
Efficient String Algorithmics
Across Alphabet Realms

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r N a t u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Jonas Ellert

Dortmund

2024

Tag der mündlichen Prüfung: 19.02.2024

Dekan: Prof. Dr. Gernot Fink
Fakultät für Informatik
Technische Universität Dortmund
Deutschland

Erster Gutachter: Prof. Dr. Johannes Fischer
Technische Universität Dortmund
Deutschland

Zweiter Gutachter: Prof. Dr. Paweł Gawrychowski
Uniwersytet Wrocławski
Polen

To my wife.
To my family.

To all beings, great and small.

Abstract

Stringology is a subfield of computer science dedicated to analyzing and processing
sequences of symbols. It plays a crucial role in various applications, including lossless
compression, information retrieval, natural language processing, and bioinformatics.
Recent algorithms often assume that the strings to be processed are over polynomial
integer alphabet, i.e., the symbols are from an integer range {0, . . . , σ−1}, where σ is
at most polynomial in the lengths of the strings. In contrast to that, the earlier days
of stringology were shaped by the weaker comparison model, in which strings can only
be accessed by mere equality comparisons of symbols, or (if the symbols are totally
ordered) order comparisons of symbols. Nowadays, these flavors of the comparison
model are respectively referred to as general unordered alphabet and general ordered
alphabet. In this dissertation, we dive into the realm of these general alphabets and
show that, even though they may seem outdated and somewhat esoteric at first
glance, they are certainly far from obsolete.

The main contribution are new time-wise optimal algorithms for detecting whether
a given string contains a square, i.e., a substring of the form uu for some string u.
We solve this problem in O(n) time over general ordered alphabet, and O(n log σ)
time (with a matching lower bound) over general unordered alphabet, where n is the
length of the string and σ is the number of distinct symbols present in the string.
This resolves two open questions that date back multiple decades. The algorithms
not only detect whether the string contains a square, but actually output a complete
list of the maximal periodic substrings (also known as runs), which have applications,
e.g., in bioinformatics. As a stepping stone towards the solution over general ordered
alphabet, we also provide the first O(n) time algorithm that computes the Lyndon
array in this model, which is a crucial ingredient for the computation of runs. The
algorithm computes the succinct 2n bit representation of the Lyndon array, and
(apart from the space needed for input and output) it uses only O(n log log n/ log n)
bits of working space. This makes it the most space efficient algorithm to date,
regardless of the alphabet. For polynomial integer alphabets, we introduce the first
algorithm that computes the Lyndon array in sublinear time (assuming that the
alphabet is sufficiently small). On our way to the solution, we carefully dissect and
analyze combinatorial properties of Lyndon words and periodic substrings, and show
how to exploit them algorithmically.

The complexity analysis of the new results is quite intricate and involved. However,
at least in the case of general ordered alphabet, the algorithms themselves are
surprisingly simple. The simplicity is a consequence of (and hence an argument for)
the general ordered alphabet. Since we have to avoid data structures and other
heavy machinery that is designed for integer alphabets, we are forced to develop
algorithms that are inherently more self-contained. While the main contribution lies

v

in the improvement of theoretical bounds, some of the new algorithms are also very
easy to implement and quite fast in practice, which is a result of their simplicity.

Another strength of general alphabets is the ability to separate problems based
on their time complexity, which we demonstrate with the problem of computing
the Lempel-Ziv factorization (one of the most common compression schemes). Over
polynomial integer alphabet, this problem is equally hard as computing runs (or
detecting squares). In contrast to that, we show that computing the Lempel-Ziv
factorization requires Ω(n log σ) time over general ordered alphabet (a result that
was previously known) and Ω(nσ) time over general unordered alphabet. Hence the
problem is indeed harder than detecting squares. Optimal O(n log σ) and respectively
O(nσ) time algorithms can be obtained with a simple alphabet reduction, and thus
we do not need dedicated algorithms for Lempel-Ziv over general alphabets.

