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Abstract: Thomas Young (1773-1829) is one of the greatest thinkers and polymaths. His scientific work 
includes significant contributions in the fields of medicine, physics, anthropology  and ancient history. Less well 
known, however, is Young's demographic contribution. In 1826, Thomas Young examined graphical curves of 
mortality of his epoch (decrement tables of the deceased) to see if they matched a formula he had developed. 
Looking for a law of mortality, he created a high order polynomial for the function of mortality. We use modern 
demographic methods to analyze and criticize his life table. Young's discrete life table is fitted by a continuous 
life table function (Lazarus distribution) in order to calculate important parameters. It is shown that Young's 
formula is an early and successful method of determining a model life table. It corresponds to a particular life 
table of Coale and Demeny. The article concludes with an exploration of Young's mortality formula of 1816, a 
concise yet foundational model, showcasing its ability to facilitate calculations of vital functions like life 
expectancy and the force of mortality, despite its lesser-known status. 

1. Introduction 

The study of human mortality has been a subject of scientific inquiry for centuries, with 
scholars seeking to better understand the patterns and trends in the length of human life. In the 
early 19th century, Thomas Young (1773-1829), a renowned physician, physicist, and linguist, 
contributed to this field with his work on life expectancy and mortality rates (see, e.g. 
Peacock, 2013). Young was a prominent figure in his time, making significant contributions 
to a wide range of fields, including the study of hieroglyphs and the decipherment of the 
Rosetta Stone2. 

In 1826, Young published a paper in the Philosophical Transactions of the Royal Society 
titled "A Formula for expressing the Decrement of Human Life," in which he sought to find a 
law of mortality by creating a high order polynomial for the curve of mortality3. His formula 
consisted of terms having influence in infancy, in youth, in middle age, and in old age. He 
also constructed a curve to represent the formula, which he believed was more accurate than 
existing contemporary life tables. 

In this paper, we use modern demographic methods to analyze and criticize his life table. 
Young's discrete life table is fitted by a continuous life table function (Lazarus distribution) in 
order to calculate important parameters. It is shown that Young's formula is an early and 
successful method of determining a model life table. We also find that Young's life table 
corresponds to a particular life table of Coale and Demeny. 

2. Young´s Formula 

Young created a curve diagram to represent the decrements of life, with age on the x-axis and 
the corresponding decrements on the y-axis. He used several life tables, including de Moivre, 

                                                 
1 Brief Description of a Paper presented at the Fifth Conference of the European Society of Historical 
Demography, Radboud University Nijmegen (Netherlands) from August 30 to September 2, 2023. 
 
2 In the autumn of 1795, Young travelled to Germany and was awarded a doctorate in medicine from the 
University of Göttingen in 1796. The choice of the University of Göttingen, apart from its quality, was 
particularly close for an Englishman because the Kingdom of Hanover was in a personal union with Great 
Britain (Koelbing, 1974, p. 58). 
 
3 See also Appendix B. 
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Finlaison, Carlisle, Northampton, Deparcieux, Morgan, and London Equity, to calculate the 
mean values of death at each age after eliminating extreme values. He then plotted these mean 
values on the curve diagram as crosses (see Fig. 1). 
 
In essence, Young writes that the mean obtained from his method could be used as a standard 
table, but it still displays some minor irregularities that can be seen by examining the line of 
stars in the graph. To smooth out the variations in the data, it would be most effective to 
develop a formula that accurately reflects the entire curve. However, Young acknowledges 
that finding such an expression would be extremely challenging, and that any formula 
developed would likely be too complex to apply in practice. Despite this difficulty, Young 
was able to construct a curve that closely follows the line of stars, intersecting it at 10 to 12 
different points, using the proposed formula4. 
 
 His formula is 
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x=1,2,..96; age = x-1=0,1,2,…95; dx = number of deaths at age x; dx(97)<0;  
 

 1.520.11 156 20 x x    : x=1,2 …26 (The expression is imaginary for x > 26). This term models 

the low number of deaths during youth. 
 
