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Abstract

This dissertation focuses on the development, formalization, and systematic evaluation
of a novel nonlinear model predictive control (MPC) concept with derivative-free opti-
mization. Motivated by a real industrial application, namely the position control of a
directional control valve, this control concept enables straightforward implementation
from scratch, robust numerical optimization with a deterministic upper computation
time bound, intuitive controller design, and offers extensions to ensure recursive feasi-
bility and asymptotic stability by design. These beneficial controller properties result
from combining adaptive input domain discretization, extreme input move-blocking,
and the integration with common stabilizing terminal ingredients. The adaptive dis-
cretization of the input domain is translated into time-varying finite control sets and
ensures smooth and stabilizing closed-loop control. By severely reducing the degrees
of freedom in control to a single degree of freedom, the exhaustive search algorithm
qualifies as an ideal optimizer. Because of the exponentially increasing combinato-
rial complexity, the novel control concept is suitable for systems with small input
dimensions, especially single-input systems, small- to mid-sized state dimensions, and
simple box-constraints. Mechatronic subsystems such as electromagnetic actuators
represent this special group of nonlinear systems and contribute significantly to the
overall performance of complex machinery.
A major part of this dissertation addresses the step-by-step implementation and re-
alization of the new control concept for numerical benchmark and real mechatronic
systems. This dissertation investigates and elaborates on the beneficial properties of
the derivative-free MPC approach and then narrows the scope of application. Since
combinatorial optimization enables the straightforward inclusion of a non-smooth
exact penalty function, the new control approach features a numerically robust real-
time operation even when state constraint violations occur. The real-time closed-loop
control performance is evaluated using the example of a directional control valve and
a servomotor and shows promising results after manual controller design.
Since the common theoretical closed-loop properties of MPC do not hold with input
move-blocking, this dissertation provides a new approach for general input move-
blocked MPC with arbitrary blocking patterns. The main idea is to integrate input
move-blocking with the framework of suboptimal MPC by defining the restrictive
input parameterization as a source of suboptimality. Finally, this dissertation extends
the proposed derivative-free MPC approach by stabilizing warm-starts according to
the suboptimal MPC formulation. The extended horizon scheme divides the receding
horizon into two parts, where only the first part of variable length is subject to extreme
move-blocking. A stabilizing local controller then completes the second part of the
prediction. The approach involves a tailored and straightforward combinatorial op-
timization algorithm that searches efficiently for suboptimal horizon partitions while
always reproducing the stabilizing warm-start control sequences in the nominal setup.



Kurzfassung

Diese Dissertation befasst sich mit der Entwicklung, Formalisierung und systemati-
schen Bewertung eines neuartigen nichtlinearen modellprädiktiven Regelungskon-
zepts mit ableitungsfreier Optimierung. Motiviert durch eine reale industrielle An-
wendung, die Positionsregelung eines Wegeventils, ermöglicht dieses Regelungskon-
zept eine von Grund auf einfache Implementierung, eine robuste numerische Opti-
mierung mit einer deterministischen oberen Rechenzeitschranke und einen intuitiven
Reglerentwurf. Zudem bietet dieser Ansatz Erweiterungen, um rekursive Durchführ-
barkeit und asymptotische Stabilität der Regelung sicherzustellen. Diese vorteilhaften
Reglereigenschaften resultieren aus der Kombination adaptiver Diskretisierung des
Stellraums, restriktiver Parametrisierung der prädizierten Steuerungssequenzen (input
move-blocking) und der Integration mit allgemeinen stabilisierenden Entwurfskom-
ponenten. Die adaptive Diskretisierung des Stellraums wird in zeitvariante endliche
Stellmengen übersetzt und ermöglicht eine glatte und stabilisierende Regelung. Durch
die starke Reduktion der Freiheitsgrade in der Steuerung auf einen einzigen Freiheits-
grad stellt der vollständige Suchalgorithmus einen idealen Optimierer dar. Aufgrund
der exponentiell ansteigenden kombinatorischen Komplexität ist das neuartige Rege-
lungskonzept für Systeme mit kleinen Eingangsdimensionen, insbesondere für Ein-
größensysteme, kleinen bis mittleren Zustandsdimensionen und einfachen Beschrän-
kungen geeignet. Mechatronische Subsysteme wie beispielsweise elektromagnetische
Aktuatoren repräsentieren diese spezielle Gruppe nichtlinearer Systeme und tragen
wesentlich zur Gesamtleistung komplexer Maschinen bei.
Ein großer Teil dieser Dissertation behandelt die schrittweise Implementierung und
Umsetzung des neuen Regelungskonzepts für numerische Referenz- und reale me-
chatronische Systeme. Es werden die vorteilhaften Eigenschaften des ableitungsfreien
modellprädiktiven Regelungsansatzes untersucht und ausgearbeitet sowie anschlie-
ßend der Anwendungsbereich der Regelung eingegrenzt. Da die kombinatorische
Optimierung die einfache Einbeziehung einer nicht-glatten exakten Straffunktion er-
möglicht, zeichnet sich der neue Regelungsansatz durch einen numerisch robusten
Echtzeitbetrieb aus, selbst wenn Zustandsbeschränkungen verletzt werden. Die Rege-
lungsgüte wird am Beispiel eines Wegeventils und eines Servomotors evaluiert und
zeigt bereits nach dem manuellen Reglerentwurf vielversprechende Ergebnisse.
Da die üblichen theoretischen Eigenschaften der modellprädiktiven Regelung bei der
Beschränkung der Freiheitsgrade in der Steuerung nicht gelten, wird in dieser Disser-
tation ein neuer Ansatz für die klassische modellprädiktive Regelung mit beliebigen
Restriktionen der Freiheitsgrade in der Steuerung vorgestellt. Die Hauptidee besteht
darin, die restriktiven Parametrisierungen der Steuerungssequenzen in den Kontext
der suboptimalen modellprädiktiven Regelung zu integrieren. Die Einschränkung der
Freiheitsgrade wird hier als eine Ursache für die Suboptimalität definiert. Schließlich
wird in dieser Dissertation der vorgeschlagene ableitungsfreie modellprädiktive Re-



gelungsansatz um stabilisierende Warmstarts gemäß der suboptimalen Formulierung
der modellprädiktiven Regelung erweitert. Das erweiterte Horizontschema unterteilt
den beschränkten und gleitenden Horizont in zwei Teile, wobei nur der erste Teil
mit variabler Länge der extremen Beschränkung der Freiheitsgrade unterliegt. Ein
stabilisierender lokaler Regler wird genutzt, um den zweiten Teil der Vorhersage zu
vervollständigen. Der vorgeschlagene Ansatz umfasst die Entwicklung eines maßge-
schneiderten und einfachen kombinatorischen Optimierungsalgorithmus, der effizi-
ent nach suboptimalen Horizontteilungen sucht und dabei stets die stabilisierenden
Warmstarts in der nominellen Konfiguration reproduziert.
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zl parameter vector after l optimization iterations
z̃l difference in primal variables between iterations l and l + 1

Roman Letters for Matrices
A system matrix (linear discrete-time system)
Ac system matrix (linear continuous-time system)
AK system matrix (linear and autonomous discrete-time system)
B input matrix (linear discrete-time system)
Bc input matrix (linear continuous-time system)
B̌ input move-blocking matrix
C output matrix (linear system)
D(z) Jacobian matrix of the constraint functions evaluated at at pa-

rameter vector z (with RE and MS)
Dh(z) Jacobian matrix of h(·) evaluated at z
Gu LHS of system of inequalities (polyhedral input constraints)
Gx LHS of system of inequalities (polyhedral state constraints)
Hl Hessian approximation at optimization iteration l
K controller gain matrix (local state space controller)
L observer gain matrix (control valve)
P positive definite weighting matrix (terminal penalty)
Q positive definite weighting matrix (state penalty)
QK positive definite weighting matrix (state penalty, linear system)
R positive definite weighting matrix (control penalty)

Roman Letters for Scalar-Valued Maps
F(·) terminal cost function
gi(·) i-th inequality constraint function (NLP)
hi(·) i-th equality constraint function (NLP)
hps,i(·) i-th state constraint function (polyhedral constraints)
I(·) function for determining time instants of shooting nodes
J1(·) one-step horizon cost function
JN(·) finite horizon cost function
JN∗−1(·) cost function with horizon length N∗ − 1 (VH)
J̃N(·) exact penalty function (for softening state constraints)
L(·) Lagrange function (NLP)
ℓ(·) stage cost function
ul(·) uniform discretization of closed interval
V(·) general Lyapunov function
V1(·) optimal one-step horizon cost function
Vs

1 (·) optimal one-step horizon cost function (SF)
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VN(·) optimal finite horizon cost function
Vs

N(·) optimal finite horizon cost function (SF)
V∞(·) optimal infinite horizon cost function
ṼN(·) optimal exact penalty function
Ṽs

N(·) optimal exact penalty function (SF)
VN∗(·) optimal variable horizon cost function
Vs

N∗(·) optimal finite horizon cost function (SF, VH)

Roman Letters for Vector- and Set-Valued Maps
f (·) transition map (discrete-time system)
F (·) general terminal constraint function
f

c
(·) vector field (continuous-time system)

g̃(·) transition map (autonomous discrete-time system)
G(·) general state constraint function
h(·) equality constraint function
H(·) set-valued transition map (suboptimal MPC)
hKKT(·) KKT conditions function
hpd(·) primal-dual system function
hps(·) state constraint function (polyhedral constraints)
ue(·) control parameterization based on EH formulation

Greek Letters for Scalars
ᾱl search step width after l Newton steps
β penalty scaling parameter (exact penalty function)
β̄ scaling parameter of barrier penalty function
β̄l β̄ after l optimization iterations
χj(t) j-th element of state vector χ(t) (continuous-time system)
χ̂j(t) j-th element of state vector χ̂(t) (sampled data system)
χ̂µ,j(t) j-th element of state vector χ̂

µ
(t) (sampled data system)

χref,j(t) j-th state generated with reference integration scheme
δ radius of terminal ball
∆ti sampling time with ∆ti = 2−12+i s
∆ts sampling time
∆uj discretization step width for the j-th input dimension
ϵ radius to describe some neighborhood of the origin
ϵ̃ coupling parameter (planar aircraft)
γ number of oversampling steps (sampled data system)
ι exponent in polynomial input domain discretization
λ auxiliary optimization variable (MB)
λ† suboptimal choice of auxiliary variable (MB)
λi λ after i optimization iterations (MB)
λ+

i λ at time instant n + 1 and after i optimization iterations (MB)
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λ̃i i-th element of Lagrange multiplier vector λ̃

µ̃i i-th element of Lagrange multiplier vector µ̃

ν exponent of power-law bound (exponential stability)
ω number of optimization parameters
ω̃ number of optimization parameters containing slack variables
φv(t) output (position, Duffing oscillator)
π positive constant (bound for terminal costs or circle constant)
π∗ optimal cost bound for terminal level set
ρ scaling parameter for infinite costs of the linearized system
σj(t) j-th element of control vector σ(t) (continuous-time system)
σµ,j(t) j-th element of control vector σµ(t) (sampled data system)
τ integration variable
θ(t) roll angle (planar aircraft)
ζ1, ζ2, ζ3 coefficients of polynomial filter (control valve)
ζ∗1 , ζ∗2 , ζ∗3 optimal coefficients of polynomial filter (control valve)

Greek Letters for Vectors
χ(t) state vector (continuous-time system)
χ̂(t) open-loop state vector (sampled data system)
χ̂

µ
(t) closed-loop state vector (sampled data system)

∆z search direction for optimization parameter vector
∆z∗ optimal search direction for parameter vector (SQP)
∆ λ̃, ∆ µ̃ search directions for Lagrange multipliers

∆ λ̃
∗, ∆ µ̃∗ optimal search directions for Lagrange multipliers (SQP)

λ̃ vector of Lagrange multipliers (equality constraints)
λ̃l λ̃ after l optimization iterations (equality constraints)
λ̃
∗ Lagrange multipliers at a local optimum (equality constraints)

µ̃ vector of Lagrange multipliers (inequality constraints)
µ̃

l
µ̃ after l optimization iterations (inequality constraints)

µ̃∗ Lagrange multipliers at a local optimum (inequality constraints)
σ(t) control vector (continuous-time system)
σµ(t) closed-loop control vector (sampled data system)
ϑ extended state containing state vector and warm-start
ϑ+ extended state at the next time instant n + 1
Ξ1, Ξ2, Ξ3, Ξ4 intermediate steps of Runge-Kutta integration rule

Greek Letters for Scalar-Valued Maps
α(·) comparison function with α(·) ∈ K
α1(·) comparison function with α1(·) ∈ K∞

α2(·) comparison function with α2(·) ∈ K∞

α3(·) comparison function with α3(·) ∈ K
αf(·) comparison function with αf(·) ∈ K∞
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αℓ(·) comparison function with αℓ(·) ∈ K∞

η(·) discretization function
µj(·) j-th component of implicit control law
ψ(·) nonlinear cost function (NLP)

Greek Letters for Vector-Valued Maps
Γ(·) saturation function for control vectors
κ(·) local control law
κ̃(·) saturated local control law
µ(·) implicit control law
Ω(·) operator to generate an admissible warm-start control sequence
Ωκ(·) generate control sequence based on the local control law κ(·)
Ωκ̃(·) generate control sequence based on the local control law κ̃(·)
Ωst(·) shift-truncate operator for control sequences (VH)
Ωsta(·) shift-truncate-append operator for control sequences
φ(·) open-loop state trajectory (discrete-time system)
φg(·) closed-loop state trajectory of the system x+ = g̃(x)
φµ(·) closed-loop state trajectory (discrete-time system)
ϕ(·) open-loop state trajectory (continuous-time system)
ϕΣ(·) open-loop state trajectory (sampled data system)
ΘN(·) control parameterization based on move-blocking
Θs

N(·) control parameterization based on extreme move-blocking
Ξ(·) integration kernel of iterative IVP solution method

Sets
A(n) finite control set (adaptive input domain discretization)
Aj(n) finite set of scalar controls for the j-th input dimension (adaptive

input domain discretization)
Ã(x0, n) extended finite control set (including local control sample)
A(z) set of indices of all active inequality constraints at point z
Bδ closed terminal ball with radius δ > 0
D finite control set (uniform input domain discretization)
Dj finite set of scalar controls for the j-th input dimension (uniform

input domain discretization)
E , Ẽ finite sets of indices (equality constraints)
∅ empty set
I finite set of indices (inequality constraints)
K set of comparison functions (function space)
K∞ set of unbounded comparison functions (function space)
N set of all positive integers excluding zero
N compact interval of integer horizon lengths
N0 set of all positive integers including zero
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N≥2 set of all positive integers starting from 2
N[a,d] set of all positive integers on the compcat interval [a, d]
O≥3 set of all odd numbers starting from 3
P̄ placeholder set
P(x0, n) placeholder set (for finite control sets)
R set of real numbers
R+

0 set of positive real numbers including zero
R+ set of positive real numbers excluding zero
S set of admissible tuples (pseudo-code)
Sl stabilizable set
Ss

l stabilizable set (SF)
T terminal set (experimental stability analysis)
levπF terminal level set
U input set
U input constraint set
UN(x0) set of all admissible control sequences
U s

N(x0) set of all admissible control sequences (SF)
ŨN(x0) set of all admissible warm-start control sequences
ŪN(x0) set of all admissible warm-start control sequences (EH)
U †

N
(

x0, ũ(x0)
)

set of all admissible control sequences, which result in lower or
equal costs than the warm-start ũ(x0)

U e
N(x0, N1) set of all admissible control sequences with extreme move-

blocking up to horizon length N1 (EH)
X state set
X state constraint set
Xf terminal set
Xκ̃(N) subset of the region of attraction of the saturated local controller
X positive invariant set for system x+ = g̃(x)
X1 feasible set for one-step horizon
X s

1 feasible set for one-step horizon (SF)
XN feasible set
X s

N feasible set (SF)
X̄M feasible set (MB)
X̄ e

N finite union of feasible sets for different horizon lengths (EH)
X e

N(N1) feasible set for a given first horizon length N1 (EH)
X̄s finite union of feasible sets for different horizon lengths (SF,

VH)
Z set of all integers including zero
Z[a,d] set of all integers on the compact interval [a, d]
ZN feasible set of extended states
Z̄N feasible set of extended states (EH)
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Mathematical Notation
|a| absolute value of a
|D| cardinality of finite set D

≈ approximately equal
a := b define a to be equal to b
diag(a, b, c) square matrix with diagonal (a, b, c), other elements are zero
f : A 7→ B function f (·) maps set A into set B
x 7→ f (x) function f (·) maps x to f (x)
ḟ (t0) time derivative of function f (·) evaluated at time t0

∇ f (z0) gradient of scalar function f (·) evaluated at z0

∇z f (z0, x0) gradient of scalar function f (·) with respect to vector z and
evaluated at (z0, x0)

∇2
zz f (z0, x0) Hessian matrix of scalar function f (·) with respect to vector z

and evaluated at (z0, x0)

D f (z0) Jacobian matrix of vector-valued function f (·) evaluated at z0

f (x) = O
(
h(x)

)
f (x) ≤ a h(x) for all x ≥ x̄ with x̄, a ∈ R+ and f , h : R 7→ R+

0
(Big O notation)

∂ f (z, x)/∂z|(z0,x0) partial derivative of function f (·) with respect to z and evalu-
ated at (z0, x0)

f{1,2}(t) short notation for f1(t) and f2(t)
∀ for all
x ∈ [a, b] bounded and closed (compact) interval with a ≤ x ≤ b
x ∈ (a, b) bounded and open interval with a < x < b
x ∈ [a, b) bounded, left-closed, right-open interval with a ≤ x < b
∈ is an element of
⊗ Kronecker product
max U element-wise maximum of compact set U

min U element-wise minimum of compact set U

∥ · ∥ Euclidean norm
∥x∥2

Q weighted norm with ∥x∥2
Q := x⊺Q x

̸= not equal
a = ∑3

i=1 i a = 1 + 2 + 3 (summation notation)
a = ∏3

i=1 i a = 1 · 2 · 3 (product notation)
A =

⋃3
i=1 B1 A = B1 ∪ B2 ∪ B3 (union of sets)

≪ significantly smaller
a ⪯ b elementwise inequality between vector a and vector b
A ⊆ B set A is a subset of set B
A ⊂ B set A is a strict subset of set B
A\B elements of set A that are not elements of set B (set difference)
sup supremum
min minimum
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arg min argument of the minimum
⊺ transpose operator
A# Moore-Penrose inverse of matrix A
log(·) natural logarithm function
sin(·), cos(·) trigonometric functions
tanh(·) hyperbolic tangent function
Ip identity matrix with dimensions p× p
1p unit vector with dimensions p× 1
0p zero vector with dimensions p× 1
0 zero vector (dimensions result from the context)
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1
Introduction

1.1. Motivation

Most technical systems, such as automated vehicles, robots, construction and man-
ufacturing machines, result from system integration and the interaction of various
subsystems from different domains. Here, a considerable part is dedicated to mecha-
tronic subsystems. For example, electric motors contribute to the complex operation
or even motion of technical apparatus, such as industrial robots, by exerting force or
torque on internal mechanical components. To reduce the overall complexity of cen-
tral processing and control units responsible for specific functionalities such as vehicle
maneuvering, these units usually do not directly compute the control input for all
individual actuators. Instead, the central control units access the low-level controllers,
which are then individually charged with minimizing the distance of the controlled
variable (internal system states) to some commanded reference (set-point). Hence,
the operation or motion of the overall system strongly depends on the closed-loop
control performance of the individual subsystems. Figure 1.1 shows a generalized
block diagram of a mechatronic subsystem. Note that the system in Figure 1.1 satisfies
characteristic aspects of the definition of a mechatronic system according to [Har+96].
It integrates multiple information processing units such as sensors and controllers, as
well as an electromagnetic actuator driving a mechanical system to perform a complex
task. The inner control unit in Figure 1.1 represents a single current control loop or,
for example, again a control cascade comprising an inner current and an outer velocity
control loop.
A real industrial application motivates the development of a novel model predictive
low-level control concept in this dissertation. Control valves are applied to route and
control oil flow in hydraulic systems, for example, in lifting devices, which need to
exert high force densities to complete their tasks (e.g., [Ewa+03]). However, the inner
structure of a control valve coincides with the structure introduced in Figure 1.1. A
cascaded control concept, containing an outer position controller and inner current
controller, together with the power electronics, drive a solenoid that changes the po-
sition of a piston inside the valve body. The oil flow through the valve depends, in
particular, on the position of the piston and the resulting cross-sectional openings.
For example, with the 4WRPEH 6 directional control valve of the Bosch Rexroth com-

1



Chapter 1. Introduction

Outer
control unit

Inner 
control unit

E.g., 
current/ 

speed

Force/ 
Torque

Input
voltage 

Control
input

Control
input

Reference/
Set-point

E.g., 
position

Electric
motor

Mechanical
system

Power
electronics

Sensing
unit

Sensing
unit

Figure 1.1.: Generalized structure of mechatronic systems used in this dissertation. The
objective is to replace the native low-level controllers by a derivative-free MPC approach that
allows straightforward implementation from scratch and intuitive controller design.

pany [Bos10], a tailored nonlinear proportional-integral position controller with a high
number of coupled parameters ensures a high closed-loop control performance for dif-
ferent operating ranges (e.g., [Ott04; Kre+07]). However, the controller design requires
a high level of human expertise and experience. Automated controller design based
on hardware-in-the-loop simulations and global optimization techniques minimizes
the time required to find optimal controller parameters (e.g., [Nic+01; Kre+07]). A
subsequent fine tuning of closed-loop control performance requires again profound
human expertise. Sliding mode control as an alternative (model-free) control concept
reveals promising results and reduces the parameter complexity significantly [Kri+15].
However, the controller design again rests upon global optimization or is subject to
self-tuning [Kri+16b], see also [Kri18] for more details. The question arises whether
a suitable control scheme can be developed to replace the complex low-level position
controller while allowing straightforward implementation, manual intuitive controller
design, and explicit compliance with input and state constraints.
Nonlinear model predictive control (MPC) is a powerful control concept suitable
for cross-domain applications. Conventional MPC solves an optimal control prob-
lem (OCP) in each sampling interval while explicitly considering user-defined ob-
jective functions, future system behavior, and nonlinear input and state constraints
(e.g., [ML99; May+00]). Usually, the implicit control law applies the first optimal con-
trol vector to the plant in every closed-loop sampling interval. Important closed-loop
properties such as recursive feasibility and asymptotic stability are well understood
and can be established intuitively for nonlinear systems based on Lyapunov’s direct
method (e.g., [May+00; Raw+20]). Because of significant advances in numerical opti-
mization, MPC is emerging as an alternative control approach for mechatronic systems
with fast dynamics and continuously differentiable functions (e.g., [Ver+18; And+18;
Eng+19]). MPC is based on a dynamics model of the real system and therefore in-
tegrates explicit and systematically acquired system knowledge. Including as much
system knowledge as possible reduces parameter complexity on the controller side and
thus facilitates controller design. At first glance, only the choice of the weights of the
individual cost terms remains for adjusting the control performance. However, specif-
ically for nonlinear systems, the control engineer needs to gain deeper insight into
direct transcription methods, constrained nonlinear optimization, and especially their
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efficient implementation under real-time constraints. Numerical optimization, in par-
ticular, yields additional free parameters such as numerical step sizes and tolerances,
which again complicate controller design. In addition, for a special class of nonlinear
systems, MPC offers more degrees of freedom in control than required to achieve
high closed-loop control performance. In particular, systems with small to mid-sized
input and state dimensions and simple box-constraints are suitable for minimizing the
degrees of freedom in control and thus the computational effort (e.g., [Mak+18d]). In-
put move-blocking, for example, merges consecutive control vectors on the prediction
horizon such that they have the same values along each input dimension (e.g., [TJ02;
Cag+07]). When replacing the position controller without directly manipulating the
switch positions of the individual transistors of the power electronics, as with finite
control set MPC (FCS-MPC, e.g., [Rod+13]), the underlying control loops usually have
a single or at least only a few inputs.
The model predictive trajectory set approach (MPTSA) was proposed in the context
of developing an emergency steering assist [Kel+15; Kel17]. This driving assistance
system plans repeatedly a finite number of trajectories with a constant steering wheel
angle based on a vehicle dynamics model and guides the human driver in critical situ-
ations by superimposing steering torques to avoid collisions. By severely reducing the
degrees of freedom in control to a single degree, the optimal control and state trajecto-
ries can be determined by simple exhaustive search (ES). An adaptive discretization of
control variables (quantization in the technical sense), such as the steering wheel angle,
further enables smooth vehicle guidance. However, this MPC approach can also be
used for a general class of systems beyond the context of vehicle guidance. Numerical
analyses and evaluations of the generalized model predictive trajectory set control
(MPTSC) in [Kel17; Mak+17] and [Mak+18d] show promising results for linear and
nonlinear dynamical single-input systems, respectively. However, the initial formula-
tion of MPTSC does not include stabilizing ingredients such as a terminal cost function
or terminal set constraints. Thus, the closed-loop control stability with MPTSC rests
upon extensive numerical simulations and experiments. For some linear dynamical
benchmark system, Figure 1.2 visualizes the open-loop prediction of the first state with
χ̂µ,1 : R+

0 7→ R on top of the time evolution of the closed-loop system with MPTSC.
Here, the single degree of freedom in control, in conjunction with the input domain
discretization, creates the characteristic trajectory sets at each closed-loop time instant.
Note that Figure 1.2 only shows every 50th open-loop prediction. Though MPTSC
greatly reduces the implementation effort compared to conventional MPC by elimi-
nating smooth optimization, the control performance might suffer from the restrictive
input parameterization. Since common theoretical closed-loop stability properties of
MPC do not hold in case of input move-blocking (e.g., [Cag+07]), the horizon length
turns out to be a free controller parameter.
However, (extreme) input move-blocking, adaptive input domain discretization, and
combinatorial optimization are promising ingredients for developing an alternative
and derivative-free model predictive control concept for fast mechatronic systems. In
particular, the single degree of freedom in control is of central interest, since it leads
to a combinatorial complexity that can be solved by a simple search algorithm with a
small and deterministic upper runtime bound.
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Figure 1.2.: Open- and closed-loop control of a linear dynamical benchmark system with
MPTSC. With a single degree of freedom in control and a suitable input quantization, an
exhaustive search qualifies for determining the optimal control and state trajectories. The
open-loop prediction is visualized at every 50th closed-loop time step. Compare also Figure 4
in [Kel+15].

1.2. Contribution and Outline

This dissertation addresses the development, formalization, and evaluation of a model
predictive low-level control concept for nonlinear systems with small input dimensions,
preferably a single input, and small to mid-sized state dimensions. This low-level
control concept satisfies the following partially conflicting requirements:

• Straightforward implementation without dependencies on external optimization
libraries,

• Low computational effort with a deterministic upper bound,

• Intuitive controller design and adjustment of closed-loop control performance
during real-time operation,

• If requested, ensuring theoretical closed-loop stability properties: Recursive fea-
sibility and asymptotic stability.

Motivated by the promising results of MPTSC, the model predictive low-level con-
trollers in this dissertation adopt and integrate the basic ingredients of MPTSC, namely
a single degree of freedom in control, a suitable adaptive input domain discretization,
and the exhaustive search strategy. Though MPTSC already satisfies the first two
requirements, it is still an open question whether these two requirements are also
fulfilled when stabilizing closed-loop properties have to be enforced by an extended
OCP formulation. The last two demands first require a precise formalization and
classification of the proposed ingredients into the existing literature of MPC. Novel
extensions to basic MPTSC are proposed to relax the restrictive input parameterization
and guarantee stabilizing closed-loop properties. Then, this dissertation contributes to
the systematic development of a controller design guide considering closed-loop con-
trol performance, recursive feasibility, and asymptotic stability. Extensive numerical

4



1.2. Contribution and Outline

analyses and evaluations narrow the scope of the novel low-level control concept. In
addition, experimental investigations demonstrate the applicability and highlight the
advantages of the proposed low-level control scheme for industrial valve and servo
motor control. Because of its close connection to conventional MPC, the novel basic
control approach is referred to as single degree of freedom MPC (SFMPC) hereafter.
The following outline provides an overview of the structure of this dissertation and
highlights the detailed contribution:

Chapter 2: The second chapter first summarizes the state-of-the-art in MPC with a
focus on set-point stabilization. The basic ingredients of SFMPC are each con-
sidered separately in the context of MPC, and the related literature is reviewed
and summarized.

Chapter 3: This chapter defines the basic nomenclature and summarizes the key fun-
damentals and findings in optimal control, conventional MPC, and numerical
discretization that are highly relevant for this dissertation. The sampled-data for-
mulation with the zero-order hold strategy connects the continuous-time nature
of mechatronic systems with the established discrete-time MPC framework.

Chapter 4: By integrating common stabilizing terminal ingredients into the formula-
tion of basic SFMPC, stabilizing closed-loop properties can already be shown for
three special system configurations. From the systematic analysis of the proper-
ties of SFMPC with uncountable input constraint sets (for smooth optimization),
the definition and temporal evolution of finite control sets (for combinatorial
optimization) are derived to obtain the same stabilizing closed-loop properties
and a similar closed-loop control performance. Since SFMPC with an infinite
horizon cost function and an uncountable control set can reproduce, under mild
assumptions, the linear-quadratic regulator (LQR), this chapter examines and
evaluates the discretization (quantization in the technical sense) error with finite
control sets independently of other effects such as input move-blocking.

Chapter 5: This chapter investigates the applicability of basic SFMPC to constrained
nonlinear systems. The first part of this chapter compares closed-loop control
performances, computational and implementation efforts of SFMPC, conven-
tional MPC, and the LQR. With SFMPC, a short to mid horizon length com-
bined with a final cost function, representing the cost of an infinite horizon for
some linearized system, proves to be a suitable configuration to ensure recur-
sive feasibility and high closed-loop control performances for common nonlinear
benchmark systems. The second part of this chapter introduces state-constraint
softening with SFMPC. Since SFMPC with finite control sets rests upon exhaus-
tive search, processing non-smooth exact penalty functions does not lead to any
additional effort. However, for practical applications, the proposed softening
approach ensures reliable closed-loop control operation even if short-term state
constraint violations occur because of perturbations and model mismatch.

Chapter 6: A step-by-step realization of real-time capable MPC and SFMPC is pre-
sented in this chapter using two real mechatronic subsystems with different
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characteristics. The implementation from scratch includes model identifica-
tion, controller design, and compensation techniques. Since model mismatch
in modelbased state space controllers often results in closed-loop control off-
set, this chapter addresses the development of a tailored offset compensation
technique that is suitable for real-time closed-loop control of directional control
valves. In this chapter, the softened state constraint handling emerges as the
key feature of SFMPC that allows a straightforward implementation, intuitive
controller design, and smooth closed-loop operation in the presence of state con-
straints. According to the literature review, this chapter presents, for the first
time, a model predictive low-level controller for a directional control valve that
covers a large operating range and is real-time capable at a closed-loop control
frequency of 10 kHz.

Chapter 7: The detailed literature review reveals that asymptotic stability with input
move-blocked nonlinear model predictive control (MBMPC) is still an open prob-
lem for nonlinear systems. There is no design recommendation for MBMPC in
the literature that aims at guaranteeing both recursive feasibility and asymptotic
stability. This chapter integrates input move-blocking in the theoretical frame-
work of suboptimal MPC by explicitly defining input move-blocking as a source
of suboptimality. This novel formulation closes the gap and ensures asymp-
totic stability for MBMPC with arbitrary blocking patterns. Most importantly,
this chapter introduces the main ingredients for stabilizing SFMPC in the next
chapter.

Chapter 8: This chapter relaxes the extreme input move-blocking of SFMPC and intro-
duces a variable horizon formulation that ensures stabilizing closed-loop prop-
erties even by design. To ensure asymptotic set-point stabilization and to enlarge
the feasible set and thus the region of attraction of SFMPC, an extended SFMPC
formulation is introduced to seamlessly integrate with the suboptimal MPC
framework. Single degree of freedom extended horizon MPC (SFEMPC) inherits
the idea of a receding horizon, however, the control trajectory is only subject to
the extreme input move-blocking on a first part of the horizon. A (stabilizing)
local control law completes the second part of the horizon, while the horizon
partitioning is subject to mixed-integer optimization. Applying time-varying fi-
nite control sets enables the design of a practical and derivative-free optimization
algorithm that searches efficiently for suboptimal horizon partitions.

Chapter 9: This dissertation concludes with a summary of the main results and find-
ings and provides an outlook on possible further research directions.

Appendix A: The first part of the appendix provides supplemental information on
numerical discretization and optimization. In addition, this appendix chapter in-
cludes details on the implementation of a generic and proprietary MPC software
framework.

Appendix B: This appendix chapter includes supplemental results on stability analysis,
experimental system identification, and further real-time closed-loop control
experiments.
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2
Related Work in Model Predictive Control

This chapter gives an overview about related work in the field of MPC. Section 2.4 has
been published in a similar form in [Mak+22].

2.1. Set-Point Stabilization for Nonlinear Systems

Though the basic idea of modern MPC was already recorded, for example, in [LM67,
Ch. 7], the conventional MPC formulation for constrained dynamical and nonlinear
systems, as it is understood today, was established in the late 1990s and the early 2000s.
Since the computing power was very limited at the beginning of the research activities
in this field, initially a great deal of research has been done in MPC for linear systems.
Therefore, the first industrial realizations include MPC based on impulse response
models (e.g., [Ric+77; Ric+78]) and step response models in the context of dynamic
matrix control (e.g., [CR80]). A detailed summary of the development up to and also
beyond the 1990s can be found in [Gar+89; QB03].
Nowadays, conventional MPC for set-point stabilization and tracking usually imple-
ments a receding horizon and integrates a general nonlinear state space model, a
continuous stage cost function, nonlinear input and state constraints, a special termi-
nal cost function, and special terminal constraints (e.g., [GP17; Raw+20]). Common
MPC approaches differ particularly in the last two ingredients, which are used to
prove stabilizing closed-loop control properties.
In [KG88] and [MM90], the authors establish stabilizing closed-loop properties by
introducing a terminal equality constraint while omitting the terminal cost function.
Since a terminal equality constraint might be too restrictive, resulting in a severe
restriction of the region of attraction of MPC, the authors of [CA98] propose the
combination of a terminal penalty function and terminal inequality constraints that
enforce the last predicted state vector to be a member of a control invariant termi-
nal set. Chen and Allgöwer [CA98] show that, under mild assumptions, a quadratic
terminal cost function bounds the infinite horizon costs that result from applying a
stabilizing local control law to the nonlinear system from above if the last predicted
state is inside some terminal cost level set. The terminal ingredients are derived from
linear system theory after linearizing the nonlinear system at the origin. Though this
approach relaxes the computational effort of MPC significantly, the proposed stabi-
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lizing terminal ingredients require an offline determination of the terminal level set
prior to control. A more generalized framework for nonlinear systems with input
constraints is presented in [Fon01]. The key feature of this generalized framework
is the possibility to derive terminal ingredients even if the linearized system is not
stabilizable. Mayne et al. [May+00] give an extensive survey on stabilizing MPC and
standardize the formulation of stabilizing terminal ingredients. Refer also to [May13]
for a detailed discussion on the necessity of terminal ingredients. The authors of the
work in [Köh+20] propose an extensive framework that enables the offline determi-
nation of parameterized terminal ingredients independently of the specific set-point.
In principle, the work in [DeN+98] can be placed in the same category, namely to
MPC with stabilizing terminal conditions. De Nicolao et al. [DeN+98] implement a
non-quadratic cost function that represents the infinite horizon costs when applying
some local stabilizing control law to the nonlinear system. Here, the value of the
terminal cost function is estimated based on the recursive application of the local
controller for a sufficiently large number of steps. However, instead of introducing
constraints on the terminal set, the authors enforce compliance with some terminal
stability region of the local controller by weighting predicted trajectories not ending
inside the local stability region at infinity. Magni et al. [Mag+01] follow up on this
theoretical work, dividing the prediction horizon into two intervals and proposing a
finite step terminal cost function. The first interval is subject to optimization, while
the second interval is completed by recursively applying some local control law to the
nonlinear system. Regardless, terminal set constraints enforce the last predicted state
vector to be a member of the control invariant terminal set. The authors of [Mag+01]
further show that there exists a positive number of control steps with respect to the
local control law, which must be applied to the nonlinear system inside the terminal
set, such that the finite step terminal cost function represents a valid control Lyapunov
function. The last step is a key ingredient of stabilizing terminal conditions.

There are many contributions and research directions on MPC that either dispense
with terminal constraints or even stabilizing terminal components entirely. Since
the theoretical derivations in this dissertation follow, in particular, the derivations of
suboptimal MPC according to [All+17; Raw+20], which rely on common stabilizing
terminal ingredients, only a brief overview of MPC without terminal ingredients is
given below. Parisini and Zoppoli [PZ95], for example, do not impose hard terminal set
constraints. However, by choosing a sufficiently large horizon length and weighting of
the terminal cost function, compliance with a certain terminal cost level set is ensured
implicitly. However, the authors do not propose a design guide for free parameters.
The authors of [AB95] and also [JH05] show that there is at least a theoretical minimal
horizon length that ensures closed-loop stability properties, even in the absence of a
terminal cost function and terminal constraints. Jadbabaie and Hauser [JH05] extend
these theoretical results for input constrained nonlinear systems for the case when the
terminal cost function represents an upper bound on the infinite horizon costs. Limon
et al. [Lim+06] also drop the terminal set constraints and investigate the impact on
some weighting of the terminal cost function on the region of attraction. Usually, those
contributions that omit terminal constraints entirely assume exponential controllability
with respect to the stage cost function as, for example, in [Gri+05; Tun+06; GR08;
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Grü09]. The survey in [Grü12] summarizes and further extends the existing literature
on MPC without stabilizing terminal conditions. Since MPC schemes without terminal
ingredients cannot inherit the invariance property from some terminal set, recursive
feasibility has to be examined separately (e.g., [Boc+14]). Köhler and Allgöwer [KA21]
show stabilizing closed-loop properties of MPC with a finite step terminal cost function,
similar to [Mag+01], assuming exponential controllability. However, since the authors
do not impose terminal set constraints and the terminal cost function results from
applying the local control law for a finite number of steps, this new approach closes
the gap between MPC approaches with and without terminal ingredients. Similar
to [Mag+01], this strategy allows to reduce the horizon on which the control variables
are subject to optimization.

2.2. Suboptimal Framework

Suboptimal MPC is highly relevant for practical applications since it explicitly con-
siders the situation that the optimizer cannot find the global optimum. This situation
may arise with a non-convex OCP formulation or with limited computation times.
Stability then mainly relies on manually generated stabilizing warm-starts [Sco+99;
Pan+11; All+17; Raw+20]. While the initial work in [Sco+99] either chooses from a ter-
minal equality constraint or a dual-mode scheme similar to [MM93], the contributions
in [Pan+11; All+17; Raw+20] rely on common stabilizing terminal ingredients. The
stability analysis in conventional MPC, as described for example in [May+00], is based
on the fact that the optimal cost function represents a suitable Lyapunov function.
However, the requirement of global optimality might be too restrictive for practical
applications. Fortunately, the authors of [Pan+11; All+17; Raw+20] show that, under
mild assumptions, the general (non-optimal) cost function is a suitable Lyapunov func-
tion candidate when introducing the evolution of a difference inclusion, including an
extended state that consists of the initial state vector and a warm-start control sequence.
As soon as an admissible control sequence exists, suboptimal MPC can completely
dispense with optimization while nevertheless offering inherent robustness margins
for systems with continuous- and discrete-valued inputs [RR17a]. Nominal stabiliza-
tion and robustness properties result from designing admissible warm-start control
sequences for each next closed-loop control step. The main ingredient for generating
these warm-starts is the existence of some stabilizing local control law [Pan+11; All+17;
Raw+20]. In contrast to the work in [GK10], which investigates stabilizing properties
of suboptimal MPC for continuous-time systems with input and without terminal
constraints, the suboptimal MPC framework with stabilizing terminal ingredients ac-
cording to [Pan+11; All+17; Raw+20] does not require a lower bound on the number
of optimization iterations for closed-loop stabilization.

2.3. Efficient Realizations with Smooth Optimization

As mentioned above, MPC solves an OCP in each closed-loop control interval. For this
purpose, most MPC realizations first convert the OCP into a nonlinear program (NLP),
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an ordinary parameter optimization problem that is subject to nonlinear equality and
inequality constraints (e.g., [GP17; Raw+20]). For solving an NLP, the literature offers
a large collection of established numerical optimization algorithms (e.g., [NW06]). In
general, a distinction must be made between continuous- and discrete-time OCPs dur-
ing conversion. Though this dissertation relies on the discrete-time MPC formulation,
sequential and simultaneous conversion methods originate from the continuous-time
domain (e.g., [Bin+01]). In the continuous-time domain, the control and state tra-
jectories have infinite degrees of freedom. Therefore, direct transcription methods
aim at transforming an infinite dimensional OCP into a finite dimensional parameter
optimization problem (e.g., [Kra85; Bin+01; Bet98; Raw+20]). Direct single shooting
discretizes the control trajectory on a uniform time grid and assumes a typically piece-
wise constant control parameterization resulting in a finite dimensional parameter
optimization vector. The state trajectory results from solving the corresponding initial
value problem (IVP) over the entire horizon (shooting interval). Since a variation of
an element of the parameter vector requests resolving the IVP, starting from the time
point the individual parameters corresponds to, optimization algorithms might exhibit
poor convergence properties when applying this sequential approach (e.g., [Bin+01]).
In direct multiple shooting, the state trajectory is composed of multiple shooting inter-
vals, with additional deflection constraints ensuring continuous state trajectories after
convergence is reached. On each shooting interval, the optimizer requests the solution
of an IVP starting at an individual shooting node [BP84]. Though this horizon parti-
tioning results in higher dimensional problem matrices of the NLP, the optimization
algorithms usually show faster convergence with this simultaneous approach [BP84]
(see also [Bet98]). In addition, matrices such as the Jacobian of constraints have sparse
patterns, which can be exploited efficiently as shown in [Lei+03]. The term simultane-
ous indicates that both the control and the state trajectory are subject to discretization
and optimization. Multiple shooting turns into a full discretization when each shooting
interval has a length of one step. In this full discretization case, the one-step integra-
tion kernel for the nonlinear system dynamics can be optionally included into the NLP
formulation. Direct collocation is also a member of the direct transcription method and
allows to parameterize the control and state trajectories with basis functions such as
polynomials [Raw+20, Sec. 8.5]. This approach, however, is usually related to the con-
tinuous-time domain. For example, the time optimal MPC framework with variable
discretization presented in [Rös19] investigates direct collocation. In the discrete-time
domain, the control and state trajectories are of finite dimension by design, at least if
the input and state dimensions of the nonlinear systems under consideration are finite.
The conversion of a discrete-time OCP into an NLP is mainly a question of how to
embed the solution to the nonlinear system dynamics. Here, the conversion procedure
follows the basic ideas of the sequential and simultaneous approaches, only excluding
the input and state parameterization (e.g., [GP17, Sec. 12.1]).

Proper warm-starts contribute to the stabilization of steady states and to the reduction
of optimization times. However, warm starting is not only restricted to the primal
optimization variables, such as in suboptimal MPC. Diehl et al. [Die+02] introduce the
initial value embedding technique in the context of sequential-quadratic-programming
(SQP). Since with multiple shooting the shooting nodes are subject to optimization,
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the linearization of the NLP at the next closed-loop time instant can be initialized
with the linearization at the current time instant. Linearization of the NLP is a major
processing step of constrained optimization and is required to formulate the first-order
necessary Karush-Kuhn-Tucker (KKT) conditions (e.g., [NW06]). With SQP, the New-
ton-KKT system, representing a Newton iteration on the KKT conditions, can be recast
into a quadratic program (QP) comprising the first- and second-order NLP derivative
information (Hessian of the Lagrangian, Jacobian of the constraints, gradient of the
cost function (e.g., [NW06, Ch. 18]). If the measured initial states of two consecutive
closed-loop time steps only differ slightly, a single SQP iteration suffices to satisfy the
constraints again and to improve control performance [Die+05b]. The real-time-itera-
tion (RTI) scheme finally builds on this idea and divides the single SQP iteration into a
preparation and short feedback phase, distributing computation over two consecutive
closed-loop steps [Die+05b]. The value embedding technique is especially suitable for
constant references, otherwise the gradient of the cost function cannot be warm-started
from the previous closed-loop time instant, refer to the discussion in [GP17, Sec. 12.5].
Independent of the value embedding technique, Diehl et al. [Die+05a] combine the
RTI scheme with a shifting strategy of the previous solution and prove that MPC with
the RTI scheme and a terminal equality constraint renders the origin asymptotically
stable. For completeness, it should be noted that interior point methods can also be
warm started properly. By the NLP sensitivity according to [Fia83], there exists a local
minimizer in some neighborhood of the current solution if the initial state vector of two
consecutive closed-loop steps do not differ strongly. If, in addition, the change between
the initial state vectors does not impose a change in the active set of the inequality
constraints, the KKT system factorization can be reused to minimize computation
time [ZB09]. This dissertation does not include warm-starting techniques related to
optimizer components, such as the cost gradient, because of changing steady states
and deterministic upper computing time bounds of exhaustive search. The computa-
tion time after switching the steady state mainly determines the real-time capability
of the low-level control concepts presented in this dissertation. However, some discus-
sions in this dissertation include the RTI scheme. Verschueren et al. [Ver+16] improve
the Hessian approximation of the SQP algorithm used in [Die+02] by exploiting con-
vexity in the NLP formulation. Zanelli et al. [Zan+17] eliminate constraints on the rear
part of the horizon by introducing logarithmic barrier cost functions. With this tight-
ening approach, the authors can remove the corresponding optimization variables
in the solution phase of the underlying QP of the RTI scheme by applying Riccati
sweeps. In [WB10], the authors exploit the structure of quadratic programs emerging
in MPC. In addition, by combining warm-starting techniques with an early terminated
interior-point method, the authors enable fast computation.

