
peformance gains that can be achieved.

An important factor for the performance of in-memory systems are memory
latencies [15]. Memory latencies cause memory stalls when query execution waits
for memory requests to be processed. In many cases the CPU caches help to
reduce the number of memory stalls by providing cached data with shorter access
times. Not all workloads, however, can benefit from the caches to a similar extent.
Especially scan and hash-based techniques, that are typical for database workloads,
have insufficient memory access locality for an effective use of the (relatively small)
CPU caches. To address the impact of memory latencies, substantial research
and development work has been performed by the database community. This
work includes processing techniques for joins [15, 8], aggregation [68, 103], and
projection [60]. The techniques typically increase the locality of data access, for
instance with partitioning mechanisms, to achieve a more effective use of the
CPU caches. Additional work leverages CPU prefetching features to hide memory
latencies [23].

More recently another performance factor has gained importance. Memory
bandwidth characterizes the data volume that can be serviced by memory over time.
Workloads that are memory-intensive, such as database processing, are bounded in

2 CHAPTER 1. INTRODUCTION

Quer Abstract Syntax Intermediate Machine Cod
. achine Code
¥ Tree (AST) Representation (IR)
bb 30 Oe 60
4c 89 fa
SEL
select * Opt. Plan 22 23 i?
£ , — x FROM —— —
whzzzl Y Query Plan 41 ff 14 dc
e e s “7 41 5f
x y PN 41 ff 14 dc
x Yy 41 5f
@ Interpreted @ Compiled
Execution Execution

Figure 1.1: Translation and execution of a query by a database system.

throughput by the available bandwidth. Several techniques were proposed to reduce
the bandwidth demand for database processing. Column-based technology [15]
uses homogeneous data layouts to increase the efficiency of memory loads and
stores. Vector-at-a-time processing [16] improves the cache-utilization for the
communication between operations. However, technological improvements in hard-
and software enable processing speeds, that make it more and more challenging to
provide sufficient bandwidth for the I/O operations during processing. While some
technology exacerbates the issue (e.g. multi-core processors have limited per-core
bandwidth), other may provide potential solutions (e.g. parallel coprocessors with
high-bandwidth memory). This thesis deals with processing techniques that can
be used to address bandwidth limitations during query processing. We take a look
at different existing techniques and focus on query compilation as a promising
approach.

1.1 Query Translation and Execution

Queries are data processing tasks that run against the database to extract or to
modify information. From a more general perspective, however, a query is a
program and executing queries has many commonalities with executing other
(general purpose) programs.

Figure 1.1 illustrates how database systems typically execute queries. The
process resembles the way compilers work and a similar process (without the
database specifics) is used by general purpose compilers, e.g. to compile C++ or
Java programs. The query statement on the left is translated to a series of different
representations to prepare it for execution (further on the right). The first step
translates the query to the abstract syntax tree (AST). This step is performed by
the parser. It applies the syntax rules of the SQL language to derive the query

1.1. QUERY TRANSLATION AND EXECUTION 3

statement from the language. The AST is the result of these rules and represents
the query syntax. The query planner then maps the syntactic elements of the AST
to relational operators (e.g. join X, selection o) that form the query plan. The query
plan is a tree of relational operators that represents the query semantics.

The query plan is the first of several intermediate representations (IRs). Figure 1.1
shows the IRs with multiple layers that result from successive translation steps.
After the query plan, several other IRs, e.g. the optimized query plan, follow.
Each IR allows the compiler to use a well-suited representation when performing
complex tasks such as resource allocation, optimization, or translation to a lower
(machine-near) level.

After translation to the desired representation queries are executed. When an
intermediate representation is used, queries are executed with interpreted execution.
When machine code is used, queries are executed with compiled execution. In the
following we discuss the implications of both modes.

Interpreted Execution Traditionally database systems have used interpreted
execution, e.g. Volcano [36], to execute queries. The interpreter takes an intermedi-
ate representation of the query and executes its elements step by step. For instance,
it traverses the query plan’s operators and for each traversal step, it executes the
operator’s implementation. Some systems, e.g. PostgreSQL [93], interpret the query
plan directly. Other systems, e.g. MonetDB [15] or SQLite3 [91], translate the query
plan to an imperative IR with commands and execute those. For simplicity we
call all executed IR elements commands. Commands may (and typically will) read
tables from the database, e.g. when executing scan operators. The rows resulting
from interpretation of the IR form the query result.

Interpreted execution includes an additional cost for performing the interpreta-
tion itself. Every command that is executed has to be decoded first. During decoding
the interpreter reads a command and jumps to the code location with its implemen-
tation. To perform this decoding work, the CPU executes additional instructions
that add to the workload of operator processing. For in-memory techniques, where
disk access no longer dominates execution times, this quickly becomes a limiting
factor. Especially interpretation techniques that perform decoding for every row
of a table are strongly affected. The accumulating interpretation work can dwarf
the actual processing work and has been identified as interpretation overhead [16].

Compiled Execution Query compilation is a processing technique that solves
the problem of interpretation overheads. As illustrated on the right-hand side of
Figure 1.1, the approach takes query translation one step further and translates
queries to machine code before their execution. This enables highly efficient query
processing and makes the approach very attractive for addressing the performance
demands of modern in-memory systems. At the same time, database systems
are compilers anyhow and are therefore well suited for applying compilation
techniques. For these reasons, we make query compilation the focus of this work

4 CHAPTER 1. INTRODUCTION

Query @ Compilation — Machine code

a Communication) 0 .
Database ; —— Query result
O Processing

Execution of machine code

Figure 1.2: Illustration of compiled query execution. Three central concepts that
are addressed in this thesis are visualized with gear symbols.

in the following we present three concepts with a central role.

Compiled query execution is illustrated in Figure 1.2. The figure shows three
central concepts with gear symbols. The top part of the figure illustrates compila-
tion, the bottom part execution. In the top part & Compilation performs translation
of the query to a machine code representation, the compiled query. This trans-
lation is a form of Just-In-Time (JIT) compilation because queries are compiled
immediately when the database is queried. It therefore relies on short compile
times. To perform compilation, database systems translate the query plan (or other
representations of the query) to a low-level IR, e.g. LLVM IR [55], which supports
translation to machine code. The IR library is then used to translate the IR to the
compiled query, which is executed afterwards.

Query execution (Figure 1.2, bottom) is initiated by pointing the CPU to the
compiled query (e.g. with a function call). The CPU proceeds with execution
of the compiled query. During execution £} Processing concerns the execution
of relational operators. The operators of the query are stringed together in the
machine code and are therefore executed by the CPU coherently. There is no
decoding work required as the CPU steps from operator to operator without
interventions being necessary. This makes processing very efficient and removes
the interpretation overhead entirely. €8 Communication services processing. This
is illustrated by the engaging gears (Figure 1.2, bottom). It provides data access
and data passing methods that are used for sharing data between operators and for
accessing relations. By compiling several relational operators to the same binary
function, query compilation has the opportunity for a very efficient way of sharing
data between operators. The operators can share data simply by accessing the
same CPU registers. This enables highly efficient use of memory bandwidth and
improves the communication speed over techniques that materialize tuples in
memory or in caches.

Through the compilation to machine code, compiled execution has the potential
to reach optimal execution performance. To reach this optimum, however, a costly

1.2. OPEN CHALLENGES 5

compilation process would be required to determine the corresponding machine
code representation. The two goals of low execution times and low compilation
oppose each other in the goal for overall short response times. A good solution
for this tradeoff is an important design decision for query compilers and can
also depend on workload characteristics. The techniques presented in this work
address different aspects of this tradeoff and represent new solutions for challenging
workloads.

1.2 Open Challenges

We discuss several open challenges for query compilation in relation to the previ-
ously introduced concepts. Some of the open challenges result from the mismatch
between interpretation-based database technology and compiled query exeution.
Other challenges stem from requirement differences between query compilers and
classical compilers.

Compilation During compilation, compilers go through several translation steps
and yield an intermediate representation (IR) of the program. The IRs help compilers
to handle translation complexity and to apply optimizations. Query compilers have
used existing compiler infrastructure for intermediate representations. However,
the generality of such solutions limits their benefit. Queries have a simpler and more
well-defined form than general purpose programs and may therefore be translated
with less effort. Query processing represents new incentives and opportunities for
the development of compiler techniques that are specifically made for database
workloads.

Communication During query processing data moves from their storage loca-
tions into processing units and back. For these communication processes different
hardware channels, e.g. bus links and main-memory access, with varying transfer
speeds are used. Especially for coprocessor systems this can become a strong limit-
ing factor as they rely on additional communication channels during computations.
The issue is amplified by processing techniques that perform multiple passes over
the input, which are typical on massively parallel processing devices.

Processing Data-parallel processing devices handle multiple elements simulta-
neously. This increases the processing capacity to an otherwise impossible extent.
The performance gains can be high, especially for massively parallel processing
units that handle thousands of tasks simultaneously. However, to achieve the
desired benefit, an effective distribution of work is essential. Otherwise processing
units may run empty while others operate. Especially with processors that sup-
port fine-grained parallelism, such as those supporting multi-element instructions,
handling these asymmetries is a challenge.

6 CHAPTER 1. INTRODUCTION

1.3 Contributions and Outline

This thesis focuses on query compilers for modern hardware platforms. We present
a number of analyses and techniques that address the previously motivated open
challenges. The contributions and correspondingly the chapters of this thesis are
structured according to the three components compilation (Chapter 2), communi-
cation (Chapter 3), and processing (Chapter 4). Together the presented techniques
provide the basis for building highly efficient query compilers.

The thesis starts in Chapter 2 with a compilation technique that is designed for
database workloads. The technique was first introduced in

[29] H. Funke, J. Miihlig, and J. Teubner. Efficient generation of machine code for
query compilers. In DaMoN workshop, pages 1-7, 2020

and includes a new intermediate representation that enables tailoring of the ma-
chine code generation steps used by query compilers to the demands database
workloads. We show that this simplifies the compilation process to the benefit of
low JIT-compilation times. A follow-up publication

[33] H. Funke and]. Teubner. Low-Latency Compilation of SQL Queries to
Machine Code. PVLDB, 14(12):2691-2694, 2021.

showcases the compilation of SQL statements to machine code in a more compre-
hensive setting. We use this as basis for an in-depth evaluation of compilation and
execution performance. Finally

[30] H. Funke, J. Miihlig, and J. Teubner. Low latency query compilation. The
VLDB Journal, 2022

extends the compilation approach to additional use cases and shows how it can be
used in a comprehensive system.

Chapter 3 contains a thorough analysis of the communication behavior of
coprocessor systems during query execution. We show that existing process-
ing techniques are affected by bandwidth limitations on multiple levels and that
compilation techniques can help to alleviate them. However, massively parallel co-
processors typically use processing techniques with multiple passes over the input.
We introduce a new technique that was published along with the communication
analysis in

[28] H. Funke, S. Bref3, S. Noll, V. Markl, and J. Teubner. Pipelined Query Pro-
cessing in Coprocessor Environments. In SIGMOD, pages 1603-1618. ACM,
2018.

The technique only uses a single pass over the input relations and we show exper-
imentally that this leads to a distinct reduction of the bandwidth demand to the
benefit of efficient communication.

1.3. CONTRIBUTIONS AND OUTLINE 7

Chapter 4 addresses the problem of imbalances during compiled execution on
data-parallel architectures. We present two balancing techniques that integrate
with the single-pass processing approach [28]. The techniques restore processing
efficiency when imbalances otherwise leave processing units unused. This enables
effective use of the large processing capacities of parallel coprocessors even for
workoads that are challenging to parallelize. The techniques were published in

[31] H. Funke and J. Teubner. Data-parallel query processing on non-uniform
data. PVLDB, 13(6):884-897, 2020

and the follow-up publication

[32] H. Funke and J. Teubner. Like water and oil: with a proper emulsifier, query
compilation and data parallelism will mix well. PVLDB, 13(12):2849-2852,
2020

presents a monitoring tool that helps to better understand the balancing effects. We
conclude the chapter with an experimental analysis that shows the high processing
speeds that can be achieved with our techniques. Finally Chapter 5 wraps up
the thesis. In the development of our techniques, we emphasized the practical
feasibility and built several prototype systems. To leverage the insight from these
projects, we add a discussion on the engineering aspects in each chapter.

Additional Work During the writing and prior, the author contributed to other
publications that are not part of this thesis. This work includes the following:

[18] S. Bref3, H. Funke, and J. Teubner. Robust query processing in co-processor-
accelerated databases. In SIGMOD, pages 1891-1906. ACM, 2016.

[19] S. Bref3, B. Kocher, H. Funke, S. Zeuch, T. Rabl, and V. Markl. Generating
custom code for efficient query execution on heterogeneous processors. The
VLDB Journal, 27(6):797-822, 2018.

[70] S.Noll, H. Funke, andJ. Teubner. Energy efficiency in main-memory databases.
Datenbank-Spektrum, 17(3):223-232, 2017.

The Author’s Contributions According to §10 (2) of the doctoral regulations of
the computer science dapartment at TU Dortmund University from August 29, 2011,
the author should indicate their own contributions to the results of collaborations
that are used. The author is principal author of the articles [28, 29, 31, 32, 33]
and of all contents from the articles that are used in chapters of this thesis. He
is responsible for the concepts, the implementations, the presentation, and the
analyses.

CHAPIER 1. INTRODUCTION

Compilation

By compiling queries to machine code, query compilation enables very high pro-
cessing speeds and reduces the bandwidth demands during processing to a bare
minimum. This makes the technique very attractive for modern in-memory sys-
tems. The technique, however, introduces compilation as an additional step to
query processing. This causes a compilation overhead that adds to the response
times of queries. The overhead is relatively high for queries with a short execution
time and for queries with high complexity.

This chapter introduces Flounder IR, a new lightweight intermediate represen-
tation for query compilation to address the problem of compilation overheads.
Flounder IR is close to machine assembly and adds just that set of features that is
necessary for efficient query compilation: virtual registers and function calls ease
the construction of the compiler front-end; database-specific extensions enable
efficient pipelining in query plans; more elaborate IR features are intentionally left
out to maximize compilation speed.

We present and motivate Flounder IR and showcase its capabilities with the
prototype system ReSQL that uses the IR for compilation. ReSQL employs similar
compilation techniques as existing query compilers, but leverages the capabilities of
Flounder IR and the Flounder library to achieve low compilation times. We demon-
strate with micro-benchmarks and for real world workloads that our approach
significantly reduces query compilation times. We show reductions in compilation
times up to two orders of magnitude over LLVM and show improvements in overall
execution time for TPC-H queries up to 5.5X over state-of-the-art systems.

Parts of this chapter are contained in published articles [29, 33, 30].

10 CHAPTER 2. COMPILATION

48 89 e5
53
JIT Compilation 48 83 ec 08
X 3 80 3d 80 Ob 20
\ 75 4b
T bb 30 Oe 60 00
/ A\ 4c 89 fa
R S 4c 89 6
? 44 89 ef
Query Plan 41 ff 14 dc

41 5%
c3

Machine Code

Time

Figure 2.1: Effect of different intermediate representation levels on JIT query
processing performance.

2.1 Introduction

Query compilation is a technique for query execution with extremely high efficiency.
It uses just-in-time (JIT) compilation to generate custom machine code for the
execution of every query. The approach leverages a compiler stack that first
translates the query from a relational query plan to an intermediate representation
(IR), and then from the IR to native machine code for the target machine. The
execution-efficiency of the compiled code is very high compared to standard inter-
pretation-based backends. However, by using compilation the technique adds a step
to query execution, which introduces translation cost. Especially short-running
queries and queries with high complexity experience a relatively high translation
cost, which ultimately extends query response times.

When using query compilation for queries on smaller datasets, the relative cost
of compilation increases. The query engine spends most of its time on compilation
before entering execution only for a very short time. Further, complex queries can
have particularly long compilation times due to complexity of algorithms used in JIT
machine code translation [80]. Approaches to mitigate the impact of compilation
time on response time have been proposed previously [53]. However, these typically
rely on both an interpretation-based and a compilation-based backend at a high
implementation cost.

2.1.1 Intermediate Representation Levels

The intermediate representation is an important design choice for query compilers.
Figure 2.1 illustrates the effect of the IR choice on JIT compile times. Query
compilers with high-level IRs, such as C/C++ [51, 89, 25] or OpenCL and Cuda [19,
31, 28, 79] generally have longer compilation times than query compilers that
generate lower-level IRs such as LLVM IR [69, 74]. Existing work on JIT compilers,

2.1. INTRODUCTION 11

however, shows the feasibility of much shorter compile times [6, 4] than those of
LLVM. In fact non-database JIT compilers reach break-even points for dynamic
compilation versus static compilation already for thousands of records [6]. By
contrast, state-of-the-art LLVM-based query compilers have compilation times of
tens of milliseconds [69], which is sufficient time to process queries on millions of
tuples [16]. This raises the question illustrated by the bar ‘?’ in Figure 2.1: How
can such short compilation times be adopted for database systems that perform
query compilation?

LLVM IR is general purpose and was designed to serve as backend for the
translation of high-level language features [55]. Being general purpose, LLVM is
relatively heavyweight and devises a translation stack that is “overkill" for relational
workloads. The code for relational queries typically consists of tight loops with
conditional code mainly to drop non-qualifying tuples. This plain structure offers
potential for much simpler translation techniques than those used by general
purpose translators, which leverage complex code analysis and register allocation
algorithms.

2.1.2 Contributions

In this work, we present the intermediate representation Flounder IR and the ReSQL
database system, which represent our new approach to query compilation with
low compilation latencies.

Flounder IR We propose Flounder IR as a lightweight domain-specific IR that
is designed for fast compilation of database workloads. Flounder IR is based on
machine assembly and adds several features for efficient use by query compilers:
virtual registers enable efficient handling of attribute data; function calls allow
interfacing with the database library; database-specific register allocation enables
efficient pipelining. The IR features are designed to be lightweight and we avoid
the use of more elaborate features to allow for fast translation. Along with the IR,
we show the techniques for translation of Flounder IR to machine code used by
the Flounder library.

ReSQL The ReSQL database system was developed as a showcase for low-latency
query compilation with Flounder IR. ReSQL provides a full translation stack from
SQL to machine code and supports a variety of queries. We discuss the interaction of
ReSQL’s translation components with Flounder IR and use the system to perform an
experimental evaluation on TPC-H benchmark [13] workloads. The analysis shows
that our query compilation approach reduces compilation times while preserving
high processing speeds. We show with speedups up to 5.5X over a state-of-the-art
LLVM-based query compiler, Hyper, that our approach achieves better tradeoffs
between compilation and execution time.

12 CHAPTER 2. COMPILATION

X.consume(...)

o.consume(...)

scan.produce(...)

Figure 2.2: Translation of the probe-side pipeline of a query plan.

2.1.3 Outline

This chapter is structured as follows: The next Section 2.2, illustrates how query
compilers use Flounder IR for query translation. Section 2.3 then details the design
of Flounder IR. Section 2.4 shows the translation of Flounder IR to machine code.
Section 2.5 discusses further improvements and applications of our approach.
Section 2.6 evaluates the approach experimentally and Section 2.7 discusses future
work. In Section 2.8, we discuss the engineering aspects of the techniques and
finally Section 2.9 wraps-up the chapter with a summary.

2.2 Query Translation

Query compilation typically involves one step that translates relational queries
to an intermediate representation (IR) and another step that translates the IR to
machine code. In the following, we give an overview of how both steps are realized
for query compilation with our intermediate representation Flounder IR.

2.2.1 Query Plan to IR

The first translation step traverses the query plan and builds an intermediate
representation of the query functionality. A common way to do this is the pro-
duce/consume model [69], which emits code for operator functionality either in
produce or consume methods. We call these methods operator emitters. Figure 2.2
illustrates the operator emitters that are executed during translation of a sample
query. The build pipeline on the left of the join populates the join hash table. It was
translated previously. The probe pipeline, surrounded by the dotted line, accesses
the join hash table. We look at its translation in detail.

The code to scan R was already emitted by scan.produce(...). It contains a
loop that iterates over the table R and reads its tuples. The code for selection was
emitted by o . consume(...) and now the hash join follows with X. consume(...).
The implementation of the method is shown in Figure 2.3, which uses a notation

2.2. QUERY TRANSLATION 13

TRANSLATE HAasH JoiN OPERATOR TO IR

Function X. consume (attributes, caller):

1 | if caller is M.]eft: /* build-side */
2 ht « createHashtable(...)
3 emit entry « ht_ins (ht, X.buildKey) /* get bucket */
4 emit materialize (entry, attributes) /* write to ht */
5 | a attributes
6 | if caller is M.right: /* probe-side */
7 emit entry « null /* initialize */
8 emit while (true): /* loop over join matches */
/msh table to get next matching entry */
9 emit entry < ht_get (ht, X.probeKey, entry)
10 emit if entry is null: /* check result */
11 L emit break /* no more match */
12 emit dematerialize (entry, a;) /* read to regs */
13 M.parent.consume (a; U attributes, X) /* next ops */

Figure 2.3: Operator emitter of the hash join operator. We underlined the function-
ality that is placed in the JIT query.

similar to Kersten et al. [49]. Code lines following an emit statement are underlined
to emphasize that this code is not executed immediately but instead placed in the
JIT query. For instance createHashtable(..) is not underlined (line 2) and
is therefore executed during translation. By contrast ht_ins(..) is underlined
(line 3) and is therefore placed in the compiled code. This leads to repeated execution
of the line for every tuple of the scanned table.

In the example X. consume(...) is called from its right child and therefore the
probe-side code is produced (lines 7-13). The code first initializes the variable entry,
which holds hash probe results (line 7) and then loops over the hash join matches
(lines 8-13). In the loop, we first callht _get (...) to retrieve the next match (line 9)
and then perform a check to exit when no more matches exist (lines 10-11). To
process join matches, we read the attributes of the match to registers (line 12) and
then the join’s parent operators place their code by calling consume(...) (line 13).

The resulting intermediate representation is shown in Figure 2.4 (a)'. It performs
the described probe functionality. We briefly describe the resulting IR here and
provide a detailed description of the used Flounder IR features in Section 2.3.

The attribute values are held in {r_a}, {s_a}, and {s_b} and the locations of
hash table entries in {entry}. The hash_get(...) call is realized with mcall and
the loop over the probe matches with a combination of compare (cmp) and two

'We use an nasm-style assembler notation with destination operand on the left and source
operand on the right.

14 CHAPTER 2. COMPILATION

[...] ;child code

[...] ;child code mov rll, O; init entry

vreg {entry} loop_headN: ;while head

mov {entry}, O mov [rsp-8], r8 ;caller-

;while head mov [rsp-16], r9 ;save
loop_headN: mov [rsp-24], ri10

;ht_get(..) call mov 1rdi, O0x25cacO ;call

mcall {entry},{ht_get}, mov rsi, r9 ;params

{ht},{r_a},{entry} mov rdx, riil

;break when entry=NULL sub 1rsp, 24 ;adjust stack

cmp {entry}, O mov rax, 0x42fall

je loop_footN call rax ;ht_get call

;dematerialize ht entry add rsp, 24 ;restore stack

vreg {s_a} mov r8, [rsp-8] ;restore

vreg {s_b} mov 19, [rsp-16] ;caller-
mov {s_a}, [{entry}] mov rl0, [rsp-24] ;save
mov {s_b}, [{entry}+8] mov rll, rax ;return value

[...] ;parent.consume(..) cmp rll, O ;break condition

clear {s_a} je loop_footN

clear {s_b} mov ri2, [ri11] ;demate-

;loop foot mov ri3, [r11+8] ;rialize

jmp loop_headN [...] ;parent.consume(..)

loop_footN: jmp loop_headN ;next probe
clear {entry} loop_footN:

[...] ;child code [...] ;child code
Flounder IR x86_64 assembly
(in-memory) (in-memory)

(a) (b)

Figure 2.4: Intermediate representation of hash join probe functionality (a) and
corresponding machine assembly (b).

jumps (jmp, je). To read attributes from a hash table entry (dematerialize), we use
mov from a memory location in brackets [] to e.g. {s_a}.

2.2.2 IR to Machine Code

The next step translates the query’s intermediate representation to machine code.
The machine code needs to follow the application binary interface (ABI) of the
execution platform. In this work, we use the target architecture x86_64 [61].

The Flounder IR emitted by the hash join is translated to the machine assembly
shown in Figure 2.4 (b). Several abstractions that were used during IR generation
are now replaced by machine-level concepts. E.g. the machine assembly uses
processor registers such as r12 instead of {s_a}. Further, the machine assembly
uses additional mov instructions to transfer values between registers and the stack,
e.g.mov r8, [rsp-8]. The translation process from Flounder IR to machine code
needs to manage machine resources such as registers and stack memory and find

2.2. QUERY TRANSLATION 15

add
decimal(5,2)

/ AN
typecast const "0.34"

decimal (4,2) decimal(3,2)

\
const "10.0"

decimal(3,1)

Figure 2.5: Typed expression tree for the expression 10.0+ 0. 34.

an efficient way for their use during JIT query execution.

2.2.3 ReSQL Translation Mechanisms

For a more comprehensive picture, we present two more essential translation
mechanisms that are used for the translation of queries to Flounder IR by ReSQL.
We first discuss the translation of scalar expressions, which are used in SQL state-
ments, e.g. for selection or join criteria. Then we discuss handling of tuples in the
implementation of operator emitters.

Expression Translation To illustrate expression translation, we use the expres-
sion 10.0+0.34, a sum of two decimal constants, as example. ReSQL uses 64 bit
integers for decimal arithmetics and thus represents the values as 100 and 34 along
with the base and precision. The precision is the number of digits in total and base
is the number of digits following the decimal point.

For JIT-based evaluation, the expression translator performs two steps. The
first step is type resolution, a standard procedure that derives the result type of
each expression node. The leaf types decimal(3,1) and decimal(3,2) are given
by the constants. The expression translator applies type rules to derive the typed
expression tree shown in Figure 2.5. One typecast was inserted to maintain the
same base for the add. Then the second step emits Flounder IR for the expression
tree. Starting with the leaf expressions, code for the evaluation of each node is
emitted. The resulting Flounder IR to evaluate the expression is shown in Figure 2.6.
The code uses, e.g. vreg {x} and clear {x} to indicate the validity range of {x}.
First both constants are loaded. Then the typecast for {dec_const1} is evaluated
by multiplying with 10. Finally the add is evaluated and the result is stored in
{add_res0}. The IR-code is inserted into the code frame of the query and translated
to machine code along with the query.