The formula in Young's article contains a printing error, as there is a 1 in the numerator of the 
third term (see also Peacock (1855), footnote p. 372) 
 
The formula consists of 6 terms or components (1-6). Figure 2 shows the curve of the death 
numbers. The first three terms reflect the trend up to about age 50, while the last three terms 
model the decline of the number of deceased. (see also Fig. 3). The results for each formula 
term and the total number of deaths as a function of age x can be found in Table 2 in 
Appendix A. It should be noted that Young's table contains several printing and calculation 
errors. The above formula values match many of the values reported by Young (such as the 
first value). Most deviations are between 1 and 2. Higher deviations are rare, except for the 
sixth component in the age group above 90, where Young's values are up to 32 deaths lower 
(apart from age 96).  
 
Using deaths (from age 90 with smoothed values not further explained by him), Young 
calculated his life table with l(0)=100003 up to a maximum age of 114 (see Young 1826, p. 
297). The life table calculated using the correct formula values ends at age 95 (see Table 1 in 
Appendix A). 
 
As a methodological critique, it should be noted that, besides the large number of parameters 
to be estimated, creating a life table based on deaths is only possible in a stationary population. 
Positive population growth would lead to an underestimation of life expectancy or an 
overestimation of mortality. 
 

                                                 
4 Lexis (1877) and Pearson (1897) also applied analytical functions to measure the number of deaths as a 
function of age. Lexis used the normal distribution for those who died in adulthood. 
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Fig. 1:  Decrement Tables and Young´s Graphical Presentation of his Formula 
Remarks: with life Tables of: de Moivre, Finlaison, Carlisle, Northampton, Deparcieux, Morgan, and London 
Equity 



 4

0 20 40 60 80 100

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

x

D
e

cr
e

m
e

n
ts

Formel
Smoothing

 
 
Fig. 2: Mortality Function of Young (1826) 
Remarks: Deaths at age x=0: 20532, x=1: 9145, x=2: 4765, x=3: 2853, x=4: 1879; the influence of the first three 
components of the formula is indicated by the dashed line.  
 

 
Fig. 3: Terms or Components of Young´s Formula 
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3. Fitting the Lazarus Distribution 

The Gompertz and Makeham laws are partial models, as they do not apply to mortality tables 
with high mortality in early ages. We now turn to a mortality table proposed by Lazarus 
(1867). Wilhelm Lazarus (1825-1890) was an actuary in Hamburg and Trieste. His mortality 
table model is a general mortality law that applies to all age groups (see also Pflaumer, 2015). 
 
Survivor function: 
 

A A B Bkx gxl(x) exp e e C x
k k g g

         
 

 

 
Force of mortality function: 
 

g x k x(x) B e C A e
         

 
Density of the Lazarus Distribution:  
 

 dl(x) A A B Bkx gx g x k xl(x) (x) exp e e C x B e C A e
dx k k g g

                     
 

 

 
 
The formula consists of three parts and five parameters, covering the entire age range. The 
first part represents child mortality, which decreases sharply after birth. The second part 
describes age-independent mortality, and the third part is the Gompertz law with increasing 
mortality. This model was also proposed by Siler (1979) and applied to primates. An 
extension can be found in Thiele (1871), where C is replaced by an age-dependent function 
C(x). Special cases of the Lazarus model are the Gompertz formula (C = 0, B = 0), the 
Makeham formula (B = 0), and the Gauss mortality formula5 (C = 0). This special form of the 
hazard function is called the bathtub curve in reliability engineering, as it consists of three 
parts: decreasing, constant, and increasing failure rates. The name comes from the cross-
sectional shape of a bathtub. 
 
Fitting the Young life table (1826) with the Lazarus distribution using non-linear least squares 
with R yields (see also Figs. 4 and 5): 
 
 
Parameter Estimate Std. Error t-value 

A  0.00168 0.0001 12.3 

B  0.29385 0.0054 54.6 

C  0.00534 0.0004 14.0 

g  0.60826 0.0139 43.8 

k  0.05285 0.0012 44.3 

 
 
 
 

                                                 
5 See, e.g, Pflaumer (2013). 
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Fig. 4:  Fitting Young´s Life Table with the Lazarus Distribution 

l(x) und d(x)=l(x)-l(x+1) 
 
 
Important parameters can only be determined numerically. 
 