First- and second-order derivative information can either be derived from sparse finite
differences or automatic differentiation (e.g., [NW06, Ch. 8]). Automatic differentiation
decomposes functions into individual components and then determines analytic di-
rectional derivatives. When NLP dimensions vary during runtime, a hypergraph rep-
resentation is well-suited to enable efficient calculation of derivatives based on sparse
finite differences without the need to implement graph coloring techniques [Rös+18a]
(see also [Küm+11]). Varying NLP dimensions occur, for example, when implementing
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variable horizon formulations as with time-optimal MPC [Rös+21b]. The established
open source MPC frameworks ACADO [Hou+10] and the successor ACADOS [Ver+18]
rely on the method of SQP. These MPC implementations integrate the automatic
differentiation framework CasADi [And+18] and thus build on the exact first- and
second-order derivatives of the underlying NLPs. Condensing reduces QP dimensions
by using the recursion of linear system dynamics in matrix form, thus eliminating
state vectors from the optimization vector [Jer+11]. With multiple shooting and SQP,
condensing is used to exploit the sparsity of the underlying QPs by eliminating the
state vectors from the linearized continuity constraints. Thus, condensing strategies
transform the sparse but large dimensional QP into a dense but small QP. After solv-
ing the dense QP, the result has to be transformed back into the sparse formulation
(e.g., [BP84; Kou+15b; Fri+16]). Another possibility for reducing computation time
is the integration of sparse solvers such as IPOPT [WB06] and OSQP [Ste+20], which
directly process sparsity/structure patterns.
The open source MPC framework GRAMPC [KG14; Eng+19] provides short computa-
tion times by implementing an augmented Lagrangian method in combination with a
projected gradient approach. In general, (primal-dual) first-order methods are espe-
cially suitable for MPC for embedded systems since gradient-based approaches offer
low implementation complexity. To deal with state constraints, first-order methods
usually include Lagrangian dual problems (e.g., [Kuf+14; Gis14; Kou+15a; NK15]).
Refer also to the surveys on embedded optimization in MPC for more details [Fer+17;
Fin+18]. An extensive comparison on embedded optimization with common methods
is given in [Kuf+15].
In linear MPC (LMPC), the determination of the implicit control law is confined to the
solution of a single convex QP. With linear system dynamics, the application of the
batch approach transforms the general full degree of freedom OCP into a single QP by
successive substitution of linear system dynamics (e.g., [Bor+17]). To further reduce
the optimization effort of LMPC systematically, tracking the cost descent property of
the closed-loop Lyapunov function allows to remove constraints that are inactive at
the next closed-loop time instant and thus to reduce the dimension of the QP (e.g.,
[Jos+15; Jos+17]). For a recent extension of the strategy for removing constraints
from [Jos+17] to nonlinear MPC, refer to [DM21]. A major advantage of LMPC is
that the implicit control law can be pre-determined offline. The state space can be
partitioned by multi-parametric programming into convex polyhedrons describing a
combination of active constraints. Within a single polyhedral region, the control law
is an explicit affine function of the initial state vector. Therefore, at runtime, only the
region to which the current initial state vector belongs to needs to be determined. Then,
the optimal control vector follows by evaluating a single algebraic equation [Bem+00;
AB09]. Depending on the number of polyhedrons and the chosen representation,
such as binary (e.g., [Tøn+03]) or multi-way trees [MK11], explicit LMPC can reduce
the computational effort significantly. Another considerable increase in efficiency in
polyhedron exploration can be achieved by pre-processing a strictly convex support
function over all polyhedrons [Hol+20]. However, the partitioning process of the state
space in explicit LMPC depends on the individual cost weighting parameters and thus
complicates online controller design.
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2.4. Set-Point Stabilization with Input Move-Blocking

Naive input move-blocking reduces the degrees of freedom in control to a requested
degree by applying a user-defined but fixed blocking pattern (e.g., [TJ02; Mac02]).
For example, MPTSC in [Mak+18d] implements extreme and naive input move-block-
ing and reduces the degrees of freedom in control to a single degree. With input
move-blocking as a special fixed input trajectory parameterization, the optimizer can-
not recover the previous but shifted solution to ensure at least recursive feasibility.
Some of the first papers considering input move-blocking include [Ric85; Lee+95;
TJ02]. For a visualization of naive input move-blocking, refer to Figure 2.1. This
example shows uniform input move-blocking for a discrete-time single-input sys-
tem with simple input box-constraints and the control trajectory u : N0 7→ R with
umin, umax ∈ R. As the closed-loop system evolves by repeatedly applying the first
element of the (sub)optimal control trajectory, the optimizer cannot recover previous
switching points during prediction because of a lack of degrees of freedom in control.
For the same reason, the optimizer in this example cannot append a (stabilizing) ter-
minal control at the end of the prediction horizon. Notice that with the conventional
implicit MPC control law, i.e., applying the first control vector to the plant, only the
open-loop control performance is subject to input move-blocking.
This section covers contributions focusing on theoretical closed-loop properties in the
presence of input move-blocking. Cagienard et al. [Cag+07] encounter the problem
of missing stabilizing closed-loop guarantees with MBMPC by introducing a time-
varying blocking scheme in combination with offset input move-blocking. For linear
time-invariant (LTI) systems, the LQR can generate a base control sequence satisfy-
ing stabilizing terminal conditions. The authors of [Cag+07] then implement offset
move-blocking to improve the base sequence, while applying a time-varying shifting
strategy for the blocking pattern to preserve previous control interventions. Because
of the LQR base control sequence, closed-loop properties mainly hold for LTI systems.
In the context of MBMPC with variable horizon, Shekhar and Maciejowski [SM12]
also apply time-dependent blocking matrices to ensure recursive feasibility and finite
completion times to pre-defined terminal sets. The contributions in [GI07; Gon+09]
focus on strong feasibility (see [Ker00] for the definition) issues with MBMPC. Gond-
halekar and Imura [GI07] introduce the definition of controlled invariant feasibility
to address the problem that, when input move-blocking is involved, strong feasibil-
ity cannot be derived from stabilizing terminal conditions. To ensure that the next
OCP is feasible after applying the conventional implicit control law, the definition of
controlled invariant feasibility enforces the first predicted state vector to be again a
member of the controlled invariant feasible set. As the authors in [GI07] note, the
determination of the controlled invariant feasibility set for nonlinear systems is a chal-
lenging task. The authors of [Lon+11] ensure stabilizing closed-loop properties with
MBMPC by considering two different uniform time grids. Here, the step size on the
second time grid is an integer multiple of the step size of the first time grid. However,
input move-blocking only applies on the first time grid. The combination of a sam-
pled-data system formulation with piecewise constant inputs, a uniform time grid,
and a uniform blocking pattern allows to convert an originally move-blocked control
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Figure 2.1.: Basic principle of model predictive control with naive input move-blocking using
a discrete-time single-input system and a uniform blocking pattern with three degrees of
freedom in control, a horizon length of six, and input box-constraints. Top to bottom: Evolution
of the closed-loop control trajectory and the corresponding open-loop control performances.
The first element of the (sub)optimal control trajectory is applied for closed-loop control. The
dashed graphs indicate how the discrete-time control trajectories can be translated into a
continuous-time representation by applying a piecewise constant input parameterization.

sequence into an unblocked version by increasing the step widths to the blocking
interval lengths. The sampled-data formulation then offers a new discrete-time sys-
tem for which stabilizing terminal conditions ensure theoretical closed-loop properties.
Finally, Longo et al. [Lon+11] propose a parallelizable evaluation of differently shifted
move-blocked control sequences with respect to the first time grid.
Chen et al. [Che+20] focus on merging efficiently input move-blocking with multiple
shooting in the framework of the RTI scheme. Instead of adding blocking constraints
after the condensing step, the authors of [Che+20] introduce a tailored condensing
algorithm that exploits the reduced degrees of freedom in control. Despite of the
efficient integration into the SQP method, the naive move-blocking strategy does
not ensure stabilizing closed-loop properties. Gonzales and Rossiter [GR20] propose
an admissible shifting strategy of move-blocking patterns and also integrate input
move-blocking into the RTI scheme. In contrast to [Cag+07], the shifting strategy
in [GR20] preserves the dimensions of the blocking matrix by altering the blocking
pattern as the closed-loop system evolves. This altering strategy of blocking patterns
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represents the required prerequisite to ensure recursive feasibility with MBMPC. As
the authors of [GR20] outline, stabilizing closed-loop properties might follow from
introducing a terminal equality constraint. However, as mentioned above, a terminal
equality constraint might be too restrictive for practical applications.
The authors of [OW14] and [SM15] show that the shifted and truncated control se-
quence of the previous closed-loop time instant can be embedded into the current OCP
formulation by introducing auxiliary optimization parameters. Similar to [Cag+07],
the previous solution serves as the base control sequence at the current closed-loop
time instant. Shekhar and Manzie [SM15] show that, without shifting the blocking pat-
tern, the optimizer can improve the base sequence by seeking a suitable move-blocked
offset control sequence. Otherwise, the optimizer resorts to the previous solution and
appends the local control law as a terminal control step. With this embedding strategy,
the authors of [SM15] prove recursive feasibility with MBMPC and raise the topic
of closed-loop asymptotic stability, however, do not prove the existence of a suitable
Lyapunov function candidate. The question arises whether the blocking of the input
within the terminal set is important for determining a suitable Lyapunov function.
Son et al. [Son+21] extend this embedding strategy by an interpolation step between
the previous solution and an LQR base sequence. This interpolation step aims at
improving optimality issues and thus the closed-loop control performance, especially
for LTI systems. Here, the optimizer can switch to the pure LQR base sequence and
therefore disable move-blocking inside the terminal set (similar to [Cag+07]). However,
the applicability to nonlinear systems is limited because of the LQR base sequence.
The literature review in this section indicates that closed-loop asymptotic stability for
nonlinear discrete-time systems is still an open problem (see Table A.1 for a tabular
summary). Since this section focuses on the set-point stabilization with online MBMPC
with a receding horizon for discrete-time systems, it does not include contributions that
split the optimization into an offline and an online part as, for example, in [TJ02; GA14],
investigate non-uniform time discretization as, for example, in [YB16], investigate
alternative parameterization as, for example, in [RW08], and implement a shrinking
horizon formulation [Far+20].

2.5. Single Degree of Freedom in Control

The following part of the literature review excludes trajectory planning approaches
based on motion primitives. These motion primitives are deemed feasible for mobile
robot kinematics when internal quantities such as the robot’s velocity and steering
angle are kept constant or at the limit values (e.g., [LaV06]). However, these motion
planning approaches do not directly operate on the input domain. In contrast, one
of the established local motion planners in mobile robotics, namely the dynamic
window approach, discretizes the space of translational and rotational velocities (input
of kinematic model) and keeps them constant while predicting and evaluating the
robot’s trajectories. The dynamic window reduces the combinatorial complexity by
estimating velocities that can be reached with the robot’s maximum acceleration within
a pre-defined time interval [Fox+97]. This approach explicitly considers dynamic
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constraints and is similar to MPTSC. However, MPTSC covers a more general class of
nonlinear systems and provides an adaptive sampling of the input domain. To handle
more complex collision avoidance scenarios, the authors of [Hom+18] extend the basic
MPTSA and introduce an additional degree of freedom in control. Since the switching
point on the horizon is also subject to adaptive sampling, the combinatorial complexity
increases exponentially. In [Hom+19], MPTSC is implemented as a trajectory following
controller, thus having the ability to react locally to new obstacles.
The survey on first industrial MPC realizations until the 2000s in [QB03] records that
single degree of freedom in control (therein referred to as a single move) was already
used in multi-variable predictive control with impulse response models and nonlinear
input-output models. However, as mentioned earlier, this dissertation focuses on
conventional MPC with general nonlinear state space models and classifies the single
degree of freedom in control as an extreme but conventional input move-blocking.
The PhD thesis [Ham95] is closely related to basic MPTSC and also involves a hy-
draulic application. Here, the control task is the positioning of a linear hydraulic
actuator controlled by a serial servo valve, with the position sensor mounted on the
hydraulic linear actuator. Instead of integrating optimal control based on indirect
methods into the MPC framework, a single stage search procedure is introduced for
reducing optimization time significantly. Recall that indirect methods require the so-
lution of a two-point boundary problem. From today’s perspective, this single stage
search represents unconstrained MPC for nonlinear systems relying on single shoot-
ing, extreme input move-blocking, and exact penalty functions for implicitly adhering
to state constraints. Because of the given hardware specification, the control input
signal to the valve is subject to quantization with 480 equidistant distributed levels.
Author S. P. Hampson [Ham95] motivates the implementation of the golden search al-
gorithm, which seeks local optima by reducing the computational effort of exhaustive
search over all quantization levels. Though the numerical simulations and real-time
experiments show promising results, closed-loop stability analysis is missing. The
major differences of MPTSC in [Kel17; Mak+18d] compared to the single stage search
procedure in [Ham95] are the adaptive discretization of the input domain and the
explicit consideration of input and state constraints. Therefore, MPTSC also applies
to systems with non-quantized control inputs. The development of SFMPC is further
dedicated to closed-loop stability analysis. The authors in [BC12] realize MPC with a
single degree of freedom in control for a hybrid pneumatic-electric actuator controlled
by on/off valves. Here, the combination of fixed discrete-valued inputs with a single
degree of freedom enables the efficient application of exhaustive search.

2.6. Input Sampling and Finite Control Sets

Input domain discretization in MPC can either be considered as a property of the
optimization algorithm or directly included in the formulation of the OCP. The first
case is referred to sampling based MPC, while the latter case is known as finite control
set MPC, MPC with quantized inputs, or in general as MPC with discrete-valued
inputs.
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Sampling based model predictive control (SBMPC) has its origin in the navigation and
motion planning of mobile robots [Dun+08; Dun+10]. However, as the authors show,
it can solve generic mixed-integer OCPs with variable horizon. In contrast to common
sample-based motion planners, SBMPC explores the state space by sampling the input
domain. Using an implicit state grid, only those input samples are used for explo-
ration that provide some diversity in the state space. SBMPC thus dynamically builds
a directed graph. Finally, an admissible heuristic is required to realize a goal-directed
optimization, which is not trivial to find for arbitrary nonlinear systems. As the au-
thors in [Dun+10] mention, the implementation is based on extensive experience of the
developer with graph search approaches and requires a special graph search library.
Sampling-driven suboptimal nonlinear model predictive control (SDNMPC) [BL17]
combines sampling-based optimization with suboptimal MPC according to [Sco+99;
Pan+11; All+17]. The main idea behind SDNMPC is to improve the already stabilizing
warm-start by systematically sampling the input domain. In each time interval of the
open-loop prediction, multiple samples are generated either uniformly deterministi-
cally or randomly and only for the current input element. The optimization strategy
behind SDNMPC starts at the end or beginning of the warm-started control sequence
and proceeds sequentially to the first or last element, updating the warm-start as soon
as a better solution is available. Though the Greedy algorithm does not guarantee to
find the optimal solution within a single closed-loop time interval, it can improve the
warm-start. Otherwise, the manually generated warm-start represents a stabilizing
fallback solution according to [Sco+99; Pan+11; All+17]. In the dissertation [Bob17],
author R. V. Bobiti shows that SDNMPC can even converge to the optimal solution
with increasing closed-loop iterations. The more samples SDNMPC generates at each
closed-loop time instant, the faster the algorithm converges to the optimal solution.
However, the very first warm-start results from a derivative based MPC implementa-
tion or originates from an “oracle” [BL17]. The major advantage of SDNMPC is its
derivative-free and strongly parallelizable implementation. In the context of automatic
landing of a fixed-wing aircraft, the authors of [Joo+11] discretize and quantize the
control trajectories with respect to time and amplitude, respectively. The resulting
high combinatorial complexity is addressed using parallel computing on field-pro-
grammable gate arrays (FPGAs). Then, in the sense of exhaustive search, the first
control vector of the best control trajectory is used for closed-loop control. Stabilizing
properties of the closed-loop system are outlined, resulting from simply buffering
previous shifted solutions, augmented by a local control law. However, due to fixed
quantization, an improvement of the buffered control sequences cannot be guaranteed,
such that these cached solutions serve as a pure fallback level.

MPC algorithms that directly operate on graphical processing units (GPUs) mostly
solve complex control tasks. The model predictive path integral control in [Wil+16]
refines stochastic trajectory optimization for scaled autonomous rally vehicles. In
the context of the control of semi-active suspension systems, the authors in [Rat+18]
propose a parameterized MPC scheme that discretizes the control input with respect
to time and amplitude. This MPC scheme is then integrated into an algorithm that
efficiently operates on GPUs [Rat+19]. In [HK17], the authors parameterize the control
trajectory and implement a real-time capable evolutionary optimization algorithm that
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is highly parallelizable on GPUs. In contrast, SFMPC aims at encountering the combi-
natorial complexity by a sparse and time-varying input domain sampling. However,
the resulting finite control sets are directly integrated into the OCP formulation.
There are many contributions in the literature dealing with finite control set MPC
(FCS-MPC), as summarized by the review/survey papers [Goo+10; Rod+13; KG20].
FCS-MPC explicitly exploits the discrete nature of the switching states of power elec-
tronics. Multi-level converters, such as those used in induction motors, have a finite
number of discrete switching states. As the authors discuss in [KG20], most work
dealing with FCS-MPC considers a horizon length of one, since the combinatorial
complexity grows exponentially with the horizon. However, in [GQ14], the authors re-
alize multi-step FCS-MPC with the help of a customized branch-and-bound algorithm.
In [Ste+17], the authors combine a short horizon with a terminal cost function that
approximates the infinite horizon costs based on approximate dynamic programming
according to [Wan+14]. FCS-MPC improves control performance by completely replac-
ing conventional control structures with a predictive control approach. For example,
in the context of linear electromagnetic actuators, the authors in [Has+17] introduce a
cascaded control structure with an outer proportional-integral position controller and
an inner velocity controller based on FCS-MPC (in simulation).
The publications [Pic+03; AQ11; AQ13] present a more general investigation on MPC
with finite control sets. These papers deal with an in-depth analysis of closed-loop
stability properties with systems with quantized inputs, resulting in a discrete input
alphabet. The contribution [Pic+03] analyzes stabilization of discrete-time LTI systems
with uniformly quantized inputs and focuses on the construction of invariant sets.
In [AQ11], the authors treat the quantization error of the input as a disturbance and
apply robust control analysis. The work in [AQ13] focuses, inter alia, on determining a
quantized local control law for LTI systems that ensures the existence of an ultimately
bounded invariant set containing the origin.
Rawlings and Risbeck [RR17a] show that common optimal and suboptimal MPC with
stabilizing terminal ingredients cover both systems with only continuous- as well as
partially discrete-valued inputs since the derivations on closed-loop stability do not
require the control set to have an interior.
As already mentioned, SFMPC does not focus on systems with quantized or dis-
crete-valued inputs in general. Rather, its development aims at replacing existing
low-level controllers with continuous-valued control signals by the novel model pre-
dictive low-level control concept.
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3
Fundamentals

The fundamentals and the notation mainly rely on the textbooks [GP17] and [Raw+20].
Parts of the following description have been used in a similar form in [Mak+22].

3.1. Discrete-Time Optimal Control Problem

The discrete-time formulation enables a concise notation and a straightforward deriva-
tion of important closed-loop properties with MPC. However, to connect the dis-
crete-time domain with the continuous-time behavior of mechatronic systems, a sam-
pled data formulation is used in Section 3.4. The following difference equation de-
scribes a discrete-time, nonlinear, and time-invariant system with the control trajectory
u : N0 7→ U and the state trajectory x : N0 7→ X:

x+ := x(k + 1) = f
(

x(k), u(k)
)
, x(0) := x0. (3.1.1)

Here, X := Rp and U := Rm are Euclidean spaces with the dimensions p ∈ N and
m ∈ N, respectively. Equation (3.1.1) determines the successor state vector x(k + 1) at
the next time instant k + 1 and uses the state vector x0 ∈ X for initialization.

Assumption 3.1.1: Continuity of transition map
(
[Raw+20, Asm. 2.2]

)
. The transition

map f : X×U 7→ X is continuous. For some steady state (xf, uf), the transition map
satisfies f (xf, uf) = xf.

The state sequence x :=
(

x(0), x(1), ..., x(N)
)
∈ XN+1 results from controlling the

nonlinear system (3.1.1) by the input sequence u :=
(

u(0), u(1), ..., u(N − 1)
)
∈ UN.

Here, N ∈ N denotes the prediction horizon. Note that the sequence formula-
tion reshapes the individual vectors separated by commas into a single row vec-
tor. Hence, separation by a comma has a different interpretation in the multi-di-
mensional space than in the scalar case with x(k) =

(
x1(k), x2(k), ..., xp(k)

)⊺ and
u(k) =

(
u1(k), u2(k), ..., um(k)

)⊺. In the case of a single-input system, the index is ob-
solete such that u(k) := u1(k) applies. The function φ : N0 × X×UN 7→ X describes
the open-loop state trajectory at different time points, providing information about
the initial state vector and the applied control sequence:

x(k) := φ(k, x0, u) =

{
x0 if k = 0,
f
(

φ(k− 1, x0, u), u(k− 1)
)

otherwise.
(3.1.2)
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Since the recursive function φ(·) is a finite composition of the continuous transition
map (3.1.1), continuity of the map (x, u) 7→ φ(k, x, u) directly follows from Assump-
tion 3.1.1 [Raw+20, Prop. 2.1]. This dissertation considers the following composite
finite horizon cost function:

JN(x0, u) :=
N−1

∑
k=0

ℓ
(

φ
(
k, x0, u

)
, u(k)

)
+ F

(
φ(N, x0, u)

)
. (3.1.3)

Assumption 3.1.2: Continuity of cost functions
(
[Raw+20, Asm. 2.2]

)
. The stage cost

function ℓ : X ×U 7→ R+
0 and the terminal cost function F : X 7→ R+

0 are continuous.
The individual functions satisfy ℓ(0p, 0m) = 0 and F(0p) = 0.

The second part in Assumption 3.1.2 is important for controlling (open-loop) the
nonlinear system (3.1.1) to the origin (or steady state in general). Again, since the cost
function (3.1.2) is a finite composition of continuous functions, the continuity of JN(·)
on the set X ×UN follows from Assumptions 3.1.1 and 3.1.2 [Raw+20, Prop. 2.4 (a)].
The Euclidean norm ∥ · ∥ and the weighted norm ∥x∥2

Q := x⊺Q x, with a positive

definite weighting matrix Q ∈ Rp×p, represent the distance metrics in this dissertation.
Assumption 3.1.2 is satisfied by implementing quadratic cost functions defined by:

ℓ
(

x̆(k), ŭ(k)
)

:= ∥ x̆(k)∥2
Q + ∥ŭ(k)∥2

R, ∀ k ∈ N[0,N−1], F
(

x̆(N)
)

:= ∥ x̆(N)∥2
P. (3.1.4)

Here, Q ∈ Rp×p, R ∈ Rm×m, and P ∈ Rp×p are positive definite weighting matrices.
Applying coordinate transformation yields x̆(k) := x(k)− xf and ŭ(k) := u(k)− uf.
If not otherwise stated, the reference vectors are defined as xf := 0p and uf := 0m.
In the following, the sets U ⊂ U, X ⊆ X, and Xf ⊆ X represent the input, state, and
terminal constraint sets, respectively.

Assumption 3.1.3: State and input constraint sets
(
[RR17a, Asm. 2]

)
. The state constraint

set X is closed. The terminal set Xf ⊆ X is closed and contains the reference state
vector xf in its interior. The input constraint set U is compact and contains the
reference input vector uf.

Recall that a compact subset of the Euclidean space is closed and bounded (e.g.,
[Blo97, Sec. 1.6]). Hence, the input constrained set U includes the maximum element
max U := umax = (umax,1, umax,2, ..., umax,m)⊺ and the minimum element min U :=
umin = (umin,1, umin,2, ..., umin,m)

⊺. Since the state constraint set X is assumed to be a
closed subset of the Euclidean space, it contains all of its boundary points (see, e.g.,
[Blo97, Sec. 1.2]). The open-loop system must explicitly adhere to input and state
constraints. Therefore, the set of all admissible control sequences is defined by:

UN(x0) := {u ∈ UN | φ
(
k, x0, u

)
∈ X, ∀ k ∈ N[0,N−1], φ

(
N, x0, u

)
∈ Xf}. (3.1.5)

The constraint sets U, X, and Xf can be represented by a finite number of non-strict
inequalities (polyhedral constraints). As already noted, the map u 7→ φ(k, x0, u) is
continuous. Therefore, the admissible set UN(x0) is closed and further compact since
UN(x0) ⊂ UN [Raw+20, Prop. 2.4 (b)]. Recall that a closed subset of a compact set is
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compact (see, e.g., [Blo97, Sec. 1.6]). Based on the previous definitions, the OCP with
a full degree of freedom in control is given by:

VN(x0) := min
u ∈ UN(x0)

JN(x0, u). (3.1.6)

Since the cost function JN(·) is continuous
(
and thus is JN(x0, ·)

)
and the set UN(x0) is

compact, the Weierstrass extreme value theorem can be used to prove that OCP (3.1.6)
has a solution for all x0 ∈ XN [Raw+20, Prop. 2.4 (c)]. In other words, if UN(x0) is not
empty, OCP (3.1.6) is called feasible for x0 [GP17, p. 49]. Consequently, the feasible set
contains all initial state vectors for which an admissible control sequence exists:

XN := {x0 ∈ X | UN(x0) ̸= ∅}. (3.1.7)

The feasible set XN is closed [Raw+20, Prop. 2.10]. Here, the proof of closedness is
based on the Bolzano-Weierstrass convergence theorem, assuming that the transition
map is continuous (see Asm. 3.1.1) and the terminal set Xf is closed (see Asm. 3.1.3).
The optimal solution for which OCP (3.1.6) attains its globally optimal solution is
denoted by u∗(x0) :=

(
u∗(0, x0), u∗(1, x0), ..., u∗(N− 1, x0)

)
∈ UN(x0). If the solution

u∗(x0) is not unique, then there are at least two control sequences that return the same
cost function value. In such cases, assume that the optimization framework simply
selects a control sequence. In the remainder of this dissertation, the term open-loop
control refers to the conventional optimal control without applying a feedback law.

3.2. Conversion to a Nonlinear Program

This section summarizes the main steps to transform the discrete-time OCP (3.1.6) into
a mathematical representation that a numerical optimization algorithm can process.
The following description only presents the main steps up to the interface of an ideal
optimizer. Appendix A.1 provides visual details on structure and sparsity exploitation,
while Appendix A.2 summarizes the fundamentals of constrained optimization.
Conventional optimization algorithms, such as the general purpose solver IPOPT
[WB06], solve common parameter optimization problems that are subject to equality
and inequality constraints. A nonlinear cost function and/or nonlinear constraints
turn the optimization problem into a nonlinear program (NLP). A common NLP
adopts the following structure (e.g., [NW06, Eq. 12.1]):

min
z ∈ Rω

ψ(z) subject to

{
hi(z) = 0, ∀ i ∈ E ⊂ N0,
gi(z) ≤ 0, ∀ i ∈ I ⊂ N0.

(3.2.1)

Here, ψ : Rω 7→ R+
0 , hi, gi : Rω 7→ R represent the continuous cost and constraint

functions, respectively, with ω ∈ N. The optimal solution z∗ has to adhere to the
constraints hi(z∗) = 0 and gi(z∗) ≤ 0 for all indices i ∈ E and i ∈ I . A solution to
NLP (3.2.1) has to satisfy the Karush-Kuhn-Tucker (KKT) conditions, which represent
the necessary conditions in constrained optimization (e.g., [NW06, Th. 12.1]). To solve
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OCP (3.1.6) numerically, first, all constrained sets are represented by a system of
algebraic inequalities.
The intersection of a finite number of closed half-spaces lx ∈ N can represent the
closed state constraint set X, also referred to as the polyhedral constraint set (e.g.,
[Bor+17, Sec. 4.2]):

X := {x ∈ X | Gx x ⪯ hx}, Gx ∈ Rlx×p, hx ∈ Rlx . (3.2.2)

Since this dissertation only focuses on box-constraints, a closed convex polytope rep-
resents the compact input constraint set (e.g., [Bor+17, Sec. 4.2]):

U := {u ∈ U | Guu ⪯ hu}, Gu ∈ Rlu×m, hu ∈ Rlu . (3.2.3)

Here, lu ∈ N is the number of closed half-spaces. A polytope is said to be a bounded
polyhedron (e.g., [Bor+17, Sec. 4.2]). For example, if a second-order system with
a single input is subject to input and state box-constraints, umin ≤ u ≤ umax and
(xmin,1, xmin,2)

⊺ ⪯ x ⪯ (xmax,1, xmax,2)
⊺, the polyhedral constraints are defined as:(

1
−1

)
u ⪯

(
umax
−umin

)
,
(

1 −1 0 0
0 0 1 −1

)⊺

x ⪯ (xmax,1,−xmin,1, xmax,2,−xmin,2)
⊺.

(3.2.4)
In conventional MPC, the terminal set Xf is often approximated by a compact terminal
level set (e.g., [MM93; CA98] and [Raw+20, Sec. 2.5.5]):

levπF := {x ∈ X | F(x) ≤ π} ⊆ Xf, for some small π > 0. (3.2.5)

With F(x) := ∥x∥2
P and P positive definite, the terminal level set levπF is an ellipsoid.

Therefore, a single inequality determines compliance with the terminal constraint.
As mentioned in the previous chapter, a discrete-time OCP renders the steps of dis-
cretizing and paramterizing the control trajectory superfluous. In the discrete-time
domain, every control vector u(k) with k ∈ N[0,N−1] is subject to optimization. How-
ever, there exist different approaches for integrating the system dynamics (3.1.1) into
the NLP (3.2.1). Approaches for embedding system dynamics include recursive elimi-
nation, multiple shooting, and full discretization [GP17, Sec. 12.1].

Recursive Elimination

Let the parameter vector be defined as a control sequence z :=
(

u(0), u(1), ..., u(N −
1)
)
∈ RmN with u(k) ∈ Rm for all k ∈ N[0,N−1]. Recursive elimination uses this

parameter vector z to generate N + 1 state vectors by simply executing the operator
φ(k, x0, z) for all k ∈ N[0,N] with φ(0, x0, z) = x0. The state constraint function is
defined by:

G
(

φ(k, x0, z)
)

:=

{
Gx φ(k, x0, z)− hx if X ⊂ X,
0 if X = X.

(3.2.6)

The terminal constraint function is defined by:

F
(

φ(N, x0, z)
)

:=


F
(

φ(N, x0, z)
)
− π if φ(N, x0, z) ∈ Xf := levπF,

Gx φ(N, x0, z)− hx if φ(N, x0, z) ∈ Xf = X ⊂ X,
0 if φ(N, x0, z) ∈ Xf = X = X.

(3.2.7)
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3.2. Conversion to a Nonlinear Program

The following NLP includes the solution to the nonlinear dynamics (similar to [GP17,
Sec. 12.1]):

min
z ∈ RmN

ψ(z) : = min
z ∈ RmN

N−1

∑
k=0

ℓ
(

φ(k, x0, z), u(k)
)
+ F

(
φ(N, x0, z)

)
(3.2.8)

subject to

Gu z(k) ⪯ hu, ∀ k ∈ N[0,N−1], (u(k) ∈ U)

G
(

φ(k, x0, z)
)
⪯ 0, ∀ k ∈ N[1,N−1], (x(k) ∈ X)

F
(

φ(N, x0, z)
)
⪯ 0. (x(N) ∈ Xf)

The optimization routine triggers an external algorithm to solve the system dynamics
each time the NLP optimizer modifies the elements of the parameter vector z [GP17,
Sec. 12.1]. In direct transcription, this strategy is referred to as the sequential approach,
refer, for example, to [Bin+01]. Assume that the optimizer provides a variation of an el-
ement in u(l) with l ∈ N0. Then, this variation affects the state trajectory (only) on the
interval N[l+1,N]. A parameter variation at l = 0, however, requires a simulation over
the entire horizon. This observation results in a triangular structure of the Jacobian
matrix of the constraint functions (see App. A.1 for visualization). When calculat-
ing derivatives based on finite differences, exploiting matrix structures systematically
reduces computation times (e.g., [GP17, Sec. 12.4]). Consequently, numerical deriva-
tives need to be calculated only for the non-zero elements. This sequential approach
has two major drawbacks as discussed in [GP17, Sec. 12.1] and [Bet98]. A nontrivial
relationship between the control and state trajectories complicates the initialization
of the parameter vector. The second drawback is the numerical sensitivity to small
parameter variations. The longer the horizon, the greater the effect of small changes at
the beginning of the parameter vector z on the states at the end of the horizon. Both
properties may lead to poor convergence behavior of the NLP optimization algorithm.

Multiple Shooting

Multiple shooting is originally used to solve boundary value problems where the
solution of a differential equation is subject to boundary conditions (e.g., [SB93,
Sec. 7.3]). Direct multiple shooting, however, solves continuous-time OCPs [BP84].
Both approaches share the same concept, which can also be transferred to the dis-
crete-time domain as shown in [GP17, Sec. 12.4]. The main idea is to divide the
prediction horizon into T ∈ N shooting intervals and introduce T + 1 shooting nodes
sq ∈ Rp with q ∈ N[0,T]. Let Lq ∈ N0 denote the number of controls within the
q-th shooting interval. For example, L0 is the number of controls between s0 and
s1. The function I(q) := ∑

q−1
i=0 Li with I(0) := 0 determines the time point that

is associated with the shooting node sq on the prediction horizon. On each in-
dividual shooting interval, the optimization routine applies recursive elimination
to generate the required state vectors. Appendix A.1 visualizes the principle of
multiple shooting for the discrete-time domain. Let the parameter vector be de-
fined as z := (s, u) ∈ Rp(T+1)+mN with s :=

(
s0, s1, ..., sT

)
∈ Rp(T+1) and let
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uq :=
(

u(I(q)), u(I(q) + 1), ..., u(I(q) + Lq − 1)
)
∈ RmLq denote the part of the control

trajectory which corresponds to the q-th shooting interval. Then, the optimizer solves
the following NLP (similar to [GP17, Sec. 12.1]):

min
z ∈ Rp(T+1)+mN

ψ(z) : = min
z ∈ Rp(T+1)+mN

T−1

∑
q=0

Lq−1

∑
k=0

ℓ
(

φ(k, sq, uq), u(I(q) + k)
)
+ F( sT)

(3.2.9)

subject to
s0 = x0, (initialization)

Guu(k) ⪯ hu, ∀ k ∈ N[0,N−1], (u(k) ∈ U)

G
(

φ(k, sq, uq)
)
⪯ 0, ∀ q ∈ N[0,T−1], ∀ k ∈ N[0,Lq−1], (x(k) ∈ X)

φ(Lq, sq, uq)− sq+1 = 0, ∀ q ∈ N[0,T−1], (continuity)

F ( sT) ⪯ 0. (x(N) ∈ Xf)

Here, the shooting nodes are directly subject to optimization since φ(0, sq, uq) = sq
applies. Note that NLP (3.2.9) also includes intermediate state vectors between two
shooting nodes sq and sq+1 for all q ∈ N[0,T−1]. Although NLP (3.2.9) involves more
optimization parameters than NLP (3.2.8) and is subject to additional equality con-
straints enforcing continuity, multiple shooting enables faster convergence of optimiza-
tion [BP84]. If the optimizer varies the elements of a shooting node sq, the optimization
routine only needs to execute recursive elimination up to the next shooting node sq+1,
thereby generating state vectors on the interval N[I(q)+1,I(q)+Lq]. Variations of the in-
put vector u(I(q) + l) only affect the state trajectory on the interval N[I(q)+l+1,I(q)+Lq].
The last shooting node sT is directly subject to the terminal constraint with LT = 0.
Since the continuity of the state trajectory is only required after the optimization con-
verges, first- and second-order derivative information matrices exhibit sparse patterns
depending on the number of shooting intervals T [BP84] (see also [GP17, Sec. 12.4]
and App. A.1). Sparse solvers such as IPOPT build on sparse linear system solvers
and sparse algebra and thus can process structure information, provided externally,
to accelerate optimization.

Full Discretization

By setting T = N, the multiple shooting approach turns into the full discretization
approach [GP17, Sec. 12.1], implying Lq = 1 for all q ∈ N[0,N]. In direct transcription,
full discretization is referred to as the simultaneous approach since the NLP opti-
mizer directly accesses and optimizes the state trajectory (e.g., [Bin+01]). With full
discretization, each interval has exactly one control such that u(k) = uk applies. Let
the definitions sk := x(k) and sk+1 := x(k + 1) hold. Then, the continuity constraint
in (3.2.9) is defined by φ

(
1, x(k), u(k)

)
− x(k + 1) = 0 for all k ∈ N[0,N−1]. With full

discretization, there are no intermediate state vectors that are not directly subject to
optimization such as with T < N. The full discretization approach greatly simplifies
NLP (3.2.9), which is shown in (A.1.3) in Appendix A.1.
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3.3. Conventional Nonlinear Model Predictive Control

The main idea in MPC is to solve OCP (3.1.6) at every closed-loop time instant n ∈ N0
and to apply the first control vector of the optimal sequence u∗(x0) to the plant (e.g.,
[ML99; May+00]). To this end, conventional MPC rests upon the following implicit
control law:

µ(x0) =
(
µ1(x0), µ2(x0), ..., µm(x0)

)⊺ := u∗(0, x0). (3.3.1)

The closed-loop system evolves as:

x+0 := xµ(n + 1) = f
(

xµ(n), µ
(

xµ(n)
))

, xµ(0) := xµ,0. (3.3.2)

Throughout this dissertation, the index µ and the variable n indicate the closed-loop
system and its evolution with the state trajectory xµ : N0 → X. The variable xµ,0
defines the initial state at time n = 0. At each time instant n, OCP (3.1.6) is initialized
with x0 := xµ(n). In the nominal case, the successor state x+0 := xµ(n + 1) initializes
OCP (3.1.6) at time instant n+ 1. Let φ

µ

(
n, xµ,0

)
denote the closed-loop state trajectory

at time instant n. In the rest of this dissertation, the term closed-loop control is used
as a synonym for MPC.

Definition 3.3.1: Nominal setting. The internal model and the plant dynamics use the
same state space representation (3.1.1) (no model mismatch). In addition, there are no
disturbances which could affect the evolution of the open- and/or closed-loop system.
Solving a feasible OCP requires an execution time of trun = 0 s.

Unless otherwise stated, this dissertation always investigates the nominal case.
The infinite horizon formulation with N → ∞, Xf = X, and F(·) := 0 represents a
special case and is particularly suitable to introduce theoretical analyses in MPC [GP17,
Ch. 4]. If there exists a finite solution at time instant n, it follows from Bellman’s
principle of optimality that V∞(x0) = ℓ

(
x0, µ(x0)

)
+ V∞(x+0 ) (e.g., [GP17, Thm. 4.6]).

Therefore, the closed- and open-loop trajectories coincide exactly in the case of an
infinite horizon assuming nominal setting (e.g., [GP17, Cor. 4.7]). Solving OCP (3.1.6)
at time instances n > 0 is actually not required. Closed-loop stability mainly follows
from assuming asymptotic controllability [GP17, Def. 4.2, Thm. 4.3+4.8]. However, the
realization of an infinite horizon is not possible in practice for arbitrary systems, since
an infinite horizon obviously implies an infinite number of optimization parameters.
Conventional MPC with a finite receding horizon, however, optimizes the internal
system behavior only for some steps in the future, allowing practical realization. Thus,
in order to transfer the nonlinear system (3.1.1) to the origin and to stabilize the origin
with the system of interest, it is necessary to solve OCP (3.1.6) repeatedly as the system
evolves. Since the implicit control law (3.3.1) relies on the solution to an optimization,
it is important to ensure that xµ(n) ∈ XN for all n ∈ N0. Recall that OCP (3.1.6) is
only feasible if xµ(n) ∈ XN.

Basic Stability Definitions

This subsection summarizes the most important definitions for MPC concerning as-
ymptotic stability of the origin.
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Definition 3.3.2: Positive invariant set
(
[Raw+20, Def. 2.9]

)
. The set X ⊆ Rp is positive

invariant for the system x+ = g̃(x) if x+ ∈ X holds for all x ∈ X .

Definition 3.3.3: Control invariant set
(
[Raw+20, Def. 2.9]

)
. Let X ⊆ Rp be a control

invariant set for the system x+ = f
(

x, u
)
. Then, there exists a control vector u ∈ U

for all x ∈ X such that x+ ∈ X .

Assume that the feasible set XN is positive invariant for the closed-loop system (3.3.2).
Then, XN is also called to be recursively feasible [GP17, p. 51]. This property is a
necessary prerequisite for asymptotic stability of the origin in XN . Let φ

g

(
n, x

)
denote

the state trajectory of the system x+ = g̃(x) at time instant n with the initial state x.
In the following, let X ⊆ Rp be a positive invariant set for the system x+ = g̃(x). The
closed unit ball is denoted by Bδ := {x ∈ X | ∥x∥ ≤ δ}.
Definition 3.3.4: Local stability in the sense of Lyapunov 1. The origin is locally stable in X
for the system x+ = g̃(x) if for any ϵ > 0 there exists a δ > 0 such that ∥φ

g

(
n, x

)
∥ ≤ ϵ

holds for all n ∈ N0 and all x ∈ X ∩ Bδ.

Definition 3.3.5: Attraction 1. The origin is attractive in X for the system x+ = g̃(x) if
∥φ

g

(
n, x

)
∥ → 0 as n→ ∞ for all x ∈ X .

Definition 3.3.6: Asymptotic stability 1. The origin is asymptotically stable in X for the
system x+ = g̃(x) if it is locally stable and attractive in X . The origin is globally
asymptotically stable if it is asymptotically stable on X = X.

A function α : R+
0 7→ R+

0 is said to be of class K if it is continuous, strictly increasing
and zero at zero. If it is unbounded in addition, then it is a member of the class K∞.
Note that the relationship K∞ ⊂ K holds.

Definition 3.3.7: Lyapunov function 2. The function V : X 7→ R+
0 is a Lyapunov function

candidate on the positive invariant set X for the system x+ = g̃
(

x
)

if it satisfies the
following inequalities with α1(·), α2(·) ∈ K∞ and α3(·) ∈ K for all x ∈ X :

α1(∥x∥) ≤ V(x) ≤ α2(∥x∥), V
(

g̃(x)
)
≤ V(x)− α3(∥x∥). (3.3.3)

Theorem 3.3.1: Lyapunov’s direct method 3. Let X be the positive invariant set for the
system x+ = g̃(x). Suppose that there exists a Lyapunov function V(·) on the set
X for the system x+ = g̃(x). Then, the origin is asymptotically stable in X for
the system x+ = g̃(x). The origin is globally asymptotically stable for the system
x+ = g̃(x) if X = X. The origin is exponentially stable if there exist power-law
bounds αi(∥x∥) = bi∥x∥ν with i ∈ N[1,3] and ν, bi ∈ R+.

Stability Analysis with Stabilizing Terminal Conditions

For conventional MPC with stabilizing terminal conditions, it can be shown that the
optimal cost function VN(·) satisfies the Lyapunov inequalities in (3.3.3) [May+00].

1 See [GP17, Def. 2.14], [Raw+20, Def. B.10]. 2 See [GP17, Def. 2.18], [Raw+20, Def. 2.12]. 3 See [GP17,
Thm. 2.19], [Raw+20, Thm. 2.13].
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Assumption 3.3.1: Bounds for cost functions
(
[Raw+20, Asm. 2.14]

)
. There exists a func-

tion αℓ(·) ∈ K∞ such that ℓ(x, u) ≥ αℓ(∥
(

x, u
)
∥) ≥ αℓ(∥x∥) holds for all x ∈ X and

u ∈ U. There exists a function αf(·) ∈ K∞ such that αf(x) ≥ F(x) holds for all x ∈ Xf.

For costs in quadratic form with positive definite weighting matrices Q and R, the
comparison functions follow directly from the scaled versions of the individual cost
functions. Stabilizing terminal conditions further build on a local control Lyapunov
function (CLF) and bind the final predicted state to a control invariant terminal set Xf
(e.g., [May+00, Asm. A1-A4] and [Raw+20, Asm. 2.14]).

Assumption 3.3.2: Control invariant terminal set
(
[Raw+20, Asm. 2.14]

)
. The terminal

set Xf is control invariant for system (3.1.1). The local control law κ : X 7→ U ensures
that:

f
(

x, κ(x)
)
∈ Xf and κ(x) ∈ U if x ∈ Xf. (3.3.4)

In addition, the local controller renders the origin asymptotically stable in Xf for the
system x+ = f

(
x, κ(x)

)
such that F(·) represents a local CLF for all x ∈ Xf:

F
(

f
(

x, κ(x)
))
− F

(
x
)
≤ −ℓ

(
x, κ(x)

)
. (3.3.5)

The following theorem summarizes stability properties of conventional MPC with
stabilizing terminal conditions.

Theorem 3.3.2: Asymptotic stability with conventional MPC
(
[Raw+20, Thm. 2.19]

)
. Sup-

pose Assumptions 3.1.1-3.1.2 and 3.3.1-3.3.2 hold. Then, the optimal cost function
VN(·) represents a Lyapunov function in the set XN for the closed-loop system (3.3.2)
with α1(·), α2(·) ∈ K∞ for all x0 ∈ XN:

α1(∥x0∥) ≤ VN(x0) ≤ α2(∥x0∥), VN

(
f
(

x0, µ(x0)
))
≤ VN(x0)− α1(∥x0∥). (3.3.6)

Consequently, the origin is asymptotically stable in the positive invariant set XN for
the closed-loop system (3.3.2).

The lower bound in Theorem 3.3.2 follows from Assumption 3.3.1 with α1(·) := αℓ(·).
Optimality of OCP (3.1.6) and Assumption 3.3.2 imply that

ℓ
(

x, u∗(0, x)
)
+ F

(
f
(

x, u∗(0, x)
))
≤ ℓ

(
x, κ(x)

)
+ F

(
f
(

x, κ(x)
))
≤ F

(
x
)
, (3.3.7)

holds for all x ∈ Xf. Hence, V1(x) ≤ F(x) applies for all x ∈ Xf [Raw+20, Prop. 2.18].
Based on the principle of optimality, this monotonicity property can be extended
such that 0 ≤ VN+1(x) ≤ VN(x) ≤ F(x) ≤ αf(∥x∥) holds for all x ∈ Xf and N ∈
N [Raw+20, Prop. 2.16]. Since by Assumption 3.1.3 the terminal set Xf contains the
origin in its interior, the origin does not lie on the boundary of the terminal set. This
allows to enclose the origin with an open ball which is fully contained in Xf. Since the
monotonicity property applies in some neighborhood of the origin, VN(·) is continuous
at the origin [Raw+20, Prop. 2.16]. Note that a Lyapunov function candidate only
needs to be continuous at the origin and not on the whole set of interest. Since VN(·)
is bounded on every compact subset of the feasible set XN , it is locally bounded on XN
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[Raw+20, Prop. 2.15]. The proof in [Raw+20, Prop. 2.15] relies on the fact that the
optimal cost function VN(·) inherits the upper cost bound from the continuous cost
function JN(·) on the same compact subset of XN × UN(x) with respect to the first
argument. The existence of the upper bound α2(·) in Theorem 3.3.2 finally follows
from [RR17b, Prop. 14]. In fact, Proposition 14 in [RR17b] states that there exists a
comparison function α(·) ∈ K in some closed set X ⊆ X for the function V : X 7→ R+

0
if X contains the origin in its interior, V(·) is continuous at the origin and locally
bounded on X . Then, the inequality V(x) ≤ α(∥x∥) holds for all x ∈ X . The optimal
cost function VN(·) satisfies all these requirements on the set XN.
Let Ωsta : X×UN 7→ UN be the operator which shifts and truncates a control sequence
by one step and then appends the local control law. Applying this operator to the op-
timal solution generates the following control sequence with x∗N := φ

(
N, x0, u∗(x0)

)
:

ũ(x+0 ) := Ωsta
(

x0, u∗(x0)
)
=

(
u∗(1, x0), u∗(2, x0), ..., u∗(N − 1, x0), κ(x∗N)

)
. (3.3.8)

The following inequality follows by substituting the shifted sequence ũ(x+0 ) into the
cost function JN(·) (e.g., [Raw+20, pp. 116-118]):

VN(x+0 ) ≤ JN
(

x+0 , ũ(x+0 )
)
=VN(x0)− ℓ

(
x0, µ(x0)

)
+

− F
(

x∗N
)
+ ℓ

(
x∗N, κ(x∗N)

)
+ F

(
f
(

x∗N, κ(x∗N)
))

.
(3.3.9)

By Assumption 3.3.2, the last three terms in (3.3.9) are smaller or equal to zero. There-
fore, combining (3.3.9) with Assumption 3.3.2 yields the second inequality in Theo-
rem 3.3.2 for all x0 ∈ XN (e.g., [Raw+20, pp. 116-118]):

VN(x+0 ) ≤ VN(x0)− ℓ
(

x0, µ(x0)
)
≤ VN(x0)− α1(∥x0∥). (3.3.10)

By Theorem 3.3.1, the origin is asymptotically stable for the closed-loop system (3.3.2).
If u∗(x+0 ) = ũ(x+0 ) is the optimal solution to OCP (3.1.6) at time n + 1, the presented
derivation assumes that the optimizer finds this solution. Hence, explicit switching
to the local controller is not required. If ũ(x+0 ) is not the optimal solution, then there
exists a better solution that the optimizer can also find. MPC with stabilizing terminal
conditions inherits the invariance property of the terminal set Xf such that the feasible
set XN becomes positive invariant for the closed-loop system (3.3.2).

