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Abstract

Radio interferometers achieve the highest resolutions at the cost of sparse data coverage. In-
completely sampled sky distributions in Fourier space result in noise artifacts in the source
reconstructions. Established cleaning software is often time-consuming and lacks reproducibility.

In this work, I propose a novel cleaning strategy for radio interferometer data based on
convolutional neural networks to adjust current analysis strategies to the new telescope standards.
This deep learning-based approach will allow a straightforward application that generates
reproducible results with short reconstruction times.

The newly developed simulation chain enables the simulation of Gaussian radio galaxies and
mimics observations by radio interferometers. By iterative adjustments, complexity is increased,
ending up with a simulated data set comparable to MOJAVE archive data. In parallel, the deep
learning framework radionets, capable of uncertainty estimates, is built to analyze large data
samples with comparable characteristics. The improved reconstruction technique will allow
scientists to focus more on their scientific analysis and omit a vast workload on data cleaning
tasks.

Various evaluation techniques are created to quantify the trained deep learning models’
reconstruction quality. Furthermore, the reconstruction performance is assessed on input data
with different noise levels by comparing the resulting predictions with the simulated source
distributions. Source orientations and sizes are well reproduced, while the recovered intensities
show substantial scatter, albeit not worse than existing methods without fine-tuning.

Finally, all improvements are combined to train a deep learning model suitable to evaluate
MOJAVE observations.

Zusammenfassung

Radiointerferometer erreichen die höchsten Auflösungen unter dem Preis einer geringen Datenab-
deckung. Unvollständig gemessene Himmelsverteilungen im Fourier-Raum führen zu Rauscharte-
fakten in den Quellenrekonstruktionen. Etablierte Bereinigungssoftware ist oft zeitaufwändig
und liefert schlecht reproduzierbare Ergebnisse.

In dieser Arbeit schlage ich eine neuartige Bereinigungsstrategie für Radiointerferometerdaten
vor, die auf „Convolutional Neural Network“ basiert, mit dem Ziel aktuelle Analysestrategien an
die neuen Teleskopstandards anzupassen. Dieser auf „Deep Learning“ basierende Ansatz ermög-
licht eine unkomplizierte Anwendung, die reproduzierbare Ergebnisse bei kurzen Anwendezeiten
erzeugt.

Die neu entwickelte Simulationskette ermöglicht die Simulation von Gaußschen Radiogalaxien
und ahmt Beobachtungen von Radiointerferometern nach. Durch iterative Anpassungen wird
die Komplexität erhöht, so dass am Ende ein simulierter Datensatz vorliegt, der mit MOJAVE-
Archivdaten vergleichbar ist. Parallel dazu wird das „Deep-Learning-Framework“ radionets
entwickelt. Neben der Fähigkeit große Datenmengen mit vergleichbaren Eigenschaften zu analysie-
ren, ermöglicht der entwickelte Ansatz auch Unsicherheitsabschätzungen für die Rekonstruktionen
anzugeben. Die verbesserte Rekonstruktionstechnik führt zu Zeitersparnissen, da ein Großteil
des Arbeitsaufwandes für die Datenbereinigung vermieden wird. Dadurch bleibt mehr Zeit für
wissenschaftliche Analyse der Radiodaten.

Mit Hilfe verschiedener Bewertungskriterien wird die Rekonstruktionsfähigkeit der trainierten
„Deep-Learning-Modelle“ quantifiziert. Die Rekonstruktionsqualität wird anhand von Daten
mit unterschiedlichen Rauschpegeln bewertet, indem die resultierenden Vorhersagen mit den
simulierten Quellenverteilungen verglichen werden. Quellenausrichtungen und -größen werden gut
rekonstruiert, während die geschätzten Intensitäten erhebliche Streuungen aufweisen, wenn auch
nicht schlechter als bei bestehenden Methoden ohne Feinabstimmung der Bereinigungsparameter.
Abschließend werden alle Erkenntnisse kombiniert um ein „Deep-Learning-Modell“ zu trainieren,
das zur Auswertung von MOJAVE-Beobachtungen geeignet ist.
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Radio Interferometry in the Context of Modern
Astronomy 1

“So much universe, and so little time.”
— Terry Pratchett

The observable universe is enormous. There are no comparisons that can reasonably illustrate its
size. As humans, we think on an everyday scale. We have a good idea of the distance between
our house and the supermarket. The understanding of distance significantly decreases when we
explain how far our home is from the Very Long Baseline Array (VLBA) [83] in North America.
For Europeans, it is far away. In terms of the universe, far away means something completely
different. With modern telescopes, we can observe objects at distances of kiloparsec in the Milky
Way, our home galaxy [104]. We study galaxies light-years away [1], the clusters in which these
galaxies interact [47, 90], and even the remnants of the Big Bang [69, 95] in which the universe
was formed.

Nowadays, digitization is also taking place in observatories. State-of-the-art radio telescopes
like the Low Frequency Array (LOFAR) measure terabytes of data during one observation
[40], and the next generation of telescopes is expected to increase the data rates to petabytes,
as planned for the Square Kilometre Array (SKA) [24, 35]. In conjunction with maximizing
observing time, the astronomer’s community has to adjust current analysis strategies to the
new telescope standards. Otherwise, we will have too little time to get the most out of the
observations.

I propose a novel cleaning strategy for radio interferometer data based on convolutional
neural networks in this work. This deep learning-based approach will allow a straightforward
application without lengthy parameter fine-tuning and extensive user input. Therefore, the
approach will be more accessible to junior scientists and even usable for astronomers from other
subfields. Applying machine learning techniques in astronomy and astrophysics becomes more
common with increasing computing power. For years, machine learning models have been used
to improve analysis results, and scientific output in gamma-ray and neutrino astronomy [132,
31]. Recently, more publications have arisen where deep learning techniques are applied in
all astronomy fields [53, 71]. Convolutional neural networks are known for their rapid image
data analysis, which makes them superior to old-fashioned and time-intensive approaches. First
attempts of application to data from radio interferometers have already been successfully tried
by Morningstar et al. [79, 80]. The following analysis will further investigate the prospects of
bringing deep learning to radio interferometry. I will start with simple simulations and tests
followed by iterative adjustments, increasing the complexity. The goal is to create a fast and
easily applicable tool capable of analyzing large data samples with comparable quality and
observation settings. These conditions are valid for sky survey data [6, 114] or data from a regular
monitoring program like the Monitoring Of Jets in Active galactic nuclei with VLBA Experiments
(MOJAVE) program [66]. The improved reconstruction techniques will allow scientists to focus
more on their scientific analysis and omit a vast workload on data cleaning tasks. Ideas and
results presented in this thesis have been published in Astronomy and Astrophysics [106].

Section 1.1, Section 1.2, and Section 1.3 gives an overview of the opportunities of modern
astronomy, the frequently observed targets, and an introduction to the concepts of radio interfer-
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1 Radio Interferometry in the Context of Modern Astronomy

Figure 1.1: MeerKAT observation of the galaxy ESO 137-006 showing collimated
synchrotron threads linking the radio lobes. The high resolution achieved by
utilizing radio interferometry allows a detailed analysis of the source morphology.
The image is taken from Ramatsoku et al. (2020) [99].

ometry, respectively. Additionally, observations using the VLBA are explained in Section 1.4,
and standard processing steps for radio interferometer data are introduced in Section 1.5. After
establishing the physical foundation, Chapter 2 introduces basic deep learning concepts focusing
on convolutional neural networks. Afterward, the developed simulation chain is illustrated in
Chapter 3. Besides radio galaxy simulations, the mimicking of radio interferometer observations
with the help of sampling masks is explained. Various noise influences are added iteratively
to create more realistic simulations. Furthermore, simulations using the Radio Interferometer
Measurement Equation (RIME) [116] are introduced, creating a data set for comparing the
deep learning approach with standard software. While Chapter 4 introduces the developed deep
learning model, including the architecture and loss function, a first assessment of the recon-
struction results is given in Chapter 5. Chapter 6 presents different techniques to evaluate the
trained deep learning models on dedicated test sets. Additionally, a comparison with w-Stacking
Clean (WSCLEAN) [89] is performed, and execution times are investigated. Advanced analysis
approaches presented in Chapter 7 lead the way to apply the models to actual observation data.
Model improvements that allow for uncertainty estimation and improved source simulations are
being tested. Subsequently, Chapter 8 describes a simulation chain to train a deep learning
model designed to reconstruct MOJAVE observations. In this chapter, the knowledge gained
from the previous chapters is combined, probing the reconstruction of actual observational data.
Finally, concluding remarks and an outlook are given in Chapter 9.

1.1 Opportunities of Modern Astronomy
In modern astronomy, sources are not only observed in a single wavelength but simultaneously
in multiple ones [64, 33]. These wavelengths range from radio, optical, and X-ray to gamma-ray
and cover most parts of the electromagnetic spectrum. While radio and optical telescopes
often operate ground-based, direct detection of X-rays and gamma rays is performed utilizing
satellites [18]. Ground-based detection of gamma rays is possible with imaging air Cherenkov
telescopes like the Major Atmospheric Gamma-Ray Imaging Cherenkov (MAGIC) telescopes [3]
and the Cherenkov Telescope Array (CTA) [21]. Additionally, the IceCube Neutrino Observatory
(IceCube) [2] provides information about astrophysical neutrinos. Combining measurements
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1.2 Observation Targets

from electromagnetic observatories with those from astroparticle experiments opened the field of
multi-messenger astronomy, which played a decisive role in the recent astronomical achievements
[52].

Radio astronomy, especially radio interferometry, plays a unique role as it acquires the highest
resolutions. By combining measurements from different telescopes through cross-correlation,
radio interferometry enables imaging of astrophysical objects with milliarcsecond resolution at
the cost of sparse data coverages [72]. Figure 1.1 visualizes an observation of the Karoo Array
Telescope in the Meerkat National Park (MeerKAT) [55], which is a pathfinder experiment for
the upcoming SKA [24, 35]. Here, detailed structures of the source morphology are visible,
and excellent signal-to-noise ratios are achieved. In this example, radio interferometry enables
the study of the collimated synchrotron threads linking the radio lobes of the source ESO
137-006 [99]. These detailed images help study astrophysical sources’ morphology, magnetic
fields, and interaction with the surrounding matter. Such measurements contribute to studying
the acceleration mechanisms of extragalactic sources like Active Galactic Nuclei (AGN) [7], which
will be explained in the following Section 1.2. Including radio data is essential in multi-messenger
analyses; therefore, a straightforward analysis that astronomers of other subfields can apply is
crucial to push the opportunities of modern astronomy.

1.2 Observation Targets

The radio waves that can be measured on Earth have different origins. The most famous radio
signal is the neutral hydrogen line (HI line), also known as 21 cm line, whose origin is the emission
caused by the spin-flip of neutral hydrogen [82]. As hydrogen is the most common element in the
universe [5], its emission is observable from nearby sources but also distant galaxies. Nonetheless,
there are many extragalactic radio sources, for example, AGN, whose radio emission is caused by
another mechanism.

AGN are large particle accelerators with a central supermassive black hole as their engine,
which form large outflows, so-called jets [7]. The black hole accretes matter from the host galaxy
forming a hot accretion disk around the inner region surrounded by gas and dust. AGNs are not
only among the brightest objects in the universe, but they also emit in the entire electromagnetic
spectrum. This complete coverage becomes evident when analyzing their Spectral Energy
Distribution (SED) [56, 97] The core and the jet are the most prominent emission regions in radio
wavelengths, expressed in the classification scheme by Fanaroff and Riley. While Fanaroff-Riley
Class I (FR I) galaxies show bright cores but fainter jet structures, the opposite is true for
Fanaroff-Riley Class II (FR II) galaxies [27]. More subclasses of AGN have been established
depending on the jet’s orientation regarding the observer’s line of sight following the grant
unification model [127, 85]. Effects where the sources appear with one- or two-sided jets are
additionally explainable with the jet’s orientation. Sources pointing close into the observer’s
direction have a strong relativistic boosting in that direction, which causes very-high emissions.
At the same time, the counter jet’s emission is boosted away from the observer, resulting in an
apparently one-sided jet structure [14].

The common explanation for the radio emission of AGN is synchrotron radiation of high-energy
electrons. Electrons are accelerated along the jet structure inside the high magnetic fields of
AGN. When these electrons reach relativistic speeds and get distracted inside the magnetic
field, they emit electromagnetic synchrotron radiation perpendicular to their velocity [25, 8]. Jet
structures remain stable for long periods on kiloparsec scales. Models developed by Blandford
and Königl [9, 60] describe these extended structures as narrow conical jets with continuous
plasma inflows. Shock fronts marked by higher luminosities form along the jet axis [117], which
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1 Radio Interferometry in the Context of Modern Astronomy

can be identified as individual components. As electrons are accelerated in all parts of an AGN,
the morphology of the complete source is visible in radio wavelengths, which becomes apparent
when looking at the radio galaxy shown in Figure 1.1.

1.3 Concepts of Radio Interferometry
When using telescopes, the limiting factor is often the resolution of the aperture. The resolution
limit is given by the Rayleigh criterion [68], which is defined as

𝛩 ≈ 1.22 ⋅ 𝜆
𝐷

. (1.1)

The angular resolution 𝛩 depends on the observation wavelengths 𝜆 and the telescopes’ diameter
𝐷. In the case of single-dish observations, an excellent effective collection area is achieved, as
the dish reflects the incoming radiation onto the receiver. This effective area results in high
sensitivities and high signal-to-noise ratios. Technically the dish size is limited to diameters around
100 m, which restricts the maximum resolution. The invention of radio interferometry enabled
us to aim for higher resolutions again, especially the idea of Very Long Baseline Interferometry
(VLBI) [16]. Several individual radio telescopes are thereby combined, creating one extended
instrument.

The concepts of radio interferometry are known as complex and unintuitive, but adopting the
descriptions by Smirnov [116], and Noordam [86] using the RIME gives straightforward access.
Their descriptions and additional explanations in Thompson et al. [122] form the basis for the
following section. Vectors are marked by ⃗𝑣, while bold symbols V indicate matrices.

The main assumptions in radio interferometry are quasi-monochromatic signals and linearity.
In general, an electromagnetic signal of a single point source can be described by a complex
vector ⃗𝑒 in a (𝑥, 𝑦, 𝑧) coordinate frame, with

⃗𝑒 = (𝑒x
𝑒y

) (1.2)

Here, 𝑧 is pointing in the source direction. On its way toward the telescope and before leaving
the receiver, the signal is affected by several linear effects, describable by a collection of Jones
matrices J [41]. When the signal hits a usual two-feed antenna, the signal is converted into
complex voltages ⃗𝑣,

⃗𝑣 = (𝑣a
𝑣b

) = J ⃗𝑒. (1.3)

Consequently, two antennas p, q measure the voltages ⃗𝑣p and ⃗𝑣q. Signals of a radio interferometer
are fed into a correlator, generating four pairwise correlations in the case of ⃗𝑣p and ⃗𝑣q. At this
point, it is possible to define the visibility matrix Vpq,

Vpq = 2 (
< 𝑣pa𝑣∗

qa > < 𝑣pa𝑣∗
qb >

< 𝑣pb𝑣∗
qa > < 𝑣pb𝑣∗

qb >) = 2 < ⃗𝑣p ⃗𝑣𝐻
q >, (1.4)

where < . > denotes the averaging over time and frequency, 𝑣∗ marks the complex conjugate of
𝑣, and ⃗𝑣𝐻 stands for conjugate transpose. The introduction of the brightness matrix B, which is
defined as

B = 2 (< 𝑒x𝑒∗
x > < 𝑒x𝑒∗

y >
< 𝑒y𝑒∗

x > < 𝑒y𝑒∗
y >) = ( 𝐼 + 𝑄 𝑈 + 𝑖𝑉

𝑈 − 𝑖𝑉 𝐼 − 𝑄 ) , (1.5)

already allows the formulation of the basic RIME:

Vpq = 2 < Jp( ⃗𝑒 ⃗𝑒𝐻)J𝐻
q >= JpBJ𝐻

q . (1.6)
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1.3 Concepts of Radio Interferometry

Figure 1.2: Coordinate relations for a radio interferometer observation explained in
the example of a two-element interferometer. A sky with the brightness distribution
B(𝜎) is observed by antennas p and q. As the source is very far away, the radio
waves reaching the interferometer are quasi-monochromatic. The interferometer
layout causes phase delays for the approaching signal by propagating different
geometric path lengths. This geometric delay is described by 𝜏g. Correcting this
delay creates projected baselines expressed in (𝑢, 𝑣, 𝑤) coordinates. Here, 𝑤 points
in the observed direction, and (𝑢, 𝑣) spans a tangential plane toward this direction.
Because of the large distance, the sky is assumed as a plane described in (𝑙, 𝑚, 𝑛)
coordinates, where 𝑛 points into the observer’s direction. Both, (𝑢, 𝑣, 𝑤) and
(𝑙, 𝑚, 𝑛) are direction cosines. Schematic after [102]. The source image is taken
from Ramatsoku et al. (2020) [99].

B expresses the emission of the observed sky, which is commonly related to the Stokes parameters
𝐼, 𝑄, 𝑈, and 𝑉 [12].

The connection between measured visibility and the sky brightness becomes more accessible
with the example of the two-element interferometer, illustrated in Figure 1.2. Here, the telescopes
p and q are separated by the baseline ⃗𝑏. Both observe the same part of the sky described
by the brightness distribution B(𝜎). Due to the enormous distance between telescopes and
sources, the sky is assumed as a plane represented by (𝑙, 𝑚, 𝑛) coordinates, where 𝑛 points into
the observer’s direction. Electromagnetic waves emitted by the source reach the telescopes as
quasi-monochromatic signals. The interferometer’s layout causes phase delays for the approaching
signal as the signal has to propagate different geometric path lengths to reach the antennas.
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1 Radio Interferometry in the Context of Modern Astronomy

𝜏g expresses this geometric delay. Correcting this delay so that the signal is detected by both
antennas simultaneously creates projected baselines described by (𝑢, 𝑣, 𝑤) coordinates. For this
system, 𝑤 points into the source direction, representing the same axis as 𝑛, but with an opposite
sign. The new coordinate basis represents antenna positions in units of 𝑢 and 𝑣 onto the so-called
(𝑢, 𝑣) plane. Both (𝑙, 𝑚, 𝑛) and (𝑢, 𝑣, 𝑤) coordinates are direction cosines [123].

The phase delay associated with signal propagation even occurs in an entirely uncorrupted
observation. For that reason, it has to be considered in every RIME formulation. Radio
interferometers are only sensitive to the phase difference between ⃗𝑣p and ⃗𝑣q. Phase delays are
measured regarding a specific phase center, in this example, regarding (𝑢, 𝑣) = (0, 0). Taking the
coordinates of antenna p as 𝑢⃗p = (𝑢p, 𝑣p, 𝑤p), the phase difference for 𝑢p relative to the phase
center for a signal from 𝜎⃗ can be expressed as

𝑘p = 2𝜋(𝑢p𝑙 + 𝑣p𝑚 + 𝑤p𝑛 − 1). (1.7)

In this expression, (𝑙, 𝑚, 𝑛 =
√

1 − 𝑙2 − 𝑚2) are direction cosines of 𝜎, and 𝑢, 𝑣, and 𝑤 are given
in units of 𝜆. Equation (1.7) shows that the geometric phase delay is another scalar effect on the
source’s signal. Again, this linear transformation is expressable as a Jones matrix

Kp = exp(−𝑖𝑘p) = exp(−2𝜋𝑖(𝑢p𝑙 + 𝑣p𝑚 + 𝑤p𝑛 − 1)), (1.8)

leading to the uncorrupted RIME
Vpq = Kp B K𝐻

q . (1.9)

Only a single point source was assumed in equation (1.6). As a realistic sky consists of many
sources, it has to be extended to

Vpq = ∑
s

Jsp Bs J𝐻
sq, (1.10)

summing over all point sources s. The contributions to Vpq add up linearly. Now, some effects
are the same for all sources, so-called source-independent effects Gp. Consequently, there are
source-dependent effects Esp, splitting up the Jones chain into Jsp = Gp Esp Ksp, changing the
visibility matrix to

Vpq = Gp (∑
s

Esp Ksp Bs K𝐻
sq E𝐻

sq) G𝐻
q . (1.11)

At this point, the RIME is only a few assumptions away from the van Cittert-Zernike theorem
[124], which is the fundamental theorem of radio interferometry. First, the sky has a continuous
brightness distribution B(𝜎); the integration over all directions is necessary. Furthermore, a sine
projection of the sphere onto the (𝑙, 𝑚) plane tangential to the field center is performed. The
non-coplanarity term with the 𝑛 dependence is put into the source dependent effects E(𝑙, 𝑚).
The resulting RIME has the form of a two-dimensional Fourier transform:

Vpq = Gp (∫
𝑙
∫

𝑚
Ep(𝑙, 𝑚) B(𝑙, 𝑚) E𝐻

q (𝑙, 𝑚) exp (−2𝜋𝑖(𝑢pq𝑙 + 𝑣pq𝑚)) d𝑙d𝑚) G𝐻
q . (1.12)

Equation (1.12) means that the interferometer measures the two-dimensional Fourier transforma-
tion of the sky, but the sky is seen differently for every baseline. This dependency between the
observed sky and the obtained signal is the main statement of the van Cittert-Zernike theorem
[124].