The following results were obtained: the normal death age (or modal death age) is 60.6 

(compared to 63 in Young's table), life expectancy 
0

0
( ) ( ) 30.2e x l x dx



  is the same as in 

Young's table, the average age of the stationary population is 0

0

( )

29.2

( )
S

x l x dx

l x dx






 



. 
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Rectangularization indices are 
0
( ) 30.2

0.517
2 2 29.2S

e x
g


  

 
(Gumbel coefficient), 

 
0

0

( ) ln ( )
-26.4

0.874
30.2

( )

l x l x dx

H

l x dx






    



(Keyfitz Entropy), 

and Gini coefficient  2

0

1
( ) ( ) 0.54

(0)
R l x l x dx

e



   .  

The minimum of the death density function is at the age of 12.4 (compared to 13.5 in Young's 
table). The minimum age of death probability function is 11.5 years. 
 

 
Fig. 5: Important Life Table Function of Young´s Formula 
 
In addition to life expectancies at age x, he also calculated present values for annuities using 
this formula (Young, 1828) 
  

 
22

( )
3 3

x
a x

x





 
 

 with  : maximum age. 

 

Young (1828) modified the de Moivre formula ( ) 1
x

l x


  in 1829 (see also Peacock, 1855, 

pp. 392 ff.) by 
 

2

2
( ) 1

x
l x


  . 

 



 8

Compared to other historical life tables, Young´s table is characterized by relatively high 
mortality (see Fig. 6). The life expectancies are: Zillmer: 41.1; Germany (males): 35.6; 
Halley: 33.4; Young: 30.2; Süßmilch: 28.5; Russia (males): 26.4. 
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Fig. 6:  Young´s Life Table compared to other Life Tables from the 18th and 19th Centuries 
 
 
 
 
4. Young´s Life Table as a Model Life Table 
 
In the broadest sense, model life tables encompass all analytical functions that describe 
mortality patterns. In a narrower sense, model life tables only refer to standard tables that are 
based on real data and are limited in time and region; this is usually the interpretation 
understood as a model life table. An early example of a model life table can be considered the 
life table by Young (1826). The most well-known example is the model life tables by Coale 
and Demeny (1966). The purpose of a model life table is to obtain complete life tables with 
incomplete information (for example, if only life expectancy during a specific period in a 
region is known). 
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Coale Demeny Model Life Table  
 
MODEL WEST 
LIFE TABLES 
LEVEL 5 
FEMALES 
 

x lx ndx nqx ex 
0 1.000 0.256 0.256 30.0 
1 0.744 0.132 0.178 39.2 
5 0.612 0.031 0.050 43.4 
10 0.581 0.023 0.039 40.6 
15 0.558 0.029 0.051 37.1 
..     
70 0.120 0.051 0.424 7.1 
75 0.069 0.038 0.557 5.3 
80 0.031 0.021 0.696 3.9 
85 0.009 0.008 0.837 2.8 
90 0.002 0.001 0.938 1.9 
95 0.000 0.000 1.000 1.3 

 
 
The following comparison in Fig. 7 shows that Young's life table corresponds to a specific 
Coale and Demeny life table, namely the table (MODEL WEST, LEVEL 5, FEMALES) with 
a life expectancy at birth of 30 years. 

   
Fig. 7:  Young´s Life Table compared to a Model Life Table (MODEL WEST LIFE TABLE, 
LEVEL 5, FEMALES) (cdmlw5) 
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5. Young´s Formula of 1816 
 
A predecessor of Young's mortality formula from 1826 was a simpler formula by Young that 
appeared in the Philosophical Magazine in 1816. This formula, titled „An Algebraical 
Expression for the Value of Lives”, was later reprinted in Peacock 1855 (pp. 359 ff.). 
The complete formula, which represents a death density function, describes the yearly number 
of deaths dx at age x as follows: 
 

2
2

1 1
0.000401 0.0000042

4 1
dx x x

x
     


  for 0 95.544x  . 