Remark 3.3.1: Terminal equality constraint. A terminal equality constraint, as presented
in [KG88], allows to bypass the determination of a control invariant set Xf and a local
control law κ(·) by reducing the terminal set to Xf := {0p} with F(0p) = 0. Here,
the local control law κ(·) := 0m satisfies Assumption 3.3.2. Only the derivation of
the upper bound α2(·) in Theorem (3.3.1) requires some modifications (e.g., [GP17,
Prop. 5.7]). However, at time n = 0, the nonlinear system (3.1.1) must be controlled
to the origin in a finite number of steps. Hence, the feasible set XN might be smaller
compared to the case where Xf has an interior (see discussion in [GP17, Sec. 7.4]).

Remark 3.3.2: Inherent robustness. Inherent robustness is highly relevant for practical
applications since it indicates the extent to which the nominal MPC configuration
can maintain recursive feasibility and/or asymptotic stability in the presence of small
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disturbances (e.g., [Raw+20, Sec. 3.2]). Grimm et al. [Gri+04] demonstrate that nominal
MPC with state constraints might exhibit absolutely no robustness margins. Numerous
papers focus on proving the existence of suitable bounds for external disturbances
such that robust recursive feasibility and robust asymptotic stability can be ensured
(e.g., [Fin+03; Gri+07; Pan+11; All+17]). The experimental part of this dissertation in
Chapter 6 simply assumes robustness margins, while the theoretical parts in Chapter 7
and Chapter 8 inherit the robustness properties from [All+17] under mild assumptions.

Design of Stabilizing Terminal Conditions

The following description follows the most common design guidelines for terminal
ingredients, as summarized and prepared in [Raw+20, Sec. 2.5.5]. The nonlinear sys-
tem (3.1.1) is first linearized at the origin (or steady state in general):

A :=
∂ f (x, u)

∂ x

∣∣∣
(0p,0m)

, B :=
∂ f (x, u)

∂u

∣∣∣
(0p,0m)

, x+ = A x + Bu, ∀ x ∈ X, ∀ u ∈ U.

(3.3.11)
In this dissertation, linearization relies on central finite differences.

Definition 3.3.8: Stabilizability. The linear system x+ = A x + Bu with x ∈ X and
u ∈ U is stabilizable if there exists a local control law κ(x) ∈ U such that the origin
is globally asymptotically stable for the system x+ = g̃(x) = A x + Bκ(x) (see, e.g.,
[AM89, Sec. B.3]).

The definition of stabilizability is weaker than the well-known definition of control-
lability since it does not ensure that the linear system can be steered to any point
in the state space. Thus, controllability implies stabilizability. However, a stabi-
lizable system might be not fully controllable. Here, the uncontrollable modes of
x(k + 1) = A x(k) + Bu(k) are assumed to be open-loop stable [AM89, Sec. B.3].

Definition 3.3.9: Stabilizable linearization. There exists a linear control law κ(x) := K x
with x ∈ X and K ∈ Rm×p such that the system x+ = (A + BK)x is stabilizable.

The previous assumption implies that the eigenvalues of the matrix AK := (A + BK)
are inside the unit circle. The infinite horizon costs for the linearized system with
u(k) = K x(k) and some ρ ≥ 1 are denoted by:

J∞ := ρ
∞

∑
k=0

x⊺(k)Q x(k) + u⊺(k)Ru(k) = ρ
∞

∑
k=0

x⊺(k)
(

Q + K⊺ RK
)

x(k). (3.3.12)

For some initial vector x0 ∈ X, the relationship x(k) = Ak
K x0 holds for all k ∈ N0.

With QK := Q + K⊺ RK, the infinite horizon cost function can be simplified as follows:

J∞ := ρ
∞

∑
k=0

(
Ak

K x0
)⊺QK

(
Ak

K x0
)
= x⊺0

(
ρ

∞

∑
k=0

(
Ak

K
)⊺QK Ak

K

)
x0. (3.3.13)

Therefore, evaluating F
(

x(l)
)
= x⊺(l)P x(l) with P := ρ ∑∞

k=l(Ak
K)

⊺QK Ak
K deter-

mines the infinite horizon costs for the linear system x(k + 1) = AK x(k), starting
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from the current state vector x(l) with l ∈ N0. Because of the infinite horizon for-
mulation, the terminal cost function F(·) represents a global CLF for the linearized
system (see [Raw+20, Eq. (2.22)]):

(AK x)⊺ P (AK x)− x⊺ P x = −x⊺ρ QK x ⇔ F(AK x)− F(x) = −ρℓ(x, K x), ∀ x ∈ X,

⇔ A⊺
K P AK − P = −ρ QK. (Discrete Lyapunov equation) (3.3.14)

The last equation in (3.3.14) is the well-known discrete Lyapunov equation. Solving
this equation yields the matrix P, which is required for the terminal cost function
in (3.1.4). Now, the main idea is to apply the linear control law K x to the nonlinear
system (3.1.1) in some small neighborhood of the origin [Raw+20, Eq. (2.23)]:

F
(

f (x, K x)
)
− F(x) ≤ −ℓ(x, K x) = x⊺QK x, ∀ x ∈ levπF. (3.3.15)

The authors of [Raw+20] substitute the global CLF (3.3.14) into the local CLF (3.3.15),
which results in:

F
(

f (x, K x)
)
− F(AK x) ≤ (ρ− 1)x⊺QK x, ∀ x ∈ levπF. (3.3.16)

Finally, the authors of [Raw+20, p. 141] prove that for some ρ > 1 there exists a π > 0
satisfying inequality (3.3.16) and therefore also inequality (3.3.15). Note that satisfying
inequality (3.3.15) is necessary to ensure asymptotic stability (see Asm. 3.3.2).

Remark 3.3.3: Numerical determination of the terminal level set. To determine the terminal
set numerically, the following semi-infinite optimization problem (finite number of
optimization parameters, infinite number of constraints) needs to be solved for a
selected ρ > 1 [May13] (see also [MM93; CA98]):

π∗ := max π, subject to inequality (3.3.16), ∀ x ∈ levπF. (3.3.17)

The smaller the parameter ρ, the more similar are the evolutions of the linear and non-
linear system inside the terminal level set levπF. A straightforward approach to solve
the optimization problem (3.3.17) approximately is a heuristic search, which increases
the value of π incrementally by some small step size while checking inequality (3.3.16)
for some finite number of state samples on the boundary of the terminal level set.

Remark 3.3.4: Constant reference tracking. In some numerical simulations and experi-
ments in this dissertation, the constant reference pair (xf, uf) changes its values. In-
stead of introducing a time-varying reference pair

(
xf(n), uf(n)

)
, the time variable is

reset to n = 0 each time the reference pair changes. Therefore, the stability analysis
is restricted to the time sections where the reference is constant. Since the terminal
level set levπF depends on the system linearization at the current reference pair, this
dissertation assumes some constant π > 0, representing (approximately) a subset of
all terminal sets occurring in the individual experiments. A more rigorous approach
would have to rely on the parameterized representation of terminal ingredients pro-
posed in [Köh+20]. To further guarantee closed-loop stability even at the time of
switching, refer, for example, to the work in [Lim+18]. Here, the authors extend the
OCP by a virtual reference, which is considered as an additional optimization variable.

30



3.4. Sampled Data System with Zero-Order Hold

Remark 3.3.5: Riccati equation. The gain matrix K can be chosen optimally by mini-
mizing analytically the cost function in (3.3.13) (e.g., [Ack85, Sec. 9.4.1]):

P = A⊺ P A− (A⊺ P B)(ρ R + B⊺ P B)−1(B⊺ P A) + ρ Q, (3.3.18)

K := −(ρ R + B⊺ P B)−1 B⊺ P A. (3.3.19)

The solution to the Riccati equation (3.3.18) satisfies the Lyapunov equation (3.3.14).
Unless otherwise stated, the parameter ρ is equal to one.

3.4. Sampled Data System with Zero-Order Hold

This subsection mainly follows the presentation in [GP17, Sec. 2.2]. The continuous-
time, nonlinear, and time-invariant systems in this dissertation are described, respec-
tively, by an ordinary differential equation of the following form with the control
trajectory σ : R+

0 7→ Rm and the state trajectory χ : R+
0 7→ Rp:

χ̇(t) :=
d χ(t)

dt
= f

c

(
χ(t), σ(t)

)
, χ(t) =

(
χ1(t), χ2(t), ..., χp(t)

)⊺. (3.4.1)

Here, the vector field f
c

: Rp×Rm 7→ Rp is assumed to be continuous and Lipschitz in
its first argument. The control trajectory is assumed to be piecewise constant according
to the following formulation with the step time Ts ∈ R+:

σ(t) =
(
σ1(t), σ2(t), ..., σm(t)

)⊺ := u(k), ∀ t ∈
[
kTs, (k + 1)Ts

)
, ∀ k ∈ N[0,N−1]. (3.4.2)

Caratheodory’s existence theorem (e.g., [Hal09]), ensures that there exists a unique
solution to the following initial value problem (IVP):

χ(t) := ϕ
(
t, x0, σ(t)

)
:= x0 +

∫ t

t0=0
f

c

(
χ(τ), σ(τ)

)
dτ. (3.4.3)

Here, the state vector x0 is also used to initialize the continuous-time state trajectory
with χ(t0) := x0. With the presented setting, the discrete- and continuous-time state
trajectories coincide at discrete time steps (e.g., [GP17, Thm. 2.7]):

φ
(
k, x0, u

)
= ϕ

(
kTs, x0, σ(t)

)
, ∀ k ∈ N[0,N]. (3.4.4)

In practice, however, the IVP (3.4.3) cannot be solved exactly for arbitrary nonlinear
systems. An approximate solution to the IVP (3.4.3) is obtained by applying iterative
solution methods such as the Euler or Runge-Kutta method, as shown in, for exam-
ple, [SB93, Sec. 7.2]. Within this dissertation, the integration approaches are always
defined on a uniform and fixed time grid tl+1 = tl + ∆ts with t0 = 0 s, l ∈ N0, and the
sampling time ∆ts ∈ R+. Assume that each interval Ts = γ∆ts allows oversampling
with the number of steps per interval γ ∈ N. With piecewise constant controls, the
Runge-Kutta integration kernel, for example, is given by (e.g., [SB93, Sec. 7.2]):

Ξ
(

x, σ(tl)
)

:=
1
6
(Ξ1 + 2 Ξ2 + 2 Ξ3 + Ξ4), x ∈ Rp,

Ξ1 := f
c

(
x, σ(tl)

)
, Ξ2 := f

c

(
x +

1
2

∆ts Ξ1, σ(tl)
)
,

Ξ3 := f
c

(
x +

1
2

∆ts Ξ2, σ(tl)
)
, Ξ4 := f

c

(
x + ∆ts Ξ3, σ(tl)

)
.

(3.4.5)
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The application of iterative integration methods can also be considered as discretizing
the continuous-time system. Consequently, the evolution of the discretized system
results from the following recursion:

ϕ
Σ

(
tl, x0, σ(t)

)
:=

x0 if l = 0,

ϕ
Σ

(
tl−1, x0, σ(t)

)
+ ∆ts Ξ

(
ϕ

Σ

(
tl−1, x0, σ(t)

)
, σ(tl−1)

)
otherwise.

(3.4.6)
For a fixed sampling time ∆ts > 0, the discretization error is thus given by:

∥ϕ
(
tl+1, x0, σ(t)

)
− ϕ

Σ

(
tl+1, x0, σ(t)

)
∥ ≥ 0, ∀ l > 0. (3.4.7)

All numerical simulations in this dissertation involve the same state space represen-
tation and iterative integration method for the internal model and the plant, such
that the definition φ(k, x0, u) := ϕ

Σ

(
kTs, x0, σ(t)

)
is used for all k ∈ N[0,N]. However,

to capture the characteristic properties of the originally continuous-time benchmark
systems, the sampling time ∆ts follows from a systematic identification procedure.
The main idea is to determine the lowest exponent i ∈ N[0,12] in ∆ts = 2−i s such that
the resulting time performance does not exceed a specified error bound compared to
a reference integration approach with i = 12 (see [Wor12, Sec. 1.3]). The sampling
time ∆ts = 2−12 s is sufficiently small to capture all dynamical effects of the selected
benchmark systems. Appendix A.4 describes this procedure in more detail. Though
numerical integration in this dissertation provides the values of the state trajectories
on a fixed time grid for nonlinear systems, all figures show continuously connected
graphs. Let χ̂(t) =

(
χ̂1(t), χ̂2(t), ..., χ̂p(t)

)⊺ be the state trajectory that coincides with
the state trajectory resulting from iterative integration with χ̂(tl) := ϕ

Σ

(
tl, x0, σ(t)

)
,

tl+1 = tl + ∆ts, tl = 0 s, and l ∈ N0. To distinguish between the open- and closed-loop
control performances, the index µ is introduced to indicate the closed-loop system
evolution as follows:

σµ(t) =
(
σµ,1(t), σµ,2(t), ..., σµ,m(t)

)⊺ := µ
(

xµ(n)
)
, ∀ t ∈

[
nTs, (n + 1)Ts

)
, n ∈ N0,

χ̂
µ
(tl) =

(
χ̂µ,1(tl), χ̂µ,2(tl), ..., χ̂µ,p(tl)

)⊺ := ϕ
Σ

(
tl, xµ,0, σµ(t)

)
, ∀ l ∈ N0.

(3.4.8)

In the case of a single-input system, the input is denoted by σµ(t) := σµ,1(t). For
visualization between discrete time steps tl and tl+1, all state variables with a hat are
determined using interpolation.

Remark 3.4.1: Linear systems. Let the continuous- and discrete-time linear state space
representations be given by f

c

(
χ(t), σ(t)

)
:= Ac χ(t) + Bc σ(t) and f

(
x(k), u(k)

)
:=

A x(k) + Bu(k), respectively. With the chosen control parameterization (sample and
zero-order hold), there exists an exact relationship between the individual domains
(e.g., [Ack85; Lun16]):

A = e Ac Ts , B = A−1
c (A− Ip)Bc. (3.4.9)

Here, the matrix Ac is assumed to be a non-singular square matrix. Therefore,
χ̂(kTs) = φ(k, x0, u) and χ̂

µ
(nTs) = φ

µ

(
n, xµ,0

)
are defined for all k, n ∈ N0.
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4
Single Degree of Freedom Model

Predictive Control

This chapter introduces the basic formulation of SFMPC and examines the straight-
forward implementation and the resulting closed-loop properties. The initial analysis
of SFMPC with uncountable control sets inspires the specific formulation of finite
control sets and their evolution over time. Parts of this chapter have been published
in [Mak+17; Mak+18d; Mak+18e; Mak+20].

4.1. Basic Formulation

The first step in SFMPC is to limit the degrees of freedom in control to a single degree.
In this case, all vectors of the control sequence share the same value us ∈ U. Let
Θs

N : U 7→ UN be the operator that reshapes a single vector into a sequence of equal
vectors (e.g., [Cag+07]):(

u(0) = us, u(1) = us, ..., u(N − 1) = us
)
= Θs

N(us) :=
(

1N ⊗ Im
)

us. (4.1.1)

Here, ⊗ denotes the Kronecker product. The set of all admissible control sequences
with a single degree of freedom is denoted by:

U s
N(x0) := {u ∈ UN | u(k) = u(0), φ

(
k, x0, u

)
∈ X, ∀ k ∈ N[0,N−1], φ

(
N, x0, u

)
∈ Xf}.
(4.1.2)

Since the admissible set U s
N(x0) only differs from UN(x0) by imposing additional

equality constraints on the control trajectory, U s
N(x0) is also closed and further com-

pact because U s
N(x0) ⊂ UN . The equality constraints select those control vectors which

lie on a hyperline passing through the origin. Note that JN(x0, ·) and φ(k, x0, ·) are
still continuous on the set U s

N(x0). The closed feasible state space contains all initial
states from which the nonlinear system (3.1.1) can be steered to the terminal set Xf at
constant control:

X s
N := {x0 ∈ X | U s

N(x0) ̸= ∅}. (4.1.3)

Input move-blocking yields the relations U s
N(x0) ⊆ UN(x0) and X s

N ⊆ XN. Basic
SFMPC builds upon the solution to the following OCP:

Vs
N(x0) := min

us ∈ P̄
JN

(
x0, Θs

N(us)
)

subject to Θs
N(us) ∈ U s

N(x0). (4.1.4)

33



Chapter 4. Single Degree of Freedom Model Predictive Control

Let the place holder set be defined by P̄ := U. Regardless of the definition of the
place holder set, u∗s (x0) denotes the optimal solution to OCP (4.1.4) and generates
the control sequence u∗s (x0) :=

(
u∗(0, x0) = u∗s (x0), u∗(1, x0) = u∗s (x0), ..., u∗(N −

1, x0) = u∗s (x0)
)
= Θs

N
(

u∗s (x0)
)
∈ U s

N(x0). Note that for solving OCP (4.1.4) only a
single control vector u∗s (x0) ∈ U has to be determined. In contrast, in OCP (3.1.6) an
entire control sequence u ∈ UN is subject to optimization. The SFMPC configuration
obviously reduces the computational effort and allows straightforward combinatorial
optimization in Section 4.4. However, limiting the degrees of freedom in control has a
detrimental effect on theoretical closed-loop properties.

4.2. Stability Analysis

SFMPC suffers from the same problem as input move-blocking MPC with a fixed
blocking pattern [Cag+07]. For recursive feasibility and the cost decent property to
hold, the following control sequence has to be an element of U s

N(x+0 ) (see Asm. 3.3.2):

Ωsta
(

x0, u∗s (x0)
)
=
(

u∗(1, x0) = u∗s (x0), u∗(2, x0) =u∗s (x0), ..., u∗(N − 1, x0) = u∗s (x0),

κ
(

φ
(

N, x0, u∗s (x0)
)))

. (4.2.1)

Obviously, if κ
(

φ
(

N, x0, u∗s (x0)
))
̸= u∗s (x0), another degree of freedom in control is

required such that Ωsta
(
u∗s (x0)

)
̸∈ U s

N(x+0 ). In addition, with input move-blocking,
the monotonicity property of the cost function does not apply in general. Here, the
inequality 0 ≤ Vs

N+1(x0) ≤ Vs
N(x0) ≤ F(x0) ≤ αf(∥x0∥) does not hold for all x0 ∈ Xf.

However, this relationship is essential for proving continuity of the cost function Vs
N(·)

at the origin (see Sec. 3.3). Nevertheless, there exist three special system configurations
for which theoretical closed-loop properties even hold with basic SFMPC. The follow-
ing first two cases are rather theoretical and are required for the systematic analysis
of SFMPC in the remainder of this dissertation. The third configuration, in turn, is
directly relevant for practical applications.

Special Case I: One-Step Horizon for Systems with Input and State Constraints (N = 1)

If the horizon is set to N = 1, SFMPC reproduces conventional MPC.

Proposition 4.2.1: SFMPC reproduces conventional MPC. Suppose Assumptions 3.1.1-
3.1.3 and 3.3.1-3.3.2 hold. Define P̄ := U and the implicit control law µ(x0) := u∗s for
all x0 ∈ X s

1 . Then, the optimal cost function Vs
1 (·) in (4.1.4) represents a Lyapunov

function in the set X s
1 for the closed-loop system (3.3.2). Therefore, the origin is

asymptotically stable in the positive invariant set X s
1 for the closed-loop system (3.3.2).

Proposition 4.2.1 is stated without proof since input move-blocking only applies for
N > 1. This implies that Vs

1 (x0) = V1(x0) holds for all x0 ∈ X s
1 = X1. The cor-

responding proof is summarized below Theorem 3.3.2. Note that the monotonicity
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property applies for a horizon of N = 1 such that 0 ≤ Vs
1 (x0) ≤ F(x0) ≤ αf(∥x0∥)

holds for all x0 ∈ Xf. The feasible set includes, in addition to the terminal set Xf, all
initial states from which the nonlinear system (3.1.1) can be steered to the terminal set
by a single control action. Thus, f

(
x0, µ(x0)

)
∈ Xf applies for all x0 ∈ X s

1 = X1.

Special Case II: Linear Systems without Input and State Constraints (N = 1)

The second configuration follows up the first case with N = 1, however, does not
comprise any constraints such that the terminal set levπF can be chosen arbitrarily
large with π > 0 [Raw+20, Sec. 2.5.1].

Proposition 4.2.2: SFMPC reproduces LQR. Assume that the horizon is set to N = 1,
there are no constraints such that the relations U = U and X = Xf = X apply, and the
linear system x+ = f

(
x, u

)
= A x + Bu with x ∈ X and u ∈ U is stabilizable. Con-

sider quadratic form cost functions according to (3.1.4) with positive definite weighting
matrices Q and R. The terminal cost function F(x) = x⊺ P x relies on the solution P
to the Riccati equation (3.3.18). Then, the implicit control law µ(x0) := u∗s (x0), which
is driven by the solutions to OCP (4.1.4) with P̄ := U, renders the origin globally
exponentially stable for the closed-loop system (3.3.2).

This proposition is also stated without proof since with N = 1, SFMPC reproduces
conventional MPC (see Prop. 4.2.1). Though, note that the unconstrained case does
not satisfy Assumption 3.1.3 since U is not compact. However, there exists an al-
ternative derivation that is adopted from [Raw+20, Prop. 2.4]. The linear transition
map f

(
x, u

)
= A x + Bu and the quadratic form functions ℓ(·) and F(·) are contin-

uous. It follows that the composite function J1(·) is also continuous. Therefore, the
set U (x0) := {us ∈ U | J1(x0, us) ≤ π} is closed for arbitrary π ∈ R+ and all x0 ∈ X.
Since J1(x0, us) → ∞ if ∥us∥ → ∞, J1(x0, ·) is coercive such that the set U (x0) is
further bounded. For properties of coercive functions refer, for example, to [Per+88,
Sec. 1.4]. The extreme value theorem applies on the compact set U (x0). Consequently,
there exists a solution to OCP (4.1.4) with N = 1 and P̄ = U = U although U is
unbounded [Raw+20, Prop. 2.4]. By (3.3.13), the terminal cost function F(x0) = x⊺0 P x0
determines the quadratic form costs over an infinite horizon for the linear system
x+ = (A + BK)x = AK x starting at x0. Based on the principle of optimality, it fol-
lows that F(x0) = Vs

1 (x0) = ℓ(x0, K x0) + F(AK x0) holds for all x0 ∈ X. The solution
to OCP (4.1.4) with N = 1 is thus given by u∗s (x0) = u∗s (x0) = K x0 for all x0 ∈ X.
Since the terminal cost function F(·) is a Lyapunov function in X, global exponen-
tial stability follows from Theorem 3.3.1 with α1(∥x0∥) = α3(∥x0∥) = αℓ(∥x0∥) =
b1∥x0∥2

QK
, b1 ∈ (0, 1], and α2(∥x0∥) = αf(∥x0∥) = b2∥x0∥2

P, b2 ≥ 1, for all x0 ∈ X.

Special Case III: Open-Loop Stable Linear System with Input Constraints (N ≥ 1)

If the system of interest is linear, open-loop stable, subject to quadratic form cost
functions with positive definite weighting matrices Q and R, and only subject to
input constraints, stabilizing closed-loop properties can be derived from defining
κ(·) := 0m and F(x) := x⊺ P x, where P is the solution to the Lyapunov equation
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P = A⊺ P A + Q [Raw+20, Sec. 2.5.3] (see also [RM93]). The major modification to
the previous Special Case II is that the terminal cost function now determines the
quadratic form costs over an infinite horizon for the autonomous system x+ = A x
with K x = 0m for all x ∈ X. If the input constraint set U is polyhedral, the admissible
control set UN(x) is again compact for all x ∈ X as in the Special Case I. The following
proposition adapts the findings in [Raw+20, Sec. 2.5.3] to SFMPC with N ≥ 1.

Proposition 4.2.3: SFMPC for input constrained open-loop stable linear systems. Consider
an open-loop stable system x+ = f

(
x, u

)
= A x + Bu with x ∈ X and u ∈ U such

that all eigenvalues of the matrix A lie strictly inside the unit circle. Assume that there
are no state constraints such that X = Xf = X holds. Let the input constraint set U be
defined by a convex polytope that contains the origin according to (3.2.3). Consider
quadratic form cost functions with positive definite weighting matrices Q and R as
defined in (3.1.4). The terminal cost function relies on the solution to the Lyapunov
equation A⊺ P A + Q = P. Assume that the set of admissible control sequences is
given by:

U s
N(x0) := {u ∈ UN | u(k) = u(0), ∀ k ∈ N[1,N−1], F

(
A x0 + Bu(0)

)
≤ F(A x0)}.

(4.2.2)
Then, the implicit control law µ(x0) := u∗s (x0), which is driven by the solutions to
OCP (4.1.4) with P̄ := U, renders the origin globally exponentially stable for the
closed-loop system (3.3.2).

Proof. The convex polytope is compact and contains us = 0m ∈ U. The linear transition
map f (x, u) := A x + Bu and the quadratic form functions ℓ(·) and F(·) are continu-
ous. The constraint F

(
A x0 + Bu(0)

)
≤ F(A x0) is defined by a non-strict (≤) inequal-

ity. Therefore, the admissible input set U s
N(x0) ⊂ UN is closed and bounded and, thus,

compact. The composite function JN(x0, ·) is continuous on the compact set U s
N(x0)

(see [Raw+20, Prop. 2.4 (a)-(b)]). By the Weierstrass extreme value theorem, there exists
a solution to OCP (4.1.4) for all x0 ∈ X s

N (see [Raw+20, Prop. 2.4 (c)]). The optimizer
can selectively disable input move-blocking by falling back to u∗s (x0) = 0mN ∈ U s

N(x0)
for arbitrary N ∈ N. This implies that X s

N = X holds, ensuring recursive feasibility
for all initial states. Quadratic form cost functions satisfy the Assumption 3.3.1 on
the existence of suitable comparison functions. As discussed in the introduction of
Section 4.2, Vs

N(·) does not satisfy the descent property between two closed-loop time
steps. Therefore, consider the terminal cost function F(·), which is bounded as follows
for all x0 ∈ X:

αℓ(∥x0∥) ≤ ℓ(x0, 0m) ≤ JN(x0, 0mN) = F(x0) ≤ αf(∥x0∥). (4.2.3)

To serve as a Lyapunov function, the terminal cost function F(·) needs to satisfy the
following descent property for all x0 ∈ X:

F(x+0 ) = F(A x0 + Bu∗s (x0))
!
≤ F(A x0) = F(x0)− ℓ(x0, 0m) ≤ F(x0)− αℓ(∥x0∥).

(4.2.4)
Case I: N = 1. Quadratic cost functions imply that ℓ

(
x0, u∗s (x0)

)
≥ ℓ(x0, 0m) holds

for all x0 ∈ X. Since J1(x0, us) = ℓ(x0, us) + F(A x0 + Bus), it follows that F
(

A x0 +
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Bu∗s (x0)
)
≤ F(A x0) holds inherently. Case II: N > 1. In this case, a clear rela-

tion between F
(

φ
(

N, x0, u∗s (x0)
))

and F
(

φ(N, x0, 0mN)
)

does not exist. However, the
additional constraint F(A x0 + Bus) ≤ F(A x0) in the definition of UN(x0) ensures
that F

(
A x0 + Bu∗s (x0)

)
≤ F(A x0) holds for all x0 ∈ X. Recall that 0mN ∈ U s

N(x0)
satisfies this additional constraint for all x0 ∈ X. The optimizer either finds a better
constant control sequence or simply resorts to 0mN. Since αℓ(·), αf(·) ∈ K∞, F(·) is a
Lyapunov function in X, global exponential stability follows from Theorem 3.3.1 with
α1(∥x0∥) = α3(∥x0∥) = αℓ(∥x0∥) = b1∥x0∥2

Q, b1 ∈ (0, 1], and α2(∥x0∥) = αf(∥x0∥) =
b2∥x0∥2

P, b2 ≥ 1, for all x0 ∈ X.

4.3. Example: Mass-Spring-Damper System

The second-order linear differential equation Msd ÿ(t) − Dsd ẏ(t) − Csd y(t) = σ(t)
describes the well-known mass-spring-damper system with the output y : R+

0 7→ R

and the input σ : R+
0 7→ R. In this numerical example, the mass Msd = 10, the

spring and damping constants Csd = 35 and Dsd = 12, respectively, are considered
without units. The differential equation is transformed into the following state space
representation with χ(t) =

(
χ1(t) = y(t), χ2(t) = ẏ(t)

)⊺:(
χ̇1(t)
χ̇2(t)

)
=

(
0 1

−Csd/Msd −Dsd/Msd

)
︸ ︷︷ ︸

= Ac

(
χ1(t)
χ2(t)

)
+

(
0

1/Msd

)
︸ ︷︷ ︸

=Bc

σ(t). (4.3.1)

When implementing piecewise constant controls with the step time Ts = 2−5 s, the
continuous-time representation (4.3.1) can be transformed into the discrete-time repre-
sentation x(k + 1) = A x(k) + Bu(k), and vice versa, based on (3.4.9). Hence, control
actions generated in the discrete-time domain are translated into the continuous-time
domain using a zero-order hold element. The eigenvalues of the resulting matrix A lie
strictly inside the unit circle. Both MPC and SFMPC implement quadratic form cost
functions as defined in (3.1.4), considering the following configuration:

Q = diag(1, 0.2), R = 0, A⊺ P A + Q = P, N = 10, |u(k)| ≤ 15. (4.3.2)

Note that X = Xf = X applies for both control concepts. The chosen Lyapunov func-
tion does not impose any requirements on the definiteness of the matrix R. In this
example, the principle of recursive elimination is used to generate the correspond-
ing NLPs for MPC and SFMPC. Figure 4.1 shows the open-loop system evolution
and the closed-loop control performances of MPC and SFMPC in the continuous-
time domain, starting from two different initial states xµ,0 = (−0.8, 0)⊺ (solid lines)
and xµ,0 = (−0.5, 0.8)⊺ (dashed lines). As established in the Special Case III, both
MPC and SFMPC stabilize the origin with the open-loop stable system. Notice that
with µ

(
xµ(n)

)
:= 0 for all n ∈ N0, the open-loop system evolution can be consid-

ered as a closed-loop system evolution. The subplots in the left plot of Figure 4.1
show that the costs are decreasing in the sense of Lyapunov for all three cases. Here,
the cost evolutions are based on the evaluation of x⊺µ(n)P xµ(n) at each time instant
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Figure 4.1.: Open- and closed-loop control of the mass-spring-damper system (open-loop
stable). Left: Phase portrait. System evolutions starting from two different initial states
represented by a cross. The subplots show the corresponding cost evolutions. Right: Closed-
loop control performance over time for different predictive controllers. Note: Solid and dashed
lines are used to distinguish between system evolutions starting from different initial states.

n ∈ N[0,150]. For visualization, the cost graphs are connected continuously. Compared
to the open-loop system evolution, both MPC and SFMPC suppress oscillation and
enable fast transitions to the origin in this particular example. Figure 4.1 highlights
the suppression of oscillation in the state space plot on the left and the time plots
on the right. Therefore, both approaches reduce costs significantly faster than the
controller with µ(·) := 0 (open-loop behavior). Though MPC results in a non-smooth
closed-loop control performance (since R = 0), the costs decrease slightly faster com-
pared to SFMPC. Figure 4.2 serves as a guide for choosing a suitable horizon length
for the mass-spring-damper system with the presented configuration. Throughout this
dissertation, the normalized closed-loop control performance criterion J̄cl is defined
by:

J̄cl :=

1−

[
∑l−1

n=0
(
∥xµ(n)∥2

Q + ∥µ
(

xµ(n)
)
∥2

R
)]

MPC/SFMPC[
∑l−1

k=0

(
∥φ

(
k, xµ(0), uref

)
∥2

Q + ∥uref(k)∥2
R
)]

Open-loop

 100 %. (4.3.3)

Here, the definition uref :=
(

uref(0), uref(1), ..., uref(l − 1)
)
∈ Ul is introduced. In the

current mass-spring-damper example, the upper evaluation limit is l = 300 and the
open-loop system evolution serves as the reference performance such that uref = 0ml
applies. Therefore, Figure 4.2 shows the improvement of the system transition to the
origin with MPC and SFMPC compared to the oscillating open-loop system evolution
with J̄cl ∈ [0 %, 100 %). For MPC, the closed-loop control performance first increases as
the horizon length increases. However, the performance saturates since the open-loop
and closed-loop trajectories converge towards each other as the horizon increases.
Note that the OCP formulations (3.1.6) and (4.1.4) implement a similar quadratic form
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Figure 4.2.: Evaluation of the closed-loop control performance metric J̄cl for MPC and SFMPC
over horizon length N. The open-loop stable mass-spring-damper system is initialized at
xµ,0 = (−0.8, 0)⊺ and is to be transferred to the origin. The closed-loop control performances
are normalized to the open-loop system evolution, which is here indicated by N = 0.

cost function as it is used in the numerator or denominator of (4.3.3). In the case of
SFMPC, the improvement of the closed-loop control performance reaches a maximum
at approximately N = 5. Beyond that point, the closed-loop control performance
decreases again and converges to J̄cl → 0 % as N → ∞. Since SFMPC has only a
single degree of freedom in control, the open-loop and closed-loop trajectories diverge
from each other as the horizon length increases. Note that for a large horizon, only
u∗s (x0) = 0mN satisfies the stability constraint F

(
A x0 + Bu∗s (x0)

)
≤ F(A x0) and

transfers (open-loop) the system exactly to the origin. In summary, it can be stated
that choosing N > 1 in case of SFMPC can increase the control performance. However,
due to the extreme input move-blocking, there exists an upper bound beyond which
the closed-loop performance deteriorates. This design guide will be important in the
rest of this dissertation, especially for state constrained systems.

4.4. Input Domain Discretization

In a high-dimensional Euclidean space, derivative-based optimization algorithms are
remarkably efficient since they include local directional information. Newton-type
solvers, for example, generate increments based on the local first- and second-order
derivative information and seek for points that satisfy the KKT conditions, see, for
example, [NW06]. The basic SFMPC formulation presented in Section 4.1 reduces the
parameter space to a single control vector us and thus eliminates the need to determine
derivative information. With such a low dimensional parameter space, it suffices to
generate and evaluate control samples in the sense of a sampling-based optimization.
The main idea in SFMPC is to first place samples in the constraint input set U by
implementing a suitable discretization method. This procedure forms the input sample
space. Then, a suitable search algorithm seeks the optimal sample out of the finite
set of control vectors. In this dissertation, the exhaustive search algorithm simply
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evaluates all resulting control candidates. In principle, there exist two possibilities on
how to integrate the sample space into the system theoretical context. Suppose that
sampling is an attribute of the optimization algorithm. Then, closed-loop properties
can only be ensured if the sample space contains, at least, the optimal solution u∗s (x0)
to OCP (4.1.4) with P̄ := U for all x0 ∈ X s

N. Recall that the stability analyses in
Section 3.3 and Section 4.2 are based on the evolution of the optimal cost function.
Since there is no guarantee that an optimization algorithm (either sampling-based
or smooth) can determine the global optimum, unless the OCP is convex, stability
analysis needs to build on stabilizing warm-starts in the framework of suboptimal
MPC [Sco+99; Pan+11; All+17; Raw+20; BL17]. Another possibility is to include the
sample space into the formulation of OCP (4.1.4) by redefining the place holder set
P̄. Under mild assumptions, this procedure facilitates stability analysis. Assume that
the combinatorial optimizer is fast enough to evaluate all control candidates and thus
always determines the global optimum of the sample space. This section pursues the
latter option and formalizes the sample space in the following.
A finite set of control vectors D ⊂ U is compact by its definition and has a finite
cardinality c = |D| ∈ N. To generate a finite set, a uniform discretization can be
applied along each dimension j ∈ N[1,m] with a fixed step width ∆uj ∈ R+:

Dj := {umin,j, umin,j + ∆uj, umin,j + 2∆uj, ..., umax,j}, ∀ j ∈ N[1,m]. (4.4.1)

Here, the finite set Dj has the cardinality cj = |Dj| ≤ c. The finite set of control
vectors D then results from combining all dimensions:

D := D1 ×D2 × ...×Dm ⊂ U. (4.4.2)

The definition of P̄ := D in OCP (4.1.4) now allows to implement combinatorial
optimization as, for example, the exhaustive search. It shall be noted that SFMPC
processes the control candidates starting from umin = min U. If the solution u∗s (x0)
is not unique, SFMPC selects the value that is closer to umin. However, as it can be
seen from (4.4.2), the combinatorial complexity grows exponentially with the input
dimension m. The cardinality of the finite set of control vectors is c = |D| = ∏m

j=1 |Dj|.
Therefore, SFMPC addresses systems with preferably not more than two inputs, in par-
ticular single-input systems. This requirement appears to be very restrictive, however,
underlying systems such as electromagnetic actuators often have a single input. Even if
there exists a solution to OCP (4.1.4) with P̄ := D, it might be inferior compared to the
case when P̄ := U. A straightforward approach to increase the control performance is
to decrease the discretization step widths ∆uj for all j ∈ N[1,m]. However, decreasing
the step widths, in turn, increases the combinatorial complexity. Parallel computing
counters the combinatorial complexity since the finite set formulation permits par-
allelization in the evaluation of the individual control candidates us ∈ D. However,
the application of parallelization imposes special requirements on the low-level hard-
ware, such as the usage of FPGAs (see, e.g., [Joo+11]), or imposes a computational
overhead for efficient memory management if a conventional processing architecture
is employed. In this dissertation, an adaptive and sparse discretization method is
used to increase the control performance while allowing efficient serial processing of
time-varying finite control sets.
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4.5. Time-Varying Finite Control Sets

This section introduces a generic formulation of time-varying finite control sets, de-
signed to always contain the control candidates required to ensure stabilizing closed-
loop properties. The basic idea is to embed the current solution at time instant n
into the formulation of the next OCP at time instant n + 1 for all n ∈ N0. Let the
placeholder set P(x0, n) ⊂ U be the only OCP ingredient that depends, in addition
to the initial state x0, on the integer closed-loop time n. However, then OCP (4.1.4)
becomes time-varying, leading to the following formulation:

Vs
N(x0, n) := min

us ∈ P(x0, n)
JN

(
x0, Θs

N(us)
)

subject to Θs
N(us) ∈ U s

N(x0). (4.5.1)

The optimal solution is now denoted by u∗s (x0, n) and yields the control sequence
u∗s (x0, n) :=

(
u∗(0, x0, n) = u∗s (x0, n), u∗(1, x0, n) = u∗s (x0, n), ..., u∗(N − 1, x0, n) =

u∗s (x0, n)
)
= Θs

N
(

u∗s (x0, n)
)
∈ U s

N(x0). Since the system dynamics and the cost
functions are still time-invariant, the optimal control sequence always starts at k = 0.
However, the optimal values u∗(k, x0, n) with k ∈ N[0,N−1] now also depend on the
closed-loop time n since their corresponding value set P(x0, n) is time-varying. The
implicit control law is now given by µ(x0, n) := u∗(0, x0, n) = u∗s (x0, n) and the
closed-loop system evolves as follows:

x+0 := xµ(n + 1) = f
(

xµ(n), µ(xµ(n), n)
)

, xµ(0) := xµ,0. (4.5.2)

Exponential Adaptive Domain Discretization

The following discretization method adopts the basic idea that was proposed in [Kel17]
during the development of an emergency steering assist. Here, the steering angle is
discretized densely in the vicinity of the last applied steering command. This strategy
enables smooth vehicle guidance, at least if obstacles are detected at an early stage.
The motivation for adaptive discretization is to facilitate smooth closed-loop control
when the evolution of the closed-loop system from xµ(n) to xµ(n+ 1) does not impose
a large change on the input. Otherwise, at least the maximum and minimum control
vectors max U and min U, respectively, should always be evaluated to ensure dynamic
system behavior when required.
The following map η : Z×O×R×R×R 7→ R describes an exponential discretization
and is defined by:

η(i, c, u, umax, umin) :=


u + 10q

(
−2i
c−1−1

)(
umin − u

)
if i < 0,

u else if i = 0,

u + 10q
(

2i
c−1−1

)(
umax − u

)
otherwise.

(4.5.3)

Here, the relation umin ≤ u ≤ umax applies. The larger the exponent q ∈ N, the finer
the sampling is in the vicinity of u. Let A(n) := A1(n)×A2(n)× ....×Am(n) ⊂ U be
a time-variant finite set of control vectors with the constant cardinality c = |A(n)| =
∏m

j=1 cj = ∏m
j=1 |Aj(n)|. Let the definition A(0) := D hold at time instant n = 0. For
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umax,jumin,j u◦j (n)

Figure 4.3.: Location of control samples uj ∈ Aj(n + 1) on the interval [umin,j, umax,j] after
applying exponential discretization with q = 2 and cj = 21.

n > 0, the finite control sets are linked to the temporal evolution of the closed-loop
system (4.5.2). The finite control set for the j-th input dimension at the next time
instant n + 1 with u◦(n) =

(
u◦1(n), u◦2(n), ..., u◦m(n)

)
:= µ(xµ(n), n) is thus given by:

Aj(n + 1) :=
(cj−1)/2⋃

i=−(cj−1)/2

{
η
(
i, cj, u◦j (n), umax,j, umin,j

)}
, ∀ j ∈ N[1,m], ∀ n ∈ N0. (4.5.4)

By restricting the first argument of η(·) to i ∈ Z[−(cj−1)/2,(cj−1)/2], the resulting finite
control set A(n + 1) is fully embedded into the input constraint set U such that
min A(n + 1) = min U = umin and max A(n + 1) = max U = umax hold for all x0 ∈
X s

N. Note that the cardinality cj needs to be an odd number with cj ∈ O≥3 to provide
the same number of samples to the left and the right of the control input value u◦j (n) :=
µj(x0, n). For q = 2 and cj = 21, Figure 4.3 visualizes the resulting distribution
of sampling points on the interval [umin,j, umax,j]. Here, u◦j (n) is chosen randomly.
Another input domain discretization, which builds on piecewise polynomial functions,
can be found in Appendix A.5.

Remark 4.5.1: Previous control input vector. The exponential discretization method
embeds the previously applied control input vector µ(xµ(n− 1), n− 1) into the current
finite set of control vectors A(n) for all n > 0. This property facilitates recursive
feasibility issues when N > 1 (see Ch. 8).

