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Abstract

In this article, we propose an optimisation framework that can contribute to the prevention of premature failure or damage
to building structures and can thereby strengthen their longevity. We concentrate on structures that are contaminated by
chemical substances and that have strong destructive effects on the material. The aim of this contribution is a mathematical
algorithm that allows the optimisation of a structure exposed to chemical influences and thus the assurance of the static load
capacity. To achieve this, we present a coupled mechanical-diffusion-degradation approach embedded in a finite element
(FE) framework. Furthermore, we integrate an optimisation algorithm to reduce material degradation. In this paper, we
establish shape optimisation of a structure with a gradient based optimisation algorithm.

Keywords Coupled problems - Mechanical diffusion coupling - Degradation - Shape optimisation

1 Introduction

Engineering structures are dimensioned according to stan-
dards. The maximum existing stresses are evaluated and
the material load-bearing capacity is examined, whereby
environmental influences are only marginally considered.
However, negative influences can additionally change the
material composition and thus the mechanical load-bearing
capacity over time. Most changes in the internal structure
of materials are associated with diffusion processes. One
example is the long-term effect of calcium leaching in con-
crete, where “pure water creates concentration gradients
which lead to the diffusion of Ca ions from the pore water
and the subsequent degradation of underground concrete”
(Choi and Yang 2013).

In the following, an approach is presented which allows
the calculation of mechanical and chemical influences
on structures. Furthermore, it is possible to calculate an
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optimal geometry that reduces the damage of long-term
effects caused by environmental influences. Therefore, this
approach integrates the structural analysis into a structural
optimisation algorithm. Within the structural analysis, we
couple the diffusion of chemical substances with the mechan-
ical behaviour of the material. We assume permeable struc-
tures which allow gradient-based diffusion of concentra-
tions. In addition, we postulate that chemical substances
have an influence on the material of the structure, since
they can trigger material degradation. To ensure this, we
focus on mechanical degradation processes corresponding
to negative growth processes using multiplicative decompo-
sition of the deformation gradient. Since this is a space- and
time-dependent problem, we embed the material description
in a finite element (FE) framework, by using an isopara-
metric concept for space discretisation and a Newmark-
beta approach for temporal discretisation. Furthermore, we
develop an algorithm for structural optimisation. In detail,
we present a shape optimisation with a gradient-based cal-
culation, which contains information about the sensitivities
of the parameters that influence the mechanical behaviour.
Using representative examples, we introduce the basic idea
of the model and examine practical aspects where compo-
nents are at risk of being exposed to chemical concentrations
and yet their strength must be guaranteed.

In order to determine the approach for optimisation of
diffusion driven degradation problems, the following top-
ics are applied and embedded in a short overview of the
state of the art. In the context of structural mechanics,

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-021-02900-8&domain=pdf
http://orcid.org/0000-0002-4319-7988
mailto: navina.waschinsky@tu-dortmund.de

890

N. Waschinsky et al.

the topics coupled problems and growth, respectively degra-
dation processes, are investigated in more detail. For the
embedding in optimisation, shape optimisation and sensitiv-
ity analysis are applied.

Kuhl (2005) presents a general overview of coupled prob-
lems and the numerical implementation. Furthermore, he
outlines in detail the coupling of diffusion processes to
mechanical behaviour. A coupled theory of fluid permeation
and large deformations for elastomeric materials, concen-
trating on a thermodynamically consistent derivation of the
constitutive relations and the resulting partial differential
equations, is presented by Chester and Anand (2010).

Menzel and Kuhl (2012) summarise growth and remod-
elling models for living structures. Mechanical growth and
remodelling can be modelled either with a constitutive
approach, a kinematic approach or a combination of both.
Growth processes can be described by evaluating the time-
dependent change in mass, density or volume of a structure.
On the one hand, the constitutive approach concentrates
on a thermodynamically consistent evaluation of the mass
source and the mass flow, which enables the calculation
of change in mass or density (Cowin and Hegedus 1976;
Harrigan and Hamilton 1992; Epstein and Maugin 2000;
Kuhl et al. 2003; Menzel 2005). The kinematic approach,
on the other hand, allows the calculation of the variable
mass or volume by applying a multiplicative decomposition
of the deformation gradient (Rodriguez et al. 1994; Chen
and Hoger 2000; Ambrosi and Mollica 2002; Gleason and
Humphrey 2005; Menzel 2007). A useful alternative is the
combination of the constitutive and kinematic approach, one
example for this combination is presented by (Ganghoffer
2010), where the calculation of surface growth in biological
tissue is presented. He uses the multiplicative decompo-
sition of the deformation gradient, as originally presented
by Rodriguez et al. (1994), and applies a thermodynami-
cally consistent approach to establish an evolutionary law
for growth velocity. The multiplicative decomposition of the
deformation gradient leads to a “growth tensor describing
the local addition of material and an elastic tensor charac-
terizing the reorganization of the body”, see Ganghoffer and
Plotnikov (2014). Therefore, the development of the growth
tensor, the so-called transplant tensor, is introduced as a
state variable in the framework of finite elasticity.

In Gérard et al. (2002), a simplified numerical model
of calcium leaching is presented, which concentrates on
the chemical state variable calcium and the kinetics of
the leaching process. This model considers time-dependent
chemical processes and mentions the possibility of a simple
coupling in a finite element (FE) algorithm. Kuhl (2005)
presents a chemo-mechanical model for the numerical
simulation of calcium leaching in concrete. He emphasises
the effects of the chemical degradation on the pore volume
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and the mechanical stability of concrete. A damage function
is used for constitutive modelling of the chemo-mechanically
degraded material.