Handling of Tuples In JIT-based execution, the individual values of a tuple are
distributed across registers. For the implementation of operator emitters, however,
it is still useful to handle tuples as a single entity [49]. ReSQL provides several

16 CHAPTER 2. COMPILATION

;const "0.34"

vreg {dec_const0}

mov {dec_const0}, 34

;const "10.0"

vreg {dec_constl}

mov {dec_const1}, 100
;typecast [decimal(3,1) to decimal(4.2)]
vreg {cast_res0}

mov {cast_res0}, {dec_constl}
clear {dec_constil}

imul {cast_res0}, 10

;add

vreg {add_resO}

mov {add_res0}, {dec_const0}
clear {dec_constO}

add {add_res0}, {cast_res0}
clear {cast_resO}

;[...] work with add_resO

clear {add_resO}

Figure 2.6: Flounder IR produced for the expression 10.0+0.34.

tup = Values::evaluate(expr);
Evaluate the list of expressions expr.
tup = Values::dematerialize(loc, schm);

Scan a tuple with schema schm from location loc.

hash = Values::hash (tup);

Hash the tuple tup.

flag = Values::checkEquality(tupl, tup2);
Check tuples tup1 and tup?2 for equality.

Values: :materialize(tup, loc);
Write tuple tup to location loc.

Figure 2.7: Tuple-based code generation methods allow us to handle lists of attribute
registers as if they were coherent tuples.

code generation functions in the Values namespace for this purpose. These are
shown in Figure 2.7. To evaluate the projection expressions from a select-clause,
for example, we use tup=Values: :evaluate(projs). The result tup is a list of
virtual registers that hold the expression results, ultimately a tuple. Similarly, lists
of virtual registers are used to hold tuples after scanning them or when applying a
hash function.

2.3. LIGHTWEIGHT ABSTRACTIONS 17

2.3 Lightweight Abstractions

Flounder IR is similar to x86_64 assembly, but it adds several lightweight abstrac-
tions. The abstractions are designed with the interface to the query compiler and
with the resulting machine code in mind. In this way, Flounder IR passes just the
right set of information into the compilation process. For operator emitters, the
IR provides independence of machine-level concepts, which allows similar code
generation as is typically performed with LLVM. For translation to machine code,
the abstractions are sufficiently lightweight to avoid the use of compute-intensive
algorithms. Additionally, the IR contains information about the relational workload
that enables efficient tuning of the machine code.

In the following, we present the lightweight abstractions. They add several
pseudo-instructions, i.e. vreg, clear, and mcall to x86_64 assembly and use
additional tokens, which are shown in braces, e.g. {parami1}.

2.3.1 Virtual Registers

An unbounded number of virtual registers is a common abstraction in compilers [9].
Query compilers use them to handle attributes without the restrictions of machine
registers. When replacing virtual registers with machine registers for execution,
general purpose compilers perform live-range analysis [2]. This is rather expensive
because compilers consider all execution-paths that lead to a register usage.

Query workloads use virtual registers in a much simpler way than general pur-
pose code. They hold attribute data within a pipeline and the pipeline’s execution
path only consists of tight loops. This allows query compilers to use a simpler
approach that skips live-range analysis. In Flounder IR, operator emitters mark the
validity range of virtual registers. The vreg pseudo-instruction marks the start of
a virtual register usage, e.g. by using

;start virtual register use
vreg {vreg_nameN}

and the clear pseudo-instruction marks the end of the usage, e.g. with

;finish virtual register use
clear {vreg_nameN} .

We use these markers in a way similar to scopes in higher-level languages. For
instance the Flounder IR in Figure 2.4 (a) marks the range of the probe attributes
{s_a} and {s_b} to reach around the operators that are contained in the probe
loop.

2.3.2 Function Calls

Being able to access pre-compiled functionality is important for query compilers.
It reduces compile times and avoids the implementation cost of code generation for

18 CHAPTER 2. COMPILATION

every SQL feature. To this end Flounder IR provides the mcall pseudo-instructions
to specify function calls in a simple way. For instance

;function call to ht_ins
mcall {res} {ht_ins} {paraml} ... {paramN}

represents a function call to ht_ins(...) with parameters paraml to paramN and
the return value is stored in {res}. A pointer to the function code is provided as
an address constant via {ht_ins}. This pseudo-instruction is later replaced with
an instruction sequence that realizes the calling convention.

2.3.3 Constant Loads

Large constants, e.g. 64 bit, can not be used as immediate operands (imm) on current
architectures. To use large constants, they have to be placed in machine registers.
The constant load abstraction in Flounder IR, allows using such constants without
restrictions. For instance the following instruction

;1load from 64 bit address with offset
mov {attr} [{0x7fff5a8e39d8} + {offs}]

loads data from the address {0x7fff5a8e39d8}+{offs} to the virtual register
{attr}. During translation to machine assembly, the address constant will be
placed in a machine register.

2.3.4 Transparent High-Level Constructs

We use transparent high-level constructs that mimic high-level language features
such as loops and conditional clauses. They are used to generate Flounder IR
instructions in operator emitters. For example operator emitters can generate a
while loop with the condition {tid} < {len} by using the methods While(...),
close(...), and isSmaller(...) as shown below on the left.

loop_headN:
cmp {tid},{len}

// Produce code for while loop (C++) jge loop_footh

wl = While(isSmaller(tid,len)); { ilooﬁ body
[...] —
' jmp loop_headN;
} wl.close(); loop_footN:
;after loop

...]

This generates the Flounder IR code shown on the right, that realizes the loop
functionality. The start of the loop is marked with the label 1oop_headN. The cmp
instruction then evaluates the loop condition and jge jumps to the loop_footN-
label at the loop end, if the condition evaluates to false. Otherwise, the loop body
is executed and after it, the loop starts over by executing the jump instruction jmp
loop_headN, which redirects control flow to the loop head.

2.4. MACHINE CODE TRANSLATION 19

Temporary Registers Attribute Registers
tmpReg;, tmpReg,, tmpRegs; attRegy, ..., attRegi;
rax rbx‘ rdx [Tbp |rsi|rdi| r8 | r9
rcx ’rsp‘ r10|ri1|r12|r13|r14|rib

\ ~ \//

spill loads stack pointer attribute data
constant loads tuple ids
return values

Figure 2.8: Usage of machine registers by the translator.

2.4 Machine Code Translation

In the translation from Flounder IR to x86_64 machine code, the abstractions that
facilitated code generation in the previous step are now replaced with machine
concepts. A key challenge here is to replace virtual registers with machine registers
and to manage spill memory locations for cases of insufficient registers. Finding
optimal register allocations is an NP-hard problem and even the computation of
approximations is expensive [21]. In the context of JIT compilers, linear scan has
been proposed as a faster algorithm [80] and was adopted by LLVM. However, linear
scan register allocation is still relatively expensive due to live range computations
and increasing numbers of registers.

The following presents a much simpler technique that benefits from the explicit
usage ranges marked in Flounder IR. We first show the machine register configu-
ration used by the translator and then show the algorithm for translation of the
lightweight abstractions.

2.4.1 Register Layout

We use a specific register layout for the machine code generated from Flounder IR.
The layout is shown in Figure 2.8. We split the 16 integer registers of the x86_64
architecture into three categories.

We use twelve attribute registers attRegy, ..., attRegi, to carry attribute data
and tuple ids. We use three temporary registers tmpReg1, tmpReg2 and tmpReg3,
which are-multi purpose for accessing spill registers and constant loads. Lastly, we
use the stack pointer rsp to store the stack offset. The stack base pointer rbp is
repurposed for attribute data and not used for the stack.

2.4.2 Translation Algorithm

The translation algorithm translates Flounder IR to x86_64 assembly in one se-
quential pass over the code. It replaces the Flounder abstractions with machine

20 CHAPTER 2. COMPILATION

TRANSLATE FLOUNDER IR TO MACHINE ASSEMBLY

1 a0 /* attribute registers in use */
2 foreach instruction i in input:
3 te—0 /* temporary registers in use */
4 if iis vreg {v}: /* allocate pseudo-instruction */
5 if a < number attribute registers:
6 allocate free attRegy /* machine register */
7 a—a+1
8 else allocate spill location /* spill */
9 elseif iis clear {v}: /* deallocate pseudo-instruction */
10 if any attRegy holds v:
11 release attRegy /* free machine reg */
12 a—a-—1
13 elseif iismcall (...): /* function call pseudo-instr. */
14 L emit call-convention code
15 else: /* other instructions */
16 foreach virtual register operand v in i:
17 if v is spilled:
18 emit spill code for v to tmpReg, /* spilled */
19 replace v with tmpReg,
20 te—t+1
21 else replace v with attReg /* machine register */
22 foreach constant load operand ¢ in i:
23 emit load ¢ to tmpReg, /* place ¢ in temp reg */
24 replace ¢ with tmpReg, in i
25 te—t+1
26 emit i /* output native instruction */

Figure 2.9: Pseudocode for the translation of Flounder IR to machine assembly. The
code is translated in one pass.

instructions, machine registers, and stack access. The algorithm is shown in Fig-
ure 2.9.

When iterating over the IR elements, the algorithm keeps track of a, the number
of in-use attribute registers (line 1), and ¢, the number of temporary registers per
instruction (line 3). We describe the translation in three parts. The first part is
register allocation, then the replacement of virtual operands with machine operands
in instructions, and finally function calls.

Register Allocation Register allocation is used to decide which virtual registers
are stored in machine registers and which virtual registers are stored on the stack.

2.4. MACHINE CODE TRANSLATION 21

Register allocation does not produce code directly, but it sets the allocation state
for spill code and operand replacement. The procedure is illustrated below.

clear {vo14; vreg {vUney

}
free ? alloc ? spill slot

Unew

Dold Unew spill slot

spill slot

Attribute Registers Stack

When a vreg {uvpey} pseudo-instruction is encountered (line 4), there are two
options. In case (A) there are sufficient machine registers available and we assign
one of them to vy (lines 5-7). In case all machine registers are occupied and
we assign a spill slot on the stack (line 8). For vreg {vy14}, illustrated by (C), any
machine registers assigned to v,)q are freed (line 11).

This assignment procedure has the effect that spilled virtual registers remain
spilled. However, this happens only when the pipeline requires to hold more
than 12 attributes simultaneously. As query compilers typically choose pipeline
boundaries such that the data volume per tuple fits into the processor registers,
this technique is a perfect match for query compilation.

Spill Code and Operand Replacement For each instruction, operands that
use constant loads or virtual registers have to be replaced with machine-compatible
operands. Virtual registers that were assigned with machine registers are simply
swapped (line 21). For the other cases, the algorithm uses tmpReg; to tmpReg;
to hold values temporarily per instruction. Three registers are sufficient for this
purpose as this is the highest numner of non-immediate operands per instruction.
As an example, we look at the following instruction.

mov {r_a}, [{0x7fff5a8e39d8}+{tid_os}]

It reads an 8 byte value with the offset {tid_os} from the memory address 0x7f...
and stores it in {r_a}. The address is too large for an immediate operand and we
assume for illustration purposes that both virtual registers {r_a} and {tid_os}
are spilled.

The translator assigns temporary registers to each operand and emits spill
code that exchanges values between spill slots and temporary registers. This is
performed in pseudocode lines 16-26 and illustrated below.

22 CHAPTER 2. COMPILATION

spill

spill slot store

T a 1 rax | | rbx | | rex |
spill slot tmpReg; tmpReg, tmpRegs
tid_os
Stack 2

spill load
0x7fff5a8e39d8
Constant

constand load

The algorithm enumerates the virtual register accesses (lines 16-21) and the
constant loads (lines 22-25) from the instruction. It assigns one of the temporary
registers tmpReg; to tmpRegs to each. In step (1) the translator assigns tmpReg;
(rax) to the operand {r_a}. This is the only output operand of the instruction
and the operator emits a store to {r_a}’s spill slot on the stack. Step (2) assigns
tmpReg; (rbx) to the operand {tid_os}. The translator emits a load to retrieve
the value from its spill slot. Step (3) assigns tmpRegs (rcx) to the constant load
of address 0x7f.... The translator emits a load for the constant. This results in
the following machine code sequence, which includes the original mov instruction
with replaced operands.

mov rbx, [rsp-24] ;load spill tid_os
mov rcx, 0x7fff5a8e39d8 ;load constant

mov rax, [rcx+rbx] ;instruction

mov [rsp-8], rax ;store spill r_a

Calling Conventions During translation the mcall IR-instruction is replaced
with a machine code sequence that performs the function call. To this end, a calling
convention is applied, which specifies rules for the execution of function calls on a
given hardware platform. It specifies the way registers are preserved across the
call, how parameters are passed, and how the stack frame is adjusted. For the
x86_64 calling convention, the calling function preserves up to 7 integer registers
(caller-save registers) and passes up to 6 parameters in integer registers before using
the stack for parameter passing [61].

The call translation is initiated in line 14 of the Flounder IR translation algorithm
(Figure 2.9). The machine register allocation to the point of the call is known. This
allows us to generate a call sequence that is tailored to the current register usage.

The mcall translation algorithm is specified in Figure 2.10 and explained in the
following. We use the call to ht_get (. .) from a previous example (Figure 2.4).

mcall {entry}, {ht_get}, {ht}, {r_al}, {entry}

It has the return value {entry}, the function address {ht_get}, and the parameters
{ht}, {r_a} and {entry}. To derive the call-convention instruction sequence, the
translator first replaces these operands with the already allocated machine operands
(lines 1-3).

2.4. MACHINE CODE TRANSLATION 23

TRANSLATE mcall ret, func, py, ..., p,

1 foreach p in {ret, p,....p,}: /* replace virtual registers */

2 if p is virtual register: /* and use machine operands */
3 L replace p with attribute register or stack location

4 Realler-save = {rsi, rdi, r8,r9, r10, r11} /* A caller-save */
5 foreach register r in Reajler-save

6 if r is allocated: /* check use */
7 L emit save r to stack

8 Rparam = {rdi, rsi, rdx, rcx, r8, r9} /* B set parameters */

9 foreach parameter p; in p, ..., p,,:

10 | srcep;

11 if p; was overwritten: /* handle overwrites */
12 L src « stack backup of p;

13 emit mov Rparami , Src

14 stackOffset « total stack usage /* C boilerplate call */
15 emit sub rsp, stackOffset

16 emit mov rax, func

17 emit call rax

18 emit add rsp, stackOffset

19 foreach register r in Realler-save: /* D restore caller-save */

20 L if r is allocated:

21 L emit restore r from stack

22 emitmov ret, rax /* get return value (C) */

Figure 2.10: Translate mcall IR-instruction to call-convention code.

mcall r11, 0x42fal0, 0x25cac0O, r9, riil

Then the translator generates code that performs the following four steps:

A Save caller-save registers that are in-use on the stack. These are r8, r9, r10
in the example (lines 4-6).

B Assign parameter registers in the order specified by the ABI (lines 7-12). We
assign 0x25cacO to rdi, r9 to rsi, and r11 to rdx.

C Place boiler-plate code to modify the stack frame, jump into the function,
and to retrieve the return value (lines 13-17,21).

D Restore caller-save registers (lines 18-20).

This results in the instruction sequence shown in Figure 2.11 that realizes the call
in machine assembly. The instructions are annotated with A to D to indicate the
step that generated them.

24 CHAPTER 2. COMPILATION

mov [rsp-8], 8 ;A save caller-save
mov [rsp-16], r9

mov [rsp-24], ri10

mov rdi, 0x25cacO ;B assign parameters
mov rsi, r9

mov rdx, riil

sub rsp, 24 ;C boilerplate call
mov rax, 0x42fall

call rax

add rsp, 24

mov r8, [rsp-8] ;D caller-save restore

mov r9, [rsp-16]
mov 110, [rsp-24]
mov 1rill, rax ; (C get return value)

Figure 2.11: Instruction sequence for the example function call.

2.5 Getting More Out of Flounder

Flounder IR is a near-hardware representation for database processing functionality.
This property enables additional uses and benefits for the IR. We present ideas
on taking the IR’s database specialization further by adding additional domain
knowledge to the language. Then we show prefetching as an example of utilizing
such domain knowledge. Finally, we discuss the use of Flounder IR as compilation
vehicle for higher-level IRs.

2.5.1 Utilizing Additional Database Knowledge

The domain specialization makes Flounder IR receptive to utilizing particular
database knowledge. This idea can be extended in the way Flounder IR uses types.
Currently it only uses machine datatypes. Alternatively, we can add SQL types
to the IR. This simplifies the translation from SQL to Flounder because operator
translators can directly emit instructions on SQL types. At the same time the
responsibility of implementing SQL types and their special type characteristics
moves down one level to the IR translation. This may open up interesting new
ways for handling NULL-logic or types with multi-register representations (e.g. 128
bit decimals). The translator has the opportunity to apply simpler or unified logic
to handle such characteristics.

Many database operators have optimized implementations that leverage hard-
ware features, e.g. sort and hash-based operators [8]. Specifically applying vector-
ization techniques (e.g. AVX) has proven to be beneficial [98]. Flounder IR is a good
match for such techniques because it gives explicit control over the instructions
that are used. This helps to clearly express the way hardware optimizations are
applied, which can be difficult with high-level languages that abstract hardware
details. Similar to passing specific implementation aspects, additional hints about
the database or about database statistics may be used. For instance information

2.6. EVALUATION 25

about relation and tuple sizes can be leveraged by the compiler for loop unrolling
and prefetching. Hints about predicate selectivities are beneficial in estimating
which branches are likely to be taken.

2.5.2 Higher-Level IRs

Other IRs that describe data processing on a higher level than Flounder IR are
frequently used. They are used as translation step for a specific query processing
paradigm. For instance MonetDB uses MAL [14] for its column-style processing
approach and SQLite uses a (high-level) bytecode representation for its bytecode
interpreter [91]. Alternatively higher-level IRs can be used as an abstraction
layer. As such they enable database systems to target different parallel hardware
architectures [19, 79] or to handle multiple processing paradigms. The IR Voila [38],
for instance, provides a representation that is suitable for compiled and interpreted
execution. We take Voila’s scatter operation as example to illustrate how Flounder
can be leveraged for compiled execution of this IR. The scatter operation is used
by hash-based operators to write values to the hash table. For example

// Voila scatter operation: Write key to HT
scatter (ht.kl, new_pos |can_scatter, t[0])

scatters the value t [0] to the hash table key location k1 of the bucket new_pos. The
scatter is executed conditionally depending on the flag can_scatter. Translation
to Flounder IR can implemented as a operator emitter, similar to Section 2.2.1. The
Voila operation translates a short sequence of Flounder instructions:

;Scatter op in Flounder IR
cmp {can_scatter}, 0

je afterScatter

mov [{new_pos}+4], {t0}
afterScatter:

The cmp and je instructions evaluate {can_scatter} to skip processing if neces-
sary. Then mov performs the actual write of {t0} to the hash bucket with base
address {new_pos} and an exemplary offset +4.

2.6 Evaluation

This section evaluates our approach of using a simple IR for query compilation
that is specialized to relational workloads over using a general purpose IR. We use
the micro prototype of a query compiler to evaluate the characteristics of different
IR’s along with their translation libraries. Then we use the ReSQL database system
that was built on top of Flounder IR to evaluate the real world performance against
other state-of-the-art systems.

26 CHAPTER 2. COMPILATION

Micro Prototype We use a smaller query compiler prototype that supports
translation of query plans to both Flounder IR and LLVM IR. This allows us to
evaluate the performance of both IRs on the same system. The prototype is used to
execute the workloads from Figure 2.12. Flounder emits the binary representation
of compiled queries with the AsmJit library [52] to avoid the overhead of running
external assemblers, e.g. nasm. For LLVM IR, the machine code is generated by
the LLVM library’s JIT functionality. We use 00 and 03 optimization levels for
tradeoffs between compilation time and code quality.

Database Systems We built the JIT-compiling database system ReSQL, which
uses Flounder IR during compilation and has the ability to run various SQL queries.
This allows us to evaluate the real world performance by executing TPC-H bench-
mark [13] queries. For comparison, we use one compilation-based system Hy-
per [69] and one interpretation-based system DuckDB [84]. We use Hyper version
v0.5-222, which executes queries by JIT compiling via LLVM. We use DuckDB
version v0.2.5, which executes queries with vector-at-a-time processing [16] for
cache-efficiency. In its current development state, ReSQL only supports single-
threaded execution. We configured all systems to run single-threaded for a fair
comparison. Furthermore, ReSQL’s query planner does not yet support sub-queries.
Therefore we only use benchmark queries that do not contain sub-queries.

Design of Characteristic Workloads We use four query templates that allow
us to evaluate different query characteristics. The templates are specified in Fig-
ure 2.12 in an SQL-form that uses additional integer parameters. The parameter
[varies the data size in Q,. Parameters p, j, and s vary query complexity in Q,,
Qw, and Q,, respectively. The attribute data is generated from uniform random
distributions with the following relation sizes: Q, has [tuples for r an s, Q, has
1 M tuples, Q has 10K tuples per join relation, and Q, has 1 M tuples.

Execution Platform We use a system with Intel(R) Xeon E5-1607 v2 CPU with
3.00 GHz and 32 GB main memory. The experiments run in one thread. We use
operating system Ubuntu 18.04.4 and clang++ 6.0.0 to compile the query compiler
and the library for JIT queries. The LLVM backend uses LLVM 6.0.0.

2.6.1 Compilation Times

We compare the machine code compilation times for LLVM and Flounder for Q,
and Q. We use Q, with values of p to project 50 to an extreme case 500 attributes
(filter with selectivity 1%). We use Qi with values of j to join 2 to 100 relations.
We show the results for Flounder, llvm-00, and 1lvin-O3 in Figure 2.13.

Observations For all techniques, the compilation times increase with the query
complexity. The compilation times for Qx are higher (up to 657 ms) than for Q,(up

2.6. EVALUATION 27

SELECT AVG(r.e)

FROM r,s --len(r)=len(s)=l
WHERE r.b = s.d

AND r.c BETWEEN 40 AND 50

SELECT r.a;, r.az, ..., r.a,
FROM r
WHERE r.a; < c

Qy: Vary relation lengths (/). Q,: Vary projection complexity (p).
SELECT 1,.a, 3.2, ..., Ij.a SELECT r.a
FROM 1y, T . FROM r
WHERE rl’a z .0 WHERE r.a != ¢;
a ° AND r.a != o,

AND Tjy.a = 1j.2 AND r.a !'= cg

Qu: Vary join complexity (j). Q. : Vary selection complexity (s).

Figure 2.12: Query templates used to vary query characteristics.

700 I T T T T T

1lvim-O3 1lvm-O0 Flounder
Qw (join) -=- -e- - e
600

|Q, (projection) —a— —— —— /

500 |-

Compile time ms
w Py
S S
S (=)
T T

[\

(=)

S
T

—_

S

o
T

Number of projection attributes / join relations

Figure 2.13: Effect of query complexity on compilation times for different query
compilation techniques.

to 560 ms) and we look in detail at Qn. With 00 optimization LLVM has compilation
times between 10 ms up to 265 ms. With 03 compilation times range from 28 ms
up to 657 ms. For both levels, the graphs show super-linear growth of compilation
times with query complexity. Flounder shows lower compilation times that scale
linearly between 0.3 ms to 10.8 ms. The highest factor of improvement is 24.6x over
llvim-00. and 60.9x over llvim-O3 (both for 100 join relations). For Q, Flounder
has very low compilations times ranging from 0.1 ms (50 attributes) to 0.6 ms (500
attributes). This leads to factors of improvement up to 933x over llvim-O3. We
attribute this to the time LLVM spends on register allocation. This is due to the
large number of virtual registers used to carry attributes for this workload.

28 CHAPTER 2. COMPILATION

80 ;
Ilvm-00 1lvin-O3 Flounder (spill) Flounder

7] 7
77 @

Executed
instructions M

] 83.8

] 47.4
220.6
N 429.6
]‘ 314.3

)
83
o
%

N 46.0

Execution time ms
44.7

25.9
N 71.7

— ¥
39.2

2 1% AL -’14 2’14 — 12 ‘
Quﬂ Qtﬂ Qﬂ Qﬂ' QN QN QO’ QO’
[=01M [=1M p=10 p=100 j=1 j=25 s=10 s=100

Figure 2.14: Time and instruction count for execution of machine code from differ-
ent query compilation techniques.

2.6.2 Machine Code Quality

To evaluate machine code quality, we execute two configurations of each query tem-
plate and measure the execution time and the number of executed instructions. The
results are shown in Figure 2.14. The bars show the execution time in milliseconds
and the number on top shows the executed instructions in millions.

Register Allocation We analyze the effect of our register allocation strategy
on machine code quality. To this end, we look at the techniques Flounder (spill)
and Flounder. The former uses spill access for every virtual register use. The
latter allocates machine registers with the translation algorithm. We observe
that register allocation reduces the number of executed instructions by factors
between 1.2X and 1.8X (with one exception). This shows that our register allocation
strategy effectively reduces the amount of executed spill code. We explain the
lack of improvement for Qx j = 25 with a large number of hash table operations,
which execute invariant library code. The results show that the register allocation
technique reduces execution times for all queries by factors between 1.02X to 1.35X.
The factors are not as high as the factors between L1 access and register access.
This is because the memory access for reading relation data limits throughput (as
is typical for database workloads). The improvements shown by the experiment
are due to faster machine register access and execution of less spill code.

2.6. EVALUATION 29

Comparison with LLVM Next we compare the machine code quality of Floun-
der and LLVM (cf. Figure 2.14). On average llvm-00 executes 1.4X fewer instruc-
tions than Flounder. The execution times, however, are similar and are longer for
Flounder only by an average factor of 1.01x. With regard to execution times, the
machine code quality resulting from Flounder is similar to llvim-00. We attribute
the small time difference despite the higher instruction count to memory bound
execution.

The technique llvim-O3 executes 2.2x fewer instructions than Flounder on
average. The average factor between the execution times of 1.05X is still low.
However, especially queries on larger datasets benefit from the optimizations
applied by llvim-O3. E.g. the larger variant Q; 1M executes 1.3X faster. We
conclude that despite the much shorter translation times, our compilation strategy
produces code with competitive performance to the machine code generated by
LLVM.