The optimizer does not solve NLP (3.2.8) when searching for the optimal solution of
OCP (4.5.1). In contrast to conventional constrained optimization, the combinatorial
optimizer does not search for the KKT points by determining and evaluating the
derivative information. Here, the optimizer simply evaluates all control candidates
following the pseudo-code presented in Algorithm 4.1. This algorithm starts the
roll-out procedure for each control candidate us ∈ A(n) in program line 9. If the
predicted state trajectory does not satisfy the state constraints at any point on the
horizon (program line 12), the algorithm terminates the current roll-out (program
line 15) and proceeds with the next control candidate. If the last predicted state vector
satisfies the terminal conditions (program line 16), the algorithm appends the current
control candidate and the corresponding cost function value to the set of admissible
candidates (program line 18). The least-cost tuple in program line 19 represents the
global optimum to OCP (4.5.1) with u∗s (x0, n) ∈ A(n). A theoretical analysis of the
runtime complexity reveals that the big O notation for Algorithm 4.1 is O(c · N). The
space complexity can be approximated by O(c · N). However, if only two state vectors
x(k) and x(k + 1) are buffered instead of the whole state trajectory and only the
current best solution is stored in the program line 18, the space complexity is constant.
Hence, the big O notation for the memory complexity of Algorithm 4.1 is O(1).
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Algorithm 4.1.: Procedure to solve OCP (4.5.1) with time-varying finite control sets
1: procedure SolveOCP(xµ(n),A(n))
2: K, P ← Optional: Solve Riccati/Lyapunov equation online ▷ See Sec. 3.3
3: S ← ∅ ▷ Initialize set of admissible control candidates
4: x0 ← xµ(n)
5: for all candidates us ∈ A(n) do ▷ Parallelizable
6: k ← 0
7: x(k) ← x0
8: J ← 0
9: while k < N do ▷ Roll-out of selected control candidate

10: x(k + 1) ← f
(

x(k), us
)

▷ Internal model, see (3.1.1)
11: J ← J + ℓ

(
x(k), us

)
▷ Stage costs, see (3.1.3)

12: if G
(

x(k + 1)
)
⪯ 0 then ▷ Check if x(k + 1) ∈ X, see (3.2.2)

13: k ← k + 1
14: else
15: break
16: if k = N and F

(
x(N)

)
⪯ 0 then ▷ Check if x(N) ∈ Xf, see (3.2.7)

17: J ← J + F
(

x(N)
)

▷ Terminal costs, see (3.1.3)
18: S ← S ∪ {(J, us)} ▷ Append admissible tuple

19:
(
Vs

N(x0, n), u∗s (x0, n)
)
← Select least-cost tuple from S ▷ Determine global optimum

20: A(n + 1) ← Adaptive discretization ▷ Evolution of finite control set, see (4.5.4)
21: return u∗s (x0, n), u∗s (x0, n) = Θs

N
(

u∗s (x0, n)
)
, A(n + 1)

Domain Discretization Error

The benchmark configuration from Example 4.3 serves as the basis for evaluating the
discretization error. However, the configuration includes the following modifications:

N = 1, R = 0.0006, P = A⊺ P A− (A⊺ P B)(R + B⊺ P B)−1(B⊺ P A) + Q. (4.5.5)

With N = 1, input move-blocking does not apply. With the modifications above and
P̄ := U in OCP (4.1.4), SFMPC reproduces the LQR such that µ(x0) = K x0 holds for
all x0 ∈ X (see Prop. 4.2.2). The matrix K follows from (3.3.19) with ρ = 1. There-
fore, deviations between the closed-loop performance of SFMPC, which rests upon
the solutions to OCP (4.5.1) with P(x0, n) := A(n) and N = 1, and the closed-loop
performance of the LQR occur solely due to input domain discretization. Note that in
the absence of input and state constraints, it follows that U s

1(·) = UN. Thus, for some
arbitrary finite set of control vectors P(x0, n) ⊂ U, every sample us ∈ P(x0, n) results
in a finite cost function value of the continuous function JN

(
x0, Θs

N(us)
)
∈ R+

0 for all
x0 ∈ X. Therefore, OCP (4.5.1) with P(x0, n) := D or P(x0, n) := A(n) is also feasible
for all x0 ∈ X s

N with n ∈ N0. However, the proposed adaptive discretization requires
input bounds umin and umax in order to place samples in some neighborhood of the
origin. Although there are no input constraints, SFMPC discretizes the input on the in-
terval [−15, 15]. The weight R is increased from R = 0 to R = 0.0006 to ensure that the
LQR implicitly adheres to the input box-constraints with |u(k)| ≤ 15. In addition, the
Riccati equation (3.3.18) assumes that the weighting matrices are positive definite. To
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Figure 4.4.: Comparison of input discretization approaches using the mass-spring-damper sys-
tem from Example 4.3. Left: Discretization error in the control input trajectory over cardinality
c. Right: Closed-loop time performance with SFMPC and the uniform and exponential dis-
cretization with c = |D| = |A(·)| = 21 and q = 3. The subplot shows the reference closed-loop
control performance of the LQR.

compare the one-dimensional control input trajectory of SFMPC with that of the LQR,
the normalized root mean square error (NRMSE) is evaluated over 128 closed-loop
steps (t ∈ [0 s, 4 s]). Refer to Appendix A.4 for the NRMSE definition. At time n = 0,
the mass-spring-damper system is initialized with xµ,0 = (0.8, 0)⊺. The left plot of Fig-
ure 4.4 shows that the discretization error decreases approximately quadratically with
a uniform discretization for an increasing number of control candidates. Only with a
cardinality of c = |D| = 45, the discretization error drops below NRMSE = 5 %. In
contrast, the exponential discretization requires only a cardinality of c = |A(·)| = 13 to
provide a discretization error below NRMSE = 5 %. The right plot of Figure 4.4 shows
the closed-loop control input trajectories for SFMPC with P(·) := D and P(·) := A(·).
Here, the cardinality is set to c = |D| = |A(·)| = 21. The control trajectory that
results from uniform discretization exhibits large quantization steps. In contrast, the
exponential discretization provides a smooth control input trajectory, which is fairly
similar to that of the LQR (see subplot). Hence, adaptive discretization aims to smooth
the control input trajectory although building on a sparse sampling. The time-varying
and local clustering of samples is designed to increase the control performance and
to decrease the computational effort at the same time. For fast closed-loop control
switching, all finite control sets always include the boundary values min U and max U.
Note that the exact configuration of the discretization approach depends on the sys-
tem characteristics and the interval lengths [umin,j, umax,j] for all j ∈ N[1,m]. The more
sensitive the system is to input variations and the larger the interval [umin,j, umax,j],
the more samples are required to establish a high closed-loop control performance.
Recall that at time n = 0, the definition A(0) := D applies with c = |A(0)| = |D|.
Though the exponential discretization reduces the discretization error significantly, a
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finite error remains. For a cardinality of c = 101, uniform discretization results in
an error of NRMSE = 2.13 %, while the exponential discretization provides an error
of only NRMSE = 0.55 %. The next subsection investigates whether this finite error
impacts the previously derived stability results in Section 4.2.

Stability Analysis with Finite Control Sets

Although the finite control set D contains the origin, as required by Assumption 3.1.3,
there is no guarantee that it contains the control vector us = κ(x) if x ∈ Xf, thus
satisfying Assumption 3.3.2. For the finite set A(n), it cannot even be ensured that it
contains the origin. The following formulation addresses the problem of control set
finiteness by including further qualified samples with u0

s ∈ U and Γ(·) : U 7→ U:

Ã
(

xµ(n), n
)

:= A(n) ∪
{

Γ
(

κ
(

xµ(n)
))}

, ∀ xµ(n) ∈ XN, ∀ n ∈ N0. (4.5.6)

The saturation function Γ(·) enforces the values of the additional control candidate
κ(x) to lie between max U and min U if x ̸∈ Xf. With this formulation, the extended
finite set of control vectors Ã

(
xµ(n), n

)
does not contain the origin for all times,

however, it contains the origin when the closed-loop system reaches the origin with
xµ(n) = 0p. Note that none of the constraint sets, such as U s

N(x0) or X s
N, consider

finite control sets in their formulations. To establish theoretical closed-loop properties
with finite control sets, the following mild assumption is required.

Assumption 4.5.1: Initial control sample. At closed-loop time n = 0, there is an arbitrary
but admissible sample u0

s ∈ A(0) ⊂ U such that us = Θs
N(u0

s) ∈ U s
N
(

xµ(0)
)

holds.

This technical assumption is similar to the “oracle” in [BL17], generating the initial
admissible solution. In general, the elements of the set A(0) can be chosen randomly
as long as A(0) ⊂ U and u0

s ∈ A(0). If A(0) := D and the initial sample u0
s is

not available, then the discretization step widths ∆uj in (4.4.1) can be decreased until
u0

s ∈ D. With N = 1, the following stability properties can already be derived.

Corollary 4.5.1: SFMPC with finite control sets emulates conventional MPC. Suppose
Assumptions 3.1.1-3.1.3, 3.3.1-3.3.2, and 4.5.1 hold. Define P(x0, n) := Ã(x0, n) and
the control law µ(x0, n) := u∗s (x0, n) for all x0 ∈ X s

1 , all n ∈ N0. Then, the optimal
cost function Vs

1 (·) in (4.5.1) represents a time-varying Lyapunov function in the set
X s

1 for the closed-loop system (4.5.2) with α1(·), α2(·) ∈ K∞ for all x0 ∈ X s
1 , all n ∈ N0:

α1(∥x0∥) ≤ Vs
1 (x0, n) ≤ α2(∥x0∥), Vs

1

(
f
(

x0, µ(x0, n)
)
, n + 1

)
≤ Vs

1 (x0, n)− α1(∥x0∥).
(4.5.7)

Therefore, the origin is asymptotically stable in the positive invariant set X s
1 for the

closed-loop system (4.5.2).

The detailed proof is given in Appendix B.1. However, since the finite set Ã(x0, n)
contains the local control law sample κ(x0) for all x0 ∈ Xf and all n ∈ N0, Vs

1 (x0, n) ≤
F(x0) ≤ αf(∥x0∥) also holds for all x0 ∈ Xf and all n ∈ N0. This inclusion of the local
control law sample into Ã(x0, n) ensures Vs

1 (·) is continuous at the origin (required
for upper and lower bounds of Lyapunov function) and that the terminal cost function
F(·) is still a CLF in Xf (see Asm. 3.3.2).
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Corollary 4.5.2: SFMPC with finite control sets reproduces LQR. Proposition 4.2.2 also
holds if SFMPC is based on OCP (4.5.1) with P(x0, n) := Ã(x0, n) for all x0 ∈ X and
all n ∈ N0.

Proof. The finite control set Ã(x0, n) contains the global optimum u∗s (x0, n) = K x0 for
all x0 ∈ X and n ∈ N0 such that F(·) still serves as the global Lyapunov function.

Corollary 4.5.3: SFMPC with finite control sets for open-loop stable systems. Proposi-
tion 4.2.3 also holds if SFMPC is based on OCP (4.5.1) with P(x0, n) := Ã(x0, n) for
all x0 ∈ X and all n ∈ N0.

Proof. The finite control set Ã(x0) contains the zero vector κ(x0) := 0m for all x0 ∈ X
and n ∈ N0 such that F(·) still serves as the global Lyapunov function.

4.6. Discussion

The MPC formulation introduced in this chapter with a single degree of freedom in
control reduces the controller complexity significantly and motivates the development
of an adaptive and sparse discretization of the input domain. As a result of the input
domain discretization, the OCPs are subject to finite control sets. The resulting com-
binatorial complexity is sufficiently small such that the exhaustive search algorithm
qualifies for solving the corresponding OCPs. Algorithm 4.1 illustrates the simple
implementation, which dispenses with external optimization libraries and solvers. For
three special system configurations, basic SFMPC already stabilizes the origin with the
closed-loop system. Even though two of the three configurations are rather theoretical,
they form the basis for the systematic analysis of basic SFMPC. The investigations of
the Special Case I in Proposition 4.2.1 and Corollary 4.5.1 identify which control vec-
tors the finite control sets have to contain to ensure recursive feasibility and asymptotic
stability. Under the mild Assumption 4.5.1, combined with the strategy of embedding
the local controller law κ(·) into the definition of the time-varying finite control set,
SFMPC emulates conventional MPC in the absence of input move-blocking and in the
presence of input discretization errors. The introduction and examination of the sec-
ond Special Case II in Proposition 4.2.2 and Corollary 4.5.2 enable the isolated analysis
of the input domain discretization error. With a horizon length of N = 1, SFMPC
reproduces the conventional LQR closed-loop control performance. Any deviation
compared to the LQR thus arises only because of the input domain discretization.
However, with the proposed straightforward exponential discretization, the resulting
error is negligible for the chosen benchmark system. The analysis of the third Special
Case III in Proposition 4.2.3 and Corollary 4.5.3 addresses practical applications and
prepares a general design guide for choosing the horizon length N for SFMPC. While
a moderate horizon length with N > 1 increases the closed-loop control performance,
it drops with a long horizon. Because of the single degree of freedom in control,
the predicted system evolution differs increasingly from the actual evolution of the
closed-loop system as the horizon N increases. The investigation of an open-loop
stable system enables the limit value analysis with N → ∞ since only in this case
SFMPC does not destabilize the origin with a long horizon.
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5
Comparative Numerical Analysis

This chapter investigates the applicability of basic SFMPC to constrained nonlinear
systems. The objective is to highlight SFMPC as an advanced but at the same time
intuitive low-level control concept for nonlinear systems with small input dimensions,
small to mid-sized state dimensions, and simple box-constraints. In particular, the
objective is to narrow the scope of basic SFMPC and to point out its practical advan-
tages such as the handling of non-smooth functions. Parts of this chapter have been
published in [Mak+17; Mak+18d; Mak+18e].

5.1. Controller Configuration for Constrained Systems

The analysis in the previous Chapter 4 focuses on three special system configurations
for which theoretical closed-loop stability guarantees can be derived. This chapter
explores whether basic SFMPC applies to constrained nonlinear systems, even when
no theoretical stability guarantees exist. Established configuration guidelines for MPC
with or without terminal conditions are designed for conventional MPC with full
degree of freedom in control and are thus not directly applicable to input move-blocked
MPC. For this reason, the numerical and experimental investigations in this and
the next chapter, respectively, simply assume that the infinite horizon cost function
F(x) = x⊺ P x of the linearized system is suitable to serve as a general direction guide
for the nonlinear system, even outside the terminal set Xf := levπF. The following
simulations combine a horizon length of N > 1 with quadratic form cost functions
from (3.1.4), where P is the solution to the Riccati equation (3.3.18). The terminal
region is given by Xf = X. Thus, the terminal set does not satisfy Assumption 3.3.2.

Remark 5.1.1: LQR with control saturation. Consider quadratic cost functions accord-
ing to (3.1.4) with F

(
x(N)

)
:= x⊺(N)P x(N) and assume that P solves the Riccati

equation (3.3.18). If the solution P exists, then the origin is stabilizable in X with
the linearized system (see Def. 3.3.9). The shorter the time horizon N, the less
the evolution of the constrained system contributes to the sum of stage costs in
OCP (3.1.6), OCP (4.1.4), and (4.5.1). Therefore, with N = 1, the resulting closed-loop
control performances with MPC and SFMPC are fairly similar to the evolution of
xµ(n + 1) = f

(
xµ(n), Γ

(
K xµ(n)

))
, where the gain matrix K is defined according

to (3.3.19). However, combining a short horizon with N ≥ 1 and the terminal cost
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function F
(

x(N)
)

:= x⊺(N)P x(N) enables compliance with state constraints above a
certain horizon length. This special controller configuration, however, assumes that the
evolution of the linearized system is similar to the evolution of the nonlinear system.

Recall that in conventional MPC with a control invariant terminal set levπF, the feasible
set XN is positive invariant on the one hand but it also represents the region of
attraction of the origin for the closed-loop system (3.3.2) or (4.5.2). With the setting
Xf = X, the feasible sets XN and X s

N do not necessarily represent the regions of
attraction anymore. Therefore, the numerical analysis in this chapter rests upon the
assumption that MPC and SFMPC can steer the system in some positive invariant
terminal set T := XN ∩ X s

N ∩ Bδ with some small δ > 0. As soon as the closed
loop system enters this terminal set, it never leaves the terminal set T again under
the implicit control law (see [GP17, Def. 2.15]). The experimental stability analysis in
Appendix B.3 builds on this formulation and shows an alternative and automated way
for investigating (practical) closed-loop stability for the following benchmark system,
when no theoretical stability guarantees can be derived from the chosen controller
configuration.

5.2. Example: Van der Pol Oscillator

To follow up on the example in Section 4.3, this section also investigates a common sec-
ond-order dynamical system, albeit with nonlinear damping. The following nonlinear
ordinary differential equation describes the well-known Van der Pol oscillator [Pol26]
with the input σ : R+

0 7→ R and the output y : R+
0 7→ R:

ÿ(t)−
(
1− y2(t)

)
ẏ(t) + y(t) = σ(t). (5.2.1)

This input-affine nonlinear system can be transformed into the following state space
representation with χ(t) =

(
χ1(t) = y(t), χ2(t) = ẏ(t)

)⊺:

χ̇(t) =
(

ẏ(t)(
1− y2(t)

)
ẏ(t)− y(t) + σ(t)

)
. (5.2.2)

The input of the system σ(t) is assumed to be piecewise constant on the fixed time grids
tk+1 = tk + Ts, k ∈ N[0,N−1], t0 = 0 s (open-loop) and tn+1 = tn + Ts, n ∈ N0, t0 = 0 s
(closed-loop) with Ts = ∆ts. According to the sampled data formulation in Section 3.4,
the internal discrete-time model includes the continuous-time representation (5.2.2)
and the Runge-Kutta method of the fourth order with ∆ts = 2−5 s. The following list
summarizes all related parameters and sets:

A ≈
 0.9995 0.0317
−0.0317 1.0312

, B ≈
0.0005

0.0317

, Q =

1.0 0.0
0.0 0.25

, P ≈
34.012 7.427

7.427 12.471

,

R = 0.1, U = {u ∈ R||u| ≤ 0.9}, X = {x ∈ X|(−1,−0.5)⊺ ⪯ x ⪯ (1, 0.5)⊺}.

The origin is open-loop unstable for the linearized system x(k + 1) = A x(k) + Bu(k)
since the complex conjugate eigenvalues of the system matrix A lie outside the unit
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Figure 5.1.: Open- and closed-loop predictive control of the Van der Pol oscillator with different
horizon lengths. Left: Open-loop control performance at time instant n = 0. Right: Closed-
loop control performance. For reference, the dashed graphs show the solution to OCP (3.1.6)
with N = 1000.

circle. All steady states of the nonlinear system satisfy xf = (uf, 0)⊺ with uf ∈ U.
With MPC, full discretization is used to convert OCP (3.1.6) into NLP (3.2.9), which
is then solved numerically by the IPOPT algorithm [WB06]. SFMPC implements the
exponential discretization according to (4.5.3) with a cardinality of c = |A(·)| = 21.
Algorithm 4.1 is used to solve OCP (4.5.1) with P(x0, n) := A(n). Figure 5.1 shows
the open-loop and closed-loop control performances of SFMPC for increasing hori-
zon lengths. The black dashed graphs visualize the optimal point-to-point refer-
ence solution to which classical MPC would converge with increasing horizon length.
The reference solution clearly illustrates the advantages of the full-degree-of-free-
dom OCP (3.1.6). The bottom plots show that the optimal reference solution first
drives the system with the minimum input of σ(t) = u(k) = −0.9 and then switches
to the maximum input of σ(t) = u(k) = 0.9 to not violate the velocity constraint
|χ̂2(t)| = |x2(k)| ≤ 0.5. Hence, the lower the weighting parameter R, the more similar
becomes the reference solution to a bang-bang control. Because of the full degree of
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freedom in control, the optimizer exploits the limits of the system efficiently during
prediction. In contrast, the second plot on the left shows that a long horizon in SFMPC
complicates the handling of state constraints. The longer the horizon, the closer the
solution is to σ(t) = u(k) = 0.8 in the left bottom plot. This value is required to hold
the system at its initial state of xµ,0 = (0.8, 0)⊺. Since SFMPC only predicts a constant
control sequence, it chooses a low system excitation to keep the entire open-loop state
trajectory inside the feasible state set X s

N. As long as the predicted system evolution
is far away from crossing the velocity limit of |x2(k)| ≤ 0.5, the predicted control
trajectory is similar to its corresponding section of the reference optimal point-to-point
trajectory. In simplified terms, for short horizons, the initial prediction is carried out
as if the velocity limit did not exist. However, as the closed-loop system approaches
the velocity limit, a minimal horizon length of N = 3 is required to prevent the pre-
diction from violating the velocity constraint. Notice that the graphs with N = 6 are
partially covered by the dashed reference graphs. The right side of Figure 5.1 shows
oscillatory closed-loop control performances for SFMPC with N = 24 and N = 48.
Here, σµ(t) := µ(xµ(n), n), ∀ t ∈

[
nTs, (n + 1)Ts

)
, n ∈ N0 applies. This detrimen-

tal relationship between long prediction horizons and decreasing closed-loop control
performances coincides with the observations for state unconstrained linear systems
in Figure 4.2. However, with N = 6 and even N = 12, the closed-loop control per-
formances are fairly similar to the reference solution though implementing SFMPC
includes only a few lines of code (see Alg. 4.1). To follow up the discussion in Re-
mark 5.1.1, finally, a simple LQR with a subsequent input limitation is applied to
the nonlinear Van der Pol oscillator (dotted graphs). For this benchmark system, the
saturation of control inputs does not destabilize the origin. However, the dotted graph
in the second plot on the right side of Figure 5.1 clearly violates the velocity con-
straint. Recall that the LQR can only adhere to input and state constraints implicitly
by increasing the weights in Q and R and thus by damping closed-loop dynamics.

Finally, the following Table 5.1 provides a quantitative comparison of execution times
and closed-loop control performances for SFMPC and classical MPC. The statistical
evaluation of execution times is based on 100 cold-started solutions to OCP (3.1.6) or
OCP (4.5.1) at time instance n = 0. For the numerical evaluation in this dissertation, a
common personal computer is used, which does not support real-time computing (see
App. A.3 for specification). Depending on how the scheduler of the operating system
distributes the internal tasks, outliers can occur when evaluating the computational
effort. Therefore, the statistical investigations consider the 0.5-quantile, also known as
the median tm ∈ R+

0 , and the 0.95-quantile t95 ∈ R+
0 . The median does not depend

on the specific distribution and is therefore known to be robust to outliers. The 0.95
quantile excludes only the fourth largest outliers out of 100 samples, thus covering
some of the variation in execution times. In addition, the measured run times also
include the computation times required to linearize the system at the origin and to
solve the Riccati equation (3.3.18). All optimization variables are always initialized to
zero. Since the state constraints listed above only apply from a certain horizon length
(N > 6) at closed-loop time n = 0, the state constraint set is now redefined as X := X
to provide a fair comparison of computational loads between different horizon lengths.
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Table 5.1.: Evaluation of closed-loop control performances and execution times for (SF)MPC
applied to the Van der Pol Oscillator. The values of the first part of the table are generated based
on a pure MATLAB implementation that interfaces with the IPOPT algorithm. The second
part evaluates the runtime performance of generated and compiled C code. Abbreviations:
Recursive Elimination (RE), Full Discretization (FD), Exhaustive Search (ES).

MATLAB N = 3 N = 6 N = 12 N = 24 N = 48

MPC J̄cl [%] tm [ms] J̄cl [%] tm [ms] J̄cl [%] tm [ms] J̄cl [%] tm [ms] J̄cl [%] tm [ms]

IP
O

PT RE −8.37 12.61 −10.4 24.57 −8.54 48.56 −1.33 186.58 0.00 754.59
FD −8.32 26.04 −10.39 46.16 −8.53 80.89 −1.33 168.18 0.00 377.16

SFMPC J̄cl [%] tm [ms] J̄cl [%] tm [ms] J̄cl [%] tm [ms] J̄cl [%] tm [ms] J̄cl [%] tm [ms]

IPOPT RE −3.68 6.75 −1.95 7.57 −5.15 9.08 −24.05 14.14 −175.91 22.34
ES c = 21 −3.82 3.52 −2.02 4.93 −5.01 7.43 −23.8 13.01 −175.21 23.98
ES c = 101 −3.68 10.55 −1.94 16.05 −5.14 28.14 −24.05 50.06 −175.91 94.11

C, MPC tm [µs] t95 [µs] tm [µs] t95 [µs] tm [µs] t95 [µs] tm [µs] t95 [µs] tm [ms] t95 [ms]

SQ
P

RE 34.8 35.95 50.5 58.05 125.75 143.6 446.5 511.45 2.39 2.51

[µs] [µs] [µs] [µs] [ms] [ms] [ms] [ms] [ms] [ms]

FD 110.85 151.75 300.25 348.6 1.24 1.4 7.24 7.69 26.27 27.28

SFMPC tm [µs] t95 [µs] tm [µs] t95 [µs] tm [µs] t95 [µs] tm [µs] t95 [µs] tm [µs] t95 [µs]

SQP RE 31.55 34.4 36.1 37.5 39.6 43.4 74.5 77.4 87.9 110.9
ES c = 21 8.3 8.4 9.6 10.05 10.7 11.7 34.3 42.35 35.7 36.1
ES c = 101 14.6 14.75 22.7 30.05 41.1 41.2 74.4 76.6 142.7 143.2

The generic and modular software framework developed for this dissertation is im-
plemented in MATLAB and includes the sparse IPOPT optimization library [WB06]
via a pre-compiled interface and the SQP method described in [Rös19, Appx. E.2.2.].
This SQP algorithm represents an extended version of the backtracking line search
SQP algorithm from [NW06, Alg. 18.3] and supports C code generation of the entire
software framework. Task execution times are thus evaluated in MATLAB (interpreted
language) and in C (compiled language). The open-source IPOPT library serves as
an established and numerically robust reference optimization framework. The SQP
implementation is adopted from [Rös19] and re-implemented from scratch in MAT-
LAB. Implementing both SFMPC with exhaustive search and SFMPC/MPC with
an SQP method from scratch facilitates a fair comparison of computational and im-
plementation efforts. Clearly, both the combinatorial and the smooth optimization
can be improved in terms of computational efficiency by investigating, for example,
tailored combinatorial search strategies or advanced Hessian matrix approximations,
respectively. The IPOPT and SQP algorithm both estimate first-order derivative infor-
mation based on sparse finite differences. In this dissertation, both implementations
approximate the Hessian of the Lagrangian by an iterative method. The IPOPT frame-
work [WB06] implements the limited memory Broyden–Fletcher–Goldfarb–Shanno
(BFGS) method that accounts for large-scale optimization problems [Noc80]. The SQP
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implementation, in contrast, uses the damped BFGS method from [NW06, Proc. 18.2].
For the following example, the SQP algorithm integrates the sparse QP solver OSQP
[Ste+20]. In principle, sparsity or structure detection could be outsourced to an offline
pre-processing step, as the sparsity pattern, or matrix structure in general, is constant
with a receding horizon. However, the time required to exploit the NLP structure
dynamically is negligible compared to the core optimization time, at least for the
benchmarks in this dissertation. For further information regarding the implemen-
tation, refer to Appendix A.3. The closed-loop control performances are evaluated
based on the normalized closed-loop control performance criterion J̄cl from (4.3.3)
with l = 1000, where the reference is the initial solution to OCP (3.1.6) with N = 1000,
uref := u∗(xµ,0) and xµ,0 = (0.8, 0)⊺. Here, J̄cl ∈ (−∞ %, 0 %] applies, where J̄cl < 0 %
indicates a degradation of the closed-loop control performance compared to the opti-
mal point-to-point reference.

The first section of Table 5.1 focuses on the IPOPT interface. As claimed in the be-
ginning of the section, the first two rows reveal that the closed-loop state and input
trajectories converge towards the open-loop reference solution as the horizon length
increases. For N = 48, the closed-loop control performance is similar to the reference
performance with J̄cl ≈ 0 %. Apart from minor numerical differences, MPC with recur-
sive elimination and MPC with full discretization yield the same closed-loop control
performances. However, for a low number of optimization parameters (N = 3, N = 6,
and N = 12), the additional continuity equality constraints in case of full discretiza-
tion increase the NLP dimensions such that recursive elimination outperforms full
discretization in terms of computation time. However, as the horizon increases, the
IPOPT algorithm benefits from efficient NLP structure exploitation. For N = 48, the
high dimensional but sparse NLP in case of full discretization outperforms the smaller
but more dense NLP resulting from recursive elimination. In the following three rows,
the degrees of freedom in control are limited to a single degree of freedom. Here, the
execution times are significantly lower compared to classical MPC with full degree of
freedom in control. Notice that the closed-loop control performances cannot be com-
pared directly between SFMPC and MPC for a particular horizon length. Due to the
extreme input move-blocking, the open-loop performances between SFMPC and MPC
differ strongly. Hence, the same weighting parameters result in different closed-loop
control trajectories. In this example, the closed-loop control performances with N = 3,
N = 6, and N = 12 happen to be higher for SFMPC compared to MPC. However, MPC
can also provide a similar closed-loop control performance by adjusting the elements
of the weighting matrices Q and R while maintaining the previous open-loop refer-
ence performance in the denominator of (4.3.3). More important is the effect, already
observed in Figure 5.1, that for SFMPC, the closed-loop control performance decreases
as the horizon increases. Further, the fourth and fifth row reveal that the exponential
input domain discretization results in closed-loop control trajectories that are similar
to the one resulting from smooth optimization. The closed-loop control performances
in the third, fourth, and fifth row are almost identical. Increasing the cardinality from
c = 21 to c = 101 does not increase the closed-loop control performances significantly,
whereas the computation times exceed the effort resulting from smooth optimization.
Hence, adaptive discretization of the input domain provides an application scope for
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SFMPC. With N = 6, the horizon length has some distance to the minimum horizon
length of N = 3 to ensure experimental recursive feasibility (see Fig. 5.1). Furthermore,
with a small cardinality of c = 21, SFMPC reaches a closed-loop control performance
of already J̄cl = −2.02 % and is approximately 35 % faster than SFMPC with smooth
optimization. In addition, it should be noted that SFMPC with finite control sets is
based on the simple implementation in Algorithm 4.1. Since the low-level program-
ming language C is usually used in hardware-oriented software development, where
memory and computing power play an important role, the second part of table 5.1 an-
alyzes the computation times resulting from the execution of generated and compiled
C code. Though the SQP algorithm integrates the sparse QP solver OSQP [Ste+20],
recursive elimination outperforms the implementation of full discretization in terms
of runtime performance. The reason for this observation is the implementation of the
dense and damped Hessian approximation from [NW06, Proc. 18.2], which exhibits
poor convergence properties if the full step BFGS update results in a Hessian of the
Lagrangian that is not positive definite. However, the location parameters resulting
from recursive elimination in the first row of the second part are fairly similar to the
MPC benchmark results presented in, for example, [Rös+18a]. The analysis of the
runtime performance of SFMPC in the C environment shows comparatively the same
results as when executing interpreted code. A small cardinality of c = 21 provides a
computational advantage for SFMPC with exhaustive search compared to SFMPC with
smooth optimization. With N = 6, SFMPC with exhaustive search offers a median of
only tm = 10.05 µs and thus clearly motivates the application of SFMPC with finite
control sets to fast systems. The evaluation of the 0.95-quantile t95 reveals that the
execution time measurements in the upper range are not distorted by many outliers
since the values of tm and t95 do not differ strongly for both smooth and combinatorial
optimization. In this particular example, SFMPC with finite control sets and exhaus-
tive search outperforms SFMPC with smooth optimization in terms of computational
as well as the implementation effort.

5.3. Softening State Constraints

The NLPs introduced in (3.2.8) and (3.2.9) are subject to hard constraints. In practice,
however, it is crucial that the MPC controller generates (stabilizing) control inputs
when these NLPs are infeasible. Infeasibility may occur due to model mismatch, mea-
surement errors, external disturbances or simply due to the limited time for solving
the NLPs numerically. If there exists an upper bound for all perturbations, MPC can
be designed in such a way that the predicted trajectories even adhere to the hard con-
straints in the presence of the worst case perturbation. However, with robust MPC the
controller design and the runtime complexity increase, whereby there is nevertheless
no guarantee in practice that all perturbations remain below the specified bound for all
times (e.g., [Raw+20, Ch. 3]). Another approach, which is commonly used in practice,
is a soft constraint formulation with slack variables. For MPC with soft constraints,
refer, for example, to [ZC92; ZM95; SR99], [Mac02, Sec. 3.4], and [DB94; KM00b]. In
the case of soft constraints, the cost function includes further weighted (smooth) terms
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for penalizing state or output constraint violations. However, the NLP dimensions
increase since the individual slack variables are subject to optimization. Since SFMPC
integrates a combinatorial optimization, the following description only deals with
implementing a non-smooth penalty function. The authors of [All+16], for example,
point out that the ability to violate state constraints temporarily is essential to ensure
inherent robustness with (suboptimal) MPC. The same authors suggest to soften hard
state constraints by implementing an exact penalty function. A general exact penalty
function transforms the constrained NLP (3.2.1) into an unconstrained problem with-
out altering the local optima (e.g., [NW06, Sec. 15.1]). Therefore, the local optima of
the original and the unconstrained problem coincide exactly. Note that the polyhedral
input constraints in NLP (3.2.8) and NLP (3.2.9) are linear and thus not challenging for
the optimization algorithm. In contrast, the state constraints integrate the nonlinear
state dynamics. The following function evaluates the polyhedral state constraints with
x ∈ X:

hps(x) =
(
hps,1(x), hps,2(x), ..., hps,lx(x)

)⊺ := Gx x− hx ⪯ 0. (5.3.1)

Hard state constraints can now be softened by choosing the following finite horizon
cost function with some penalty parameter β > 0 (e.g., [KM00b; Byr+08]):

J̃N(x0, u) := JN(x0, u) + β
N

∑
k=1

lx

∑
i=1

max
(

0, hps,i
(

φ(k, x0, u)
))

. (5.3.2)

The last penalty term in (5.3.2) is continuous but not differentiable at each point. The
softened version of OCP (3.1.6) is given by:

ṼN(x0) := min
u ∈ UN(x0)

J̃N(x0, u). (5.3.3)

Here, X = X applies in the definition of UN(x0). The optimal solution is again de-
noted by u∗(x0) ∈ UN(x0). Consequently, applying recursive elimination or multiple
shooting yields a NLP where hard constraints only ensure the adherence to the input
polytope, the terminal region, and the continuity of the state trajectory. Note that
the penalty cost function J̃N(·) in (5.3.2) is continuous and satisfies Assumption 3.1.2.
Therefore, the closed-loop properties of conventional MPC, summarized in Section 3.3,
still hold. If there exists a solution to OCP (3.1.6), it is also the solution to OCP (5.3.3).
This is an advantage compared to soft constraint formulations where smooth penalty
functions superimpose the cost function JN(·) on the whole parameter space. However,
the solution to (5.3.3) is not necessarily the solution to OCP (3.1.6). In other words, the
feasible set XN is larger with X = X compared to X ⊂ X. Since the penalty function
J̃N(·) is not differentiable at every point, applying derivative-based optimization algo-
rithms is not straightforward. A practical approach for solving general unconstrained
optimization problems with an ℓ1 penalty function approximates the non-smooth func-
tion by a linear-quadratic model in the neighborhood of the current parameter vector
(e.g., [Fle00]). This procedure is then executed iteratively similar to the SQP method.
However, the penalty parameter β significantly affects the convergence rate of the op-
timization and is thus subject to an iterative parameter update strategy (e.g., [Byr+08]).
Obviously, the integration of non-smooth cost functions in conventional MPC leads to
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Gravitation
Thrust
σ1(t)

Rolling moment
σ2(t)

y2(t)

y1(t)

Roll angle
θ(t)

Figure 5.2.: Schematic of the planar vertical takeoff and landing aircraft system adopted
from [Sas99, Fig. 10.10.].

an elevated level of implementation and runtime complexity. The softened version of
OCP (4.5.1) is defined by:

Ṽs
N(x0, n) := min

us ∈ P(x0, n)
J̃N

(
x0, Θs

N(us)
)

subject to Θs
N(us) ∈ U s

N(x0). (5.3.4)

The optimal solution is again denoted by u∗s (x0, n) = Θs
N
(

u∗s (x0, n)
)
∈ U s

N(x0). When
OCP (5.3.4) is subject to a finite set of control vectors with P(x0, n) := A(n) or
P(x0, n) := Ã(x0, n), the procedure for solving the corresponding OCP follows di-
rectly from Algorithm 4.1. Only program line 11 needs to be modified as follows:

11 : J ← J + ℓ
(

x(k), us
)
+ β

lx

∑
i=1

max
(

0, hps,i
(

x(k + 1)
))

.

Here, the penalty parameter β does not have to be adjusted iteratively as in the case
of smooth optimization. Assume an arbitrary large β → ∞. If OCP (4.5.1) is infeasi-
ble, SFMPC simply selects the control candidate that exhibits the lowest violation of
constraints and thus the smallest value for J̃N(·). The work in [Rat+18] (parallelizable
MPC) follows a similar strategy and also chooses, in case of infeasibility, the control
sequence that least violates the state constraints. The work in [Ham95] also includes
penalty functions that only distort the cost function in case of constraint violations.

5.4. Example: Planar Takeoff and Landing Aircraft

This section introduces the nonlinear planar vertical takeoff and landing aircraft since
it is a descriptive system with two inputs that do not simply superimpose on each
other. The motivation is to evaluate SFMPC for a multi-input system and to investigate
the softened state constraint formulation from Section 5.3. The control task of hovering
a real vertical takeoff and landing aircraft can be treated as a low-level control task.
Moreover, for this benchmark system, SFMPC clearly outperforms the LQR with
control saturation an thus addresses Remark 5.1.1.
The following description of the planar vertical takeoff and landing aircraft is adopted
from [Sas99, Sec. 10.4.2]. This system also serves as an MPC benchmark system in
[Eng+19]. Figure 5.2 shows the schematic of this planar aircraft. The two-dimensional
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position of the center of mass of the planar aircraft at time t ∈ R+
0 is denoted by(

y1(t), y2(t)
)
. The variable θ : R+

0 7→ R represents the roll angle. The inputs σ1(t) and
σ2(t) are the thrust at the bottom of the aircraft and the rolling moment, respectively.
Consider the following nonlinear continuous-time mathematical state space model
with the state vector χ(t) =

(
y1(t), ẏ1(t), y2(t), ẏ2(t), θ(t), θ̇(t)

)⊺ [Sas99, Sec. 10.4.2]:

χ̇(t) =



ẏ1(t)
ÿ1(t)
ẏ2(t)
ÿ2(t)
θ̇(t)
θ̈(t)

 =



χ2(t)
− sin

(
χ5(t)

)
σ1(t) + ϵ̃ cos

(
χ5(t)

)
σ1(t)

χ4(t)
cos

(
χ5(t)

)
σ1(t) + ϵ̃ sin

(
χ5(t)

)
σ2(t)− 1

χ6(t)
σ2(t)

 . (5.4.1)

The gravitational acceleration is included by subtracting minus one in the fourth row
of (5.4.1). The higher the parameter ϵ̃ ∈ R+

0 , the stronger is the coupling between the
rolling moment and the lateral acceleration [Sas99]. In this example, the parameter is
set to ϵ̃ = 0.1. For a detailed derivation of the planar aircraft model, refer to [Sas99,
Sec. 10.4]. Because of the fast system dynamics, the input of the system σ(t) is assumed
to be piecewise constant on the fixed time grids tk+1 = tk + Ts, k ∈ N[0,N−1], t0 = 0 s
(open-loop) and tn+1 = tn + Ts, n ∈ N0, t0 = 0 s (closed-loop) with Ts = ∆ts =
∆ts = 2−5 s. According to the sampled data formulation in Section 3.4, the internal
discrete-time model includes the continuous-time representation (5.4.1) together with
the Runge-Kutta method of the fourth order. Because of safety aspects, the roll angle is
restricted to |θ(t)| ≤ π/4, where π represents the circle constant. The constraint sets
are thus given by X = {x ∈ X | |x5| ≤ π/4}, Xf = X, and U = {u ∈ U | (0,−2)⊺ ⪯
u ⪯ (2, 2)⊺}. Quadratic form cost functions according to (3.1.4) include the weighting
matrices Q = I6 and R = diag(0.5, 0.5). The control task is the transition of the planar
aircraft from x0 =

(
10, 0, 30, 0, 0, 0

)⊺ to xf =
(
0, 0, 15, 0, 0, 0

)⊺ with uf = (1, 0)⊺. SFMPC
is configured to solve OCP (4.5.1) repeatedly, using time-varying finite control sets
with P(x0, n) := A(n) and a cardinality of c = |A(·)| = 212. MPC rests upon the
solutions to OCP (3.1.6).
The left side of Figure 5.3 shows the evolution of the vertical and horizontal position
y1(t) and y2(t) of the planar aircraft using different controllers. The black dashed
graph visualizes the optimal point-to-point reference solution (open-loop) with a long
horizon of N = 1000. Obviously, with a horizon of N = 20, the closed-loop con-
trol performance of MPC deviates from the optimal point-to-point reference solution.
However, the MPC controller transfers the planar aircraft to its desired final state xf
while adhering to the limitation of the roll angle as shown in the third plot on the
right side of Figure 5.3 with χµ,5(t) = θ(t). Because of the single degree of freedom
in control, SFMPC tilts the planar aircraft more slowly and maintains this aircraft
state for a shorter time. As a result, the closed-loop trajectories of MPC and SFMPC
differ slightly, which is clearly visible in the evolution of the position of the center
of mass in the left phase portrait in Figure 5.3. As noted in the first example 5.2
of this chapter, MPC can exploit the state constraints more effectively compared to
SFMPC, meaning that it drives the system to its state constraints faster and operates
the system longer at its input limits. The last three plots from above in Figure 5.3 show
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Figure 5.3.: Open- and closed-loop control of the planar vertical takeoff and landing aircraft.
Left: Phase portrait. Evolution of the position of the center of mass for different predictive
controllers. The cross and the circle denote the start and final positions, respectively. Right:
Closed-loop control performance over time.

the constrained state evolution and the two constrained system inputs, highlighting
the observed difference of the closed-loop control performance between SFMPC and
MPC. However, in this example, both MPC and SFMPC stabilize the steady state
xf with the closed-loop system (3.3.2) or (4.5.2). Recall that Remark 5.1.1 claims that
there exists a certain similarity of the closed-loop control performances of a saturated
LQR with and SFMPC or MPC with a short horizon when implementing the terminal
cost function F

(
x̆(N)

)
:= x̆⊺(N)P x̆(N). However, in this example, the subsequently

input constrained LQR cannot stabilize the planar aircraft model. With the LQR, the
planar aircraft clearly violates the maximum roll angle (see third plot on the right)
and leaves the admissible position value range (y2(t) < 0, see first plot on the right).
For the presented configuration, numerical analysis reveals that SFMPC requires a
minimum horizon length of N = 12 to ensure experimental recursive feasibility if
the implicit control law is driven by the solutions to OCP (4.5.1). However, if SFMPC
rests upon the softened OCP (5.3.4), it can transfer the planar aircraft to the steady
state xf and stabilize it afterwards with a horizon of only N = 5. However, at ap-
proximately t = 1.5 s the closed-loop system violates the roll angle constraint such
that 1/4 π ≤ χ̂µ,5(t) = θ(t) ≤ 3/8 π applies for a short time period. As described in
Section 5.3, outside the feasible set X s

N, the softened version of SFMPC with β → ∞
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Table 5.2.: Evaluation of closed-loop control performances and computation times for (SF)MPC
applied to the planar vertical takeoff and landing aircraft model. Abbreviations: Recursive
Elimination (RE), Full Discretization (FD), Exhaustive Search (ES).

N = 20 IPOPT/SQP ES (for SFMPC)

Environment Solver MPC RE MPC FD SFMPC RE c = 112 c = 212 c = 312

MATLAB IPOPT/ES J̄cl −1.08 % −1.08 % −7.46 % −7.42 % −7.43 % −7.46 %
MATLAB IPOPT/ES tm 901.75 ms 444.29 ms 64.31 ms 83.82 ms 265.45 ms 554.41 ms
C SQP/ES tm 24.89 ms 1.73 s 213.85 µs 382.6 µs 1.28 ms 2.68 ms
C SQP/ES t95 25.56 ms 1.77 s 222.45 µs 415.1 µs 1.55 ms 3.13 ms

selects the control candidate that leads to the lowest state constraint violation during
prediction. This example of the planar aircraft demonstrates the functionality of the
softened version of SFMPC as a low-level controller.

The quantitative evaluation in Table 5.2 further narrows the scope of SFMPC with the
exhaustive search algorithm. Again, the closed-loop control performances are evalu-
ated based on the normalized closed-loop control performance criterion J̄cl from (4.3.3)
with l = 1000. Here, the reference represents the initial solution to OCP (3.1.6) with
N = 1000. The first line of Table 5.2 reveals that with MPC, recursive elimination and
full discretization provide (as expected) the same closed-loop control performance with
J̄cl = −1.08 %. Because of the adaptive and exponential input domain discretization,
SFMPC reaches nearly the same closed-loop performance with the exhaustive search
algorithm and a cardinality of only c = 112 as SFMPC with smooth optimization. The
error that results from discretization is below 0.05 %. Recall that a direct comparison
between MPC and SFMPC is not representative if both controller use the same cost
function weights. Evaluating the execution time of the interpreted MATLAB code
already indicates that SFMPC is faster with smooth optimization as SFMPC with the
exhaustive search algorithm. Again, the IPOPT library demonstrates that it processes
sparse optimization problems efficiently such that MPC with full discretization out-
performs MPC with recursive elimination and even SFMPC with the exhaustive search
algorithm and a cardinality of c = 312. In this example, the SQP implementation
embeds the numerically robust optimization framework mpcActiveSetSolver(·) from
MATLAB for solving the underlying QPs. This framework realizes the (QP)KWIK
algorithm, which represents an active-set method [SB94]. Though this optimization
framework cannot process structure/sparsity information, it is robust to numerical
inaccuracies resulting from applying finite differences and Hessian approximations.
For a purely dense optimization algorithm, recursive elimination is clearly the pre-
ferred method for converting OCP (3.1.6) to an NLP, when considering the resulting
optimization run time. Also, when evaluating compiled C code, smooth optimization
outperforms the simple exhaustive search in terms of execution time. Hence, regard-
ing computational effort, this example demonstrates that SFMPC is especially suitable
for single-input systems with small- to mid-sized state dimensions. For systems with
large state dimensions, simultaneous discretization methods provide sparse NLPs,
addressing efficient sparse solvers. In contrast, exhaustive search is configured to only
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process the control candidates resulting from adaptive input domain discretization.
However, even in this example, SFMPC with exhaustive search still offers low com-
putational effort, a straightforward implementation according to Algorithm 4.1, and a
straightforward procedure for softening state constraints as introduced in Section 5.3.

5.5. Discussion

By systematically comparing the control performances and corresponding computa-
tion times of MPC and SFMPC for two common nonlinear benchmark systems, this
chapter identifies and narrows the scope of basic SFMPC, exploiting simple deriva-
tive-free combinatorial optimization. The design guide for selecting a horizon length
elaborated for linear and open-loop stable systems in Section 4.2 and Example 4.3
also applies to state constrained systems. For SFMPC, a short to mid-sized horizon
length combined with the cost approximation for an infinite horizon, borrowed from
linear system theory, accounts for both a high closed-loop control performance and the
experimental compliance with state box-constraints. The resulting closed-loop control
performance ranges between the control performance achievable with a subsequently
input constrained LQR and conventional MPC. Compared to the LQR, SFMPC explic-
itly adheres to input and state constraints and considers nonlinear system dynamics.
Using the example of the planar aircraft model, SFMPC completes the point-to-point
motion and stabilizes the set-point, while the saturated LQR destabilizes the set-point.
Because of the single degree of freedom in control, the internal model cannot be oper-
ated at its state and input box-constraints as efficiently as with a full degree of freedom
in control. As a result, the SFMPC controller is more pessimistic, resulting in a more
damped closed-loop control performance compared to MPC. However, for simple
state box-constraints, the resulting closed-loop control performance is defensible, es-
pecially when considering the straightforward implementation of SFMPC with finite
control sets and the exhaustive search algorithm. Since the combinatorial complexity
grows exponentially with the input dimension, the runtime statistics clearly show that
SFMPC should not be considered for systems with more than two inputs. Obviously,
the conventional and not input move-blocked MPC with smooth optimization is more
powerful and can also be executed quickly when sparsity and structure information are
considered. For this purpose, external optimization libraries, such as IPOPT [WB06],
are well-suited. The introduction and evaluation of the presented SQP method should
highlight that it is challenging to develop and implement a numerically robust and ef-
ficient optimization algorithm from the bottom up. In order to make a completely fair
assessment of the realization effort for smooth optimization, the underlying QP solver
would also have to be implemented from scratch. Either suitable external libraries
are required or a very high effort must be made to realize an efficient optimization.
SFMPC with derivative-free optimization is suitable for low-level control when the last
two points do not apply. Besides the straightforward implementation and low com-
putational effort, SFMPC allows to implement non-smooth cost functions and system
dynamics. The next Chapter 6 makes use of the non-smooth cost function to account
for state constraints in the presence of model mismatch and external disturbances.
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6
Model Predictive Low-Level Control of

Mechatronic Systems

This chapter focuses on the implementation and evaluation of SFMPC as a low-level
controller for real systems, namely a directional control valve and a servo-motor. The
objective is to cover large operating ranges with small sets of intuitive controller pa-
rameters. An important part concerns the development of a real-time capable strategy
to compensate the offset since internal models generally suffer from model mismatches.
In addition, this chapter demonstrates the clear advantages of derivative-free optimiza-
tion for industrial applications such as deterministic worst-case computation times and
handling of non-smooth objective functions. Parts of this chapter have been published
in [Mak+17; Mak+18d; Mak+18e].
The paper [Xu+20] reviews recent algorithms and technologies concerned with the
operation of electro-hydraulic control valves. Therein, the authors list the work
in [Mak+17] as the only paper dealing with MPC for control valves.
Preliminary note: In general, a continuous signal Sg(t) is defined to be a function of
time t ∈ R+

0 with the function definition Sg : R+
0 7→ R. Formal definitions of signals

that are not directly relevant to the control tasks in this chapter are omitted.