An overview on structural optimisation methods applied
to discretised linear-elastic structures is given in Christensen
and Klarbring (2008). Structural optimisation, which is
applied to growth or degradation processes, is usually
solved by evolutionary optimisation algorithms (ESO), see
Simon (2013) for details. The evolution models are based
on the concept of gradually removing inefficient material
from a structure. The disadvantage of ESO concepts is that
optimisation starts from one defined reference configuration
and that the result quickly ends in local minima. Thus, it is
not possible to find an optimal solution with a single ESO
algorithm, see Vrugt and Robinson (2007). However, the
application of shape optimisation to growth or degradation
processes could help solve the problem, but has not yet
been sufficiently investigated. Similar to the embedding of
a growth approach in an optimisation algorithm, shape and
topology optimisations are applied to damage models. For
example, an optimal damage distribution is computed with
a shape optimisation algorithm that embeds an isotropic
gradient—enhanced damage model, see Guhr et al. (2020).
Suresh et al. (2018) present a topology optimisation method
which is connected to a fatigue model. The model enables
the computation of optimised topologies, taking fatigue at
high cycles as a limiting condition into account. Moreover,
Noél et al. (2017) develop a level set-based topology
optimisation framework to reduce damage in the context of
structural design.

Barthold (2002) presents the basic principles of design
changes necessary for structural optimisation and their
effects on the structural response on a continuum. He
introduces the local convective approach containing local
coordinates and derives it from a differentiable manifold.
Furthermore, he emphasises the importance of this approach
for obtaining information about the kinematic relation
required for numerical methods such as the finite element
method (FEM) and computer-aided geometric design
(CAGD). A detailed discussion of efficient strategies for
calculating sensitivity of design parameters is described in
Barthold and Stein (1996) where, in addition, the method of
variational sensitivity analysis is presented.

The above briefly presented literature motivates the
structural analysis which contains a coupled mechanical-
diffusion-degradation approach. The special feature of this
model is the combination of the coupled problem with
a shape optimisation approach so that the failure limit
of structures affected by mechanical loads and chemical
impacts can be improved. By embedding the degradation
model in the optimisation algorithm, this approach repre-
sents an effective alternative to evolutionary algorithms.
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2 Continuum model

We present the continuum model including coupling between
diffusion and mechanical behaviour. First we introduce
the extended kinematic framework. We then formulate the
partial differential equations which are determined by bal-
ance equations and constitutive equations together with
boundary and initial conditions. The constitutive equations,
including mechanical stresses, particle diffusion and chem-
ical reactions, are determined by a thermodynamically con-
sistent framework based on the evaluation of the entropy
inequality.

2.1 Kinematics

A graphical illustration of the applied kinematic framework
is presented in Fig. 1, which provides a multiplicative
decomposition of the deformation gradient into an elastic
and a growth part. We assume that the temporal evolution of
the mass density takes place in the reference configuration.
An infinitesimal volume element is represented by dV in the
reference configuration, by dvq in the degradation space and
by dv in the actual configuration. We introduce positions in
the reference configuration X, in the actual configuration x
and in the degradation space X4. Furthermore, ¢, describes
the mapping of the reference particles X onto their spatial
position x = ¢@.(X,t) with ¢ representing time. We
introduce the convective tangent vectors Gj, g; and h;. The
contravariant basis vectors that determine the dual basis
are defined by G; - G = 8, g - gl = 8 andh; - W =
8{. With this, we introduce the deformation tensors which
map infinitesimal line elements represented in different
configurations, i.e. F, F9 and F©

deformation gradient : F =g 0® G!
degradation gradient : F¢=h ® G (1)

elastic deformation gradient : F* = g @ h'.
Pt
degr. space
L
h;
pa, dva
Fd Fe
reference config. actual config.
- F o £
G gi
P&, po, dV ps, dv

Fig.1 Graphical illustration of the kinematic concept

These gradients are important two-point tensors that allow
transformations between objects in relation to the respective
configurations. We apply a multiplicative decomposition of
the deformation gradient F into an elastic part F® and a
degradation part F¢ as introduced in Himpel et al. (2005),
Kuhl et al. (2004), and Menzel and Kuhl (2012). According
to Lubarda and Hoger (2002), we use an isotropic approach
for the degradation fraction of the deformation gradient with
the stretch ratio v, to be specific
F = F°F¢ with

Fd = v1 and v = 3%, @)
0

whereby 1 denotes the second order identity tensor and the
mass densities pp and pg respectively, being introduced as
this work proceeds. Using the elastic part of the deformation
gradient, we can introduce the elastic right Cauchy Green
tensor as

C* = (F)TF = g;h' @ bl (3)

Moreover, the material time derivative of the elastic right
Cauchy Green tensor is obtained by

C" = F'F + F)TF

= F)T1" F° + (F)T1F° “
=2 (F)TdFe,

with

) 1

F* =1F° and d=5(1T+1), (5)

wherein 1 = grad x is the spatial velocity gradient.
Figure 1 introduces the definition of the mass densities

referred to the respective configurations. In the reference
configuration, pj represents the initial and pg the referential
mass density, which arises as a result of material
degradation. The mass density pg is referred to the
degradation space and p; to the actual configuration. Mass
exchange is realised by a mass sink term Rg per unit
volume in the reference configuration which triggers the
degradation from the initial mass contribution dM and
results in the mass contribution dm, i.e.
t

dm = dM + / RpdtdV. 6)
to
This leads to time-dependent update of the initial mass
density pg to the resulting referential mass density po, to be
specific
t
po = py + _/Rodt- (7
to
Within the kinematic concept, we assume that the initial

referential mass density and the mass density referred to the
degradation space coincide, i.e.