2.6.3 Post-Projection Optimizations

The workload Q,benefits from post-projection optimizations. For increasing num-
bers of projection attributes p, it is preferable to read attributes a; to a, only for
tuples that pass the filter (1% of the relation) instead of performing a full scan. We
analyze how the code generation strategies handle post-projection optimization by
executing Q,with p = {10, 50, 100}. We use the llvm-based techniques, Flounder
(naive), and Flounder (p.proj). The technique Flounder (p.proj) produces IR with
explicit post-projection; the other techniques produce IR with full scans.

Observations The experiment results are shown in Figure 2.15. We observe that
Flounder (naive) has execution times between 8.2 ms and 79.7 ms, and Floun-
der (p.proj) has lower execution times between 6.6 ms and 15.0 ms. Adding post-
projection reduces execution times by factors up to 5.3x. The LLVM-based tech-
niques have execution times between 6.4 ms and 14.8 ms. Despite not using
post-projection explicitly, LLVM has similar execution performance as the post-
projection strategy. We explain this by LLVM adding a similar optimization during
machine code generation.

However, these optimization capabilities of LLVM come at the cost of high
compilation times (up to 56.7 ms compared to 0.2 ms for Flounder). Although
Flounder does not apply post-projection optimizations automatically, explicit
control over post-projections is preferable for DBMSs, which typically use decision
mechanisms for projection strategies.

2.6.4 Overall Performance for Characteristic Workloads

We show a table with the overall performance for each technique in Figure 2.16.
The workloads are the same as in Section 2.6.2 with two configurations for each

30 CHAPTER 2. COMPILATION

2
T

50 100
Projection attributes (p in Q)

1
00 Ilvim llvm Flounder Flounder
-00 -03 (naive) (p.proj)
30 | Compile [B <07ms <0.2ms _ i
Execute [|]
o 60| i
5 z
) g
£ /
H 40 % |
20 | |
. e | 1
10

Figure 2.15: Processing the projection workload varying compilation and projection
techniques.

Ilvim-0O0 1lvim-03 Flounder

cmpl exec total | cmpl exec total | cmpl exec total
Qy I=01M 4.9 3.5 8.5 9.9 3.3 13.2 0.1 3.6 3.8
Q I=1M 47 436 484 9.7 389 48.7 0.1 501 50.2
Q, p=10 4.0 6.5 10.6 9.2 6.4 15.7 0.1 6.4 6.4
Q. p=100 159 140 299 56.7 13.9 70.7 0.1 14.0 14.1
Ox j=1 4.9 0.3 5.3 10.9 0.5 11.4 0.1 0.3 0.4
Ox j=25 36.8 38.1 749 | 1052 36.7 1419 28 391 42.0
Q, s=10 3.8 9.7 135 7.8 139 21.7 0.1 9.5 9.6
Qs s=100 103 40.0 50.3 185 25.6 44.2 0.2 390 39.2

Figure 2.16: Overall performance for two configurations of each characteristic
workloads (values shown are in milliseconds).

template. The relation sizes range from 10K to 1 M tuples with total attribute
numbers between 2 and 100.

Observations The technique Flounder has overall execution times between
0.4 ms and 50.2 ms and 1llvm-O0 between 5.3 ms and 74.9 ms. For llvm-00, compi-
lation makes up 46% of the execution on average. For Flounder the average is 5%.
This leads to better performance of Flounder for 7 of 8 queries. For Q, [= 1M
compilation times are generally low; thus llvm-O0 achieves a slightly shorter
overall time due to 1.15X faster execution. The technique llvm-O3 has execution
times between 11.4 ms and 141.9 ms, which is longer than the other techniques for
7 of 8 queries. The compilation times make up a high percentage of 62% of the

2.6. EVALUATION 31

overall on average. The highest factor of improvement of Flounder over llvm-00
is 10.7x. The highest factor of improvement over llvm-03 is 23.2x.

2.6.5 Real World Performance

To evaluate the real world performance of our approach, we execute TPC-H bench-
mark queries with ReSQL, Hyper, and DuckDB. The relative benefit of lowering
compilation latencies depends on the size of the processed data. To this end, we
evaluate a smaller database with scale factor 100 MB and another database with
scale factor 1 GB. We execute those TPC-H queries that are compatible with ReSQL
and report compilation and execution times. We do not show compilation times
for DuckDB as it is an interpretation-based engine. The results of the experiment
are shown in Figure 2.17 (100 MB database) and in Figure 2.18 (1 GB database).

Observations 100 MB Database Excluding compilation times, the JIT-based
engines have shorter execution times than the interpretation-based engine DuckDB.
DuckDB’s execution times range from 7 ms to 82 ms. Hyper’s execution times are
shorter by 8.3X on average (1 ms to 12 ms). ReSQL’s execution times are shorter by
2.3% on average (7 ms to 32 ms). Including compilation times, however, Hyper is
slower than DuckDB for 6 out of 8 queries. This is because Hyper’s compilation
with LLVM takes up to 117 ms. ReSQL has much lower compilation times than
Hyper by up to 106.3x (Q5). The highest compilation time of ReSQL is only 3 ms.
This makes ReSQL’s faster than DuckDB (up to 3.8%) for all but one query (near
even for Q6) and faster than Hyper for all queries (up to 5.5X%).

Observations 1 GB Database For the larger database, the execution times (ex-
cluding compilation) increase compared to the 100 MB database by 8.9x on average
for DuckDB, 13.7x for Hyper, and 10.2X for ReSQL. The compilation times, how-
ever, remain unchanged and thus now make up a smaller portion of the overall
time for the JIT-based systems. This makes Hyper’s overall execution faster than
ReSQL for 6 out of 8 queries (1.5 faster on average). Compared to DuckDB, how-
ever, ReSQL remains faster by the average factor 1.9x (The factor was 2.0x for the
100 MB database). This is because ReSQL’s compilation times have such a small
contribution to the overall processing time.

The results show that the simple yet fast compilation approach of ReSQL and
Flounder leads to a drastic reduction of compilation times. This leads to faster
overall execution times for smaller database sizes (e.g. 100 MB) than state-of-the-art
systems. The execution times after compilation of both JIT-based systems are lower
than those of the vector-at-a-time engine. This shows that Flounder and ReSQL,
despite using simpler translation, can leverage the fast processing speeds of the
query compilation approach.

32 CHAPTER 2. COMPILATION

140 |- DuckDB Hyper ReSQL|
Compile - O <3.5ms
120 |- M Execute [| 0
w
£ 100 | N N |
Q
£
o 80 o : -
2 % ’
g 60| ZIN
9] v 7 7
"
M0 | |
[

01 Q3 Q5 Q6 Q10 Q14 Q19

Figure 2.17: Executing TPC-H queries with different approaches on 100 MB
database.

2.7 Future Work

Flounder IR is highly specialized. It is designed specifically for database workloads
and for one hardware architecture only. This was a no-compromise decision for
simplicity and translation performance. In the future, it will be interesting to see
which generalizations can be applied, e.g. targeting multiple hardware architectures,
without adding substantial translation cost. In the following, we discuss several
aspects of generalization.

2.7.1 Domain-Specific Processing

Previous work has shown the benefits of combining database processing with
other domains, such as data science [92, 66]. For Flounder IR, the addition of such
other domains would make the IR suitable for use in a wider range of applications.
One way to tackle this idea would be to split IR code into database specific parts
and domain specific parts. This would allow it to apply Flounder’s capabilities
(e.g. scope-based register allocation) to the database specific code and use other
compiler techniques (e.g. LLVM’s register allocator) to the domain specific parts. A
challenging aspect of this direction is defining a good interface between both parts,
which should allow efficient interaction (e.g. sharing registers) and specialized
compilation (e.g. separate basic blocks).

2.8. ENGINEERING QUERY COMPILERS 33

800 - DuckDB Hyper ReSQL - |
Compile - O <3.5ms /
- Execute [| U
600 - |

Y
7 7
Y ’ J
7 7 7 7
400 | ¢ Z 7 ¢ N
7 7 7 7
7 ; / /
7 7 Y 7
7 7 7 7

Execution time ms

200

7
7

7

7

7

7

7

7

7

7

7

7 7
7 z
7 7
7 7
7 2
z 4

01 03 Q5 Q6 Q10 Q12 Q14 Q19

Figure 2.18: Executing TPC-H queries with different approaches on 1 GB database.

2.7.2 Hardware Architectures

A straightforward way of supporting other hardware architecture targets is to take
Flounder’s approach and apply it to a new target. While some aspects may differ,
it seems reasonable that the key technique of scope-based register allocation is
applicable for most forms of target machine code. By rewriting the IR, however,
the emitter functions from the query compiler have to be rewritten aswell. A more
sustainable IR design should therefore include the abstraction of most machine-
specific concepts and then offer translation for multiple targets from the same IR.
It remains an open question how much translation cost such capabilities would
add. An early prototype for Intel and ARM architectures showed promising results
so far with compilation times similar to Flounder’s for basic IR programs.

2.8 Engineering Query Compilers

From this work there are several lessons learned for the design of query compilers.
We have shown that low-level query compilation is feasible with other IRs than
LLVM. While there are conceptually no reasons against other IRs, most related
work has restricted their IR choices to LLVM. By deviating from this choice, we
realize a different compilation process and moreover by designing a new IR, we
point out that specializations for database processing are feasible.

Our approach is designed for the x86_64 hardware architecture. As discussed
in Section 2.7, using a single IR to target multiple architectures is beneficial because
otherwise every architecture would need a separate implementation of the operator
translation. Our specialized approach, however, omits such functionality for the

34 CHAPTER 2. COMPILATION

benefit of simplicity. As pointed out in the discussion, it is likely that similar CPU
architectures could be supported without significant overhead.

However, when it comes to architectures with an entirely different processing
model, e.g. data-parallel coprocessors such as GPUs, there are more far-reaching
differences. LLVM, for instance, supports a variety of architectures including
GPUs. Although LLVM supports the representation of such data-parallel code, the
actual IR code for GPUs is different from the IR code for CPU targets. Therefore
query compilers that support both CPUs and GPUs have to generate specialized IR
code for each architecture. In this sense the benefit of using the same IR for both
architectures is limited. Despite using the same IR, the architectural differences
necessitate multiple implementation of the operator translators.

2.9 Summary

We showed a query compilation technique that includes all machine code genera-
tion steps in the query compiler. The technique uses the intermediate representation
Flounder IR that enables simple translation of query plans to IR and fast translation
from IR to machine code. While the translation of query plans to IR is similar to
existing approaches, the next step, translation to machine code, is much simpler
than in existing techniques. Compared to established low-level query compilers,
our approach achieves much shorter compilation times with competitive machine
code quality.

The approach of Flounder IR has several applications, which include the query
compiler of the database system ReSQL, compilation of other higher-level IRs to
machine code, and tuning of machine code for specific hardware architectures. The
explicit control over the machine code sequence also makes the approach a good
candidate for targeting database-specific architectures [1, 5].

The ReSQL database system was built on top of Flounder IR and uses several
translation mechanisms that enable translation from SQL to machine code. We use
ReSQL to showcase that the advantages of Flounder’s compilation approach carry
over to real world workloads.

Communication

Another approach that is typically not considered in combination with query
compilation are query processing techniques for massively parallel processing
devices (e.g. GPUs). With this approach specialized hardware with high bandwidth
memory and native support for data-parallelism is used as a promising solution
for the design limitations of standard systems. The effective use of GPU-style
coprocessors during query processing, however, has proven to be challenging.
The processing capacities are so high (e.g. teraflops in one device) that even high-
bandwidth memory cannot provision enough data for a reasonable utilization. The
throughput is limited by the movement of data and the additional communication
channels that are used by such systems exacerbate the issue.

The ability of query compilation to increase the memory efficiency would
provide much desired improvements. However, the inherent tuple-at-a-time pro-
cessing style of the approach does not suit the massively parallel execution model
of GPU-style coprocessors. When trying to adapt query compilation to the parallel
exeution model, the improvements in efficiency can easily be compromised.

This chapter shows how query compilation and GPU-style parallelism can
be made to play in unison nevertheless. We describe a compiler strategy that
merges multiple operations into a single GPU kernel, thereby significantly reducing
bandwidth demand. Compared to operator-at-a-time, we show reductions of
memory access volumes by factors up to 7.5X resulting in shorter kernel execution
times by factors up to 9.5X%.

Parts of this chapter are contained in published articles [28].

35

36 CHAPTER 3. COMMUNICATION

MAIN MEMORY
50 GB/s

\ GPU GLOBAL
CACHE | CORE CACHE | CORE

16 GB/s 142 GB/s S\
CACHE CORE CACHE CORE

PCle | _— 7
MEMORY CACHE | core CACHE | core
ACCESS

/ 2-16GB few MBs
SCRATCHPAD 1.2 TB/s

100 - 1000 GB

\{J

b-------Sagoma """~ ey VRO eV """ 1

Figure 3.1: The path of a tuple through the memory levels of a coprocessor envi-
ronment.

3.1 Introduction

GPUs are frequently used as powerful accelerators for query processing. As the
arithmetic throughput of the coprocessor peaks in the teraflop range, it becomes
a challenge to provision enough data. For this reason, hardware vendors equip
graphics cards with high bandwidth memory that has read and write rates of
hundreds of GB/s. Still, memory intensive applications such as query processing
fall behind regarding the cost of data movement for different reasons. Figure 3.1
shows the path of relational data through the hierarchical memory levels in a typical
coprocessor system. Along the path, several bandwidth and capacity constraints
need to be considered to achieve scalability and performance:

PCle /OpenCAPI/NVLink A widely-acknowledged problem is the data trans-
fer bottleneck between the host system and the coprocessor [37], typically via PCle.
Due to the coprocessor’s limited memory capacity, data transfers are necessary
during computations. With an order of magnitude between internal and external
memory bandwidth, database developers are challenged with data locality-aware
algorithms that efficiently use inter-processor communication. Recent technolo-
gies, i.e., OpenCAPI and NVLink, increase the bandwidth over PCle, shifting the
bottleneck towards GPU global memory.

GPU Global Memory The fine-grained data parallelism of a GPU typically
requires that kernels perform additional passes over the data. Performing multiple
passes, however, can significantly inflate memory loads and can cause a bandwidth
bottleneck especially for random memory accesses.

Main-Memory A recent development are integrated GPU-style coprocessors
that can directly access the memory of the host CPU. Such an Accelerated Processing
Unit (APU) allows to use massively parallel processing without additional data

3.2. MACRO EXECUTION MODEL 37

transfers. However, the available memory bandwidth is lower than that of a
dedicated GPU (30 GB/s vs. hundreds of GB/s).

Scratchpad Memory' Scratchpad memory is located on-chip and placed next to
each compute unit of a GPU. It can be controlled as an explicit cache for low-level
computations and offers a very high bandwidth. However, the capacity is limited
to 16 KB — 96 KB per core which makes it challenging to use it for large-scale
computations.

3.1.1 Contributions and Outline

In this chapter, we present our GPU-based query compiler HORSEQC. We designed
HorseQC to account for the hierarchical memory structure of coprocessor envi-
ronments and for the inherent bandwidth limitations. Our main contribution is to
show how various existing techniques can be combined and extended to build an
efficient query processing engine on coprocessors.

1. We analyze the bandwidth limitations in several execution models (cf. Sec-
tion 3.2).

2. We show a way to integrate query compilation into a coprocessor-accelerated
DBMS (cf. Sections 3.3 and 3.4).

3. We present solutions to efficiently process all processing steps of a pipeline
in a single pass over the data (cf. Sections 3.5 and 3.6).

4. We describe how these parts play together in an overall system (Section 3.7)
and evaluate our proposed concepts (cf. Section 3.8).

5. We discuss our results (cf. Section 3.9) and related work (cf. Section 3.10).
Then we discuss engineering aspects of our approach (cf. Section 3.11) and
finally we conclude (cf. Section 3.12).

GPU-accelerated database systems have used different macro execution models in
the past. Orthogonally, our work describes a micro execution model that can be
integrated with different existing macro execution models.

3.2 Macro Execution Model

We first analyze macro execution models that various systems have used in the
past. To evaluate a relational query operator, state-of-the-art systems will select
a number of primitives and execute the corresponding kernel sequence on the
GPU. To feed the kernels with data, the macro execution model defines how data

'We use the term scratchpad memory to disambiguate shared memory for CUDA and local
memory for OpenCL.

38 CHAPTER 3. COMMUNICATION

1 RUN-TO-FINISH - input: R, output: P

2 move R Host — GPU
3 tmp « opl(R) /* invoke first GPU kernel */
4 P« op2(tmp) /* invoke second GPU kernel */
5 move P GPU — Host

Figure 3.2: Run-to-finish execution of two successive kernels.

transfers will be interleaved with kernel executions. Here, the data movement
from kernel to kernel may result in additional bandwidth demand as compared to
conventional systems. To understand the effect, we study the implications that
existing macro execution models have on the use of bandwidth at multiple levels
(PCIe, GPU global memory, etc.). As a poster child, we profiled the execution of
Query 3.1 from the star schema benchmark (SSB) [75]. The query was executed
at scale factor 10 with CoGaDB [18] on a NVidia GTX970 GPU? In the following,
we discuss three macro execution models: run-to-finish, kernel-at-a-time and batch
processing.

3.2.1 Run-To-Finish (Not Scalable)

A straightforward way to execute a sequence of kernels is to first transfer all input,
execute the kernels, and finally transfer all output. The approach, illustrated in
Figure 3.2, has the advantage that intermediate data remains in GPU global memory
in-between kernel executions and no significant PCle transfers are necessary.
However, run-to-finish has the disadvantage that it only works if all input, output,
and intermediate data is small enough to fit in GPU memory. Run-to-finish macro
execution models are used, e.g., by Ocelot [40] and CoGaDB [18]. The lack of
scalability leads us to evaluate the following execution models.

3.2.2 Kernel-At-A-Time

To process large data on coprocessors, we can execute each kernel on blocks of
data. The pseudocode of this approach is shown in Figure 3.3. Processing blocks
of data requires algorithm choices that can deal with partitioned inputs. Joins or
aggregations, for instance, can only be processed in this mode if their internal state
(e.g. a hash table) can fit in GPU global memory.

We analyze the data movement of kernel-at-a-time for SSB Query 3.1. Blocks
are first moved via PCle from the host to the coprocessor and then read by the
kernel from GPU global memory (output passes both levels vice-versa). In this
way, the data volumes for GPU global memory accesses equal the data volume

?We measured 146.1 GB/s GPU global memory bandwidth in a host system with 16 GB/s bidi-
rectional PCle bandwidth.

3.2. MACRO EXECUTION MODEL 39

-

KERNEL-AT-A-TIME - input: R, output: P

2 foreachr;inR=r;U---Ur, do

3 move r; Host — GPU

4 m; « opl(r;) /* invoke first GPU kernel */
5 move m; GPU — Host (assemble into M)

6 foreach m;in M=m; U---Um, do

7 move m; Host — GPU

8 | pj«op2(m;) /* invoke second GPU kernel */
9 | move p; GPU— Host (assemble into P)

Figure 3.3: Kernel-at-a-time achieves scalability by transferring I/O for each kernel
through PCle.

transferred via PCle, plus the cost to build up the hash tables in GPU global memory
(0.4 GB here). Figure 3.5a shows the resulting data movement.

In the figure, the arrows annotated with data volumes represent PCle transfers
and GPU global memory accesses. We aggregated the data volumes by kernel
types (e.g. scan, gather) and show only the most important kernels responsible for
88.2% of the memory traffic. Given a PCle bandwidth of 16 GB/s, all PCle transfers
together require at least 350 ms to complete. This exceeds the aggregate time for
GPU global memory access by a factor of 5.8x. For kernel-at-a-time processing
the PCle link is clearly the bottleneck.

Kernel-at-a-time processing is used to scale out individual operators [47]. Uni-
fied virtual addressing (UVA) produces the same low-level access pattern, albeit
transparent to the system developer.

3.2.3 Batch Processing

We can alleviate PCle bandwidth limitations by rearranging the operations of
kernel-at-a-time. Instead of running kernels until a column is processed, we can
short-circuit the transfer of intermediate results to the host. Batch processing
achieves this by reusing the output of the previous operation (op1) as input for
the next operation (op2) instead of transferring to the host. This is applicable
whenever intermediate batch results can be kept within GPU global memory. The
corresponding pseudocode is shown in Figure 3.4.

We analyze the data movement cost with the example of SSB Query 3.1. The
GPU global memory load is the same as for kernel-at-a-time processing, because
each kernel reads and writes I/O to GPU global memory. We obtain the PCle
transfer cost using the transfer volumes of input columns of the query and output
of the final result. Figure 3.5b shows the resulting data movement cost. Batch
processing reduces the amount of PCle transfers by a factor of 8.8x. This shows
that transferring data in blocks and performing multiple operators per block allows

40 CHAPTER 3. COMMUNICATION

1 BATCH PROCESSING — input: R, output: P

2 foreachr;inR=r;U---Ur, do
3 move r; Host — GPU

4 tmp; < opl(r;) /* invoke first GPU kernel */
5 | p; < op2(tmp;) /* invoke second GPU kernel */
6

move p; GPU — Host (assemble into P)

Figure 3.4: Batch processing executes multiple kernels for each block that is trans-
ferred via PCle.

scalability and increases the efficiency compared to kernel-at-a-time.

Batch processing macro execution models have been used for coprocessing by
GPUDB [104] and Hetero-DB [105]. Wu et al. [101] describe the concept as kernel
fission and detect opportunities to omit PCle transfers automatically.

Limitations The lower amount of PCle traffic can expose GPU global memory
bandwidth as the next limitation. Batch processing reduces the PCle transfer cost,
but the amount of GPU global memory access remains unaffected. The memory
access volume inside the device is now an order of magnitude larger which, despite
the high bandwidth, takes longer to process than the PCle bus transfers (Figure 3.5b).
For this reason, batch processing SSB Query 3.1 is not limited by PCle transfers,
but by accesses to the (high-speed) GPU global memory. Since in typical query
plans, I/O and hashing operations both address the same GPU global memory, the
situation, in fact, may arise frequently in real-world workloads.

Other Queries A limiting amount of global memory access can easily occur
when many kernels are executed one after another. Karnagel et al. [46] show
that a simple query with one selection and one aggregation operator already uses
13 kernels for processing. To determine the prevalence of GPU global memory
bandwidth limitations, we profiled several queries from the TPC-H [13] and SSB
benchmark [75] sets.> We look at the ratio of memory access to PCle traffic as
number of passes to assess the load on memory and bus links. Table 3.1 shows
the number of passes for queries from the TPC-H and SSB benchmarks. With
a symmetric memory load, we can afford ;.ﬁ%%%//ss ~ 4 to 5 passes before being
limited by GPU global memory. While memory can adapt to asymmetric read and
write loads, PCle can service each direction with at most 16 GB/s. This changes
the number of affordable passes for asymmetric workloads to %%3/: ~ 9 in the
worst case. Queries that require more than 9 passes are always limited by memory
bandwidth before being affected by the PCle bottleneck. In Table 3.1 this is the
case for 9 out of 24 queries, which indicates that it is crucial to reduce the GPU

global memory load.

3Note that CoGaDB does not support all TPC-H queries.

3.3. MICRO EXECUTION MODEL 41

MEM GPU MEM CORES
1 Touild ~] I MEM GPU MEM CORES
0.6 GB M 1 1
—— 0.6 GB
>
S — 0.9GB
0.4 GB hoid
_______________ build
1.5GB , ||probe 00CB
] 15GB 4GB
A————] probe, ; 5
1.0 GB -—)
G 1.0 GB —

/I—
1.0 GB]
1.0 GB 1.0 GB
N~——1 0 e _—
——m——m—dF - ———- prefix sum
1.0 GB prefix sum 1.0 GB
4\ B
/] 1.0 GB J
—I\
4
0.7 GB 0.7GB
0.7 GB <0.01GB
PCle Transfers GPU Global Memory PCle Transfers GPU Global Memory
8GB ~350ms 8.4GB ~58 ms 09GB ~56ms 8.4GB ~58 ms
(a) kernel-at-a-time (b) batch processing

Figure 3.5: Data movement for processing SSB Query 3.1. While the throughput of
(a) is limited by PCle transfers, (b) exposes GPU global memory access as the next
bottleneck.

3.3 Micro Execution Model

Tuning the macro level helps to remove the main bottleneck for scalability: data
transfers over PCle. However, the macro level change exposes a new bottleneck:
the memory bandwidth of GPU global memory (cf. Section 3.2.3). To utilize the
GPU global memory bandwidth more efficiently, we need to apply additional micro-
level optimizations using micro execution models and combine them with the macro
execution model (batch processing) to achieve scalability and performance.

Existing micro-level optimizations such as vector-at-a-time processing [16] and
query compilation [69] utilize memory bandwidth more efficiently by leveraging
pipelining in on-chip processor caches. Therefore, both techniques are promising
candidates for opening up the bottleneck of limited GPU global memory bandwidth.
However, vector-at-a-time processing and query compilation are designed in the
context of CPUs. While it is highly desirable to apply both techniques in the
context of GPUs, mapping the techniques from CPU to GPU is challenging, which
we discuss in the following.

42 CHAPTER 3. COMMUNICATION

Query Passes | Query Passes | Query Passes
ssb11 7.5 ssb34 2.2 tpch5 7.2
ssb12 6.9 ssb41 7.4 tpché 6.2
ssb13 6.7 ssb42 3.9 tpch7 9.0
ssb21 9.6 ssb43 3.5 tpch9 9.0
ssb22 9.2 tpchl 15.5 | tpchl10 5.8
ssb23 9.1 tpch2 14.5 | tpchl5 6.3
ssb31 11.0 tpch3 5.2 tpch18 38.5
ssb32 7.9 tpch4 6.6 tpch20 10.5
ssb33 7.5

Table 3.1: Number of passes for benchmark queries. Out of 25 queries, 9 are
definitely limited by GPU global memory.

3.3.1 Vector-At-A-Time

To mediate the interpretation overhead of Volcano and the materialization overhead
of operator-at-a-time, vector-at-a-time uses batches that fit in the processor caches.
First, this reduces the number of getNext () calls from one per tuple to one per
batch. Second, this makes materialization cheap because operators pick up the
cached results of previous operators. On CPUs, vector-at-a-time benefits from
batch sizes that are large enough to limit the function call overhead and small
enough to fit in the CPU caches.