1.4 Observations with the VLBA
The relation derived in the previous Section 1.3 is evident when illustrated with a vivid example
using an actual interferometer layout. Figure 1.3 visualizes the power pattern of three antenna
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Figure 1.3: Power pattern of the baselines Pie Town–Fort Davis, Kitt Peak–
Pie Town, and Mauna Kea–Los Alamos for a RIME simulated observation with
the VLBA. Baseline lengths are visualized in (𝑢, 𝑣) space (left column). The
corresponding power pattern (right column) illustrates the sensitivity of the baseline
for a specific spatial distance. The source image is taken from [99].

pairs of a simulated VLBA observation. Here, the RIME was utilized for the calculations. The
left column illustrates the baseline lengths in (𝑢, 𝑣) space. The corresponding power pattern
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Figure 1.4: (𝑢, 𝑣) coverage during a simulated VLBA observationat 15.21 GHz.
While the projected antenna positions of the VLBA are shown in purple, the
projected source position is marked in orange inside the Earth overviews (left
column). The corresponding (𝑢, 𝑣) coverages are illustrated inside the (𝑢, 𝑣) plane
(right column). The upper row represents the start of the observation. Here, the
(𝑢, 𝑣) coverage includes only 90 visibilities. With ongoing observation time, the
Earth rotates, and the projection changes for every time step, filling the (𝑢, 𝑣)
plane. The lower row displays the end of the observation, where the (𝑢, 𝑣) coverage
increased significantly. Still, broad areas with missing information are visible due
to VLBA’s sparse antenna layout.

shows for which spatial distances the baseline is sensitive (right column). Small baselines measure
the large-scale structures of the sky’s brightness distribution. At the same time, the largest
baselines measure the fine-scale structures. As the power pattern changes signs in a regular
frequency, it is called the fringe pattern. These fringe patterns are different for every baseline.
Maximizing the number of different-lengthed baselines is essential to collect as much information
about the source as possible.
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1.5 Processing of Radio Interferometer Data

In this work, the VLBA [83] was chosen as the interferometer layout to perform the simulations
for two reasons. First, it consists only of ten antennas, which makes it handy and accelerates
calculations. Per snapshot, its 45 baselines create 90 visibilities. Second, the VLBA is used for
the MOJAVE program [66], which has an extensive data archive suitable for deducing source
shapes and other observation parameters. The numerous existing measurements are exploited to
develop new analysis strategies and test the current simulation chain. Developed analysis setups
are later easily adjustable for other telescopes like LOFAR [40], which consists of thousands of
baselines per snapshot.

A disadvantage is the VLBA’s small detection area. On the one hand, it achieves milliarcsecond
resolution. On the other hand, it only obtains information at ten antenna positions. Therefore,
the exceptionally high resolution comes with sparse data coverage.

The Earth’s rotation is exploited for actual observations to increase the data coverage. Fig-
ure 1.4 illustrates the projected antenna positions at the start and the end of a simulated
observation together with the (𝑢, 𝑣) coverage. For each timestep, the projection is calculated,
and the corresponding visibilities are evaluated. The projection changes through the Earth’s
rotation, and so do the projected baselines. As arcs start to form in (𝑢, 𝑣) space, the coverage of
the simulated observation increases.

1.5 Processing of Radio Interferometer Data

Complex values measured by the radio interferometer have to be further processed before they
can be used to generate scientific output.

First, a calibration of the data is necessary. Calibration operations correct receiver signals
and compensate for different antenna gains of the individual telescopes. Observing a well-known
calibrator source that generates calibration solutions to correct the target field is common. Such
calibration corrections were applied to the MOJAVE data used in Section 8.6. No calibration
is performed for the simulated observations, as in the simulation chain, no corruption effects
requiring a complete calibration were considered. Still, calibration is an important topic, which
will be included in subsequent works. Detailed information about the different calibration
approaches can be found in [101, 94, 100].

Second, it is necessary to put the irregularly distributed visibility data on a regular grid before
applying the Fast Fourier Transform (FFT). Especially for images with sizes of 2n, the FFT is
superior to the Discrete Fourier Transform (DFT) in computing costs and time [87]. Creating this
regularly sampled data is called gridding [15]. The analyst has to choose a reasonable grid and
frequel size which fits the observation parameters. A frequel in (𝑢, 𝑣) space is the equivalent of a
pixel that suits to describe source distributions in image space. Different gridder implementations
are available, for example, in WSCLEAN [126] or Difference Mapping (DIFMAP) [113]. These
implementations use convolutional resampling [15], which was avoided for the analyses in this
thesis for complexity reasons. The developed implementation inside the pyvisgen package [30]
performs a two-dimensional binning for a fixed bin size and grid size.

Last, cleaning of the gridded data has to be performed. In this final processing step, the
remnants of the telescope’s Point Spread Function (PSF), also called beam in radio interferometry,
have to be removed from the sky image [125]. The gridded visibility data’s direct FFT creates
a dirty image dominated by noise artifacts. This image corruption originates from incomplete
sampling during the observation. A common approach to get an uncorrupted source image is the
CLEAN algorithm [110]. CLEAN performs an iterative point source subtraction, creating a source
model convolved with the observation’s clean beam. The clean beam represents the innermost
part of the interferometer PSF. Over the last 50 years, different adjustments and improvements
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to match new standards were made. Cleaning techniques started with Högbom’s implementation
[48] going over Clark’s [20] and Schwab’s [109], reaching solutions suitable for wide-field arrays
as developed by Cornwell [22] and Offringa et al. [89].

This work proposes an alternative deep learning-based imaging approach, which will be
described in Chapter 4 and Chapter 5.
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An Introduction to Deep Learning 2
”He’d have been a little bit happier if there’d been a demon or some sort
of magic. Something simple and understandable.”

— Terry Pratchett, Soul Music

Depending on the person asked, people still see deep learning models as black boxes that magically
solve problems. However, there is no demon sitting inside the graphical unit of the computer,
and even though some results look like it, there is no magic involved. Instead, deep learning is a
mixture of precise simulations, linear algebra, and the minimization of a pre-defined criterion. In
the modern world, many successful applications are visible in all fields, for example, DeepL for
text translation [23], or object detection for autonomous driving [81]. Steadily, the acceptance of
deep learning applications is increasing in science. There is still immense potential to improve
current analysis strategies to maximize the scientific results with the help of deep learning
techniques. Therefore, this work explores opportunities for utilization in radio interferometry.
For wider acceptance, it is essential to make deep learning approaches more understandable and
clear up existing prejudices. Through cooperations such as the Sonderforschungsbereich 876
(SFB 876) [77], the educational work of the Kaggle community [57], and workshops organized by
the ErUM-Data-Hub [26], deep learning becomes more understandable and usable for the whole
scientific community.

2.1 General Concepts
Deep learning algorithms are data-based algorithms designated to learn a mapping of the input
data 𝑥 to the output 𝑦. The mapping function 𝑓(𝑥; 𝛩) describes the relationship between input
and output. Here, 𝛩 are weighting parameters learned by the deep learning model. A pre-defined
measure allows for quantifying the mapping and adjusting the learned parameters based on the
mapping quality. This work applies supervised learning, meaning a set of observations with
known ground truths is utilized. For every example in the input data, a target is specified.
Subsequently, a loss function is used to evaluate the deviation between the model’s prediction and
the target. The goal is the minimization of this loss function. In deep learning, this minimization
is mainly performed by applying stochastic gradient decent-like algorithms [13]. The smaller the
loss value, the better the prediction and the target match. Small loss values are desired for the
whole data set so that the model generalizes the learned mapping and no overtraining occurs.
Overtraining is when the model learns the training data set by heart and thus fails on unseen
data. Different regularization techniques help to prevent overtraining by adding penalty terms
to the loss function or adding more variation to the training data set. [34]

First, the scientific question has to be defined. For a robust model creation, an exact problem
definition is crucial. Additionally, a reproducible and easy-to-understand approach is desirable.
The ”no free lunch” theorem states that no universal best machine learning algorithms are
available for all possible distributions [131]. Generally, assumptions and specifications must be
made to minimize the generalization error. Only then the trained deep learning model performs
well on new unseen data. [78]
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2.2 Neural Network Models
Neural networks are directed graphs, which consist of nodes organized in different layers. The
input layer takes the input features. These features are propagated to the output layer, delivering
the result. During the propagation, they pass several hidden layers, only accessed by the learning
algorithm during the training. The hidden layers make the neural network model deep. Activation
functions at the end of each layer enable the representation of non-linear relations. In this work,
the Parameter Rectified Linear Unit (PReLU) function [46] is applied as non-linearity. The
PReLU is a modified Rectified Linear Unit (ReLU) [54] with an additional learnable parameter
defining the function’s slope in the negative part:

PReLU(𝑥) = { 𝑥, if x ≥ 0
𝑎𝑥, otherwise , (2.1)

which is visualized in Figure 2.1. Without activation functions, neural networks can only represent
linear dependencies, as only linear matrix multiplication is applied.

Each layer of the network has weights, which are optimized during the training to achieve the
optimal mapping between input and target. The optimization is done using backpropagation
[103]. If the prediction does not fit the target, the error is backpropagated from the last layer
until the first one is reached. The derivatives of the mapping function concerning all variables
are calculated. Backpropagation is a fast technique as it exploits the chain rule. At the end of a
backpropagation step, the model’s weights are optimized regarding the calculated derivatives.
Here, Stochastic Gradient Descent (SGD) is utilized to find the best possible parameters [44].
Nowadays, enhanced SGD methods are favored. Adam is a common alternative, as it uses
momentum to achieve an improved model stability [59].

A series of layers, called architecture, is necessary to develop a well-performing deep learning
algorithm. Different layers are available; convolutional layers are most commonly used in this
work. Neural networks made from these layers are called Convolutional Neural Network (CNN).
A convolutional layer consists of a kernel 𝐾 that is usually smaller than the input data. The
kernel is iteratively moved over the input 𝐼, generating the output 𝑆 by convolving input values
and kernel weights:

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼) (𝑖, 𝑗) = ∑
𝑢

∑
𝑣

𝐼(𝑖 − 𝑢, 𝑗 − 𝑣)𝐾(𝑢, 𝑣). (2.2)

The parameters are shared, as the kernel has the same weights for all input data. This sharing
makes convolutional layers extraordinarily fast on image data. [34]

Furthermore, the convolution of two functions is well-suited for pattern recognition. In
Chapter 4, this feature will be used to design an architecture capable of finding patterns in
incomplete Fourier data. The adjustment of the architecture is essential to achieve the best-
possible training outcome. Changing the kernel sizes allows for regulating what scales in the
input image influence the calculated output. Adding more layers to the architecture increases
the number of kernels and, therefore, the number of trainable parameters. Expanding the
number of channels, which increases the depth of the convolution matrices, further enhances the
number of trainable parameters. The number of parameters is a vital feature to fine-tune, as the
complexity of the model usually depends on its depth [120]. Deeper networks have an increased
representation capacity, allowing them to learn more complex relations. Simultaneously, they are
harder to train, and more training data is needed for robust training. Here, residual networks
improved the robustness significantly [45]. Often additional data augmentation methods help,
such as slightly variating the input data so that the neural network does not simply learn the
training data by heart. These aspects enable the creation of a deep learning model which neither
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2.3 Model Training
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Figure 2.1: Visualization of the PReLU activation function. The learnable
parameter 𝛼 is set to 0.25.

underfits nor overfits the learning task. However, there is more to consider. Neural networks are
often fragile. Small changes in the architecture or slightly different data sets can significantly
impact the learning result. Furthermore, weights should not explode during the training process.
Batchnorm layers help to keep everything in a small parameter range by normalizing incoming
values using their mean and standard deviation [105]. One goal of making neural network models
useable in science is to make them more robust and explainable [38]. [78]

2.3 Model Training
Training a neural network starts with precise data preparation. This step is often the most
time-consuming in the whole training process. Especially when dealing with physics data, the
problem must be well-defined to keep the learning process understandable. Another crucial
aspect is data representation. The data set and format must be appropriate for the selected
algorithm. Otherwise, the model is unable to learn the underlying problem.

Second, the model setup influences the training process substantially. A wise selection of
architecture components speeds up the model’s convergence. Sometimes wrong choices even
prevent a convergence at all. The best fitting combination of activations, loss function, and
minimizer for the problem has to be found. During the training, the data flows batch-wise
through the architecture. After each batch, the loss function is evaluated, the derivatives for
backpropagation are determined, and the weights get adjusted. Here, training batches are created
randomly from the complete training data set. When an entire cycle of batches for the training
data is completed, the validation data is processed batch-wise. For the validation data, only
the loss is calculated, but no backpropagation is performed, as this data is meant to test the
model’s generalization grade. Furthermore, it is a measure of overtraining when training and
validation loss do not decrease simultaneously. Lastly, independent test data sets help perform
advanced evaluations after finishing the training. Learned lessons from these tests help to adjust
the neural network model, retrain it and perform another evaluation round.

2.4 Software and Computing Setup
In this work, calculations, simulations, and deep learning tasks are done in Python [98]. PyTorch
[92] has been chosen as the fundamental deep learning framework because of its flexibility and
the ability to develop algorithms in Python directly. On top of PyTorch, the deep learning library
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2 An Introduction to Deep Learning

fast.ai is utilized [50], which supplies high-level components to build customized deep learning
algorithms quickly and efficiently. For simulations and data analysis, the Python packages NumPy
[42], SciPy [128], Astropy [121, 96], Cartopy [88], scikit-image [129], and Pandas [91, 70] were
used. The results were illustrated using the visualization package Matplotlib [51]. A complete
overview of the used libraries and the developed open-source packages are listed on GitHub:
radionets [107], radiosim [108], pyvisgen [30].

The simulations and the deep learning models were developed on a Ubuntu Linux 20.04 LTS
desktop system with

• CPU: Intel® Core i7-8700K CPU @ 3.70GHz, 12 logical cores,

• GPU: NVIDIA GeForce GTX 1080 with 8 GB GPU memory,

• RAM: 64 GB.

For the RIME simulations, the high-Performance computing cluster Linux Cluster an der TU
Dortmund (LiDO3) was used 1. The deep learning models, which include uncertainty estimates,
were trained on the Competence Center Machine Learning Rhine-Ruhr (ML2R) computing
cluster 2 equipped with NVIDIA A100 graphics processing units.

1LiDO3: https://www.lido.tu-dortmund.de/cms/de/home/index.html
2ML2R: https://www.ml2r.de/en/about/
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Basic Simulations in Radio Interferometry 3
“They were learning fast, or at least collecting data, which they
considered to be the same as learning.”

— Terry Pratchett, Thief of Time

In the age of machine learning, especially deep learning, data to train the models have become
more critical than ever before. With the correct data, training is possible, and the models are
meaningful. For this reason, data and learning are closely connected.

When training supervised machine learning models, data with known ground truths are
necessary [43]. This work simulates a collection of data sets to achieve two goals. First, the
complexity of the data is increased steadily, which allows an iteratively adjusting of the model.
Second, besides the input data, the truths which are unknown when using measurement data can
be simulated at the same time. This chapter summarizes the creation of a complete simulation
chain, starting from generating radio galaxies and completing with mimicking observations of
radio interferometers. In the beginning, everything is kept simple so that the single parts of the
simulations are easy to follow. Simulations of radio galaxies follow the AGN theory introduced
in Section 1.2, while radio interferometer simulations are related to the ones described in [106].

3.1 Extended Gaussian Radio Galaxies
The first approach simulating a data set of radio galaxies follows the description of AGN jets by
Blandford and Königl [9, 60]. They note that active galactic nuclei host a narrow conical jet
that is fueled by plasma inflows. Hotspots with increased intensity, called jet components, form
inside these jet structures. Following analysis strategies from the MOJAVE team [66], using jet
components for source representation is a common simplification for VLBI data [65, 67]. For this
reason, Gaussian distributions form the basis of radio galaxies simulated in this chapter.

Figure 3.1 visualizes a radio galaxy built from two-dimensional Gaussian distributions. Several
components placed next to each other mimic its jet structure. The brightest component in
the center of the image represents the core of the active galactic nucleus. For a structured
distribution, the centers of jet components get placed on a straight line emerging from the core
and moving toward the image’s edge. The number of components is randomly drawn between
three and six, guaranteeing that the jets do not expand outside the image borders. The distance
between individual components is 5 pixels and fixed for all simulated radio galaxies. In addition
to one-sided jets, also two-sided jets are simulated. In the two-sided cases, jet components are
mirrored at the core component leading to a total number of source components between four and
thirteen. Jet and counter-jet components have the same intensity, but the intensity of different
radio galaxies is varied. The core component is initialized for each source with a value between
10−3 and 101. These values are drawn from a uniform distribution. Afterward, the intensity of
jet components is logarithmically reduced by the factor

𝐴(𝑐n) =
𝐴core

exp(𝑐n)
, (3.1)
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Figure 3.1: Source distribution of a simu-
lated radio galaxy with a one-sided jet. The
source is built from several Gaussian compo-
nents.

where 𝐴 is the peak intensity of the component and 𝑐n denotes the number of the jet component.
The components’ standard deviations are initialized randomly and increase for components
further outside the jet. Furthermore, jet orientations are varied by drawing their value uniformly
between 0° and 360°. Appendix 2 summarizes all available simulation parameters and the default
simulation configuration.

3.2 Radio Interferometer Simulations Using Sampling Masks
When observing a source with a radio interferometer, the analyzer of the data has to deal with
different specific characteristics. As described in Section 1.3, a radio interferometer collects
information in Fourier space. During an observation, they gather complex values called visibilities
in (𝑢, 𝑣) space. Depending on the array layout, the data coverage in (𝑢, 𝑣) space varies but
always remains sparse due to the interferometer’s limited amount of antennas. In this thesis, the
antenna layout of the VLBA is used, see Section 1.4, which results in 90 visibilities per snapshot
during an observation. The utilization of the Earth’s rotation introduced in Section 1.3 helps
improve the data coverage by increasing observation time. Still, the characteristic holes in the
(𝑢, 𝑣) coverages remain.

The developed simulation chain utilizes the radio interferometer array layout and calculates
the (𝑢, 𝑣) coverage for an observation depending on source position and observation length.
Simulated (𝑢, 𝑣) coverages of single-channel observations form the basis for sampling masks that
create incomplete visibility samples. Figure 3.2 visualizes the transformation of the simulated
(𝑢, 𝑣) coverage (upper left) to a binned sampling mask (upper right) by sorting the (𝑢, 𝑣) points
into a two-dimensional histogram. Afterward, these two-dimensional masks get applied to the
Fourier transform of the simulated radio galaxies described in Section 3.1. As complex values
are difficult to interpret by the human eye, amplitude and phase distributions are calculated
with the help of Euler’s formula [84]:

𝑧 = 𝑥 + 𝑖 ⋅ 𝑦 = |𝑧| ⋅ (cos(𝜑) + 𝑖 ⋅ sin(𝜑)) . (3.2)
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Figure 3.2: (𝑢, 𝑣) coverage simulation based on VLBA’s array layout. A simulated
single-channel observation (upper left) serves as a basis to create a sampling mask
by binning all (𝑢, 𝑣) points into a two-dimensional histogram (upper right). When
applied to the Fourier transform of a radio galaxy, an incomplete gridded visibility
sample is generated. These incomplete visibility maps can be split into amplitude
(lower left) and phase (lower right) maps utilizing Euler’s formula. The remaining
information is shown colored, while all dropped information is grayed out.