 
This formula, often referred to as the „mortality formula of Thomas Young from 1816”, is a 
simplified mathematical representation of age-specific mortality rates. It does not enjoy wide 
recognition or extensive citation in modern academic literature or contemporary mortality 
modeling. Instead, it holds more historical significance. 
 
The formula comprises three terms, each contributing to the overall mortality rate. These 
terms represent distinct factors influencing mortality across different age groups: 
 

The first term,
2

1 1

4 1 x



, is associated with child mortality and signifies a decreasing mortality 

rate as age increases. 
The second term, 0.000401 x , indicates a linear increase in mortality with age. 
The third term, 20.0000042 x  , accounts for a quadratic decrease in mortality with age, 
capturing patterns of declining mortality at older ages. 
 
In Figure 8, the blue lines represent Young's formula of 1816, while the magenta lines 
represent Young's formula of 1826. In both cases, the total number of deaths is fixed at 
100,003 to facilitate a graphical comparison of the two formulas. The key distinction lies in 
the formula of 1816, where the minimum number of deaths occurring during youth is higher 
(1816: x=11.8 years), and the modal age of adults is lower (1816: x=47.2 years). These 
differences are clearly visible in Figure 8, where both death curves are characterized by high 
child mortality, with the formula of 1816 exhibiting a slightly higher child mortality rate. 
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Fig. 8: Comparing the Mortality Functions of 1826 and 1816, each with a Total of 100,003 
Deaths 
 
 
By integrating the death density function, we obtain the distribution function  
 

3 2arctan( ) 7 401
( )

4 5000000 2000000

x x x
F x

 
   , 

 
and correspondingly, the survivor function l(x) defined as l(x) = 1 - F(x): 
 

3 214 2005 10000000 arctan( )
( )

10000000 4

x x x
l x

   
  . 

 
This relationship was also examined by Young in 1816 (p. 360 in Peackock, 1855), who 
compared the formula's values with the recorded deaths in London in 1815, demonstrating a 
strong fit between the registered deaths and the deaths calculated using the formula. 
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Similar to our calculations, Thomas Young in 1816 calculated a life expectancy at birth of 
more than 30 years, with a probable or median value of approximately 27 years. Additionally, 
he computed life expectancies at various ages, including 1, 5, 10, 20, and so on, and presented 
a comparative table with these values in contrast to Halley's life table. 
 
In Figure 9, essential life table functions have been graphically depicted based on their 
corresponding formulas, which are 
 

- life expectancy 

95.544

( )

( )
( )

x

l x

e x
l x




 

- force of mortality 

( )
( )

( )
( )

dl x
l x

x
l x

   . 

 
The life expectancy in Young's analysis exhibits the typical form of an 18th or 19th-century 
life table, where, after high infant mortality, the life expectancy increases up to a maximum 
and then falls due to the increasing force of mortality. The force of mortality itself shows a 
distinctive 'bathtub' shape, characterized by a high force of mortality at both low and high 
ages, and a lower force of mortality at intermediate ages." 
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Fig. 9: Important Life Table Functions of Young´s Mortality Formula of 1816 
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Young's life table of 1816, characterized by its simplicity with just three terms, serves as a 
foundational stepping stone in mortality modeling. This mathematical life table, beginning 
with l(0) = 1, provides a clear and intuitive framework that simplifies the understanding of the 
more complex life table of 1826. By employing techniques of integration and differentiation, 
this concise model allows us to calculate various vital functions, including life expectancy at 
age x and the force of mortality, effectively demonstrating the power of mathematical tools in 
demography and actuarial science (see also Appendix C). 
 