On GPUs, the compromise between tuple-at-a-time and full materialization
strategies is not a sweet spot, however. Kernel invocations are an order of mag-
nitude more expensive than CPU function calls. Furthermore, GPUs need much
larger batch sizes to facilitate over-subscription and out-of-order execution. This
leads to the problem that batches, which fit in the GPU caches, are too small to
be processed efficiently. Alternatively, more recent GPUs support pipes to move a
local execution context from one kernel to another. This has been used by GPL
[77] for query processing. However, this technique still introduces an overhead
for switching the execution context. In addition, it is limited to a depth of 2-32
kernels depending on the microarchitecture.

3.3.2 Query Compilation

Query compilation is a commonplace tool for avoiding excessive memory transfers
during query processing. Compiling code for incoming queries becomes feasible
with low-level code generation and achieves performance close to hand-written
code. The compilation strategy of Neumann [69] keeps intermediate results in
CPU registers and passes data between operators without accessing memory at all.
The generated code processes full relations or blocks of tuples using a sequential
tight loop.

To use query compilation on GPUs, we must integrate fine-grained data-
parallelism into compiled queries. The parallelization strategy of Hyper [56],
however, uses a coarse-grained approach, which allows it not to break with the

3.4. DATA-PARALLEL QUERY COMPILATION 43

aligned write

prefix sum

- -

"join probe

Figure 3.6: Operator-at-a-time

concept of tight loops. In fact, Hyper does not use SIMD instructions [69] and thus
omits fine-grained data-parallelism. Even on CPUs with a moderate degree of par-
allelism in SIMD instructions, database researches are challenged with integrating
query compilation and SIMD [90, 63].

In summary, using a micro-level technique for efficient on-chip pipelining
on GPUs remains a challenge. Applying any of the commonplace techniques
makes it necessary to combine at least three things that are hardly compatible:
fine-grained data-parallel processing, extensive out-of-order execution, and deep
operator pipelines. To achieve our goal of mitigating the GPU global memory
bottleneck, we need to develop a new micro execution model which we build up
step by step in the following sections.

3.4 Data-Parallel Query Compilation

In the following, we show a micro-level execution strategy that reduces GPU global
memory access volumes by means of pipelining in on-chip memory. To this end,
we show the approach of our query compiler HOrRSEQC and its integration with
the operator-at-a-time execution engine of CoGaDB [18].

3.4.1 Fusion Operators

HorseQC extends the operator-at-a-time approach with the concept of fusion
operators, operators that embrace multiple relational operations. A fusion operator
replaces a sequence of conventional operators in the physical execution plan with
a micro-level-optimized pipeline. The data movement within a fusion operator can
be improved by applying different micro level execution models.

44 CHAPTER 3. COMMUNICATION

aligned write

aligned
: write :
: B
| i| project/ |
a7 : ‘| join probe |:
o prefix | la :
) sum T AAAAAA f us'on
T operator 2
: select /
: hash :
Ly : fusion
“"T”"""""""'c';'perator 1

Figure 3.7: Multi-pass query compilation

3.4.2 Micro-Level Pipeline Layout

To keep matters simple, we first apply query compilation with the operator-at-a-
time primitives described by He et al. [39]. This choice is not limiting as other
data-parallel primitives may be used instead. However, a commonality of different
primitive sets is that they use relational primitives with relational functionality (e.g.
select) and threading primitives with thread coordination functionality (e.g. map,
prefix sum, gather).

State-Of-The-Art We look at a query with two input tables and a total of four
relational operators opy, - - - ,0ps. Operator-at-a-time runs three primitives per
operator (cf. Figure 3.6): The first pass executes the relational primitive (e.g. select,
project) and counts the number of outputs of each thread. The second pass computes
a prefix sum to obtain unique per-thread write positions. The third pass performs
an aligned write. This means that the output values are written into a dense array
and may include executing the relational primitive for a second time to produce
the output values. Thus, the query is processed in twelve operations with separate
GPU global memory I/0.

Multi-Pass Query Compilation By grouping operations that are applied to the
same input table, the query may be processed with two fusion operators. Within
each fusion operator, we apply the following query compilation strategy (cf. Figure
3.7): We extract the prefix sum from the operators and execute it only once between
all relational primitives and all aligned writes. The relational primitives are then
compiled into one kernel called count, which is executed before the prefix sum.
The aligned writes are compiled into one kernel called write, which is executed
after the prefix sum. In this way, we apply kernel fusion [96] to the four relational
primitives and to the four aligned writes. The same query is processed with six

3.4. DATA-PARALLEL QUERY COMPILATION 45

Operator-at-a-time ‘ Data-parallel query compilation

: H T
write_kernel(...) {

int tid = get_thread_offset();

int wp = prefix_sum[tid];

§ bool is_selected = flags[tid];
: t : —

: ol : if(is_selected) {

// join probe (build tuple)

I |

// project/write

e |

: : 7}
| z '}
E join probe ; T
prefix sum
A
: H T
i |, aligned write = '
: i, count_kernel(...) {
i int tid = get_thread_offset();
e T S
: select ===

// join probe (check match)

flags[tid] = is_selected;
}

Figure 3.8: Transforming data-parallel operator-at-a-time into compiled execution.
The functionality of each operator maps to designated positions in the generated
kernels.

operations and the operations in compiled kernels communicate through on-chip
memory instead of GPU global memory.

3.4.3 Instancing Relational Code Templates

We briefly describe the process used by HOrRSEQC to compile OpenCL code for the
count and write kernels by an example of the projection operation (similar to
[19]). Each primitive, except for prefix sum, is mapped to a designated position
in the count kernel or in the write kernel (cf. Figure 3.8). The query compiler
receives a C++ object that describes the primitive’s functionality (e.g. a tree for
an arithmetic expression) and maps the semantics to fragments of OpenCL. To
illustrate, 7revenue«price*discount Would compile to

revenue [wp] = priceltid] * discount[tid];

The global index tid is used to access the input columns and the write position wp
is used for the output columns.

The instantiated code is placed in a code frame, which has several invariant
features, e.g., thread offset computations, a surrounding loop, as well as managed
features such as a parameter list. Projection is positioned in a conditional clause of
the write kernel that is entered by all threads with a positive is_selected flag

46 CHAPTER 3. COMMUNICATION

GPU SCRATCHPAD MEM/
MEM MEM REGISTERS/CACHE CORES
— - — —
-
09G6B L __ o ___dbl_________
count kernel
input: 0.7 GB 4.3 GB >
probe: 0.9 GB
K 2.4GB
|
A
prefix sum
0.3GB
0.3 GB
|
0.5GB
0.5GB
write kernel
input: 1.0 GB 46 GB)
probe: 0.9 GB V
< 2.3 GB
<0.01GB ___ceotes o _____
PCle Transfers GPU Global Memory On-Chip Memory
0.9GB ~56 ms 4.4 GB ~31ms 144GB ~12ms

Figure 3.9: Data movement for data-parallel query compilation with three phases.

(cf. Figure 3.8). Other operations may include function calls for reductions or hash
table operations.

3.4.4 Memory Access and Limitations

In Figure 3.9, we illustrate the bandwidth characteristics of our example query
when using code generation with three phases. The figure shows the behavior of
the three-phase micro execution model described above with the batch processing
macro execution model. To analyze the implications of forwarding intermediate
results in the generated kernels through registers and scratchpad memory, we
extended the illustration with an additional GPU-internal layer of memory.

GPU global memory access has previously been the bottleneck for query execu-
tion. Here the count kernel accesses 1.7 GB in GPU global memory, the prefix sum
computation 0.8 GB, and the write kernel 1.9 GB respectively. This is a reduction
by factor 1.9x compared to batch processing. In the generated kernels, a substantial
amount of memory traffic has moved to on-chip memory. In on-chip memory,
the access volume of 14.4 GB is not a limiting factor due to the extremely high
bandwidth of 1.2 TB/s of scratchpad memory.

Although the reduced GPU global memory traffic may suggest that the approach
eliminates the bottleneck, real world queries still experience limitations. In fact,
Section 3.8.3 shows that compilation with three phases can still not saturate PCle
for 9 out of 12 SSB queries. This is because the query complexity prevents the

3.5. PROCESSING PIPELINES IN ONE PASS 47

aligned write

aligned
: write :
‘| project/ |:
| prefix | :| join probe
: : fusion
‘I—,_IT operator 2
| select/ |
: hash :
: : fusion

Figure 3.10: Compound kernel

strategy from utilizing the full GPU global memory bandwidth. Therefore, we
investigate ways to further increase the processing efficiency in the next section.

3.5 Processing Pipelines in One Pass

The previous execution model relied on a typical programming concept of GPUs
that executes operations with multiple kernels. The kernels that execute the
actual work for the operation are interleaved with kernels that execute prefix sum
computations. To further improve the processing efficiency, we have to break with
this concept. With a new micro execution model, we avoid round trips to GPU
global memory, which are caused by multi-pass implementations. This enables us
to radically reduce GPU global memory traffic and lift the bandwidth bottleneck.

Compound Kernel Kernel fusion brought reduction operations (e.g. prefix sum)
as boundaries into the spotlight. Previously, we computed the prefix sum between
two generated kernels to obtain write positions. Instead of two separate kernels, we
now generate only one compound kernel that integrates the prefix sum computation
(cf. Figure 3.10) and this eliminates multiple passes. Computing write positions
within a generated kernel makes it possible to process pipelines in one pass without
intermediate materialization. In this way, each fusion operator is executed by a
single compound kernel. In the following, we look at implementation strategies
for reduction operations that enable fully pipelined processing.

3.5.1 Pipelining Data-Parallel Reductions

Reductions are a poster child for data-parallel algorithms [42] and have been
investigated in detail regarding complexity, efficient implementations, and their
applications. In the context of database systems, they are especially relevant in the

48 CHAPTER 3. COMMUNICATION

context of prefix sums, sorting, and aggregations [3, 35]. The latter involves two
techniques: Simple reductions aggregate to a single tuple and segmented reductions
compute grouped aggregates on sorted data [87]. As reductions have inherent
parallel dependencies, they are typically implemented in a hierarchical structure
that involves running multiple kernels in sequence. This approach is applied in
state-of-the-art coprocessor database systems such as Ocelot [40], CoGaDB [18],
GPUDB [104], Kernel Weaver [99] and Voodoo [79].

Atomic Prefix Sum The separation into multiple reduction kernels with inter-
mediate materialization is an obstruction for pipelining. To introduce a pipelined
implementation, let us look at a very simple sequential prefix sum at first:

for(i=0; i<n; i++)
if (flags[i]) prefix_sum[i] = sum++;

The sequential prefix sum loops through the array flags while writing and incre-
menting sum for every valid entry. Figure 3.11a illustrates the use of the prefix sum
for a dense write of selected input elements. When parallelizing the for-loop, this
implementation runs into the issue of many threads trying to increment sum at
the same time. To resolve this parallel dependency, atomic operations can be used
to isolate parallel modifications of the same memory address. Atomic operations
ensure a consistent state, yet are executed in an undefined order. The following
code executes an atomic prefix sum to compute unordered, dense write positions:

if (is_selected) wp = atom_add(&sum, 1);

Threads contribute an offset of 1 to the sum at address &sum by executing the
expression conditionally. Each atomic_add(..) returns the previous state of sum.
Thus, threads immediately obtain a unique global write offset as wp in register.
This is illustrated in Figure 3.11b.

The use of atomic operations causes a break with the semantic of the prefix sum
because the result has no defined order. For the relational semantic, however, only
the uniqueness of output positions is critical. Output permutations only lead to
non-aligned GPU global memory access where adjacent threads do not necessarily
write to adjacent memory addresses. The impact on write throughput, however, is
limited, because the filter semantics lead to non-aligned access for separate prefix
sums too.

3.5.2 Code Generation for Compound Kernels

Computing write positions within a generated kernel allows us to contract the
three phases within a fusion operator into one compound kernel. This simplifies
code generation for two reasons (cf. Figures 3.8 and 3.12): First, selection flags and
write offsets remain in registers and do not have to be passed between kernels
through materialization. Second, relational primitives that occur both in the count

3.5. PROCESSING PIPELINES IN ONE PASS 49

L - - —]
a 1 0 [a e ~1 |
O K N '
I3 1 N i N s I Y S '
a 1 1 ia if(v=="a’) 2 :—
| 2| [1 | u ' —E atom_add(,1) 1 a 1@
I Y R gl e B T E
b 0 A /|2 o F
— 1 1[5 s 0| 'S
= L i result s -bi a -
a 1 3 : a . - 3 :
] b o -
L] e — = - I
input flags Pr‘sejmlx input atog%c result
prefix
(@ execution order (h) sum

Figure 3.11: The computation of a prefix sum for writing selected elements to a
dense array (a) can be parallelized using atomic operations (b).

A

compound_kernel(...) {
int tid = get_thread_offset();
// select
|

// join probe

//atomic prefix sum
if(is_selected)
wp = atom_add(&sum, 1);

if(is_selected) {
// project/write

- -

Figure 3.12: The compound kernel integrates all three pipeline phases into one
kernel.

and in the write kernel are executed only once in the compound kernel, e.g., we
probe the hash table to check the number of matches and keep the payload in
registers for projection. This becomes possible in the compound kernel as the
register content remains valid until projection.

To instantiate relational primitives, we follow a similar procedure as previously
described, but now we use only one kernel code frame: All relational primitives
that affect the number of outputs are placed before the atomic prefix sum and
all relational primitives that produce output after it. The atomic prefix sum is
instantiated from an invariant code template that takes the is_selected flag as
input and assigns the write position wp as output. Both the input flag and the write
position are available in registers.

50 CHAPTER 3. COMMUNICATION

GPU SCRATCHPAD MEM/
MEM MEM REGISTERS/CACHE CORES
] 0.9 GB B - —
—'\
A
_csrerT)u_na ikernel | [~ ~ count
[input 09GB 43GB
probe: 0.9 GB
24 GB
"""" prefixsum
0.3 GB
C—
0.5GB
write
3.7GB
2.3GB
<0.01 GB
<001GB |IIFP-~~=~="="="="°91r-"~-~~~—-===77
PCle Transfers " GPU Global Memory - On-Chip Memory

0.9GB ~56 ms 1.8GB ~12.7 ms 13.5GB ~11.3ms

Figure 3.13: Data movement for query compilation with one pass. The compound
kernel reduces data movement by 4.7x.

3.5.3 Memory Access and Limitations

The compound kernel micro execution model further reduces GPU global memory
access by a factor of 2.4x to 1.8 GB (see Figures 3.9 and 3.13). Compared to operator-
at-a-time, this is a reduction by a factor of 4.7x. Pipelining the prefix sum avoids
round trips to GPU global memory that are necessary in the three-phase micro
execution model. The compound kernel has only a minimal GPU global memory
access volume for input, output and hash table access. Now the on-chip traffic is
balanced with the GPU global memory traffic when relating each memory volume
to the available bandwidth.

The described approach heavily relies on atomic operations. This has the
disadvantage to cause limitations for parallelism. Although the execution order
is undefined, the operations are sequentialized and reducing n values takes O(n)
parallel steps. However, Egielski et al. [26] show that recent hardware support can
make atomic operations competitive to parallel algorithms. Still, the integrated
prefix sum puts a significant pressure on the atomic functional units, which pre-
vents pipeline kernels from utilizing full GPU global memory bandwidth. In the
following, we address this issue and show how the efficiency of parallel reductions
in compound kernels can be increased.

3.6. EFFICIENT PIPELINED REDUCTIONS 51

Local Resolution Global Propagation
I ctaprefix sum” | i
0 |:

0

1
i

0 P!
!
]

Fie
3 8 '

0

1
i
0 "
5 _%_r>”.. S +0:
1
:@ global :
1

offsets

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 s
. positions

1
input
| P offsets

Figure 3.14: Computing write positions with local resolution (local offset), global
propagation (global offset).

3.6 Efficient Pipelined Reductions

Previously, we showed a way to pipeline reductions in generated kernels using
atomic operations. This benefits the memory efficiency, but at the same time
exposes the atomic functional units of a GPU as the bottleneck. This is especially
critical because several operations that are combined in the compound kernel rely
on atomic isolation as well, i.e., state-of-the-art implementations of hash joins and
hash aggregations [47] use atomic operations to isolate hash table inserts.

This section addresses performance bottlenecks that occur when utilizing
atomic reductions to pipeline relational operators. We show a new technique
local resolution, global propagation, that is used by HOrRseQC to pipeline prefix
sums, single tuple aggregation and grouped aggregation efficiently. The approach
reduces the pressure on atomic functional units and offers tunability regarding
hardware and thread group granularity. We describe the approach in the following.

3.6.1 Local Resolution, Global Propagation

Similar to other efficient GPU implementations as in CUB [64], local resolution
with global propagation consists of two levels of reductions. In contrast to other
techniques, local resolution, global propagation always uses pipelined techniques
on both levels. Local resolution is an additional pre-reduction step, computed by a
local thread group, whereas global propagation is the same atomic reduction as
described in Section 3.5. We use the term thread group for the threads that collabo-
rate during local resolution. Thread groups can either represent the workgroups
(AMD) or thread-blocks (NVidia) executed by the GPU or work on subgroups of
them (e.g. warp).

The following code, illustrated by Figure 3.14, executes an atomic prefix sum
using local resolution, global propagation:

52 CHAPTER 3. COMMUNICATION

local_offset = group_prfx (flags, &group_total); //local resolution
if (thread_group_idx == 0)

global_offset = atom_add(&sum, group_total); //global propagation
write_pos = local_offset + global_offset;

First, each thread group executes group_prfx to compute a local prefix sum on
flags. This is the local resolution step. We implement group_prfx e.g. with
SIMD reductions (cf. Intra-Warp Scan Algorithm by Sengupta et al. [86]). The
function returns the local offset local_offset and the sum of all flags assigned
to the thread group group_total. Second, one thread of each thread group adds
group_total atomically to a global counter sum. This is the global propagation
step. The call to atom_add returns the global offsets global_offset. Finally, the
write position wp is the sum of local_offset and global_offset.

Compared to the simple atomic prefix sum, we now add pre-aggregates instead
of 1/0 flags to sum. Therefore, each atomic add obtains ranges of output indices
instead of a single index. Effectively, this allocates segments of output memory to
thread groups. The order of the allocations, however, is undefined (see execution
order in Figure 3.14). This leads to output that is ordered within segments and
permuted between segments. Further investigation revealed that, due to the GPUs
stream processing engine, the permutations exhibit locality, leading to semi-ordered
output data.

3.6.2 Local Resolution Mechanisms

The mechanisms used for local resolution are interchangeable. This enables tuning
the reduction technique and to apply them in different operations. Figure 3.15
illustrates different types of reductions used in local resolution before contributing
to global propagation via atomic operations. Figure 3.15 (a) shows work-efficient
reductions [12] and Figure 3.15 (b) shows SIMD reductions [86]. Both are used for
pipelined prefix sums and for aggregations. The work-efficient reduction computes
one pre-aggregate per thread group, whereas the SIMD reduction computes four. By
picking the right technique, we can adapt to the hardware parallelism of different
COProcessors.

Figure 3.15 (c) illustrates segmented reductions [87] as local resolution tech-
nique. Segmented reductions are used to compute pre-aggregates for grouped
aggregations. A similar approach PLAT [103] aggregates frequent grouping keys
in a table local to each CPU core. During The ability to control scratchpad memory
opens up a new design space for grouping algorithms in pipelined computations
(e.g. handling frequent items).

3.7. DBMS INTEGRATION 53

atomic

atomic atomic hash aggregate

reduce reduce klv

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

(a) (b) (c)

Figure 3.15: Local resolution mechanisms: (a) Work-efficient reduction (b) SIMD
reduction (c) segmented reduction.

3.7 DBMS Integration

We integrated our query compiler HOrRSEQC into the open source DBMS CoGaDB,
leveraging the built-in code generator [19]. The DBMS uses a columnar data layout
and processes full columns operator-at-a-time on GPUs and CPUs. We use the front-
end and the storage layer of CoGaDB, and HorRseQC adds a new compiler-based
execution engine.

We added two components to the DBMS: 1. a query compiler that compiles
fusion operators to GPU code (cf. Section 4) and 2. a translation layer that identifies
fusion operators and drives the query compiler. Currently, there are two different
workflows for the translation layer:

1. CoGaDB parses the SQL code for a query and generates a query plan. The
translation layer applies the produce/consume model [69] to the query plan
to determine fusion operators. We use this approach for the SSB queries and
TPC-H Q6.

2. The translation layer parses a JSON file that describes the query plan in-
cluding the fusion operators. This enables us to process queries when (1)
cannot handle the queries via SQL (e.g. correlated subqueries or automatic
unnesting). This is used for the other TPC-H queries.

When the fusion operators are defined, the translation layer drives the query
compiler to compile and execute. Finally, decompression of dictionary compressed
columns and sorting are executed by CoGaDB’s original execution engine.

3.8 Evaluation

Section 3.2.1 showed that query coprocessing in existing macro execution models
is sensitive to memory bandwidth bottlenecks on various hierarchical levels. We
proposed several micro execution models that allow to remove memory indirections
to achieve a more efficient use of bandwidth. In this section, we evaluate our
approaches and carefully assess bandwidth and throughput to show several benefits.

54 CHAPTER 3. COMMUNICATION

The experimental study is structured as follows: First, we evaluate the micro
execution models. Therefore, we execute specific queries to analyze the reduction
performance of the proposed techniques in the first two experiments. Then, we
evaluate the micro execution models for the SSB and TPC-H benchmarks. After this,
we analyze the integration of our micro execution model with the batch processing
macro execution model. Finally, we analyze the real-world benefits of our approach
with a comparison of end-to-end performance and a scalability analysis. Note that
all experiments (except Scalability), were executed with scale factor 10.

Processing Techniques We use three micro execution models from HORSEQC
and Operator-at-a-time. The goal of our micro execution models is to use them
within macro execution models to improve performance. We show the benefit of
our approaches by comparing them to an operator-at-a-time micro execution model.
In this way, we analyze the benefit of moving data transfers between relational
operators from the memory to the on-chip level.

« Multi-pass. The first approach separates reductions from JIT-compiled ker-
nels, which leads to an execution in multiple passes (Section 3.4). Each
reduction is executed on materialized data using the boost: : compute li-
brary.

+ Pipelined. The second approach integrates reductions into a fully pipelined
kernel using atomic operations (Section 3.5). By using atomic operations for
each reduction input, the approach is an instance of local resolution, global
propagation that has no local resolution step.

« Resolution. The third approach increases the efficiency of pipelined reduc-
tions with local resolution (e.g. pre-aggregation, Section 3.6). We differentiate
between local resolution implementations using Resolution:SIMD and Reso-
lution:WE (work-efficient).

+ Operator-at-a-time. We use CoGaDB 0.4.1, which processes full columns of
data in each operator with CUDA kernels. It features a run-to-finish macro
execution model and an operator-at-a-time micro execution model.

Baselines We use two baselines to assess our results. The PCle transfer time for
transferring input and output data between the host’s main-memory and GPU
global memory. It is the target time for micro execution models for balancing
throughput and PCle bandwidth. The PCle transfer time is shown in each graph
with a dashed line (---).

The GPU global memory bound execution time is the time for reading the input
data and for writing the output data. The baseline is a lower bound on the kernel
execution time. We indicate it with a solid line (—) in each graph.

3.8. EVALUATION 55

Model Type Archi- Cores | Scratch B/W

tecture pad (KB) | (GB/s)

GTX970 (NV) | GPU | Maxwell | 13 96 146.1
GTX770 (NV) | GPU Kepler 8 43 167.6
RX480 (AMD) | GPU | Ellesmere 32 32 104.9
A10 (AMD) APU | Godavari 8 32 18.7

Table 3.2: Coprocessors used in the evaluation.

select lo_extprice * lo_discount + lo_tax as revenue
from lineorder
where lo_quantity between 25 - x and 25 + x

Figure 3.16: Select/Project query inspired by star schema benchmark.

System Configuration For the experiments, we use three dedicated GPUs with
PCle gen 3.0 links and one APU that accesses main-memory directly. Table 3.2
specifies the GPU models and shows hardware properties. The amount of scratch-
pad is available per core. The reported bandwidth refers to GPU global memory
for the GPUs and to main-memory for the APU. It was measured using on-GPU
memcpy of 1 GB data. We measured bidirectional PCle transfers between CPU and
GPU as 12.1 GB/s.

Both NVidia GPUs GTX770 and GTX970 run in a system with an Intel Xeon
E5-1607 CPU. We use the NVidia 364.19 driver and CUDA Toolkit 7.5 with OpenCL
drivers. The AMD RX480 GPU is placed in a separate system with the A10-7890K
APU. We use the AMDGPU-Pro 16.40 driver for the GPU and the fglrx 15.201 driver
for the APU. Each system is running Ubuntu 14.04 and uses the boost library 1.61.

We used nvprof 2.0.28 and CodeXLGpuProfiler V4.0.511 for profiling
kernel execution times, PCle transfers, and GPU global memory access. For the
measurements of kernel execution times, we profilers to measure individual kernels
and sum up the kernel execution times if multiple kernels are involved.

3.8.1 Pipelined Prefix Sum

We compare several pipelined prefix sum techniques to one non-pipelined technique
for a query that filters and projects one table. This allows us to analyze the benefit
of integrating prefix sum computations into single-pass kernels. We execute the
Select/Project-query (shown in Figure 3.16) and vary the selectivity in the range
[0, 1] using x. By running the experiment on four GPUs, we aim to assess the best
local resolution mechanisms for a given hardware. Figure 3.17 shows the results.

Observations Pipelined techniques perform better than Multi-pass in most cases.
Integrating the prefix sum computation into single-pass kernels reduces the kernel
execution times by factors up to 6.3x. While processing with Multi-pass takes up
to 328.6% of the PCle time, Resolution:SIMD uses only 101.3% of the PCle time in

56 CHAPTER 3. COMMUNICATION

GTX970 GTX770

O | | | | | 0 | | | |
g 0 0.2 04 06 038 1 0 0.2 04 06 0.8
Q
g
= RX480 A10
g T T T T T T
E 150 //_A/A——J/\/"A N
400 |-
oy | W
| 200 -
0 | | | |
0 0.2 04 06 038
selectivity
A Multi-pass —— Pipelined
—— Resolution:WE —e— Resolution:SIMD
--- PCle transfer —— Memory bound

Figure 3.17: Executing the Select/Project-query with different techniques. We
achieve the fastest execution times when pipelining the prefix sum computation
with local resolution.

the worst case (selectivity 1.0, RX480). This shows that the approach can saturate
the bus bandwidth for a variety of configurations. On the A10 there are no PCle
transfers and Resolution:SIMD increases the overall throughput by factors up to
1.6Xx over Multi-pass.