Here, 𝑥 is the real part, and 𝑦 is the imaginary part of the complex number 𝑧. Furthermore,
|𝑧| represents the amplitude and 𝜑 the phase. Figure 3.2 illustrates the amplitude and phase
distribution of the source shown in Figure 3.1 in the lower part. Information lost during sampling
is grayed out and set to zero for the following data processing steps.

During the mask sampling, the information about physical scales gets lost. Therefore, distances
inside the shown images do not refer to absolute angles, and all distances must be given in
64-pixel image size units. Furthermore, no instrumental effects like single antenna characteristics
or receiver noise are considered. The resulting simulated data corresponds to already gridded
(𝑢, 𝑣) data. In (𝑢, 𝑣) space, it is common to use the name frequel to address gridded data points.
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3 Basic Simulations in Radio Interferometry

A frequel is the equivalent of a pixel that suits to describe source distributions in image space.
Applying the inverse Fourier transformation to incomplete data samples creates a so-called

”dirty image”, see Section 1.3. In the case of these simulations, dirty images look like the one
shown in Figure 3.3 (left). Artifacts dominate these images, and noisy structures cover source
morphologies. Cleaning is mandatory beforehand to use these images for scientific analyses.
Instead of conventional cleaning approaches, this thesis deals with training neural networks to
reconstruct incomplete data before generating a source image in local space by applying the
inverse Fourier transformation.

3.3 Noise Influences
Introducing uncorrelated noise effects at two stages inside the simulation chain allows to some
extent, to consider noise influences. After the radio galaxy creation, newly drawn offsets from a
standard normal distribution,

𝑔(𝑥|𝜇, 𝜎) = 1√
2𝜋𝜎2

exp (−
(𝑥 − 𝜇)2

2𝜎2 ) , (3.3)

are added to each pixel in the image space to mimic noise corruption from other sources in the
universe. Offsets get scaled before being added by 5 % of the source’s peak flux, which results in
noisy source distributions described by

𝐼noisy(𝑙, 𝑚) = 𝐼(𝑙, 𝑚) + 0.05 ⋅ 𝐼max ⋅ 𝑔(𝑥|𝜇, 𝜎)𝑙𝑚. (3.4)

𝐼(𝑙, 𝑚) describes the source intensity in local space, 𝐼max represents the peak intensity, and
𝑔(𝑥|𝜇, 𝜎)𝑙𝑚 denotes a random number drawn for the pixel at coordinate (𝑙, 𝑚). When changing
to (𝑢, 𝑣) space via Fourier transform and performing the pixel-wise application of the sampling
mask 𝑆 to simulate an observation with a radio interferometer, this procedure results in corrupted
visibilities

𝑉noisy = 𝐼noisy ⋅ 𝑆mask. (3.5)

Figure 3.3 visualizes the dirty image generated with noisy visibilities 𝑉noisy in the middle.
The complexity of the noise simulation is further increased by adding additional white noise

to the data in (𝑢, 𝑣) space. For this purpose, random values are drawn again from a standard
normal distribution. This procedure results in corrupted visibilities 𝑉white noise, which can be
described by

𝑉white noise(𝑢, 𝑣) = 𝑉noisy(𝑢, 𝑣) + 𝑔(𝑥|𝜇, 𝜎)𝑢𝑣. (3.6)

Again, 𝑔(𝑥|𝜇, 𝜎)𝑢𝑣 denotes a newly drawn number for every frequel. A dirty image generated
with noisy visibilities plus additional white noise 𝑉white noise is shown in Figure 3.3 on the right.
Further noise corruption leads to additional artifacts in the initial source reconstruction, which
occur more randomly. Furthermore, the jet structure is hidden, and only the core component is
visible.

A realistic description of the noise is necessary to analyze actual measurement data with
neural networks. Often training data represents ideal conditions, and some noise influences are
neglected or even unknown. For example, correlated noise is not considered in the simulations
up to this step. The aim is to improve the simulations steadily. A possible solution is using the
RIME formalism introduced in Section 1.3 to describe the noise influences occurring during an
observation. While the RIME formalism is applied in a basic version to create a comparison
data set in the next section, Chapter 8 will give a more detailed insight into the possibilities
enabled by utilizing the RIME.
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Figure 3.3: Dirty images are generated by applying the inverse Fourier trans-
formation to the sampled amplitude and phase distribution for noiseless (left),
noisy (middle), and white noise (right) maps. In addition to an underestimated
flux density compared to the simulated source distribution shown in Figure 3.1,
artifacts are visible next to the jet structures in all three cases. Only the core
component is visible in the dirty image generated with white noise data. Here,
artifacts are more random and distributed uniformly around the source position.

3.4 Radio Interferometer Simulations Using the RIME Formalism
In order to compare the reconstructions by deep learning models with images created by standard
software, the second part of the simulation chain has to be adjusted. Established imaging
software needs ungridded visibilities as input data, which cannot be achieved by simulation using
sampling masks. However, a simple RIME formalism can calculate visibilities for each baseline.
For this purpose, the identical simulated brightness distributions described in Section 3.1 are
used as input for the RIME simulations. So that the data are comparable and the reconstruction
of the visibilities is not too complicated, only the direction-independent phase delay term 𝐾 is
applied, which is defined as

K(𝑙, 𝑚) = 𝑒−2𝜋𝑖(𝑢𝑙+𝑣𝑚). (3.7)

The phase delay term corresponds to the Fourier kernel and brings no further noise corruptions.
It represents the connection between (𝑙, 𝑚) coordinates in local space and (𝑢, 𝑣) coordinates in
visibility space. The formula for the calculation of the uncorrupted visibilities of the baseline
pair 𝑝𝑞 results in

Vpq = ∑
𝑙

∑
𝑚

Kp(𝑙, 𝑚)B(𝑙, 𝑚)K𝐻
q (𝑙, 𝑚), (3.8)

with the source brightness distribution 𝐵(𝑙, 𝑚). The integrals introduced in equation (1.12)
transform into sums as each pixel of the brightness distribution is treated as an individual
source. The 𝑤-term is neglected as in VLBI observations, only a small section around a source is
considered, and therefore,

√
1 − 𝑙2 − 𝑚2 ≈ 1 is valid in this case. 𝑢 and 𝑣 describe the coordinates

of the respective baseline for the antenna pair 𝑝𝑞 at time 𝑡 in direction cosines. Here, 𝐻 denotes
the conjugate transpose operation. The weighting of the visibilities is set to zero. A more detailed
description of the RIME calculus is found in [116]. After simulation, the generated visibilities
are stored in Flexible Image Transport System (FITS) format. For this purpose, a FITS-writer
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Figure 3.4: Exemplary images for the data set with mixed source types. Besides
extended Gaussian radio galaxies, additional point-like Gaussian sources are simu-
lated for the sky distributions.

was implemented according to the Astronomical Image Processing System (AIPS) memo 117
[36]. Both the implementation of the RIME simulation and the FITS writer are published in the
open-source package pyvisgen [30].

3.5 Advanced Sky Simulations

On the path toward the analysis of observed data, tests with advanced radio sky simulations are
necessary. For this reason, improvements were implemented to test the deep learning model’s
capability to reconstruct mixed source types, larger image sizes, and more complex source shapes.

Mixed Source Types

A new option was created to simulate sky images with additional point-like Gaussian sources
besides the extended Gaussian radio galaxies. The point-like Gaussian sources differ in size and
intensity. Their number per image is randomly chosen between one and six. Furthermore, the
extended sources are not centered in the images anymore. The images are (64 × 64) pixels large.
Therefore, they are comparable to sub-images of a more extensive sky survey. Figure 3.4 gives
an overview of three different sub-image examples. Afterward, amplitude and phase maps are
sampled following Section 3.2 to mimic radio interferometer observations.

Larger Image Sizes

The developed simulation chain allows for the straightforward creation of larger source images.
Therefore, data sets consisting of image sizes closer to the sizes of actual radio interferometer
images can be created. Figure 3.5 visualizes exemplary sources of a data set consisting of
(128 × 128) pixel images. At this point, no linear scaling of the sources is performed so that the
simulated radio galaxies appear more compact in these images. Amplitude and phase maps are
generated following the procedure in Section 3.2.
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Figure 3.5: Exemplary source distributions for the data set with (128 × 128) pixel
images. As the sources are not scaled with the increasing image size, they appear
more compact.

New Source Shapes

In parallel, the creation of radio galaxies got a complete upgrade and was rebuilt inside the
radiosim package [108], which I developed together with Arne Poggenpohl. Here, more complex
source morphologies with bent jets and overlapping components are possible. Additionally,
rotations in 𝑧-direction are taken into account. More detailed insights will be given in Section 8.2.
Figure 3.6 gives an overview of the new source morphologies for two one-sided jets and one
two-sided jet. Amplitude and phase maps are sampled following the descriptions in Section 3.2.

3.6 Data Sets
This chapter summarizes the different data sets created with the basic simulation routines.
Table 3.1 gives an overview where some characteristics are quantified. The number of images,
noise levels, and (𝑢, 𝑣) coverages are summarized. All presented data sets consist of 50 k training
images, 10 k validation images, and 10 k test images, except the larger image size data set. Here,
the number of images is 5 k training images, 1 k validation images, and 1 k test images as this
data set is dedicated to fine-tune an already existing pre-trained model. In the case of the
simple RIME data set, only 1 k test images are generated. Furthermore, all data sets contain
(64 × 64) pixel maps. The (𝑢, 𝑣) coverages for the different data sets do not differ noticeably as
the same sampling settings are used. The histogrammed sampling densities shown in Figure 3.7
explain these minimal deviations. An exception is the larger images data set, which consists of
(128 × 128) pixel maps.

A re-scaling of the amplitude is performed utilizing the scaling rule

𝐴scaled = ( log10 (𝐴 + 1 ⋅ 10−10)/10) + 1. (3.9)

This scaling rule limits the amplitude to values between zero and two, leading to a smoother
and faster model convergence. Zeros mark the information missing in the amplitude and phase
distributions. Pixels with zero values have the advantage that they do not contribute to the
result in the first convolution. Additionally, pixels with zeros have a large distance from the true
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Figure 3.6: Exemplary images for the simulations with advanced source shapes.
Bent jets and overlapping components allow the creation of more realistic radio
galaxies.

value and contribute strongly to the loss. The network learns that the loss decreases quickly
when suitable estimates are found for these pixels.

Table 3.1: Overview of the created deep learning data sets

Type Number Images Noise Level / % (𝑢, 𝑣) coverage / %
Train / Valid / Test Source Visibility

Noiseless 50 k / 10 k / 10 k – – 25.65 ± 2.09
Noisy 50 k / 10 k / 10 k 5 – 25.65 ± 2.09
White noise 50 k / 10 k / 10 k 5 10 25.65 ± 2.08
Mixed 50 k / 10 k / 10 k 5 10 25.67 ± 2.11
New shapes 50 k / 10 k / 10 k 5 10 25.74 ± 2.16
Larger images 5 k / 1 k / 1 k 5 10 14.31 ± 1.45
RIME simple – / – / 1 k – – 29.87 ± 13.38
MOJAVE 12 k / 1 k / 1 k – – 2.19 ± 0.39

Note: Each input map was generated with a different sampling mask but with a comparable
sampling density. The noise level on sources corresponds to a Gaussian noise equivalent to
5 % of the sources’ peak intensity, while noise on visibilities means Gaussian noise in the
order of the lower 10 % of the noiseless visibilities.

The scaled amplitude and phase maps have different characteristics depending on the noise
level. To give a better feeling and allow for a comparison, Figure 3.8 illustrates the amplitude
and phase input maps for the noiseless (left), noisy (middle), and white noise (right) data set.
The noiseless amplitude map (upper left) has its maximum in the central part except for the
unsampled frequels. It continuously decreases towards the edges where the values are one-third
of the central ones. The comparison with the noisy amplitude (upper center) reveals an increased
overall amplitude. This effect is even more present for the white noise amplitude (upper right).
Here, the decrease towards the edges is no longer present.

The noise corruption is visible in the phase input maps as well. While a uniformly striped
pattern occurs for the noiseless map (lower left), this pattern is covered under spikes for the noisy
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Figure 3.7: Histogrammed sampling densities for the three main deep-learning
data sets. As the same sampling settings are applied, mean sampling density and
standard deviation do not deviate noticeably.

phase (lower center). The white noise phase (lower right) is mainly shifted toward positive values
except for some frequels in the central part. This shift is expected to increase the reconstruction
complexity further.

Figure 3.9 visualizes visibility spaces for the advanced sky simulations introduced in Section 3.5.
Examples are given for the mixed sources (left), new source shapes (middle), and larger image
sizes (right) data sets split into amplitude (top) and phase (bottom) maps. Here, it becomes clear
that amplitude and phase maps also become more intricate when the source distribution in the
image space becomes more realistic. The point-like Gaussians introduced in the mixed sources
data set break the point symmetry around the center, removing the flatness inside the phase
maps. For the other two data sets, the pixel size of the input maps was doubled. Amplitude and
phase maps for the larger sizes data set are comparable to the ones of the white noise data set.
The new shapes data set combines the properties of the noisy and white noise amplitude and
phase maps, showing flat amplitude distributions and spiky phase distributions. For this reason,
the new shapes data set is expected to be the most difficult for the neural network to reconstruct.

Besides the data sets based on sampling masks, a visibility data set using a simple RIME
formalism was simulated; see Section 3.4. This data set consists of 1000 FITS files, which include
(𝑢, 𝑣) information and associated complex values. For the reconstruction with the radionets
framework and the analysis with WSCLEAN, further processing of the FITS files is necessary.
Gridding of the single values is essential before working with the data. In the case of WSCLEAN,
the gridder is included in the software. The gridder developed for the pyvisgen package is used
before passing the RIME data to the deep learning model. This data set is not utilized for model
training but only for testing existing models and comparing the deep learning approach with
WSCLEAN. Figure 3.10 visualizes the gridded amplitude and phase map for the example source
introduced in Figure 3.1. The field of view was set to 85 mas. More information about gridding
and the influence of the chosen field of view can be found in Section 1.5.

The RIME simulation differs from the sampling mask simulations in the wide range of occurring
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Figure 3.8: Comparison of the input maps for the noiseless (left), noisy (middle),
and white noise (right) data set separated into amplitude (top) and phase (bottom).
Visibilities are shown for the example source from Section 3.1. In all three cases,
the same sampling map was applied.

(𝑢, 𝑣) coverages. Individual antennas can now be excluded during a simulated observation,
reducing this measurement’s maximum resolution. These differences in resolution and considered
antennas lead to a mean (𝑢, 𝑣) coverage of (29.87±13.38) %. In contrast to the RIME simulations,
the sampling mask method simulates the best possible resolution for all observations.
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Figure 3.9: Comparison of the input maps for the mixed (left), new source shapes
(middle), and larger images (right) data set separated into amplitude (top) and
phase (bottom).
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Figure 3.10: Amplitude (left) and phase (middle) map for the gridded simple
RIME data set. The field of view is set to 85 mas. The dirty image (right) shows
noise artifacts parallel to the jet and a blurry source structure.
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Deep Learning Model 4
”I’m teaching you things all the time.
You might not be learning them, of course.”

— Terry Pratchett, Thief of Time

When people hear about deep learning for the first time, they think of black boxes which magically
solve machine-learning problems. Often the question arises, is the model learning to master the
desired task, or does it deliver solutions that randomly fit this task? Of course, deep learning
models are not the holy grail of computer science, but they are a feasible approach to simplify
and speed up complex tasks in all science fields. With the training data at hand, the user can
teach them every desired task. When the data set, the architecture, and the loss function are
combined correctly, the deep learning model even starts to learn to solve this task.

The first step to success is always a suitable problem definition. Deep learning courses 1

and literature about the current standards [63] help to find the appropriate architecture. The
alternation between the evaluation of the results and hyperparameter adjustment ends up in a
smoothly converging model which can reconstruct missing Fourier data. As stated before, this
work contains knowledge gained from several theses I supervised [32, 29, 58, 11, 111, 62, 74, 17].

4.1 Problem Definition
The underlying problem is comparable to an image inpainting problem, starting with incomplete
images because parts of them are noisy or damaged [39]. Another related problem is super-
resolution imaging [28, 73]. Here, a low-resolution image forms the basis for creating an upsampled
high-resolution version. The resulting image has a higher number of pixels, but the newly created
pixels have no values at first. These pixels are called maximal corrupted pixels. One approach to
fill them is to determine a suitable estimate by bicubic interpolation, as shown in Figure 4.1a [63].
The result is a larger version of the original image, but details within the image are now blurred.
A deep learning-based approach to solve this problem is the application of Super Resolution
Residual Networks (SRResNets) [63]. Here, convolutional layers and residual learning are utilized
to find suitable estimates for the newly created pixels in the upsampling process. As seen in
Figure 4.1b, details are still visible in the enlarged image version. The direct comparison to
the nearest-neighbor approach reveals that the image is less blurred. At the same time, the
style of the original image is maintained. In this work, a modified version of the SRResNet
architecture was developed with Stefan Fröse, which can reconstruct missing information in radio
interferometric measurements. The missing information in radio interferometer measurements is
handled as an inpainting problem. Stefan has done many tests on this topic in his master thesis
[29], and he had the initial idea for using this architecture.

In radio interferometry, measurements for specific parts of the Fourier space are known, but
for many regions, no information is available. Still, existing data can be used to estimate frequels
with unknown values. Notably, the measurements are also noisy and hence have no perfect

1fastai: https://course.fast.ai/
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4 Deep Learning Model

(a) Bicubic (b) SRResNet

Figure 4.1: Comparison of an upsampled image generated with bicubic interpo-
lation and one upsampled using the SRResNet model. While the bicubic version
looks blurry, the SRResNet version shows many details. Example taken from [63].

values, further complicating the problem. Frequels with measured values are slightly corrupted
ones. The frequels without any information are maximal corrupted ones. In the case of radio
interferometric data, upscaling of the images is not needed. Therefore, this part of the analysis
is omitted entirely. The following chapters show how the SRResNet architecture was adopted to
be applied to radio interferometric data.

4.2 Architecture
In this work, the SRResNet architecture from [63] is used, which consists of different stages:
a PreBlock, several Residual Blocks (ResBlocks), a PostBlock, and a FinalBlock, compare
Table 4.1. The ResBlocks, which are used after He et al. (2015) [45] and adapted by Gross and
Wilber (2016) [37], form the core of the architecture. Before the ResBlocks, a PreBlock applies
an initial convolution and activation to the input data. A PostBlock follows the ResBlocks.
Afterward, the FinalBlock completes the architecture. The upsampling part of the original
architecture is omitted as the image size does not need to be increased in the case of radio
interferometry. A unique feature is the network training on data in Fourier space which means
that all convolutions are applied to amplitude and phase distributions. In these distributions
missing information is marked with zeros. The network’s task is reconstructing these missing
frequels. For a detailed overview of the training data sets, see Section 3.6. Figure 4.2 illustrates
the architecture with its different stages schematically, as well as the input and the target data.

The settings of the convolutions are chosen so that the image size always remains the same.
The model’s predictions are the same size when input maps are (64 × 64) pixels. The sizes inside
the model are controlled by the stride and padding settings. Table 4.1 summarizes all settings.
As activation functions, PReLUs are used [46]. Their negative part is not constant at zero, but
the network trains the negative coefficient. Only the first and the last convolution have a kernel
size of (9 × 9) pixels. All others have kernel sizes of (3 × 3) pixels. The SRResNet architecture
uses residual learning through different skip connections within the network. A skip connection
transfers the input of one layer to another location in the network, where a pixel-wise summation
is performed. The intermediate part only has to learn the difference between input and output.
The mapping function 𝐹, which maps the input 𝑥 to the output 𝑦, changes to 𝐹(𝑥) = 𝑦 − 𝑥. In
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Figure 4.2: Overview of the developed architecture based on the SRResNet [45].
Sampled amplitude and phase maps serve as input (left). The different blocks
process the input data and reconstruct missing information. The eight ResBlocks
form the central part of the architecture. Skip connections enable residual learning
and smoother convergence during training. After the FinalBlock, the reconstructed
amplitude and phase map (right) are the output of the architecture.