 
6. Conclusion 
 
Thomas Young (1773-1829) was a brilliant scholar whose contributions spanned across many 
fields. In addition to his well-known work in medicine, physics, anthropology, and ancient 
history, Young also developed a formula for the law of mortality. While his formula has been 
criticized for certain methodological issues, it was an early and noteworthy method for 
creating a model life table from empirical data. Young's formula also corresponds to a 
particular life table of Coale and Demeny. As such, Young's contributions to demography 
should be recognized and appreciated. His life table has practical relevance for historians and 
demographers who need a suitable and complete life table of England at the beginning of the 
19th century, making Young's work an important source for demographic research. 
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Appendix A 
 
Table 1: Life table (lx: formula values; lxYoung: Young´s values) 
 

x lx lxYoung x lx lxYoung x lx lxYoung 

0 100000 100003 33 44407 44391 66 16171 16158 

1 79468 79472 34 43681 43665 67 15232 15219 

2 70323 70366 35 42947 42931 68 14299 14286 

3 65559 65586 36 42204 42189 69 13374 13360 

4 62705 62732 37 41454 41438 70 12458 12445 

5 60826 60852 38 40695 40679 71 11555 11542 

6 59504 59511 39 39928 39911 72 10666 10654 

7 58527 58532 40 39152 39135 73 9795 9783 

8 57776 57780 41 38367 38350 74 8945 8933 

9 57178 57177 42 37573 37555 75 8119 8107 

10 56684 56683 43 36770 36751 76 7320 7306 

11 56260 56260 44 35958 35938 77 6552 6538 

12 55884 55883 45 35137 35117 78 5818 5805 

13 55534 55534 46 34307 34286 79 5123 5108 

14 55197 55197 47 33469 33447 80 4469 4454 

15 54860 54860 48 32621 32599 81 3859 3844 

16 54512 54513 49 31764 31742 82 3297 3285 

17 54147 54132 50 30899 30876 83 2785 2772 

18 53755 53739 51 30025 30002 84 2325 2312 

19 53332 53317 52 29143 29120 85 1916 1904 

20 52873 52859 53 28253 28230 86 1559 1547 

21 52375 52362 54 27355 27332 87 1252 1240 

22 51836 51822 55 26450 26426 88 990 982 

23 51255 51241 56 25537 25513 89 769 767 

24 50634 50620 57 24618 24596 90 582 589 

25 49979 49964 58 23693 23673 91 421 425 

26 49301 49286 59 22762 22744 92 279 295 

27 48619 48604 60 21827 21810 93 151 208 

28 47932 47917 61 20888 20872 94 39 148 

29 47240 47225 62 19946 19930 95 0 104 

30 46542 46527 63 19002 18987 96  73 

31 45837 45822 64 18057 18043 …..   

32 45125 45110 65 17113 17100 114  0 
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Table 2: Formula values of the decrement table and its terms 
 