Py = Pd- ®

@ Springer
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The mapping between the configurations, see Fig. 1, leads
to a change in volume, whereas mass is not influenced by
such mappings, i.e. using (8) results in

po = pi 1% = padd = pJspa = pJ°. 9)
Moreover, J¢ = det F® > 0 denotes the determinant of the
elastic part of the deformation gradient and J = det F > 0

as well as J¢ = det F = po/pi > 0, cf. (2), follow by
analogy.

2.2 Degradation approach

The degradation model is implemented by a combina-
tion of a kinematic and a constitutive approach. Thus, in
Section 2.1, the multiplicative decomposition of the defor-
mation gradient is performed and the degradation space
is introduced. Within the constitutive approach, a mass
exchange is established which leads to the change of refer-
ential mass density pg. In return, the evolving mass density
is used to calculate the degradation part of the deforma-
tion gradient, see (2). We assume that the mass degradation
is caused due to chemical concentrations c,, which are
defined by the corresponding molar density p, and the
molar mass M, , i.e.

10)

Thus, we apply the constitutive approach of the mass sink
term as follows

Ro = —f, . (n

Assuming only one concentration to be related to the
chemical interaction, we can summarise the degradation
impact of the concentrations as

po = py — Sy M, . (12)

This paper does not address chemical processes in detail.
For further details on a model with more complex chemical
processes, the reader is referred to, e.g. Gérard et al. (2002).
In the following, the concentrations are introduced as an
additional degree of freedom in the continuum.

2.3 Balance equations

In order to implement the above-introduced problem numer-
ically, the following section presents the necessary balance
approaches to solve the coupled multi-field problem. On the
one hand, we need the balance of mass to calculate the con-
centrations, and on the other hand, the momentum balance
to calculate the displacement. The concentration distribu-
tion depends on spatial conditions and the stresses on
mass density which, in turn, is influenced by concentration-
related mass reduction. For this reason, this is a strongly
coupled problem. Furthermore, the balance of energy and
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entropy is needed to determine the constitutive material
model.

2.3.1 Balance of mass

We evaluate the balance of mass for the macroscopic body
and for the chemical concentrations. The reduction of the
mass in the reference configuration leads to a change of
mass with dih = RodV and {e} denoting the material
time derivative. Using the transformations between the
configurations, we can represent the balance of mass on the
actual configuration as

. . Ro
/ (pr + prdivx) dv = /Tdv, (13)

By By

wherein ‘div’ denotes the spatial divergence operator. The
balance of mass of the chemical concentrations contains the
material time derivative of the concentrations ¢, and the
flux of the concentrations jy, 1.e.

f(éy + diij)dV = 0. (14)
B¢

2.3.2 Balance of linear momentum

The balance of linear momentum is shown below for the
actual configuration and contains the Cauchy stress tensor
T. Although we apply mass exchange, we can neglect
effects of the impulse resulting from the degrading mass,
since the process of degradation is assumed to be very slow.
This results in

/didev =0, (15)
By

wherein additional volume forces as well as acceleration
are neglected. From the balance equation of moment of
momentum, we can derive that the Cauchy stress tensor is
symmetric, so that T = T.

2.3.3 Balance of energy

The balance of energy consists of the temporal derivative of
internal energy E, and kinetic energy K, which correspond
to mechanical energy change dW, thermal energy change
dQ and chemical flow on the surface ECV , resulting in the
following equations

E+ K= dW + dQ + E,
/édv:/(d:T+r—divq)dv

B, B
- [ i aa,

3By

(16)
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wherein ¢ is the material time derivative of the volume
specific internal energy, r is the volume specific heat source,
q is the heat flux density, 1, is the chemical potential and
da = nda with spatial outward unit surface vector n. The
time derivation of the kinetic energy has no impact on the
balance of energy as we neglect acceleration and consider
only slow progression of degradation. The surface part can
be reformulated as follows,

/(Myjy) . da = /div (11y §,) dv an
B, B

with

div (uy j,) = Jp, - grad iy + py divj, . (18)

Using the mass balance of chemical concentrations from
(14), the local form of the balance of energy reads

—r+divgq = —¢é+d: T—j, -graduy +py¢,. (19)
2.3.4 Balance of entropy

Entropy is summarised in the second law of thermody-
namics and states that entropy never decreases in a closed
system. Accordingly, entropy always increases or remains
constant. In this context, the entropy inequality is adapted as

1 1
/édv > /6rdv— /5(1 da, (20)
B By 9B,

where $ denotes the material time derivative of the volume-
specific entropy and where ©® is the absolute temperature.
The surface part can be reformulated as follows,

! da= | di ! d

6 q -aqaa = 1v 6 q \% (21)
B¢ B¢
with

(1 1 1 g

div (6 q) = q - grad (5> + g divg 22)
= —éq - grad® + %divq.

Inserting the reformulation into the entropy inequality
(20), we obtain the local form

|
0§®é—r—6q~grad®+divq. (23)

Under isothermal conditions, i.e. ¢ = 0 as well as 0= 0,
and with the local form of the energy balance, see (19), we
end up with the restriction

0<Os—e+d: T —j, gradpuy, + puycy. (24
2.4 Constitutive formulation

We perform a Legendre(-Fenchel) transformation between
the extensive thermodynamic entropy s and the conjugate

quantity, the temperature ®. This results in the so-called
Helmbholtz energy v, i.e.