Table 4.1: Detailed overview of the different blocks used in the developed archi-
tecture

Stage Layer 𝐶in 𝐶out Kernel Stride Padding

PreBlock
Convolution 2 64 (9 × 9) 1 4
PReLU 64 64 - - -

ResBlock (×8)

Convolution 64 64 (3 × 3) 1 1
Batch Norm 64 64 - - -
PReLU 64 64 - - -
Convolution 64 64 (3 × 3) 1 1
Batch Norm 64 64 - - -
Elementwise Sum 64 64 - - -

PostBlock
Convolution 64 64 (3 × 3) 1 1
Batch Norm 64 64 - - -
Elementwise Sum 64 64 - - -

FinalBlock Convolution 64 2 (9 × 9) 1 4
Note: For each layer, the number of input 𝐶in and output channels 𝐶out is given. In the
case of convolutional layers, the kernel size, stride, and padding are specified.

the used architecture, skip connections connect the output of the PreBlock with the output of
the PostBlock. Additionally, for each ResBlock, a skip connection is used between input and
output. The central gray block in Figure 4.2 sketches the effect of a skip connection schematically.
Another notable feature is the group setting for the first and last convolution, which was set to
two. This feature creates separate kernels for the first 32 and the last 32 channels, where the
first ones are dedicated to the amplitude, and the last ones are dedicated to the phase.
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4.3 Model Training
Different models were trained for the different data sets summarized in Section 3.6. All training
sessions were performed under the same conditions. The models were trained for 300 epochs with
a batch size of 64 images and a learning rate of 2 × 10−4. The learning rate was selected using
the learning rate finder implemented by Howard and Gugger [49]. An adapted Mean Absolute
Difference (L1) loss

Loss = 10 ⋅ L1 (𝑥amp, 𝑦amp) + L1 (HardTanh(𝑥phase), 𝑦phase) , (4.1)
with L1(𝑥, 𝑦) = | 𝑥 − 𝑦 | , (4.2)

and HardTanh(𝑥) =
⎧{
⎨{⎩

𝜋, if x > 𝜋
−𝜋, if x < −𝜋
𝑥, otherwise

, (4.3)

was used as the loss function, where 𝑥 is the predicted output of the network, and 𝑦 is the true
image. The hard hyperbolic tangent (HardTanh) function limits estimates for the phase to a
range between −𝜋 and 𝜋. Theoretically, higher values are possible due to the periodic properties
of the phase. As multiples of 𝜋 bring no new information and complicate the learning process,
the HardTanh function ensures smooth training.

When training different models, the L1 loss outperformed the Mean Squared Error (MSE) loss
because small-scale structures in (𝑢, 𝑣) space could be reconstructed in more detail. In contrast,
models trained with the MSE produced blurrier reconstructions.

The Adaptive Moment Estimation (ADAM) optimizer [59] was used for parameter optimization.
Training processes with this optimizer converge faster than ones performed using momentumless
SGD [4] at the cost of more training parameters. The training time for one epoch took around
220 s on a computer setup with the specifications summarized in Section 2.4. For all 300 epochs,
this results in a training time of 18 h. Training times are compared with application times in
Section 6.4. The default training configuration is shown in Appendix 3.

The primary data sets are noiseless, noisy, and white noise input data. Figure 4.3 shows the
loss curves for these three cases. When comparing the loss curves for the different data sets, it
can be seen that the lowest loss is reached with the noiseless data. Here, some spikes of the
validation loss occur during the first half of the training. For the last 100 epochs, the training has
been very smooth. While the loss for noisy and white noise data do not differ significantly, more
spikes appear in the validation loss of the white noise training. However, the model recovers
after the outliers, so the trained model is still suitable for reconstruction.

During the training processes, data augmentation helps to circumvent overtraining. One data
augmentation routine is rotating input and output images to generate new examples in each
batch creation step. Furthermore, different sampling masks for every image lead to different data
coverages for each image. Tests show that models trained on different data coverages converge
more smoothly and are more robust in application than models trained only on data sets with
one sampling mask. Another advantage is the model’s applicability to observations with similar
data coverage but different source positions.
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Figure 4.3: Loss curves for the training sessions with noiseless (purple), noisy
(red), and white noise (orange) input data. Loss values against the number of
epochs are shown for training and validation separately.

4.4 Layer Insights
The following chapter gives an insight into the functions of different model layers trained on
noiseless data. For this purpose, a test image is sent through one block after the other, and
the respective output images are displayed graphically. Here, only the convolutions are taken
into account, and operations like batch norms and activations are dropped. The expectation is
that with increasing network depth, the images will be filled up to the edges. Step by step, the
available information from the convolutions is used to generate estimates for the frequels with
missing information. Figure 4.4 shows a schematic illustration of the reconstruction process.

The insights into the different output stages reveal that the model is predicting reasonable
values for frequels up to the edges with increasing depth. Already the output of the PreBlock
has filled up values to the edge of the image. These values occur due to the learned bias, which is
added to the output after the convolutional layer. Still, the shown illustration represents only one
channel. Especially the convolution inside the FinalBlock, where 64 input channels contribute
to the output channels for amplitude and phase map, the most remarkable improvement takes
place. To give an overview of the outputs for all channels would go beyond the scope of this
work.
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Figure 4.4: Schematic illustration of the reconstruction of missing information
inside the deep learning model for one channel. The (9 × 9) convolution on the
left demonstrates how frequels with sampled information serve to find values for
frequels without information. The displayed extract (dark blue) originates from
the central region of the incomplete amplitude map shown in the middle. Unknown
frequels do not contribute to the output of the first convolution as they have a value
of zero. The light-blue highlighted area indicates the reconstruction process after
the different model stages. The model predicts reasonable values for frequels up to
the edges with increasing depth. For better visualization, all displayed images are
rescaled to values between zero and one.
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Deep Learning-based Cleaning 5
“What he was in FACT doing was moving the dirt around with a broom,
to give it a change of scenery and a chance to make new friends.”

— Terry Pratchett, Maskerade

An essential task when analyzing radio interferometer observations is cleaning the data before it is
science ready. The raw inverse Fourier transform is called a dirty image for a reason. Sometimes
the dirt is difficult to distinguish from the sources’ emissions. For this reason, the inexperienced
analyst is not protected from cleaning artificial sources into the final sky distributions. Since the
goal is reproducible science whose results are independent of the analyst’s experience, the idea of
a machine-learning-based analysis emerged. The ability of deep learning algorithms to analyze
image data quickly makes them an ideal tool for cleaning observations of radio interferometers.
This chapter’s trained deep learning models are applied to dedicated test sets to assess their
reconstruction ability.

5.1 Reconstruction of Visibility Data and Source Distributions

After training, the deep learning models are suitable for reconstructing missing information in
the Fourier space. The example source from Section 3.1 is analyzed visually for a first evaluation
of the reconstruction quality. For this analysis, the reconstructed distributions are visualized
side by side. Additionally, the difference between reconstruction and simulated truth highlights
areas with reconstruction problems. This way, issues can be identified, and a general impression
of the reconstruction quality arises. The following shows the example source for the noiseless,
noisy, and white noise input data. A summary of the exact characteristics of the three data sets
was given in chapter Section 3.6.

In the next step, the reconstructed amplitude and phase distributions can be used to create a
clean image of the radio galaxy. First, the scaling from equation (3.9) is undone, and the values
are transformed into complex numbers with real and imaginary parts using Euler’s formula. The
reconstructed clean image in local space is obtained by applying the inverse Fourier transform.
Again, reconstruction, simulated truth, and the difference between both are displayed next
to each other for a visual comparison. Furthermore, the viewing angle for the reconstructed
and the simulated source distribution is determined to compare them. The viewing angle is
determined by applying a Principal Component Analysis (PCA) [93]. A PCA searches for a new
basis in the two-dimensional images. The corresponding one-dimensional projection maximizes
the information contained inside the image. In the case of radio galaxies, this projection runs
directly through the sources’ jet axis, revealing the source’s jet orientation. After determining
the covariance matrix, eigenvalues and eigenvectors of this matrix are calculated. Finally, the
tangent relation is utilized to compute the orientation angle of the radio galaxy. Comparing
the reconstructed source distribution’s value with the one for the simulated source distribution
illustrates the reconstruction offset. The results for the example source are again shown for all
three data sets.
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Figure 5.1: Reconstruction of amplitude and phase maps using a model trained
on noiseless input data. Visualization of prediction (left), simulated distribution
(middle), and the difference between both (right). Results are shown separately for
amplitude distributions (top) and phase distributions (bottom).

Noiseless Input Data

Figure 5.1 shows the reconstruction generated by the neural network trained on noiseless input
data. The figure is split into amplitude (top) and phase distributions (bottom). The first, second,
and third columns visualize prediction, simulated truth, and the difference between prediction
and truth, respectively. Analyzing the difference between predicted and simulated amplitude
reveals a good agreement with maximum deviations amounting to around 2 %. These maximum
deviations occur at the edges of the amplitude distributions. The same is valid for the phase
distribution reconstructions.

This conformity between prediction and truth directly translates to the clean image shown
in Figure 5.2. Again, the figure is separated into three columns: prediction (left), simulation
(middle), and the difference between prediction and simulation (right). The difference between
predicted and simulated source brightness distribution indicates a reasonable reconstruction of
the radio galaxy’s small and large-scale features. All simulated source components are visible in
the reconstructed source distribution. Still, their brightness is slightly underestimated, which
is valid for the entire source region, leading to deviations around 3%. Additionally, the jet
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Figure 5.2: Reconstruction of the source distribution generated with the predicted
amplitude and phase distributions for noiseless input data. Resulting clean image
(left), simulated brightness distribution (middle), and the difference between both
(right). The jet orientation 𝛼, calculated using a PCA, is given for both recon-
structed (𝛼 = 26.50°) and simulated source distributions (𝛼 = 26.53°) leading to
an offset of −0.03°.

orientation is restored correctly. The slight offset of −0.03° between simulated and reconstructed
source jet orientation underlines this result.

Noisy Input Data

A visual analysis of the reconstructed amplitude and phase distributions generated with noisy
input data, illustrated in Figure 5.3, shows that the results hardly differ from those generated
with noiseless input data. Here, too, the amplitude is slightly underestimated. The maximum
deviation is about 5 % for the amplitude and 15 % for the phase.

When transforming the reconstructed distribution into local space, a minor influence of the
additional noise is recognizable in the cleaned source image shown in Figure 5.4. Here, the
brightness is underestimated, with slightly higher deviations than in the case of the noiseless input
data, while the core component is overestimated. The source’s jet orientation reconstruction
worked successfully with a difference of 0.77°, which is 25 times the amount compared to the
case with noiseless input data.

White Noise Input Data

For the third case, besides the noise in the image space, additional white noise was added to the
visibility space. This noise corruption is expected to complicate the reconstruction of the data
further. That this assumption is invalid for the shown example is directly recognizable when
looking at the reconstructed source distribution shown in Figure 5.5. The reconstructed source
orientation deviates in the same order of magnitude as for noisy input data. The offset is 0.63°.
Furthermore, no increase in artifacts in the counter jet direction is visible compared to the ones
in the images generated with noiseless and noisy input data. Again, an underestimation of the
source brightness is visible.
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Figure 5.3: Reconstruction of amplitude and phase maps using a model trained
on noisy input data. Visualization of prediction (left), simulated distribution
(middle), and the difference between both (right). Results are shown separately for
amplitude distributions (top) and phase distributions (bottom).

Table 5.1: Comparison of the reconstruction results for the example source with
different input data types.

Input type Amplitude Phase Source Brightness
diffmax diffmean diffmax diffmean diffmax diffmean

noiseless 0.02 0.01 ± 0.01 0.31 0.02 ± 0.02 0.004 0.0003 ± 0.0001
noisy 0.05 0.01 ± 0.01 0.38 0.08 ± 0.07 0.010 0.0005 ± 0.0011
white noise 0.05 0.01 ± 0.01 0.38 0.07 ± 0.06 0.008 0.0005 ± 0.0010

Note: diffmax and diffmean denotes the maximal and mean absolute difference between
prediction and simulation for the amplitude, phase, and source brightness distributions.
Shown values are in arbitrary units.
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Figure 5.4: Reconstruction of the source distribution generated with the predicted
amplitude and phase distributions for noisy input data. Resulting clean image (left),
simulated brightness distribution (middle), and the difference between both (right).
The jet orientation 𝛼, calculated using a PCA, is given for both reconstructed
(𝛼 = 27.31°) and simulated source distributions (𝛼 = 26.53°) leading to an offset
of 0.77°.
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Figure 5.5: Reconstruction of the source distribution generated with the predicted
amplitude and phase distributions for white noise input data. Resulting clean
image (left), simulated brightness distribution (middle), and the difference between
both (right). The jet orientation 𝛼, calculated using a PCA, is given for both
reconstructed (𝛼 = 27.16°) and simulated source distributions (𝛼 = 26.53°) leading
to an offset of 0.63°.
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Figure 5.6: Reconstruction of amplitude and phase maps using a model trained
on white noise input data. Visualization of prediction (left), simulated distribution
(middle), and the difference between both (right). Results are shown separately for
amplitude distributions (top) and phase distributions (bottom).

Table 5.2: Overview of the parameter settings utilized to create the clean images
using WSCLEAN

Parameter Setting

size 64 pixels
scale 1.25 masec
mgain 0.1
gain 0.01
niter 50 000
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5.2 Comparison to Established Cleaning Software

More significant deviations between predictions and simulations are also noticeable in the
amplitude and phase distributions illustrated in Figure 5.6. Here, the reconstruction quality
for the amplitude distribution decreases significantly, as, from the previous examples, known
underestimations at the edges extend further to the inner regions. Contrary, this decrease is not
visible in the phase distribution.

Comparison

After the visual investigation, the reconstruction quality of the presented example predictions
becomes more quantitative. Therefore, the absolute difference between prediction and simulation
is analyzed. The maximum and mean values for absolute amplitude, phase, and source brightness
difference are calculated for the example with noiseless, noisy, and white noise input data.
Table 5.1 summarizes the results. The values for noisy and white noise input data do not differ
much. Values are slightly higher than the ones for the noiseless data example. The maximum
amplitude difference doubles when not using noiseless data. In the case of the phase, the maximum
difference stays in the same range for all three cases. The decrease in reconstruction ability for
noisy and white noise input data is visible when looking at the phase’s mean difference, which is
four times higher than for the noiseless input data. All in all, deviations are small, strengthening
the visual inspection results. Although the results for amplitude and phase distributions are
slightly getting worse, this has no significant effect on the reconstructed source distribution.
Advanced evaluation techniques have to be applied to get a more profound overview. Therefore,
more detailed evaluations using different metrics on a complete test data set will be presented in
Chapter 6.

5.2 Comparison to Established Cleaning Software
Comparing the reconstruction results with those of established cleaning software allows for
highlighting the pros and cons of the developed neural network approach. To generate a data set
suitable to be analyzed with WSCLEAN, the one from Section 3.1 is used as a basis. Afterward,
it is preprocessed as described in Section 3.4. As WSCLEAN cannot read FITS files, a conversion
into measurement set format using Common Astronomy Software Applications (CASA) [19]
is necessary. Therefore, the casa importuvfits task is utilized. In the next step, the resulting
visibility data can be cleaned utilizing WSCLEAN with the cleaning parameters summarized
in Table 5.2. The obtained clean images of the radio galaxies are convolved with the clean
beam of the observation, compare Section 1.5. This convolution is crucial because WSCLEAN
iteratively subtracts point sources from the data and thus creates a source model. The point
source model is then convolved with the beam of the best possible resolution to generate the
reconstructed source distribution. The clean beam is irrelevant for the neural network models
since reconstruction occurs in Fourier space. Also, in the case of the deep learning model, the
FITS files must be converted before they can be reconstructed. The gridder implemented in
the pyvisgen package is applied for this task. Afterward, the incomplete amplitude and phase
maps are reconstructed utilizing the deep learning model trained on noiseless data. Figure 5.7
visualizes the radionets reconstruction, the simulated source distribution, and the clean image
generated using WSCLEAN. Both reconstructions match the simulated source distribution
well. Additionally, the reconstructed jet orientation slightly differs from the simulation. The
WSCLEAN reconstruction shows increased background noise, which is not present in the
radionets reconstruction, although the model was not trained on gridded data. Section 6.3
provides a more quantitative comparison between the radionets and WSCLEAN reconstructions.

39



5 Deep Learning-based Cleaning

0 20 40 60
Pixels

0

10

20

30

40

50

60

P
ix

el
s

radionets
𝛼 = 25.43 deg

0 20 40 60
Pixels

Simulation
𝛼 = 26.53 deg

0 20 40 60
Pixels

WSCLEAN
𝛼 = 24.58 deg

0.02 0.04 0.06 0.08
Source intensity / a.u.

Figure 5.7: Reconstruction of the source distribution generated with the predicted
amplitude and phase distributions of the deep learning model trained on noise-
less data (left), simulated brightness distribution (middle), and the clean image
generated using WSCLEAN. In the case of WSCLEAN, the clean beam is shown
in the lower left corner. The jet orientation 𝛼, calculated using a PCA, is given
for the radionets reconstruction (𝛼 = 25.43°), the simulated source distributions
(𝛼 = 26.53°), and the WSCLEAN reconstruction (𝛼 = 24.58°).
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Reconstruction Evaluation 6
“You don’t have to test everything to destruction just to see
if you make it right.”

— Terry Pratchett and Neil Gaiman, Good Omens

Generally, the reconstruction quality of deep learning models can not be judged only by looking
at single source distributions. A more sophisticated method is needed to see if the deep learning-
based reconstruction works fine. Of course, we can only test some aspects in the smallest detail.
Therefore, the approach is to predefine clear benchmarks and test the developed models on a
dedicated test data set to get an estimate of the goodness of the reconstructions.

In the context of this thesis, three evaluation methods were developed for the radionets
framework in close collaboration with Felix Geyer. These methods test the reconstruction
performance in the context of the source areas, jet orientations, and the core component’s mean
intensity.

6.1 Evaluation Techniques
Advanced evaluation methods were developed to assess the reconstructions in more detail using
the deep learning models. These are also used to compare the neural network-based methods
with the established cleaning method WSCLEAN. Three methods were implemented to quantify
the reconstruction quality and applied to a test data set of 10 000 images. The default evaluation
configuration is shown in Appendix 4.

Source Area Ratio

Correct reconstruction of the radio galaxy’s morphology is essential when cleaning radio interfer-
ometric data. An underestimation or overestimation of the source area is unwanted. The source
area ratio between the reconstructed and true source area is calculated to get a statement on
an extensive test data set. The first step defines a source boundary of 10 % of the peak flux.
Afterward, the source area is calculated using the Leibnitz sector formula [130]. The Leibniz
sector formula describes the connection between the path integral and the enclosed area. The
contour line determines the enclosure of the source through matplotlib. Then the path integral is
approximated numerically. Finally, the Leibnitz sector rule yields the searched area. A statement
about the reconstruction quality can be made by comparing the true and the reconstructed area.
For an ideal reconstruction, the ratio is one. Lower values indicate an underestimation of the
area, while higher values indicate an overestimated area. This evaluation method shows if the
reconstructed source distributions have many background artifacts. Images with reconstruction
errors show lesser flux in the source area. At the same time, there appear more background
artifacts in these cases. Figure 6.1 illustrates the distributions of the source area ratios for the
deep learning models with different noise levels. The distributions for the deep learning model
trained on noiseless (purple), noisy (red), and white noise (orange) input data match in height
and location. All three distributions peak at a mean value of ≈ 1, representing the optimal value
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Figure 6.1: Histogrammed source area ratios. Results for the deep learning
model trained on noiseless data (purple), noisy data (red), and white noise data
(orange) are displayed. Mean and standard deviation help to compare the three
distributions.

for the source area ratio. With increasing complexity, the standard deviation of the distributions
increases as expected. The bin at zero indicates that some source reconstructions fail. This
amount is low for all three data types. The deviations between predicted and simulated source
areas result in mean and standard deviations of 1.00 ± 0.13 (noiseless), 1.02 ± 0.14 (noisy), and
0.97 ± 0.17 (white noise).