Instead, we consider the nowadays more common setting in which the string is over
integer alphabet {0, . . . , σ−1}. Under the standard assumption of a word RAM with
words of width w = Θ(log n), a length-n string can be packed in only O(n/ logσ n)
words of memory, which is sublinear in n if the alphabet is sufficiently small. Each
word contains (parts of) multiple symbols, and thus word-level parallelism allows the
simultaneous processing of multiple symbols. A recent trend in stringology is the
design of algorithms that run in (close to) O(n/ logσ n) time, and thus depend on
the number of words occupied by the string (rather than its length). We follow this
trend and show that the Lempel-Ziv factorization can be computed in O(n/ logσ n +
z log3+ϵ z) time and O(n/ logσ n) words of working space, where ϵ ∈ R+ is an
arbitrarily small constant, and z is the number of phrases of the factorization. This
significantly improves the best previously known bounds. As part of the solution, we
introduce an algorithm that computes a 3-approximate factorization (consisting of at
most 3z phrases) in O(n/ logσ n) time and words of working space, which is a result
of independent interest. Finally, we also show new advances in the computation
of the rightmost Lempel-Ziv parsing, which optimizes the encoding and hence the
compression rate achieved by the factorization.

From a broader perspective, the presented results underline the importance of
considering string algorithmic problems in both weaker and stronger models than
the standard one (in which each symbol is stored in a separate word of a word
RAM). The current trend of word-packed string algorithmics undeniably yields faster
solutions, and even though it requires a stronger model of computation, it certainly
reflects the nature of real-world computer architectures. However, we should not
discard the older and weaker comparison-based models too quickly, as they are not
only powerful theoretical tools, but also lead to fast and elegant practical solutions,
even by today’s standards.

vi

Table of Contents

1 Introduction 1
1.1 Main Results and Overview of the Dissertation 2
1.2 Corresponding Publications and Contributions of the Author 5

2 Strings and Alphabets 11
2.1 Basic Definitions and Notation . 11
2.2 Strings on a Word RAM . 13

2.2.1 Integer Alphabets . 13
2.2.2 General Alphabets . 15
2.2.3 Alphabet Reduction by Sorting 18

2.3 Lower Bounds for Basic Problems Over General Alphabets 19
2.3.1 Adversary Method for Lower Bounds 20
2.3.2 Lower Bounds for General Ordered Alphabet 21
2.3.3 Lower Bounds for General Unordered Alphabet 23

Part I: Lempel-Ziv Compression 27

Introduction and Related Work 29

3 Lower Bounds for LZ Over General Alphabets 35
3.1 Reducing Alphabet Set Testing to Lempel-Ziv 35
3.2 Lower Bounds for Large Alphabets 38

4 Sublinear Time Lempel-Ziv Factorization of Packed Strings 39
4.1 Auxiliary Lemmas . 40
4.2 Algorithm for 3-Approximate LZ-like Factorization 41

4.2.1 Computing Longest Previous Factors of Sample Positions . . 42
4.2.2 Computing a Gapped Factorization 43

4.3 Algorithm for Exact LZ Factorization 45
4.3.1 Computing the Exact LZ Factorization 47
4.3.2 Computing the Non-Overlapping LZ Factorization 49

4.4 Conclusion . 50

5 New Advances in Rightmost Lempel-Ziv 51
5.1 Preliminaries . 53
5.2 Computing Rightmost LZ-End Parsings 53

5.2.1 Rightmost Greedy LZ-End Parsing 53
5.2.2 Rightmost (Arbitrary) LZ-End Parsing 54

vii

Table of Contents

5.3 Partially Solving Rightmost LZ-Like Parsings 55
5.3.1 Long Phrases . 55
5.3.2 Arbitrary Subsets of Phrases 57
5.3.3 Infrequent Phrases . 58
5.3.4 Close Phrases . 61

5.4 Conclusion . 61

Part II: Computing the Lyndon Array 65

Introduction and Related Work 67

6 The Lyndon Array and Nearest Smaller Suffixes 69
6.1 Lyndon Words and the Lyndon Array 69
6.2 Nearest Smaller Suffixes . 71

7 A Simple Linear Time Algorithm for the Lyndon Array
(Over General Ordered Alphabet) 75
7.1 Properties of Nearest Smaller Suffixes 76
7.2 A Simple Algorithm for Nearest Smaller Suffixes 78

7.2.1 Achieving Linear Time . 83
7.3 Similarity to Manacher’s Algorithm for Palindromes 86
7.4 Conclusion and Practical Implementation 87