Vo=é— 03, (25

By introducing the Helmholtz free energy into the entropy
inequality (24) and by selecting the elastic right Cauchy
Green tensor and the concentrations to derive the energy
process with ¥ (C®, c¢,), the following results are obtained

Iy

: o, .
:Ce—i-d:T—i———l//cy—i-/Lyc,,

- aCe dcy
reversible reversible (26)
_jy.graduy ZO
———

ireversible

We can separate the approach for the Helmholtz function
into a mechanical Y™ and a chemical € part

Y (C%cp) = yM(C) + ¥ (e, 27)

In order to ensure the entropy inequality, the reversible
contributions are evaluated and the Cauchy stress T and the
chemical potential u, are determined, i.e.

T = 2F 2 ()T
g @8

dcy, ?

My =

wherein (4) is used. From the irreversible part of the entropy
inequality we motivate the flux of the concentrations

J, = —Dgradc,, 29)

where D > 0 is introduced as the diffusion coefficient.
2.4.1 Specifications of energy contributions

The mechanical energy is described by adopting a hypere-
lastic Neo-Hooke material, leeO, which contains material
parameters u and A, to be specific

yM = poyhe

IﬁNeO = Hl* I:%A(Je — 1)2 — uInJ® (30)
i - 3),

with invariants Ice = tr C® and J¢ =+/det C®=/Ilce, which

depend on the elastic right Cauchy Green deformation
tensor C®. In addition, we specify the chemical part < as

YC =c,u) + RO(—c, + ¢y Incy), 31

where /L?, is the constant standard potential and where R
is the gas constant. Inserting the mechanical and chemical
energy contributions into (28) results in

T = LoF° [A(d° — DI(C)™!

Po*
— (@€ + p1] F)T (32)
= 2 [x0° = D1+ 2pK°],
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with the spatial Karni-Reiner strain tensor K¢, i.e.

e 1 e ey T
K =§[F F " —1]. (33)

Furthermore, the chemical potential follows as
1y =p) +ROInc,. (34)
2.4.2 lllustration of stress state

In the evaluations of the examples in Sections 4 and 6
we use the principal Cauchy stresses T; and T, in the
two-dimensional space considered, namely

I
Ti2 = 11,/—%—1&, (35)

with the invariants of the Cauchy stress It and Il, i.e.

It =T

Ir = 1 (rD? — «T?). (%6)

3 Finite element formulation

The previously presented continuum framework for the
coupled mechanical-diffusion-degradation model leads to
a set of coupled differential equations, which are time-
dependent and highly nonlinear. For further procedure, a
numerical approximation, the FEM, is used. We apply
the Galerkin method, whereby the balance equations are
represented in their weak form and weighted by independent
test functions. For the fully discrete problem, we solve for
the displacements u = x — X and the concentrations ¢, on
the basis of the balance of linear momentum and the balance
of mass for the concentrations.

3.1 Weak form

In the following we present the weak form of the balance
of momentum weighted by the independent test functions
for the displacements éu and the weak form of the balance
of mass of the concentrations weighted by the independent
test functions for the concentrations dc,,. The equations are
posed in the reference configuration. On the one hand, the
weak form of the balance of linear momentum results in

/P : GraddudV = /PN - dudA,

Bo 3By

(37

wherein the mapping of the Cauchy stress T to the first
Piola-Kirchhoff stress tensor P is applied with the transfor-
mation P = JTFT and wherein N is the material normal
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unit vector on the Neumann boundary. On the other hand,
the weak form of the balance of mass is given as

/(éy dcy —J, - graddcy)JdV
Bo (38)
= / j, - 8¢y JFTNA,

3Bg
with JF'TNdA = nda. We describe the Dirichlet boundary
conditions as follows
u =u* vV X € 0Bj

39
¢, = ¢ V X edBy, &9
and the Neumann boundary conditions as
PN = 1t* V X € 9B

(40)

J
J, N=1T, ¥ X € 9B/,

with J,, = Jj, FT. The initial conditions are given with
0

u(tp) = ug and ¢, (tp) = cy-

3.2 Discretisation in space

For space discretisation, we apply the isoparametric concept
which is based on approximating geometry, displacement
and concentrations by the same set of ansatz functions
h'! (). The discrete form of the test functions for the
displacement su® and for the concentrations Sc})} results in

sul = NN bl (£) sul

sch = Y[ bl @) scl

wherein NN denotes the number of nodes per element
and where & represents the local coordinates. In this
work, we apply an eight-noded element description, i.e.
two-dimensional Serendipity elements under plane strain
conditions. Moreover, approximations of the degrees of
freedom as well as of all related gradient operations follow
straightforwardly.

(41)

3.3 Discretisation in time

The simulation of the diffusion of the concentrations
requires a discretisation in time for which we apply the
Newmark-beta method. Within the considered time interval,
we approximate a constant average acceleration of the
concentrations Cg, i.e.

&g = 3@ + &t + AD), (42)

with the previous acceleration of the concentrations ¢, (t)
and the acceleration to be approximated in the present time
step ¢, (t + At). Based on this, one obtains

&t + AD = & () + Atég

. . 43
cyt + A = ¢, () + Até, () + 3 ACEs. (43)
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Fig. 2 a Dirichlet boundary conditions Au. b Neumann boundary
conditions F

Finally, we gain the approximation of the velocity for the
concentrations ¢, (t 4+ At) in the present time step, i.e.