The excellent agreement for the reconstruction results obtained for the model trained on
noiseless and noisy input data indicates that the architecture reaches the same reconstruction
level for both input types.

Source Orientation Offset

In Chapter 5, it was shown that the evaluation of source orientation helps to investigate the
reconstruction quality of the trained deep learning model. The difference between reconstructed
and true source orientation, called orientation offset, is shown for the test data set in Figure 6.2.
Histogrammed distributions are illustrated for the different deep learning models trained on
noiseless (purple), noisy (red), and white noise (orange) input data. Again, all three distributions
generated from the deep learning-based results match well, supported by the mean and standard
deviations of (0.07 ± 0.68)° (noiseless), (0.14 ± 1.00)° (noisy), and (0.04 ± 1.08)° (white noise).
While the mean values do not differ significantly, an increase in the standard deviation is visible
with the increasing complexity of the input data. The slight deviation from the optimal offset of
zero indicates an excellent source orientation reconstruction of the deep learning models.
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Figure 6.2: Histogrammed source orientation offsets. Results for the deep learning
model trained on noiseless data (purple), noisy data (red), and white noise data
(orange) are displayed. Mean and standard deviation help to compare the three
distributions.
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Figure 6.3: Histogrammed mean source intensity deviation for the sources’ core
components. Results for the deep learning model trained on noiseless data (purple),
noisy data (red), and white noise data (orange) are displayed. Mean and standard
deviation help to compare the three distributions.
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Table 6.1: Overview of the mean results of the three evaluation methods with
clean, noisy, and white noise input maps. The part in the middle gives a summary
of input maps with different mask filling. Furthermore, results generated with
WSCLEAN and on a gridded data set are presented in the lower part.

Model type Orientation offset / ° Brightness deviation / % Area ratio

Noiseless 0.07 ± 0.68 4.57 ± 7.42 1.00 ± 0.13
Noisy 0.14 ± 1.00 10.78 ± 14.06 1.02 ± 0.14
White noise 0.04 ± 1.08 −5.36 ± 15.19 0.97 ± 0.17

Sampling Density

10 % 0.26 ± 1.52 −13.35 ± 17.41 0.74 ± 0.18
30 % 0.07 ± 0.71 10.95 ± 9.86 1.01 ± 0.11
50 % 0.15 ± 0.72 12.54 ± 9.27 1.02 ± 0.11
70 % −0.03 ± 0.90 25.44 ± 14.09 1.06 ± 0.13

RIME simple −4.19 ± 6.01 89.48 ± 92.06 1.33 ± 0.69
WSCLEAN −4.43 ± 6.74 13.66 ± 76.35 1.82 ± 1.24

Note: A new training set is used for different noise models. The data sets consist of 50 000
training maps, 10 000 validation maps, and 10 000 test maps. We do not train a new
model for different sampling densities but create dedicated test data sets consisting of
10 000 test maps. The evaluation is done using the deep learning model trained on noiseless
input data. The results created with WSCLEAN and the gridded data set were calculated
using 1000 test maps. The gridded data set was evaluated with the deep learning model
trained on noiseless data.

Mean Specific Intensity Deviation

The core component’s mean specific intensity is examined by the third method. First, the
source’s components are determined using the blob detection from scikit-image [129]. Then
the intensity of the brightest component is averaged. In the case of the simulated radio galaxies,
the brightest component is the core component of the source. Finally, the flux values are
compared, and the deviation between reconstruction and simulation is calculated. Figure 6.3
illustrates the histogrammed results for the different models. The deep learning-based models’
results differ a bit for this evaluation method. While the models trained on noiseless and noisy
input data tend to overestimate the reconstructed mean brightness, it is underestimated by the
model trained on white noise data for most cases. These characteristics can also be seen from the
mean and standard deviations of 4.57 ± 7.42, 10.78 ± 14.06, and −5.36 ± 15.19 for the models
trained on noiseless (purple), noisy (red), and white noise (orange) input data, respectively. As
before, the standard deviation increases with the advanced complexity of the input data.

6.2 Influence of Sampling Densities

The upper part of Table 6.1 summarizes the results of the evaluation techniques introduced in
Section 6.1 for the deep learning models trained on noiseless, noisy, and white noise input data.
These data have a (𝑢, 𝑣) coverage of around (25 ± 2) %. The exact values are summarized in
Section 3.6. Besides the observation length, the radio interferometer’s orientation to the source
position influences the sampling density.

To evaluate the influence of the input data’s sampling density on the reconstruction ability of
the deep learning model, data sets with different sampling densities were generated and evaluated
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Figure 6.4: (𝑢, 𝑣) coverage for a simulated
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Figure 6.5: Histogrammed (𝑢, 𝑣) coverages for the four different data sets. The
aim was to reach a 10 %, 30 %, 50 %, and 70 % (𝑢, 𝑣) coverage for the input maps.
Mean and standard deviations help to validate the results.

by applying the model trained on noiseless input data. The tested sampling densities are 10 %,
30 %, 50 %, and 70 %. Such high densities were only achievable by introducing the multi-channel
option for the sampling mask generation. This option enables the simulation of several frequency
channels, which increases the (𝑢, 𝑣) coverage of the simulated observation. Figure 6.4 illustrates
the improved (𝑢, 𝑣) coverage on the example of a simulation with four frequency bands. Here,
the number of samples was increased by a factor of four. However, most of the samples result in
more information collected per frequel, which increases the sensitivity in actual observations as
the signal-to-noise ratio is improved.
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Figure 6.6: Histogrammed mean source brightness deviation for the sources’ core
components. Results for the deep learning model trained on noiseless data for
input data with 10 %, 30 %, 50 %, and 70 % (𝑢, 𝑣) coverages of the input maps.
Mean and standard deviation help to compare the four distributions.

This effect on the signal-to-noise ratio is neglectable in the case of sampling mask-based
simulations. A highly increased number of channels is essential to generate data sets with
(𝑢, 𝑣) coverages of 50% and higher. Additionally, the simulated observation length has to be
increased. As source positions are chosen randomly, resulting sampling masks and, thus, resulting
(𝑢, 𝑣) coverages differ. Here, the aimed sampling densities of 10 %, 30 %, 50 %, and 70 % are
mean values for the different data sets. An overview of the exact sampling densities is given in
Figure 6.5. When comparing these (𝑢, 𝑣) coverages with the ones of the noiseless data set, see
Figure 3.7, it becomes clear that their standard deviations are minor for all but the 50 % data
set. Therefore, the spread of (𝑢, 𝑣) coverages is not expected to cause a performance decrease
when the noiseless model gets applied to the data. The lower part of Table 6.1 summarizes the
reconstruction results evaluated with the methods introduced in this chapter. The distributions’
mean and standard deviations show that the reconstruction quality is correlated with the mask
fillings. This correlation becomes especially clear when looking at the mean brightness deviation.

When only a little information is available in the input maps, the brightness of the sources’
core component is mainly underestimated. Generally, the brightness reconstruction ability of the
model is decreased for this input data leading to the distribution shown in Figure 6.6. The mean
and standard deviation calculated on the evaluation of 10 000 test sources is (−13.35 ± 17.41) %.
In the case of a higher (𝑢, 𝑣) coverage than the one trained on, an overestimation of the core
component’s brightness occurs.

This overestimation increases with increasing (𝑢, 𝑣) coverage, which is also shown in Figure 6.6.
The mean and standard deviation for the distributions generated with 30 %, 50 %, and 70 % (𝑢, 𝑣)
coverage data sets are (10.95 ± 9.86) %, (12.54 ± 9.27) %, and (25.44 ± 14.09) %, respectively.

The histogrammed source area ratios visualized in Figure 6.7 indicate a performance decrease
for the data set with a 10 % (𝑢, 𝑣) coverage. Here, the mean area ratio is 0.74 ± 0.18. Input data
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four distributions.
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with increased (𝑢, 𝑣) coverages seem not to influence this evaluation technique as the mean and
standard deviation of 1.01 ± 0.11, 1.02 ± 0.11, and 1.06 ± 0.13 for a 30 %, 50 %, and 70 % (𝑢, 𝑣)
coverage, respectively, do not differ significantly. Additionally, they are in the same order as the
results calculated with noiseless input data; see Table 6.1.

Finally, the source orientation offset is examined in Figure 6.8. Input data with 10 % (𝑢, 𝑣)
coverage slightly underperforms with a mean and standard deviation of (0.26 ± 1.52)° compared
with (0.07 ± 0.71)°, (0.15 ± 0.72)°, and (−0.03 ± 0.90)° for input data with 30 %, 50 %, and 70 %
(𝑢, 𝑣) coverage, respectively. Still, the deviation is minimal for all four cases. Again, the results
are in the same range as the ones for the model evaluation with noiseless input data.

6.3 Comparison with WSCLEAN
In order to compare the deep learning approach with established cleaning software, a simulated
data set consisting of visibilities was generated; see Section 3.4. Here, a simple RIME formulation
simulates the uncorrupted visibilities of the antenna pairs in the interferometer array, which are
then saved in FITS format. The exact formula can be found in equation (3.8). Additionally,
a post-processing of the FITS files is implemented as WSCLEAN uses measurement sets (ms)
as input format. The conversion is performed using the casa importuvfits task. Afterward,
WSCLEAN runs with the cleaning parameters summarized in Table 5.2 to evaluate a test set
consisting of 1000 images.

In parallel, the simulated visibilities are gridded with the implementation inside the pyvisgen
package. This way, 1000 amplitude and phase maps were generated. They are reconstructed using
the deep learning model trained on noiseless data. By applying the inverse Fourier transform,
reconstructed source distributions are obtained.

As the next step, the evaluation methods are used to inspect and compare the results for
both cleaning approaches. For all three methods, the overall performance is worse than for the
previously described results in this chapter. Figure 6.9 visualizes the histogrammed source area
ratios. While the distribution for the radionets approach peaks at 1.25, no specific peak can be
found in the distribution for WSCLEAN. This result indicates that WSCLEAN has problems
handling the different (𝑢, 𝑣) coverages in the test data set. Furthermore, the cleaning settings
are not optimized for the different visibility sets, which is usually done when analyzing actual
observations. Such parameter optimization by hand is not feasible for a data set consisting of
1000 sources. Therefore, a compromise with fixed parameter settings must be found for cleaning
the complete data set, leading to a mean and standard deviation of 1.33 ± 0.69 and 1.82 ± 1.24
for radionets and WSCLEAN, respectively.

The main problem with the RIME data is the wide variety of maximum resolutions for the
different simulations. When gridding radio interferometer data, the maximum resolution has
to be considered to achieve the best possible results. Here, a field of view of 85 m″ is chosen
for all clean images, and no individual adjustment is performed. Thus, in the cases where long
baselines are excluded in the simulations, the pixels are chosen smaller than the maximum
resolution of this measurement. This incorrect choice leads to edge effects and reconstruction
errors. Furthermore, the (𝑢, 𝑣) coverage differs more than in the other data sets; see Table 3.1.
For the RIME simulations, the mean (𝑢, 𝑣) coverage is (29.78 ± 13.38) %. For the source area
ratio, these effects are more noticeable in the case of wsclean. The evaluation with radionets is
more robust against the resolution differences in the data.
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Figure 6.9: Histogrammed source area ratios. Results for the deep learning model
trained on noiseless data evaluated on the gridded RIME data set (purple) and
results generated with WSCLEAN (red). Mean and standard deviation help to
compare the distributions.
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Figure 6.10: Histogrammed source orientation offsets. Results for the deep
learning model trained on noiseless data evaluated on the gridded RIME data
set (purple) and results generated with WSCLEAN (red). Mean and standard
deviation help to compare the distributions.
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6 Reconstruction Evaluation
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Figure 6.11: Histogrammed mean source brightness deviation for the sources’
core components. Results for the deep learning model trained on noiseless data
evaluated on the gridded RIME data set (purple) and results generated with
WSCLEAN (red). Mean and standard deviation help to compare the distributions.

When analyzing the sources’ jet orientation offsets, a systematic negative offset is apparent.
Figure 6.10 gives an overview of the histogrammed values, visualizing the larger tail of the
distribution towards negative values. As this tail occurs for both reconstruction methods, a
connection to the gridding of the data is expected. Further analyses have to be performed to find
the exact explanation. The mean and standard deviation is (−4.19 ± 6.01)° for the radionets
results and (−4.43 ± 6.74)° for the WSCLEAN results.

The histogrammed values of the mean specific intensity deviation of the sources’ core compo-
nents are shown in Figure 6.11. Here, different results are apparent for radionets and WSCLEAN
reconstructions. For WSCLEAN, the mean intensity of a considerable amount of core components
is underestimated. The distribution peaks at around −30 %, and the mean and standard deviation
are (13.66 ± 76.35) %. The wide range of values causes this extensive standard deviation. In
the case of radionets, the mean intensity of the core components is overestimated for most of
the test sources. The distribution peaks at around 50 %, and the mean and standard deviation
are (89.48 ± 92.06) %. Therefore, the reconstructed intensities are worse for the deep learning
approach.

These evaluations do not take into account the occurrence of background structures which
are more common in reconstructions with WSCLEAN. Observing random samples has shown
that the reconstruction of one-sided jets results in better reconstructions than those of two-sided
jets. When considering the presented comparison, one must remember that WSCLEAN is not
developed to analyze small images with (64 × 64) pixels. Furthermore, the deep learning model
was not trained on gridded visibility data but on data generated using the sampling mask method.
Finally, a deep dive into the world of gridding radio interferometer data is essential in the future.
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6.4 Execution Times

Table 6.2: Comparison of run-times to reconstruct the data with our trained
radionets neural network model for (64 × 64) pixels, (128 × 128) pixels, and
(256 × 256) pixels images

Image size / pixels radionets run-time / s Evaluation run-time / ms

64 2.00 ± 0.04 2.0 ± 0.1
128 2.01 ± 0.03 6.4 ± 0.1
256 2.24 ± 0.07 41.7 ± 0.2

Note: The programs are run 100 times on one image. The presented values are the mean
run times with standard deviations. radionets run-times are pure deep learning model
reconstruction times. Evaluation run-times include data loading, model loading, and data
saving.

6.4 Execution Times
In the context of deep learning applications, fast execution times are an advantage over classical
analysis strategies. A run-time analysis is done for (64 × 64) pixels and (128 × 128) pixels images
to classify the execution times of the developed models in this work. Although the training time
of 14 h is long compared to conventional analysis methods, the application to data sets can be
performed very quickly without adjusting additional parameters in the case of the developed
deep learning models. Table 6.2 summarizes the run times for the model trained on noiseless
data. The reconstruction was performed 100 times on the same test image. Afterward, the mean
run times and standard deviations were computed. The run times are split for using the whole
radionets framework, where packets and data are loaded, and for the pure application of the
deep learning model. It becomes clear that the pure application of the model is swift. The
mean evaluation for (64 × 64) pixels images takes (2.0 ± 0.1) ms, while the mean evaluation for
(128 × 128) pixels images increase by a factor of three, resulting in (6.4 ± 0.1) ms. Applying the
complete framework, without preloaded packages, preloaded data, and saving the results takes
around (2.00 ± 0.04) s for both image sizes. For (256 × 256) pixels images, the evaluation time is
still short, although the number of pixels increases by a factor of four. Here, the pure evaluation
takes (41.7 ± 0.2) ms, and the application of the whole framework requires (2.24 ± 0.07) s. Even
for larger image sizes, the short application times of the deep learning model do not significantly
affect the execution times. These fast application times make the developed neural network
approach ideal for cleaning many similarly obtained data sets like the ones in sky surveys. In
order to validate this, the radionets framework will be used to reconstruct source images from
the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey [6] in a follow-up project.
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Advanced Analysis 7
“…it is well known that a vital ingredient of success is not knowing that
what you’re attempting can’t be done.”

— Terry Pratchett, Equal Rites

When the idea of deep learning-based imaging was new, the feedback after talks and discussions
was often pessimistic. People did not believe neural networks were suitable for reconstructing
radio interferometer data. Forgetting voices that do not believe in the approach and cooperation
with supportive people made it possible to create radionets. The previously presented results
reveal that a deep learning-based approach can generate clean images of simulated source
distributions. This success is the first step towards a straightforward cleaning software that
produces reproducible results. With advanced analysis strategies, the possibilities for applying
the developed models to actual observation data are tested and further improved. Moreover, the
capability to provide uncertainty estimates is examined.

7.1 Mixed Source Types
To further investigate the reconstruction capabilities of the deep learning model, a model is
trained on a data set with mixed source types; see Section 3.5. In addition to the extended
sources, which are no longer in the center of the images, additional point sources are added. The
training is performed on a data set consisting of 50 000 train, 10 000 valid, and 10 000 test maps.
More detailed information about the data set is given in Section 3.6. The model is trained for
300 epochs; the corresponding loss curve is displayed in Figure 7.1. During the first 140 epochs,
the validation loss spikes. Then a significant drop occurs, indicating that the algorithm left a
local minimum. Afterward, the training is smoother, and validation loss spikes are smaller than
before.

Figure 7.2 shows an exemplary amplitude and phase reconstruction. While the amplitude
reconstruction worked for the complete map, the upper and lower edges are not reconstructed for
the phase. Still, frequels that are successfully reconstructed for the phase match the simulated
values well. Overall, the differences between reconstruction and simulation are higher than in
the previous chapter, which can be connected to the more complex distributions. Figure 7.3
visualizes the corresponding source reconstruction. Both extended and existing Gaussian point
sources are visible in the cleaned image.

For an evaluation of more test images, a data set with 10000 test sources are used, and the
mean source intensity is evaluated, similar to Section 6.1. Figure 7.4 shows the histogrammed
values split into the point-like Gaussians (purple) and extended sources’ core components (red).
For both source types, the intensity is mainly underestimated. Both distributions peak around
−25 %. No significant overestimation occurs for the extended sources, so the distribution’s mean
and standard deviation is calculated to (−22.79±14.37) %. In the case of the point-like Gaussian
sources, more intensity overestimations take place, leading to a mean and standard deviation of
(−17.75 ± 22.23) %.
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Figure 7.1: Loss curves for the training sessions with mixed source types input
data. Loss values against the number of epochs are shown for training and validation
separately.
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Figure 7.2: Reconstruction of a model trained on mixed source types. Visualization
of prediction (left), simulated distribution (middle) and the difference between
both (right). Results are shown separately for amplitude distributions (top) and
phase distributions (bottom).
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7.1 Mixed Source Types
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Figure 7.3: Reconstruction of the source distribution generated with the predicted
amplitude and phase distributions for noisy input data. Resulting clean image
(left), simulated brightness distribution (middle), and the difference between both
(right).
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Figure 7.5: The relation between linear extent and mean source intensity deviation
(left) split into point-like Gaussian sources (purple) and extended Gaussian sources’
core components (red). By visual inspection, no correlation between mean intensity
deviation and linear extent is visible. The relative deviation between predicted
and simulated mean intensity for different intensity levels (right) visualizes a static
increase towards higher intensities. The mean values are shown for the different
intensity bins. The bin width is illustrated by the 𝑥 error bars. The standard
deviation of the relative deviation is represented by the 𝑦 error bars.

Additionally, a connection between the linear expansion of the sources and the mean intensity
deviation is investigated. Their standard deviation determines the point sources’ linear extent.
The distance of the most separated components and their standard deviation for the extended
sources is used. Figure 7.5 shows the mean intensity deviation against the linear extend on the
left for point-like Gaussian sources (purple) and extended Gaussian sources (red). While the
extended Gaussian sources are generally underestimated, the point-like Gaussian sources have
more outliers where an overestimation occurs. Still, the majority of point-like Gaussian sources’
intensity is underestimated. The visual inspection suggests no correlation between linear extent
and mean intensity deviation.