8 Computing the Succinct Lyndon Array in Small Working Space
(Over General Ordered Alphabet) 89
8.1 Storing the Lyndon Array as a Balanced Parentheses Sequence . . . 89
8.2 Maintaining Operations on a BPS Prefix 91

8.2.1 Static Data Structures . 92
8.2.2 Dynamic Data Structures . 94

8.3 Constructing the PSS Tree . 96
8.3.1 Efficiently Computing the Previous Smaller Suffix 98
8.3.2 Achieving Linear Time . 100

8.4 Adaptation to the (Non-Succinct) Lyndon Array 107
8.5 Experimental Results . 108
8.6 Conclusion . 109

9 Computing the Succinct Lyndon Array in Sublinear Time
(For a String Packed Over Integer Alphabet) 111
9.1 A Blockwise Algorithm for the PSS Tree 113

9.1.1 Detailed Description of the Blockwise Algorithm 113
9.1.2 Analyzing the Time and Space Complexity 117

9.2 Proving the First Technical Lemma 118
9.3 Proving the Second Technical Lemma 120
9.4 Conclusion . 123

viii

Table of Contents

Part III: Computing Maximal Periodic Substrings 125

Introduction and Related Work 127

10 Computing Runs Over General Ordered Alphabet 131
10.1 Algorithmic Toolbox . 131

10.1.1 Lyndon Array and Nearest Smaller Suffixes 132
10.1.2 Relation Between Runs and Lyndon Words 132
10.1.3 Longest Common Extensions 134

10.2 The Runs Algorithm Revisited . 134
10.3 Algorithm for Computing the LCEs 136

10.3.1 Computing the R-LCEs . 136
10.3.2 Computing the L-LCEs . 141

10.4 Practical Implementation . 143
10.5 Conclusion . 144

11 Computing Runs Over General Unordered Alphabet 147
11.1 Preliminaries . 150
11.2 Lower Bound for Testing Square-Freeness 152
11.3 Testing Square-Freeness in O(n log σ) Comparisons 155

11.3.1 Sparse Suffix Trees and Difference Covers 156
11.3.2 Detecting Squares with a ∆-Approximate LZ Factorization . 157
11.3.3 Simple Algorithm for Detecting Squares 160
11.3.4 Improved Algorithm for Detecting Squares 160

11.4 Testing Square-Freeness in O(n log σ) Time 163
11.4.1 Constructing the ∆-Approximate LZ Factorization 163
11.4.2 Final Improvement . 167

11.5 Computing Runs . 172
11.5.1 Copying Runs From Previous Occurrences 176
11.5.2 Final Improvement for Computing Runs 176

11.6 Conclusion . 177

Bibliography 179

ix

Chapter 1 1Introduction

Stringology is a subfield of computer science dedicated to analyzing and processing
sequences of symbols. It plays a crucial role in various applications, including lossless
compression, information retrieval, natural language processing, and bioinformatics.
In this dissertation, we provide lower bounds and efficient algorithms for various string
algorithmic problems. Before describing the main contributions, we contextualize
the content within the broader scope of stringology.

A widely accepted assumption in stringology is that strings are processed on a
word RAM that operates on binary words of width w (see, e.g., [Hag98]), and each
symbol of a string is represented as a bitstring of fixed length, typically no greater than
w. This model is reasonably similar to real-world computer architectures, which is in
alignment with the practical relevance of many string algorithmic problems. In the
earlier days of stringology, algorithms often assumed the more abstract comparison
model of computation, in which the algorithm can only interact with the string by
comparing two of its symbols. If the algorithm merely uses equality comparisons
of symbols, then we say that it works over general unordered alphabet. This is the
case, e.g., for the famous Knuth-Morris-Pratt pattern matching algorithm [KMP77].
If, however, the symbols are totally ordered, and the algorithm accesses the string
by performing order comparisons (i.e., it tests if one symbol precedes another with
respect to the total order), then we say that it works over general ordered alphabet.
This is the case, e.g., for Apostolico’s parallel algorithm that tests whether a given
string contains a square substring (where a square is the two-times concatenation of
a shorter string, like atat in the string catattack) [Apo92].