The results show that the local resolution step reduces the performance impact
of atomic operations. This becomes visible for higher selectivity factors: Pipelined
has higher executions times because the strategy executes one atomic addition per
output. Resolution:SIMD and Resolution:WE however show good performance
across all selectivities due to local resolution.

Resolution:SIMD achieves the shortest kernel execution times in most cases
and allows memory bound processing on the GTX970. On the GTX770, lowering
the output size down to 0 does not affect the execution time. We conclude that

3.8. EVALUATION 57

select sum(lo_extendedprice), lo_orderkey % x
from lineorder
group by lo_orderkey % x

Figure 3.18: Group By-query inspired by star schema benchmark.

10° T T T T
—0— Op.-at-a-time
—o— Pipelined
10* | -
—eo— Resolution
w1
E
g 103 L |
£
5 102 | .
< PCle
"""""""""""""""""""""""""""" transfer
10! | :
Memory
| | | | | | | | | | | | | bound

22 23 24 25 26 27 28 29 210 211 212 213 214

number of groups

Figure 3.19: Performance of grouped aggregations.

the GTX770 is compute-bound earlier than the GTX970. The higher memory
bandwidth of the GTX770 leads to an increased throughput for atomic operations
and Pipelined can outperform Resolution:SIMD for selectivities below 10%. On
the RX480 and on the A10 there is no definite advantage for one of the reduction
techniques. In the following, we only use Resolution:SIMD and skip the other
techniques for a clear presentation.

3.8.2 Pipelined Group By

We evaluate the effect of pipelined GROUP BY aggregations using different tech-
niques. We execute the Group By-query (shown in Figure 3.18) with Operator-
at-a-time, Pipelined and Resolution. The query groups all tuples of 1ineorder
according to the computed attribute lo_orderkey%x into sums. We vary the
number of groups by increasing x from 2 to 16384. We show the results of the
experiment on a GTX970 GPU in Figure 3.19.

Observations The execution times of Operator-at-a-time do not depend on the
group size. The main cost factor is sorting the input columns. Pipelined shows
up to 11.1x lower execution times but only for larger group sizes. For group sizes

58 CHAPTER 3. COMMUNICATION

below 64, we observe high execution times. This is caused by heavy contention of
parallel aggregation hash table inserts.

The bottleneck is resolved by Resolution which uses pre-aggregations to reduce
the contention. The results show that execution times reduce by factors of up to
126x. However, the local pre-aggregations have a limited effect on larger group
numbers. This explains the spike at 128 groups, where both pre-aggregation
and contention have an effect. While the approaches cannot saturate PCle when
aggregating a full table, filters reduce the cost of grouping for real-world queries.

3.8.3 Star Schema Benchmark

The previous experiments showed that pipelining specific reduction operations
helps to increase the throughput of query processing. In this experiment, we
analyze whether this behavior carries over to real-world situations. To this end,
we execute the SSB Queries* on the GTX970 GPU.

We use Operator-at-a-time and two variants of our query compiler. HorseQC:
Multi-pass uses pipeline breaking implementations for reductions. HorseQC: Fully
pipelined integrates all pipeline operations in one kernel. We show the results of
the experiment in Figure 3.20.

Observations The bandwidth analysis in Section 3.2.1 showed that 4 out of 12
queries are limited by GPU global memory access in operator-at-a-time processing.

+ The kernel execution times of Operator-at-a-time show that compute and
latencies further increase the problem. While PCle would allow execution
times between 60.6ms to 90.9ms, the kernel execution times take longer for
10 out 12 queries with up to 295.5%.

« HorseQC: Multi-pass improves over Operator-at-a-time and uses only 50.5%
of the PCle bandwidth transfer time in the best case and 215.5% in the worst
case. This shows that without efficient pipelining of reduction operations,
the benefit of query compilation is limited.

« HorseQC: Fully pipelined lowers all kernel execution times to a level that
is consistently lower than PCle transfer times. This shows that compiling
pipelines into one kernel with local resolution, global propagation provides
an execution approach with sufficient throughput. Processing takes 9.7%
of the PCle transfer time in the best case and 78.1% in the worst case. For
Queries 1.1, 1.2 and 1.3 kernel execution is memory bound by GPU global
Memory access.

*We could not process SSB Query 2.2 as we do not support range predicates on dictionary
compressed columns yet.

3.8. EVALUATION 59

250 | | | | | | | |
flBHorsEQC: Fully pipelined =~ PCle transfer

B HorsEQC: Multi-pass — Memory bound
200 | [0 Operator-at-a-time i

150 - M =

100 -

kernel time ms

032 033 Q34 Q41

Q11 Q12 Q13 Q21 Q23 Q31 Q42

Figure 3.20: Performance of SSB queries.

3.8.4 TPC-H Queries

We execute and profile queries from the TPC-H benchmark to show the effect when
relaxing the specific assumptions of the star schema benchmark (e.g. using one cen-
tralized table). We select a subset of queries based on the work by Boncz et al. [13]
to capture challenging aspects of the TPC-H benchmark, i.e., Q1, Q4, Q13, and Q21
contain heavy aggregation, Q9, and Q18 contain heavy joins, and Q4, Q19, and
Q21 contain parallelism bottlenecks. We modified 4 queries, because HORSEQC
currently does not support all operations.’ The results of the experiment are shown
in Figure 3.21. For Q1, there is no result for HORSEQC: Multi-pass, because the
strategy ran out of GPU memory. The results shown for Operator-at-a-time are
for all TPC-H queries supported by the DBMS.

Observations The PCle and memory bound baselines show larger variations
than for the SSB benchmark. This is mainly caused by the join structure, e.g., Q13
joins three small tables, while Q17, Q18, and Q21 join multiple instances of the
largest 1ineitem table.

The kernel execution times show that HORsEQC can improve over operator-
at-a-time by factors of up to 8.6x. For Q1, Q4, and Q9, there are cases where
Operator-at-a-time has shorter kernel execution times than compiled strategies.

SWe kept seven TPC-H queries (1, 4, 5, 6, 7, 18, 19) unchanged and slightly modified four (9, 13,
17, 21). E.g. we replaced like-predicates, with simple predicates and preserved the query’s original
selectivity.

60 CHAPTER 3. COMMUNICATION

500 ‘ : : ! L
B8 HorseQC: Fully pipelined == PCle transfer
B HorsEQC: Multi-pass M — Memory bound

| l0 Operator-at-a-time

400

77

300

kernel time ms

200

100

Q17 Q18 Q19 Q21
Figure 3.21: Performance of TPC-H queries.

Further investigation showed that in these cases Operator-at-a-time moves some
operators to the CPU, therefore the measurements cover a limited amount of
operations.

Comparing the variants of the query compiler, we observe that HorseQC: Fully
pipelined consistently improves over HorRseQC: Multi-pass by factors of up to
5.4x. HorseQC: Fully pipelined achieves lower execution times than PCle transfer
times for 8 out of 11 queries. For Q1, Q13, and Q18 the PCle bandwidth cannot
be fully saturated. This is because the queries contain grouped aggregations of
unfiltered columns (cf. Pipelined Group By). The execution times of HORSEQC:
Fully pipelined take 5.6% of the PCle transfer time in the best case and 268.1% in
the worst case.

3.8.5 Scalability

Due to the deeply integrated storage layer implementations of the host DBMS
CoGaDB, we were not able to build a fully scalable version of HOrRseQC. For this
reason, we perform a separate experiment that integrates the Resolution micro
execution model with the batch processing macro execution model for the star
join from SSB Query 3.1. Decoupling this experiment allows us to apply the rules
for coprocessor data management by Yuan et al. [104] and to measure end-to-end
performance for larger datasets.

The star join recombines three dimension tables and one fact table with an
overall selectivity of 3.4%. We build hash tables for the dimension tables in GPU

3.8. EVALUATION 61

Block sizt‘e

—e— 0.5MB
| —— 2MB

—o— 8MB
2| =-=-- PCle

2.5

execution time s
—
(&2}
T
|

21.6GB
input size -

0 | | | | |
0 50 100 150 200 250 300

scale factor

Figure 3.22: End-to-end performance of star join computation for different scale
factors.

global memory. The fact table resides in pinned host memory and each column
is partitioned into blocks of 0.5 MB, 2 MB or 8 MB. The blocks are transferred
asynchronously via PCle into an inner kernel that computes the star join by probing
each dimension hash table.

Figure 3.22 shows the end-to-end execution times for each block size when
executing the experiment. We observe that execution times grow linearly with
increasing scale factors and that block sizes larger than 2 MB can saturate the PCle
bandwidth. The computation does not become a bottleneck for the examined scale
factors. With a block size of 4 MB and scale factor 300, the size of intermediate
data in GPU global memory is only 473 MB. Therefore, we expect the approach to
scale to even larger databases with linear performance.

3.8.6 End-to-End Performance

To make a comparison to other database systems, we execute the TPC-H queries
with different database systems and measure end-to-end performance. We compare
MonetDB5 Dec2016-SP3 executed on CPUs, and CoGaDB 0.41 and HorseQC
executed on GPUs. Both competitors feature an operator-at-a-time approach. We
perform the measurements with warm caches. MonetDB runs on a workstation-
class system with an Intel Xeon E5-1607 CPU and 32 GB RAM. CoGaDB and
HorseQC run on the GTX970. The results are shown in Figure 3.23.

Observations For the supported queries, HORsEQC is up to 5.8x faster than
CoGaDB. While CoGaDB uses GPU global memory as a cache for frequently used

62 CHAPTER 3. COMMUNICATION

columns, HorRseQC does not cache data between queries. This shows that HORSEQC
uses memory and interconnects more efficiently. For Q6 there is no improvement,
because query execution is PCle bound.

HorseQC has lower execution times than MonetDB by factors of up to 26.9x.
Despite moving data through the PCle bottleneck, the additional bandwidth re-
sources of GPU global memory offer an acceleration. For Q19 MonetDB has a lower
execution time than HorseQC. This shows that for queries with a low complexity,
it is more effective to process data directly than moving it over PCle.

3.9 Discussion

In these experiments, we evaluated our new approaches to query compilation on
coprocessors. Across all experiments, we were able to show improvements of
query compilation over operator-at-a-time processing. Operator-at-a-time has a
low memory efficiency due to large materialization volumes and repetitive opera-
tions. The approach therefore cannot utilize the memory systems surrounding the
coprocessor efficiently.

While naive compilation techniques increase the memory efficiency, reductions
and prefix sums split operator pipelines into multiple passes. In this way, the ap-
proach inherits the drawbacks of operator-at-a-time. This becomes visible because
kernel execution times frequently exceed PCle transfer times.

This chapter shows a query compilation technique that merges the operators
of a pipeline into one compound kernel. When combined with efficient reduc-
tion techniques, the compound kernel achieves substantial advantages over other
processing approaches. With upcoming OpenCAPI and NVLink interconnects,
these improvements to GPU-local processing are essential to benefit from increased
bandwidth of the new hardware. In the evaluation setting, the PCle bandwidth can
be saturated for all SSB queries. For the TPC-H benchmark, the approach improves
over operator-at-a-time and naive compilation, but saturates PCle only 8 out of 11
queries. We conclude that the compound kernel works particularly well with star
join queries.

3.10 More Related Work

Combining multiple kernels for query processing on GPUs has been used in re-
lated work. Wu et al. [99] analyze query plans to automatically fuse kernels with
matching I/O data. Li et al. [57] use pre-fabricated kernels that recombine several
operators.

Our approach to pipeline the computation of write positions produces data this
is not strictly ordered but still contains locality. Such partially ordered data has
been examined in the context of the Diag-Join by Helmer et al. [41].

3.11. ENGINEERING QUERY COMPILERS 63

B8 MonetDB
o |00 CoGaDB i
B8 HorseQC g

execution time s

0.5 (E

§HE Ln

Q1 Q4 Q5 Q6 Q7 Q9 Q13 Q17 Q18 Q19 Q21

Figure 3.23: End-to-end performance of TPC-H queries.

Query compilation can be applied in higher-level languages for programmabil-
ity [51] or in lower-level languages for low compilation times [69]. Similarly, on
GPUs lower-level PTX or SPIR code may be used or higher-level languages may
help to abstract hardware details.

With the end of frequency scaling, it has become increasingly important to
exploit hardware parallelism. Power et al. [83] show that especially integrated
GPUs can achieve better processing efficiency than CPUs.

In related work, two ways to compute single-pass prefix scans have been
proposed. They are similar to local resolution, global propagation with different
approaches to pipeline global propagation. First, Yan et al. [102] serialize the
computation of local prefix sums with memory barriers. Second, Merrill et al. [65]
propose a dynamic look-back mechanism that recomputes unavailable partial sums.
In contrast, we use atomic operations to avoid re-computations of long pipelines
and to facilitate out-of-order execution.

3.11 Engineering Query Compilers

As in the previous chapter, we discuss the lessons learned for the design of query
compilers. In this section, we address balancing of compute and memory resources.
We consider a compiled pipeline that is used for query execution as example. The
pipeline has a data volume that is accessed in memory and a compute workload
that is processed by the processor. If the data volume and the compute workload
are balanced (i.e. at the tip of a roofline diagram [73]) both memory and compute
resources work at their highest capacity. This is a beneficial situation as none of
the resources delays the other.

64 CHAPTER 3. COMMUNICATION

If we find a way to use memory resources more efficiently, the data volume
reduces. However, with the same compute workload there is no advantage to the
processing speed, because compute limits throughput. This shows that resource
efficiency should not be the only goal. Rather to achieve significant improvements,
it is important to improve on the resource that is the most limiting factor. This is the
predominant approach we have persued in this chapter. For instance in Section 3.2.3,
we found that standard processing techniques are limited by GPU global memory
bandwidth and introduced compilation techniques in Section 3.4 and 3.5 to lower
the accessed data volumes in this memory.

In some cases, however, there are no viable options to improve on the limiting
resource directly. Then it can be possible to spend additional work on a resource
with open capacities to the benefit of the limiting resource. This approach was used
in Section 3.6, where the atomic functional units of the GPU limited performance.
As GPUs have sufficient compute capacity, we were able to add computations that
take away work from the atomic functional units. This served as a beneficial way
of balancing resources.

3.12 Summary

In this chapter, we showed query processing techniques that help to balance the
data movement cost and the compute throughput on GPU-style coprocessors. We
measured the data transfer volumes in different scalable processing approaches
to assess bandwidth bottlenecks. While naive scalable execution techniques are
limited by PCIe bandwidth, batch processing is limited by GPU-local throughput. To
address the bottleneck, we proposed micro execution models that benefit from on-
chip pipelining. Naive query compilation techniques allow simple code generation
but inherit the memory-intensity of operator-at-a-time. We introduced compound
kernels that merge several pipeline phases into one efficient kernel.

Processing

The previous chapter introduced techniques to transfer the query compilation
approach to data-parallel coprocessors, such as GPUs. The presented techniques
largely improve the communication efficiency. However, the changes in the process-
ing model also have a strong effect on the processing efficiency. Generally query
compilation affects the processing efficiency positively: it eliminates interpretation
work, it reduces the amount of executed memory instructions, and it improves the
ability to apply compiler optimizations. By switching to the data-parallel process-
ing model, however, there are also negative effects on the processing efficiency.
Every GPU instruction handles several elements simultaneously (e.g. 32 elements).
Therefore tuples can no longer be processed independently and variations in the
amount or type of processing per tuple lead to execution with reduced efficiency.
This effect, called control flow divergence, is well known, but it has a particularly
strong effect on query compilation techniques. This is because divergence effects
are amplified during the execution of fused pipeline operators.

In this chapter, we identify two types of control flow divergence—filter diver-
gence and expansion divergence—that frequently occur in real world workloads.
We quantify the problem for two poster cases and propose techniques to balance
these divergence effects. By balancing divergence effects, our approach is able to
restore processing efficiency even when pipelines contain heavily skewed opera-
tions. Our query compiler DogQC has a wider range of functionality than other
query coprocessors and achieves performance improvements. We observe shorter
execution times for TPC-H benchmark queries by factors up to 4.51x compared
with existing GPU query compilers and by factors up to 4.54x compared with
CPU-based systems.

Parts of this chapter are contained in published articles [31, 32].

65

66 CHAPTER 4. PROCESSING

Efficient use of
parallelism

Underutilized
lanes [, and I3

Figure 4.1: Data-parallel computation of R X S with inefficient use of compute
resources due to non-uniform distribution of S.

4.1 Introduction

Data-parallelism is frequently used for efficient query processing (e.g. SIMD, co-
processors). As means of specialization, it is a way to overcome the power wall
that limits the design of modern multiprocessors [17]. Instead of dedicating chip
resources to control flow management, data-parallel architectures target through-
put. For instance, executing an instruction for 32 fields at a time reduces control
flow management work by 32X compared to scalar execution.

Leveraging data-parallelism in a beneficial way can be challenging. While
uniform data can be processed naturally, irregular data and computation patterns
may compromise the benefits. In the uniform case, it is sufficient to package
data into parallel lanes and then to run an instruction sequence. Non-uniform
data, however, cannot easily be packaged into a fixed number of fields and the
instruction sequences may diverge. Consequently, for irregular problems, data-
parallel operations execute with reduced efficiency.

Figure 4.1 illustrates the problem for a database join operation. While rows r;
and ry4 find three/four join partners, there is only a single join partner for r, and
none for r3. A naive data-parallel execution, therefore, will leave execution lanes I,
and /3 underutilized. In real-world problems, unfortunately, such irregularities are
the norm, rather than the exception, e.g.

4.1. INTRODUCTION 67

Variable Length Data The size of an attribute may vary across different entities
(e.g. strings).

Skewed Distributions Skewed data distributions lead to divergence during
recombination tasks (e.g. joins).

Computation Divergence As a secondary effect of data properties, divergence
may occur during computations (e.g. hash collisions).

4.1.1 State of the Art

Non-uniformness can be particularly harmful to parallel query compilation ap-
proaches. Query compilation closely entwines sequences of operators (pipelines)
into native code. Thus non-uniform effects that occur in the data-parallel execution
of one operator may be amplified during the execution of successive operators. In
CPU-based systems, the problem of data-parallelism in compiled pipelines has been
addressed by database researchers [56, 90]. A promising approach by Lang et al.
[54] refills inactive SIMD lanes with buffered elements from previous low-activity
iterations.

By contrast, in the context of data-parallel accelerators—such as GPUs—existing
systems tend to circumvent the problem of non-uniformity at a high price. E.g.,
they use string dictionaries [67, 11, 18, 40, 28], specialized joins [78], materialization
barriers [99, 40, 18], or bit-packed keys [18, 19] to provide a uniform surrogate.
The surrogate, however, usually has limited expressivity, and query coprocessing
engines struggle to match the same range of operations supported by their CPU
counterparts.

4.1.2 System: DogQC

We use our query compiler DogQC to illustrate our techniques to cope with non-
uniformity on data-parallel processing devices. DogQC performs Just-in-Time
compilation (JIT) with standard template-based code generation [69], which we
apply to GPUs with the techniques established in Chapter 3. The mechanisms to
cope with non-uniformity are orthogonal to other GPU-based query processors.

The approach is illustrated in Figure 4.2, which shows an operator with Lane
Refill/Push-down for divergence balancing that is placed between standard
relational operators (shown in gray). During JIT-compilation the query plan on
the left is translated to the query code on the right. For the balancing operator,
DogQC instantiates a code template that is weaved into the code for relational
processing. The mechanism resolves imbalances in the code of the operators
with divergence effects (outer gray box) before continuing with the execution of
succeeding operators (inner gray box). In this way, the succeeding operators are
executed with increased processing efficiency.

68 CHAPTER 4. PROCESSING

Generate
Code
produce T F ~ - -
| pipeline_kernel(...) {
//divergent execution
~ consume
" 11 1 . (Scan,X)
d
pro “e(— Lane Refill/Push-down {
'/ consume //balanced execution
Lane Refill/ | ar.n ‘
. ,
producePush—‘down }
|
'Q N g consume }

produce< ‘r>
consume

Scan Query Code: query.cu

Query Plan

Figure 4.2: Injecting divergence balancing into query code generation.

By balancing divergence effects, DogQC targets efficient query processing
without assumptions about the uniformness of workloads. This allows DogQC to
achieve a larger range of functionality and to avoid expensive preprocessing steps
that are typically used to harmonize data.

4.1.3 Contributions and Outline

Our work is the first to pinpoint the problem of divergence in the context of GPU-
accelerated database processing (Section 4.2). We identify two flavors of divergence:
expansion divergence (Section 4.3) and filter divergence (Section 4.4). With Push-
down Parallelism (Section 4.3.2) and Lane Refill (Section 4.4.2), we provide novel
and effective mechanisms to counter the two divergence effects. In an extensive
set of experiments (Section 4.5), we demonstrate how Push-down Parallelism and
Lane Refill can speed up query processing by more than a factor of two for realistic
benchmarks. To round up the chapter, we discuss related work in Section 4.6,
discuss engineering aspects of our approach in Section 4.7, and summarize in
Section 4.8.

4.2 Non-Uniform Pipelines

Data-parallel processing of non-uniform data encounters the following problem:
Some data elements need a different amount or kind of processing than others.
Consequently, parallel lanes need to diverge to follow their tuples’ processing path.
Due to this effect, called control flow divergence, (short: divergence) the affected

4.3. EXPANSION DIVERGENCE 69

lanes may idle, or unmatched execution paths are sequentialized. The advantage
of data-parallelism to reduce the amount of control flow work is compromised.

Control flow divergence is particularly harmful in kernel-programs’ that ex-
ecute operator sequences (e.g. op, ...op,) as they are typical in compiled query
pipelines [28]. If the operator op; introduces divergence, the subsequent operators
op;,;- - - op, may suffer from it as well. For example, a tuple that is filtered out
should be disregarded by the following operators, leaving the respective lane idle
throughout.

In the following, we take the TPC-H benchmark [13] and analyze the divergence
effects that occur in actual query pipelines. We differentiate between two types
of control flow divergence, called filter divergence and expansion divergence. Their
difference is based on properties of the operation they originate from.

4.2.1 Lane Activity

Data-parallel processors execute instructions on multiple lanes at a time, e.g. GPUs
execute instructions in warps of 32 lanes. Starting with scan, each warp reads the
attribute data for 32 tuples into an on-chip register file [94, 72]. Each of the warp
lanes is responsible for one scanned tuple and we call the lane active when it holds
at least one tuple to pass on to the next operator. In subsequent operators, lanes
may resign from their tuple, e.g. by applying a filter. However, warp instructions
will still compute a value for these passive lanes, but the result is discarded. Passive
lanes do not contribute to the computation, but cause dissipation of chip resources
for register allocation and instruction execution. To achieve a high execution
efficiency, it is important to minimize the number of passive lanes.

4.3 Expansion Divergence

Expansion divergence occurs in operators such as string comparisons and joins,
where parallel lanes need to process varying amounts of work items depending on
data properties. Expansion divergence can lower the execution-efficiency due to
divergence in the operator itself (e.g. comparisons of short strings finish early) and
due to divergence in subsequent operators. The latter occurs when the expansion
process creates a varying amount of new tuples, e.g. join matches.

4.3.1 Poster Case 1

TPC-H query 10 contains a join between the orders and 1lineitem tables. Both
tables are filtered, therefore optimizers may decide on ordersXlineitem or
lineitem X orders. For the latter DogQC computes a hash join with lineitem
as build relation and orders as probe relation. During probe, the tuples from
orders have varying numbers of matches, which correspond to the items in an

Iparallel GPU procedures, called kernels in short.

70 CHAPTER 4. PROCESSING

2.9M tpl
2.3M warp its.

X <>
. SO0 18.8M tpl
@ AN \\l.ZM warp its.
¥ & . N
& 0
‘0 . & N
&
o
TPC-H 37.5M tpl

1.2M warp its.

scan (orders)

Figure 4.3: Analytic benchmark query with expansion divergence in join operator.
Varying numbers of join matches cause more warp iterations for fewer tuples.

order. Producing the matches is a process with expansion divergence. To analyze
the execution efficiency, we execute the query with DogQC and look at two metrics
at each pipeline stage: The number of tuples and the number of warp iterations.
The number of warp iterations indicates how many times a warp of 32 lanes goes
through an operation. If at least one element is active, the full warp performs the
iteration. However, each iteration can process up to 32 elements.

Figure 4.3 illustrates the compiled pipeline.? First, a scan of 37.5 M tuples from
orders, then selection leaving 18.8 M tuples active, and then join probe producing
2.9 M match tuples. The scanned orders-tuples are evenly parallelized and thus
processed in 37.5 M/32 ~ 1.2 M warp iterations. Selection has the same number
of warp iterations because almost all warps have remaining tuples. The following
join probe produces a lower number of 2.9 M tuples but requires a higher number
of 2.3 M warp iterations. Each lane iterates through varying match numbers and
only 2.9M/2.3M = 1.3 lanes per warp are active on average. In an ideal setting
only 2.9 M/32 ~ 0.1 M warp iterations would be sufficient. Expansion divergence
that occurs in the join probe operator causes a low execution efficiency.

2Figures 4.3, 4.4, 4.6, and 4.7 use a lower number of 8 warp lanes for illustration purposes. The
actual hardware in this work uses 32 warp lanes.

4.3. EXPANSION DIVERGENCE 71

4.3.2 Push-down Parallelism

Existing query compilers [56, 19, 28] parallelize over the scanned table. Within each
parallelization unit, expansion processes are executed sequentially. For example
in the join R M S, where r € R is part of the scanned table, all join matches of r
with S are produced by the same thread. This causes inefficiency as lanes diverge
along the distribution of join matches. In the worst case the operators op; to op,
are executed sequentially when all tuples with matches are processed by the same
lane.

Push-down Parallelism has the ability to prevent this effect by changing the
parallelization strategy within the pipeline. For operators with expansion properties,
it pushes parallelization down one level to the expansion process. E.g. for joins,
the parallelization level moves from parallelizing over the scanned tuples of R
to parallelizing over the join matches with S. This is achieved with broadcast
operations that redistribute parallel work.