The relative deviations for different intensity bins are examined and presented in Figure 7.5 on
the right to get a more detailed insight into the reconstructed intensities. For lower intensities,
the difference between predicted and simulated mean intensity is around −18 %. With increasing
mean intensity, the relative deviations also increase as expected from Figure 7.4. The standard
deviation is in the same order of magnitude for all intensity bins except for the first and the last
bin.
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Figure 7.6: Loss curves for the training sessions with new source shapes input data.
Loss values against the number of epochs are shown for training and validation
separately.
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Figure 7.7: Reconstruction of a model trained on new source shapes. Visualization
of prediction (left), simulated distribution (middle) and the difference between
both (right). Results are shown separately for amplitude distributions (top) and
phase distributions (bottom).
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Figure 7.8: Reconstruction of the source distribution generated with the predicted
amplitude and phase distributions for new source shapes data. Resulting clean
image (left), simulated brightness distribution (middle), and the difference between
both (right).

7.2 New Source Shapes

The source shapes presented in Section 3.1 allow for testing the deep learning-based imaging
approach. Improvements are necessary to create simulated source distributions that better
describe reality, which is essential to reconstruct actual radio interferometer observations. For
this reason, a new model is trained for 300 epochs on a data set made from the advanced source
shapes described in Section 3.5. Figure 7.6 visualizes the loss curve for this training. First, the
validation loss shows large spikes following a flat decrease until epoch 90. Here, the model seems
to leave a local minimum, and the loss is halved during the next 30 epochs. A smooth decrease
with only minor spikes is visible for the rest of the training.

Figure 7.7 illustrates an exemplary amplitude and phase reconstruction for the new shapes
data set. Reconstructed and simulated amplitude (top row) show slight deviations. Only at the
edges does their difference increase. In the case of the phase (bottom row), the reconstruction
quality appears much worse at first look. Only the central values fit the simulation. Values at
the edges are underestimated. This underestimation occurs due to a separate weighting of the
different phase map areas during training. In the loss calculation, the central circular area with
a diameter of 30 frequels is weighted by a factor 10, while for the other frequels only unweighted
values are considered. This weighting is necessary as phase distributions for the new source
shapes show frequent jumps at the edges. These patterns are hard to learn for the deep learning
model at the training start. After some epochs, the central part is predicted well, and the model
reconstructs the edge patterns. Without the weighting, the models only learn to reconstruct the
amplitude distributions. The phase predictions are just empty.

The reconstructed source distribution is presented in Figure 7.8. The core component and jet
structure are reconstructed well. The intensity of the central source area is slightly overestimated.
No background structures are visible, indicating that lower phase values at the edges do not
restrain the reconstruction quality.

Validating the source area reconstruction on a test set consisting of 1000 samples helps to
give a more profound insight into the reconstruction quality of the model. Reconstructed and
simulated source areas are compared with the procedure described in Section 6.1. Figure 7.9
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Figure 7.9: Histogrammed source area ratios for the improved data sets. Figure
combines results from different sections. Results for the deep learning model
trained on new shapes data (purple), larger image sizes data (red), and white noise
data reconstructed with the uncertainty architecture (orange) are displayed. Mean
and standard deviation help to compare the three distributions.

shows the histogrammed source areas for the new shapes data set (purple). The distribution
of values is vast and has a broad peak around one. Still, many ratios are close to the optimal
value of one. Area ratios between 0.1 and 1.7 occur, leading to a mean and standard deviation
of 0.93 ± 0.38.

The comparison with the results from Chapter 6 shows a decrease in the reconstruction ability.
As expected, the improved source shapes are more difficult to reconstruct for the deep learning
model. Bent jets create more complex phase distributions. Furthermore, the intensity of the
jet components decreases much more towards the outer parts. These aspects make the Fourier
space reconstruction more problematic.

7.3 Fine-tuning Pretrained Deep Learning Models
A widespread and well-functioning approach when adjusting deep learning models to a specific
problem is fine-tuning an already pre-trained model. In the case of radio interferometry, it is
questionable whether a Residual Network (ResNet) trained on RGB-image data can bring a
performance boost. Nevertheless, fine-tuning is also a promising approach in the context of the
radionets models. In the following, the deep learning models trained on white noise data form
the basis for creating fine-tuned models capable of reconstructing mixed source types, larger
image sizes, and new source shapes data sets.

Independence of Image Sizes

One feature of the chosen architecture is that the size of the input images remains the same
throughout the network. The architecture is, therefore, independent of the image size. This
independence results in the advantage that a model can be trained on small image sizes for a
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Figure 7.10: Loss curves for the fine-tuning of the model trained on white noise
data with larger image size data. Loss values against the number of epochs are
shown for training and validation separately.
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Figure 7.11: Reconstruction of a model trained on mixed source types. Visualiza-
tion of prediction (left), simulated distribution (middle) and the difference between
both (right). Results are shown separately for amplitude distributions (top) and
phase distributions (bottom).
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Figure 7.12: Reconstruction of the source distribution generated with the predicted
amplitude and phase distributions for noisy input data. Resulting clean image
(left), simulated brightness distribution (middle), and the difference between both
(right).

long time in a resource-saving manner. A data set consisting of (128 × 128) pixels images is
created to test if a model trained on (64 × 64) pixels images can be fine-tuned to reconstruct
larger images; see Section 3.6. A larger field of view and a higher resolution is simulated for
these sources. The model trained on white noise data is fine-tuned for 20 epochs on 5000 train
and 1000 validation maps for 30 min. Figure 7.10 illustrates the loss curve for the fine-tuning.
The shown loss for epochs 280 to 300 belong to the training on the small images data set. The
following loss increase marks the beginning of the fine-tuning. A smooth decrease without spikes
is visible in the next 20 epochs.

Figure 7.11 shows the exemplary reconstruction of larger amplitude and phase maps. The
reconstruction quality of the amplitude (top row) is on the same level as the results presented
in Section 5.1. The phase (bottom row) is only reconstructed in the central part, which has no
significant effect on the reconstructed source distribution presented in Figure 7.12. Like in the
reconstructions of the smaller images, no background artifacts are visible, and the individual jet
components are reproduced well. Furthermore, the predicted source orientation fits the simulated
one with a slight offset of −0.34°.

Without fine-tuning, reconstructed source components show an overestimated specific intensity,
and more background artifacts occur. In conclusion, fine-tuning enables the adaption of an
existing model for a slightly new task with little effort.

Additionally, the source area ratio introduced in Section 6.1 is calculated on the test data
set consisting of 1000 test maps. The histogrammed values are visualized in Figure 7.9. The
distribution for the larger images data set (red) has its peak close to the optimal value of one.
Most of the area ratios lay between 0.7 and 1.4, leading to a mean and standard deviation
of 0.99 ± 0.16. The comparison with the results from Chapter 6 shows that fine-tuning is an
excellent way to adjust the model to a larger-image-sizes data set. The results can compete with
all previously presented area ratios.
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7.4 Uncertainty Estimate
Conventional imaging software cannot give a detailed uncertainty estimate for the cleaned images.
As their reconstruction quality depends on the (𝑢, 𝑣) coverage and quality of the input data,
resulting source distributions are only valid to a certain degree. For a scientific interpretation,
an additional uncertainty map is advantageous. The loss function must be adjusted to enable
uncertainty estimates with the developed deep-learning model. Therefore, the technique proposed
in Abbasi et al. (2021) [53] was an inspiration. When predicting the reconstructed amplitude
and phase maps, it is assumed that the values originate from a Gaussian distribution with the
parameters 𝜇 and 𝜎 for every pixel. The negative log-likelihood of a Gaussian distribution is

−ℒ = 2 log(𝜎) +
(𝑥 − 𝜇)2

𝜎2 , (7.1)

with the mean 𝜇 and the standard deviation 𝜎. This likelihood function forms the basis for
the new minimization function of the neural network. The adjustments proposed in [112] were
implemented for stability reasons. The final loss function, called 𝛽-NLL loss, has the form

L = 0.5 ⋅ (log(𝜎2) +
(𝑦 − 𝜇)2

𝜎2 ) , (7.2)

Loss = L ⋅ stop(𝜎2)𝛽 with 𝛽 = 0.5. (7.3)

Here, no longer the standard deviation, but the variance is estimated. A 𝛽 of 0.5 is chosen as
recommended in [112]. Tests performed by Olivia Locke confirm that this value is also well-suited
in the case of Fourier data reconstructions. In addition to the loss function, the architecture
must also be adjusted to enable uncertainty estimations. Besides the reconstructed amplitude
and phase map, an uncertainty map for amplitude and phase must be predicted. The base
architecture introduced in Section 4.2 stays mostly the same. Just the number of ResBlocks is
increased from 8 to 16.

An additional uncertainty architecture is added, which takes the predictions plus the initial
amplitude and phase maps as input. Figure 7.13 gives an overview of this uncertainty architecture.
The central part is the three ConvBlocks, which consist of a convolutional layer, a batch norm
layer, and a PReLU activation. Settings for the convolutional layer are kept similar to the ones in
the SRResNet. Stride and padding keep input and output sizes the same. A new feature here is
the increasing number of channels in each convolutional layer. The exact values are summarized
in Table 7.1. In the FinalBlock, a locally connected layer [119] processes the information of all
channels and creates two channels out of it. The convolutions do not take place in one channel
as previously described, but they are done on one frequel over all 64 channels. The result of this
layer is one map of amplitude uncertainty and one map of phase uncertainty. Finally, an ELU
function with an offset of (1 + 1 ⋅ 10−7) is applied to the values allowing only positive values
above 1 ⋅ 10−7 forming the variance maps 𝜎2. The chosen offset limits the minimum variance to
1 ⋅ 10−7 while it is unlimited upwards. While the prediction of the reconstruction architecture
serves as input for the uncertainty architecture, it is additionally bypassed to form the predicted
mean values 𝜇.

The improved architecture is trained on the white noise data set for 450 epochs. Training
duration does not increase significantly, as convolutions are fast on (64 × 64) pixels images.
Figure 7.14 visualizes the loss values for the training session. As a likelihood function is minimized,
negative values are allowed. After a sharp decrease, the loss asymptotically approaches the value
zero from the negative direction.
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Figure 7.13: Overview of the developed uncertainty architecture. Sampled
amplitude and phase maps and reconstructions of the SRResNet-based architecture
serve as input (left). The three ConvBlocks form the central part of the architecture.
After the FinalBlock, the predicted amplitude and phase uncertainty and the
bypassed reconstructions (right) are the output of the architecture.

Table 7.1: Detailed overview of the different blocks used in the uncertainty
architecture

Stage Layer 𝐶in 𝐶out Kernel Stride Padding

ConvBlock 1
Convolution 4 16 (3 × 3) 1 1
Batch Norm 16 16 - - -
PReLU 16 16 - - -

ConvBlock 2
Convolution 16 32 (3 × 3) 1 1
Batch Norm 32 32 - - -
PReLU 32 32 - - -

ConvBlock 3
Convolution 32 64 (3 × 3) 1 1
Batch Norm 64 64 - - -
PReLU 64 64 - - -

FinalBlock
Locally Connected 64 2 (1 × 1) 1 0
ELU+ 2 2 - - -

Note: For each layer, the number of input 𝐶in and output channels 𝐶out is given. In the
case of convolutional layers, the kernel size, stride, and padding are specified. An offset of
(1 + 1 ⋅ 10−7) is added to the output of the ELU function in the FinalBlock.
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Figure 7.14: Loss curves for the uncertainty training session with white noise
input data. Loss values against the number of epochs are shown for training and
validation separately. The used 𝛽-NLL loss allows negative loss values.
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Figure 7.15: Amplitude reconstruction of the uncertainty model trained on white
noise data. Visualization of prediction 𝜇 (upper left), simulated distribution (upper
right), predicted variance 𝜎2 (lower left), and the difference between prediction
and simulation (lower right).
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Figure 7.16: Phase reconstruction of the uncertainty model trained on white
noise data. Visualization of prediction 𝜇 (upper left), simulated distribution (upper
right), predicted variance 𝜎2 (lower left), and the difference between prediction
and simulation (lower right).

This section shows amplitude and phase prediction overviews in two separate figures. Fig-
ure 7.15 visualizes an example of the predicted mean 𝜇amp (upper left) and the predicted variance
𝜎2

amp (lower left) generated with the uncertainty model for the amplitude. Additionally, the
simulated truth (upper right) and the difference between predicted 𝜇amp and simulation (lower
right) are shown. The difference reveals a good agreement between prediction and simulation.
Predicted variances are small, which matches the minor differences. Variance increases highlight
larger deviations in the central or edge region. An exemplary prediction for the phase is illustrated
in Figure 7.16. Again, the predicted mean 𝜇phase (upper left), the predicted variance 𝜎2

phase
(lower left), the simulated truth (upper right), and the difference between predicted 𝜇phase and
simulation (lower right) are shown. Slight offsets between prediction and simulation occur. Still,
the overall phase distribution is reconstructed well. The values of the predicted uncertainties
are generally higher. These high values occur at the edges of the prediction and only fit the
fine-scale structures. At this stage, no correlation of the frequels is taken into account.

An ensemble of reconstructions is received through the mean and variance prediction. No longer
a single value is obtained per frequel, but a complete Gaussian distribution. Furthermore, the
model generates these distributions for amplitude and phase separately. Figure 7.17 illustrates the
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Figure 7.17: Predicted 𝜇Amp (left), 𝜎2
Amp (middle left), 𝜇Phase (middle right),

and 𝜎2
Phase (right). Each 𝜇 – 𝜎2 pair describes a Gaussian distribution resulting

in pixels2 distributions for both amplitude and phase. Two exemplary Gaussian
distributions with (𝜇Amp = 20, 𝜎2

Amp = 0.5) and (𝜇Phase = 0.3𝜋, 𝜎2
Phase = 0.5𝜋)

are shown (bottom row).

obtained Gaussian distributions for an amplitude (left) and a phase (right) example. Predicted 𝜇
and 𝜎 are plugged into the formula. Afterward, values can be sampled from the distribution. The
corresponding Probability Density Functions (PDFs) are shown in the lower part of Figure 7.17.
Standard normal distributions are truncated to meaningful ranges; [0, inf] for the amplitude
and [−𝜋, 𝜋] for the phase. The PDFs allow the sampling of different amplitude and phase
distributions. This work generates 10 000 versions for each. Then, the amplitude and phase
samples are used to create 10 000 versions of the cleaned image by applying the inverse Fourier
transform. The pixel-wise mean is calculated to get the most probable source distribution. The
pixel-wise standard deviation allows for given an uncertainty map. The source distribution
sampling is illustrated in Figure 7.18.

Figure 7.19 visualizes the reconstruction in image space. Here, the prediction (upper left)
corresponds to the mean source distribution generated from the sampled versions. Again, the
simulated source distribution (upper right) and the difference between prediction and simulation
(lower right) are shown. The uncertainty map (lower left) is the standard deviation derived
from the sampled source versions. Prediction and simulation are in good agreement. While
the source’s core component is slightly overestimated, an underestimation occurs for the jet
intensity. Comparing the uncertainty map and difference reveals that the structures match well.
Background structures in the difference are also visible inside the uncertainty map. Furthermore,
the uncertainty is highest at the source region, as expected. The uncertainty values cover the
difference between prediction and simulation. Still, the uncertainties are conservative, as they
exceed the difference by a factor of five. For this example, the uncertainty approach works very
well and enables a better interpretation of the deep learning model’s results.

The source area ratio introduced in Section 6.1 is calculated on the test data set consisting of
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Figure 7.18: Visualization of the uncertainty sampling. Gaussian distributions
displayed in Figure 7.17 are used to create 𝑛 versions of the amplitude and phase
distributions. Each pixel has its Gaussian distribution from which values are
sampled. The inverse Fourier transform is applied to the 𝑛 amplitude and phase
pairs, creating 𝑛 versions of the reconstructed source distribution. The most
probable reconstruction and the corresponding uncertainty map are created by
calculating the pixel-wise mean and standard deviation.

1000 test maps to evaluate the uncertainty approach in more detail. Figure 7.9 visualizes the
histogrammed area ratios for the mean prediction from the sampled source versions (orange).
While the distribution shows a peak at one, the reconstruction failed for around 40 % of the
sources. These failed reconstructions generate the peak at zero. When only the successfully
reconstructed source distributions are taken into account, the mean and standard deviation of
the distribution is calculated to 1.03 ± 0.30. The comparison with the results from Chapter 6
shows that the area ratios generated with the uncertainty model are in good agreement with
the ones generated for the white noise model when the failed reconstructions are excluded.
When the source reconstruction in local space is calculated with the predicted mean 𝜇, no
reconstruction problems occur. These problems originate from large uncertainty predictions 𝜎2,
which produce edge effects in the sampling process. Therefore, the results are highly correlated
with the predicted 𝜎2.

For a further investigation of the predicted uncertainties, the assumption that they originate
from a Gaussian distribution is tested. First, the difference between sampled prediction and
simulated truth is calculated. Afterward, the difference is divided by the predicted uncertainty 𝜎.
Then, a Gaussian distribution is fit to the resulting values. This procedure is done separately
for amplitude, phase, and source distribution. Figure 7.20 visualizes the histogrammed values
and the fitted Gaussians. In the case of Gaussian uncertainties, a standard normal distribution
is expected. For the amplitude (left), the standard deviation fits the optimal value of one.
The mean of 0.37 unveils a shift to positive values. Therefore, the amplitude prediction is
still improvable. In the case of the phase (middle), the result is in good agreement with a
standard normal distribution. The resulting distribution has a mean and standard deviation of
−0.01 ± 0.95. Predicted amplitude and phase uncertainties can be transformed into a source
brightness uncertainty as the Fourier transform is linear. As for the source area evaluation, the
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Figure 7.19: Reconstruction and uncertainty map of an exemplary source dis-
tribution from the white noise data set. While the shown reconstruction (upper
left) is generated by calculating the mean of the sampled versions, their standard
deviation gives the uncertainty map (lower left). The difference (lower right)
between prediction and simulation (upper right) reveals a good agreement with
slight deviations along the jet.

histogrammed values for the source brightness reveal that there is still a problem for a large
fraction of sources. The shift towards positive values from the amplitude is again evident. The
fitted Gaussian distribution has a mean of 0.28. The standard deviation of 0.72 is also a bit
off from the optimal value of one. The result shown in Figure 7.19 confirms that successful
uncertainty predictions work very well. Future works will focus on a lower reconstruction failure
rate.
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Figure 7.20: Normed counts of the difference between mean prediction and
simulation divided by the predicted variance, testing the assumption that predicted
mean and uncertainty originate from a Gaussian distribution. Fitting a Gaussian
distribution to the normed counts results in parameters of a standard normal
distribution in the best case. Fitted mean for amplitude and source distributions
are shifted to positive values. The standard deviation for the source distribution is
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Reconstructing VLBA Observations 8
“Coming back to where you started is not the same as never leaving.”

— Terry Pratchett, A Hat Full of Sky

The last parts of this work have shown that cleaning radio interferometric data is possible using
neural network models. The subsequent step is to apply these models to actual observational
data. Since the previously described simulations use basic source models and only partial effects
of telescope responses are considered, more sophisticated simulations are needed to analyze
data measured by radio interferometers. Therefore, coming back to the start is essential, but it
is not a beginning from scratch. The knowledge from the previous chapters will help further
improve the complete analysis chain. Noise effects from telescope responses can be accounted for
when calculating complex visibilities with the help of the RIME formalism [116]. Combining
all improvements enables the creation of a data set suitable for training neural network models
applicable to MOJAVE data.

8.1 MOJAVE Data Archive Statistics
In Section 3.1, simulations created extended radio sources by appending several Gaussian
components. Source shapes observed inside the MOJAVE program serve as a basis for the source
morphologies, but they lack a detailed physical justification concerning their exact simulation
parameters. Loosely chosen values for the sources’ linear extend, the field of view, and the peak
flux of the sources served to create a primary toy data set to perform a feasibility study of the
analysis approach. This chapter’s detailed analysis of the MOJAVE data archive will help create
a more sophisticated and physically motivated data set.

At the moment of this analysis, the MOJAVE archive contains 9196 observations of jetted
radio sources. An adaption of the simulations to real-world characteristics is mandatory so that
the neural network can reconstruct actual observations of the VLBA. For the simulations in this
work, the parameters visualized in Figure 8.1 are of particular importance.