6.1. Directional Control Valve

Complex mechatronic systems like construction and manufacturing machines integrate
directional control valves to control hydraulic actuators, which offer fast dynamics and
a high force density (e.g., [Ewa+03]). The directional control valve 4WRPEH 6 of the
company Bosch Rexroth is a directly operated and fast-responding 4/4-way valve that
provides a high control performance [Bos10]. The valve cross-section in Figure 6.1
provides a better understanding of the operating principle. The valve’s objective is
to route oil from the pressure port P to the control ports A or B. An electromagnetic
actuator exerts force by reducing the air gap inside the solenoid. The moving armature
adjusts the position of the guided piston and thus the opening cross sections of the
hydraulic ports. As soon as the valve partially opens a working port, pressure relief to
the tank T occurs on the other side. A spring on the left outside of the valve generates
the restoring force and handles the fail-safe position in case of power failure. The
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Figure 6.1.: Cross-section of the directional control valve 4WRPEH 6 [Bos10]. The dashed
arrows and the corresponding labels are added to indicate important valve components.

position of the piston and therefore of the solenoid stroke ys(t) and the pressure p̄(t)
at port P mainly define the oil flow rate Q(t). An internal inductive sensor measures
the position of the armature and allows position control, or more specifically, stroke
control. The objective of such a position controller is to compensate parasitic effects
such as nonlinear friction and magnetic and mechanical hysteresis, which would cause
positioning inaccuracies in an open-loop control setup (see, e.g., [JK12]). For detailed
information on directly operated valves, refer, for example, to [Ewa+03]. The block
diagram in Figure 6.2 summarizes the valve’s working principle and shows the most
important components that mainly define the dynamical behavior of the valve. In
the stationary case, the force generated by the proportional solenoid Fs(t) is almost
independent of the armature position ys(t). In the stroke range of interest, the force
is almost proportional to the excitation current is(t). However, for fast responding
valves, eddy currents are not negligible. The temporal variation of the armature po-
sition and the time-varying excitation generate eddy currents inside the conductive
components. These eddy currents induce opposing magnetic fields and slow down
the force build-up (e.g., [Kal+12, Sec. 5.2.4]). The one dimensional motion of all sliding
components along the y-axis is similar to the motion of a mass-spring-damper system.
However, the forces caused by nonlinear friction effects counteract the driving force
Fs(t). In addition, as soon as oil flows through the valve, a hydraulic flow force Fh(t)
applies to the piston. A reliable control approach for directional control valves rests
upon a cascaded structure with an inner current controller enclosed by a complex
position controller (e.g., [Ott04; Kre+07]). The current controller processes the refer-
ence signal from the position controller iref(t) and the measured current signal im(t).
The native power electronics supply a tailored pulse width modulated voltage signal
up : R+

0 7→ {−24 V, 24 V}, which minimizes power losses and increases valve dynam-
ics. For more information on driving an electromagnetic valve actuator with a pulse
width modulated voltage signal, refer to [Lau90]. In addition, the native electronics
are optimized for a compact and robust housing. However, due to customized power
electronics and low-level controller, the identification of a continuous state space rep-
resentation with a small to mid-sized state dimension is a challenging task [Lau90;
Mak+15a; Mak+15c]. To meet the high demands placed on the closed-loop control
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Figure 6.2.: Operating principle of the directional control valve 4WRPEH 6. The power elec-
tronics generate a pulse width modulated voltage signal up(t).

performance on both the small as well as the large signal range, an augmented propor-
tional-integral position controller is extended by an additional state feedback structure.
The proportional and integral gains are defined by piecewise linear functions, where
the grid points are subject to optimization (related to gain scheduling). Therefore, the
controller amplifications depend on the current position error yref(t)− ym(t), where
yref : R+

0 7→ R and ym : R+
0 7→ R represent the set-point and measured position

signals, respectively. In total, the native position controller has 24 free parameters
(e.g., [Ott04; Kre+07]). To speed up the controller design, automated tuning of free
controller parameters relies on an elaborate evolutionary hardware-in-the-loop op-
timization [Nic+01; Kre+07]. In [Kre+09], this automated tuning is extended to a
multi-objective optimization strategy that further incorporates expert knowledge.

6.1.1. Experimental Setup

The experimental setup in this chapter takes a step away from the series product
to facilitate system identification. This section aims at replacing the entire native
control concept of the valve by a single predictive controller. However, the detailed
integration of MPC into series-ready valve electronics is beyond the scope of this
dissertation. Figure 6.3 illustrates the experimental setup for the evaluation of MPC.
A performance real-time target machine (Speedgoat, Intel Core i7 with 4.2 GHz, 16bit
analog I/O resolution, IO323) implements different algorithms at a fixed sampling
time ∆ts ∈ R+. Let tn+1 = tn + ∆ts denote the resulting fixed time grid with n ∈ N+

0
and t0 = 0 s. Instead of the native power electronics, a high-speed four-quadrant
amplifier (Toellner 7610-40) directly drives the solenoid without applying a pulse
width modulation. However, the power amplifier approximately provides the same
electrical power as the native valve electronics. The real-time target machine closes the
loop by reading the sensor information of the native sensor electronics. The host PC is
used to develop a control or data logging algorithm, which is then transferred to the
real-time target machine to enable real-time computing. During real-time operation,
the communication between the host PC and the target machine is based on a TCP/IP
Ethernet connection. This asynchronous communication enables quasi-online tuning
of controller parameters and processing of measured and commanded signals. The
valve is filled with oil and a locking plate seals all hydraulic ports mechanically at
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Figure 6.3.: Experimental setup for evaluating model predictive valve control. The amplifier
generates an analog voltage signal ua(t) (not pulse width modulated).

the bottom of the valve. Since there is no oil flow, there are also no flow forces
acting on the piston. Clearly, experimental robustness needs to be evaluated when
hydraulic actuators are connected to the valve. The sensor output of ym(t) = 0 %
denotes the center piston position in which both hydraulic control ports A and B are
closed. At this piston position, no oil can flow through the valve, even when the valve
is unsealed from below and a hydraulic actuator is connected. The sensor output of
ym(t) = ±100 % shows that one working port A or B is fully opened while the other
is connected to the tank port T. In the following, a linear differential equation of the
third order is used to approximate the input-output behavior of the valve between
the analog input voltage ua : R+

0 7→ [−24 V, 24 V] and the measured position ym(t).
A linear model is chosen for three reasons. The major reason is that a linear model
enables the implementation of linear MPC (e.g., [Bor+17]), which then can serve as
a real-time capable reference approach. Furthermore, a linear model facilitates the
observer and offset compensation design. Since the mass-spring-damper system is
already a second-order system, a third-order model is at least necessary to account
for additional dynamical electromagnetic effects. Let σ : R+

0 7→ R and y : R+
0 7→ R

denote the input (voltage) and output (position) signals, respectively. The differential
equation

...y (t) + a2ÿ(t) + a1ẏ(t) + a0ÿ(t) = b0σ(t) is transformed into the following
state space representation: ẏ(t)

ÿ(t)
...y (t)

 =

 0 1 0
0 0 1
−a0 −a1 −a2

y(t)
ẏ(t)
ÿ(t)

+

 0
0
b0

 σ(t). (6.1.1)

The state vector is denoted by χ(t) =
(
y(t), v(t) = ẏ(t), a(t) = ÿ(t)

)⊺, where v(t) and
a(t) represent the (stroke) velocity and acceleration, respectively. The output of the
state space model is defined by y(t) = C χ(t) = (1, 0, 0)χ(t). The open-loop identifica-
tion involves a carefully designed amplitude modulated random binary signal (ARBS)
to prevent the solenoid armature from hitting the mechanical stops, since the stroke
only ranges between a few millimeters. After subtracting the individual mean values
of the input voltage stimulus and the measured position signal, optimization-based
identification returns values for a0, a1, a2, b0 ∈ R+. For reasons of anonymization,
the exact values are not given in this dissertation. However, the identified model is
open-loop stable and responds with a decaying oscillation. Figure B.2 gives an insight
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into the valve behavior and compares the measured and simulated system responses
to the designed input stimulus. The model performance achieves a fitness value of
NRMSE = 9.69 % during identification and a fitness value of NRMSE = 12.43 %
for the subsequent evaluation of the validation signal (see App. B.4). Note that a
linear model cannot reproduce nonlinear friction effects such as static friction. Static
friction occurs when the piston crosses the zero velocity and remains in a constant
position, at least for a short time. The native valve electronics prevent the stick slip
effect (e.g., [Fee+98]) during closed-loop control by superimposing a high frequency
dither current signal. The experimental setup in Figure 6.3 does not include a fast-re-
sponding current source. Therefore, MPC and SFMPC prevent the stick slip effect,
as far as possible, by enforcing a dynamic closed-loop behavior. For real-time opera-
tion, the continuous-time representation (6.1.1) is transformed into the discrete-time
formulation x(k + 1) = A x(k) + Bu(k) by applying zero-order-hold discretization as
described in (3.4.9). Since the continuous- and discrete-time model coincide at discrete
time steps, the following relationship applies with k ∈ N0, t0 = 0 s, and tk+1 = tk +∆ts:y(tk + ∆ts)

v(tk + ∆ts)
a(tk + ∆ts)

 = A

y(tk)
v(tk)
a(tk)

+ B σ(tk). (6.1.2)

The linear and continuous-time system in (6.1.1) and its discretized version in (6.1.2)
are both controllable and observable for ∆ts = 100 µs and ∆ts = 150 µs.

6.1.2. Offset and Computation Time Compensation

As it is well-known from state space control, model mismatch results in a closed-loop
control offset, which needs to be compensated. Offset-free model predictive control
follows the idea of first augmenting the state space representation by a disturbance
model. In the second step, an observer estimates the states as well as the disturbances
(e.g., [MB02; PR03; Mae+09; MM12]). A detailed analysis and comparison of common
approaches for offset-free tracking MPC is given in [Pan15]. This section follows
a straightforward offset compensation procedure by simply exploiting the system
structure. Since the second and the third state represent time derivatives of the first
state, all steady states xf are defined by xf :=

(
yref(tn), 0, 0

)⊺ for all admissible yref(tn).
Here, an admissible reference position yref(tn) lies between the mechanical limits of
the valve. The reference input uf follows from solving the steady state equation xf =
A xf + B uf for uf. To hold the piston at a constant position, the real valve also assumes
a stroke velocity and acceleration of zero. Hence, steady state offsets only occur in
the position signal. The proposed offset compensation procedure first implements a
polynomial filter of the third order with the model function yls(tn) := ζ1t2

n + ζ2tn + ζ3
and ζ1, ζ2, ζ3 ∈ R. At every closed-loop time instant, the polynomial filter solves the
least squares problem with the window length W ∈ N:

Step I: (ζ∗1 , ζ∗2 , ζ∗3) := arg min
ζ1,ζ2,ζ3

W−1

∑
l=0

(
ym(tn−l)− yls(tn−l)

)2 → vls(tn) := 2ζ∗1 tn + ζ∗2 .

(6.1.3)
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For the time interval t ∈ [0, W∆ts), the measured output ym(t) is assumed to be
zero. The larger the time window, the better the smoothing of sensor noise. However,
as the window length W increases, the phase error becomes larger. Therefore, this
parameter W is subjected to a heuristic tuning. In the following experiments, only a
short window length of W ∈ {9, 12} is used to suppress high frequency noise without
inducing a noticeable phase error. Finally, the estimated stroke velocity follows by
vls(tn) := 2ζ∗1 tn + ζ∗2 . Then, this estimated velocity signal is used to further estimate
the position and the acceleration with the help of a linear observer:

Step II:

ŷ(tn)
v̂(tn)
â(tn)

 = A

ŷ(tn − ∆ts)
v̂(tn − ∆ts)
â(tn − ∆ts)

+ B σ(tn − ∆ts) + L
(
vls(tn)− v(tn)

)
. (6.1.4)

The observer gain matrix L is determined by pole placement such that the eigenvalues
of A− LC are strictly inside the unit circle. The difference dy(tn) := ym(tn)− ŷ(tn)
reveals information about the current model error since the observer and the internal
model are based on the same state space representation (6.1.2). Recall that the velocity
signals are not affected by the position offset error. As proposed in [Tat07, Sec. 3.4.2],
this information dy(tn) can be directly used for offset compensation. First, assume that
the error dy(tn) is constant over the entire prediction horizon (e.g., [Pan15]). Instead of
adding the estimated disturbance to the state space model (6.1.2), the following offset
compensation scheme adjusts the position set-point by the estimated disturbance
dy(tn):

Step III: ỹf(tn) := yref(tn)−
(
ym(tn)− ŷ(tn)

)
= yref(tn)− dy(tn). (6.1.5)

For this adjustment step, the linear system of equations describing the behavior of the
system in a steady state has to be solved:

Step IV: x̃f(n) :=

ỹf(tn)
0
0

 = A

ỹf(tn)
0
0

+ B σ(tn),

ũf(n) := σ(tn) = B#( x̃f(n)− A x̃f(n)
)
.

(6.1.6)

The offset-compensation technique, as outlined in (6.1.6), yields some time-varying
virtual reference pair

(
x̃f(n), ũf(n)

)
:=

((
ỹf(tn), 0, 0

)⊺, σ(tn)
)

although the set-point
yref(tn) = yf ∈ R might be constant on some time interval.
Besides the offset-compensation, a predictive controller needs to compensate non-neg-
ligible computation times. In contrast to the simulation, where a computation time
of zero is assumed, during real-time operation, the finite time for solving a NLP
affects closed-loop control performance. The handling of finite computation times
in MPC was first analyzed in [Che+00; FA04]. Both contributions develop compu-
tation time compensation techniques that rest upon stabilizing terminal ingredients.
The RTI scheme also compensates finite computation times by distributing a tailored
SQP approach over two consecutive sampling intervals [Die+05b]. In this dissertation,
a straightforward computation time compensation procedure accounts for asymp-
totically constant references that can be switched during real-time operation (see
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Rem. 3.3.4). This procedure solves the OCP respectively NLP for the closed-loop time
instant n + 1 at time instant n similar to [FA04]. Since the sampled-data formulation
links the solutions of the discrete-time and continuous-time domain, the time between
two time instances n and n + 1 is well-defined by ∆ts and is used to solve the OCP.
Let e : N0 7→ Rp and w : N0 7→ Rp be some bounded non-deterministic measurement
and modeling errors, respectively. The measurable or observable state vector at the
next time instant is defined by (see [All+17]):

x̂µ(n + 1) := xµ(n + 1)− e(n + 1) = f
(

xµ(n), µ
(

xµ(n)
))

+ w(n)− e(n + 1). (6.1.7)

Then, the closed-loop state vector at the next time instant xµ(n + 1), which initializes
the OCPs (3.1.6), (4.5.1), and (5.3.4), is not known exactly in advance at time instant n.
However, the compensation procedure approximates the next closed-loop state vector
by a one-step prediction xµ(n + 1) ≈ f

(
x̂µ(n), µ

(
xµ(n)

))
. At the very first iteration

n = 0, the initial control vector is defined by µ
(

xµ(0)
)

:= 0m. In the setup of valve
control, the estimated state vector is defined by x̂µ(n) :=

(
ŷ(tn), v̂(tn), â(tn)

)⊺.

6.1.3. Controller Design

The following model predictive controller directly applies the discrete-time state space
representation x(k + 1) = A x(k) + Bu(k) as the internal model, which results from
zero-order hold discretization with ∆ts = 100 µs or ∆ts = 150 µs. The coordinate trans-
formations x̆(k) := x(k)− x̃f(n) and ŭ(k) := u(k)− ũf(n) account for the time-varying
reference pair

(
x̃f(n), ũf(n)

)
at closed-loop time n. The quadratic cost functions are

now given by ℓ
(

x̆(k), ŭ(k)
)
= ∥ x̆(k)∥2

Q + ∥ŭ(k)∥2
R and F

(
x̆(N)

)
= ∥ x̆(N)∥2

P with

Q = diag(q1, q2, q3), R = r1, and q1, q2, q3, r1 ∈ R+. Because of the linearity of the
internal model, the Riccati equation only needs to be solved once to determine the
matrix P. Although nominal theoretical stability cannot be guaranteed in this chapter
due to input move-blocking, the solution of the Riccati equation is nevertheless used
to approximate the infinite horizon costs. The constraint sets are given by X = X or
X = {x ∈ X | |x2| ≤ 2000}, Xf = X, and U = {u ∈ U | |u| ≤ 24}. In the next subsec-
tion, linear MPC (LMPC) serves as the reference control approach. The transformation
of OCP (3.1.6) into a QP requires the constraint sets X, Xf, and U to be polyhedral
sets, which is satisfied with input and state box-constraints. For more information
on LMPC, refer, for example, to [Bor+17]. To ensure a numerically stable real-time
operation, LMPC operates at a higher sampling time of ∆ts = 150 µs ( fs ≈ 6.7 kHz)
with a filter window length of W = 9. The LMPC implementation uses the numerically
robust framework mpcActiveSetSolver(·) from MATLAB to solve the recurring QPs. The
real-time target machine is configured to tolerate a pre-defined number of real-time
violations. In this case, the real-time machine waits for the QP solver to terminate and
then proceeds again at its fixed sampling time. The QP solver either terminates in case
of convergence or if it reaches its maximum number of optimization iterations (subop-
timal or infeasible solution). However, the LMPC implementation uses the first control
value that results at the time the QP solver terminates for closed-loop control. SFMPC,
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in contrast, solves OCP (5.3.4) with P(x0, n) := A(n) recurrently at a closed-loop sam-
pling time of ∆ts = 100 µs ( fs = 10 kHz) and uses a filter window length of W = 12.
SFMPC further builds on the exponential discretization in (4.5.3) with a cardinality
of |A(·)| = 101. This cardinality is chosen generously, the available execution time
would even allow for a much higher value. However, the high closed-loop control
performance is preserved even with a significantly lower cardinality (see Fig. 4.4). If
the objective is to limit the opening speed of working ports at vlim = 2000 % s−1, the
constraint state space is given by X = {x ∈ X | |x2| ≤ 2000}. In simulation, hence
for the nominal case, both approaches require at least a horizon of N = 3 to ensure
experimental recursive feasibility with a velocity limit of vlim = 2000 % s−1. During
real-time operation, both SFMPC and LMPC implement a horizon of only N = 5.
The maximum velocity that the piston can reach is approximately vmax ≈ 16000 % s−1.
Note that a demanded accuracy of only 1 % already justifies the high closed-loop
control frequency around fs = 10 kHz. The series valve even provides a higher ac-
curacy. For both approaches, the controller design is based on manual tuning of the
free parameters q1, q2, q3, r1. During parameterization, a compromise is made between
the criteria rise time, settling time, and overshoot with respect to the position signal.
The following experiments are not about determining the Pareto set from which the
control engineer can choose an individual (cf. [Kre+09]). The idea is to achieve a high
control performance in just a few tuning steps and then to compare the closed-loop
performances qualitatively.

6.1.4. Performance Evaluation

The upper plot in Figure 6.4 compares the tracking performances of LMPC and SFMPC
for some piecewise constant reference vectors xf :=

(
yref(t), 0, 0

)⊺. Note that in the
following plots, all signals that are actually defined on the fixed time grid tn+1 =
tn + ∆ts are connected continuously such that the continuous time variable t ∈ R+

0
is introduced on the x-axis. In addition, the x-axis is always normalized to the time
duration of the presented experiment tmax ∈ R+ such that t̄ := t/tmax applies. Without
a velocity limit, the step responses are almost identical. Both approaches provide
short rise times, low overshooting, and smooth position signals. With the proposed
offset-compensation strategy, the offset is less than one percent. The small subplot
shows, exemplary for xf = (50, 0, 0)⊺, the close-up of the performance in the local
neighborhood of the steady state. As it can be seen from the second plot in Figure 6.4,
LMPC and SFMPC operate the solenoid at its input limits every time another position
reference yref(t) = yf is commanded. The third plot in Figure 6.4 shows the evolution
of the virtual reference ỹf(t). For steering the real valve to the commanded reference
yref(t), the linear model needs to be transferred to ỹf(t). Both the qualitative difference
and the different value ranges between ỹf(t) in the third plot and yref(t) in the first
plot of Figure 6.4 are due to model mismatch. The model has to be driven around
ỹf(t) = 450 % such that the steady state equation (6.1.6) yields a reference value
ũf(n) := σ(tn) for all n ∈ N0 that is high enough to hold the real valve piston at
some constant position level. As soon as the real valve piston position is in some
close neighborhood of the reference position yref(t) = yf, the offset compensation
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Figure 6.4.: Valve closed-loop real-time control: Constant reference tracking with an inactive
stroke velocity limit. First: Stroke time performance. Second: Solenoid input voltage. Third:
Reference adaptation due to offset compensation. Bottom: Normalized execution time.

scheme increases or decreases the virtual reference such that the valve reaches its final
position (similar to an integral controller). The bottom plot in Figure 6.4 visualizes
the normalized execution time trun/∆ts, where trun ∈ R+ is the measured run time.
SFMPC performs at a nearly constant task execution time level and never violates
the real-time constraints. LMPC also operates at an almost constant task execution
time level. However, some outliers clearly violate the real-time constraints. Variations
in execution times with smooth optimization occur due to measurement and model
errors. For example, the warm-starts of primal and also dual variables might be poor
such that the optimizer requires a longer time to converge. As soon as the reference
position ỹf(t) changes its value, the QP solver cannot warm-start the active inequalities.
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As noted in Remark 3.3.4, switching the reference is similar to a cold-start, which
potentially involves the highest computational overhead. Figure B.7 and Figure B.8
in Appendix B.6 show the closed-loop control performance of LMPC and SFMPC for
another reference profile that also forces the piston to cross the zero position.
The major advantage of SFMPC and also LMPC over the native valve control concept
is the significant reduction of parameter complexity. At a comparable closed-loop
control performance, the number of free controller parameters reduces from 24 to
initially five parameters. The horizon length N can be determined during simulation
considering recursive feasibility aspects. Since only the main diagonal of the weighting
matrix Q is used, the weight q1 can be set to q1 = 1. Then, the weights q2 and q3 can
be tuned in the sense of a relative weighting. Here, the weights q2 and q3 penalize
the velocity and acceleration of the piston, respectively, while r1 penalizes the control
input. This clear relationship between the remaining three weighting parameters
and the control performance enables intuitive online controller design. This tuning
procedure addresses industrial applications in particular. SFMPC outperforms LMPC
from the perspective of implementation. While LMPC requires a numerically robust
QP solver, SFMPC comprises only a few lines of code, as shown in Algorithm 4.1.
Another major advantage of SFMPC over LMPC is its ability to directly handle non-s-
mooth cost functions, such as those that arise when state constraints are softened (see
Sec. 5.3). Figure 6.5 shows a similar experiment as in Figure 6.4 but with the active
velocity limit vlim = 2000 % s−1. The third plot results from applying forward finite dif-
ferences to some carefully filtered position signal. Since the polynomial filter in (6.1.3)
is only designed to suppress high-frequency noise of the stroke sensor, the position
signal yls(tn) is further subject to a zero-phase offline filtering procedure (see filtfilt(·)
in MATLAB). This procedure passes the position signal through a low-pass filter with
some cutoff frequency in forward and backward direction such that no phase error
occurs. The resulting smooth position signal then serves as the basis for numerical
differentiation. The velocity vfilt : R+

0 7→ R is finally considered as the ground truth
signal. Since the polynomial filter involves only a small window length W to avoid
large phase errors, the velocity profile vfilt(tn) is much smoother than vls(tn). Offline
filtering, in contrast, is suitable for suppressing even lower-frequency noise without
distorting the phase evolution. The third plot in Figure 6.5 visualizes that the velocity
signals of LMPC and SFMPC clearly violate the velocity constraint. This violations
occur because of the present model mismatch and the limited inherent robustness of
the nominal MPC setting (see Def. 3.3.1). If there exist upper bounds for the model
uncertainties and external disturbances, the controller design of LMPC needs to follow
the (non-trivial) guidelines of robust linear MPC (e.g., [Bor+17, Ch. 15]). In [Zei+14],
for example, the authors combine a soft constraint approach with robust LMPC and
prove important closed-loop stability properties. The first plot and its subplot in Fig-
ure 6.5 show a non-smooth position signal for LMPC. Hence, when applying nominal
LMPC with hard constraints for valve control, the tracking performance drops when
constraint violations occur. The execution time for LMPC in the bottom plot fluctuates
and violates the real-time constraints as soon as the piston velocity approaches the ve-
locity limit. With SFMPC, however, the valve features an almost constant opening and
closing behavior of the working ports and no deviation in steady state. This behavior
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Figure 6.5.: Valve closed-loop real-time control: Constant reference tracking with an active
stroke velocity limit. First: Stroke time performance. Second: Solenoid input voltage. Third:
Estimated stroke velocity. Bottom: Normalized execution time.

rests upon the non-smooth penalty function introduced in Section 5.3. Hence, if all
input candidates violate the velocity constraint, SFMPC simply chooses the input can-
didate that reaches the lowest value for the cost function in (5.3.2). The bottom plot in
Figure 6.5 underlines the almost deterministic execution time behavior of SFMPC even
when constraint violations occur. The limit value vlim can be added as an additional
intuitive controller parameter, suitable, for example, to decouple the small signal from
the large signal range performance. Hence, if vlim is active, q2 can be decreased to
speed up closed-loop behavior in the small signal range. However, strict adherence to
the speed limit would require a higher model accuracy and a robust design of SFMPC,
which is beyond the scope of this dissertation.
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Figure 6.6.: ECP Industrial Plant Emulator Model 220. Left: Picture of the experimental system.
Right: Schematic top-view with information on the individual gear ratios.

6.2. Industrial Plant Emulator

The Industrial Plant Emulator Model 220 [ECPa] is particularly suitable for investi-
gating and evaluating classical and novel control concepts for electric drive systems
under real operating conditions such as nonlinear friction. The left side of Figure 6.6
shows a picture of the experimental test bench. The schematic top-view on the right
side of Figure 6.6 illustrates that the system has five parallel axes of rotation. The inner
axes are each equipped with two idler pulleys of different diameters. Adjacent axles
are connected to each other via transmission belts. Two brushless DC motors each
drive a load plate, which in turn are connected to each other by an idler shaft and
transmission belts. Two incremental encoders supply pulses as soon as the load plates
rotate. An external digital signal processor (DSP) estimates the angular positions and
velocities of the axes on the basis of the temporal resolution of the measured ticks.

6.2.1. Experimental Setup

In this chapter, the Industrial Plant Emulator is configured to be a single-input system.
While motor 1 serves as the active actuator, motor 2 is either a passive element, which
increases the rotational inertia, or a source of disturbance. Figure 6.7 shows the experi-
mental setup for this chapter. The square-wave output signals of the three Hall sensors
ih,1(t), ih,2(t), ih,3(t) indicate the position of the rotor and control the commutation.
The internal electronics measure two phase currents ip,1(t) and ip,2(t), while the third
phase current results from the three-phase star connection as the negative sum of the
other two currents. Two internal proportional-integral controllers process a reference
current signal iref,1 : R+

0 7→ [−1, 1]A and drive the rotor by applying three different
time-varying phase voltages P1(t), P2(t), and P3(t) to the four pole stator windings.
For further information on the internal structure of the brushless DC motors, refer,
for example, to [ECPb]. The control task is the angular positioning of the load plate,
below which the second encoder is located. Note that the system transmits the torques
generated by the individual motors M1(t) and M2(t) with a gear ratio of four to this
axis. As soon as the drive torque exceeds the moment of inertia and all friction torques,
the load plates start to rotate. The encoder converts the angular velocity va(t) into a
square-wave signal and accumulates the measured ticks. Finally, the DSP transforms
the encoder signal Edsp(t) into a measurable angular position signal ydsp : R+

0 7→ R
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Figure 6.7.: Experimental setup for evaluating model predictive servo motor control. The
second motor can be used optionally as a source of disturbance.

and a measurable angular velocity signal vdsp : R+
0 7→ R. For the identification pro-

cedure and the first experiment, the input signal of the second motor is defined by
iref,2(t) := 0 A such that M2(t) = 0 Nm follows for all t ∈ R+

0 . Again, let σ : R+
0 7→ R

and y : R+
0 7→ R denote the input (current) and output (angular position) signals,

respectively. The model structure is based on the following second-order differential
equation derived from the mechanical equilibrium:

Iecp ÿ(t) + Cecp tanh
(
b ẏ(t)

)
+ Decp ẏ(t) = 4 Kecp σ(t). (6.2.1)

Here, Iecp is the total load inertia about the axis of the second encoder, Cecp is the
Coulomb friction torque, Decp is a damping constant, and Kecp is a motor constant.
Since the dry friction representation is not continuous at the origin, the hyperbolic
tangent approximates the transition from the negative to the positive angular velocity
to enable smooth optimization. The larger the parameter b ∈ R+, the larger the gra-
dient at the origin. Note that the differential equation (6.2.1) does not consider static
friction, as this would result in a non-smooth function. In this case, conventional MPC
could not serve as the reference approach. The physically motivated differential equa-
tion (6.2.1) is transformed into the following mathematical state-space representation:(

ẏ(t)
ÿ(t)

)
=

(
ẏ(t)

−p1 tanh
(

p2 ẏ(t)
)
− p3 ẏ(t) + p4 σ(t)

)
. (6.2.2)

The state vector is denoted by χ(t) =
(
y(t), v(t) = ẏ(t)

)⊺, where v(t) represents
the (angular) velocity. The output of the state space model is defined by y(t) =
C χ(t) = (1, 0)χ(t). The identification process of the parameters p1, p2, p3, p4 ∈ R+

relies on an ARBS as the input stimulus and global optimization. Figure B.4 compares
the estimated position and velocity signals ydsp(t) and vdsp(t), respectively, with the
simulated signals y(t) and v(t). The model identification process results in a fitness
value of NRMSE = 7.45 % for the position signal and a fitness value of NRMSE =
7.49 % for the velocity signal. The subsequent validation of the model results in a
fitness value of NRMSE = 13.42 % for the position signal and a fitness value of
NRMSE = 10.55 % for the velocity signal (see App. B.4).
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6.2.2. Controller Design

The controller design in this section follows the same motivation as the controller
design in Section 6.1.3. In the following, the sampled-data formulation introduced
in Section 3.4 includes the continuous-time state space representation (6.2.2) into the
discrete-time formulation of the predictive controller. Here, the input signal σ(t)
is assumed to be piecewise constant on a fixed time grid with a sampling time of
∆ts = 0.01 s and the IVPs are solved approximately by the explicit Runge-Kutta
method of the fourth order. The integral behavior of the real system (uf = 0) and
the state space representation (6.2.2) reduce positioning offset errors such that an off-
set compensation approach is not required. The quadratic cost functions are given by
ℓ
(

x̆(k), u(k)
)
= ∥ x̆(k)∥2

Q + ∥u(k)∥2
R and F

(
x̆(N)

)
= ∥ x̆(N)∥2

P with x̆(k) := x(k)− xf,

Q = diag(q1, q2), R = r1, and q1, q2, r1 ∈ R+. The following model predictive con-
trollers linearize the corresponding sampled data system at the steady state (xf, uf)
with xf =

(
yref(tn), 0, 0

)⊺ and uf = 0 and resolve the Riccati equation (3.3.18) as
soon as the reference position xf changes its value. Constraint sets are formulated
as X = X or X = {x ∈ X | |x2| ≤ 8}, Xf = X, and U = {u ∈ U | |u| ≤ 1}. For
MPC, recursive elimination transforms OCP (3.1.6) into NLP (3.2.8), which then is
subject to smooth optimization. The solution to this NLP is obtained numerically us-
ing the SQP method described in Section 5.2. Here, the numerically robust framework
mpcActiveSetSolver(·) from MATLAB solves the underlying QPs. With a horizon of
N = 25, the SQP algorithm always reaches its termination condition in the specified
time of ∆ts = 0.01 s ( fs = 100 Hz). Again, the MPC implementation also considers
suboptimal or even infeasible solutions for closed-loop control. SFMPC rests upon
the softened OCP formulation (5.3.4) with P(x0, n) := A(n) and also operates at a
closed-loop sampling time of ∆ts = 0.01 s ( fs = 100 Hz). SFMPC further implements
the exponential discretization in (4.5.3) with a cardinality of |A(·)| = 31 and predicts
the system evolution for a horizon length of N = 25. Since the single degree of free-
dom in control tends to result in a damped closed-loop behavior, manual tuning for
SFMPC results in q1 = 1, q2 = r1 = 0.01, while the parameter tuning for MPC results
in q1 = 1, q2 = r1 = 0.05. The controller parameterization follows the motivation
that the closed-loop behavior of MPC and SFMPC should be fairly similar. Both ap-
proaches are subject to the computation time compensation described in Section 6.1.2
with µ

(
xµ(0)

)
:= 0m and x̂µ(n) :=

(
ydsp(tn), vdsp(tn)

)⊺.

6.2.3. Performance Evaluation

This section again deals with the tracking performance of constant references with
MPC and SFMPC under real-time constraints. The signals in Figure 6.8 and Figure 6.9
are connected continuously though they are measured and evaluated on the fixed time
grid tn+1 = tn + 0.01 s, n ∈ N0, t0 = 0 s. In the first plot of Figure 6.8, both MPC
and SFMPC result in smooth position signals without no significant overshoots. Note
that the slightly different closed-loop control performances between MPC and SFMPC
results from manual controller tuning. The second plot in Figure 6.8 displays that both
controller operate the brushless DC motor at its control limits every time the reference
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Figure 6.8.: Closed-loop real-time control of the Industrial Plant Emulator: Constant reference
tracking. Top: Position time performance. Second: Control input (motor 1). Third: Estimated
rotational velocity (DSP). Bottom: Normalized task execution time.

xf switches. The first close-up magnifies the transition to the reference xf = (π, 0, 0)⊺.
Because of the integral behavior of the Industrial Plant Emulator, only a small position
offset occurs although the model deviation is not negligible (see Fig. B.4). The second
plot in Figure 6.8 indicates the existing model mismatch. As soon as the load plate
remains at a constant angular position for some time steps, for example between
t = 8 s and t = 9 s, the angular velocity vdsp(t) decreases to zero as shown in the
third subplot in Figure 6.8. However, the control input σµ(t) = iref,1(t) in the second
subplot does not adopt a value of zero although the reference control vector is uf = 0.
This offset from iref,1(t) = 0 A is generated by the first element of the predicted control
sequence that the internal model requires for getting closer to the reference xf on the
prediction horizon. Because of the model mismatch, the real system never reaches the
reference xf exactly such that x0 ̸= xf applies even when the load plates stop rotating.
However, since the internal model does not consider static friction, the first element of
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Figure 6.9.: Closed-loop real-time control of the Industrial Plant Emulator: Constant reference
tracking with active velocity limit vlim = 8 rad s−1 and with strong inference torque from
motor 2. Top: Position time performance. Second: Control input at motor 1 and disturbance
input at motor 2. Third: Estimated rotational velocity (DSP). Bottom: Task execution time.

the predicted control sequence is not high enough to generate a torque that overcomes
static friction. The bottom graph again reveals that SFMPC has a significantly lower
computational effort compared to MPC, although the closed-loop control performance
is fairly similar. In case of MPC, computation times fluctuate and are close to the
maximum value every time the reference position yref(t) changes. This is because the
SQP algorithm cannot reuse the previous solution for warm-starting optimization at
the current closed-loop time instant (see Rem. 3.3.4). SFMPC, in contrast, showcases a
nearly constant computational effort.
The experiment in Figure 6.9 challenges SFMPC. First, the real-time control is only
subject to a velocity limit of vlim = 8 rads−1 (gray graphs). The closed-loop position
performance in the first plot of Figure 6.9 is similar to the closed-loop position per-
formance in the first plot of Figure 6.8. However, here, SFMPC adheres closely to the
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velocity constraint. For example, between t = 1 s and t = 1.5 s, the third plot in Fig-
ure 6.9 indicates only small constraint violations. These unexpected violations occur
because of model mismatch and measurement errors. However, the execution time in
the bottom plot is not affected by these constraint violations. The alternating computa-
tion time level between trun = 70 µs and trun = 200 µs is caused by the function tanh(·).
The internal numerical representation of this function requires a higher computational
effort when the internal model velocity v(tn) is in some neighborhood of zero. In the
second use case, the second motor generates a strong disturbance torque. The second
plot shows the input profile iref,2(t) for the internal electronics of the second motor
(gray dotted profile), which is then translated into a disturbance torque M2(t). Here,
the softened OCP formulation (5.3.4) proves to be extremely beneficial for practical
applications. Despite the large disturbance torque, SFMPC tries to transfer the system
into the feasible state space while still tracking the constant references (black dash-
dotted graphs). At the same time, the controller only violates the constraints slightly
and exhibits an almost constant computational effort.

6.3. Discussion

This chapter provides experimental evidence that SFMPC is a suitable control concept
for two types of electric motors, at least for position control. Since SFMPC already
includes a high level of system knowledge from systematic model identification, the
subsequent controller design is very intuitive. During real-time operation, a manual
tuning of controller parameters already results in a high closed-loop control perfor-
mance. The almost deterministic and low computational effort of SFMPC with finite
control sets enables smooth closed-loop control of fast mechatronic systems in the
upper Kilohertz sampling range. Because of the large number of degrees of freedom
in control, conventional MPC outperforms SFMPC in the nominal case, during the
numerical analysis in the previous Chapter 5. However, during the real-time exper-
iments, SFMPC and MPC perform fairly similar without state constraints, though
smooth optimization varies strongly in the number of required optimization iterations
to satisfy convergence criteria. Since the measurement, observer, and especially model
errors are commonly not negligible in real-world experiments, MPC must be extended
by a soft constraint formulation or/and by robustification strategies. Robustification,
however, complicates controller design and imposes a computational overhead. Im-
plementing a non-smooth exact penalty function proves to be a major advantage of
SFMPC for real-world applications. As long as an admissible solution exists, SFMPC
strictly adheres to the state constraints. If, due to model errors or external distur-
bances, an admissible solution suddenly no longer exists, SFMPC simply selects a
control candidate that transfers the system back into, or at least closer to, the feasible
state space. In summary, the controller complexity of SFMPC for a real-world ex-
periment is equal to the controller complexity during ideal simulation. Basic SFMPC
addresses, in particular, industrial applications where the stability analysis is limited
to experimental and sufficient testing of real-time control scenarios.
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7
Suboptimal Input Move-Blocked Model

Predictive Control

Before investigating closed-loop stability properties of SFMPC, this chapter introduces
a novel formulation for general MBMPC that accounts for recursive feasibility and
asymptotic stability. The key contribution of this chapter is the integration of input
move-blocking into the suboptimal MPC framework presented in [Raw+20, Sec. 2.7]
and [All+17]. Assume that there exists a solution to OCP (3.1.6) and that the chosen
optimizer can find the minimum in finite time. By subsequently introducing input
move-blocking constraints, the solution space might not contain the original minimizer
anymore. In this case, the optimizer cannot find the optimal solution to OCP (3.1.6)
such that input move-blocking can be classified as a source of suboptimality. Chen
et al. [Che+20] also notice this relationship between the suboptimal formulation and
input move-blocking, however, the authors do not further elaborate on this connection.
The major part of this chapter has been published in [Mak+22].

7.1. Generating Stabilizing Warm-Starts

Before introducing the extension to input move-blocking, this section summarizes
the main ingredients of suboptimal MPC with an adapted nomenclature. First, let
ũ(x0) =

(
ũ(0, x0), ũ(1, x0), ..., ũ(N − 1, x0)

)
∈ UN(x0) be some admissible warm-start

control sequence. According to [Pan+11, Eq. (5b)] and [All+17, Eq. (12)], the set of all
control sequences that result in lower or equal costs than the warm-start is defined by:

U †
N
(

x0, ũ(x0)
)

:=
{

u ∈ UN(x0) | JN(x0, u) ≤ JN
(

x0, ũ(x0)
)}

. (7.1.1)

Suboptimal MPC triggers the optimizer to solve the following OCP:

min
u ∈ U †

N
(

x0, ũ(x0)
) JN(x0, u). (7.1.2)

The globally optimal solution to OCP (7.1.2) is denoted by u∗(x0) ∈ U †
N
(

x0, ũ(x0)
)
.

However, the optimizer can also provide an admissible but suboptimal solution that
is denoted by u†(x0) =

(
u†(0, x0), u†(1, x0), ..., u†(N − 1, x0)

)
∈ U †

N
(

x0, ũ(x0)
)

with

77



Chapter 7. Suboptimal Input Move-Blocked Model Predictive Control

the relation JN
(

x0, u∗(x0)
)
≤ JN

(
x0, u†(x0)

)
. Similar to conventional MPC, the first

element of the suboptimal control sequence provided by the optimizer is applied for
closed-loop control:

x+0 := xµ(n + 1) = f
(

xµ(n), u†(0, xµ(n)
))

. (7.1.3)

Assume that the optimizer cannot find the globally optimal solution, or more generally,
assume that the optimizer cannot provide an improvement on the warm start solution
ũ(x0) in terms of costs. Obviously, in this case, the warm-start solution serves as the
fall-back level. The authors of [Sco+99; Pan+11; All+17; Raw+20] develop a theoretical
framework for designing stabilizing warm-starts that ensure recursive feasibility and
asymptotic stability of the origin (exponential stability in [Pan+11]) even without
applying additional optimization iterations. Note that the definition in (7.1.1) implies
that ũ(x0) ∈ U †

N
(

x0, ũ(x0)
)
. Therefore, there always exists a solution to OCP (7.1.2).

In [Pan+11, Eq. (5c)] and [All+17, Eq. (11)], the set of all admissible warm-start control
sequences is defined by:

ŨN(x0) := {u ∈ UN(x0) | JN(x0, u) ≤ F(x0), if x0 ∈ Xf}. (7.1.4)

Here, the terminal cost function F(·) is chosen to be a CLF in Xf (see Asm. 3.3.2).
The introduction of the admissible warm-start set ŨN(x0) ensures the property that
when ∥x0∥ → 0 it also follows that ∥u†(x0)∥ → 0 [Pan+11; All+17; Raw+20], which
is important for asymptotic stabilization as summarized below. In addition to the
operator Ωsta : X ×UN 7→ UN (shift-truncate-append operator), another opera-
tor is required in order to formulate the manual generation of warm-starts. Let
Ωκ : Xf 7→ UN be the operator that applies the local control law for N times such
that Ωκ(x0) =

(
κ(x0), κ

(
f
(

x0, κ(x0)
))

, ...
)

follows. Now, suboptimal MPC generates
warm-start solutions according to the following scheme and based on the prediction
x+0 = f

(
x0, u†(0, x0)

)
[Pan+11, Eq. (5)], [All+17, Eq. (13)]:

ũ(x+0 ) = Ω
(

x0, u†(x0)
)

:=


Ωκ(x+0 ) if x+0 ∈ Xf and JN

(
x+0 , Ωκ(x+0 )

)
≤

≤ JN
(

x+0 , Ωsta
(

x0, u†(x0)
))

,
Ωsta

(
x0, u†(x0)

)
otherwise.

(7.1.5)
The first case in (7.1.5) ensures that Ωκ(x0) is always a member of the admissible
warm-start set ŨN(x0) in (7.1.4). Notice that by Assumption 3.3.2, the following
inequality applies for all x0 ∈ Xf [Pan+11, Prop. 9], [All+17, Prop. 8]:

JN
(

x0, Ωκ(x0)
)
=

N−1

∑
k=0

ℓ
(

x(k), κ
(

x(k)
))

+ F
(

x(N)
)
≤ F(x0), x(k) = φ

(
k, x0, Ωκ(x0)

)
.

(7.1.6)
Consequently, it follows that Ωκ(x0) ∈ ŨN(x0). The authors of [Pan+11; All+17;
Raw+20] introduce the extended state ϑ :=

(
x0, ũ(x0)

)
∈ Rp+mN and the following

difference inclusion, which includes the closed-loop system (7.1.3) [All+17, Eq. (14)]:

ϑ+ ∈ H(ϑ) :=
{(

x+0 , ũ(x+0 )
)
| x+0 = f

(
x0, u†(0, x0)

)
, ũ(x+0 ) = Ω

(
x0, u†(x0)

)
,

u†(x0) ∈ U †
N
(

x0, ũ(x0)
)}

. (7.1.7)
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7.2. Integrating Input Move-Blocking Through Buffering

In contrast to the optimal MPC formulation in Section 3.3, it is not clear which so-
lution u†(x0) the optimizer provides in the suboptimal case. Hence, the evolution
of the extended state ϑ+, and thus of the closed-loop system, is described by the
set-valued map H(·). The feasible domain of this difference inclusion is defined as
follows [Pan+11; All+17]:

ZN :=
{(

x0, ũ(x0)
)
| x0 ∈ XN and ũ(x0) ∈ ŨN(x0)

}
. (7.1.8)

Since the warm-start generation according to (7.1.5) makes use of the control invari-
ance property of the terminal set Xf (see Asm. 3.3.2), applying the warm-starts with
u†(x0) := ũ(x0) already renders the set ZN positive invariant for the closed-loop
system (7.1.7) (e.g., [All+17, Proof of Thm. 14]). Pannocchia et al. [Pan+11] and Allan
et al. [All+17] (see also [Raw+20]) show that JN(·) is a Lyapunov function in the set
ZN for the closed-loop system (7.1.7). The following Lyapunov inequalities hold with
α1(·), α2(·), α3(·) ∈ K∞ and for all ϑ ∈ ZN [All+17, Thm. 14]:

α1(∥ϑ∥) ≤ JN(ϑ) ≤ α2(∥ϑ∥), sup
ϑ+∈H(ϑ)

JN(ϑ+) ≤ JN(ϑ)− α3(∥ϑ∥). (7.1.9)

The existence of the lower bound α1(·) follows from Assumption 3.1.1, Assump-
tions 3.1.2–3.3.1, and the algebraic transformations in [All+17, Prop. 22]. Similar to
the optimal formulation in Section 3.3, the upper bound α2(·) results from Assump-
tions 3.1.1-3.3.1 and again from [RR17b, Prop. 14]. The second inequality in (7.1.9)
indicates the following relation. As long as the worst-case evolution of the extended
state satisfies the cost descent property, it automatically applies to all other possible
closed-loop evolutions. The existence of the local CLF in Assumption 3.3.2 ensures
that the following cost descent holds for all ϑ ∈ ZN [All+17, Proof Thm. 14]:

JN(ϑ+) = JN
(

x+0 , ũ(x+0 )
)
≤ JN

(
x0, u†(x0)

)
− ℓ

(
x0, u†(0, x0)

)
≤

≤ JN
(

x0, u†(x0)
)
− αℓ(∥(x0, u†(0, x0))∥).

(7.1.10)

Since u†(x0) ∈ U †
N
(

x0, ũ(x0)
)
, it follows that JN

(
x0, u†(x0)

)
≤ JN

(
x0, ũ(x0)

)
=

JN(ϑ) [All+17, Proof Thm. 14]. Finally Allan et al. show that there exists a func-
tion α3(·) ∈ K∞ such that α3(∥

(
x0, ũ(x0)

)
∥) ≤ αℓ(∥(x0, u†(0, x0))∥) [All+17, Prop. 10,

Proof Thm. 14]. It is important to note that the latter step explicitly requires that
ũ(x0) ∈ ŨN(x0). Since JN(·) is a valid Lyapunov function in the positive invari-
ant set ZN, H(0p+mN) = {(0p+mN)}, asymptotic stability of the origin follows from
Proposition 13 in [All+17].