We describe how Push-down Parallelism redistributes work to prevent imbal-
ance caused by join expansion. Figure 4.4 illustrates this and we formalize the
mechanism as pseudocode in Figure 4.5. Before applying Push-down Parallelism,
warps have gone through the previous operators op, to op,_; (lines 1-5). Now, op;
is a hash probe that expands varying numbers of join matches per probe. Push-
down parallelism performs the following steps. First, the number of join matches
in each lane w = [0, 4, 0, 6, 0, 28, 3, 0] is determined (line 6). Next, the state of each
lane consisting of w, the tuple ¢, and data structure state s is written to local buffer
variables Whyf, thuf, and spyuf (lines 7 and 8). Then Push-down Parallelism enters a
sequence of broadcast operations (1) to (4) (lines 9 to 16) that finishes when no
lane has remaining expansion items. For broadcast (1), Push-down Parallelism
selects lane a = 2 with wy, s = 4 join matches as source . The broadcast takes the
values whyf, thuf, and spyf and propagates them from lane 2 to the other lanes of the
warp (line 11). Thus all warp lanes retrieve the probe-side tuple with it’s current
state. The build-side tuples are now retrieved from the hash bucket. The join
matches — are processed in a loop with adjacent hash buckets offsets for adjacent
lanes (cf. lines 12 to 14). Push-down parallelism performs one loop iteration with
the hash bucket offsets e = [0, 1, 2, 3, %, %, X, x]. During the iteration the subse-
quent operators op,,; to op,, are executed (line 14). Now the hash probes from lane
a = 2 are finished. This is marked by updating wyus = [0, 0, 0, 6, 0, 28, 3, 0] (lines
15 and 16). Push-down Parallelism continues with broadcast (2), which starts
with the selection of lane a = 4 with 6 matches (line 10). The remaining broad-
cast procedure is unchanged and finishes by updating wys = [0, 0, 0, 0, 0, 28, 3, 0]
(lines 15 and 16). Broadcast (3) processes lane a = 6 with 28 matches. Here the
larger number of matches necessitate 4 iterations of the loop in lines 12 to 14.
The iterations process 8, 8, 8, and 4 matches. The broadcast finishes by updating
wput = [0,0,0,0,0,0,3,0] and leaves 3 matches in lane a = 7 for broadcast (4).
The join matches are processed, wpys = [0, 0,0, 0,0, 0, 0, 0] is updated, and the loop
from line 9 exits. The pipeline starts over with fresh tuples.

72 CHAPTER 4. PROCESSING

r

Wpe: 0 0 00 0 0 0O

@ TR

N broadcast(7, thuf, 3, Shur)
a=17

Whatt 0 0 0 0 0 0 30

I B/ -
I s s o I |

sl O e s f s
broadcast(6, thuf, 28, Spuf)

® =S

Whatt 0 0 0 0 0283 0
broadcast(4, tyuf, 6, Shuf)

. X

Wput: O 0 0 6 0283 O

@ broadcast(2, thuf, 4, Sbuf)
a=2
Whatt 0 4 0 6 0283 0

X

Figure 4.4: lllustration of Push-down Parallelism that expands the join matches of
four warp lanes one after another.

Each broadcast takes the join matches from an individual lane and spreads
them out across the warp. As consequence warps parallelize over the join matches
instead of parallelizing over the scan table. This balances expansion processes and
increases the memory efficiency for hash bucket reads. Push-down Parallelism
yields preferable coalesced memory access patterns, which means that adjacent
lanes access adjacent memory locations [43], whereas the standard approach uses
slower sequential memory access.

4.3.3 Implementation

We implement Push-down Parallelism in DogQC by adding a code generation
template to the query compiler. The implementation uses warp primitives via
intrinsics, which allow lanes to exchange data and to perform collaborative compu-

4.3. EXPANSION DIVERGENCE 73

PusH-DOWN PARALLELISM

1 foreach warp of 32 lanes in parallel do
2 laney, « [1,...,32]
3 while more inputs do
4 t « scan 32 tuples /* op; */
5 [...] /* op, - op;_; */
6 w «— number of work items
after expansion in op;

s « data structure state op;
8 tbuf, Whuf> Sbuf <= £, W, S
9 while warp_any(wpyr > 0) do
10 a <« select_leader(wpyf)
11 t,w,s « broadcast(a, tyuf, Whuf> Sbuf)
12 for e < lanej, to w by 32 do
13 process op; expansion item e
14 L [...] /* op,.; - op, */
15 if lane;, = a then
16 L Whuf < 0

Figure 4.5: Pseudocode for a pipeline that applies Push-down Parallelism to op;.
The strategy expands op,; with another level of parallelism.

tations [71]. E.g. __sfhl_sync(..) performs lane index-based data exchange and
__ballot_sync(..) computes a predicate bitmask across a warp. We describe
the implementation of lane buffering, leader selection, and broadcast operations
with these intrinsics in the following.

Buffering Active Lanes Lanes that receive work items during broadcast may
already have an active tuple in register. To switch to a new work item, it is necessary
to postpone processing of that tuple. This is done by buffering active tuples (line 8)
before broadcast and leader selection. The buffer operation is local to each lane
(i-e., lanes postpone only their own tuple). Consequently, buffering is as simple as
writing each attribute value to a local buffer variable.

Leader Selection During leader selection (line 10), Push-down Parallelism picks
one lane as broadcast source and provides its lane index a to the other warp lanes.
This is implemented with the following expression using only two warp intrinsics:

// select broadcast source lane
a = __ffs(__ballot_sync(w_buf>0,ALL));

The first primitive __ballot_sync(..) builds a bitmask of lanes that have re-
maining work items and shares it with all lanes. The second primitive __ffs(..)

74 CHAPTER 4. PROCESSING

computes the index of the first 1-bit of the bitmask. The lane with index a is selected
for broadcast.

Broadcast Operation The broadcast operation (line 11) takes the buffered data
from one lane a and distributes it to the other warp lanes. The following values
are broadcasted: the attributes of the tuple #,,¢,, the number of expansion items
Whut.q, and the data structure state sy 4, €.g., the hash bucket offset. The following
code performs the broadcast for a tuple with two attributes and the hash bucket
offset using warp shuffle primitives.

// gather w_buf, t_buf, and s_buf from lane a

w = __shfl_sync(w_buf,a); }w
o_orderdate = __shfl_sync(o_orderdate_buf,a);
o_orderkey = __shfl_sync(o_orderkey_buf,a); t
c_acctbal = __shfl_sync(c_acctbal_buf,a);
bucket_offs = __shfl_sync(bucket_offs_buf,a); }S

The __shfl_sync(...) intrinsic takes the payload as first parameter and the source
lane as second parameter. All lanes of the warp execute the instruction and obtain
data from lane a. After the broadcast, each lane processes a distinct expansion work
item (lines 12-14). E.g., hash bucket entries are obtained by adding the expansion
index e to the base address of the hash bucket. In this way, warps consume the
tuples from the hash bucket in coalesced iterations.

4.3.4 Planning for Push-down Parallelism

In DogQC, we select hash join operators for the application of Push-down Paral-
lelism based on the build attributes. If the build is performed on other attributes
than primary keys, hash buckets can contain multiple elements per key. We choose
Push-down Parallelism to balance expansion processes during hash probes. For
primary key build attributes, matching probes will retreive exactly one tuple. We
choose the standard hash join as there is no expansion.

A fully-fledged system will include Push-down Parallelism in cost-based opti-
mization as an alternative join operator. Similar to our current implementation,
cost estimates can be based on build attribute statistics.

4.3.5 Usage Scenarios

Push-down Parallelism allows efficient execution of operators with expansion
processes. The expansion may produce new tuples as the join in the previous
example. Alternatively, expansions can be local and the operator passes on only
one tuple, e.g., when processing the characters of string-typed attributes. For the
latter case line 14 of the pseudocode in Figure 4.5 moves behind the for-loop.

By taking the parallelization level to the same level as the expansion process,
Push-down Parallelism gives two main benefits. First, non-uniform distributions

4.4. FILTER DIVERGENCE 75

of the number of expansion items no longer cause expansion divergence. Second,
memory accesses that are performed during expansion are transformed from
sequential memory access to coalesced memory access. In the following, we
discuss several scenarios for the application of Push-down Parallelism.

Joins Joins between tables with varying key distributions are a poster child for
the application of Push-down Parallelism. Existing GPU-based techniques restrict
functionality by limiting the number of join matches, join conditions, or attributes
stored in the hash table [45, 78, 85]. The restrictions limit divergence effects, but
also lack support for important query plan options. DogQC handles varying key
distributions, multi-predicate joins, and different payload sizes gracefully by using
Push-down Parallelism to balance expansion work.

(Anti-) Semi Joins Push-down Parallelism applies to (anti-) semi-joins with
multiple match candidates (e.g., for combinations of equality and inequality predi-
cates). The technique helps to balance the parallel evaluation of match candidates.
However, the parallelization can prevent join strategies from early exit once the
first match is found.

String Equality Equals operations on string datatypes cause expansion diver-
gence due to varying numbers of characters in the strings. Push-down Parallelism
expands the string characters across lanes and compares the characters in parallel.
This reduces divergence effects from varying string lengths and increases memory
efficiency by loading the string data using coalesced access.

Graph Processing The node degree of real world graphs follows skewed dis-
tributions, e.g., power law [20]. Consequently, parallel graph algorithms are chal-
lenged by varying amounts of traversal work per node. Existing GPU techniques
address these imbalances with node partitioning [58], edge partitioning [24], and
compression [88]. Push-down parallelism naturally applies to the problem for
relational graph representations.

4.4 Filter Divergence

Filter divergence occurs in operators that inactivate some of the parallel lanes, for
example filters and primary key-foreign key joins. The subsequent operations expe-
rience a lowered execution efficiency due to lane inactivity. This problem has been
addressed by stream compaction [10] earlier; however, existing solutions are not
suitable for compiled query pipelines because of their use of global synchronization
barriers.

76 CHAPTER 4. PROCESSING

2.9M tpl
o =0.01
1.1M warp its

2.9M tpl
o =10.01
1.1M warp its

A 50M tpl
N o =0.33
N 5M warp its

O
active 150M tpl
lanes TPC-H c=10
Q10 5M warp its

scan (Lineitem)

106
0-410\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

warp iterations

123456789 32

number of active lanes

Figure 4.6: Analytic benchmark query with heavy filter divergence. After the
filtering join operator most warp iterations have few active lanes.

4.4.1 Poster Case 2

TPC-H Query 10 contains two selective operations on tuples from the 1ineitem
table: a selection 1_returnflag =’R’ and a sparse foreign key join with the
condition 1_orderkey = o_orderkey. Figure 4.6 illustrates a pipeline that scans
lineitem and then performs selection, join probe, projection, and aggregation.
Compared to Section 4.3.1, the pipeline contains an additional projection for
1_extendedprice * (1-1_discount). The previous plan performed the pro-
jection in the build pipeline favoring a smaller hash table payload.

Again, we look at the number of warp iterations (cf. Section 4.3.1) in each
pipeline stage to analyze the effect of the filters on execution efficiency. Starting
with scan, the pipeline parallelizes 150 M 1ineitem tuples evenly across lanes.
This requires 150 M/32 = 5 M warp iterations. The following filter with ¢ = 0.33 is
likely to leave elements active in each warp. Consequently, the number of 5 M warp

4.4. FILTER DIVERGENCE 77

I1

refill(m, tyuf, t, 6)

O Lhaobide

0
1

. thuf
mo111 1110
m 00010001

flush(m, t, tyur, 3)

® [11 ~E

thuf
m 1 0110000
flush(m, t, thuf, 2)
) =
thuf
m 0 0O0O01O0O00O
flush(m, t, thus, 0) =
o L
tbuf

m 00100010

X

Figure 4.7: llustration of Lane Refill that postpones processing of three low-activity
iterations for full lane activity in the fourth iteration.

iterations remains constant. Subsequently, the (single match) join probe produces
2.9 M tuples that are processed in 1.1 M warp iterations. Due to the selectivity
of ¢ = 0.01 most lanes in the pipeline have become inactive and the remaining
tuples are spread across warps. The histogram at the bottom of Figure 4.6 shows
a profile of this pipeline stage, illustrating how many active lanes we measured
in the 1.1 M executed warp iterations. Only few lanes are active in each warp
causing a low execution efficiency that is carried through the subsequent projection
and aggregation operators. Ideally, both operators would be processed with only
2.9M/32 = 90 K warp iterations.

4.4.2 Lane Refill

Selective filters or sparse foreign key joins that trigger filter divergence situations
are commonplace in analytic workloads [13]. The Lane Refill technique is a nat-

78 CHAPTER 4. PROCESSING

LANE REFILL
1 foreach warp of 32 lanes in parallel do

2 Npuf <— 0

3 Ipuf <— empty

4 while more inputs do

5 t « scan 32 tuples /* op; */
6 [...] /* opy - op;_; */
7 m < bitmask of active lanes

8 Nactive <— popcount(m)

9 while npuger + Nactive > 7 do

10 if naciive < 7 then

1 L Npuf < refill(m, t, tyuf, Nbuf)

12 execute op;

13 [...] /* op;., - op, */
14 m <« bitmask of active lanes

15 Nactive <— popcount(m)

16 if nyctive > 0 then

17 L nput <— T1lush(m, t, thuf, Nbuf)

Figure 4.8: Pseudocode for a pipeline with Lane Refill between op,_, and op,. The
control flow proceeds with op; only for lane activities above threshold T.

ural match to counter the imbalances caused by such operations. The technique
we describe here resembles the mechanism proposed by Lang et al. [54] as con-
sume everything strategy for SIMD processing. A similar idea was introduced by
Polychroniou et al. [81] for a sequence of Bloom-filter bitmasks.

Lane Refill introduces buffering operators that control the lane activity during
pipeline execution. The buffering operator is designed to work with a given
threshold. If the lane activity drops below threshold there are two options:

1. There are insufficient buffered tuples. Active lanes are buffered and the
pipeline starts over with fresh tuples.

2. There are sufficient buffered tuples to reach threshold and the tuples are
reactivated in empty lanes.

This strategy ensures that the operators succeeding the buffering operator always
start with a lane activity above threshold. It is worth noting that one element buffer
space for each lane is sufficient for any given threshold.

We show the pseudocode for the technique in Figure 4.8 and illustrate it in
Figure 4.7. As an example, we assume a Lane Refill operator with threshold 7 (out
of 8 lanes) that is placed after the sparse join of TPC-H Query 10. Figure 4.7 shows
four iterations (1) to (4) of the same warp receiving tuples from the sparse join.

4.4. FILTER DIVERGENCE 79

The boxes — represent active lanes holding tuples. The first iteration receives two
tuples from the join (pseudocode lines 1-6). Activity lies below threshold and the
tuples are flushed to the buffer (lines 9 and 17). The pipeline starts over and the
Lane Refill operator receives new tuples from the join. The following two iterations
are flushed as well because the highest possible acitivity is 6 (out of 8) for three
tuples from join plus three buffered tuples. In iteration (4), there are two fresh
tuples and six buffered tuples. The empty lanes are refilled (lines 10-11) and the
pipeline proceeds to the following operators with full lane activity. In the following,
we show how Lane Refill is implemented in compiled query pipelines on GPUs.

4.4.3 Implementation

We implement Lane Refill in DogQC by introducing a buffering operator with
the semantics shown in pseudocode Figure 4.8. The buffering operator is code
generation-based, similar to the other operators in DogQC. The main challenges in
adapting the approach by Lang et al. [54] are efficient GPU implementations for the
balancing operations flush and refill and the application of warp parallelism.

The previous implementation of Push-down Parallelism performed lane com-
munication via warp shuffles. This was possible because the only communication
pattern used were gather operations. Lane Refill, however, uses scatter operations
aswell. This is unsupported by warp shuffles, and therefore shared memory with
communication via array-style indexing is better suited here.

Although shared memory and shuffle registers are both located on-chip, shared
memory can perform slower when multiple lanes access the same memory bank [62].
However, further investigation of using warp shuffles only for the gather com-
munication of lane refill showed no significant benefit over using solely shared
memory.

Flush to Buffer The flush operation is executed when the number of active
lanes is below threshold and there are not enough buffer elements to restore
sufficient activitiy. The remaining active lanes are written to empty buffer slots.
flush takes a bitmask of active lanes m, the tuples t, the buffer ¢, and the buffer
count npyf as input. Then £1ush computes the buffer destination dest that specifies
the buffer position for each lane to write its active tuple to. This is done with the
following code:

// warp prefix sum on active lanes
dest = __popc((m) & (pre_lanes)) + n_buf;

We look at an example with 8 lanes and lane activity m = [0,1,0,0,1,1,0,0].
The bitmask pre_lanes marks all preceding lanes, e.g. lane 4 has pre_lanes =
[1,1,1,0,0,0,0,0]. With the population count intrinsic __popc(. .), we count
the set bits on preceding lanes. This gives us an exclusive prefix sum of the
warp. With npys = 2 previously buffered elements, the destinations are dest =
[x,2,%,%x,3,4,%,x].

80 CHAPTER 4. PROCESSING

Next, flush writes the tuples t from active lanes to the buffer #,,¢ at their
respective destinations dest. This is done by scattering the tuple’s attributes to
shared memory, e.g.

// scatter to shared memory

1_extprice_buf [dest] = 1_extprice;
o_orderdate_buf [dest] = o_orderdate;

Refill from Buffer The refill operation is executed when the lane activity is
below threshold and there are sufficient buffered tuples to reach threshold. The
operation takes tuples from the buffer and reactivates them in passive lanes. refill
receives the bitmask of passive lanes m, the tuples t, the buffer tuples t,,¢, and the
buffer count nyys as input. To always maintain dense adjacent buffer elements, we
push and pop the buffer content like a stack. To this end, we first compute the
number of remaining buffer elements n_remain based on the buffer count and the
number of empty lanes. Then we compute the buffer source index src with a warp
prefix sum, similar to f1lush.

// warp prefix sum on passive lanes
src = __popc((inv_m) & (pre_lanes)) + n_remain;

After computing the buffer source index src, we can refill passive lanes from the
buffer as shown below.
// gather from shared memory
if (src < n_buf) {
1_extprice = 1_extprice_buf [src];
o_orderdate = o_orderdate_buf [src];

}

The code reads the attributes of buffered tuples from shared memory locations and
stores them in registers by executing assignments to local variables. Note that we
only load tuples from the buffer for the first ny,, s passive lanes to account for the
number of buffer elements.

4.4.4 Planning for Lane Refill

In the current version of DogQC, Lane Refill operators are placed manually into
query plans. We insert balancing operators into pipelines with heavy filter diver-
gence if there are multiple succeeding operators that can benefit from balanced
processing. Section 4.5.4 specifies the queries where Lane Refill was applied in the
context of the TPC-H benchmark.

In a fully-fledged system, optimizers will select insertion points for Lane Refill
operators based on selectivity estimation. As the balancing operations can be
executed with a low overhead, the negative impact of estimation errors is small.
Optimizers that consider interesting orders, are affected by order changes due to
balancing. Such optimizers, may leverage their ability to consider both plans with
and without interesting orders during optimization.

4.4. FILTER DIVERGENCE 81

4.4.5 Usage Scenarios

Lane Refill restores balanced lane activity in sequences of operators with filter
divergence. The technique can be used after an operator that leaves execution
in divergent stage (e.g. selection) before continuing with the next operator. Al-
ternatively, Lane Refill can be used in succeeding iterations of the same operator
(e.g. character comparisons in string equality) to restore lane activity between
iterations. For the latter application, Lane Refill has the beneficial property to
preserve sequential order of the iterations. This property is contrary to Push-down
parallelism which parallelizes iterations. The sequential order can be leveraged by
operators, such as regular expression matching with automata, where each itera-
tion is dependent on the previous iterations. In the following we discuss several
usage scenarios for Lane Refill.

Selection Selection operators are a poster child for filter divergence. Database
systems usually perform selection push-down to reduce workload sizes early.
However, in data-parallel pipelines, the early selection does not reduce the workload
size. Unless the full warp exits, lanes with filtered-out tuples still allocate the same
processing resources. By filling the gaps with useful work, Lane Refill scales
processing with the workload size.

Filter Join Sparse foreign key joins occur in both normalized database workloads
and in de-normalized star schema workloads. They recombine relations with only
few matches for the join condition and filter out the majority of one of the relations.
In the TPC-H benchmark join selectivities are usually around 0.1 and frequently go
even lower [13]. Typically join filters go into effect during the join probe and leave
lanes idle that have no match. By placing Lane Refill operators after a join probe,
we can reactivate these idle lanes and allow them to perform more useful work.

String Pattern Matching Database systems support string pattern matching
with LIKE-predicates and regular expression (regexp) predicates. Most GPU-based
systems, however, have very limited pattern matching capabilities, likely because
of divergence effects [7, 18, 19, 28, 40]. Still there is existing work on GPU-based
pattern matching. There is work on NFA-based regexp matchers [106], which
parallelize over the states of the automaton. Albeit this parallelization strategy
collides with per-tuple parallelization of GPU query engines. Other work on DFA-
based matchers [95] uses per-string parallelism, which appears more suitable for
query engines. During pattern matching, however, non-matching strings reach
rejecting states of the DFA early. Lane Refill can be used to reactivate those lanes
with new tuples to make string pattern matching efficient. The property of Lane
Refill to preserve sequential order is essential for following state transitions through
DFAs.

82 CHAPTER 4. PROCESSING

Index Traversal Index traversals are used to find tuples that match predicates.
The hierarchical index structure is traversed from coarse-grained ranges to more
fine-grained ranges to localize matching tuples. For regions with sparse population,
traversal paths are often shorter than for densely populated regions. This leads
to filter divergence during concurrent traversals. While B-Trees have relatively
uniform path lengths, other index structures, e.g., for geospatial data [50], show
more variation. To support such datatypes efficiently on GPUs, Lane Refill can be
used to address these divergence effects during traversal.

4.5 Evaluation

In this section, we evaluate the proposed techniques. We first evaluate the effect of
Push-down Parallelism for expansion divergence. Then we evaluate the effect of
applying Lane Refill to filter divergence. Next, we contrast Push-down Parallelism
and Lane Refill when being applied to the same operation. Finally, we evaluate
the overall performance of the divergence-optimized system against other state-
of-the-art systems on CPU and GPU. In all experiments except for end-to-end
performance (Figure 4.19) the execution times refer to GPU-resident data.

Query Processor We evaluate the presented approach in the GPU-based query
compiler DogQC.? DogQC follows an orthogonal approach to other GPU query
processors. Instead of tuning operator-implementations for efficient GPU utiliza-
tion, DogQC constructs pipelines from relatively simple operators and then applies
tuning on the pipeline level. This two-step approach makes it more feasible to
achieve both functionality and performance.

In the evaluation we use two versions of DogQC. The first version executes
queries after the first step, which can cause heavy divergence during query pro-
cessing. We call this version DogQC naive. The second version DogQC opt
executes queries after the second step, which adds divergence balancing to increase
processing efficiency on the GPU.

System As experimentation platform, we use an NVidia RTX2080 GPU with
46 Streaming Multiprocessors (SMs) and 8 GB GPU Memory. We use Cuda 10.0
and nvcc V10.0.130 for JIT-compilation in all experiments but Figure 4.19, which
uses clang++9.0 to compile Cuda code. When not indicated differently, we use
grid configurations of 80 warps per Streaming Multiprocessor (117,760 threads).
This choice is due to sufficiently large grid sizes showing only small performance
variations (cf. Figure 4.16). The GPU is placed in a workstation-class host system
with 32 GB main-memory, operating an Intel Core i7-9800X CPU with Ubuntu
18.04 as operating system.

3The source code of DogQC is available at https://github.com/henningl/dogqc and at
http://dbis.cs.tu-dortmund.de

4.5. EVALUATION 83

600 7
BB naive (full scan)
500 00 Push-down (full scan)
88 naive (post proj.)
E 400 | I8 Push-down (post proj.) |
£
g 300 | |
8
=
5 =R
= 200 |- B N
v :
100 | E 7 il
0 I Ak B Sl :
pk-tk pk-8-fk pk-32-fk pk-zipf-fk pk-4zipf-fk

Figure 4.9: Divergence balancing for hash join with different build distributions.
Push-down achieves robustness against skew and improves performance.

4.5.1 Effect of Push-down Parallelism

We first evaluate the benefit of Push-down Parallelism for expansion divergence.
We execute a query that scans two relations and joins them with different join key
distributions. We use a synthetic dataset where one relation has a dense primary
key distribution and the other has one of the following key distributions:

pk-fk Uniform distribution of foreign keys.
pk-8-fk Each foreign key occurs 8 times.
pk-32-fk Each foreign key occurs 32 times.
Foreign keys sampled from Zipfian
distribution with z = 0.75 and n = 10’.

Foreign keys sampled from four Zipfian
distributions with z = 0.75 and n = 10.

pk-zipf-fk
pk-4zipf-fk

We generate join workloads for each of the distributions with 100 M build tuples
and also 100 M result tuples. The first three workloads have an even number of 1
to 32 join matches per probe. Probes for pk-fk have exactly one match, probes for
pk-8-fk have 8 matches, and 32 for pk-32-fk. With even match numbers we expect
performance differences mainly due to the access method to hash buckets. The
latter two workloads are non-uniform and the number of matches follows Zipfian
distributions. The heaviest skew is for pk-zipf-fk with one probe matching the
most frequent key 452 K times. For pk-4zipf-fk, the four frequent keys occur 112K
times.

We show the results in Figure 4.9. The Figure reports execution times of the
probe pipeline with the naive approach and with Push-down Parallelism for two

84 CHAPTER 4. PROCESSING

1.4 B8 naive |
J0Push-down -
1.2 [.

0.8 | .

execution time s

0.4

27

number operators

Figure 4.10: Varying numbers of operators after expansion. Without push-down
parallelism divergence effects are amplified by the following operators.

different projection strategies. Full scan reads all attributes into registers during
scan. Post-proj performs tuple-id based post projection.

We observe that Push-down Parallelism reduces execution times for all exam-
ined workloads by factors up to 4.2x. We discuss two effects that explain these
improvements. The first effect is better load balancing across threads, which be-
comes visible when comparing pk-zipf-fk to pk-4zipf-fk. The workloads have
different levels of skew that affect the execution times of naive. Push-down paral-
lelism achieves even execution times for both distributions.