One aim is to adjust the simulated sources’ flux densities to the MOJAVE program’s observa-
tions. Therefore, examining the peak flux densities of the cleaned images from the MOJAVE
archive helps to find the underlying distribution. First, the flux densities must be converted from
Jy per beam to Jy by multiplying all pixels by the factor pixel size/beam area. Figure 8.1a shows
the resulting peak flux densities.

In addition to the peak flux densities, describing the flux density decrease along the jet axis is
also necessary to quantify the sources’ morphologies. By fitting an exponential function to the
flux density distribution within the source structure, defined as

𝑓(𝑥) = 𝑎0 + 𝑎 ⋅ 𝑥𝑘, (8.1)

the determination of the power-law index 𝑘 helps quantify this decrease. Figure 8.1b shows the
distribution of the resulting power-law indices.

Additionally, the simulated data set’s source sizes must be close to those from the MOJAVE
program. For this reason, the sources’ linear extent assesses their sizes by placing an axis through
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their center and jet. Afterward, the distance the sources extend along this axis is determined.
Figure 8.1c shows that many more compact sources with extensions smaller than 20 mas are
present in the data set, which is reasonable since the MOJAVE program mainly analyzes the
innermost structures of AGN.

Another essential aspect of the simulated images is the selected Field of View (FoV). The used
FoV does not correspond to the actual telescope’s FoV but restricts the sky region of interest. In
the case of the MOJAVE program, the values 52 mas, 102 mas, or 202 mas are used for the field.
Choosing too small FoVs excludes data and will affect the source distribution’s reconstruction
quality.

Besides the source characteristics, the observation parameters also play an essential role. When
examing the distribution of the source positions, it becomes clear that all possible values between
0° and 360° occur for the right ascension. On the other hand, a restriction of the declination is
visible caused by the VLBA’s localization in North America. The occurring parameters for the
declination range from −30° to 90°.

Evaluating the number of visibilities per observation ensures that the simulated measurement
times match those in the MOJAVE program. The distribution shown in Figure 8.1d visualizes the
wide range of visibilities per observation. The first peak comes from short snapshot observations,
and the second smeared-out peak comes from regular observations. Here the number of visibilities
peaks around 7000 visibilities per observation. Considering the different simultaneously used
frequency channels, 4 and 8 are the prioritized number of channels. Recently, the favored
observation mode uses 4 frequency channels.

In Table 8.1, the characteristics are summarized again quantitatively. The displayed values
will help draw source parameters from probability distributions to represent parameter ranges
comparable to actual observations.

Table 8.1: Quantification of the source and observation characteristics derived
from the observations in the MOJAVE data archive.

Mean Std Median Minimum Maximum

Peak Flux / mJy 33.6 47.4 18.0 0.1 594.6
Power law index −0.2 0.2 −0.1 −0.8 0.0
Linear Extend / mas 43.2 62.6 10.2 1.3 382.2
Number Visibilities 8487.6 9162.8 6718.5 401.0 158 220.0
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Figure 8.1: Source and observation characteristics of the MOJAVE data archive.
Distribution of peak flux densities, power-law indices, linear extends, and the
number of visibilities are shown. The visualized source parameters are of particular
importance for the simulations.
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Figure 8.2: Probability function to draw
scaling factors for the counter-jet flux densi-
ties. With the substantial increases around
0 and 1, one-sided and two-sided jets are
favored.
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8.2 Simulation of VLBA Data
The information obtained from the MOJAVE data archive now enables the simulation of realistic
source distributions utilizing the radiosim package. The radiosim project was created together
with Arne Poggenpohl, in the context of his master’s thesis (in prep.), for generating realistic
images of radio galaxies with Python. This package improves the simulation chain presented in
Section 3.1 by enhancing it with different features. The simulated radio galaxies still consist of
two-dimensional Gaussian components. The improvements are that now the size of the respective
component is varied by different 𝜎x and 𝜎y. Additionally, the distance between the components
is changed so that the expansion of the sources changes noticeably. Another point is that jet
structures are now bent. These bent morphologies simulate the redirection of jets that can
occur in reality, for example, by interacting with interstellar matter [10]. Simulation routines
in Section 3.1 already create single- and double-sided sources, so the orientation in space was
considered to some extent. Nevertheless, the finished source distribution corresponded only
to lateral two-dimensional views. Here, the improvements allow for simulating the orientation
in three-dimensional space. Therefore, the sources’ jets can point towards or away from the
observer. Using the two-dimensional projection for the source images results in overlaying
Gaussian components.

Since all sources have two jets and the counterpart sometimes cannot be seen only because
of the orientation and the resulting relativistic boosting, all source images are created double-
sided. In some cases, the flux density of the counter-jet is strongly scaled-down, simulating this
relativistic boosting. The scaling factors are drawn from the distribution shown in Figure 8.2,
which is defined as:

𝑓(𝑥, 𝜆 = 12.5) = {𝜆 ⋅ exp(−𝜆 ⋅ 𝑥) 0 ≤ 𝑥 ≤ 0.5
𝜆 ⋅ exp(−𝜆 ⋅ [1 − 𝑥]) 0.5 < 𝑥 ≤ 1

(8.2)

This distribution has the advantage of generating mainly one-sided and two-sided jets. Only in
exceptional cases are sources simulated where the counter-jet has between 20 % to 80 % of the
flux density of the jet.

The height of the flux densities is generally simulated based on the MOJAVE sample. For this
purpose, a beta function,

𝛽(𝑥, 𝑎, 𝑏) =
𝛤(𝑎 + 𝑏)𝑥𝑎−1(1 − 𝑥)𝑏−1

𝛤(𝑎)𝛤(𝑏)
, (8.3)

is fitted to the distribution shown in Figure 8.1a resulting in the probability density function
displayed in Figure 8.3 with the parameters:

𝑎 = 0.86
𝑏 = 47.64
𝑙𝑜𝑐 = 0.09
𝑠𝑐𝑎𝑙𝑒 = 1892.39.

Here, 𝛤 stands for the gamma function. With 𝑙𝑜𝑐 and 𝑠𝑐𝑎𝑙𝑒 resulting values are shifted to
𝑦 = (𝛽(𝑥, 𝑎, 𝑏) − 𝑙𝑜𝑐)/𝑠𝑐𝑎𝑙𝑒. The drawn values allow the flux density scaling of the simulated radio
galaxies.

Furthermore, performing a logarithmic decrease with different factors mimics a realistic flux
density decrease along the jet axis. The MOJAVE archive factors shown in Figure 8.1b form a basis
for the used distribution. The source’s linear extent is the third crucial parameter to reproduce
the source morphologies as realistically as possible. Using between 3 and 6 Gaussian components
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Figure 8.4: Overview of radio galaxies created with radiosim [108] using simulation
parameters derived from the source characteristics of the MOJAVE data archive.

for jet and counter jet and adjusting their size ensures a good match of the distribution in the
simulated data set and the one shown in Figure 8.1c. Since all source orientations occur inside
the MOJAVE archive, drawing directions from an equal distribution ranging from 0° to 360° is
required. With these characteristics, a data set of extended radio galaxies is created, including
12 000 training images, 1000 validation images, and 1000 test images. Figure 8.4 gives an overview
of example source distributions. Here, it becomes clear that the source morphologies are similar
to the MOJAVE measurement shown in Figure 8.5. The default simulation configuration is
illustrated in Appendix 5.
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Figure 8.5: VLBA observation of 7C
1055+5644 in the context of the MOJAVE
15 GHz program taken on August 4th, 2019.
The white ellipse in the lower left represents
the beam of the observation. [75]

8.3 Simulation of Visibilities
A good simulation of telescope characteristics and observational properties is essential to represent
a radio interferometer’s influence on data as described in Section 1.4. Since the simulation routines
introduced in Section 3.2 only mimic observations by applying sampling masks, I developed
the Python package pyvisgen [30] together with Stefan Fröse to calculate complex visibilities
directly. Using the RIME formalism as the basis for the calculations makes pyvisgen superior
to the previously used simulation routine. Here, Jones matrices express the different effects on
the data as described in Section 3.4. The advanced possibilities make the RIME formalism a
powerful tool for describing radiation propagation starting at the source until the data point
arrives from the correlator. The RIME formalism is equivalent to matrix formalism in optics
used to describe light paths propagating through optical components, e.g., lenses.

Only the direction-independent effects are simulated in this work since it is standard to perform
direction-dependent calibrations before passing the data into imaging software. Therefore, the
jones matrices used are K-Jones, the Fourier or phase-delay kernel, defined as

K(𝑙, 𝑚) = exp (−2𝜋 ⋅ 𝑖 ⋅ (𝑢𝑙 + 𝑣𝑚)) , (8.4)

and E-Jones, which considers the effects of the telescope responses, designated as

E(𝑙, 𝑚) = jinc ( 2𝜋
𝜆obs

𝑑 ⋅ 𝜃𝑙𝑚) . (8.5)

Here, jinc is the jinc function, which is represented by

jinc(𝑥) =
𝐽1(𝑥)

𝑥
, (8.6)

where 𝐽1 corresponds to the Bessel function of the first kind. Furthermore, 𝑑 is the telescope’s
diameter, and 𝜃𝑙𝑚 describes the angular distance to the source position. Since polarization effects
are currently omitted for simplification, only the Jones parameter 𝐼 is calculated. The Jones
chain to calculate the visibility of the baseline pair 𝑝𝑞 results in

Vpq = ∑
𝑙

∑
𝑚

Ep(𝑙, 𝑚)Kp(𝑙, 𝑚)B(𝑙, 𝑚)K𝐻
q (𝑙, 𝑚)E𝐻

q (𝑙, 𝑚), (8.7)
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Table 8.2: Overview of the antenna locations and characteristics of the VLBA.

Station X / m Y / m Z / m 𝑑 / m 𝐸𝑙low / deg 𝐸𝑙high / deg

MKO −5 464 075 −2 495 248 2 148 297 25 15 85
OVRO −2 409 150 −4 478 573 3 838 617 25 15 85
BR −2 112 065 −3 705 357 4 726 814 25 15 85
NL −130 873 −4 762 317 4 226 851 25 15 85
HC 1 446 375 −4 447 940 4 322 306 25 15 85
KPN −1 995 679 −5 037 318 3 357 328 25 15 85
PT −1 640 954 −5 014 816 3 575 412 25 15 85
FD −1 324 009 −5 332 182 3 231 962 25 15 85
LA −1 449 753 −4 975 299 3 709 124 25 15 85
SC 2 607 849 −5 488 070 1 932 740 25 15 85

Note: X, Y, and Z define the station positions in Earth-centered coordinates. 𝑑 denotes
the diameter of the antenna dishes. 𝐸𝑙low and 𝐸𝑙high quantify the minimal and maximal
elevation for an observation.

with the source brightness distribution 𝐵(𝑙, 𝑚). The integrals introduced in equation (1.12)
transform into sums as each pixel of the brightness distribution is treated as an individual source.
The 𝑤-term is neglected as

√
1 − 𝑙2 − 𝑚2 ≈ 1 is valid in this case.

The antenna positions and characteristics summarized in Table 8.2 are used to simulate
observations with the VLBA. Additionally, the iterative pointing, typical for observations in the
MOJAVE program, is simulated by taking 3 min measurement blocks followed by pauses of 1 h.
Choosing different amounts of measurement blocks enables variation in the number of simulated
visibilities.

The simulation algorithm in pyvisgen is structured as follows:

1. At measurement time 𝑡, the baselines of the interferometer are calculated relative to the
source position and then converted to (𝑢, 𝑣) coordinates. The resulting projected baselines
already consider the propagation time differences of the signal to the individual telescopes,
as described in Section 1.3.

2. For each projected baseline, the validity is checked, i.e., baselines with a blocked line of
sight to the source at the current timestep are discarded.

3. For each projected and accepted baseline, the algorithm computes one complex visibility
using the RIME formalism described in equation (8.7). Here, the simulation of multiple
frequency channels is possible.

4. The simulated visibilities are stored in Flexible Image Transport System for (𝑢, 𝑣) data
(UVFITS) format enabling their import into all programs that support UVFITS input,
including DIFMAP and CASA.

In Figure 8.6, the (𝑢, 𝑣) coverage for a measurement simulated with pyvisgen is shown in
red. For comparison, the purple dots represent the (𝑢, 𝑣) coverage for the measurement of the
source 7C 1055+5644 visualized in Figure 8.5. Simulation and actual measurement have similar
data coverages, making the simulations suitable to train a model capable of applying to actual
observation data. Appendix 6 summarizes the default simulation configuration. Calculating
visibilities takes the longest computing time in the complete analysis, although simulations run
parallel on a computing cluster. The calculation of the visibilities of one observation takes around
2 min, which leads to simulation times of around three days for the whole data set, which consists
of 12 000 training, 1000 validation, and 1000 test images.
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8 Reconstructing VLBA Observations

Figure 8.6: (𝑢, 𝑣) coverage of the observation of 7C 1055+5644 (purple) and
exemplary (𝑢, 𝑣) coverage of a simulated observation from the data set created
with pyvisgen (red).
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Figure 8.7: Amplitude (left) and phase (middle) map for the gridded advanced
RIME data set. The field of view is set to 100 mas. The dirty image (right) shows
noise artifacts parallel to the jet and a blurry source structure.

After generating the data set containing complex visibilities, the individual observations still
have to be converted into a format that is suitable as input for neural networks. In pyvisgen,
to each visibility, a (𝑢, 𝑣) coordinate is assigned. As the developed deep learning models need
tensors with regular grids as input data, combining the visibilities on a regular grid with the
help of a so-called gridder is necessary. For this purpose, the gridder implemented in pyvisgen
is used. Figure 8.7 visualizes exemplary input maps and the corresponding dirty image. After
gridding the data, real and imaginary parts of the complex values are converted to amplitudes
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Figure 8.8: The simulated data set’s source and observation characteristics (red)
and, as a comparison, the same characteristics for the MOJAVE archive (purple).
Peak flux densities, power-law indices, linear extends, and the number of visibilities
per observation are shown.

and phases and stored in Hierarchical Data Format 5 (HDF5) format together with the target
distributions. Again, like the data set described in Section 3.6, the incomplete maps serve as
input, and the complete maps as targets when training the neural network model. Frequels are
marked by a value of zero when their information is missing.

8.4 Data Set Overview
Finally, the properties of the simulated MOJAVE data set are evaluated. On the one hand, this
serves to check whether the properties are comparable with the MOJAVE data archive. On
the other hand, it gives a good overview of which source types the neural network learns when
training with this data set. Of course, the model should learn to reconstruct missing information
in general in the Fourier space. Nevertheless, it has to be mentioned that reconstructions for
source types on which training has been done can always be predicted better.

For a direct comparison with the data from the MOJAVE archive [76], the parameters from
Figure 8.1 are visualized again in Figure 8.8. The normalized distributions are shown in purple
and red for the archive and simulated data. The main features of the distributions match very
well. No deviations are visible for the distributions of the peak flux densities in Figure 8.8a. The
power law indices shown in Figure 8.8b reveal a lack of indices below −0.18, meaning intensity
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Figure 8.9: Histogrammed sampling densities for the simulated MOJAVE data
sets. The distribution is sharp with a mean and standard deviation of 2.19 ± 0.39.
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Figure 8.10: Loss curves for the uncertainty training session with the simulated
MOJAVE data. Loss values against the number of epochs are shown for training
and validation separately. The 𝛽-NLL loss is the used loss function.

decreases in the simulated data set are too flat. Figure 8.8c compares the linear extents of
simulated sources and the ones observed in the MOJAVE program. It becomes clear that the
simulated sources are generally more extensive than the observed ones. For the number of
visibilities shown in Figure 8.8d, the distribution for the simulations peaks at a lower number
than the one for the MOJAVE observations. This gap indicates a possibly worse (𝑢, 𝑣) coverage
for the simulations.

The histogrammed data coverage for the gridded (𝑢, 𝑣) simulations in the simulated data set
is visualized in Figure 8.9. The mean and standard deviation of the distribution are 2.19 ± 0.39.
Therefore, nearly 98 % of the frequels of the input maps for the neural network contain no
information and have to be reconstructed completely. Compared with MOJAVE observations,
which have (𝑢, 𝑣) coverages around 3 %, this (𝑢, 𝑣) coverage is realistic.
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Figure 8.11: Amplitude reconstruction of uncertainty model trained on the MO-
JAVE data set. Visualization of prediction 𝜇 (upper left), simulated distribution
(upper right), predicted variance 𝜎2 (lower left), and the difference between predic-
tion and simulation (lower right).

8.5 Model Training and Reconstruction
The improved architecture, introduced in Section 7.4, was trained on the simulated MOJAVE
data for 500 epochs. The 𝛽-NLL loss serves as the loss function. Figure 8.10 visualizes the loss
values for the training session. After a sharp drop, the training loss smoothly decreases. For the
first 220 epochs, the validations loss is slightly smaller than the training loss. Afterward, this
trend shifts, and the validation loss stays higher for the rest of the training.

Again, amplitude and phase prediction are presented in two separate figures. Figure 8.11
visualizes an example of the predicted mean 𝜇amp (upper left) and the predicted variance 𝜎2

amp
(lower left) generated with the uncertainty model for the amplitude. Additionally, the simulated
truth (upper right) and the difference between predicted 𝜇amp and simulation (lower right)
are shown. For the MOJAVE simulations, only the central amplitudes are significant, as the
outer ones are close to zero. The difference reveals a good agreement between prediction and
simulation, but the values in the center show deviations around 25 %. These deviations indicate
the complexity of reconstructing the maximum amplitudes. Additionally, the predicted variances
are high for these frequels. An exemplary prediction for the phase is illustrated in Figure 8.12.
Again, the predicted mean 𝜇phase (upper left), the predicted variance 𝜎2

phase (lower left), the
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Figure 8.12: Phase reconstruction of uncertainty model trained on the MOJAVE
data set. Visualization of prediction 𝜇 (upper left), simulated distribution (upper
right), predicted variance 𝜎2 (lower left), and the difference between prediction
and simulation (lower right).

simulated truth (upper right), and the difference between predicted 𝜇phase and simulation (lower
right) are shown. Here, offsets between prediction and simulation are even more prominent.
Still, the overall phase distribution is reconstructed to some extent. The values of the predicted
uncertainties are generally high except for the central part. This part is extraordinary because
of its lower phases. As in Section 7.4, no correlation of the frequels is considered.

An ensemble of reconstructions is received through the mean and variance prediction. No
longer a single value is obtained per frequel, but a complete Gaussian distribution. Furthermore,
the model generates these distributions for amplitude and phase separately. 1000 amplitude and
phase samples are used to create 1000 versions of the cleaned image by applying the inverse
Fourier transform. The pixel-wise mean is calculated to get the most probable source distribution.
The pixel-wise standard deviation allows for giving an uncertainty map.

Figure 8.13 visualizes the reconstruction in image space. Here, the prediction (upper left)
corresponds to the mean source distribution generated from the sampled versions. Again, the
simulated source distribution (upper right) and the difference between prediction and simulation
(lower right) are shown. The uncertainty map (lower left) is the standard deviation derived
from the sampled source versions. Prediction and simulation are in good agreement. While the
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Figure 8.13: Reconstruction and uncertainty map of an exemplary source distri-
bution from the MOJAVE simulations. While the shown reconstruction (upper
left) is generated by calculating the mean of 1000 sampled source versions, their
standard deviation gives the uncertainty map (lower left). The difference (lower
right) between prediction and simulation (upper right) reveals a good agreement
of the core component and slight deviations along the jet.

faintest source parts are missing in the reconstruction, the source’s core component is slightly
overestimated. Comparing the uncertainty map and the difference reveals that the uncertainty
is highest at the source region. Background structures in the difference are also visible inside
the uncertainty map. The uncertainty values do not cover the difference between prediction and
simulation for this example.

8.6 Concluding Remarks and Future Prospects

The improvements described in this chapter have taken the complete analysis to an advanced level.
Source characteristics have been adapted to the observations from the MOJAVE program, and
by utilizing the advanced RIME formalism, the simulated visibilities match actual measurements.
The RIME formalism is superior to the sampling mask method introduced in Section 3.2. There
is still much potential as other effects, like the noise influence of neighboring sources and phase
shifts due to the vast telescope distances in VLBI, can be added in the future.
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Figure 8.14: Amplitude and phase reconstructions of the 7C 1055+5644 observa-
tion, carried out on August 4th, 2019, using the VLBA. The uncertainty model
trained on the MOJAVE simulations was used for the predictions. Predicted means
(top row) and corresponding variances (bottom row) are visualized.