7.2. Integrating Input Move-Blocking Through Buffering

Input move-blocking groups consecutive control vectors on the prediction horizon into
blocks that share the same value along each input dimension. This input parameteriza-
tion can be formalized by introducing an admissible blocking matrix B̌ ∈ RN×M and
the Kronecker product ⊗ [Cag+07]. Here, M ≤ N represents the number of degrees
of freedom in control and the matrix B̌ only contains zeros and ones [TJ02]. Recall
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that in Section 4.1, a special case of input move-blocking was already implemented
by introducing the operator Θs

N(us) := ( B̌ ⊗ Im)us with B̌ := 1N and M = 1. For
example, a uniform input move-blocking pattern with M = 2 and a horizon length of
N = 4 allows a single switching during prediction and adopts the following structure:

B̌ :=
(

1 1 0 0
0 0 1 1

)⊺

. (7.2.1)

According to the Definition 3 in [Cag+07], a blocking matrix is admissible if it contains
exactly one element equal to one in each row. Each new block, which follows the previ-
ous one in terms of prediction time, is shifted by one column. The Kronecker product
expands the chosen input parameterization to all input dimensions [Cag+07]. For gen-
eral input move-blocking with arbitrary blocking-patterns the input parameterization
is defined by:

u = ΘN(ǔ) :=
(

B̌⊗ Im
)

ǔ. (7.2.2)

Here, the vector field ΘN(·) maps UM 7→ UN such that the reduced-order sequence is
defined by ǔ :=

(
ǔ(0), ǔ(1), ..., ǔ(M− 1)

)
∈ UM. Notice that Θs

N(us) = ΘN(us) holds.
The setting M = N disables move-blocking such that u = ΘN(ǔ) = ǔ applies. The
following optimization problem is subject to naive input move-blocking:

min
ǔ ∈ UM

JN
(

x0, ΘN(ǔ)
)

subject to ΘN(ǔ) ∈ UN(x0). (7.2.3)

The solution to this OCP, if it exists, does not ensure recursive feasibility and asymp-
totic stability of the steady state. Recall that the admissible input set UN(x0) does not
consider move-blocking in its formulation. However, it is worth noting that the for-
mulation of input move-blocking with M ≤ N seamlessly integrates into the previous
derivations on suboptimal MPC. With input move-blocking, OCP (7.2.3) requires the
following modification:

min
ǔ ∈ UM

JN
(

x0, ΘN(ǔ)
)

subject to ΘN(ǔ) ∈ U †
N
(

x0, ũ(x0)
)
. (7.2.4)

The optimal solution is denoted by ǔ∗(x0) =
(

ǔ∗(0, x0), ǔ∗(1, x0), ..., ǔ∗(M− 1, x0)
)
,

whereas ǔ†(x0) =
(

ǔ†(0, x0), ǔ†(1, x0), ..., ǔ†(M− 1, x0)
)

represents a suboptimal so-
lution to OCP (7.2.4). Since OCP (7.1.2) is enhanced subsequently by input move-block-
ing constraints, there is no guarantee that the resulting OCP (7.2.4) is feasible for all
x0 ∈ XN. When applying smooth optimization (e.g., Newton-type solvers) with
N = M the optimization algorithm usually accepts only those optimization steps
that improve the warm-start in terms of costs. With M < N and M constant over all
closed-loop time steps n, the optimizer cannot handle the structure of the warm-start
ũ(x0) since the temporal position of the switching points and the number of switching
points do not coincide between ΘN

(
ǔ†(x+0 )

)
and ũ(x+0 ) as the closed-loop system

evolves. Assume that OCP (7.2.4) is feasible at time instant n = 0 with some M < N
and the optimizer provides the globally optimal solution. If the first case in equa-
tion (7.1.5) applies, the warm-started control sequence ũ(x+0 ) at the next time step
n + 1 has M = N degrees of freedom in control. If the second case in (7.1.5) applies,
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the warm-started control sequence ũ(x+0 ) has M + 1 degrees of freedom in control
resulting from the application of the shift-truncate-append operator. The following
extension addresses the cases in which OCP (7.2.4) turns infeasible:

u†(x0) :=

{
ΘN

(
ǔ†(x0)

)
if OCP (7.2.4) is feasible,

ũ(x0) otherwise.
(7.2.5)

If the optimizer finds a better solution than the warm-start though starting from an-
other point in the parameter space than the warm-start, the first case in (7.2.5) applies.
If the first case does not apply, the optimization routine needs to fall back to the man-
ually generated warm-start such that the second case in (7.2.5) applies. Therefore, the
manually generated fallback solution ũ(x0) must be temporarily buffered between two
consecutive closed-loop steps. Obviously, in the setting of input move-blocking, the
term fallback solution is better suited than the term warm-start. Note that the feasible
set XN that is included in the definition of the extended set ZN does not consider
input move-blocking in its formulation. To access the results from suboptimal MPC
with M = N, the following assumption is necessary.

Assumption 7.2.1: Admissible initial warm-start. At time instant n = 0, there exists an
admissible warm-start ũ(x0) ∈ ŨN(x0) for all x0 ∈ XN.

In [All+17, Alg. 9], the authors implicitly assume that there exists an admissible
warm-start ũ(x0) ∈ ŨN(x0) at time instant n = 0. Here, in the unblocked case
with M = N, every suboptimal solution to the original OCP (3.1.6) can be simply used
as the initial warm-start. Input move-blocking, in contrast, reduces the feasible set
such that there is no guarantee that there exists a suboptimal solution to OCP (3.1.6)
that additionally satisfies the blocking constraints. The authors of [BL17] use a similar
assumption in the context of sampling based MPC. Here, an “oracle” generates the
initial admissible control sequence, which is then improved systematically by sam-
pling-based optimization.

Proposition 7.2.1: Suboptimal MBMPC. Suppose Assumptions 3.1.1-3.3.2 and 7.2.1
hold. Assume that the suboptimal control sequences are generated based on the
fallback level (7.2.5) and the suboptimal solutions to OCP (7.2.4). Then, the origin is
asymptotically stable for the closed-loop system (7.1.7) in the positive invariant set ZN .

Proof. Assumption 7.2.1 ensures that an initial and admissible warm-start ũ(x0) ∈
ŨN(x0) exists for all x0 ∈ XN , which is not necessarily subject to input move-blocking.
If OCP (7.2.4) is feasible for some x0 ∈ XN, every suboptimal solution produces
lower costs than the warm-start since ΘN

(
ǔ†(x0)

)
∈ U †

N
(

x0, ũ(x0)
)
. However, the

fallback level in (7.2.5) includes the warm-start ũ(x0) ∈ ŨN(x0) at every closed-loop
time instant n ≥ 0. Since u†(x0) = ũ(x0) ∈ U †

N
(

x0, ũ(x0)
)
, x+0 ∈ XN holds after

applying the suboptimal control vector u†(0, x0) for closed-loop control. From (7.1.5)
it follows that ũ(x+0 ) = Ω

(
x0, ũ(x0)

)
∈ ŨN(x+0 ) such that ϑ+ ∈ ZN (see [All+17, Proof

Thm. 14]). The rest of the Proof (asymptotic stability) follows from [All+17, Prop. 13
and Proof of Thm. 14] and relies on the Assumptions 3.1.1-3.3.2.
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The rigorous realization of Assumption 7.2.1 might require the inclusion of OCP (3.1.6)
that is not subject to input move-blocking. This might imply that input move-blocking
can only be enabled for n ≥ 1. However, in practice, the initial state vectors can be
simply restricted to the following closed feasible set:

X̄M :=
{

x0 ∈ X | ∃ǔ such that ΘN(ǔ) ∈ UN(x0)
}

. (7.2.6)

Here, X̄M ⊆ XN holds. If x0 ∈ X̄M\Xf, then ũ(x0) = ΘN(ǔ) ∈ ŨN(x0) represents a
possible warm-start at time step n = 0. If x0 ∈ Xf, then ũ(x0) = Ωκ

(
x0
)
∈ ŨN(x0)

simply applies (see [All+17, Alg. 9]). In both cases,
(

x0, ũ(x0)
)
∈ ZN holds at time

instant n = 0.

Remark 7.2.1: Blocking inside terminal set. If input move-blocking is active inside the
terminal set Xf, there is no guarantee that JN

(
x+0 , Ωsta

(
x0, ΘN

(
ǔ†(x0)

)))
≤ F(x+0 ) ≤

αf(∥x+0 ∥) applies with x+0 ∈ Xf. Therefore, suboptimal MPC with input move-blocking
relies, in particular, on evaluating Ωκ(x+0 ) (see (7.1.5)) as an alternative warm-start.

Remark 7.2.2: Inherent robustness with input move-blocking. Allan et al. [All+17] derive
inherent robustness properties for suboptimal MPC with X = X (softened state con-
straints) and Xf := levπF := {x ∈ X | F(x) ≤ π} with some π > 0. The results
on inherent robustness rely on the stabilizing warm-starts ũ(x0) ∈ ŨN(x0) and the
basic stability Assumptions 3.1.1-3.3.2. Therefore, with the same configuration of
sets, suboptimal MBMPC inherits the robustness results from [All+17] as long as the
warm-start sequences are available at every closed-loop time instant n ∈ N0.

The greater the restriction on the degrees of freedom in control, the more likely it
is that there are no better suboptimal solutions than the warm-start. In such cases,
the optimizer cannot improve the closed-loop performance because of the restrictive
input parameterization. Moreover, the numerical detection of infeasibility of an OCP
involves a high computational effort. Usually, an optimization algorithm detects
infeasibility by reaching the maximum number of iterations, for example, during line
search. The next section presents a reconfiguration of the optimization problem that
allows the optimizer to improve the warm-start incrementally.

7.3. Offset Input Move-Blocking

The following redefinition of the input parameterization is adopted from [OW14;
SM15] with some scaling parameter λ ∈ R+

0 . Here, the move-blocked control sequence
serves as an offset for the manually generated warm-start:

u = ΘN
(
ǔ, ũ(x0), λ

)
:=

(
B̌⊗ Im

)
ǔ + λ ũ(x0). (7.3.1)

By including the scaling parameter λ as an additional optimization parameter similar
to [OW14; SM15], the optimizer can now process the manually generated warm-start:

min
ǔ ∈ UM, λ ∈ R+

0

JN

(
x0, ΘN

(
ǔ, ũ(x0), λ

))
subject to ΘN

(
ǔ, ũ(x0), λ

)
∈ U †

N
(

x0, ũ(x0)
)
.

(7.3.2)
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A suboptimal solution tuple to OCP (7.3.2) is denoted by (ǔ†(x0), λ†). The corre-
sponding suboptimal control sequence follows by:

u†(x0) := ΘN
(
ǔ†(x0), ũ(x0), λ†) (7.3.3)

Proposition 7.3.1: Suboptimal offset MBMPC. Suppose Assumptions 3.1.1-3.3.2 and
7.2.1 hold. Assume that the suboptimal control sequences are generated based on
(7.3.3) and the suboptimal solutions to OCP (7.3.2). Then, the origin is asymptotically
stable for the closed-loop system (7.1.7) in the positive invariant set ZN.

Proof. Since {0}mM ⊂ UM holds by Assumption 3.1.3, the optimizer can now resort to
the warm-start ũ(x0) ∈ ŨN(x0) autonomously by setting λ† = 1 and ǔ†(x0) = 0mM
(see also [SM15, Thm. 1]). Assumption 7.2.1 provides the first admissible warm-start
at closed-loop time n = 0. Again, since u†(x0) = ũ(x0) ∈ U †

N
(

x0, ũ(x0)
)
, x+0 ∈ XN

holds after applying the suboptimal control vector u†(0, x0) for closed-loop control.
From (7.1.5) it follows that ũ(x+0 ) = Ω

(
x0, ũ(x0)

)
∈ ŨN(x+0 ) such that ϑ+ ∈ ZN

(see [All+17, Proof Thm. 14]). Asymptotic stability follows from [All+17, Prop. 13 and
Proof of Thm. 14] and includes Assumptions 3.1.1-3.3.2.

In contrast to the work in [SM15], this section expands on the framework of subopti-
mal MPC. By directly incorporating the manually generated warm-starts according
to (7.1.5), the setting λ† = 1 and ǔ†(x0) = 0mM ensures both recursive feasibility
and asymptotic stability. Since the authors of [SM15] only include a fallback level
resulting from the shift-truncate-append operator Ωsta(·), their theoretical derivations
mainly guarantee recursive feasibility. The operator Ωsta(·) does not ensure that
JN

(
x0, Ωsta(ũ(x0))

)
≤ F(x0) ≤ αf(∥x0∥) holds for all x0 ∈ levπF with some small

π > 0. This property, however, ensures that JN
(
·, Ωsta(·)

)
is continuous at the origin.

Suboptimal offset MBMPC inherits an important runtime property of classical sub-
optimal MPC. The following configuration enables a deterministic computation time.
Let λi and λ+

i be the values of λ after i ∈ N0 optimization iterations at time instant
n and n + 1, respectively. Analogous relation applies for ǔ+

i . By manually setting
λ+

0 := 1 and ǔ+
0 := 0mM at time instant n, the optimization algorithm always starts

its routine at the warm-start ũ(x0), which is inherently an element of U †
N
(

x0, ũ(x0)
)
.

Now, with respect to a maximum execution time, the number of optimization itera-
tions can be simply limited (early termination) without loss of important closed-loop
properties. This warm-starting strategy of auxiliary optimization parameters follows
the main idea in suboptimal MPC according to [Pan+11; All+17] but assumes that
the ideal optimizer only produces feasible iterates. Since the parameter λ only affects
the suboptimal solution u†(x0) ∈ U †

N
(

x0, ũ(x0)
)
, the formulation of the difference

inclusion in (7.1.7) is still comprehensive.

Remark 7.3.1: Shifting blocking pattern. The input parameterization in (7.3.1) can be also
expanded to time-varying blocking matrices whose evolution might follow the shifting
strategy in [Cag+07] or in [GR20]. However, shifting the blocking pattern also affects
the structure of first- or second-order derivative information. Here, a hypergraph
formulation enables an efficient online structure/sparsity exploitation and addresses
the use of sparse solvers in combination with sparse finite differences [Rös+18a].
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0 1 2 3 4

ǔ(0)

ǔ(1)ũ(0, x0)

ũ(1, x0) ũ(2, x0)
ũ(3, x0)

+

k

Resulting inequalities:
ǔ(0) + λ max{ũ(0, x0), ũ(1, x0)} ≤ max U

ǔ(0) + λ min{ũ(0, x0), ũ(1, x0)} ≥ min U

ǔ(1) + λ max{ũ(2, x0), ũ(3, x0)} ≤ max U

ǔ(1) + λ min{ũ(2, x0), ũ(3, x0)} ≥ min U

Figure 7.1.: Linear inequalities for offset MBMPC with M = 2, uniform blocking, N = 4,
m = 1, and input box-constraints. The white filled circles indicate missing degrees of freedom.

Remark 7.3.2: Regularization. Problem (7.3.2) can be regularized by including rg (λ−
1)2 as an additional cost term with some small weighting parameter rg > 0.

The additional scaling parameter λ results in a dense column vector in the Jacobian
of the constraints since the variation of this parameter affects the entire control tra-
jectory. Reusing the previous solution as the warm-start requires the introduction of
additional linear inequalities on the control variables such that ΘN

(
ǔ, ũ(x0), λ

)
∈ UN

holds. Figure 7.1 visualizes an example of shifted move-blocked control sequences
and provides the corresponding linear inequalities in case of input box-constraints.

7.4. Example Continued: Van der Pol Oscillator

This section follows up on the example in Section 5.2. Here, the MBMPC approaches
can also inherit the stabilizing properties of the local controller κ(x) := K x with x ∈
Xf := levπF. To enlarge the feasible sets X̄M for different degrees of freedoms M ≥ 1,
the horizon length is increased to N = 80. The following numerical investigations
only consider uniform move-blocking patterns, such that all blocking intervals contain
the same number of constant control steps. All related modifications compared to
Section 5.2 are given below:

X = {x ∈ X|(−1,−1)⊺ ⪯ x ⪯ (1, 1)⊺}, N = 80, ρ = 1.001, π = 0.5174.

The spread of the terminal region π = 0.5174 is determined by applying the heuristic
search strategy described in Remark 3.3.3. Figure 7.2 compares the closed-loop con-
trol performances of MBMPC and conventional MPC starting from the initial state
xµ,0 = (0.8, 0)⊺. The black dashed graph visualizes the initial open-loop solution with
two degrees of freedom M = 2. Here, the last predicted state satisfies the terminal
constraint such that φ

(
N, x0, ΘN

(
ǔ∗(x0)

))
∈ levπF applies with x0 = xµ,0. Recall

that if common MBMPC does not integrate stabilizing fallback solutions, there is no
guarantee that the underlying OCP is at least recursively feasible. Though the naive
MBMPC (gray dash-dotted graphs), which is driven by the solutions to OCP (7.2.3),
is recursively feasible in this particularly numerical example, the cost function in the
upper right plot does not decrease in the sense of Lyapunov. Here, MBMPC is able to
stabilize the origin, however, the reduction in degrees of freedom is clearly achieved at
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Figure 7.2.: Open- and closed-loop control of the Van der Pol oscillator subject to input move-
blocking. Left: Phase-portrait. The subplot shows a close-up of the closed-loop behavior at the
origin. Right, top: Evolution of costs over closed-loop steps. Right, bottom: Evolution of the
scaling parameter λ after three optimization iterations over closed-loop steps.

the expense of an oscillating behavior and thus poorer closed-loop control performance.
The first stabilizing input move-blocking approach holds back fallback solutions in
some buffer according to Section 7.2. This straightforward approach already improves
the closed-loop control performance (dark gray solid graphs). Note that since the
closed-loop trajectory does not match the initially predicted state trajectory, the opti-
mizer also finds solutions that are better than the fallback solutions in terms of costs.
Though costs do not converge to zero as fast as with the following approaches, the
cost function JN(·) clearly satisfies Lyapunov’s cost descent condition. The second
approach applies offset MBMPC according to Section 7.3. First, the maximum number
of optimization iterations is restricted to i = 0. Hence, the predictive controller simply
reuses the open-loop solution until the closed-loop system reaches the terminal set
levπF (see light gray solid graphs). Then, the predictive controller switches to the local
control law, which stabilizes the origin by design (see Asm. 3.3.2). The corresponding
cost function evolution in the right upper plot decreases in the sense of Lyapunov. By
increasing the maximum number of optimization iterations to i = 3, the closed-loop
performance improves visibly (black dotted graphs) and the close-up in the right up-
per plot shows that the costs converge faster to zero compared to the case with i = 0.
Obviously, conventional MPC with N = M = 80 (black solid graphs) outperforms the
very restrictive MBMPC with M = 2. However, offset MBMPC with an application
oriented configuration with M = 16 and only i = 3 nearly coincides with the perfor-
mance of MPC (light gray dashed graphs). The lower right plot visualizes that the

85



Chapter 7. Suboptimal Input Move-Blocked Model Predictive Control

optimizer exploits the additional degree of freedom in case of offset MBMPC espe-
cially at the beginning of the closed-loop control. By choosing values different from
λ3 = 1, the optimizer obviously improves the warm-start. As soon as the closed-loop
system approaches the terminal region levπF, the optimizer chooses λ3 = 1 as it is
very unlikely that a move-blocked control sequence outperforms a control sequence
that is generated by iteratively applying the local control law. In addition, Figure 7.2
shows convex or at least compact approximations of the feasible sets for MBMPC and
conventional MPC. Recall that by integrating stabilizing terminal conditions, the fea-
sible sets also represent the regions of attraction. The approximations are determined
by uniformly sampling the constrained state space X along each dimension. This pro-
cedure results in a uniform grid of 201× 201 points. All the initial states x for which
an admissible move-blocked control trajectory ΘN(ǔ) ∈ UN(x) exists are enclosed by
a compact polytope. Here, a convex hull is preferred over a concave hull. However,
the difference between the surface area of the exact compact boundary of all feasible
grid points and the area resulting from an interpolated boundary, which is enlarged in
the direction of the convex hull, is limited to differ in at most 3.5 %. Figure 7.2 verifies
the relationship X̄1 ⊂ X̄2 ⊂ X̄4 ⊂ XN = X̄80 to hold. However, with only four degrees
of freedom, the approximation of the feasible set X̄4 is already comparable to the
approximation of XN. It is evident that in this example, a moderate reduction of the
degrees of freedom in control (M ≥ 2) does not decrease the closed-loop performance
and the feasible region significantly. However, a single degree of freedom results in a
small feasible region, which is not sufficient for real applications.
Table 7.1 summarizes the results of a quantitative analysis of closed-loop control per-
formances and the corresponding computational load for different degrees of freedom
in control and a uniform blocking. Again, the closed-loop control performances are
evaluated on the basis of criterion J̄cl from (4.3.3) with l = 1000. The reference perfor-
mance is the initial solution to the full degree of freedom OCP (3.1.6) with N = 1000,
uref := u∗(xµ,0), and xµ,0 = (0.8, 0)⊺. Thus, here the criterion J̄cl ∈ (−∞ %, 0 %] de-
scribes the closed-loop control performance loss due to input move-blocking and the
finite horizon length. The normalized median t̄m includes 100 cold-started solutions
to the individual OCPs at time instant n = 0 and is given by:

t̄m =

(
1− tm

tm,ref

)
100 %. (7.4.1)

The reference median value tm,ref results from 100 cold-started solutions to the un-
blocked OCP (3.1.6) with N = 80. Thus, the normalized median t̄m ∈ [0 %, 100 %)
indicates the execution time improvement resulting from the reduction of optimization
variables. The discretization approaches, namely recursive elimination and multiple
shooting, are evaluated separately from each other. All optimization variables are ini-
tialized to zero and the optimization framework IPOPT [WB06] is used to generate all
the evaluation data. In case of multiple shooting, there exist as many shooting intervals
T = M as there are blocking intervals. Each shooting interval has the same length as
the corresponding blocking interval. The reference median values with recursive elim-
ination and multiple shooting are tm,ref = 4.01 s and tm,ref = 560.95 ms, respectively.
The first two rows of Table 7.1 relate to the naive MBMPC that does not incorpo-
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7.4. Example Continued: Van der Pol Oscillator

Table 7.1.: Evaluation of closed-loop control performances and computation times for MBMPC
applied to the Van der Pol oscillator. Abbreviations: Recursive Elimination (RE), Multiple
Shooting (MS), Move-Blocking (MB).

MBMPC, M = 40 M = 16 M = 8 M = 4 M = 2

N = 80 J̄cl [%] t̄m [%] J̄cl [%] t̄m [%] J̄cl [%] t̄m [%] J̄cl [%] t̄m [%] J̄cl [%] t̄m [%]

M
B RE −0.05 56.61 −0.94 75.06 −6.03 86.36 −24.99 93.71 −106.38 95.88

MS −0.05 12.02 −0.94 34.6 −6.03 44.82 −24.99 52.54 −106.38 52.94

B
uf

fe
r RE −0.04 56.36 −0.25 75.06 −1.44 86.39 −10.59 93.66 −32.36 95.86

MS −0.04 11.92 −0.25 34.27 −1.44 44.5 −10.59 52.18 −32.36 52.33

O
ff

se
t RE 0.00 41.15 −0.01 68.83 −1.18 81.99 −10.7 91.84 −33.29 93.74

MS 0.00 4.3 −0.01 36.06 −1.18 31.23 −10.7 54.94 −33.29 52.33

rate stabilizing fallback or warm-start control sequences. Since input move-blocking
does not destabilize the origin with the chosen benchmark system, the impact of the
gradual reduction of complexity on both the closed-loop control performance and the
computational effort can be investigated systematically. While a moderate reduction
of the degrees of freedom up to M ≥ 8 leads to an almost negligible degradation
of the performance, a significant reduction is observed from M ≤ 4 on. Hence,
the reduction of the computational load decreases at the expense of the closed-loop
control performance. Furthermore, MBMPC with recursive elimination benefits sig-
nificantly more from the reduction of optimization variables than MPC with multiple
shooting in terms of runtime performance. In case of recursive elimination, the num-
ber of non-zero elements in the Jacobian of the constraints decreases more strongly
compared to the multiple shooting case. With M = 2, the closed-loop control perfor-
mance drops to approximately twice the cost level of the unblocked realization with
J̄cl = −106.38 %. Further, with M = 2, recursive elimination outperforms multiple
shooting with tm = tm,ref (1− t̄m/100 %) = 4.01 s (1− 95.88 %/100 %) = 165.21 ms
and tm = 560.95 ms (1− 52.94 %/100 %) = 263.98 ms, respectively. The third and the
fourth two lines of Table 7.1 result from applying the buffer-based approach from
Section 7.2. While the computational effort for all evaluated degrees of freedom M
remain at a comparable level, the corresponding closed-loop control performances
improve significantly. Thus, ensuring stability with MBMPC has the side effect of
increasing control performance, although the stability guarantees in this dissertation
are not based on optimality. The reason for this improvement stems from the fact
that the linearization of the nonlinear system at the origin leads to a relatively large
terminal region levπF, where the local controller outperforms MPC with input-move
blocking. Finally, the last two rows of Table 7.1 show the evaluation of the offset-based
MBMPC according to Section 7.3. Here, the low computational overhead resulting
from the additional linear input constraints, as shown in Figure 7.1, is partially observ-
able as for M = 40. However, with M = 2 both stabilizing move-blocking approaches
improve the closed-loop control performance by approximately a factor of three from
J̄cl = −106.38 % to J̄cl = −33.29 %. As already observed in Figure 7.2, a moderate
reduction of the degrees of freedom in control to M = 16 reduces the computational
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load by 68.83 % with recursive elimination and by 36.06 % with multiple shooting. The
loss in the closed-loop control performance is negligible with J̄cl = −0.01 %. Based on
the performance results in Table 7.1 and the fact that the offset-based approach offers
a holistic problem formulation in (7.3.2), offset MBMPC emerges as the clear favorite.

7.5. Discussion

Section 2.4 reveals that asymptotic stability with MBMPC is still an open problem (see
also Table A.1 in App. A.6). There is no design recommendation for MBMPC in the
literature that aims at guaranteeing both recursive feasibility and asymptotic stability
for general nonlinear systems. By defining input move-blocking as an explicit source
of suboptimality, important closed-loop properties directly follow from the suboptimal
MPC framework presented, for example, in [Sco+99; Pan+11; All+17; Raw+20]. The
connection of input move-blocking and suboptimal MPC has not been formalized yet in
the literature and is therefore novel (except [Mak+22]). Since the proposed extensions
address nonlinear systems and arbitrary blocking patterns, the number of degrees of
freedom in control and the blocking configuration can be chosen depending on the
dedicated application. The numerical example in this chapter shows that input-move
blocking is clearly an intuitive approach for controller tuning when computational
effort is important besides control performance. By implementing suboptimal offset
MBMPC according to Section 7.3, the maximum number of optimization iterations
can be simply limited for real-time applications without losing important closed-loop
control properties. This early termination feature of conventional suboptimal MPC is
also highlighted, for example, in [RR17a]. The evaluation and discussion so far refer to
the case that there does not exist an optimal solution at the first closed-loop time instant
n = 0. Recall that Assumption 7.2.1 only requests an arbitrary but admissible solution.
If an optimal solution is available to the unblocked OCP (3.1.6) at time instant n = 0,
offset MBMPC might be inferior compared to classical suboptimal MPC although more
optimization steps can be performed in the same time due to the reduced complexity.
While the theoretical derivations require Assumption 7.2.1, for practical applications,
however, it is implicitly assumed that the closed-loop system is driven inside the
feasible set X̄M and that the optimizer can always find a move-blocked but admissible
solution at time instant n = 0 within the real-time constraints.
Now the question arises, to what extent the results from this chapter can be transferred
to SFMPC. In general, both design variations of suboptimal MBMPC apply to SFMPC
with smooth optimization. While the first buffer-based realization also applies to
SFMPC with exhaustive search, suboptimal offset MBMPC increases the combinatorial
complexity since the value range of the scaling parameter λ has to be discretized, too.
However, the phase portrait in Figure 7.2 reveals that the single degree of freedom
in control significantly reduces the feasible set. Recall that in this chapter the setting
Xf := levπF applies such that a single degree of freedom in control complicates
transferring the nonlinear system (open-loop) from some initial state to the terminal set.
The main idea of improving an already stabilizing warm-start is the main foundation
of the extended SFMPC formulation in the next chapter.
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8
Asymptotic Stabilization with Input

Move-Blocking and Finite Control Sets

This chapter aims at both ensuring theoretical closed-loop properties by design and
enlarging the region of attraction of SFMPC with stabilizing terminal conditions. In-
troducing a variable horizon as a first step addresses the demand for stabilizing
closed-loop properties. A variable partitioning of a fixed horizon length includes
the beneficial stabilizing properties of a variable horizon formulation and increases
the flexibility of SFMPC by applying the local control law on the second part of the
horizon, even outside the terminal region. The single degree of freedom in control
allows to introduce time-varying finite control sets. Parts of this chapter have been
published in [Mak+20] and [Mak+21].

8.1. Variable Horizon Formulation

If the horizon length is configured to be an optimization variable with N ∈ N :=
[Nmin, Nmax], Nmin, Nmax ∈ N, Nmax ≥ Nmin ≥ M, the naive move-blocking OCP (7.2.3)
turns into the following mixed-integer OCP:

VN∗(x0) := min
N ∈ N , ǔ ∈ UM

JN
(

x0, ΘN(ǔ)
)

subject to ΘN(ǔ) ∈ UN(x0). (8.1.1)

To avoid redefining equations, the horizon length as a subscript is treated as an implicit
input argument of the cost function JN(·) and the mapping ΘN(·). Let the optimal
solution tuple to OCP (8.1.1), if it exists, be denoted by

(
N∗, ǔ∗(x0)

)
. Assume, for

the moment, that move-blocking is disabled with M = N such that ΘN
(
ǔ∗(x0)

)
=

ǔ∗(x0) = u∗(x0) holds. Further assume that the optimizer can simply adjust the
horizon length by iterating over the finite interval N in some outer optimization loop.
If OCP (3.1.6) is at least feasible for a single N ∈ N for x0 ∈ XN, then OCP (8.1.1) is
also feasible for the same initial state x0. MPC formulations with a variable horizon
mainly originate from the dual-mode control in [MM93]. Here, variable horizon MPC
warm-starts the next OCP at time instant n + 1 with the optimal but shortened control
sequence as long as N∗ ≥ 2, which is guaranteed to be admissible in the nominal case.
Let Ωst : UN 7→ UN−1 be the operator that shifts and truncates a control sequence by
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one step. Since it does not append a control vector at the end of the control sequence, it
does not depend on the initial state x0 as Ωsta(·). With M = N and N ≥ 2, Bellman’s
principle of optimality can be used to prove that the implicit control law µ(x0) :=
u∗(0, x0) transfers the closed-loop system (3.3.2) in at most N∗ steps into the terminal
set Xf [MM93, Prop. 1]. For example, if there exists a global optimum at closed-loop
time instant n with u∗(x0) =

(
u∗(0, x0), u∗(1, x0), ..., u∗(N∗ − 1, x0)

)
, the shifted and

truncated control sequence u∗(x+0 ) = Ωst
(
u∗(x0)

)
=

(
u∗(1, x0), u∗(2, x0), ..., u∗(N∗ −

2, x0)
)

and the horizon N∗ − 1 represent the global optimal tuple at time instant n + 1.
Inside the terminal set Xf, explicitly switching to the local controller κ(·) stabilizes the
origin for the nonlinear system in the sense of Lyapunov [MM93, Thm. 1, Thm. 2].
In case of active move-blocking with M < N, the blocking matrix B̌ ∈ RN×M needs
to be adjusted in its dimensions as soon as the horizon length is subject to variation,
such that the optimizer can find the shifted and truncated control sequence repeatedly
to ensure at least recursive feasibility for N∗ steps [SM12, Thm. 16]. The following
illustrative evolution of blocking matrices over closed-loop control steps, which is
formalized in [SM12; She12] (see also [Cag+07]), would ensure recursive feasibility of
OCP (8.1.1) with active move-blocking:

B̌ :=


1 0
1 0
0 1
0 1

,
M = 2,
N = 4,
n = 0.

→ B̌ :=

1 0
0 1
0 1

,
M = 2,
N = 3,
n = 1.

→ B̌ :=
(

1 0
0 1

)
,
M = 2,
N = 2,
n = 2.

. (8.1.2)

Since the blocking pattern changes after adjusting the blocking matrix, the principle
of optimality does not hold anymore. When the blocking pattern varies as the closed
system evolves, the optimizer might find a better solution such that the previous but
shifted solution only represents an upper bound on the costs. The authors in [RH06,
Thm. 1] and [SM12, Thm. 17] show finite completion times to pre-defined target re-
gions in case of variable horizon MPC without and with move-blocking, respectively.
With the blocking adaptation according to (8.1.2), a finite completion time to the ter-
minal set Xf can be derived from the following inequalities ([SM12, Thm. 17], [She12,
Sec. 2.4.1]):

VN∗(x+0 )−VN∗(x0) ≤ JN∗−1

(
x+0 , Ωst

(
ΘN∗(ǔ

∗(x0))
))
−VN∗(x0)=−ℓ

(
x0, ǔ∗(0, x0)

)
≤

≤ −αℓ(∥x0∥). (8.1.3)

Since the function αℓ(·) is only zero at the origin (see Asm. 3.3.1), the optimal cost
function value decreases continuously after applying the implicit control law µ(x0) :=
ǔ∗(0, x0). Though the principle of optimality does not hold with input move-blocking,
the controller nevertheless transfers the closed-loop system in a finite number of steps
into the terminal region Xf. Then, either manually switching to the local control law
κ(·) as in [MM93] or letting the optimizer search for the optimal unblocked solution
stabilizes the origin. The latter case represents conventional MPC with stabilizing
terminal conditions. By applying a variable horizon, input move-blocking is disabled
automatically as soon as the horizon reduces to N = M. This relationship is repre-
sented by the last blocking matrix in (8.1.2) and the discussion in the Special Case I in

90



8.1. Variable Horizon Formulation

Section 4.1 (M = N = 1). Recall that with a single degree of freedom in control, the
blocking matrix is given by B̌ = 1N with M = 1. Therefore, matching the blocking
pattern to the horizon length is trivial. The length of the first dimension of B̌ is simply
linked to the chosen horizon length. Before introducing a variable horizon in combi-
nation with a single degree of freedom in control, the following closed finite union is
introduced:

X̄s :=
Nmax⋃
i=1

X s
i . (8.1.4)

Since this chapter is dedicated to the development of an extended formulation of
SFMPC with finite control sets, the following mixed-integer OCP directly includes the
extended finite control set Ã(x0, n):

Vs
N∗(x0, n) := min

N ∈ N , us ∈ Ã(x0, n)
JN

(
x0, Θs

N(us)
)
, subject to Θs

N(us) ∈ U s
N(x0).

(8.1.5)
Let

(
N∗, u∗s (x0, n)

)
denote the optimal solution tuple to OCP (8.1.5), which leads to the

control sequence Θs
N∗(u∗s (x0, n)) ∈ U s

N(x0). From the variable horizon formulation,
the following closed-loop properties can be derived for Single Degree of Freedom
Variable Horizon MPC (SFVMPC).

Proposition 8.1.1: SFMPC with variable horizon and finite control sets. Suppose Assump-
tions 3.1.1-3.3.2 and 4.5.1 hold. Then, the implicit control law µ(x0, n) := u∗s (x0, n),
which is driven by the solutions to the mixed-integer OCP (8.1.5), renders the feasible
set X̄s positive invariant and the origin asymptotically stable in the sense of Lyapunov
for the closed-loop system (4.5.2).

The detailed proof is given in Appendix B.2. However, the proof of Proposition 8.1.1
is straightforward. Assumption 4.5.1 ensures that the very first OCP at time instant
n = 0 is feasible. This implies that there exists an admissible tuple (u∗s (x0, 0) = u0

s , N∗)
for every x0 ∈ X̄s. Then, the definition of the finite control set A(n) in (4.5.4), which
embeds the previous closed-loop control vector µ(xµ(n− 1), n− 1) into A(n), ensures
recursive feasibility for N∗ closed-loop steps by successively reducing the horizon by
one step (see Rem. 4.5.1). Equation (8.1.3) ensures, in addition, finite completion times
for all x0 ∈ X̄s. As soon as the optimal horizon reduces to N∗ = 1, x0 ∈ X s

1 applies.
Therefore, the optimizer can fix the horizon to N = 1 and emulate conventional and
thus stabilizing MPC according to Corollary 4.5.1.
To solve the mixed-inter OCP (8.1.5) exactly, the corresponding optimizer needs to
seek the optimal horizon length N∗ at every closed-loop time instant. Therefore, in the
worst-case, the optimizer needs to evaluate all possible horizon lengths N ∈ N . The
derivation of finite completion in [SM12] (see (8.1.3)) shows that shortening the horizon
length by one step, as the closed-loop system evolves by one step, suffices to ensure
progress towards the terminal set Xf. The derivations in this section are intended,
in particular, to introduce the key stability ingredient required to ensure theoretical
closed-loop properties for SFMPC with a horizon length of N > 1. Introducing a
variable horizon in OCP (8.1.5) somewhat mitigates the negative impact of the extreme
input blocking in SFMPC. However, the nonlinear system has to be still transferred
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(open-loop) to the terminal set Xf at constant control. Therefore, it might be the case
that the feasible set X̄s is too restrictive for practical control applications. To enlarge the
feasible set and to allow suboptimal horizon lengths, the findings from Chapter 7 on
suboptimal MBMPC are combined with the idea of a relaxing extreme move-blocking
by introducing a variable horizon in the next section.

8.2. Extended Horizon Formulation

This section is mainly motivated by the OCP formulations in [ZA98] and [Mag+01]. In
both contributions, the major idea is to divide a moving horizon of fixed length into
two sections. While the control variables on the first section are subject to optimiza-
tion, the control variables on the second part are determined using a local (linear) state
controller. Here, the local controller is already applied outside some control invariant
terminal set Xf. The authors of [ZA98] restrict the first section to only one step and
saturate the control variables resulting from the application of the local controller on
the second section. Closed-loop stability properties are ensured by imposing the sta-
bilizing terminal conditions presented in [CA98]. In contrast, the approach presented
in [Mag+01] allows the user to provide an arbitrary length of the first section (con-
trol horizon). Closed-loop stability properties mainly follow from the monotonicity
property of the optimal cost function with respect to the length of the control horizon
(see [Mag+01, Proof of Thm. 2]). If now enforcing input move-blocking on the first
part of the horizon, the monotonicity property with respect to the control horizon
does not hold anymore. It follows that increasing the length of the control horizon
while keeping the total horizon length constant does not generally lead to lower costs.
Therefore, the following derivations combine suboptimal MBMPC from Chapter 7
with a variable horizon partition. With only one degree of freedom on the first section,
the control sequence of fixed length adopts the following structure:

ue(x0, us, N1) :=
(

u(0) = us, u(1) = us, ..., u(N1 − 1) = us,

κ̃
(

x(N1)
)
, κ̃

(
f
(

x(N1), κ̃
(

x(N1)
)))

, ...
)
∈ UN.

(8.2.1)

Here, x(N1) substitutes φ(N1, x0, us) with some us ∈ UN1 . The local control law
κ̃(·) is either defined by κ̃(x0) := Γ

(
κ(x0)

)
or by κ̃(x0) := κ(x0) and applied for

N2 time steps following a recursive scheme. As proposed in [ZA98], the resulting
control values can be restricted to the admissible control set by applying the saturation
function Γ : U 7→ U if x0 /∈ Xf. The compact set of all admissible control sequences
for a fixed horizon length N1 ∈ [1, N] is thus given by:

U e
N(x0, N1) := {u ∈ UN | φ(k, x0, u) ∈ X, ∀ k = 0, 1, ..., N−1, φ(N, x0, u) ∈ Xf,

u(k1) = u(0), ∀ k1 = 1, ..., N1−1} ⊂ UN(x0).
(8.2.2)

The relationship ue(x0, us, N1) ∈ U e
N(x0, N1) implies that there exists a region of

attraction of the local controller that might extend beyond the borders of the terminal
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set Xf. The definition in (8.2.2) merely requires that the local control law κ̃(·) transfers
the nonlinear system (3.1.1) into the terminal set Xf in a finite number of steps without
violating state (and input) constraints. Let Ωκ̃ : X 7→ UN be the operator that applies
the local control law κ̃(·) for N times such that Ωκ̃(x0) =

(
κ̃(x0), κ̃

(
f
(

x0, κ̃(x0)
))

, ...
)

applies. Then, subsets of the region of attraction of the local controller can be defined
as follows:

Xκ̃(N) := {x ∈ X |Ωκ̃(x) ∈ UN(x)}. (8.2.3)

Inside the set Xκ̃\Xf, the local controller does not necessarily have to satisfy the CLF
from (3.3.5). With these restrictions and formulations, the closed feasible set for a
given first horizon length N1 is denoted by:

X e
N(N1) := {x0 ∈ X | U e

N(x0, N1) ̸= ∅}. (8.2.4)

Finally, the feasible state space for arbitrary first horizon lengths results from the
following finite union:

X̄ e
N :=

N⋃
i=1

X e
N(i). (8.2.5)

Recall that a finite union of closed sets is closed. The following OCP integrates the
proposed variable horizon partition into the suboptimal MPC framework:

min
us ∈ P̄, N1 ∈ N, N2 ∈ N0

JN
(

x0, ue(x0, us, N1)
)
,

subject to ue(x0, us, N1) ∈ U †
N
(

x0, ũ(x0)
)

and N1 + N2 = N.
(8.2.6)

The placeholder set is initially defined by P̄ := U. Let
(

u†
s (x0), N†

1 (x0), N†
2 (x0)

)
denote a suboptimal solution tuple to OCP (8.2.6) from which the control sequence
ue

(
x0, u†

s (x0), N†
1 (x0)

)
∈ U †

N
(

x0, ũ(x0)
)

can be derived. Here, the term suboptimality
implies, similar to suboptimal MPC, that the control sequence ue

(
x0, u†

s (x0), N†
1 (x0)

)
is admissible and reaches lower or equal costs compared to the warm-start ũ(x0). MPC
that relies on OCP (8.2.6) is referred to as Single Degree of Freedom Extended Horizon
MPC (SFEMPC) in the remainder of this dissertation. Similar to the basic buffer-based
move-blocking approach in Section 7.2, the suboptimal MPC formulation in (7.1.2) is
enhanced subsequently by the special control parameterization in (8.2.1). Therefore,
there is no guarantee that the resulting OCP (8.2.6) is feasible for all x0 ∈ XN. The
following investigations focus on theoretical closed-loop properties with SFEMPC.

Buffering Stabilizing Warm-Starts

The straightforward approach involves re-establishing a fallback level similar to (7.2.5)
for all x0 ∈ XN:

u†(x0) :=

{
ue

(
x0, u†

s (x0), N†
1 (x0)

)
if OCP (8.2.6) is feasible for x0 ∈ XN,

ũ(x0) otherwise.
(8.2.7)

If OCP (8.2.6) is infeasible, SFEMPC simply reuses the stabilizing warm-starts, which
are generated manually according to (7.1.5). The buffer-based approach ensures the
following closed-loop properties.
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Proposition 8.2.1: SFEMPC with fallback level. Suppose Assumptions 3.1.1-3.1.3 and
7.2.1 hold. Assume that the suboptimal control sequences are generated based on the
fallback level in (8.2.7) and the suboptimal solutions to OCP (8.2.6). Then, the origin is
asymptotically stable for the closed-loop system (7.1.7) in the positive invariant set ZN .

Proof. The proof follows the derivations in the proof of Proposition 7.2.1. Here, only
the fallback level (7.2.5) needs to be replaced by the fallback level (8.2.7).

The fallback level in (8.2.7) allows to use an initial control sequence that is not nec-
essarily subject to input move-blocking with ũ(x0) /∈ ⋃N

i=1 U e
N(x0, i) (see Asm. 7.2.1).

Therefore, stability properties hold on the set ZN though X̄ e
N ⊆ XN. However, in

contrast to the buffer-based move-blocking approach in Section 7.2, SFEMPC requires
the fallback level only until OCP (8.2.6) turns feasible as shown in the next subsection.

Reproducing Stabilizing Warm-Starts

Lemma 8.2.1 shows that if OCP (8.2.6) is feasible for some x0 ∈ XN, the variable
horizon partitioning only allows improvement of manually generated warm-starts.

Lemma 8.2.1: Improvement of stabilizing warm-starts. Suppose there exists a suboptimal
solution tuple

(
u†

s (x0), N†
1 (x0), N†

2 (x0)
)

to OCP (8.2.6) with x0 ∈ XN. Then, the
following cost descent property holds with x+0 = f

(
x0, u†

s (x0)
)

and Ω(·) from (7.1.5):

JN

(
x+0 , ue

(
x+0 , u†

s (x+0 ), N†
1 (x+0 )

))
≤ JN

(
x+0 , Ω

(
x0, ue

(
x0, u†

s (x0), N†
1 (x0)

)))
. (8.2.8)

Proof. Let the definition u†(x0) := ue
(

x0, u†
s (x0), N†

1 (x0)
)

hold. Then, the warm-start
is given by ũ(x+0 ) := Ω

(
x0, u†(x0)

)
(see (7.1.5)).

Case I: N†
1 (x0) > 1, x+0 /∈ Xf. The optimizer reproduces the warm-start u†(x+0 ) =

ũ(x+0 ) = Ωsta
(

x0, u†(x0)
)

with the tuple
(

u†
s (x+0 ) = u†

s (x0), N†
1 (x+0 ) = N†

1 (x0)− 1,
N†

2 (x+0 ) = N†
2 (x0) + 1

)
.

Case II: N†
1 (x0) > 1, x+0 ∈ Xf. If JN

(
x+0 , Ωκ(x+0 )

)
> JN

(
x+0 , Ωsta

(
x0, u†(x0)

))
, the

proof follows Case I. Otherwise, the warm-start has to be generated by u†(x+0 ) =
ũ(x+0 ) = Ωκ(x+0 ). The optimizer invokes the recursive application of the local control
law for N steps with

(
u†

s (x+0 ) = κ(x+0 ), N†
1 (x+0 ) = 1, N†

2 (x+0 ) = N − 1
)
.

Case III: N†
1 (x0) = 1, x+0 /∈ Xf. This case implies that the different warm-starting

approaches result in equal costs with JN
(

x+0 , Ωκ(x+0 )
)
= JN

(
x+0 , Ωsta

(
x0, u†(x0)

))
.

The optimizer can select the tuple
(

u†
s (x+0 ) = κ(x+0 ), N†

1 (x+0 ) = 1, N†
2 (x+0 ) = N − 1

)
to reproduce the warm-start u†(x+0 ) = ũ(x+0 ) = Ωκ(x+0 ).
Case IV: N†

1 (x0) = 1, x+0 ∈ Xf. See Case III.
It follows that at least u†(x+0 ) = ũ(x+0 ) = ue

(
x+0 , u†

s (x+0 ), N†
1 (x+0 )

)
applies for all cases.