x age x-1 dx dxYoung deviation A B C D E F 

1 0 20532 20531 1 378 255 20408 0.0 0 0 

2 1 9145 9106 39 388 293 9050 0.0 0 0 

3 2 4765 4780 -15 398 328 4695 0.0 0 0 

4 3 2853 2854 -1 408 359 2804 0.0 0 0 

5 4 1879 1880 -1 418 386 1847 0.0 0 0 

6 5 1322 1341 -19 428 409 1303 0.0 0 0 

7 6 976.84 979 -2 438 427 966 0.0 0 0 

8 7 751.04 752 -1 448 440 743 0.0 0 0 

9 8 598.44 603 -5 458 448 588 0.0 0 0 

10 9 493.97 494 0 468 451 477 0.0 0 0 

11 10 423.09 423 0 478 448 393 0.0 0 0 

12 11 376.88 377 0 488 440 329 0.0 0 0 

13 12 349.58 349 1 498 427 279 0.0 0 0 

14 13 337.27 337 0 508 409 238 0.0 0 0 

15 14 337.19 337 0 518 386 205 0.0 0 0 

16 15 347.24 347 0 528 359 178 0.0 0 0 

17 16 365.78 381 -15 538 328 155 0.0 0 0 

18 17 391.39 393 -2 548 293 136 0.0 0 0 

19 18 422.82 422 1 558 255 119 0.0 0 0 

20 19 458.84 458 1 568 214 105 0.0 0 0 

21 20 498.18 497 1 578 173 93 0.0 0 0 

22 21 539.46 540 -1 588 130 82 0.0 0 0 

23 22 581.02 581 0 598 89 72 0.0 0 0 

24 23 620.74 621 0 608 51 64 0.0 0 0 

25 24 655.43 656 -1 618 19 56 0.0 0 0 

26 25 677.83 678 0 628 0 50 0.0 0 0 

27 26 682.00 682 0 638 0 44 0.0 0 0 

28 27 686.84 687 0 648 0 39 0.0 0 0 

29 28 692.26 692 0 658 0 34 0.0 0 0 

30 29 698.22 698 0 668 0 30 0.0 0 0 

31 30 704.64 705 0 678 0 27 0.0 0 0 

32 31 711.47 712 -1 688 0 24 0.1 0 0 

33 32 718.67 719 0 698 0 21 0.1 0 0 

34 33 726.19 726 0 708 0 18 0.1 0 0 

35 34 734.00 734 0 718 0 16 0.2 0 0 

36 35 742.05 742 0 728 0 14 0.2 0 0 

37 36 750.32 751 -1 738 0 13 0.3 0 0 

38 37 758.78 759 0 748 0 11 0.4 0 0 

39 38 767.39 768 -1 758 0 10 0.5 0 0 

40 39 776.12 776 0 768 0 9 0.6 0 0 

41 40 784.97 785 0 778 0 8 0.8 0 0 

42 41 793.89 795 -1 788 0 7 1.0 0 0 

43 42 802.87 804 -1 798 0 6 1.2 0 0 

44 43 811.88 813 -1 808 0 5 1.5 0 0 

45 44 820.90 821 0 818 0 5 1.9 0 0 

46 45 829.91 831 -1 828 0 4 2.4 0 0 

47 46 838.87 839 0 838 0 4 3.0 0 0 
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48 47 847.77 848 0 848 0 3 3.7 0 0 