&yt + A = E (cy(t+ AD — ¢, (1) — &, (D). (44)

4 Numerical analysis examples

In this section, we discuss the properties of the proposed
diffusion controlled degradation model in the context of rep-
resentative examples focusing on the basic coupling mech-
anism between diffusion impact and structural response.

4.1 Material behaviour

In the following, the correlations between mechanical and
degradation processes are investigated on the basis of an
analysis including one finite element and two different sets
of boundary conditions as shown in Fig. 2. Furthermore, we
apply the material and loading parameters shown in Table 1.

The degradation process is identically established for
both examples, at this point independently of chemical
concentrations, with the change of the referential mass
density pg, as shown in Fig. 3. With this at hand, the
degradation part of the deformation gradient F¢ can be
evaluated with (2).

For mechanical impact, the first example is uniaxially
loaded with a displacement Au = 0.5cm in y-direction,

Table 1 Material and loading parameters

E = 1 MNcm—2
v = 0.29

o = 3000kgm~3
Au = 0.5cm

F = 0.015MN

3000

Density po [kgm™3]

1600 . . I
0 time [s] 30

Fig. 3 Approach for the time-dependent decrease of density with
po/py =1—5x 10~ 2 [s]~2, wherein t is time

see Fig. 2a, which results in the deformation gradient
F=1+c¢ce ® ey, 45)

wherein ¢ is the strain in y-direction. For comparison, the
second example is loaded with a constant traction with
resulting force F = 0.015 MN in y-direction, see Fig. 2b.
The determinant of the degradation contribution to the
deformation gradient, Jd, follows directly from the time-
dependent approach for the change of referential density, see
Fig. 4, so that we observe the same referential mass density
evaluations for both boundary conditions. However, the
total deformation changes differently in the two examples.
For the boundary condition displayed in Fig. 2a, the total
deformation represented by J is constant, because the
structure does not allow shrinkage. The elastic deformation

Degradation J9 [-] Cauchy stress Ty [Pa]

1.0 0.8
0.5 +
0.75
0.55 0.0 30
time [s] 2 time [s]

Elastic Deformation J¢ [-]
2.6

time [s] 30

Total Deformation J [-]

1.8

1.2

time [s] 2

Fig.4 Evaluation of the boundary condition Fig. 2a in red and of the
boundary condition Fig. 2b in blue with a time slot of 29 s

@ Springer
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1 cm

—_—

1 cm

_—
1 cm

Fig. 5 The grey colour shows the initial state, the black colour
the deformation state and the blue colour the degraded structure:
displacement loading (left, a) and force loading (right, b) by analogy
with Fig. 2

changes inversely so that, i.e. J* = [J4]~!J. The stress Tyy
increases, because the total deformation is fixed, whereas
the degradation part decreases. In comparison to the first
example with fixed Dirichlet boundary conditions, the
example illustrated in Fig. 2b results in a degradation
process and the total deformation represented by J decreases
over time. In return, the elastic deformation J¢ and the
stress Tyy are constant. The related states of deformation are
additionally illustrated in Fig. 5.

4.2 Diffusion driven degradation

In this example, we discuss the coupled effects of diffusion
leading to a degradation of the material. This example
is motivated by the idea to analyse chemical influence
on hollow concrete blocks, since concrete is a porous
medium that allows the inflow of concentrations and is
susceptible to chemical degradation. The boundary value
problem is illustrated in Fig. 7a, which shows a structure
with a hole. The hole of the structure is defined by the
parameters (s, S2), which represent the axes of an ellipse.
We consider a concentration inflow from the left side
of the structure. The choice of parameters, as stated in
Table 2, is based on values common for concrete and

Table 2 Material parameters for the structure with the hole

E = 3MNcm—2
v = 0.2

o = 2000kgm™3
M, = 1 kgmol™!
D = 100m2d~!
¢y (t=0) = 100 mol m—3
a = 50cm

b = 50cm

S| = 10cm

S = S5cm

@ Springer

cX(t) [mmol L]
300 -

200 -

110

1 2 3 4 [d]
Fig.6 Time dependent Dirichlet boundary conditions for the concen-
trations c; t)

the orders of magnitude for chemical diffusion processes,
although no specific chemical process is described here.
The material degradation triggered by molecular processes
with concentrations occurs very slowly. Therefore, the
calculation is accelerated by considering the diffusion rate
per day (d) and a time-dependent increase in concentrations
per day, as shown in Fig. 6. In total, the computation
considers a time period of 4d with a time step size of
1d. A stable mechanical environment is enabled by fixed
displacements as shown in Fig. 7a. The concentration
inflow on the left side leads to the contour plot given in
Fig. 7b. Figure 8a illustrates the degradation induced by the
concentrations and in Fig. 8b the impact of the deformation
on the first principal stress T is evaluated. Since material
degradation is triggered by a high concentration of

a) b)
RARAL
i LA <
Ci(t)i 52l SRR b
957NN QNS
ADDL AN
100 110
a - =

¢y [mmol L—1]

Fig. 7 a Dirichlet boundary conditions of a structure with a hole. b
Contour plot of the concentrations after the first time step
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a) b)

-1.3x 1072 1.7 x 1071
I T =
T1 [MNcm™2]

Fig. 8 a Deformed mesh after 4d printed in red vs. the initial area
outlined in black. b First principal stress Ty after 4 d, with a maximum
stress of 1.7 x 107! MN cm ™2

chemicals, the main material reduction takes place close to
the inlet area.

The maximum of the first principal stress is located in
this area close to the hole. Overall, this example clearly
shows the coupling between diffusion and deformation.