Since JN
(

x+0 , u†(x+0 )
)
≤ JN

(
x0, u†(x0)

)
holds by design, (8.2.8) is established.

Note that Lemma 8.2.1 does not explicitly consider the evolution of the closed-loop
system (7.1.7). The derivations so far only show that the variable horizon partition for-
mulation in OCP (8.2.6) can reproduce the control sequences that are generated by the
warm-starting approaches Ωκ(·) and Ωsta(·). In contrast to suboptimal offset MBMPC
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in Section 7.3, here the optimizer recovers the manually generated warm-start by ad-
justing the horizon lengths N1 and N2, instead of adjusting an auxiliary parameter λ as
in OCP (7.3.2). However, obviously, an initial solution tuple

(
u†

s (x0), N†
1 (x0), N†

2 (x0)
)

to OCP (8.2.6) can only exist if and only if x0 ∈ X̄ e
N and ũ(x0) ∈

⋃N
i=1 U e

N(x0, i). To
include the cost descent property from Lemma 8.2.1 into a theoretical closed-loop
analysis, the set of extended states ZN is restricted to

Z̄N :=
{(

x0, ũ(x0)
)
| x0 ∈ X̄ e

N and ũ(x0) ∈ ŪN(x0)
}

, (8.2.9)

in which the set of admissible warm-start control sequences is now defined by:

ŪN(x0) := {u ∈
N⋃

i=1

U e
N(x0, i) | JN(x0, u) ≤ F(x0), if x0 ∈ Xf}. (8.2.10)

These restrictions do not impact the theoretical derivations summarized in Section 7.1
since ŪN(x0) ⊆ ŨN(x0) and Xf ⊆ X̄ e

N ⊆ XN . Thus, Z̄N ⊆ ZN holds with 0p+mN ∈ Z̄N .
From Lemma 8.2.1 it can already be derived that the input set

⋃N
i=1 U e

N(x+0 , i) always
contains the control sequences resulting from Ωκ(x0) or Ωsta(x0) if x0 ∈ X̄ e

N. Recall
that the Lyapunov inequalities in (7.1.9) hold for all

(
x0, ũ(x0)

)
in the larger set ZN and

rely, in particular, on the availability of Ωκ(x0) if x0 ∈ Xf ([All+17, Prop. 10, Prop. 22,
Proof Thm. 14]). In contrast to Assumption 7.2.1, the following assumption explicitly
ensures that there exists an initial extended state in which the control sequence is
subject to extreme input move-blocking.

Assumption 8.2.1: Admissible initial move-blocked warm-start. At time instant n = 0,
there exists an admissible warm-start ũ(x0) ∈ ŪN(x0) for all x0 ∈ X̄ e

N.

This technical assumption is necessary since OCP (8.2.6) already assumes an admissi-
ble warm-start at time instant n = 0. However, since the optimal solution to OCP (8.2.6)
is guaranteed to produce lower or at least equal costs than every available warm-start,
the first closed-loop iteration can be solved (offline) to optimality and the optimal
solution can then be used to replace the initial warm-start. Finally, taking all previous
steps together, the following closed-loop properties can be stated for SFEMPC.

Proposition 8.2.2: SFEMPC without fallback level. Suppose Assumptions 3.1.1-3.3.2 and
8.2.1 hold. Let the suboptimal solutions to OCP (8.2.6) with P̄ := U be defined by
u†(x0) := ue

(
x0, u†

s (x0), N†
1 (x0)

)
for all x0 ∈ X̄ e

N. Then, the origin is asymptotically
stable for the closed-loop system (7.1.7) in the positive invariant set Z̄N.

Proof. Assumption 8.2.1 provides the first admissible warm-start ũ(x0) at closed-loop
time n = 0 for all x0 ∈ X̄ e

N. From Lemma 8.2.1 it follows that the optimizer can
improve and thus start its optimization routine exactly at the manually generated
warm-starts according to (7.1.5) by adjusting the horizon partition. Therefore, in the
nominal case, if x0 ∈ X̄ e

N, it follows that x+0 ∈ X̄ e
N and ũ(x+0 ) = Ω

(
x0, ũ(x0)

)
∈

ŪN(x0) ⊆
⋃N

i=1 U e
N(x0, i) hold after applying the suboptimal control vector u†(0, x0)

for closed-loop control. Consequently, it follows that ϑ+ ∈ Z̄N. Asymptotic sta-
bility follows from [All+17, Prop. 13 and Proof of Thm. 14] with ZN := Z̄N and in-
cludes Assumptions 3.1.1-3.3.2 and the stabilizing properties of the manually gener-
ated warm-starts.
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Notice that the theoretical closed-loop properties in Proposition 8.2.2 do not depend
on the optimal horizon partitioning. Thus, iterating over all possible horizon lengths
is no longer necessary in the worst-case. However, mixed-integer programming is
nevertheless computationally demanding. The next section proposes a viable strategy
for systematically seeking suboptimal horizon lengths for a finite set of control vectors.
Recall that the motivation is to dispense with external optimization and solver libraries.

Numerical Realization

The following Algorithm 8.1 represents an efficient search strategy for suboptimal
horizon partitions in OCP (8.2.6) with P̄ := Ã(x0, n) for all x0 ∈ X̄ e

N and all n ∈ N0.
Let a suboptimal solution tuple to OCP (8.2.6) with P̄ := Ã(x0, n) be denoted by(

u†
s (x0, n), N†

1 (x0, n), N†
2 (x0, n)

)
. On the basis of this solution tuple, a suboptimal

control sequence is given by:

u†(x0) := ue
(

x0, u†
s (x0, n), N†

1 (x0, n)
)
, ∀ x0 ∈ X̄ e

N, ∀ n ∈ N0. (8.2.11)

Recall that in suboptimal MPC according to [Pan+11; All+17], closed-loop stability
properties are derived from the worst-case evolution of the difference inclusion (7.1.9),
where the time-invariant cost function JN(·) serves as the Lyapunov function. Since
the suboptimal control sequence u†(x0) is not unique anyway, the left side of (8.2.11)
dispenses with the explicit dependence on the closed-loop time n, which results from
including time-varying finite control sets. The initial state as an input argument,
however, links the suboptimal solution u†(x0) to the evolution of the warm-start ũ(x0).
In the suboptimal case, the temporal evolution of the final control set in (4.5.4) is based
on the suboptimal control vector selected by the optimizer with u◦(n) := u†(0, x0) for
all x0 ∈ X̄ e

N and all n ∈ N0.
Algorithm 8.1 requires three loops to determine a suboptimal solution. The first
loop in program line 5 represents a simple exhaustive search, which iterates over the
number of elements in the finite control set Ã(x0, n). The second loop in program
line 9 increases the horizon length N1 incrementally in line 35 until either the roll-out
of variable length violates state constraints (line 13), the local control law κ̃(·) becomes
admissible for the nonlinear system (lines 26-27), or the prediction reaches the terminal
set Xf at constant control with N1 = N (line 28). If the local controller neither violates
state nor input constraints for N−N1 steps (line 18) and φ

(
N, x0, ue(x0, us, N1)

)
∈ Xf,

then this implies that φ
(

N1, x0, ue(x0, us, N1)
)
∈ Xκ̃(N − N1). Hence, if the local

controller can take over steering the nonlinear system into the terminal set Xf, the
algorithm terminates the variable roll-out of the current control candidate on the first
part of the horizon (line 33). Otherwise, Algorithm 8.1 terminates the second loop
(lines 22 and 24) and increases the first horizon length by one step (line 35). If state
constraints violations occur during the first roll-out phase (line 13) or the second
population phase (line 22), the proposed algorithm either discards the current control
candidate us or implements a penalty function according to Section 5.3. The theoretical
runtime complexity of Algorithm 8.1 is O

(
c · N2). However, in practice, the runtime

complexity can be approximated by O
(
c · N · log(N)

)
since the non-admissibility of

the local controller for k2 ≪ N is often detectable after a few steps (lines 22 and 24).
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8.2. Extended Horizon Formulation

Algorithm 8.1.: Procedure to search for a suboptimal solution to OCP (8.2.6)

1: procedure FindSuboptimalSolution(xµ(n), Ã
(

xµ(n), n
)
)

2: K, P ← Optional: Solve Riccati/Lyapunov equation online ▷ See Sec. 3.3
3: S ← ∅ ▷ Initialize set of admissible solution tuples
4: x0 ← xµ(n) ▷ Set initial state
5: for all candidates us ∈ Ã(x0, n) do ▷ Parallelizable
6: k1 ← 0
7: x(k1) ← x0
8: J1 ← 0
9: while k1 < N do ▷ Variable roll-out: Simulate first section

10: u(k1) ← us
11: x(k1 + 1) ← f

(
x(k1), u(k1)

)
▷ See (3.1.1)

12: if G
(

x(k1 + 1)
)
̸⪯ 0r then ▷ Check if x(k1 + 1) /∈ X, see (3.2.2)

13: break ▷ Optional: Penalty function, see Sec. 5.3
14: else
15: J1 ← J1 + ℓ

(
x(k1), u(k1)

)
▷ See (3.1.3)

16: k2 ← k1 + 1
17: J2 ← 0
18: while k2 < N do ▷ Variable horizon partitioning: Populate second section
19: u(k2) ← κ̃

(
x(k2)

)
20: x(k2 + 1) ← f

(
x(k2), u(k2)

)
▷ See (3.1.1)

21: if G
(

x(k2 + 1)
)
̸⪯ 0 then ▷ Check if x(k2 + 1) /∈ X, see (3.2.2)

22: break ▷ Optional: Penalty function, see Sec. 5.3
23: else if Guu(k2) ̸⪯ hu then ▷ Check if u(k2) /∈ U, only if κ̃(·) := κ(·)
24: break
25: else
26: J2 ← J2 + ℓ

(
x(k2), u(k2)

)
▷ See (3.1.3)

27: k2 ← k2 + 1
28: if k2 = N and F

(
x(N)

)
⪯ 0 then ▷ Check if x(N) ∈ Xf, see (3.2.7)

29: J ← J1 + J2 + F
(

x(N)
)

▷ See (3.1.3)
30: N1 ← k1 + 1
31: N2 ← N − (k1 + 1)
32: S ←

{
S , (J, us, N1, N2)

}
▷ Append admissible tuple

33: break ▷ Stop variable roll-out
34: else
35: k1 ← k1 + 1
36:

(
JN(·), u†

s (x0, n), N†
1 (x0, n), N†

2 (x0, n)
)
← Select least-cost tuple from S

37: Ã
(

f
(

x0, u†
s (x0)

)
, n + 1

)
← Adaptive discretization ▷ See (4.5.4) and (4.5.6)

38: return
(

u†
s (x0, n), N†

1 (x0, n), N†
2 (x0, n)

)
, ue

(
x0, u†

s (x0, n), N†
1 (x0, n)

)
, Ã(x+0 , n + 1)

Similar to Algorithm 4.1, if all admissible solutions are stored in the memory, the
analysis of the space complexity results in O(c · N). However, if only saving the
states x(k) and x(k + 1) in combination with the current best tuple (us, N1, N2), the
space complexity reduces to O(1). Algorithm 8.1 is highly parallelizable since dif-
ferent threads can evaluate different control candidates (line 5). This algorithm is
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straightforward to implement, exhibits a deterministic run time limit and addresses
industrial applications in particular. If the optimizer can evaluate all control candi-
dates us ∈ Ã(x0, n) for all x0 ∈ X̄ e

N and all n ∈ N0, then Algorithm 8.1 guarantees to
find and evaluate the warm-starts according to (7.1.5). For this purpose the technical
Assumption 8.2.1 requires a slight modification.

Assumption 8.2.2: Admissible initial move-blocked warm-start with minimum first horizon
length. At time instant n = 0, there exists an admissible tuple (u0

s , N0
1 ) with u0

s ∈ A(0)
such that ue(x0, u0

s , N0
1 ) ∈ ŪN(x0) holds for all x0 ∈ X̄ e

N. The horizon length N0
1 is of

minimum length.

Similar to Assumption 4.5.1, Assumption 8.2.2 allows to derive closed-loop proper-
ties in the uncountable set Z̄N, though it does not include finite control sets in its
formulation. In addition, Assumption 8.2.2 ensures that the initial solution gener-
ated by Algorithm 8.1 produces lower or at least equal costs compared to the initial
warm-start ũ(x0). Practical SFEMPC, which rests upon Algorithm 8.1, exhibits the
following closed-loop properties.

Corollary 8.2.1: SFEMPC with finite control sets and exhaustive search. Suppose Assump-
tions 3.1.1-3.3.2 and 8.2.2 hold. Assume that the suboptimal control sequences are
generated based on (8.2.11) and the solution tuples

(
u†

s (x0, n), N†
1 (x0, n), N†

2 (x0, n)
)

generated by Algorithm 8.1 for all x0 ∈ X̄ e
N and all n ∈ N0. Then, the origin is

asymptotically stable for the closed-loop system (7.1.7) in the positive invariant set Z̄N .

Proof. Case I: n = 0 and x0 /∈ Xf. Algorithm 8.1 terminates the roll-out of the selected
control candidate us if φ

(
N1, x0, ue(x0, us, N1)

)
∈ Xκ̃(N − N1). By Assumption 8.2.2,

u0
s ∈ Ã(x0, 0) and the corresponding horizon length N0

1 is of minimal length. There-
fore, Algorithm 8.1 reproduces exactly the initial warm-start from Assumption 8.2.2.
Case II: n = 0 and x0 ∈ Xf. Algorithm 8.1 stops the variable roll-out on the first
horizon section after one step, providing N†

1 (x0, 0) = 1 and N†
2 (x0, 0) = N − 1. The

finite control set Ã(x0) contains us = κ(x0) by (4.5.6) and u0
s by Assumption 8.2.2.

Thus, Algorithm 8.1 exactly reproduces the initial warm-start from Assumption 8.2.2
since ue

(
x0, κ̃(x0), 1

)
∈ ŪN(x0) and ue

(
x0, u0

s , 1
)
∈ ŪN(x0).

Case III: n > 0 and x0 /∈ Xf. By design, the finite control set Ã
(

xµ(n), n
)

con-
tains the previously applied closed-loop control vector u†

s
(

xµ(n − 1), n − 1
)
. Al-

gorithm 8.1 evaluates ue
(

xµ(n), u†
s
(

xµ(n − 1), n − 1
)
, N†

1
(

xµ(n − 1), n − 1
)
− 1

)
=

Ωsta
(

xµ(n− 1), u†(xµ(n− 1)
))
∈ ŪN

(
xµ(n)

)
.

Case IV: n > 0 and x0 ∈ Xf. The proof of this case is analogous to Case II. The
optimizer evaluates the control sequence Ωκ(x0) = ue

(
x0, κ̃(x0), 1

)
∈ ŪN(x0).

This proof only shows that the optimizer at least reproduce the warm-starts according
to (7.1.5) for all x0 ∈ X̄ e

N and all n ∈ N0. Therefore, if ϑ ∈ Z̄N , it follows that ϑ+ ∈ Z̄N .
Asymptotic stability then directly results from [All+17, Prop. 13, Thm. 14].

Remark 8.2.1: Automatic generation of warm-starts by the optimizer. Recall that the ex-
tended state ϑ =

(
x0, ũ(x0)

)
is a theoretical extension to ensure closed-loop properties

if the optimizer cannot find the global optimum in finite time, which usually applies

98



8.3. Example Continued: Van der Pol Oscillator

for non-convex optimization problems under real-time constraints [Pan+11; All+17].
Hence, Definition 3.3.1 does not apply for real applications. However, with a conven-
tional (smooth) optimizer, the optimization variables can be initialized with the values
of the manually generated warm-start controls sequence. Therefore, the optimizer
starts its numerical routine exactly at the already stabilizing warm-start. However, if
the conventional optimizer would start its optimization routine always with optimiza-
tion variables initialized to zero, it is challenging, if not impossible, to estimate an
upper bound on the optimization time which the optimizer requires to reproduce the
stabilizing warm-start. With finite control sets and exhaustive search, the upper limit
for evaluating all control candidates is deterministic. Since Algorithm 8.1 is config-
ured to self-generate, evaluate, and improve stabilizing warm-start sequences in the
nominal case, it allows to dispense with the manual generation of warm-starts.

Remark 8.2.2: Inherent robustness with Algorithm 8.1. Algorithm 8.1 does not ensure
inherent robustness as suboptimal MPC with X = X and Xf := levπF with π > 0.
The derived robustness margins in [All+17] rely, in particular, on the appended local
control step at the end of the open-loop prediction. Alan et al. [All+17] analyze both in
how far the appended local control step drives the prediction further into the interior
of the terminal set levπF and how large the resulting distance to the boundary of
the terminal set is. Hence, the preparation of the warm-start control sequence at time
instant n allows to handle small perturbations at the next closed-loop time instant n+ 1.
Since Algorithm 8.1 does not buffer the manually generated warm-starts, it cannot
reproduce exactly these warm-starts automatically in case of perturbations such as
measurement errors and model uncertainty. To guarantee inherent robustness margins
like in [All+17], Algorithm 8.1 needs to be, at least, extended such that it compares
some buffered warm-start, which was manually generated according to (7.1.5), with
its best solution in terms of costs after it terminates the first loop in line 5. However,
the analysis of inherent robustness properties is beyond the scope of this dissertation.

8.3. Example Continued: Van der Pol Oscillator

Figure 8.1 again continues on the Van der Pol oscillator and the stability analysis in
Section 7.4. The benchmark system is configured as described in Section 7.4. The
local controller is defined by κ̃(x) := Γ(K x), where K involves the solution to the
Riccati equation (3.3.19). The left plot shows the feasible sets resulting from different
configurations of single degree of freedom OCPs and compares them with the feasible
set XN resulting from the full degree of freedom OCP in (3.1.6) with N = 80. As a
reminder, the feasible sets are approximated by evaluating a uniform grid of initial
states with 201× 201 grid points placed in the constrained state space X. To present
almost smooth boundaries, the pure compact hulls of all feasible sets are enlarged
in the direction of its convex boundaries while not distorting the polygon area above
5 %. The control samples for the single degree of freedom OCPs (4.1.4), (8.1.5), and
(8.2.6) are taken from the finite control set D ⊂ U with c = 101. As already men-
tioned in Section 7.4, the combination of a terminal set constraint with a single degree
of freedom in control is too restrictive for practical applications (see small set X s

N).
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Figure 8.1.: Enlarging the restrictive feasible set X s
N (with SFMPC) by relaxing the OCP

formulation: X̄s (with SFVMPC), X̄ e
N (with SFEMPC), XN (with conventional MPC). Left:

Phase-portrait with two illustrative closed-loop state trajectories. Right, top: Descent of costs
in the sense of Lyapunov. Right, bottom: Closed-loop control trajectories over time.

Though the variable horizon formulation presented in Section 8.1 guarantees stabiliz-
ing closed-loop control properties, the enlargement of the feasible set with X s

N ⊂ X̄s
and Nmax = 80 might still be not attractive for practical applications. However, the
extended horizon formulation introduced in Section 8.2 results in a feasible set area
X̄ e

N that is at least fairly competitive to the feasible set area of XN. Recall that the
set X̄ e

N is estimated with Algorithm (8.1) without including smooth derivative-based
optimization. The enlargement of the feasible set from X s

N to X̄ e
N mainly stems from

the fact that the region of attraction Xκ̃(N − 1) covers a large part of the feasible set
XN. For orientation, Figure 8.1 includes the feasible set resulting from OCP (8.2.6) for
the case when the first horizon length is fixed to N1 = 1 (see gray dashed polygon).
In this case, Xκ̃(N − 1) ⊆ X e

N(1) applies. The two illustrative closed-loop state trajec-
tories in the left phase portrait of Figure 8.1 all start at xµ,0 = (0.8, 0)⊺. SFEMPC and
conventional MPC show strong similarity in the phase portrait. The bottom time plot
on the right confirms this observation, but attests that the significantly higher number
of degrees of freedom in control in case of MPC allows better exploitation of the sys-
tem’s control bounds. However, for all control approaches, the top plot of Figure 8.1
shows cost descent properties in the sense of Lyapunov. The following quantitative
results enhance the evaluations in Table 7.1. SFEMPC with M = 1, N = 80, and c = 21
reaches a closed-loop performance index of J̄cl = −2.18 %. Thus, for the chosen bench-
mark system, SFEMPC is comparable to suboptimal MBMPC with M = 8 in terms of
closed-loop control performance, though it only builds on a single degree of freedom.
In the MATLAB simulation environment, the statistical execution time evaluation over
100 optimization runs to OCP (8.2.6) with c = 21 yields a normalized median value
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of t̄m = 91.29 % with tm = 48.86 ms. The runtime performance is thus comparable
to that of (derivative-based) suboptimal MBMPC with M = 4. The exhaustive search
strategy and the second population phase in Algorithm 8.1 do not increase the com-
putational effort unreasonably. The statistical evaluation in the C environment results
in the values tm = 80.9 µs and t95 = 83.7 µs. These values are comparable to those
resulting from conventional MPC and the SQP method with a horizon between N = 6
and N = 12 (see Table 5.1).
The chosen benchmark system and its configuration allow to visualize the enlargement
of the feasible set resulting from including the local controller on the second part of
the horizon. However, the advantages that arise from choosing N1 > 1 are not yet
clearly visible in Figure 8.1. Without tight state box-constraints, Figure 8.1 only reveals
that there is a small potential for enlarging the feasible set X e

N(1) to X̄ e
N. The next

example elaborates on the ability of SFEMPC to handle state constraints with N1 ≥ 1.

8.4. Example: Simplified Nonlinear Valve Model

This section relates to the application-oriented part of this work in Chapter 6 and aims
at placing the theoretical derivations of this chapter in the context of model predictive
low-level control. Since nominal offline simulation does not require an observer, offset
compensation, and is not subject to real-time constraints, a simplified nonlinear model
is used to approximate the real valve behavior. The following benchmark system is
represented by a series connection of a PT1 element with the differential equation
0.5 ẏ(t) + y(t) = σ(t) and the Duffing oscillator with the differential equation φ̈v(t) +
0.2 φ̇v(t)− φv(t) + φ3

v(t) = y(t) (see, e.g., [Wig03]). The PT1 element is intended to
be a simplified representation of the electromagnetic phenomena inside a solenoid. It
roughly approximates the dynamic conversion from input voltage to solenoid output
force. On the other hand, the Duffing oscillator is supposed to approximate the
nonlinear motion of some magnetic armature and piston as a second-order system.
The resulting mathematical state space model of third degree with χ(t) =

(
χ1(t) =

φv(t), χ2(t) = φ̇v(t), χ3(t) = y(t)
)⊺ is given by:χ̇1(t)

χ̇2(t)
χ̇3(t)

 =

 φ̇v(t)
y(t)− 0.2 φ̇v(t) + φv(t)− φ3

v(t)
−2 y(t) + 2 σ(t)

 . (8.4.1)

The input of the system σ(t) is assumed to be piecewise constant on the fixed time
grids tk+1 = tk + ∆ts, k ∈ N[0,N−1], t0 = 0 s (open-loop) and tn+1 = tn + ∆ts, n ∈
N0, t0 = 0 s (closed-loop). Again, discretization is based on the Runge-Kutta method
of the fourth order with ∆ts = 2−4 s. The constraint sets are defined by X = {x ∈
X | (−1,−vlim,−1)⊺ ⪯ x ⪯ (1, vlim, 1)⊺} with vlim = 0.25 and U = {u ∈ U | |u| ≤ 1}.
The control task is motivated by a common position control task and is therefore
translated into a point-to-point state-space control to pre-defined (unstable) steady
states (xf, uf). Here, the coordinate transformations x̆(k) := x(k)− xf and ŭ(k) :=
u(k)− uf are used along with the cost-functions ℓ

(
x̆(k), ŭ(k)

)
= ∥ x̆(k)∥2

Q + ∥ŭ(k)∥2
R

and F
(

x̆(N)
)
= ∥ x̆(N)∥2

P with Q = diag(1, 0.1, 0.1) and R = 0.1. The matrix P
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Figure 8.2.: Open- and closed-loop control of the simplified model of a directional control
valve. The closed-loop system is initialized by xµ,0 = (−0.75, 0, 0.328)⊺.

is the solution to the Riccati equation (3.3.18) with A =
(
∂ f (x, u)/∂ x

)
|(xf,uf)

and
B =

(
∂ f (x, u)/∂u

)
|(xf,uf)

. Linearization at a given steady state and solving the Riccati
equation are performed during closed-loop control. Recall, if there exists a solution
to the Riccati equation (3.3.18), the linearized system x̆(k + 1) = A x̆(k) + Bŭ(k) is
stabilizable at the origin by the local control law κ

(
x̆(k)

)
= K x̆(k), where K is defined

by (3.3.19). According to Remark 3.3.3, without a proof, the terminal set Xf is assumed
to have at least an interior levπF ⊂ Xf with π = 0.05 and ρ = 1.001 for all steady
states under consideration. As discussed in Remark 3.3.4, the time dependence of the
steady state (xf, uf) is omitted. The local control law that is applied to the nonlinear
system is further subject to saturation with κ̃

(
x(k)

)
:= Γ

(
uf + K x̆(k)

)
.

The numerical experiment in Figure 8.2 consists of three individual point-to-point
closed-loop control phases in order to emulate conventional position control. On the
left side of Figure 8.2, the plots visualize the initial open-loop solution at closed-loop
time tn = 0 s for MPC and SFEMPC. To not violate the constraint vlim = 0.25 and
at the same time reaching the terminal set levπF with N = 80, Algorithm 8.1 with
c = 31 divides the horizon in N†

1 (x0, n) = 52 and N†
2 (x0, n) = 28. When starting at

x0 = xµ,0 = (−0.75, 0, 0.328)⊺, choosing N1 = 1 is not sufficient since the recursive
application of the local control law κ̃(·) violates state constraints. Thus, the optimizer
selects a moderate system excitation of u†

s (x0) ≈ 0.47 on the first part of the predic-
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8.4. Example: Simplified Nonlinear Valve Model

Table 8.1.: Evaluation of closed-loop control performances and computation times for MPC,
SFMPC, and SFEMPC applied to the simplified valve model. Abbreviations: Recursive Elimi-
nation (RE), Full Discretization (FD), Exhaustive Search (ES).

MPC SFMPC (ES) SFEMPC (ES)

Environment Solver FD/RE N = 60 N = 5, c = 31, Xf = X N = 80, c = 31

MATLAB IPOPT/ES J̄cl FD 0.00 % −0.31 % −56.16 %
MATLAB IPOPT/ES t̄m FD 0.00 % 99.1 % 62.45 %
C SQP/ES tm RE 693.77 ms 121.3 µs 6.56 ms
C SQP/ES t95 RE 698.86 ms 125.75 µs 6.78 ms

tion (variable roll-out) in order to steer the system through the constrained set X into
the subset Xκ̃

(
N†

2 (x0, n)
)
. Here, the second part of the horizon partition keeps the

system inside the constrained state space X while further binding the last predicted
state to the terminal set levπF. Obviously, the solution to the full degree of freedom
OCP (3.1.6) in case of MPC outperforms the solution resulting from Algorithm 8.1
since it allows multiple control interventions outside the region of attraction of the
local controller. As a logical consequence, MPC only requires a shorter horizon length
of N = 60 to satisfy the terminal constraint. Thus, the closed-loop control performance
with SFEMPC requires a longer time compared to MPC to drive the closed-loop sys-
tem in the neighborhood of the dedicated steady state. However, during the second
point-to-point closed-loop control phase, Algorithm 8.1 returns N†

1 (x0, n) = 1 and
N†

2 (x0, n) = 79 since at time tn = 8 s, x0 ∈ Xκ̃(79) applies. Here, the closed-loop con-
trol performances of MPC and SFEMPC are fairly similar. The third phase proceeds
analogously to the first phase.

Table 8.1 summarizes the quantitative analysis of the first closed-loop control phase
in Figure 8.2. The first line shows that MPC is almost equal to an optimal full de-
gree of freedom point-to-point solution with N = 1000 since J̄cl ≈ 0 % after l = 1000
closed-loop steps. The basic SFMPC approach with a short horizon of N = 5 and
with the terminal constraint disabled is similar in terms of closed-loop control per-
formance with J̄cl = −0.31 %. Though basic SFMPC shows recursive feasibility for
this selected numerical experiment, there do not exist theoretical closed-loop guaran-
tees. It shall be noted that SFMPC is only able to stabilize the origin for the selected
benchmark system if including the solution to the Riccati equation P in the terminal
cost function F(·), though the terminal state vector φ

(
N, x0, u∗s (x0)

)
is not inside the

terminal set (cf. Ch. 5). In contrast, SFEMPC ensures stabilizing properties in the
nominal case by design. However, this closed-loop guarantees can only be obtained
at the expense of closed-loop control performance since J̄cl = −56.16 % after l = 1000
closed-loop steps. The statistical evaluation of the optimization effort is based on 100
cold-started optimization runs at time tn = 0 s with tm,ref = 814.49 ms (OCP (3.1.6)
with full discretization). The runtime performance of SFEMPC ranges between the
runtime performance of MPC and SFMPC. Though, the increase of computational
effort is not negligible compared to SFMPC. While the results gained in MATLAB are
suited for a relative rating of execution time levels of the individual approaches, the
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Chapter 8. Asymptotic Stabilization with Input Move-Blocking and Finite Control Sets

C environment discloses that a smooth optimization framework requires a bunch of
specific development steps as rigorous NLP structure exploitation in order to scale in
the same ratio as SFMPC and SFEMPC when generating C-code.

8.5. Discussion

This chapter reveals that the key ingredient of stabilizing SFMPC is the variable hori-
zon length on which the control candidate vector is kept constant. The first Section 8.1
introduces the variable horizon formulation and combines it with common stabilizing
terminal conditions to provide stabilizing closed-loop guarantees. However, the result-
ing feasible set from which the nonlinear system can be steered to some pre-defined
terminal set suffers from the extreme input move-blocking approach. Enlarging the
feasible set is achieved by incorporating the local control law during prediction. In
contrast to the formulations in [ZA98] and [Mag+01], in Section 8.2, the time step
on the horizon from which the local control law is applied is subject to optimization.
Therefore, this extended approach recovers the key ingredient in stabilizing SFMPC.
Since in total SFEMPC implements a receding horizon formulation and rests upon
common stabilizing terminal conditions, it can be integrated into the suboptimal MPC
framework presented in [Pan+11; All+17; Raw+20]. Finally, Algorithm 8.1 addresses
the resulting mixed-integer OCP and is designed for searching efficiently for subop-
timal solutions. In addition, this tailored exhaustive search algorithm satisfies the
fundamental objectives of this dissertation. Namely, its implementation is straightfor-
ward and the resulting computational effort is comparatively low. The applicability
of SFEMPC depends, in particular, on the size of the region of attraction of the local
controller. If the linearized system is only a valid approximation in the immediate
vicinity of the selected steady state, it is unlikely that the region of attraction of the
local controller exceeds beyond the border of the control invariant terminal set. Here,
the configuration of the first section applies and the resulting control approach is
too restrictive for practical applications. However, if the local region of attraction
is relatively large, SFEMPC is suitable for both guaranteeing stabilizing closed-loop
properties and strictly satisfying input and state constraints, at least for the nominal
configuration. Though conventional MPC outperforms SFEMPC in terms of open- and
closed-loop control performance for the simplified valve model, SFEMPC accomplishes
the point-to-point control task while comprising only a few lines of code.
The smaller π > 0 in levπF, the more likely it is that this level set represents some
interior of all emerging terminal sets (see Rem. 3.3.4). However, the smaller the pa-
rameter π, the larger the length N2 and thus the total horizon length N have to be.
The increase in N2 does not increase the computational effort of SFEMPC considerably.
Rather, the greatest computational cost of SFEMPC is associated with transferring the
open-loop system into a subset of the local controller’s domain of attraction. In con-
trast, with MPC, the optimization time would increase significantly with an increasing
number of optimization parameters. Thus, by including a stabilizing local control
law for prediction, SFEMPC exhibits similar numerical properties as the finite-tail cost
approaches in [Mag+01; KA21].
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9
Conclusion and Outlook

Mechatronic subsystems contribute significantly to the overall performance of complex
assemblies such as construction and manufacturing machines. However, the trans-
formation of an input signal into a mechanical motion of a mechatronic subsystem is
subject to several parasitic and nonlinear effects as, for example, eddy currents and
friction. Therefore, low-level control takes on a key role in realizing smooth opera-
tion and fulfilling high performance demands. The closed-loop position control of a
directional control valve, as an example for a real industrial application, shows that
a nonlinear proportional-integral control scheme achieves a high closed-loop control
performance at the expense of a high parameter complexity. A high number of free
controller parameters, however, complicates the controller design and the subsequent
manual adjustment of the system behavior. If there would exist an ideal optimization
algorithm that certainly finds the global minimizer of non-convex and non-smooth op-
timization problems in a negligible amount of time, MPC clearly qualifies for replacing
conventional low-level controllers. Since MPC incorporates explicit system knowledge
in the form of a dynamic state space model, parameter complexity decreases signifi-
cantly on the controller side. In addition, usually MPC implements interpretable and
weighted objective function terms that enable intuitive controller design. Apart from
these two beneficial properties, closed-loop control performance benefits from the
recurring solution of an OCP. However, realizing a numerically robust optimization
algorithm that satisfies real-time constraints is a major challenge in MPC.
This dissertation focuses on the development of a model predictive low-level control
scheme combining the following features: Straightforward implementation without
dependence on external optimization libraries, low computational effort, intuitive
controller design, and stabilizing closed-loop properties. Extreme input move-blocking,
as a key ingredient of the novel control concept for systems with small input and small
to mid-sized state dimensions, reduces the degrees of freedom in control to a single
degree and establishes the basis for adaptive discretization of the input domain. This
discretization procedure is converted into a time evolution of finite control sets, which
are then embedded into the different OCP formulations. With the proposed simplified
OCP formulations, the simple exhaustive search algorithm qualifies for solving the
resulting OCPs and resembles a nearly ideal optimizer.
The basic SFMPC integrates with stabilizing terminal ingredients in the framework of
conventional receding horizon MPC. Three special OCP configurations allow to derive
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stabilizing closed-loop guarantees despite of input move-blocking. Since basic SFMPC
reproduces, under mild assumptions, MPC and the well-known LQR, the discretiza-
tion error of the control domain is analyzed systematically, especially isolated from
other effects. This analysis allows to formalize necessary control vectors that have to be
included in the time-varying finite control sets to ensure stabilizing closed-loop prop-
erties. Since the monotonicity property of the optimal value function does not hold
with input move-blocking, the horizon length needs to be chosen by considering the
trade-off between constraint compliance and the decreasing closed-loop performance
with an increasing horizon length.
Extensive numerical investigations evaluate the closed-loop control performance of ba-
sic SFMPC for constrained nonlinear systems, using only approximate infinite horizon
costs as a general direction guide, and highlight the beneficial property of handling
non-smooth penalty functions to enable robust real-time operation in the presence of
short-term state constraint violations. This dissertation presents a step-by-step MPC
realization guideline for the real-time closed-loop control of a directional control valve
and a servo-motor, including the implementation of offset and computation time com-
pensation techniques. For both mechatronic systems, SFMPC covers a wide operating
range, establishes a high control performance, offers real-time operation in the upper
kilohertz sampling range, and enables an intuitive controller design. The implementa-
tion is based on a few lines of code and dispenses with external optimization libraries.
When great emphasis is given to theoretical closed-loop stability by design, SFMPC
with an extended horizon formulation (SFEMPC) can substitute basic SFMPC. This
extension combines several important stabilizing ingredients. In preparation to the
development of SFEMPC, this dissertation presents a novel formulation of stabilizing
MBMPC that integrates into the well-known suboptimal MPC framework. The key
idea is to treat move-blocking as a source of suboptimality and to include stabiliz-
ing warm-start control sequences as a fallback level either through simple buffering
or by introducing auxiliary optimization parameters. This dissertation shows that
SFEMPC automatically generates and evaluates stabilizing warm-starts in the nominal
case. SFEMPC divides the fixed horizon into two parts, from which only the first
part is subject to extreme input move-blocking. The second part of the prediction is
completed by recursively applying some stabilizing local control law to the nonlinear
system. Since the switching point represents an optimization variable, SFEMPC en-
sures stabilizing closed-loop properties by following common stability derivations of
shifting and truncating the (sub)optimal control sequence of the previous closed-loop
control step and appending some local control law step at the end of the sequence.
Finally, the basic SFMPC algorithm is enhanced by a variable roll-out procedure of
control candidates that searches efficiently for suboptimal solutions to the resulting
nonlinear mixed-integer OCP. The resulting SFEMPC algorithm with finite control sets
and exhaustive search satisfies all requirements placed on the low-level controllers in
this dissertation.
This work offers several OCP formulations for derivative-free model predictive low-
level control. The resulting low-level controllers are suitable for replacing existing
conventional controllers in cascaded control loops to enhance closed-loop control
performance and to enable intuitive controller design. The field of application is not
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limited to mechatronic systems with electromagnetic actuators, but also extends to a
general class of nonlinear systems. However, to minimize the combinatorial complexity,
SFMPC and SFEMPC are, in particular, suitable for single-input systems.

Outlook

The promising results of real-time valve control in Chapter 6 are based on an experi-
mental setup optimized for prototyping, where an external amplifier directly drives
the solenoid valve (see Fig. 6.3). Since this setup is only suitable for a proof of concept
of the new control approach, it is of practical relevance to refine SFMPC for the em-
bedded valve hardware. For this step, a nonlinear model is required that approximates
the valve behavior between the input of the current controller iref(t) and the measured
stroke ym(t). Future research in this field could focus on the optimization of relevant
hardware design parameters, similar to [Mak+18a; Mak+18b; Mak+18c], such that a
nonlinear model can achieve high model accuracy during the identification process.
A major challenge of SFMPC, and also of SFEMPC, with finite control sets is the hand-
ling of combinatorial complexity in the case of systems with multiple inputs. Recall
that the number of control candidates grows exponentially with the input dimensions.
The numerical evaluations in this dissertation reveal that the straightforward exhaus-
tive search algorithm is only a suitable optimizer for finite control sets with a low
cardinality. To solve problems with a higher combinatorial complexity, alternative
search algorithms have to be investigated and developed. Here, it is advisable to
analyze the structure and behavior of the system a priori to control to identify control
combinations along all input dimensions that are unlikely to be chosen by the opti-
mizer. Then, all control vectors can be sorted into a list according to their selection
probability. The first entry in this list could represent the control candidate that gener-
ates the stabilizing warm-start. Then, the optimizer can be configured to process the
list from top to bottom starting with the control vector that is most likely to result in a
low cost function value and terminating as it approaches the maximum run time.
If the degrees of freedom in control of SFMPC are to be increased, note that the com-
binatorial complexity of MBMPC with finite control sets also increases exponentially
with the number of switching points. To further reproduce the switching points of the
previous open-loop control solution, the switching points also have to be discretized,
as proposed in [Hom+18]. Assuming that a suitable combinatorial search algorithm
can be developed in the future, which can handle systematically the combinatorial
explosion of optimal control problems with finite control sets for at least a few de-
grees of freedom in control, the following combination is reasonable. The sampling of
switching points as shown in [Hom+18] can be combined with the variable roll-out
procedure in Algorithm 8.1 on the last blocked control interval. This combination
would ensure recursive feasibility and asymptotic stability of MBMPC with time-vary-
ing finite control sets, without the need to manually generate stabilizing warm-starts
as in SDNMPC according to [BL17].
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A
Supplemental Details on Discretization,

Optimization, and Implementation

This appendix chapter provides more details on the discretization of system dynam-
ics and optimal control problems, and summarizes the fundamentals of constrained
optimization. In addition, this chapter presents details on the implementation of a
proprietary and generic control software framework.

A.1. Discretization of Optimal Control Problems

This section serves as a visual supplement to the explanations on recursive elim-
ination [GP17] and multiple shooting [BP84; Raw+20; GP17] in Section 3.2. Each
discretization approach results in an individual structure or sparsity pattern of deriva-
tive information matrices, which are required for solving constrained optimization
problems. The Jacobian matrix of the constraint functions is used to visualize the
resulting structure/sparsity patterns with state and input box-constraints.
Figure A.1 shows the basic principle beyond recursive elimination, using a one-dimen-
sional system with p = 1 and m = 1. Each time the optimizer provides new values
for the optimization vector z := u =

(
u(0), u(1), u(2), u(3), u(4), u(5)

)
, an underlying

instance solves the recursive dynamics equation (3.1.2) with x(k) := φ(k, x0, z). The
dashed lines show the piecewise constant parameterization of the control trajectory
and a possible evolution of the state trajectory for the corresponding sampled data
system according to Section 3.4. Note that these dashed graphs do not exist in the
discrete-time representation since there are no intermediate time points between k and
k + 1. However, assume that the sampled data formulation is defined on the time axis
t ∈ [kTs, (k + 1)Ts) with k ∈ N[0,N−1] and Ts = 1 s. The corresponding Jacobian of the
constraint functions is denoted by D(z) and its structure is shown in (A.1.1). This
Jacobian matrix has a lower triangular structure for all z ∈ Rω since the variation of a
control u(l) at time step l ∈ N[0,N−1] only affects the constraints that follow the control
in prediction time on the interval N[l+1,N]. This Jacobian matrix excludes lower and
upper bounds on the optimization variables. The filled circles represent elements that
need to be recomputed each time the optimizer offers new values for the optimiza-
tion vector z, while the other elements represent structural zeros. The example in
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A.1. Discretization of Optimal Control Problems
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Figure A.1.: Example of recursive elimination for a one-dimensional system with a horizon of
N = 6. In the discrete-time representation, only the highlighted points exist.

Figure A.1 results in a relative number of structural non-zeros of the Jacobian matrix
D(z) in (A.1.1) of (49/78) · 100 % ≈ 62.82 %.

D(·) =

u(0) u(1) u(2) u(3) u(4) u(5)



• 0 0 0 0 0 x(1) ≤ xmax
• 0 0 0 0 0 x(1) ≥ xmin
• • 0 0 0 0 x(2) ≤ xmax
• • • 0 0 0 x(2) ≥ xmin
• • • 0 0 0 x(3) ≤ xmax
• • • 0 0 0 x(3) ≥ xmin
• • • • 0 0 x(4) ≤ xmax
• • • • 0 0 x(4) ≥ xmin
• • • • • 0 x(5) ≤ xmax
• • • • • 0 x(5) ≥ xmin
• • • • • • x(6) ≤ xmax
• • • • • • x(6) ≥ xmin
• • • • • • x(6) ∈ levπF

(A.1.1)

Figure A.2 illustrates multiple shooting for the case when the optimizer has not yet
fulfilled the convergence criterion. The prediction horizon is divided into T = 3
individual intervals with the shooting nodes s0, s1, and s2, while the last shooting
node s3 is only introduced for fast compliance with the terminal constraint s3 ∈ levπF.
Every shooting interval has the same number of controls with L0 = L1 = L2 = 2.
Hence, it follows that I(0) = 0, I(1) = 2, I(2) = 4, and I(3) = 6. The optimization
vector is defined by z :=

(
s0, s1, s2, s3, u(0), u(1), u(2), u(3), u(4), u(5)

)
. In Figure A.2,

the continuity constraints, s1 = x(2), s2 = x(4), and s3 = x(6), are not yet satisfied.
If rearranging the optimization vector, the Jacobian matrix of the constraint functions
D(z) in (A.1.2) exhibits a banded sparsity structure for all z ∈ Rω. The example
in Figure A.2 results in a relative level of structural non-zero elements of the Jaco-
bian matrix in (A.1.2) of (44/170) · 100 % ≈ 25.89 %. Though the Jacobian matrix
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Figure A.2.: Example of multiple-shooting for a one-dimensional system with a horizon of
N = 6 and T = 3 shooting intervals. This figure illustrates the non-converged case, which
implies that the (continuity) constraints are not yet satisfied by the optimizer.

D(z) ∈ R17×10 is larger with multiple shooting compared to recursive elimination
with D(z) ∈ R13×6, the number of structural non-zero elements, namely 44 compared
to 49, is similar to each other. Recall that full discretization would further substitute
the intermediate states by introducing further shooting nodes.

D(·) =

s0 u(0) u(1) s1 u(2) u(3) s2 u(4) u(5) s3



• 0 0 0 0 0 0 0 0 0 s0 = x0
• • 0 0 0 0 0 0 0 0 x(1) ≤ xmax
• • 0 0 0 0 0 0 0 0 x(1) ≥ xmin
• • • 0 0 0 0 0 0 0 x(2) ≤ xmax
• • • 0 0 0 0 0 0 0 x(2) ≥ xmin
• • • • 0 0 0 0 0 0 s1 = x(2)
0 0 0 • • 0 0 0 0 0 x(3) ≤ xmax
0 0 0 • • 0 0 0 0 0 x(3) ≥ xmin
0 0 0 • • • 0 0 0 0 x(4) ≤ xmax
0 0 0 • • • 0 0 0 0 x(4) ≥ xmin
0 0 0 • • • • 0 0 0 s2 = x(4)
0 0 0 0 0 0 • • 0 0 x(5) ≤ xmax
0 0 0 0 0 0 • • 0 0 x(5) ≥ xmin
0 0 0 0 0 0 • • • 0 x(6) ≤ xmax
0 0 0 0 0 0 • • • 0 x(6) ≥ xmin
0 0 0 0 0 0 • • • • s3 = x(6)
0 0 0 0 0 0 0 0 0 • s3 ∈ levπF

(A.1.2)
Different instances of an optimization framework can exploit structure and sparsity in-
formation and therefore improve optimization runtime performance. These instances
include, inter alia, sparse finite differences, condensing, sparse linear algebra, and
sparse (linear) solvers.
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A.2. Fundamentals of Constrained Optimization

For the sake of completeness, the NLP formulation for full discretization is pre-
sented below. Here, the optimization vector is defined by z :=

(
x(0), x(1), ..., x(N),

u(0), u(1), ..., u(N − 1)
)
∈ Rp(N+1)+mN. Since with full discretization there are no in-

termediate states on the individual shooting intervals, NLP (3.2.9) simplifies to (similar
to [GP17, Sec. 12.1]):

min
z ∈ Rp(N+1)+mN

ψ(z) : = min
z ∈ Rp(N+1)+mN

N−1

∑
k=0

ℓ
(

x(k), u(k)
)
+ F

(
x(N)

)
(A.1.3)

subject to
x(0) = x0, (initialization)

Guu(k) ⪯ hu, ∀ k ∈ N[0,N−1], (u(k) ∈ U)

G
(

x(k)
)
⪯ 0, ∀ k ∈ N[0,N−1], (x(k) ∈ X)

φ
(
1, x(k), u(k)

)
− x(k + 1) = 0, ∀ k ∈ N[0,N−1], (continuity)

F
(

x(N)
)
⪯ 0. (x(N) ∈ Xf)

A.2. Fundamentals of Constrained Optimization

This section summarizes only the basics of constrained optimization to support the
content and statements of this dissertation. The summary is based on [NW06; WB06].
Consider the NLP from (3.2.1), which is given again as:

min
z ∈ Rω

ψ(z) subject to

{
hi(z) = 0, ∀ i ∈ E ⊂ N0,
gi(z) ≤ 0, ∀ i ∈ I ⊂ N0.