The results in Section 8.5 reveal a decreased reconstruction ability when compared to the
reconstructions in Chapter 5, Chapter 6, and Chapter 7. This decrease is not surprising since the
flux densities of the sources cover two orders of magnitude in the MOJAVE data set, complicating
the amplitude reconstruction. Furthermore, the sampling densities for (256 × 256) pixels images
of 2.5 % are much smaller than in previous data sets, compare Table 3.1. Additional noise effects
introduced by the advanced RIME simulations also explain the model’s decreased reconstruction
ability. Nevertheless, the trained model shall finally be applied to actual observation data from
the MOJAVE program. Figure 8.14 displays the amplitude and phase reconstruction for the
7C 1055+5644 observation of the VLBA carried out on August 4th, 2019. The predicted 𝜇Amp
(top left) and 𝜎2

Amp (bottom left) show reasonable reconstructions. The amplitude distribution
peaks in the center and has no artifacts in the outer regions. The predicted variance has its

84



8.6 Concluding Remarks and Future Prospects

0 100 200

0

50

100

150

200

250

P
ix

el
s

Prediction

0 100 200

MOJAVE

0 100 200
0

50

100

150

200

250

P
ix

el
s

Uncertainty

Pixels
0 100 200

Difference

Pixels

0 20 40 60
Source brightness / a.u.

0.2 0.3 0.4

𝜎 / a.u.
−10 0 10

Source intensity / a.u.

Figure 8.15: Reconstruction and uncertainty map of the 7C 1055+5644 ob-
servation, carried out on August 4th, 2019, using the VLBA. While the shown
reconstruction (upper left) is generated by calculating the mean of 1000 sampled
source versions, their standard deviation gives the uncertainty map (lower left).
The difference (lower right) between the prediction and clean image from the
MOJAVE archive (upper right) reveals a good agreement of the source’s core
component. The deep learning model did not reconstruct the jet structure. The
clean image from the MOJAVE archive serves as a comparison and does not display
the accurate source distribution.

highest values in the central part, indicating that the central frequel is the most complicated to
reconstruct for the neural network model. The predicted 𝜇Phase (top right) and 𝜎2

Phase (bottom
right) unveil more problems. While the phase distribution is blurry in the central part, it shows
many artifacts at the edges. Still, the predicted variance prediction is high for all parts but the
central one, as expected for this kind of prediction. The difficulties of the phase reconstruction
are also transferred to the reconstructed source distribution, displayed in Figure 8.15. Here, the
prediction (upper left) reveals the core component of the source. The comparison with the clean
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image from the MOJAVE archive (upper right) by creating the difference between both (lower
right) shows that the predicted flux density fits the one from the MOJAVE archive. The jet
structure is completely missing in the deep learning reconstruction. The predicted uncertainty
map has the highest values in the source area, but they are low compared to the source’s peak
flux. As this is a reconstruction of actual observation data, no ground truth is available. The
clean image from the MOJAVE archive suits as a comparison and does not display the accurate
source distribution.

With such a big update, it is clear that deep learning-based analysis can not work immediately
without minor problems. The results in this chapter directly point out the areas that still
need a more detailed investigation. The two main points are to minimize further the mismatch
between simulations and the actual observations from the MOJAVE archive and to examine the
phase jumps in the simulated truths, as seen in Figure 8.12. The results again emphasize the
importance of detailed simulations and give the perfect motivation to improve them further.
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Conclusions and Outlook 9
“But the reward for lots of work seemed to be lots more. If you dug the
biggest hole, they just gave you a bigger shovel.”

— Terry Pratchett, The Shepherd’s Crown

Modern radio interferometers with steadily increasing data rates require enhanced analysis
strategies that quickly generate reproducible results utilizing affordable computing resources. In
this thesis, I proposed a novel deep learning-based approach for imaging radio interferometer data,
which is adequate to achieve this goal. Starting from scratch, as only a few people have explored
the capability of neural networks for the imaging task before, I set up a complete framework
called radionets [107]. The developed framework includes three main points: simulations, model
training, and evaluation.

A new simulation chain has been established, ranging from radio galaxy simulations to
mimicking radio interferometer observations and examining various noise simulation techniques
to get as close to reality as possible. The advantages of utilizing the RIME formalism were
also explored in this context. For the deep learning model training, a high-level environment
was built based on fastai and pytorch. A suitable data class, architecture, and loss function
was investigated here. Furthermore, the possibility of giving uncertainty estimates for the
resulting cleaned images was tested. Several evaluation methods were implemented to benchmark
model results, access the reconstruction quality, and compare the deep learning approach with
established imaging software. Last, the first attempts to evaluate actual observation data with a
model trained on a MOJAVE-inspired data set were performed.

Beginning with such a vast project is only possible as a team. In several theses I supervised,
side projects were explored, and additional simulation packages like radiosim [108] and pyvisgen
[30] were developed. Together we have built the foundation to explore further the advantages
of deep learning-based analyses in radio interferometry and make it accessible to the whole
community.

The developed simulations are fast and reliable. Everything is modular, allowing different parts
to be adjusted without great effort. The sampling mask method enables the simulation of (𝑢, 𝑣)
spaces comparable to VLBA observations. The resulting incomplete (𝑢, 𝑣) data is realistic, like
those generated in radio interferometric observations. The deep learning model takes these
incomplete (𝑢, 𝑣) spaces as input and reconstructs the missing information.

Inspecting the results reveals that the deep learning-based reconstruction of Fourier data using
convolutional neural networks works. The developed model quickly generates reproducible and
reliable results when applied to radio galaxies composed of Gaussian components. The developed
architecture enables a smooth convergence during training. Furthermore, adjustments to the loss
function to fit the underlying problem improved amplitude and phase reconstructions.

Testing different noise levels on source distributions and visibilities confirmed the model’s
capability to deal with noisy input data. The developed model can correct noise present in the
input data. This noise handling keeps background artifacts minimal in the reconstructed source
distributions. The results are good when inspected visually, and evaluation methods on test data
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sets prove the excellent reconstruction quality. For example, the source area, the jet orientation
offset, and the mean specific intensity deviation of the sources were examined to demonstrate
the quality. Additional testing has shown that the models perform best on input data with (𝑢, 𝑣)
coverages comparable to that on which the model was trained. Therefore, the developed analysis
is appropriate for evaluating sky survey data. Here, the observation characteristics are similar for
all observations. Thus, a robust deep-learning model is ideally suited to reconstruct the different
sub-images of the survey.

Comparison with the established imaging software WSCLEAN shows that the deep learning
analysis is more robust when applied to an extensive test data set. WSCLEAN is not designed
to analyze a wide range of similar data without optimizing the cleaning parameters. The neural
network model can handle this range as it has learned to generalize during the training time of
18 h.

Another difference between established methods and the deep learning-based approach is that
no convolution with a clean beam is necessary. The neural network model does not form a point
source model, as is usually true when applying CLEAN algorithms. Instead, the (𝑢, 𝑣) data is
reconstructed directly in Fourier space. The developed model can reconstruct more complex data
sets consisting of images with mixed source types and radio galaxies with advanced source shapes
reasonably well. The investigation of uncertainty estimates generated by the model reveals that
creating uncertainty maps with this analysis strategy is possible. As expected, the uncertainty
maps highlight the noisy regions in the reconstructed source distributions. At the moment, the
uncertainties estimates in Fourier space are more reliable than the ones transformed into image
space.

Finally, it has been shown that a model can also be trained on a data set simulated utilizing an
advanced RIME. Physical properties like the telescopes’ beam size and the sources’ extent were
considered for this data set, resulting in a data set similar to observations from the MOJAVE
archive. The first reconstruction of actual measurement data shows that the simulations need to
be further adjusted to the conditions of observations performed by actual radio interferometers
in the future. In conclusion, a proof-of-concept analysis was done in the scope of this thesis,
proofing that deep learning models are applicable to reconstruct incomplete Fourier data in radio
interferometric imaging. The framework radionets is available as an open-source package on
GitHub accessible for the radio interferometry community [107].

Lots of work is already done, and the results have revealed that there is still lots more.
Uncertainty estimates enhance the interpretability of the cleaned radio images. Therefore, the

presented approach will be further investigated in a future publication currently in preparation.
Simulations based on the RIME are essential for realistic descriptions of the effects influencing

the radio signal approaching the receiver. RIME enables the simulation of correlated noise,
which is not yet considered in the data sets used in this work. Additionally, the effects of bright
neighboring sources on amplitudes and phases can be considered. Enhancing the RIME formalism
implemented in pyvisgen will gradually decrease the simulation data mismatch.

Investigating the opportunity of reconstructing sky survey data using radionets in detail
is another future project. The idea is to perform tests with data from the FIRST survey [6].
Generative Adversarial Network (GAN) simulated galaxies, provided by colleagues from Hamburg
University, will serve as data to train the deep learning model [61].

Of course, the ultimate goal is a reliable reconstruction of actual observation data using
radionets. In addition to the continued development of the deep learning-based cleaning of
VLBA observations from the MOJAVE archive, more application scenarios are explored by
participating in the SKA foreground challenge [118, 115].
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Appendix

2 Default Config: radionets_simulation

# This is a TOML document.

title = "Simulation configuration"

[mode]
quiet = true

[paths]
data_path = "./example_data/"
data_format = "h5"

[gaussians]
simulate = true
num_components = [4, 10]

[point_sources]
simulate = false
add_extended = false

[image_options]
bundles_train = 100
bundles_valid = 20
bundles_test = 20
bundle_size = 500
img_size = 64
noise = false
noise_level = 5
white_noise = false
mean_real = 0.85
std_real = 0.0425
mean_imag = 0.2
std_imag = 0.01

[sampling_options]
fourier = true
real_imag = false
amp_phase = true
antenna_config = "vlba"
specific_mask = false
lon = -80
lat = 50
steps = 50
keep_fft_files = true
source_list = false
compressed = false
interpolation = false
multi_channel = false
bandwidths = 1
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2 Default Config: radionets_simulation

[mode]

quiet, Boolean Enable automatic overwriting of existing models

[paths]

data_path, String Path to train and validation data
data_format, Sting Data format: HDF5

[gaussians]

simulate, Boolean Enable extended sources simulation
num_components, List Minimum and maximum number of jet components [min, max]

[point_sources]

simulate, Boolean Enable point source simulation
add_extended, Boolean Add additional extended sources

[image_options]

bundles_train, Integer Number of training bundles
bundles_valid, Integer Number of validation bundles
bundles_test, Integer Number of test bundles
bundle_size, Integer Number of images per bundle
img_size, Integer Image size in pixels
noise, Boolean Enable noise corruption in image space
noise_level, Integer Standard deviation of Gaussian distribution used to draw noise values
white_noise, Boolean Enable noise corruption in visibility space
mean_real, Float Mean of Gaussian distribution used to draw noise values for the real part
std_real, Float Standard deviation of Gaussian distribution used to draw noise values for the

real part
mean_imag, Float Mean of Gaussian distribution used to draw noise values for the imaginary

part
std_imag, Float Standard deviation of Gaussian distribution used to draw noise values for the

imaginary part

[sampling_options]

fourier, Boolean Enable data in Fourier space
real_imag, Boolean Save real and imaginary parts
amp_phase, Boolean Save amplitude and phase values
antenna_config, String Interferometer layout: VLBA
specific_mask, Boolean Simulate one specific mask
lon, Integer Longitude of the source
lat, Integer Latitude of the source
steps, Integer Number of time steps
keep_fft_files, Boolean Keep simulated FFT files
source_list, Boolean Save source list
compressed, Boolean Enable data compression
interpolation, Boolean Enable interpolation of missing pixels
multi_channel, Boolean Enable simulation of multiple bandwidths
bandwidths, Integer Number of bandwidths
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3 Default Config: radionets_training

# This is a TOML document.

title = "Train configuration"

[mode]
quiet = true
gpu = true

[logging]
comet_ml = true
project_name = "thesis"
plot_n_epochs = 2
scale = true

[paths]
data_path = "./example_data/"
model_path = "./build/example_model/example.model"
pre_model = "none"
norm_path = "none"

[general]
fourier = true
amp_phase = true
source_list = false
arch_name = "SRResNet"
loss_func = "splitted_L1"
num_epochs = 300
inspection = true
output_format = "png"
switch_loss = false
when_switch = 25

[hypers]
batch_size = 100
lr = 1e-3

[param_scheduling]
use = true
lr_start = 1e-3
lr_max = 3e-3
lr_stop = 5e-4
lr_ratio = 0.25
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3 Default Config: radionets_training

[mode]

quiet, Boolean Enable automatic overwriting of existing models
gpu, Boolean Enable training on Graphics Processing Unit (GPU)

[logging]

comet_ml, Boolean Enable tracking with CometML
project_name, String CometML project name
plot_n_epochs, Integer Interval for plot creation
scale, Boolean Enable amplitude scaling

[paths]

data_path, String Path to train and validation data
model_path, String Path to save model weights
pre_model, String Path to pre-trained model, disable with ”none”
norm_path, String Path to normalization values, disable with ”none”

[general]

fourier, Boolean Enable data in Fourier space
amp_phase, Boolean Data set consisting of amplitude and phase values instead of real and

imaginary parts
source_list, Boolean Enable source list training
arch_name, String Architecture
loss_func, String Loss function
num_epochs, Integer Number of training epochs
inspection, Boolean Enable inspection plots after training
output_format, String Format of inspection plots
switch_loss, Boolean Enable loss function switching
when_switch, Integer Number of epochs before switching loss function

[hypers]

batch_size, Integer Batch size
lr, Float Learning rate

[param_scheduling]

use, Boolean Enable learning rate scheduler
lr_start, Float Start learning rate
lr_max, Float Maximum learning rate
lr_stop, Float Stopping learning rate
lr_ratio, Float Ratio when the maximum learning rate is applied
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4 Default Config: radionets_evaluation

# This is a TOML document.

title = "Evaluation configuration"

[mode]
quiet = true

[paths]
data_path = "./example_data/"
model_path = "./build/example_model/example.model"
model_path_2 = "none"

[general]
fourier = true
amp_phase = true
source_list = false
arch_name = "SRResNet"
arch_name_2 = "none"
output_format = "png"
diff = true

[inspection]
visualize_prediction = true
visualize_source_reconstruction = true
visualize_contour = true
visualize_dynamic_range = false
visualize_blobs = false
visualize_ms_ssim = false
random = false
num_images = 20

[eval]
batch_size = 100
save_vals = false
save_path = "./build/"
evaluate_viewing_angle = true
evaluate_dynamic_range = true
evaluate_ms_ssim = true
evaluate_mean_diff = true
evaluate_area = true
evaluate_point = false
predict_grad = false
evaluate_gan = false
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4 Default Config: radionets_evaluation

[mode]

quiet, Boolean Enable automatic overwriting of existing models

[paths]

data_path, String Path to test data
model_path, String Path to model weights
model_path_2, String Path to a second model for separate predictions

[general]

fourier, Boolean Enable data in Fourier space
amp_phase, Boolean Data set consisting of amplitude and phase values instead of real and

imaginary parts
source_list, Boolean Enable source list options
arch_name, String Architecture
arch_name_2, String Second architecture for separate predictions
output_format, String Data format of evaluation figures
diff, Boolean Enable visualization of the difference between prediction and simulation

[inspection]

visualize_prediction, Boolean Visualize model predictions
visualize_source_reconstruction, Boolean Visualize reconstructed source distribution
visualize_contour, Boolean Visualize contour lines of the reconstructed source distribution
visualize_dynamic_range, Boolean Visualize dynamic ranges
visualize_blobs, Boolean Visualize reconstructed components identified by blob detection
visualize_ms_ssim, Boolean Add calculated MS SSIM to visualization
random, Boolean Enable random test image choice
num_images, Integer Number of visualizations

[eval]

batch_size, Integer Batch size
save_vals, Boolean Enable saving of evaluation values
save_path, String Path to save evaluation values
evaluate_viewing_angle, Boolean Enable viewing angle evaluation
evaluate_dynamic_range, Boolean Enable dynamic range evaluation
evaluate_ms_ssim, Boolean Enable MS SSIM evaluation
evaluate_mean_diff, Boolean Enable mean difference of the core component evaluation
evaluate_area, Boolean Enable source area evaluation
evaluate_point, Boolean Enable point source evaluation
predict_grad, Boolean Enable model gradient evaluation
evaluate_gan, Boolean Enable GAN evaluation
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5 Default Config: radiosim

# This is a TOML document.

title = "Simulation configuration"

[mode]
quiet = true

[paths]
outpath = "./build/example_data/"

[source_types]
jets = true
num_jet_components = [3, 6]
pointlike_gaussians = false
num_pointlike_gaussians = [2, 5]

[flux_scaling]
use_scaling = true
type = "mojave"

[image_options]
bundles_train = 50
bundles_valid = 10
bundles_test = 10
bundle_size = 200
img_size = 256
noise = false
noise_level = 5
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5 Default Config: radiosim

[mode]

quiet, Boolean Enable automatic overwriting of existing simulations

[paths]

outpath, String Path to save simulations

[source_types]

jets, Boolean Enable simulation of jet sources
num_jet_components, List Minimum and maximum number of jet components [min, max]
pointlike_gaussians, Boolean Enable simulation of pointlike Gaussians
num_pointlike_gaussians, List Number of pointlike Gaussians [min, max]

[flux_scaling]

use_scaling, Boolean Enable scaling of simulated source images
type, String Scaling type: MOJAVE or normalization

[image_options]

bundles_train, Integer Number of training bundles
bundles_valid, Integer Number of validation bundles
bundles_test, Integer Number of test bundles
bundle_size, Integer Number of images per bundle
img_size, Integer Image size in pixels
noise, Boolean Enable pixel-wise noise
noise_level, Integer Standard deviation of Gaussian distribution used to draw noise values
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6 Default Config: pyvisgen

# This is a TOML document.

[sampling_options]
mode = "basic"
layout = "vlba"
img_size = 128
fov_center_ra = [110, 130]
fov_center_dec = [20, 30]
fov_size = 0.1
corr_int_time = 30.0
scan_start = ["01-06-2021 18:00:00", "01-06-2021 23:00:00"]
scan_duration = [120, 150]
scans = [8, 10]
interval_length = 3600
base_freq = 15.21e9
frequsel = [0e8, 0.8e8, 1.44e8, 2.08e8]
bandwidths = [6.4e7, 6.4e7, 6.4e7, 6.4e7]
corrupted = true

[bundle_options]
in_path = "build/skies/"
out_path_fits = "build/uvfits"
out_path_gridded = "build/gridded"
num_test_images = 1000
bundle_size = 100
train_valid_split = 0.2
grid_size = 256
amp_phase = true
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6 Default Config: pyvisgen

[sampling_options]

mode, String Simulation scheme: basic
layout, String Interferometer layout: Very Large Array (VLA), VLBA or Event Horizon

Telescope (EHT)
img_size, Integer Set image size of sky simulations
fov_center_ra, List Minimum and maximum right ascension [min, max]
fov_center_ra, List Minimum and maximum declination [min, max]
fov_size, Integer FoV in mas
scan_start, String Integration time for one data point
scan_duration, List Minimum and maximum scan duration in seconds [min, max]
scans, List Minimum and maximum number of scans [min, max]
interval_length, Integer Interval length of one scan in seconds
base_freq, Float Base frequency of observation
frequsel, List List of frequency channels, values are added to the base frequency
bandwidths, List List of the channels’ bandwidths
corrupted, Boolean Enable simulation using RIME for corrupted visibilities

[bundle_options]

in_path, String Path to input sky distributions
out_path_fits, String Path to save FITS files
out_path_gridded, String Path to save gridded HDF5 files
num_test_images, Integer Number of test images
bundle_size, Integer Number of images per HDF5 file
train_valid_split, Float Ratio of validation to training images
grid_size, Integer Grid size in pixels
amp_phase, Boolean Grid amplitude and phase values instead of real and imaginary parts
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