The second effect is due to memory access patterns. Although the probes for
pk-32-tk and pk-8-fk do not provoke load imbalance, the execution times improve.
We attribute this to coalesced memory access, which means that adjacent lanes
access adjacent memory locations in the hash buckets. This pattern is preferable
on GPUs [43]. With Push-down Parallelism probes perform coalesced memory
access with 8 or 32 lanes when executing pk-8-tk and pk-32-fk.

While we did not expect to observe an improvement for pk-fk, Push-down
Parallelism reduces the execution times by 4%. We explain this with an increased
efficiency when handling hash collisions.

Looking at the two projection strategies, we observe that Push-down Parallelism
provides benefits for both. Push-down parallelism improves by factors up to 2.7x
for post-proj and by factors up to 4.2x for full scan. We attribute the higher benefit
for full scan to the way Push-Down Parallelism channels tuple data to lanes with
new join tuples. For post-proj only the tuple-id communicated via warp shuffles
and other attributes are read from memory.

4.5. EVALUATION 85

Varying Numbers of Operators We evaluate the effect of varying the workload
size that follows expansion divergence. This allows us to assess the impact of
processing in divergent or in consolidated state. We append different numbers
of projection operators to the pk-4zipf-fk workload and execute with the naive
approach and with Push-down Parallism. We use configurations up to 27 operators
to evaluate settings with high compute intensity. Figure 4.10 shows the experiment
results.

Push-down parallelism improves throughput by factors that increase with the
number of operators up to 10.3X. Further investigation showed that increasing
the number of operators even further does not lead to higher factors. We attribute
this effect to the compute load becoming the dominant part of the workload. The
magnitude of the factor appears to be distribution dependent.

Poster Case 1 In Section 4.3.1, we discussed a query
pipeline from TPC-H Query 10 with expansion diver-
gence. Here we evaluate the effect of applying Push-down

9
Parallelism in this pipeline to counter expansion diver- § 10

gence. We measure the execution time of the pipeline § 0 |
for a benchmark database with scale factor 25. We use .§ 20

a pipeline with the naive approach that has heavy ex- 3 10|

pansion divergence in the join and we compare it to a % 0

pipeline that applies Push-down Parallelism in the join
operator to counter expansion divergence. Figure 4.11
shows the experiment results. The naive approach has
an execution time of 26.4 ms. Adding Push-Down Par-
allelism to the join operator of the pipeline reduces the
execution time by 1.9X to 13.8 ms.

Figure 4.11: Push-
down parallelism in
Poster Case 1.

4.5.2 Effect of Lane Refill

We evaluate Lane Refill to counter filter divergence. The workload is a query that
scans the TPC-H tables lineitem and part. The lineitem relation is filtered on
1_quantity with varying selectivities, and then joined with part and aggregated.
For Lane Refill, we place a balancing operator after the filter to restore lane activity.
GPUs typically oversubscribe the number of warps to the number of streaming
multiprocessors (SMs). This ability allows GPUs to hide divergence effects to some
extent. To understand the way Lane Refill works, we first suppress effects from
oversubscription by using only one warp per SM. After that we perform another
experiment with multiple warps per SM.

One Warp per SM Figure 4.12 shows the results of the experiment with one
warp per SM. If we set the filter to leave all tuples in the result (selectivity 1.0), we
observe an execution time of 423 ms for the naive approach. The query becomes

86 CHAPTER 4. PROCESSING

400 - 1
g
o 300 |- i
£
=
8
2 200 |- |
Q
Q
x
Q
100 |- 1
—o— naive
| | | | | | | | —a— Lane Refill
0
0 0.1 02 03 04 05 06 0.7 08 0.9 1 1.1

selectivity

Figure 4.12: Effect of Lane Refill on filter divergence workload with one warp per
SM. Execution times scale with the workload size when using Lane Refill.

faster as we make the filter predicate more restrictive. For the naive strategy, that
benefit is small, however: setting the selectivity to 0.4 improves performance by
only 19% (343 ms). Only for very selective predicates, execution time noticeably
drops, as shown in the graph for selectivity 0.1 (226 ms). This is because the naive
approach can only benefit from filtering when full warps become inactive, but not
if only subsets of the 32 lanes get filtered out.

Lane Refill, by contrast, benefits from restrictive predicates more directly and
to a stronger extent. As we see in Figure 4.12, Lane Refill shows the desired linear
scaling. For selectivity 0.1, execution time drops by 81% compared to a selectivity
of 1.0. Compared to naive execution, this is a 2.8-fold improvement. Only for high
selectivities (0.9 and 1.0) the balancing work introduces a small overhead up to
2%. We conclude that Lane Refill successfully prevents the GPU from working on
inactive lanes and thus improves the processing efficiency.

Multiple Warps per SM Figure 4.13 shows results for the same experiment, but
we let the system overcommit and assign 4 and 8 warps to each SM. With 46 SMs
on the RTX2080 GPU, this corresponds to 5,888 and 11,776 threads. As expected,
overcommitting can hide some of the divergence effect that we saw in the previous
experiment. Still, Lane Refill can better utilize the available resources, resulting in
an performance advantage of 2.6x for the 4-warp configuration (70 ms vs. 27 ms)
and 2.2X for the 8-warp configuration (40 ms vs. 18 ms). The balancing work causes
a small overhead up to 3.5% for high selecitivities.

4.5. EVALUATION 87

150 .
%]
g
Q
E 100 | .
=
2
=
(5]
]
3
50 - —e—naive 4 warps
—— LR 4 warps
—e—naive 8 warps
0 | | | | | | | —— LR 8 warps

0 01 02 03 04 05 06 07 08 09 1 1.1

selectivity

Figure 4.13: Effect of Lane Refill on filter divergence workload with multiple warps
per SM. Lane Refill improves run-times for configurations with high degrees of
warp-parallelism.

Varying Numbers of Operators We evaluate the effect of varying the workload
size that follows filter divergence. This allows us to assess the impact of processing
in divergent or in consolidated state. We use a filter divergence workload and
append low to high intensity compute loads by adding up to 27 projection operators.
The workload scans 1.5B tuples from the TPC-H table 1ineitem and filters on
1_quantity > 45 with selectivity 0.1. Figure 4.14 shows the experiment results.

For increasing numbers of operators the execution times of the naive approach
go from 51 ms up to 799 ms. Lane Refill reduces the execution times to at most 91 ms
(27 operators). We observe factors of improvement up to 8.8X, which corresponds
to the lane utilization being raised from 0.1 (after the filter) close to 1.0 (after
balancing). Further investigation of workloads with selectivity 0.2 support this
explanation showing no better improvements than 5X. We suspected to observe a
performance penalty caused by the lane refill computation for the data point with
0 operators. We attribute the absence of this to the high scan volume, which leaves
compute resources available while servicing memory loads.

Poster Case 2 In Section 4.4.1 we presented a query f 80
pipeline from TPC-H Query 10 with filter divergence. § 60 -)
Here we evaluate the effect of applying Lane Refill in this g 40 |- 8
pipeline. We measure the execution time of the pipeline & 20| .
for a benchmark database with scale factor 25. We use the % 0

naive approach with filter divergence originating from

the selection operator and from the sparse join operator. .
Figure 4.15: Lane Re-

fill in Poster Case 2.

88 CHAPTER 4. PROCESSING

B8 naive
(DLane Refill
0.7 [8

0.8

0.6 |
0.5} |

0.4 |

execution time s

0.1

0 3 9 27

number operators

Figure 4.14: Varying numbers of operators that follow a filter. Without Lane Refill
the negative divergence effects increase with the number of operators.

Then we compare the performance to a pipeline that adds a Lane Refill operator
after the sparse join. Figure 4.15 shows the experiment results. The pipeline
with the naive approach has an execution time of 53.4 ms. Adding the Lane Refill
operator improves the execution time of the pipeline by 1.2x to 44.5 ms.

4.5.3 Push-down Parallelism vs. Lane Refill

In this experiment, we apply Push-down Parallelism and Lane Refill to the same
divergence problem. This allows us to determine whether each technique is best-
suited for its respective divergence domain or if one technique may work for most
cases. Expansion divergence can be viewed as filter divergence that occurs in
steps of the same operation. E.g., when iterating through join matches, lanes with
fewer expansion items act like filtered-out lanes in the current iteration. For the
experiment, we use the workload pk-zipf-fk from Section 4.5.1, which joins a
dense primary key with a Zipf-distributed foreign key. We use the naive approach,
Lane Refill, and Push-down Parallelism for the join.

Observations Figure 4.16 shows the results of the experiment. The figure shows
execution times for different numbers of warps per Streaming Multiprocessor.
The execution times for Lane Refill are split into regular work and pipeline flush.
Pipeline flush represents work that is performed when all tuples are already scanned
and only one remaining lane is active. We observe that Lane Refill can not im-
prove over naive with regard to the best performing warp/SM configuration. For 1

4.5. EVALUATION 89

100
naive
Lane Refill
80 - B B pipeline flush |
g : U Push-down
g 60| [i
= :]
.2 :
§ 40 + n
=
(3}
20 | |
: | I

warps / SM

Figure 4.16: Push-down vs. Lane Refill when joining a Zipfian distribution. Push-
down Parallelism is effective while Lane Refill suffers from pipeline flush.

warp/SM Lane Refill performs better than naive, but for larger warp/SM configu-
rations, Lane Refill suffers from growing amounts of flush work. To achieve high
performance, GPUs need many warps in flight. Therefore it is likely that heavy
hitting tuples are isolated in warps. This prevents Lane Refill from performing
effective balancing operations. Push-down Parallelism does not run into this prob-
lem because its balancing approach is effective even when one tuple per warp is
remaining. Push-down Parallelism improves over naive by 3.3x for the workload.

4.5.4 Overall Performance

This section evaluates the benefit of the proposed techniques when applied in an
overall system. We analyze the impact on data imports, the additional resource
demand, and the query performance for realistic workloads. We compare DogQC
against two other systems: OmniSci [74], which uses GPU-based query compila-
tion and MonetDB [15], which uses operator-at-a-time processing on CPUs. The
experiments were performed with OmniSci 4.8.1 and MonetDB 11.33.3.

The analysis of query performance splits into two parts to address effects of
divergence optimizations and end-to-end performance separately. The workloads
for both parts are the TPC-H benchmark queries on a scale factor 25 GB database.

Import Cost of Dictionary Encoding The approach used by DogQC works
directly on variable length string data instead of building string dictionaries. This
saves the cost of building string dictionaries during import. We quantify the cost

90

9.0

CHAPTER 4. PROCESSING

6.0

3.0

0.6

0.4

execution time s

0.2

0.0
2 3 4 5 6 7 8

<
Z

b

0 21 22

) T
9 10 11 12 13 14 15 16 17 18 19 2
TPC-H query

OmniSci BGPU

B CcPU DogQC naive DogQC optU

Figure 4.17: Execution times of DogQC for TPC-H benchmark queries (scale factor
25). The divergence optimizations improve query performance.

Registers SMEM Instruction
per thread per block footprint
Expansion naive 19 0KB 2.36 KB
Expansion Push-down 29 0KB 5.23KB
Filter naive 36 0KB 1.52KB
Filter Lane Refill 33 1KB 5.89KB
Available capacity 255 64 KB 16 KB (L0)

Figure 4.18

: Resource Consumption.

with an experiment that uses OmniSci’s parallel importer. We import a sequence
of 100 M numeric values with 9 digits. One time the data is interpreted as INTEGER
and another time the data is interpreted as VARCHAR (10). While the string-based
import takes 16.16 s, the numeric import takes only 2.98 s. Importing the data
with the use of a dictionary takes 5.4x longer. The shorter import times without
dictionary encoding make a strong case for the processing approach of DogQC

with variable length strings.

Resource Consumption We analyze the additional demand for resources of
the GPU cores when using divergence balancing. This allows us to assess whether
the addition of divergence balancing to query pipelines causes bottlenecks during

4.5. EVALUATION 91

query execution. We profile the use of shared memory (SMEM), registers per thread,
and the instruction footprint for the experiments from Sections 4.5.1 and 4.5.2.
Figure 4.18 shows the results along with the available capacity.

Overall, we observe a low resource consumption. The highest relative demand
with divergence balancing is 5.89 KB of the 16 KB L0-level instruction cache. The
Lo0-level, however, is backed by three larger cache-levels [44]. We conclude that the
balancing techniques have a low resource demand and there are sufficient open
resources for complex queries.

Divergence Optimizations We analyze the effect of applying divergence op-
timizations when processing realistic query workloads on the GPU. To this end,
we analyze the execution times of the GPU systems DogQC and OmniSci. We use
DogQC naive and for DogQC opt we add the following divergence optimizations:
We replaced all join operator thats do hash builds on non-primary key attributes
with Push-down Parallelism join operators. Additionally we added eight Lane Refill
balancing operators to the query plans. One to each of the Queries 4, 5, 7, 10, 15,
17, 19, and 20. We show the experiment results in Figure 4.17.

OmniSci was only able to execute 13 out of 22 queries. The execution times are
split into GPU work and CPU work and range from 11 ms to 8599 ms. The highest
time on GPU is 604 ms and 8542 ms on CPU. For nine of the supported queries,
the CPU execution takes the majority of processing time. DogQC performs all
processing on the GPU and was able to execute all TPC-H queries. DogQC naive
has execution times between 7 ms and 532 ms and DogQC opt has execution times
between 7 ms and 327 ms. Divergence optimizations reduced execution times by
more than 5% for 10 out of 22 queries. The highest factors of improvement are 2.0x
(Query 19) and 1.6X (Query 16). DogQC currently adds divergence balancing into
query plans after optimization (cf. Sections 4.3.4 and 4.4.4). A future divergence-
aware optimizer may find plans with a higher benefit.

In comparison of OmniSci and DogQC, we observe that OmniSci frequently
falls back to slower CPU processing. This causes significantly higher execution
times. DogQC’s processing times were faster than OmniSci’s by factors up to
68% for DogQC naive and by factors up to 86X DogQC opt for the divergence-
optimized version. This shows that a fallback strategy for functionality that may
be considered unsuitable for GPUs is disadvantageous. DogQC shows that it is
preferable to include operations into compiled pipelines even when they cause
heavy divergence. The highest benefit is achieved with additional divergence
balancing.

End-to-End Performance We evaluate the end-to-end performance of DogQC
in comparison with MonetDB and OmniSci. OmniSci and DogQC are JIT compilation-
based GPU systems. Therefore their end-to-end performance is affected by two
additional factors that are orthogonal to divergence optimizations: The data transfer
time between main memory and GPU, and the JIT-compilation time to generate

92 CHAPTER 4. PROCESSING

9.0
A MonetDB
Process
5 OmniSci
Z Compile
. Transfer
° Process |
E DogQC
g Compile
o
g = Transfer
3] Process
[P}
< —
[}

15 16 17 18 19 20 21 22

TN
9 10 11 12 13 1

TPC-H query

=~

Figure 4.19: End-to-end performance for TPC-H benchmark queries with MonetDB
(CPU) and OmniSci (GPU), and DogQC (GPU).

machine code. Systems that keep the entire database in GPU memory only transfer
the query results. DogQC is compatible with this mode of operation, but uses
sequential input data transfers here. Asynchronous techniques that pipeline data
transfers and processing [104, 28] can further reduce the transfer cost.

MonetDB runs on a two-socket server with Intel Xeon E5-2695 v2 CPUs and
256 GB main memory and the GPU hardware platform remains unchanged. For
DogQC, we use the version DogQC opt.

The experiment results are shown in Figure 4.19. MonetDB’s end-to-end ex-
ecution times range from 142 ms up to 7464 ms. DogQC’s end-to-end execution
times range from 1188 ms to 3705 ms and were shorter than MonetDB’s for 12 out
of 22 queries. DogQC is faster only for longer running queries, where the lowered
processing times outweigh the cost of data transfers and compilation. OmniSci was
able to execute only 13 out of 22 queries. The end-to-end execution times range
from 56 ms up to 8662 ms. The previous experiment showed that DogQC has lower
processing times than OmniSci for all but one TPC-H query. End-to-end execution,
however, is shorter for 8 of the 13 queries with OmniSci. The measurement shows
that this effect is due to JIT compilation times. The current version of DogQC
is not optimized for low compilation times and generates high-level Cuda code.
Extending DogQC with a low-level code generator, such as LLVM, would reduce
JIT-compilation times. The highest factors of improvement, that we observe in this
experiment are 4.54X over MonetDB and 4.51X over OmniSci.

4.6. MORE RELATED WORK 93

4.5.5 Usage Scenario: String Pattern Matching

In this chapter, we proposed several usage scenarios for the presented divergence
balancing techniques. To study their applicability, we exemplarily evaluate one of
them. The workload is the test for a prefix of 50 characters in a dataset with titles of
computer science articles. The dataset stems from
DBLP* and was scaled up by 5% by repitition. Match-

ing prefixes were scattered into random positions. ; 10 B8 naive
We use two datasets with match rates of 1% and = 100 |00 opt 3
32%, each has 21.5 M entries and an average title _§ sl |
length of 76 characters. We process the workload 3 H H
with one warp per SM and each warp lane is respon- % 0 i -

1% 32%

sible for one title at a time. We apply Lane Refill to
reactivate lanes with rejected titles. The results of match rate
the experiment are shown in Figure 4.20. The work-
load with 1% matches has lower run-times than the
workload with 32% matches. For lower match rates
many strings are rejected early reducing the overall
processing volume. We observe that divergence optimizations improve the perfor-
mance of string prefix tests. For the 1% workload Lane Refill improves performance
by 2.5x from 38 ms down to 15 ms. For the 32% workload the improvement is 1.7x
from 102 ms down to 59 ms.

Figure 4.20: Balancing paral-
lel prefix test computations.

4.6 More Related Work

In this section, we relate our approach to work that was not mentioned in one of
the other sections. First we discuss work in the database context that uses the GPU
feature dynamic parallelism to balance the use of parallel resources. Second we
discuss other related GPU query processing techniques.

Dynamic Parallelism Dynamic parallelism is a feature that allows GPUs to
start new kernels from within a kernel [71]. The number of threads for the inner
kernels can be chosen dynamically. Rui et al. [85] apply dynamic parallelism
for sort-merge joins. Wang et al. [97] evaluate the feature for joins based on
binary search and for regular expression matching. Liu et al. [59] propose the
implementation of a MapReduce framework for GPUs with dynamic parallelism.
Similar to Push-down Parallelism, dynamic parallelism adapts parallel resources
to the characteristics of sub-problems. The main advantage of the approach is
programmability. The downside, however, are costs for context switching. Chen et
al. report overheads of up to 21x [22].

‘https://dblp.org

94 CHAPTER 4. PROCESSING

Pipelined GPU Query Processing This work targets GPU query engines that
implement pipelining via just-in-time compilation. In related work other means
of pipelining have been proposed, such as in-cache processing [77] and kernel
fusion [99]. Other related work that performs pipelining via just-in-time compila-
tion [19, 100] may be susceptible to the presented divergence optimizations.

4.7 Engineering Query Compilers

As in the previous chapters, we discuss the lessons learned for the design of query
compilers. Here we discuss the application of data-parallelism. In the design
of query engines, data-parallelism (via instructions) and query compilation are
somewhat contradicting techniques. When using data-parallel instructions to
handle multiple input elements in a compiled pipeline, the quality of parallelism
deteriorates over the course of the pipeline (cf. Sections 4.3 and 4.4). There is no
simple mapping of processing lanes to the processed elements as the structure of
the processed elements changes over the course of the compiled pipeline (e.g. a
tuple finds multiple join matches). This issue does not affect data-parallelism via
multi-threading [56], because it uses scalar instructions in independent partitions.

At a first glance, data-parallel instructions can be applied much more easily in
column-based processing as in operator-at-a-time and vector-at-a-time engines. For
instance when evaluating a filter predicate to set a bit-mask, we can use data-parallel
instructions where each procesing lane is responsible for the predicate evaluation
on one element. At a closer look, however, a similar problem as we have seen for
compiled pipelines already affects column-based processing techniques. Operations
such as join probes or selections can already produce varying result numbers in a
single operation. To account for this, data-parallel implementations typically use
reorganization operations, e.g. compress, permute, scatter, gather [82], that
restore the alignment of data elements to processing lanes. Using these balancing
operations, however, comes at a cost and careful design choices are necessary not to
pay an additional cost that exceeds the benefits of using data-parallel instructions
in the first place.

We can leverage some insights from this work to address the issue. We have
seen that it is worthwhile to tolerate some degree of imbalance. Our evaluation
showed benefits for data-parallel processing already with few balancing operations
per compiled pipeline and also without balancing operations. Query compilation
and data-parallelism can work together most beneficially with a convervative use
of balancing work. Approaches that aim to avoid imbalances by replacing data
with a uniform surrogate (e.g. dictionary encoding) are often affected by limitations
in functionality. Especially on GPUs, it is beneficial perform use the non-uniform
data for processing and to allow a degree of imbalance.

4.8. SUMMARY 95

4.8 Summary

In this chapter, we put the processing capabilities of data-parallel coprocessors for
non-uniform database workloads to the test. DogQC introduces techniques, that
allow us to gracefully align parallel processing units with work items, even when
problems are heavily skewed. The evaluation analyzes different query processing
scenarios with distinct workload imbalances. We observed that the techniques
Lane Refill and Push-down Parallelism are able to increase processing efficiency
for these non-uniform workloads.

Existing query coprocessors typically avoid imbalances by working on a uni-
form surrogate (e.g. dictionary keys, materialization barriers). This has led to
the perception that GPUs have limited capabilities of processing irregular prob-
lems. DogQC conversely avoids the overhead of maintaining such additional
data-structures and instead restores balance during non-uniform processing. This
approach achieves a bigger functionality range and better performance than other
query coprocessing engines. This is shown by support of the full set of TPC-H
benchmark queries with best-in-class performance.

96

CHAPTER 4. PROCESSING

Conclusions

This thesis dealt with query processing techniques on modern hardware platforms.
To account for limitations in today’s systems, we looked at new ways to apply
query compilation techniques that increase the processing efficiency. Query com-
pilation compiles queries to machine code via JIT compilation, which removes
interpretation overheads and reduces the amount of data movement. The latter is
essential to account for the large data volumes that are moved through communi-
cation channels with limited bandwidth during processing. In the course of this
thesis, we addressed several open challenges for query compilation in the chapters:
Compilation, Communication, and Processing.

Chapter 2 ("Compilation") dealt with the translation of queries to low-level
IRs and machine code. With query compilation, the execution of queries, once
translated, is usually fast. However, the JIT compilation process itself extends the
query response times. In existing approaches, the compiler infrastructure used was
designed for general purpose programming languages. In this way the translation
process does not account for the specific properties of database workloads. We
presented a new technique that leverages database domain knowledge in a tailored
machine code generation process. This enabled a simplification of the compilation
processes and led to significant reduction of compilation times. While the compila-
tion approach is simple, it does not compromise the benefits in processing speed
gained from query compilation.

Chapter 3 ("Communication”) dealt with query processing techniques on parallel
GPU-style coprocessors. These coprocessors represent a solution for the design
limitation of standard processors. However, the communication infrastructure
that is used by coprocessor systems is more complex than in standard systems.
We performed a bandwidth analysis that clearly exposes the limiting factors. We
showed that in naive approaches, the bus-link between the hosting system and

97

98 CHAPITER 5. CONCLUSIONS

the coprocessor quickly becomes a bottleneck. However, when leveraging existing
techniques to use the bus-links more efficiently, the on-coprocessor GPU global
memory becomes the new limiting factor. To address these limitations, we showed
a way to combine (the previously unrelated) GPU query processing techniques with
query compilation techniques. This reduces the amount of GPU global memory
access by a significant factor and leads to lower overall execution times.

By transfering the query compilation approach to GPU-style coprocessors, we
have introduced a drastic change to the processing model. Chapter 4 ("Processing”)
deals with the effect that this has on the efficiency of data-parallel processing.
Data-parallel instructions perform the same operation across several elements.
Therefore variations in the workloads lead to processing inefficencies. We intro-
duced balancing techniques to address this problem, which has a particularly strong
effect on query compilation techniques that closely combine several consecutive
operations in data-parallel execution. We showed that the techniques are well-
suited to restore balanced parallelism during compiled execution and to recover
from distinct workload imbalances.

In the following, we add concluding remarks to several overarching topics
from the chapters. This also allows us to relate several individual results. We first
discuss observations for the execution model, then we continue with observations
for different hardware platforms. Finally we provide a higher-level perspective on
the research results.

5.1 Compilation vs. Interpretation

Compiled execution provides major improvements over classical interpretation
techniques such as Volcano. However, interpretation techniques that are optimized
for in-memory processing, e.g. vector-at-a-time, achieve similar benefits to query
compilation (i.e. high processing speeds and bandwidth efficiency). In several parts
of this thesis, we compared compilation-based techniques with interpretation-based
techniques. We discuss several results here for a concluding comparison.

In Chapter 2, we compared our compilation approach in ReSQL with the vector-
at-a-time system DuckDB. Both approaches perform processing on standard CPUs.
For the supported TPC-H queries, ReSQL achieved higher processing speeds by an
average factor of 1.9%. In Chapter 3 we showed additional results on GPUs. Our
compilation approach from HorseQC achieved higher processing speeds than the
operator-at-a-time engine CoGaDB by an average factor of 2.6x.

Across our experiments, the best performing compilation-based techniques
have performed significantly better than the best interpretation-based techniques.
In other work [90, 48] more even performance has been observed in the comparison
of query compilation and vector-at-a-time. Our results, however, are in line with
the results from Leis et al. [56] that compare complete systems rather than micro-
benchmarks. The authors show an advantage of 2.7x for HyPer (compilation) over
Vectorwise (vector-at-a-time).

5.2. HARDWARE PLATFORMS FOR QUERY PROCESSING 99

5.2 Hardware Platforms for Query Processing

Standard CPUs are the most prevalent hardware platform used for query processing.
Alternative platforms, such as GPUs, FPGAs, clusters of smaller systems, or custom
hardware have been proposed. While some projects show practical use [74], it is
unclear whether such approaches will play a major role in future database systems.
We revisit results and observations from this thesis to contribute to this discussion.

The results in Chapters 3 and 4 show very high processing speeds for compiled
execution on GPUs. The processing speeds are particularly high when all data is
held in coprocessor memory. For instance the results for DogQC (Figure 4.17) show
an execution time of 44 ms for TPC-H Query 10 (25 GB database, single GPU). By
comparison Leis et al. show an execution time of 610 ms for Hyper (100 GB database,
server with 4 CPUs). For the GPU approach data is 4x smaller but the execution
is nearly 14X faster despite only using a single GPU. While a fair comparison is
difficult with varying hardware and database configurations, this still suggests a
large potential for GPU-based query processing.