49 48 856.58 857 0 858 0 3 4.5 0 0 

50 49 865.26 866 -1 868 0 3 5.5 0 0 

51 50 873.77 874 0 878 0 2 6.7 0 0 

52 51 882.09 882 0 888 0 2 8.1 0 0 

53 52 890.17 890 0 898 0 2 9.8 0 0 

54 53 897.96 898 0 908 0 2 11.9 0 0 

55 54 905.41 906 -1 918 0 2 14.3 0 0 

56 55 912.46 913 -1 928 0 1 17.1 0 0 

57 56 919.04 917 2 938 0 1 20.4 0 0 

58 57 925.09 923 2 948 0 1 24.3 0 0 

59 58 930.51 929 2 958 0 1 28.8 0 0 

60 59 935.23 934 1 968 0 1 34.1 0 0 

61 60 939.13 938 1 978 0 1 40.2 0 0 

62 61 942.11 942 0 988 0 1 47.3 1 0 

63 62 944.05 943 1 998 0 1 55.5 1 0 

64 63 944.81 944 1 1008 0 1 64.9 1 0 

65 64 944.24 943 1 1018 0 1 75.8 1 0 

66 65 942.20 942 0 1028 0 1 88.3 2 0 

67 66 938.50 939 -1 1038 0 1 102.7 3 0 

68 67 932.97 933 0 1048 0 0 119.1 4 0 

69 68 925.42 926 -1 1058 0 0 137.8 5 0 

70 69 915.64 915 1 1068 0 0 159.1 6 0 

71 70 903.44 903 0 1078 0 0 183.3 8 0 

72 71 888.59 888 1 1088 0 0 210.9 11 0 

73 72 870.90 871 0 1098 0 0 242.0 15 0 

74 73 850.17 850 0 1108 0 0 277.3 19 0 

75 74 826.21 826 0 1118 0 0 317.2 25 0 

76 75 798.86 801 -2 1128 0 0 362.1 33 0 

77 76 768.00 768 0 1138 0 0 412.6 43 0 

78 77 733.58 733 1 1148 0 0 469.5 55 0 

79 78 695.59 697 -1 1158 0 0 533.3 71 0 

80 79 654.15 654 0 1168 0 0 604.7 91 1 

81 80 609.46 610 -1 1178 0 0 684.7 117 1 

82 81 561.90 559 3 1188 0 0 774.1 150 2 

83 82 512.01 513 -1 1198 0 0 873.9 191 3 

84 83 460.53 460 1 1208 0 0 985.0 243 5 

85 84 408.43 408 0 1218 0 0 1108.8 307 8 

86 85 356.92 357 0 1228 0 0 1246.4 388 13 

87 86 307.43 307 0 1238 0 0 1399.1 489 21 

88 87 261.56 258 4 1248 0 0 1568.5 615 33 

89 88 220.97 215 6 1258 0 0 1756.2 771 52 

90 89 187.13 178 9 1268 0 0 1963.8 964 81 

91 90 160.94 148 13 1278 0 0 2193.2 1203 126 

92 91 142.09 125 17 1288 0 0 2446.5 1496 196 

93 92 128.00 101 27 1298 0 0 2725.8 1857 302 

94 93 112.20 80 32 1308 0 0 3033.5 2301 463 

95 94 81.91 53 29 1318 0 0 3372.1 2843 707 

96 95 14.23 27 -13 1328 0 0 3744.3 3505 1075 

97 96 -129.32 0 -129.32 1338 1 0 4153.2 4312 1626 
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Table 3: MODEL WEST LIFE TABLE, LEVEL 5, FEMALES 
     (Coale Demeny) 
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Appendix B: Tables from Young (1826) 
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Appendix C: Applying Young's Formula from 1816 to the Life Table of 
German Males for the Period 1871-1880 
 
We applied Young's formula from 1816 to the life table of German males for the period 1871-
1880: 

3 2 10000000 arctan( )
( )

10000000

a x b x x
l x

c

   
  ,              0 x   . 

 
For large values of x, the formula can be expressed as,  

3 2 10000000
( )

10000000 2

a x b x
l x

c

   
 


, 

as the limit of arctan(x) approaches π/2 for increasing x. In our case, the approximation is 
sufficient when x exceeds 30. 
 
The following Table presents the estimation results, while the Figure A3.1 displays both the 
actual values (in blue) and the estimated values (in red). 
 
Parameters: 
   Estimate Std. Error t value  
a    6.5048     0.6281   10.36    
b 1354.0101    60.6585   22.32    
c    4.2789     0.0747   57.28    
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Fig. A3.1: Applying Young's Formula from 1816 to the Life Table of German Males for the 
 Period 1871-1880 ( 91.5  ). 
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Upon examining the plotted values, several key observations emerge: 
 
1. Lack of Curvature Alignment: The most apparent distinction lies in the failure of the 
fitted values to precisely replicate the curvature of the actual life table. The genuine life table 
exhibits a gradual decline in survivorship with advancing age, with a more pronounced 
decrease among older individuals. In contrast, the fitted values do not faithfully capture this 
curvature. This suggests that the chosen Young's formula and parameter values may not 
comprehensively represent the underlying mortality pattern in the dataset. 
 
2. Negative Values at Advanced Ages: Another crucial observation is that the fitted values 
become negative at older ages. This unmistakably indicates that the selected model and 
parameterization may not be suitable for modeling mortality at extremely advanced ages. In 
actual mortality data, survivorship typically diminishes but remains positive even at the 
highest ages. The appearance of negative values in the fitted life table implies that the model 
does not behave realistically at extreme ages. 
 
3. Overall Discrepancy: A visual comparison between the actual and fitted values reveals a 
significant discrepancy between the two. While the fitted values may generally follow a 
declining trend, they fail to capture the intricacies inherent in the actual data. 
 
 
 
These discrepancies, observed in the life tables Young investigated, were likely recognized by 
him. As a result, he developed a formula with six terms to create a more realistic 
representation of the life table, a topic that has been extensively discussed in the paper. 
 