5 Structural optimisation framework

This section outlines the connection between structural
analysis and optimisation framework. Furthermore, the
information required for the optimisation problem, such
as the objective function, the constraints and design
parameters, are presented. The main programme runs in
the numerical computing environment of MATLAB which
contains a link to the open software gmsh to create a mesh
on the one hand and an interface to a Fortran code using
MEX-file interfaces on the other. The linearisation of the
weak form, in discrete form, is implemented in a Fortran
based FE code and the MEX-file transfers the data to the
workspace. The assembly and calculation are implemented
in MATLAB.

5.1 Sketch of algorithmic framework

An overview of the algorithm is shown in Fig. 9. The
algorithm can be divided into three main sections, the
boundary value problem, structural analysis and structural
optimisation. First, the boundary value problem is relevant
for the definition of the model problem by means of
parametric geometry description. The information about
the boundary value problem provides the input for the
structural analysis. In addition, the solution of the structural
analysis computes a structure deformed by chemical and
mechanical loads, which is used as initial design in the
structural optimisation. In this paper, continuum mechanical

- interface gmsh:
- geometry and mesh
- keypoints as design
variables

- boundary conditions

!

- interface: MEX-file:

- element / material
formulations

MATLAB

boundary value problem

- assembly
- solution algorithm

!

- objective function and
constraints:
| structural analysis |

structural analysis

- mathematical
optimisation:
[ MATLAB toolbox |

- new keypoints

structural optimisation

Fig.9 Illustration of the algorithmic framework

quantities such as the evaluation of the stress restriction and
geometry parameters are selected for the objective function
and the constraints. These variables are calculated within
the framework of structural analysis and directly passed
on to the mathematical solver. The structural optimisation
minimises the defined objective function while maintaining
the given constraints and provides new design parameters.
The optimisation task is solved with the help of a MATLAB
toolbox.

Furthermore, the technical implementation can be briefly
summarised. The global programme runs in MATLAB,
while the information at element level is implemented
in a Fortran code and embedded via MEX interfaces.
Information at element level retrieves the coupled equations
for the description of the problem presented, the variation
formulations with the discrete weak forms and the gradient
information for the FEM solution. In addition, an interface
to the open software gmsh, a finite element mesh generator,
is generated during the framework of the boundary value
problem. In this paper, geometrical values are chosen as
design parameters; therefore, a parametric mesh design
is implemented. The functions introduced as part of the
optimisation process are described in the typographic style
‘italics’, e.g. objective function J, constraints g, design
parameters s.
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5.2 Optimisation problem

The structural optimisation problem is solved by using
the nonlinear optimisation function fmincon provided
by MATLAB toolbox, see (MathWorks 2019). This
solver finds the minimum of a restricted nonlinear and
multivariable function. The general optimisation problem
follows with an objective function J(v, s), nonlinear
inequality constraints g(v, s), upper and lower limit values
sU and s' for a set of design parameters, i.e.

minJ(v, s) : g(v,s) < 0 constraints
1

.. 4
s < § < s" limitvalues, (46)

wherein v € {u, ¢, } are the field variables and s geometric
design parameters. In this paper, we deal with the two shape
optimisation problems as follows:

1. Minimisation of the maximum first principal stress
T by changing geometrical parameters, with the
constraint of a maximum loss of area.

2. Minimisation of the area by changing geometrical
parameters, with the constraint of an upper limit for the
maximum first principal stress T}"**.

In both optimisation setups, structural analysis is applied to
calculate the objective and constraint functions, since there
is a dependency on the field variables. Further specifica-
tions on the objective function and constraint are provided
in Sections 6.1 and 6.2. Fmincon uses the ‘sqp-legacy’
algorithm to solve the optimisation task, wherein the gradi-
ents of the objective function and constraints are obtained
numerically by finite differences. The Hessian matrix is
iteratively integrated using the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) procedure. Further details can be found
in (MathWorks 2019). The application of the finite differ-
ence method is a precise but time-consuming method. In
the outlook, we address a more efficient approach for future
work.

6 Numerical optimisation examples

In the following, two examples are presented for shape
optimisation of structures that are loaded by chemical
concentrations. The first example is taken from Section 4.2
and shows a hollow concrete block which is loaded by
chemical substances. We calculate the optimised shape of
the brick in such a way that the maximum stress caused by
the concentrations is reduced while still retaining material.
The second example is inspired by a mechanically loaded
bridge, additionally loaded with chemical substances, which
can be caused by, for example calcium leaching. The goal
of this example is a structure with minimised material and
limited stresses.

@ Springer

Table 3 Input parameters for the optimisation algorithm

Threshold A 0.03

Limit values sY [15;10] cm
5! [5;0]

Initial design s [10;5] cm

6.1 Optimisation of a structure with a hole

Using the example of the structural analysis in Section 4.2
with the material parameters from Table 2, an optimised
shape is discussed below. We use the sum of the Gaussian
point values of the first principal stress in the maximum
loaded element T as the objective function J(v, s) and
the change of the area as inequality constraints g (v, §) with

J(v,s) = ZTG T

ini - 47
gvs) = [AT5A| - &, @

wherein NG is the number of Gaussian points, A" is the
initial area, A is the actual area and A is a threshold. The
optimisation problem follows as

0 constraints
s < sY limit values.

min J (v, §) : g(zis) i (48)
The axes of the ellipse (s, s2) are the design parameters.
The optimisation algorithm applies the input parameters
listed in Table 3.

The following diagramme, see Fig. 10, shows the iter-
ation course of the optimisation to minimise the objective
function while fulfilling the constraints. The solver requires
a total of 9 iterations until an optimal shape is found to min-
imise the average first principal stress in the Gaussian points
to 0.083 MN cm ™.