In practice the assumption of holding entire databases in GPU memory is usually
not feasible. GPU memory is smaller than main-memory, it is more expensive,
and not upgradable or replaceable. When including data transfers with efficient
transfer techniques (Chapter 3), the comparison between CPU and GPU boils
down to two main factors: The bandwidth of the bus link for GPU processing (e.g.
16 GB/s PCle per GPU) and the bandwidth of main-memory for CPU processing (e.g.
50 GB/s per CPU socket). In fact these bandwidths can be used to approximate the
processing speeds of compiled execution, because relations are transfered through
these channels just once (and no intermediate data).

From this perspective GPUs are at the disadvantage as the bandwidth of the
bus link is typically lower than the main memory bandwidth. Workloads that
are processing-intensive (rather then data intensive) can benefit more easily from
GPUs. These, however, are not so typical for query processing, but may appear
during query processing on domain-specific data (e.g. geographical data). Future
architectures that combine the GPU’s data-parallel processing approach with clas-
sical DRAM would significantly increase the benefit of GPU query processing
techniques.

5.3 Impact of the Covered Research

During the work on this thesis, we emphasized the practical usability of our
approaches. Several groups from research and industry have showed interest in
applications of the techniques. To this end we published the source code of our
prototype systems DogQC! and ReSQL? publicly. Paul et al. [76] have already used
DogQC for the evaluation of their query processing approach. Despite the practical

'https://github.com/Henningl/dogqc/
*https://github.com/Henningl/resql/

100 CHAPTER 5. CONCLUSIONS

orientation of the projects, the conceptual contributions have also lead to several
citations in other research work. At the time of writing, the author’s work has
been cited in 70 articles according to the Association of Computing Machinery
(ACM) and in 186 articles according to Google Scholar.

Acknowledgements

The work on this thesis has been very demanding. At the same time it was—
personally and professionally—an enlightening experience. Finishing it would not
have been possible without many great people. I want to express my sincere grati-
tude to the people who encouraged and supported me. Everyone who gave their
advice, or who participated in collaborations, discussions and feedback eventually
helped me more than they know. I want to thank several people in the following.
This, however, is not conclusive and I would like to say thanks to everyone for
inspiring talks, conversations, blog posts, and more.

First and foremost I want to express my sincere gratitude to jens Teubner who
inspired me to participate in database research and gave me the opportunity to
join the DBIS group at TU Dortmund. I very much appreciate the opportunity and
the well-thought-out advice that I frequently got.

When I first joined the DBIS group as a student, I worked together with Sebas-
tian Bref3. In this time I gained first practical experience with the development of
database systems and later the collaboration grew into several research projects and
publications. In the following years there were several other collaborations with
Jan Miihlig, Stefan Noll, Steffen Zeuch, Volker Markl, Bastian Kocher and Tilmann
Rabl. 1really appreciate these collaborations and they were as much fun as they
were instructional.

During my PhD programme, I worked together with several colleagues. The
everyday exchange and also the in-depth discussions made this a great experience.
Thanks to my colleagues from the DBIS group Roland Kiihn, Max Berens, Florian
Grieskamp, Marcel Preuf3, Michael Kufimann, Thomas Lindemann, Lea Schonberger,
Alexander Lochmann and also Stefan DifSimann as director of the computer science
department. I also spent half a year working at Oracle Labs in California during
an internship. It was an exciting and instructive time working with the guys
from Nipun’s team including Sanjay Jinturkar, Renato Marroquin, Sandeep Agrawal,
Michael deLorimier, Mark Esguerra, Sam Idicula, Shrikumar Hariharasubrahmanian
and Venkatanathan Varadarajan.

Next I would like to thank my mentor Giinter Rudolph and the PhD thesis
committee for taking the time and effort. Many thanks to Thomas Neumann for
reviewing the thesis, and to Erich Schubert and Johannes Fischer for taking part in
the defense.

101

102 CHAPTER 5. CONCLUSIONS

Last but not least I want to thank my family and friends, my brothers and my
parents. Thanks to my personal friends Florian, Martin, and Romano for proof-
reading and also for distracting me when it counts. My special appreciation and
thanks go to my loved ones jenni and my son Erik.

[1]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

Bibliography

S. R. Agrawal, S. Idicula, A. Raghavan, E. Vlachos, V. Govindaraju,
V. Varadarajan, C. Balkesen, G. Giannikis, C. Roth, N. Agarwal, et al. A
many-core architecture for in-memory data processing. In MICRO, pages
245-258. ACM, 2017.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, principles, techniques.
Addison Wesley, 7(8):9, 1986.

M.-C. Albutiu, A. Kemper, and T. Neumann. Massively Parallel Sort-Merge
Joins in Main Memory Multi-Core Database Systems. PVLDB, 5(10):1064—
1075, 2012.

P. Andrade, P. Bonzini, I. Piumarta, M. Flatt, L. Michel, and L. Courtes. GNU
lightning, 2022. URL: https://www.gnu.org/software/lightning/.

O. Arnold, S. Haas, G. P. Fettweis, B. Schlegel, T. Kissinger, T. Karnagel, and
W. Lehner. HASHI: An Application Specific Instruction Set Extension for
Hashing. In ADMS workshop, pages 25-33, 2014.

J. Auslander, M. Philipose, C. Chambers, S. J. Eggers, and B. N. Bershad. Fast,
effective dynamic compilation. SIGPLAN Notices, 31(5):149-159, 1996.

P. Bakkum and S. Chakradhar. Efficient data management for GPU databases.
High Performance Computing on Graphics Processing Units, 2012.

C. Balkesen, J. Teubner, G. Alonso, and M. T. Ozsu. Main-memory hash joins
on multi-core CPUs: Tuning to the underlying hardware. In ICDE, pages
362-373. IEEE, 2013.

J. Bharadwaj, W. Y. Chen, W. Chuang, G. Hoflehner, K. Menezes, K. Muthuku-
mar, and J. Pierce. The Intel IA-64 compiler code generator. MICRO, 20(5):44-
53, 2000.

M. Billeter, O. Olsson, and U. Assarsson. Efficient stream compaction on wide

SIMD many-core architectures. In Conference on high performance graphics,
pages 159-166. ACM, 2009.

103

https://www.gnu.org/software/lightning/

104

[11]

[12]

[13]

[21]

[24]

BIBLIOGRAPHY

C. Binnig, S. Hildenbrand, and F. Farber. Dictionary-based order-preserving
string compression for main memory column stores. In SIGMOD, pages
283-296. ACM, 2009.

G. E. Blelloch. Prefix Sums and Their Applications. Technical report, Carnegie
Mellon University, 1990.

P. Boncz, T. Neumann, and O. Erling. TPC-H analyzed: Hidden messages and
lessons learned from an influential benchmark. In Technology Conference on
Performance Evaluation and Benchmarking, pages 61-76. Springer, 2013.

P. A. Boncz and M. L. Kersten. MIL primitives for querying a fragmented
world. The VLDB Journal, 8(2):101-119, 1999.

P. A.Boncz, S. Manegold, M. L. Kersten, et al. Database architecture optimized
for the new bottleneck: Memory access. In PVLDB, volume 99, pages 54-65,
1999.

P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-Pipelining
Query Execution. In CIDR, volume 5, pages 225-237, 2005.

S. Borkar and A. A. Chien. The Future of Microprocessors. Communications
of the ACM, 54(5):67-77, 2011.

S. Bref3, H. Funke, and J. Teubner. Robust query processing in co-processor-
accelerated databases. In SIGMOD, pages 1891-1906. ACM, 2016.

S. Bref3, B. Kocher, H. Funke, S. Zeuch, T. Rabl, and V. Markl. Generating
custom code for efficient query execution on heterogeneous processors. The
VLDB Journal, 27(6):797-822, 2018.

A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. Graph structure in the web. Computer Networks,
33(1-6):309-320, 2000.

G.J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and
P. W. Markstein. Register allocation via coloring. Computer Languages,
6(1):47-57, 1981.

G. Chen and X. Shen. Free launch: optimizing gpu dynamic kernel launches
through thread reuse. In MICRO, pages 407-419, 2015.

S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry. Improving hash join
performance through prefetching. TODS, 32(3):17-es, 2007.

A. Davidson, S. Baxter, M. Garland, and J. D. Owens. Work-efficient parallel
GPU methods for single-source shortest paths. In International Parallel and
Distributed Processing Symposium, pages 349-359. IEEE, 2014.

BIBLIOGRAPHY 105

[25]

[26]

[27]

[33]

[34]

[35]

C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stonecipher,
N. Verma, and M. Zwilling. Hekaton: SQL server’s memory-optimized OLTP
engine. In SIGMOD, pages 1243-1254. ACM, 2013.

L. J. Egielski, J. Huang, and E. Z. Zhang. Massive Atomics for Massive
Parallelism on GPUs. SIGPLAN Notices, 49(11):93-103, 2015.

F. Farber, S. K. Cha, J. Primsch, C. Bornhovd, S. Sigg, and W. Lehner. SAP
HANA database: data management for modern business applications. SIG-
MOD, 40(4):45-51, 2012.

H. Funke, S. Bref3, S. Noll, V. Markl, and J. Teubner. Pipelined Query Pro-
cessing in Coprocessor Environments. In SIGMOD, pages 1603-1618. ACM,
2018.

H. Funke, J. Mithlig, and J. Teubner. Efficient generation of machine code for
query compilers. In DaMoN workshop, pages 1-7, 2020.

H. Funke, J. Miihlig, and J. Teubner. Low latency query compilation. The
VLDB Journal, 2022.

H. Funke and J. Teubner. Data-parallel query processing on non-uniform
data. PVLDB, 13(6):884-897, 2020.

H. Funke and J. Teubner. Like water and oil: with a proper emulsifier, query
compilation and data parallelism will mix well. PVLDB, 13(12):2849-2852,
2020.

H. Funke and]. Teubner. Low-Latency Compilation of SQL Queries to
Machine Code. PVLDB, 14(12):2691-2694, 2021.

H. Garcia-Molina and K. Salem. Main memory database systems: An
overview. Transactions on knowledge and data engineering, 4(6):509-516,
1992.

S. Geffner, D. Agrawal, A. El Abbadi, and T. Smith. Relative Prefix Sums:
An Efficient Approach for Querying Dynamic OLAP Data Cubes. In ICDE,
pages 328-335. IEEE, 1999.

G. Graefe. Volcano — an extensible and parallel query evaluation system.
Transactions on Knowledge and Data Engineering, 6(1):120-135, 1994.

C. Gregg and K. Hazelwood. Where Is the Data? Why You Cannot Debate
CPU vs. GPU Performance Without the Answer. In ISPASS, pages 134-144.
IEEE, 2011.

T. Gubner and P. Boncz. Charting the design space of query execution using
voila. PVLDB, 14(6):1067-1079, 2021.

106

[39]

[40]

[41]

[42]

[43]

[50]

[51]

[52]

BIBLIOGRAPHY

B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V. Sander.
Relational Query Coprocessing on Graphics Processors. Transactions on
Database Systems, 34(4):21, 2009.

M. Heimel, M. Saecker, H. Pirk, S. Manegold, and V. Markl. Hardware-
oblivious parallelism for in-memory column-stores. PVLDB, 6(9):709-720,
2013.

S. Helmer, T. Westmann, and G. Moerkotte. Diag-Join: An Opportunistic
Join Algorithm for 1:N Relationships. PVLDB, 1998.

W. D. Hillis and G. L. Steele Jr. Data Parallel Algorithms. Communications
of the ACM, 29(12):1170-1183, 1986.

B. Jang, D. Schaa, P. Mistry, and D. Kaeli. Exploiting memory access patterns
to improve memory performance in data-parallel architectures. Transactions
on Parallel and Distributed Systems, 22(1):105-118, 2010.

Z. Jia, M. Maggioni, J. Smith, and D. P. Scarpazza. Dissecting the NVidia
Turing T4 GPU via Microbenchmarking. arXiv preprint 1903.07486, 2019.

T. Kaldewey, G. Lohman, R. Mueller, and P. Volk. GPU join processing
revisited. In DaMoN workshop, pages 55-62. ACM, 2012.

T. Karnagel, D. Habich, and W. Lehner. Adaptive Work Placement for Query
Processing on Heterogeneous Computing Resources. PVLDB, 10(7):733-744,
2017.

T. Karnagel, R. Mueller, and G. M. Lohman. Optimizing GPU-Accelerated
Group-By and Aggregation. In ADMS workshop, pages 13-24, 2015.

T. Kersten, V. Leis, A. Kemper, T. Neumann, A. Pavlo, and P. Boncz. Every-
thing you always wanted to know about compiled and vectorized queries
but were afraid to ask. PVLDB, 11(13):2209-2222, 2018.

T. Kersten, V. Leis, and T. Neumann. Tidy Tuples and Flying Start: Fast
Compilation and Fast Execution of Relational Queries in Umbra. The VLDB
FJournal, 30, 2021.

A.Kipf, H. Lang, V. Pandey, R. A. Persa, P. Boncz, T. Neumann, and A. Kemper.
Approximate geospatial joins with precision guarantees. In ICDE, pages
1360-1363. IEEE, 2018.

Y. Klonatos, C. Koch, T. Rompf, and H. Chafi. Building efficient query engines
in a high-level language. PVLDB, 7(10):853-864, 2014.

P. Kobalicek. Asmijit Library, 2022. URL: https://asmjit.com.

https://asmjit.com

BIBLIOGRAPHY 107

[53]

[54]

[56]

[58]

A. Kohn, V. Leis, and T. Neumann. Adaptive execution of compiled queries.
In ICDE, pages 197-208. IEEE, 2018.

H. Lang, A. Kipf, L. Passing, P. Boncz, T. Neumann, and A. Kemper. Make
the most out of your SIMD investments: counter control flow divergence in
compiled query pipelines. In DaMoN workshop, page 5. ACM, 2018.

C.Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In International Symposium on Code Generation
and Optimization, pages 75-86. IEEE, 2004.

V. Leis, P. Boncz, A. Kemper, and T. Neumann. Morsel-driven parallelism:
a NUMA-aware query evaluation framework for the many-core age. In
SIGMOD, pages 743-754. ACM, 2014.

J.Li, H.-W. Tseng, C. Lin, Y. Papakonstantinou, and S. Swanson. HippogriffDB:
Balancing I/O and GPU Bandwidth in Big Data Analytics. PVLDB, 9(14):1647-
1658, 2016.

H. Liu and H. H. Huang. Enterprise: breadth-first graph traversal on GPUs.
In International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1-12. IEEE, 2015.

L. Liu, Y. Zhang, M. Liu, C. Wang, and J. Wang. A-MapCG: an adaptive
MapReduce framework for GPUs. In International Conference on Networking,
Architecture, and Storage, pages 1-8. IEEE, 2017.

S. Manegold, P. Boncz, N. Nes, and M. Kersten. Cache-conscious radix-
decluster projections. In PVLDB, pages 684-695, 2004.

M. Matz, J. Hubicka, A. Jaeger, and M. Mitchell. System V application binary
interface. AMD64 Architecture Processor Supplement, Draft v0, 99, 2013.

X. Mei and X. Chu. Dissecting GPU memory hierarchy through microbench-
marking. IEEE Transactions on Parallel and Distributed Systems, 28(1):72-386,
2016.

P. Menon, A. Pavlo, and T. C. Mowry. Relaxed Operator Fusion for In-
Memory Databases: Making Compilation, Vectorization, and Prefetching
Work Together At Last. PVLDB, 11(1):1-13, 2017.

D. Merrill. CUB v1.7.0: CUDA Unbound, a Library of Warp-Wide, Block-Wide,
and Device-Wide GPU Parallel Primitives, 2017.

D. Merrill and M. Garland. Single-Pass Parallel Prefix Scan with Decoupled
Look-Back. Technical report, NVidia Corporation, 2016.

108

[66]

[67]

[76]

BIBLIOGRAPHY

I. Miiller, R. Marroquin, D. Koutsoukos, M. Wawrzoniak, S. Akhadov, and
G. Alonso. The collection Virtual Machine: an abstraction for multi-frontend
multi-backend data analysis. In DaMoN workshop, pages 1-10, 2020.

I. Miiller, C. Ratsch, F. Faerber, et al. Adaptive String Dictionary Compression
in In-Memory Column-Store Database Systems. In EDBT, pages 283-294,
2014.

I. Miiller, P. Sanders, A. Lacurie, W. Lehner, and F. Farber. Cache-efficient
aggregation: Hashing is sorting. In SIGMOD, pages 1123-1136. ACM, 2015.

T. Neumann. Efficiently compiling efficient query plans for modern hardware.
PVLDB, 4(9):539-550, 2011.

S. Noll, H. Funke, and J. Teubner. Energy efficiency in main-memory
databases. Datenbank-Spektrum, 17(3):223-232, 2017.

NVidia Corporation. NVidia’s Next Generation CUDA Compute Architec-
ture: Kepler™ GK110/210. NVidia White Paper, 2014.

NVidia Corporation. NVidia Turing GPU Architecture. NVidia White Paper,
2018.

G. Ofenbeck, R. Steinmann, V. Caparros, D. G. Spampinato, and M. Piischel.
Applying the roofline model. In International Symposium on Performance
Analysis of Systems and Software, pages 76-85. IEEE, 2014.

OmniSci Incorporated. OmniSciDB, 2022. URL: https://www.omnisci.
com.

P. E. O'Neil, E. J. O’Neil, and X. Chen. The star schema benchmark (SSB).
Pat, 200(0):50, 2007.

J. Paul, B. He, S. Lu, and C. T. Lau. Improving execution efficiency of just-in-
time compilation based query processing on gpus. PVLDB, 14(2):202-214,
2020.

[77] J. Paul, J. He, and B. He. GPL: A GPU-based pipelined query processing

engine. In SIGMOD, pages 1935-1950. ACM, 2016.

H. Pirk, S. Manegold, M. L. Kersten, et al. Accelerating Foreign-Key Joins
using Asymmetric Memory Channels. In ADMS workshop, pages 27-35,
2011.

H. Pirk, O. Moll, M. Zaharia, and S. Madden. Voodoo-a vector algebra for
portable database performance on modern hardware. PVLDB, 9(14):1707-
1718, 2016.

https://www.omnisci.com
https://www.omnisci.com

BIBLIOGRAPHY 109

[80]

[81]

[82]

[83]

[90]

[93]

[94]

M. Poletto and V. Sarkar. Linear scan register allocation. Transactions on
Programming Languages and Systems, 21(5):895-913, 1999.

O. Polychroniou and K. A. Ross. Vectorized Bloom filters for advanced SIMD
processors. In DaMoN workshop, page 6. ACM, 2014.

O. Polychroniou and K. A. Ross. VIP: A SIMD vectorized analytical query
engine. The VLDB Journal, 29(6):1243-1261, 2020.

J. Power, Y. Li, M. D. Hill, J. M. Patel, and D. A. Wood. Toward GPUs Being
Mainstream in Analytic Processing: An Initial Argument Using Simple Scan-
Aggregate Queries. In DaMoN workshop, page 11. ACM, 2015.

M. Raasveldt and H. Miihleisen. DuckDB: an embeddable analytical database.
In SIGMOD, pages 1981-1984. ACM, 2019.

R. Rui and Y.-C. Tu. Fast Equi-Join Algorithms on GPUs: Design and Imple-
mentation. In International Conference on Scientific and Statistical Database
Management, page 17. ACM, 2017.

S. Sengupta, M. Harris, and M. Garland. Efficient Parallel Scan Algorithms
for GPUs. NVidia, Tech. Rep. NVR-2008-003, (1):1-17, 2008.

S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan Primitives for GPU
Computing. In Graphics Hardware, volume 2007, pages 97-106, 2007.

M. Sha, Y. Li, and K.-L. Tan. GPU-based Graph Traversal on Compressed
Graphs. In SIGMOD, pages 775-792. ACM, 2019.

A. Shaikhha, Y. Klonatos, L. Parreaux, L. Brown, M. Dashti, and C. Koch.
How to architect a query compiler. In SIGMOD, pages 1907-1922. ACM,
2016.

J. Sompolski, M. Zukowski, and P. Boncz. Vectorization vs. compilation in
query execution. In DaMoN workshop, pages 33-40, 2011.

SQLite Developers. SQLite3, 2022. URL: https://www.sqlite.org.

M. Stonebraker, P. Brown, A. Poliakov, and S. Raman. The architecture
of SciDB. In International Conference on Scientific and Statistical Database
Management, pages 1-16. Springer, 2011.

The PostgreSQL Global Development Group. PostgreSQL, 2022. URL: https:
//www.postgresql.org.

P. K. Tiwari, V. V. Menon, J. Murugan, J. Chandrasekaran, G. S. Akisetty,
P. Ramachandran, S. K. Venkata, C. A. Bird, and K. Cone. Accelerating x265
with intel® advanced vector extensions 512. Intel White Paper, 2018.

https://www.sqlite.org
https://www.postgresql.org
https://www.postgresql.org

110

[95]

[97]

[98]

[100]

[101]

[102]

[103]

[104]

[105]

BIBLIOGRAPHY

G. Vasiliadis, M. Polychronakis, S. Antonatos, E. P. Markatos, and S. loannidis.
Regular expression matching on graphics hardware for intrusion detection.

In International Workshop on Recent Advances in Intrusion Detection, pages
265-283. Springer, 2009.

M. Wahib and N. Maruyama. Scalable Kernel Fusion for Memory-Bound GPU
Applications. In International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 191-202. IEEE, 2014.

J. Wang and S. Yalamanchili. Characterization and analysis of dynamic
parallelism in unstructured GPU applications. In International Symposium
on Workload Characterization, pages 51-60. IEEE, 2014.

T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and J. Schaffner.
SIMD-scan: ultra fast in-memory table scan using on-chip vector processing
units. PVLDB, 2(1):385-394, 2009.

H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili. Kernel weaver: Au-
tomatically fusing database primitives for efficient GPU computation. In
MICRO, pages 107-118. IEEE, 2012.

H. Wu, G. Diamos, T. Sheard, M. Aref, S. Baxter, M. Garland, and S. Yalaman-
chili. Red fox: An execution environment for relational query processing

on gpus. In International Symposium on Code Generation and Optimization,
page 44. ACM, 2014.

H. Wu, G. Diamos, J. Wang, S. Cadambi, S. Yalamanchili, and S. Chakradhar.
Optimizing Data Warehousing Applications for GPUS Using Kernel Fusion/-
Fission. In Parallel and Distributed Processing Symposium, pages 2433-2442.
IEEE, 2012.

S. Yan, G. Long, and Y. Zhang. StreamScan: Fast Scan Algorithms for GPUs
Without Global Barrier Synchronization. In SIGPLAN Notices, volume 48,
pages 229-238. ACM, 2013.

Y. Ye, K. A. Ross, and N. Vesdapunt. Scalable aggregation on multicore
processors. In DaMoN workshop, pages 1-9, 2011.

Y. Yuan, R. Lee, and X. Zhang. The Yin and Yang of processing data ware-
housing queries on GPU devices. PVLDB, 6(10):817-828, 2013.

K. Zhang, F. Chen, X. Ding, Y. Huai, R. Lee, T. Luo, K. Wang, Y. Yuan, and
X. Zhang. Hetero-DB: Next Generation High-Performance Database Systems
by Best Utilizing Heterogeneous Computing and Storage Resources. journal
of Computer Science and Technology, 30(4):657-678, 2015.

BIBLIOGRAPHY 111

[106] Y. Zu, M. Yang, Z. Xu, L. Wang, X. Tian, K. Peng, and Q. Dong. GPU-based
NFA implementation for memory efficient high speed regular expression
matching. In SIGPLAN Notices, volume 47, pages 129-140. ACM, 2012.

	Abstract
	Introduction
	Query Translation and Execution
	Open Challenges
	Contributions and Outline

	Compilation
	Introduction
	Intermediate Representation Levels
	Contributions
	Outline

	Query Translation
	Query Plan to IR
	IR to Machine Code
	ReSQL Translation Mechanisms

	Lightweight Abstractions
	Virtual Registers
	Function Calls
	Constant Loads
	Transparent High-Level Constructs

	Machine Code Translation
	Register Layout
	Translation Algorithm

	Getting More Out of Flounder
	Utilizing Additional Database Knowledge
	Higher-Level IRs

	Evaluation
	Compilation Times
	Machine Code Quality
	Post-Projection Optimizations
	Overall Performance for Characteristic Workloads
	Real World Performance

	Future Work
	Domain-Specific Processing
	Hardware Architectures

	Engineering Query Compilers
	Summary

	Communication
	Introduction
	Contributions and Outline

	Macro Execution Model
	Run-To-Finish (Not Scalable)
	Kernel-At-A-Time
	Batch Processing

	Micro Execution Model
	Vector-At-A-Time
	Query Compilation

	Data-Parallel Query Compilation
	Fusion Operators
	Micro-Level Pipeline Layout
	Instancing Relational Code Templates
	Memory Access and Limitations

	Processing Pipelines in One Pass
	Pipelining Data-Parallel Reductions
	Code Generation for Compound Kernels
	Memory Access and Limitations

	Efficient Pipelined Reductions
	Local Resolution, Global Propagation
	Local Resolution Mechanisms

	DBMS Integration
	Evaluation
	Pipelined Prefix Sum
	Pipelined Group By
	Star Schema Benchmark
	TPC-H Queries
	Scalability
	End-to-End Performance

	Discussion
	More Related Work
	Engineering Query Compilers
	Summary

	Processing
	Introduction
	State of the Art
	System: DogQC
	Contributions and Outline

	Non-Uniform Pipelines
	Lane Activity

	Expansion Divergence
	Poster Case 1
	Push-down Parallelism
	Implementation
	Planning for Push-down Parallelism
	Usage Scenarios

	Filter Divergence
	Poster Case 2
	Lane Refill
	Implementation
	Planning for Lane Refill
	Usage Scenarios

	Evaluation
	Effect of Push-down Parallelism
	Effect of Lane Refill
	Push-down Parallelism vs. Lane Refill
	Overall Performance
	Usage Scenario: String Pattern Matching

	More Related Work
	Engineering Query Compilers
	Summary

	Conclusions
	Compilation vs. Interpretation
	Hardware Platforms for Query Processing
	Impact of the Covered Research

	Acknowledgements