(A.2.1)

Assume that ψ : Rω 7→ R+
0 , hi, gi : Rω 7→ R represent continuously differentiable cost

and constraint functions, respectively, with ω ∈ N.

Remark A.2.1: General requirements for smooth optimization. The theoretical derivations
in the main part of the dissertation only require continuous cost and constraint func-
tions. Assumptions 3.1.1 and 3.1.2, in particular, ensure that the individual OCPs
have feasible solutions in compact sets (see, e.g., [Raw+20, Prop. 2.4]). Note that an
ideal (global) optimizer does not have to necessarily determine derivative informa-
tion. However, derivative-based numerical optimization has proven to be a suitable
approach for high-dimensional optimization problems where optimization time is also
an important criterion. Therefore, this appendix section demands that the cost and
constraint functions are not only continuous but also continuously differentiable.

A minimizer z∗ is a point in the search space at which there is no optimization di-
rection along which the cost function can be further minimized without violating any
constraints. Hence, the gradient of the cost function ∇ψ(z∗) has to be colinear with
the sum of the gradients of all active constraints. Let λ̃ and µ̃ denote the vectors of
Lagrange multipliers with the components λ̃i with i ∈ E and µ̃i with i ∈ I , respectively.
The set of indices of all active inequality constraints at point z is denoted by A(z) ⊆ I .
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The Lagrange function is defined by:

L(z, λ̃, µ̃) = ψ(z) + ∑
i∈E

λ̃ihi(z) + ∑
i∈I

µ̃igi(z). (A.2.2)

The gradient of the Lagrange function with respect to the primal variables z at point
(z, λ̃, µ̃) results in:

∇zL(z, λ̃, µ̃) = ∇ψ(z) + ∑
i∈E

λ̃i∇hi(z) + ∑
i∈I

µ̃i∇gi(z). (A.2.3)

The Karush-Kuhn-Tucker (KKT) conditions represent the first-order necessary condi-
tions for optimization problems with equality and inequality constraints. The KKT
conditions for a given tuple (z∗, λ̃

∗, µ̃∗) are defined by (e.g., [NW06, Thm. 12.1]):

∇zL(z∗, λ̃
∗, µ̃∗) = 0,

hi(z∗) = 0, ∀ i ∈ E ⊂ N0,
gi(z∗) ≤ 0, ∀ i ∈ I ⊂ N0,

µ̃i ≥ 0, ∀ i ∈ I ⊂ N0,
µ̃igi(z∗) = 0, ∀ i ∈ I ⊂ N0.

(A.2.4)

If an inequality constraint is active with gi(z∗) = 0 and i ∈ A(z∗), then µ̃i ≥ 0
applies

(
µ̃i > 0 for strict complementarity [NW06, Def. 12.5]

)
. If an inequality con-

straint is inactive with gi(z) < 0, then µ̃i = 0 applies. In both cases, the com-
plementary condition µ̃igi(z) = 0 holds for all i ∈ I . If a tuple (z∗, λ̃

∗, µ̃∗) sat-
isfies the KKT conditions in (A.2.4) and the set of all active constraint gradients
{∇hi(z∗), ∀i ∈ E , and ∇gi(z∗), ∀i ∈ A(z∗)} is linearly independent, z∗ represents
a minimizer of NLP (A.2.1) (e.g., [NW06, Thm. 12.1]). The latter condition is known as
the linear independent constraint qualification, which ensures that the linearization of
the constraints at point z∗ is a valid geometric representation of the feasible set in some
close neighborhood of z∗ (e.g., [NW06, Def. 12.4]). For second-order sufficient condi-
tions refer, for example, to [NW06, Sec. 12.5]. Recall that if the optimization problem
is convex (convex function defined on a convex set), there exist only one minimizer
(z∗, λ̃

∗, µ̃∗) that satisfies the KKT conditions. This minimizer then also represents the
global minimum. Moreover, if the constraints further satisfy the Slater condition, then
the feasible set is non-empty, and this minimizer is guaranteed to exist [BV04].

Newton-KKT System

Assume for the moment that NLP (A.2.1) is subject only to equality constraints. Let
Dh(z) := D h(z) =

(
∇h1(z),∇h2(z), ...,∇hmax(E)(z)

)⊺ be the Jacobian matrix of the
equality constraint functions evaluated at point z. The KKT conditions in (A.2.4) in
vector representation are given by [NW06, Eq. (18.3)]:

hKKT(z, λ̃) =

(
∇ψ(z) + D⊺

h(z) λ̃

h(z)

)
= 0. (A.2.5)
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The Jacobian matrix of (A.2.5) with respect to z and λ̃ is given by [NW06, Eq. (18.4)]:

D hKKT(z, λ̃) =

(
∇2

zzL(z, λ̃) D⊺
h(z)

Dh(z) 0

)
. (A.2.6)

Here, ∇2
zzL(z, λ̃) denotes the Hessian of the Lagrange function L(·) with respect

to z. Finally, the Newton-KKT system at optimization step l ∈ N0 follows as [NW06,
Eq. (18.6)]:(

∇2
zzL(zl, λ̃l) D⊺

h(zl)

Dh(zl) 0

)(
∆z
∆ λ̃

)
=

(
−∇ψ(zl)− D⊺

h(zl) λ̃l
−h(zl)

)
. (A.2.7)

If D hKKT(zl, λ̃l) is non-singular and thus invertible, the Newton iteration can be
realized as follows [NW06, Eq. (18.5)]:(

zl+1
λ̃l+1

)
=

(
zl
λ̃l

)
+ ᾱl

(
∆z
∆ λ̃

)
. (A.2.8)

The step widths ᾱl ∈ (0, 1] for all l ∈ N0 can, for example, be determined by a
backtracking line search approach as proposed in [NW06, Alg. 18.3]. The Newton
iteration scheme in (A.2.8) represents a strategy to search iteratively for the roots
of (A.2.5), which represent local optima of NLP (A.2.1) in the absence of inequality
constraints.
The Newton-KKT system in (A.2.7) already indicates which derivative matrices are
required for constrained optimization. In general, a Newton-type solver for conven-
tional optimal control requires methods that determine, inter alia, the gradient of the
objective function, the Jacobian of the constraint functions, and the Hessian of the
Lagrange function. These vectors and matrices can either be determined numerically
or, if possible, analytically.

Sequential-Quadratic-Programming

With SQP, the iterative solution process of the Newton-KKT system can be transformed
into a sequential solution of quadratic programs (e.g., [NW06, Sec. 18.1]). Consider
the following QP that includes the linearized representations of the inequality and
equality constraints at a point zl as follows [NW06, Eq. (18.11)]:

min
∆z ∈ Rω

1
2

∆z⊺ ∇2
zzL(zl, λ̃l, µ̃

l
) ∆z +∇ψ⊺(zl)∆z + ψ(zl)

subject to ∇h⊺i (zl)∆z + hi(zl) = 0, ∀i ∈ E ,
∇g⊺i (zl)∆z + gi(zl) ≤ 0, ∀i ∈ I .

(A.2.9)

The solution to this QP is denoted by the tuple (∆z∗, ∆ λ̃
∗, ∆ µ̃∗) and can be used

to generate a new iterate (zl+1, λ̃l+1, µ̃
l+1

)⊺ similar to (A.2.8) by applying a suitable
line search strategy. If the underlying QP solver represents an active-set solver, such
as the KWIK algorithm [SB94] in mpcActiveSetSolver(·) from MATLAB, the deter-
mined active set of QP (A.2.9) at iteration l is used to warm-start the active set of
the NLP (A.2.1) at iteration l + 1. If this estimate of the active set is sufficient, the
SQP algorithm exhibits the same convergence properties as the direct solution to the
equality constrained Newton-KKT system in (A.2.7) and (A.2.8) [NW06, Sec. 18.1].
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Interior Point Optimization for Nonlinear Programming

For interior point approaches, NLPs with inequality constraints are usually first trans-
formed into NLPs with only equality constraints by introducing slack variables s̃ =
(s̃1, s̃2, ..., s̃max(I))

⊺ ∈ Rmax(I) as follows (e.g., [NW06, Sec. 19.1]):

min
z ∈ Rω, s̃ ∈ Rmax(I)

ψ(z) subject to


hi(z) = 0, ∀ i ∈ E ⊂ N0,
gi(z) + s̃i = 0, ∀ i ∈ I ⊂ N0,
s̃i ≥ 0, ∀ i ∈ I ⊂ N0.

(A.2.10)

For the sake of illustration, a more restrictive formulation of NLP (A.2.10) is given by
(e.g., [WB06, Eq. (2)]):

min
z ∈ Rω̃

ψ(z) subject to

{
hi(z) = 0, ∀ i ∈ Ẽ ⊂ N0,
zi ≥ 0, ∀ i ∈ N[1,ω̃] ⊂ N0.

(A.2.11)

Here, the relations ω̃ = ω +max(I) and E ⊂ Ẽ hold. The elements of z are denoted by
zi for all i ∈ N[1,ω̃]. Finally by introducing a logarithmic barrier penalty function with
some β̄ > 0, the lower bounds in NLP (A.2.11) can be omitted (e.g., [WB06; NW06]):

min
z ∈ Rω̃

(
ψ(z)− β̄

ω̃

∑
i=1

log(zi)
)

subject to hi(z) = 0, ∀ i ∈ Ẽ ⊂ N0. (A.2.12)

The barrier function term − log(zi) tends to infinity as zi tends to zero. This prop-
erty implicitly ensures that zi ≥ 0 holds for all i ∈ N[1,ω̃]. Let Dh(z) := D h(z) =(
∇h1(z),∇h2(z), ...,∇hmax(Ẽ)(z)

)⊺ be the Jacobian matrix of the equality constraint
functions evaluated at point z. Now, the so-called system of primal-dual equations is
given by (e.g., [WB06, Eq. (4)]):

hpd(z, λ̃, µ̃) :=

 ∇ψ(z) + D⊺
h(z) λ̃− µ̃

h(z)
diag(z)diag ( µ̃)1ω̃ − β̄ 1ω̃

 = 0. (A.2.13)

Here, µ̃ represents the vector of Lagrange multipliers corresponding to the lower
bounds in NLP (A.2.11). Notice that with β̄ = 0, (A.2.13) represents the KKT condi-
tions from (A.2.4) in vector form. The Jacobian matrix of (A.2.13) with respect to the
optimization variables z and the Lagrange multipliers λ̃ and µ̃ is given by:

D hpd(z, λ̃, µ̃) =

∇2
zzL(z, λ̃, µ̃) D⊺

h(z) Iω̃

Dh(z) 0 0
diag ( µ̃) 0 diag(z)

 . (A.2.14)

To solve the barrier problem (A.2.13) for a given β̄l > 0 and optimization step l ∈ N0,
again, the Newton method can be applied as follows (e.g., [WB06, Eq. (9)]):∇2

zzL(zl, λ̃l, µ̃
l
) D⊺

h(zl) − Iω̃

Dh 0 0
diag ( µ̃

l
) 0 diag(zl)


∆z

∆ λ̃

∆ µ̃

 = −

 ∇ψ(zl) + D⊺
h(zl) λ̃l − µ̃

l
h(zl)

diag(zl)diag ( µ̃
l
)1ω̃ − β̄l 1ω̃


(A.2.15)
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After solving the linear system of equations in (A.2.15) for the unknown search direc-
tions ∆z, ∆ λ̃, and ∆ µ̃, the next iterate (zl+1, λ̃l+1, µ̃

l+1
)⊺ can be again derived from

the step in (A.2.8) by applying some suitable line search strategy. Besides the step
size ᾱl, the barrier weighting parameter β̄l has to be adjusted iteratively such that
β̄l → 0 as the number of iterations l increases. Starting with β̄0 > 0 enforces (implicit)
compliance with the lower bounds in (A.2.11), while converging to β̄l = 0 allows the
iterates to converge to some KKT point of NLP (A.2.11) (e.g., [NW06; WB06]).

A.3. Proprietary Software Framework

For this dissertation, a generic software framework has been written in MATLAB to
evaluate the developed control approaches (SFMPC, SFVMPC, SFEMPC, suboptimal
MBMPC) and compare them systematically with the state-of-the-art in conventional
MPC. Key objectives of the software development are the straightforward configura-
tion of the benchmark problems, reproducible and automated generation of results,
and the following extraction of these results. Therefore, the framework is fully based
on a modular class hierarchy with the following base classes: Numerics (for sampled
data systems), dynamics, constraints, objective, NLP, solver, controller, observer, buffer,
control task. The software framework is designed for a discrete-time formulation, but
the dynamics step method can invoke the solution to an underlying continuous-time
system in the sense of a sampled data formulation. The sequential and simultane-
ous OCP discretization approaches (e.g., recursive elimination and multiple shooting)
inherit from the base NLP class and provide an algorithmic definition of their struc-
ture/sparsity. This structure is then exploited in the application of sparse central finite
differences and sparse solvers. Central finite differences use a step width of 10−8 to
calculate derivatives. Different evaluation tasks, such as statistical runtime evalua-
tions, closed-loop control, and estimation of feasible regions, inherit from the base
control task class. For instantiating specific class objects, the user can call a graphical
user interface (build with MATLAB App Designer) and select from a collection of
objects. Finally, a parser/printer then composes the benchmark setup automatically
and generates a callable function.
Another major objective of the software development is to create full compatibility
for automatic C/C++ code generation using Matlab Coder or Simulink Coder. This
requirement enables the acquisition of realistic execution time measurements and
is an important prerequisite for real-time operation. A key feature of the software
framework is its seamless integration into real-time environments such as Simulink
Real-Time since most of the instantiated class objects do not depend on external li-
braries. The numerical procedure for solving the algebraic discrete-time Riccati equa-
tion (3.3.18) is adopted from [RK20] and rewritten in MATLAB, such that it can be
used for the interpreted execution mode and the automatic code generation. The
numerical solution to the Riccati equation (3.3.18) is based on the papers [BD93; BS72;
Sim16].
Since the calculation of a Hessian matrix based on finite differences is time-consuming
and sensitive to the chosen numerical step width, all NLP solvers used in this work
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each implement a tailored form of the BFGS scheme for iterative approximation of the
Hessian of the Lagrange function Hl := ∇2

zzL(zl, λ̃l, µ̃
l
). The Hessian approxima-

tion rests upon the first-order derivative information y
l

:= ∇zL(zl+1, λ̃l+1, µ̃
l+1

)−
L(zl, λ̃l+1, µ̃

l+1
) and the difference vector z̃l := zl+1− zl. The basic BFGS update rule

for a Hessian matrix at the next iteration Hl+1 is given by (e.g., [NW06, Eq. (18.16)]):

Hl+1 = Hl −
Hl z̃l z̃⊺l Hl

z̃⊺l Hl z̃l
+

y
l
y⊺l

y⊺l z̃l
. (A.3.1)

The initial Hessian matrix H0 might follow, for example, from finite differences.

Proprietary SQP Implementation

As already mentioned in Chapter 5, the software implementation comprises a fully
self-written SQP algorithm adopted from [Rös19, App. E.2.2.]. This SQP algorithm
is based on the backtracking line search algorithm in [NW06, Alg. 18.3]. To ensure
progress of the iterates zl+1 to some KKT point, thus reducing costs while mini-
mizing constraint violations, an ℓ1 exact penalty function serves as merit function
(e.g., [Mor+12]), which is minimized during line-search to estimate a proper step
width ᾱl. To include the external QP solver OSQP [Ste+20] into the code generation
pipeline, which is a library free C implementation, the software framework implements
a customized MATLAB/C interface. Here, the MATLAB implementation allocates the
memory for the QP solver and avoids local copies of QP matrices. Note that the
used QP solver from MATLAB, mpcActiveSetSolver(·), also supports automatic code
generation. The implemented SQP algorithm approximates the Hessian of the La-
grange function by the damped BFGS approach presented in [NW06, Proc. 18.2]. This
damped update rule modifies the third term in (A.3.1) such that the next iterate of
the Hessian Hl+1 is guaranteed to be positive definite. This modification is important
since the underlying QP solvers, namely OSQP and mpcActiveSetSolver(·), assume
positive (semi)definite Hessian matrices. However, not taking a full BFGS update step
as shown in (A.3.1) might cause a poor convergence behavior (see, e.g., [NW06]). The
initial Hessian matrix H0 is set to a scaled identity matrix with proper dimensions.
The relative tolerance of the SQP is set to 10−3, which is satisfied when all constraint
violations and all elements of the KKT condition ∇zL(zl, λ̃l, µ̃

l
) = 0 are below this

tolerance (thus evaluating the infinity norm). For further parameters, refer to [Rös19,
App. E.2.2.]. The mpcActiveSetSolver(·) is configured to use the default parameter val-
ues. The solver OSQP is also configured to use the default parameter values, except
for the following modifications: Absolute tolerance eps_abs = 10−5, relative tolerance
eps_rel = 10−5, primal infeasibility tolerance eps_prim_in f = 10−4, dual infeasibility
tolerance eps_dual_in f = 10−4.

IPOPT

The developed software framework embeds the general purpose IPOPT solver [WB06]
in the form of a pre-compiled MATLAB executable provided by [Ber20]. Therefore,
the integration of IPOPT via existing binaries does not support code generation and
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is intended for the interpreted mode only. The IPOPT framework is configured to
use the sparse linear solver MUMPS [Ame+01] and the limited memory BFGS update
strategy [WB06]. The solver IPOPT is also configured to use the default parameter
values, except for the following modifications: Update strategy for barrier parameter
mu_strategy is set to adaptive, relative tolerance tol = 10−3, maximal number of
iterations max_iter = 200. All resulting NLP formulations and the corresponding
methods for determining derivative information pass IPOPT’s first-order derivative
test, which is based on internal finite differences, with a tolerance of at least 10−4.

Benchmark Hardware

All offline simulations and statistical execution time measurements were performed
on a conventional PC with the following software and hardware setup:

• CPU Intel Core i5-9500T (max. 3.7 GHz),

• Windows 10, 64-Bit-Version,

• Microsoft Visual Studio C++ 2015,

• MATLAB R2020b.

A.4. Discretization of System Dynamics

Assume that there exist an arbitrary vector y = (y0, y1, ..., yN)
⊺ ∈ RN and the reference

vector y
ref

= (yref,0, yref,1, ..., yref,N)
⊺ ∈ RN. Then, the normalized mean squared error

(NRMSE) in this dissertation is given by:

NRMSE =

√√√√ ∑N
k=0(yk − yref,k)2

∑N
k=0

(
yref,k − 1

N+1 ∑N
l=0 yref,l

)2 100 %. (A.4.1)

To capture the characteristic properties of the selected continuous-time benchmark
systems, the motivation is to determine an accurate solution that is sufficiently close
to the exact solution to the IVP in (3.4.3). To find a proper sampling time ∆ts and
iterative solution method, this dissertation adopts the following procedure (see [Wor12,
Sec. 1.3]). First, the input signal σ(t) is configured to be constant over the time interval
t ∈ [0, tN ] (e.g., unit step). The reference trajectory is determined with the fourth-order
Runge-Kutta method and a small sampling time of ∆ts = 2−12 s. Assume that tN
is an integer multiple of the sampling time ∆ts. Then, for a less or equal accurate
iterative solution method, the sampling time is defined by ∆ti := 2−12+i s with i ∈
N[0,12]. Therefore, all resulting sampling times ∆ti are an integer multiple of the base
sampling time ∆ts, and the horizon length tN is still an integer multiple of the chosen
sampling time ∆ti. Let χ̂(tk) =

(
χ̂1(tk), χ̂2(tk), ..., χ̂p(tk)

)⊺ := ϕ
Σ

(
tk, x0, σ(t)

)
denote

the solution resulting from the current solution method with tk+1 = tk + ∆ti and
k ∈ N0. Let χref,j(tl) denote the j-th state generated with the comparative method
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on the time grid tl+1 = tl + 2−12 s with l ∈ N0. The NRMSE is used to evaluate the
numerical performance of the chosen configuration as follows:

ej,i :=

√√√√ ∑tN/∆ti
k=0

(
χ̂j(k∆ti)− χref,j(k ∆ti)

)2

∑tN/∆ti
k=0

(
χref,j(k ∆ti)− 1

tN/∆ti+1 ∑tN/∆ti
k=0 χref,j(k ∆ti)

)2 100 %. (A.4.2)

Now, the variable i is increased from i = 0 to i = 12 as long as max{e1,i, e2,i, ..., ep,i}
≤ emax. The largest step size that satisfies the additional constraint with, for example,
emax = 0.005 % is defined to be the sampling time for the selected solution method.
Since the sampled data formulation allows oversampling with Ts = γ∆ti, the number
of numerical solution steps γ ∈ N per interval then defines the zero-order hold interval
length and thus consequently the number of optimization parameters. Depending on
the computing power, γ is chosen as small as possible, in particular, equal to one. A
detailed analysis on choosing sampling times in the context of sampled data systems
is provided in [NT04] (see also [Ack85]). The work in [Wor12, Sec. 1.3] analyzes
numerically the detrimental effect of increasing zero-order hold interval lengths on
the closed-loop control performance in the context of MPC.

A.5. Polynomial Input Domain Discretization

The exponential discretization proposed in Section 4.5 for generating time-varying
finite control sets A(n) represents a fairly straightforward discretization approach.
However, the formulation of the finite control sets in this dissertation also allows
for other discretization approaches as long as the previously applied control vector
is always contained in the current finite control set (see Rem. 4.5.1). The following
input domain discretization is based on two composite polynomial functions and is
motivated by the polynomial discretization presented in [Kel17]. In contrast to [Kel17],
the resulting samples are guaranteed to be part of the input constraint set U, with
no post-processing. A similar description has been published in [Mak+18d]. The
polynomial mapping first requires the following definitions:

ul(i) := umin + (i− 1)
umax − umin

c− 1
, i ∈ N[1,c], c ∈ O≥3, uh :=

umin + umax

2
. (A.5.1)

Similar to (4.5.3), the polynomial mapping is defined by:

η(i, c, u, umax, umin) :=

{
p̃1 uι

l(i) + p̃2 ul(i) + p̃3 if ul(i) ≥ uh,
p̃4 uι

l(i) + p̃5 ul(i) + p̃6 otherwise,
with ι ∈ N≥2.

(A.5.2)
The variable uh represents the middle point of the compact and feasible control interval
[umin, umax] with ul

(
(c− 1)/2+ 1

)
= uh. A polynomial function is designed to the left

and right of this value, respectively. The coefficients p̃1 − p̃6 represent the solution to
the following linear system of equations in (A.5.3) (see also [Kel17]).
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Figure A.3.: Input domain discretization based on piecewise polynomial functions. The
coefficients of the individual polynomial functions depend, in particular, on the control u◦j (n).
Left side: Location of control samples uj ∈ Aj(n + 1) on the interval [umin,j, umax,j] after
applying polynomial discretization with umax,j = 1, umin,j = −1, ι = 2, and cj = 21.



uι
max umax 1 0 0 0
uι

h uh 1 0 0 0
ιu(ι−1)

h 1 0 0 0 0
0 0 0 uι

min umin 1
0 0 0 uι

h uh 1
0 0 0 ιu(ι−1)

h 1 0





p̃1
p̃2
p̃3
p̃4
p̃5
p̃6

 =



umax
u
0

umin
u
0

 (A.5.3)

The dependencies of the coefficients p̃1− p̃6 on the control u are omitted here for sim-
plicity. Figure A.3 shows several polynomial curves for different values of u◦j (n) ∈ U.
This example is based on the configuration umax,j = 1, umin,j = −1, ι = 2, and cj = 21.
The left side of Figure A.3 visualizes the resulting distribution on the interval [−1, 1],
which results from projecting the sampled control values on the y-axis. It should be
noted that the time required for solving the linear system of equations (A.5.3) is negligi-
ble. The first and the fourth line of system (A.5.3) ensure that all samples are elements
of U as long as i ≤ cj holds. The second and the fifth line of system (A.5.3) ensure that
u◦j (n) ∈ Aj(n + 1). By the third and sixth line of system (A.5.3), the polynomial func-
tions are enforced to have zero slopes in the point

(
uh, u◦j (n)

)
. This property ensures a

saddle point in
(
uh, u◦j (n)

)
and thus a fine granularity of input sampling in the neigh-

borhood of u◦j (n). Consequently, during closed-loop control, the finite control sets
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Figure A.4.: Extension of the left side of Figure 4.4 by the polynomial input domain discretiza-
tion approach.

evolve as follows with, for example, u◦(n) =
(
u◦1(n), u◦2(n), ..., u◦m(n)

)
:= µ(xµ(n), n):

Aj(n + 1) :=
cj⋃

i=1

{
η
(
i, cj, u◦j (n), umax,j, umin,j

)}
, ∀ j ∈ N[1,m], ∀ n ∈ N0. (A.5.4)

Recall that (A.5.4) defines the finite control set for the j-th input dimension for the next
closed-loop time instant n + 1. This polynomial discretization follows the motivation
presented in [Kel17] and enables a dense discretization in the vicinity of the previously
applied control input if u◦(n) := µ(xµ(n), n).
Finally, Figure A.4 extends the evaluation of the discretization error in Figure 4.4
by the polynomial discretization approach. This analysis in Figure A.4 reveals that
both adaptive discretization approaches for the input domain, namely the exponential
and the polynomial discretization, lead to similar discretization errors over cardinal-
ity c. However, implementing the exponential discretization is associated with less
realization effort.

A.6. Further Details on Input Move-Blocking

Table A.1 lists and classifies key references on online MBMPC with a receding horizon
that include discussions on stabilizing closed-loop properties. The last column in
Table A.1 represents a subjective ranking of the realization effort required to imple-
ment each approach from scratch. A similar tabular summary has been published
in [Mak+22]. The literature review reveals that the proposed move-blocking ap-
proaches in Section 7.2 and Section 7.3 close the existing gap and ensure both recursive
feasibility and asymptotic stability for MBMPC for general nonlinear systems and with
arbitrary move-blocking patterns.
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B
Supplemental Stability and Experimental

Results

This appendix chapter expands on closed-loop stability analysis, provides details on
system identification, and shows additional results of real-time closed-loop control.

B.1. One-Step Horizon and Time-Varying Finite Control Sets

The following Corollary B.1.1 replicates Corollary 4.5.1 for a concise presentation. The
proof of Corollary B.1.1 adapts the major steps that are required to proof Theorem 19
and Theorem 2.39 in [Raw+20] for MPC with uncountable control sets (see Sec. 3.3 for
summary) to SFMPC with time-varying finite control sets.

Corollary B.1.1: SFMPC with finite control sets emulates conventional MPC. Suppose
Assumptions 3.1.1-3.1.3, 3.3.1-3.3.2, and 4.5.1 hold. Define P(x0, n) := Ã(x0, n) and
the control law µ(x0, n) := u∗s (x0, n) for all x0 ∈ X s

1 , all n ∈ N0. Then, the optimal
cost function Vs

1 (·) in (4.5.1) represents a time-varying Lyapunov function in the set
X s

1 for the closed-loop system (4.5.2) with α1(·), α2(·) ∈ K∞ for all x0 ∈ X s
1 , all n ∈ N0:

α1(∥x0∥) ≤ Vs
1 (x0, n) ≤ α2(∥x0∥), Vs

1

(
f
(

x0, µ(x0, n)
)
, n + 1

)
≤ Vs

1 (x0, n)− α1(∥x0∥).
(B.1.1)

Therefore, the origin is asymptotically stable in the positive invariant set X s
1 for the

closed-loop system (4.5.2).

Proof. Recall that all ingredients of OCP (4.5.1), excluding the time-varying finite con-
trol set Ã(x0, n), are time-invariant. Since Assumptions 3.1.1 and 3.1.2 ensure that
all cost functions and the system dynamics are continuous, J1(·) is also continu-
ous [Raw+20, Prop. 2.4 (a)]. Assumption 3.1.3 ensures that U is compact such that the
bounds max U and min U exist. These boundary vectors are required to design the
finite control set A(n) for all n ∈ N0. Evaluating a finite subset Ã(x0, n) ⊂ U s

1(x0)
based on the continuous function J1(·), including the admissible sample u0

s from As-
sumption 4.5.1, results in a list of function values for all x0 ∈ X s

1 and all n ∈ N0 from
which the optimum can be determined. It follows that OCP (4.5.1) with P(x0, n) :=
Ã(x0, n) is feasible for all x0 ∈ X s

1 and all n ∈ N0. If x0 ∈ X s
1\Xf, Assumption 4.5.1
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B.2. Variable Horizon and Time-Varying Finite Control Sets

ensures that there exists at least an admissible control sample u0
s that can steer the

nonlinear system into Xf in one step. By the definition of Ã(x0, n) in (4.5.6), the
optimizer can always resort to the included local control law u∗s (x0, n) = κ(x0) at
each time instant n ∈ N0 if x0 ∈ Xf. By additionally including Assumption 3.3.1, it
follows that αℓ(∥x0∥) ≤ Vs

1 (x0, n) ≤ F(x0) ≤ αf(∥x0∥) holds for all x0 ∈ Xf and all
n ∈ N0 (see monotonicity property in [Raw+20, Prop. 2.18]). By Assumption 3.1.3,
the terminal set Xf has an interior. Based on the previous statements, Vs

1 (·) is con-
tinuous at the origin (see [Raw+20, Prop. 2.38 (a)]). Since Ã(x0, n) ⊂ U s

1(x0), the cost
function Vs

1 (·) is uniformly bounded for all n ∈ N0. With these properties, Proposi-
tion 2.38 in [Raw+20], which includes Proposition 14 from [RR17b], states that there
exists an upper bound Vs

1 (x0, n) ≤ α2(∥x0∥) for all x0 ∈ X s
1 and all n ∈ N0. Fi-

nally, by Assumption 3.3.2 and the definition of Ã(x0, n) in (4.5.6), it follows that
Vs

1 (x+0 , n + 1) ≤ F(x+0 ) = Vs
1 (x0, n)− ℓ

(
x0, u∗s (x0, n)

)
≤ Vs

1 (x0, n)− αℓ(∥x0∥) holds
for all x0 ∈ X s

1 and all n ∈ N0. Thus, the proof for the existence of the time-varying
Lyapunov function in (B.1.1) is established. By Theorem 2.39 in [Raw+20] (time-
variant version of Thm. 3.3.2), the origin is asymptotically stable for the closed-loop
system (4.5.2). The set X s

1 is positive invariant since the optimizer can always resort
to the local control law κ(·) if the initial state x0 is a member of the control invariant
terminal set Xf.

B.2. Variable Horizon and Time-Varying Finite Control Sets

The following Proposition B.2.1 replicates Proposition 8.1.1 for a concise presenta-
tion. The proof of Proposition B.2.1 is inspired by Theorem 19 and Theorem 2.39
in [Raw+20], finite completion times with variable horizon MBMPC from [SM12], and
the derivations of the dual-mode control in [MM93].

Proposition B.2.1: SFMPC with variable horizon and finite control sets. Suppose Assump-
tions 3.1.1-3.3.2 and 4.5.1 hold. Then, the implicit control law µ(x0, n) := u∗s (x0, n),
which is driven by the solutions to the mixed-integer OCP (8.1.5), renders the feasible
set X̄s positive invariant and the origin asymptotically stable in the sense of Lyapunov
for the closed-loop system (4.5.2).

Proof. Assumptions 3.1.1 and 3.1.2 ensure that all cost functions and the system dy-
namics are continuous. Therefore, JN(·) is continuous for a given horizon length N
[Raw+20, Prop. 2.4 (a)]. By adding Assumption 3.1.3, it follows that UN(x0) ⊂ UN

is compact [Raw+20, Prop. 2.4 (b)]. Thus, the set U s
N(x0) ⊂ UN is also compact for a

given horizon length N (see Sec. 4.1). Since, by Assumption 3.1.3, the set U is compact,
the bounds max U and min U exist that are required to design the finite control set
A(n) ⊂ Ã(x0, n) for all n ∈ N0. Further, Assumption 4.5.1 ensures that there exists
an initial and admissible tuple (u0

s , N) for every x0 ∈ X̄s with u0
s ∈ Ã(x0, 0). There-

fore, iterating over a finite number of horizon lengths N ∈ N := [1, Nmax] and control
candidates Ã(x0, 0) and evaluating the continuous cost function JN(·) results in a list
of function values from which the global optimum (u∗s (x0, 0), N∗) can be determined
at time instant n = 0. Recall that every admissible control candidate us ∈ Ã(x0, n)
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results in Θs
N(us) ∈ U s

N(x0) for all x0 ∈ X s
N and all n ∈ N0.

Case I: N∗ > 1. As noted in Remark 4.5.1, the adaptive input domain discretization
in (4.5.4) always embeds the previous control sample µ(xµ(n − 1), n − 1) into the
current finite control set A(n) and therefore also into Ã

(
xµ(n), n

)
since A(n) ⊂

Ã
(

xµ(n), n
)
. The optimizer can at least resort to the tuple

(
u∗s (x0, n), N∗ − 1

)
at time

instant n + 1. In the nominal case, this property ensures recursive feasibility for at
least N∗ closed-loop steps and progress towards the terminal set Xf with Vs

N∗(x+0 , n +
1)− Vs

N∗(x0, n) ≤ JN∗−1
(

x+0 , Ωst
(

Θs
N∗−1

(
u∗s (x0, n)

)))
− Vs

N∗(x0, n) ≤ ℓ
(

x0, u∗s (x0, n)
)
.

By Assumption 3.3.1, the stage cost function ℓ(·) is only zero at the origin. This Case I
applies recursively until the optimizer returns N∗ = 1.
Case II: N∗ = 1. Here, x0 ∈ X s

1 applies. If x0 /∈ Xf, the optimal control vector
u∗s (x0, n) ∈ Ã(x0, n), which transfers the nonlinear system in one step into Xf, fol-
lows from the previous closed-loop step with u∗s (x0, n) = u∗s

(
xµ(n− 1), n− 1

)
(see

Rem. 4.5.1), by Assumption 4.5.1 with u∗s (x0, n) = u0
s , or is some other admissible con-

trol candidate us with u∗s (x0, n) = us ∈ Ã(x0, n). Based on the definition of the finite
set Ã(x0, n) in (4.5.6), the optimizer can resort to u∗s (x0, n) = κ(x0) for all n ∈ N0
if x0 ∈ Xf. By Assumption 3.3.2, the local control law κ(·) asymptotically stabilizes
the origin for the nonlinear closed-loop system (4.5.2) with µ(x0, n) := κ(x0) for all
x0 ∈ Xf and all n ∈ N0.

Note that this proof does not rely on an explicit Lyapunov function candidate. This
proof only attests that the closed-loop system (4.5.2) is transferable to the terminal
set Xf by applying the implicit control law µ(x0, n) := u∗s (x0, n) for all x0 ∈ X̄s and
all n ∈ N0. Inside the terminal set Xf, the implicit control law replicates the local
controller κ(·) and thus stabilizes the origin by Assumption 3.3.2.

B.3. Experimental Stability Analysis

This section shows a possible procedure for approximating the region of attractions
of MPC and SFMPC for the Van der Pol Oscillator in Section 5.2. This experimental
stability analysis represents an alternative approach when theoretical closed-stability
results cannot be derived. The proposed approach involves the following assumption
(cf. [GP17, Def. 2.15]).

Assumption B.3.1: Local stability in some neighborhood of the origin. There exists a pos-
itive invariant terminal region T := XN ∩ X s

N ∩ Bδ for some small δ > 0 such that
f
(

x, µ(x)
)
∈ T if x ∈ T .

This assumption only implies that the application of the implicit control law keeps the
system in some close neighborhood of the origin. Here, the parameter δ > 0 is subject
to a heuristic estimation. The stabilizable set includes all initial states xµ,0 from which
the closed-loop system (3.3.2) can be driven to the terminal set T in at most l ∈ N

steps (see [KM00a, Def. 2.7]):

Sl := {x ∈ XN | ∃i ≤ l such that φ
µ

(
n, x

)
∈ XN, ∀ n ∈ N[1,i−1],

φ
µ

(
n, x

)
∈ T , ∀ n ∈ N[i,l]}.

(B.3.1)
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Figure B.1.: Feasible and l-step stabilizable set of SFMPC applied to the Van der Pol oscillator.
The graphs inside the stabilizable set Sl=1000 (white area) show the closed-loop state trajectories
with SFMPC for different initial state vectors marked by a cross. For this system, the single
degree of freedom in control has only a minor adverse impact on the size of the stabilizable
set (light gray area). Subplot: Terminal ball T .

Consequently, the stabilizable set for SFMPC is defined by:

Ss
l := {x ∈ X s

N | ∃i ≤ l such that φ
µ

(
n, x

)
∈ X s

N, ∀ n ∈ N[1,i−1],

φ
µ

(
n, x

)
∈ T , ∀ n ∈ N[i,l]}.

(B.3.2)

Note that with Xf = X, the relations Sl ⊆ XN and Ss
l ⊆ X

s
N ⊆ XN hold for all

l ∈ N. The origin is only practically asymptotically stable in S∞ or Ss
∞ (maximal

stabilizing sets [KM00a]) for the closed-loop system (3.3.2) since the terminal region
T has an interior in which the origin is not assumed to be necessarily attractive.
Practical asymptotic stability turns into asymptotic stability if the terminal region is
defined as T := 0p [GP17, Def. 2.15]. Notice that with T := 0p, the number of steps
might tend to l → ∞ such that a numerical estimation of Ss

l would not terminate in
finite time. Figure B.1 shows the results of the experimental stability analysis of the
origin. Along each dimension of the constrained state space 501 uniformly distributed
samples are placed, resulting in a finite grid with 501× 501 grid points. Each initial
state vector is verified whether it is a member of some set of interest. Convex polytopes
finally enclose all verified members and thus approximate the originally uncountable
individual sets. If OCP (4.1.4) with P̄ := U (or also P̄ := D) and N = 6 is feasible for
some grid point x, this initial state vector x is a member of X s

N=6. If the closed-loop
system can be transferred to the terminal ball T in at most l = 1000 closed-loop steps
starting at x, then x is a member of the stabilizable set Ss

l=1000. Notice that the subplot
in Figure B.1 shows the terminal ball T with δ = 0.02. After entering the terminal
ball T , the state trajectories remain inside for all subsequent time steps. The black
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dashed convex polytope approximates the feasible set X s
N=6, and it is only slightly

smaller than the state constraint set X. The dark gray shaded area visualizes the
difference between the latter two sets. For the initial state vectors inside the dark gray
shaded area, applying the maximum or minimal input over N = 6 steps is not strict
enough to prevent the closed-loop system from violating the state box-constraints.
Hence, X s

N=6 = XN≥6 applies to this benchmark system. The area that is shaded by
a light gray color contains the initial states from which the closed-loop system (3.3.2)
does not reach the terminal set T in l = 1000 steps. The evolutions of the example
trajectories over l = 1000 steps, which are based on the solutions to OCP (4.5.1)
with P(x0, n) := A(n), however, reveal that this light gray area represents the initial
states for which the closed-loop control is not recursively feasible. Consequently, the
light gray shaded area represents the maximal theoretical reduction of the stabilizable
set Sl resulting from the extreme input move-blocking in case of SFMPC, described
by Ss

l . Recall that Sl ⊆ XN applies by design. The subplot in Figure B.1 shows
that with l = 1000 the stabilizable set Ss

l=1000 is a close approximation of the region
of attraction of the origin for the closed-loop system (3.3.2). The exemplary state
trajectories not only end in the target region, but remain in the region for many steps
and even converge towards the origin. Thus, this systematic experimental analysis
reveals an extensive region of attraction with SFMPC and provides an alternative
method for checking stability properties when theoretical derivations are not available.
However, the combinatorial complexity of initial states grows exponentially with the
state dimension p, thus restricting this approach to small-sized systems.

B.4. Experimental System Identification

This section presents the identification signals and the resulting model performances.
In addition, information about data acquisition during identification is provided.

Directional Control Valve

The challenge in identifying the dynamics of the directional control valve consists in
the design of a proper input stimulus. The objective is to design the input voltage
signal ua(t) in such a way that it does not drive the piston into the mechanical stops
while stimulating a wide characteristic valve behavior. A linear dynamic and contin-
uous-time model is chosen to approximate the nonlinear valve dynamics on average.
The estimation of the model parameters is based on smooth least-squares optimiza-
tion (see the identification framework tfest(·) in MATLAB). Here, a quadratic scalar
cost function evaluates the difference between the measured and simulated position
signals ym(tn) and y(tn), respectively, on a uniform time grid tn+1 = tn + ∆ts with
n ∈ N0. Before starting the identification procedure of the linear dynamics, the mean
values of the individual signals are removed. To account for the fast valve dynamics,
the real-time target machine (see Fig. 6.3) logs the identification signals at a sampling
rate of fs = 1 MHz, which corresponds to a sampling time of ∆ts = 1 µs. Afterward,
the logged data is sampled down offline by an integer multiple of 20 to a sampling

126



B.4. Experimental System Identification

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−50

0

50

100

t̄ = t/tmax

y m
(t
),

y(
t)

,u
a(

t)
[%

]

Scaled input stimulus Measured position Simulated position

Figure B.2.: Valve identification signals and model performance. The densely dash-dotted
signal represents the solenoid input signal ua(t) multiplied by 100 %/24 V.

rate of fs = 50 kHz, which corresponds to a sampling time of ∆ts = 20 µs. Since the
data accusation is done in open-loop, the piston and the armature are in most of the
experimental time in motion. Figure B.2 highlights model uncertainty especially at
the end of the experiment for t̄ > 0.9 when nonlinear friction forces occur in the small
velocity range. The model performance reaches a fitness value of NRMSE = 9.69 %
during identification. For the purpose of validation, the identified model is stimu-
lated once with a different ARBS as the input stimulus. Figure B.3 attests a validation
performance of NRMSE = 12.43 % with respect to the measured position signal ym(t).
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Figure B.3.: Valve validation signals and model performance. The densely dash-dotted signal
represents the solenoid input signal ua(t) multiplied by 100 %/24 V.

Industrial Plant Emulator

The identification input stimulus of the Industrial Plant Emulator also represents
an ARBS for motor 1. The estimation of the model parameters is based on global
optimization (see pattern search in MATLAB). Here, the objective function represents
the weighted sum of the NRMSE with respect to the position, evaluating the difference
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Figure B.4.: Servo motor identification signals and model performance. The black solid line
represents the input stimulus iref,1(t) multiplied by 20/A.

between the measured and simulated position ydsp(tn) and y(tn), and the NRMSE with
respect to the velocity, evaluating the difference between the measured and simulated
velocity vdsp(tn) and v(tn) = ẏ(tn). Data logging operates at a fixed sampling time
of ∆ts = 0.01 s with tn+1 = tn + ∆ts and n ∈ N0. The simulation is based on the
fourth-order Runge-Kutta method with a sampling time of ∆ts = 0.01 s. The identified
parameter values of model (6.2.2) are p1 = 13.92, p2 = 5.28, p3 = 0.55, and p4 = 38.92.
For the identification stimulus in Figure B.4, the simulated position and velocity signals
reach fitness values of NRMSE = 7.45 % and NRMSE = 7.48 %, respectively. For the
validation stimulus in Figure B.5, the simulated position and velocity signals reach
fitness values of NRMSE = 13.42 % and NRMSE = 10.55 %, respectively.
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Figure B.5.: Servo motor validation signals and model performance. The black solid line
represents the input stimulus iref,1(t) multiplied by 20/A.
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Figure B.6.: Picture of the valve test bench for prototyping. See also Figure 6.3.

B.5. Valve Test Bench for Prototyping

Figure B.6 shows a picture of the experimental setup for real-time valve control. For
a detailed description of the setup, refer to Section 6.1.1 and Figure 6.3. The digital
oscilloscope and current clamp are used to track additional signals such as the solenoid
current to prevent the valve from electrical overload.

B.6. Additional Results of Closed-Loop Valve Control

This section verifies the high closed-loop valve control performance in Section 6.1.4
using another reference profile. Figure B.7 (see end of chapter) shows high closed-loop
reference tracking performance with an inactive velocity limit for both SFMPC and
LMPC. The position signal yls(t) shows a short rise time and almost no overshoot-
ing. The compensation technique from Section 6.1.2 steers the piston in some close
neighborhood of the reference position and thus compensates effectively for mod-
el-mismatch. Both control approaches offer a low computational effort, however, the
exhaustive search algorithm in SFMPC exhibits a more deterministic runtime charac-
teristic that never violates real-time constraints (trun/∆ts ≤ 1). Here, the closed-loop
real-time control operates at a fixed sampling time of ∆ts = 100 µs ( fs = 10 kHz). Fig-
ure B.8 (see end of chapter) verifies that the softened OCP formulation in Section 5.3
leads to a smooth closed-loop control though SFMPC temporarily violates the velocity
limit vlim = 2000 % s−1 in the presence of model mismatch and disturbances. Since
LMPC does not include robustification strategies in this dissertation, the closed-loop
performance deteriorates significantly and the optimization time fluctuates. In contrast
to the softened SFMPC, nominal LMPC violates real-time constraints (trun/∆ts > 1).
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Figure B.7.: Valve closed-loop real-time control for an additional reference profile: Constant
reference tracking with an inactive stroke velocity limit. First: Stroke time performance.
Second: Solenoid input voltage. Third: Reference adaptation due to offset compensation.
Bottom: Normalized execution time.
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B.7. Model-Based System Optimization

Model-based system optimization represents another important application for gra-
dient-free MPC and is highly relevant for the virtual and automated development
of prototypes of mechatronic systems. For example, the overall performance of a
directional control valve depends on the smooth interaction of different internal com-
ponents during closed-loop control. A model-based system development enables the
analysis and optimization of physical interactions at an early stage of design. In
general, the earlier the solenoid is matched to the valve mechanics, for example, the
more the controller can contribute to the overall closed-loop control performance of
the valve, rather than compensating for mechanical and electromagnetic shortcomings.
The model-based system optimization framework proposed in [Mak+18a] enables sys-
tematic evaluation of the closed-loop control performances of virtual valve prototypes.
However, since the closed-loop control evaluation in [Mak+18a] is integrated with
global optimization of the valve hardware, the system behavior changes with the de-
sign parameters. Therefore, to decouple the robustness properties of the controller
from the hardware optimization result, the controller parameters must be adjusted
every time the global optimizer provides a new hardware configuration. At this point,
it is convenient to include the controller parameters into the hardware optimization
loop. However, with the native vale controller, the parameter complexity increases
significantly and thus the required optimization time. The contribution in [Mak+18c]
addresses this optimization complexity by introducing MPC for the system optimiza-
tion of a directional control valve. The main idea is to include the model, on which
the system optimization is based, as the internal prediction model. Hence, variations
of the hardware design parameters are directly translated into the controller’s domain.
The free parameters of the controller are again the weights of the individual cost terms,
which can be included in the hardware optimization loop either directly or via a tai-
lored two-stage approach presented in [Mak+18b]. Since the base evaluation model
includes non-smooth components such as characteristic force curves, a derivative-free
MPC scheme qualifies for virtual closed-loop control.
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