After 18,468 s of computing time, the optimisation leads
to the following new design parameters, i.e. (Fig. 12).

s =[5 5.525], (49)
0.092;7”77

~

£

g | \‘\

= \

o

\ Optimal function value: 0.083
\

——

0.082
2 3 4 5 6 7 8 9

Optimisation step

Fig. 10 Iteration of the optimisation solver ‘sqp-legacy’, which shows
the decrease of the objective function, i.e. the first principal stress
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1.7 x 1071
a

Ty [MNcm—2]

~1.3x 1072
HE

Fig. 11 Evaluation of the first principal stress with new design after 4
days

where the length of the axes of the hole change to reduce the
first principal stress.

The contour plot of the first principal stress in Fig. 11
shows that the change of the hole parameters, in other words
the design parameters, leads to an overall decrease of the
first principal stress. Thereby, the constraint is fulfilled, i.e.

Aini — A

|~ A=-27x10"° <0, (50

glv,s) =

This example illustrates how shape has a major influence
on the effects of degrading concentrations and that damage
can be minimised by changing the shape. This observation
is supported by Fig. 13 which shows the temporal course of
the deformation based on the determinant of the degradation
gradient, Jd, at the maximum loaded point. The curve is
compared on the one hand with the initial shape, and on
the other hand with the optimised shape, showing that the
optimised form leads to a lower degradation.

Fig. 12 Evaluation of the new design. a Initial structure vs. b optimal
structure after 9 optimisation steps

0.91 - - . - - . .
1 2 3 4

time [d]
Fig. 13 Evaluation of the determinant of the degradation gradient J4

in the marked point within 4 days, the blue line refers to the initial and
the red line to the optimised design

6.1.1 Remarks on numerical investigation

In this paper, the mathematical optimisation is solved util-
ising the MATLAB function fmincon, which calculates the
minimum of a constrained nonlinear multivariable func-
tion, see MathWorks (2019). The user can chooses between
different algorithms to solve the task. In this section, the
influence of the solution algorithm on the optimised result
is evaluated. For this purpose, the result of the example
‘Optimisation of a structure with a hole’ is evaluated using
three different algorithms. The ‘sqp-legacy’ and ‘active-set’
algorithm are based on sequential quadratic programming
(SQP) method. Thereby, SQP is derived using the New-
ton method and taking into account inequality constraints.
The two algorithms differ in their implementation, e.g.
they apply different definitions for the strict feasibility
with respect to bounds or the choice of the solution algo-
rithm for the subproblems. In contrast, the third algorithm
‘interior-point’ combines two different approaches to solve
the optimisation task. The algorithm uses Newton steps or
conjugated gradient steps depending on the solution of each
iteration step.

Table 4 compares the efficiency of the algorithms and
shows that algorithm ‘sqp-legacy’ runs most efficiently,

Table 4 Comparison of different solution algorithms

Algorithm Number Time Optimisation
of iterations in seconds result
‘sqp-legacy’ 9 18468 [5; 5.525]
‘active-set’ 17 34822 [5; 5.525]
‘interior-point’ 17 35177 [5; 5.525]
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Table 5 Material parameters for the bridge-like structure

[\
[ 1\

E = 3000kN m—2
v = 0.2

o = 3000kgm—3
M, = 10kgm™3

D = I1m2d~!

¢y (t=0) = 1 molm~3

/

\

[

\

Fig. 14 Optimisation results under consideration of different mesh

because the solution is obtained after only 7 iterations,
respectively after 18,468 seconds. The solutions are
identical for all approaches.

Furthermore, Fig. 14 shows the optimised design taking
into account different mesh sizes. The identical optimised
parameters with s= [5; 5.525] are determined, but the
computing time increases with the refinement of the mesh.
In detail, the finer mesh shown in Fig. 14 needs 3.3 times
more calculation time than the coarse mesh.

6.2 Optimisation of a bridge-like structure

This example is inspired by a bridge with mechanical
loads under environmental influences, such as calcium
leaching. This scenario can occur, for example during long-
term exposure to pure water, which triggers the diffusion
of calcium ions. To illustrate whether environmental
influences are taken into account or not, the calculation is
listed in the first step without and in the second step with
the influence of chemical concentrations. In order to reduce
the material costs, the objective J (v, s) of the problem is to
minimise the area within a plane strain setting while holding
a threshold for the first principal stress, i.e. g(v,s). The
optimisation problem is obtained as follows

Jv,s) = YNE [ av
Bj
g(v,s) = Ty — T™,

619

wherein the area is calculated by the sum of the total element
volumes. We apply a threshold for the maximum first

2m sym. bc.

0

Fig. 15 Mechanical boundary conditions of the structure

@ Springer

principal stress T}'®*, thus the total optimisation problem
follows with, i.e.

min J(v,s) : g(v,s) 0 constraints
1

<
st < s < sY limit values. (52)

To save computing time, the symmetry of the structure
is utilised and the calculation is performed on half of the
system using symmetry boundary conditions on the right
side, see Fig. 15. Table 5 presents the applied material
parameters. The applied forces with F = 10kN lead to the
first principal stress distribution, which is displayed in the
contour plot in Fig. 18b. The formation of a tensile area in
red and compression area in blue becomes visible.

The lower edge of the structure is defined by a B-
spline function with four control points, where the design
parameters are the control points that allow vertical
displacement, see Fig. 16, i.e.

s = [x15x2; X3; X4] . (53)

Utilisation of symmetry must also be taken into account for
the calculation of design parameters during optimisation.
For this purpose, the condition x3 = x4 is introduced.

The parameters for the optimisation algorithm are shown
in Table 6, where s" and s' are the matrices containing
the minimum and maximum allowable change of design
parameters. Figure 17 shows the iteration of the optimisa-
tion solver with the decrease of the objective function, i.e.
the area of the structure. After 6 iterations the objective
function converges, the side condition is fulfilled and a local
minimum is given with the following design parameters

s = [1:0.893; —0.1372; —0.1372] . (54)

The design parameters reveal that the largest saving
occurs in the area of the least stress, i.e. in the area where
neither compressive nor tensile stress is present, whereby
more material is required in the middle of the structure to
ensure load-bearing capacity. In total, the optimised design

§> X1 K2 X3 X4

Fig. 16 Design parameters for the structural optimisation
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Table 6 Input parameters for the optimisation algorithm

Threshold T 120 kNm~2
Limit values st [1;1;151] m

s! [-1; =1, —1; 1]
Initial design s [0; 0; 0; 0] m

saves 20.6 % of the area. The contour plot in Fig. 18
represents the first principal stress in the optimised and
initial design.

In a second step, the optimised bridge is additionally
loaded by chemical concentrations. In this example, we
focus on the general effect of any chemical concentrations
that trigger material degradation. Additionally, to the
mechanical force, two concentration inflows are located on
the top of the structure and are provided by a concentration
increase of 0.33 mol m—3 per time step, see Fig. 19.

As already mentioned in the example in Section 4.2, the
chemically induced degradation process is accelerated by
running the simulation in time steps of days. The contour
plots in Fig. 20 show the distribution of the concentrations
and the resulting influence on the determinant of growth
after 9 days. Figure 21 shows the time progression of the
first principal stress in one nodal point, P;, where the
maximum first principal stress occurs. The first principal
stress increases due to the increased concentrations. The
previously defined maximum stress of T{"** = 120kN m~2
can no longer be maintained.

The aim of the optimisation is to save as much material
as possible while still ensuring the load capacity. For
this reason, smaller deviations in stress due to diffusion
processes are also relevant, since otherwise the load-bearing
capacity can no longer be guaranteed over a long load
duration.

Objective J
/

Optimal function value: 15.8859

15 ‘ ‘ ‘ |
1 2 3 4 5 6

Optimisation step

Fig. 17 Iteration of the optimisation solver ‘sqp-legacy’, which
records the decrease of the objective function, i.e. the area

a) First principal stress T4

—-20 120
N T |
kKNm—2

Fig. 18 Evaluation of the first principal stress induced by mechanical
load. a Optimal structure with T = 120 kKNm~2 vs. b initial

structure with T1"™* = 112kN m~2

N =

cy (t)

<
<
<

2m sym. bc.

AANAAN

>
' 10m

Fig. 19 Mechanical and concentrations boundary conditions of the
structure

2) Concentrations cy
- W
1.0 mmol L= 4.4
HEE |
b)

Determinant of degradation Jd

0.98 1.0
N ____|

Fig. 20 a Evaluation of the concentrations and b the impact on the
determinant of the degradation part of deformation after 9 days
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| —

120

1 time [d] 9

Fig. 21 Increase of maximum first principal stress over 9 days with
chemical impact

By analogy with the previous example, the points of the
polygon chain at the lower edge of the structure are design
parameters. Using the same parameters for the optimisation
algorithm as provided in Table 6 and starting from the initial
design as illustrated in Fig. 15, the optimisation yields the
following optimal design parameters

s = [0.933;0.793; —0.196; —0.196] . (55)

The iteration process illustrated in Fig. 22 shows how the
design parameters reduce the objective function by 17.4 %
while maintaining the constraints. The increased maximum
first principal stress due to the degradation process changes
the optimal design and allows for less material saving,
as shown in Fig. 23. It is clear that the consideration of
environmental conditions, such as calcium leaching, are
necessary to predict long-term performance.

20 ¢
L \\

~ \

2

34 \

9, \

o) \

o \ Optimal function value: 16.5136
T

15 ‘ ‘ ‘ ‘ ‘ ;

1 2 3 4 5 6 7

Optimisation step

Fig. 22 Iteration of the optimisation solver ‘sqp-legacy’ for the
example coupled to chemical impact, which shows the decrease of the
objective function, i.e. the area
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Fig. 23 Comparison of the results: the green coloured area shows the
optimal result when chemical influence is considered and the red area
shows the result without degradation processes

7 Summary

In this paper, a coupled mechanical-diffusion-degradation
model is presented. The degradation process is derived
by a multiplicative split of the deformation gradient and
a constitutive approach for the development of growth,
which assumes chemical concentrations as a trigger for
degradation. The numerical FE framework is briefly
presented. Furthermore, the embedding of a structural
optimisation framework is outlined. The applicability of the
model is presented for a structure with a hole and a beam
for which a practical reference is outlined. The main focus
of the examples lies in the analysis of the influence of long-
term acting chemical concentrations, which can influence
the mechanical stress and can keep certain upper limits of
the stress by constructive changes.

For future work, an alternative to the numerical finite
difference method will be applied, namely the variational
sensitivity analysis as outlined in Barthold and Stein (1996),
which accelerates the simulation time.

Overall, it is shown that the model can provide an optimal
design taking into account long-term effects from concen-
trations that damage the material, while still maintaining
certain limits for the load-bearing capacity. The algorithm
offers the possibility to integrate different chemical pro-
cesses, to calculate the interaction with the mechanical
behaviour and to solve optimisation problems.
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