In this dissertation, we dive into the realm of these general (ordered and unordered)
alphabets. We provide new lower and upper bounds for solving classic problems
in this setting. As a prime example, we present two time-wise optimal algorithms
that test whether a given string contains a square, respectively over general ordered
and general unordered alphabet. This resolves two open questions that date back
multiple decades [ML84, Bre92].

The presented results are primarily of theoretical interest. They advance our
understanding of structural elements in strings by revealing their combinatorial nature.
However, the considered problems also have strong practical applications, and we
complement a selection of the theoretical results with an efficient implementation.
Peculiarly, some of the algorithms designed for general ordered alphabet can be
implemented more efficiently than previous solutions that assume an integer alphabet.
One reason for this is that algorithms for integer alphabets often rely on precomputed
data structures and other heavy algorithmic machinery (e.g., the suffix array [MM93]).
Such tools must be avoided by algorithms for general alphabets because in this setting

1

1 Introduction

they cannot be constructed efficiently. As a result, algorithms for general alphabets
are often inherently simpler, more self-contained, and (in some cases) arguably more
elegant. This is only one of the reasons why general alphabets, although they may
seem esoteric and outdated at first glance, are certainly far from obsolete.

We also consider the more common setting of strings over integer alphabet, in
which it is often assumed that a string of length n is stored in n consecutive memory
words. Consequently, Ω(n) is a trivial lower bound on the time needed by any
algorithm that has to access all symbols of the string. However, faster algorithms can
be achieved if the string is given in packed representation. If the symbols are from
integer alphabet {0, . . . , σ − 1} with σ ≪ n, then multiple symbols can be stored in
a single word, and the entire string can be packed in O(n/ logσ n) words (which we
describe in detail later). By exploiting word-level parallelism, multiple symbols can
then also be processed simultaneously. This way, we obtain new algorithms that run
in O(n/ logσ n) time, matching the time needed to merely read the packed string. For
example, we show how to compute an approximation of the Lempel-Ziv factorization
(a popular compression scheme) in this complexity. Such word-packing results are a
major recent trend in stringology, and they are motivated by real-world computer
architectures. For example, most commodity processors work on 64 bit words, while
real-world string data is usually stored using one byte per symbol. Hence eight
symbols could be packed in one word.

One might argue that, in the last few decades, the string algorithmic landscape
has been dominated by algorithms that (often implicitly) assume that each symbol
is stored in a separate word of a word RAM. While the recent trend of word-packed
string algorithmics offers a slightly stronger model, the older assumption of general
alphabets offers a weaker model. The results presented in the dissertation underline
the importance of considering not only the standard model but also the stronger
and weaker ones. On one hand, the stronger models yield faster algorithms. On
the other hand, the weaker comparison-based models advance our understanding of
combinatorial structures in strings and sometimes lead to simple and fast algorithms.

1.1 Main Results and Overview of the Dissertation
In this section, we give a brief overview of the main contributions. This is (primarily)
intended for readers that are already familiar with the field, the considered problems,
and the commonly used notation. We only state the main results without providing
further background information. A precise description of the problems and a brief
discussion of the prevalent literature can be found in the respective chapter and part
introductions.

General Alphabets In Chapter 2, we introduce basic definitions and key concepts
used throughout the dissertation. We also describe and motivate the present models
of computation in more detail, provide background information and literature, and
discuss how they are related to the complexity of integer and comparison-based
sorting. Then, we provide a trivial reduction from general alphabets to integer
alphabets. Consider a length-n string that contains σ distinct symbols.

2

1.1 Main Results and Overview of the Dissertation

• If the string is over general ordered alphabet, then an order-isomorphic string
over the integers {0, . . . , σ−1} can be obtained in O(n log σ) order comparisons.

• If the string is over general unordered alphabet, then an isomorphic string over
the integers {0, . . . , σ − 1} can be obtained in O(nσ) equality comparisons.

Hence we do not always need dedicated algorithms for general alphabets; for
some problems, we already achieve optimal time by first applying the reduction, and
then solving the problem with a fast algorithm designed for integer alphabet. This is
the case even for very basic problems. For example, by using the adversary method
of showing lower bounds, we prove that distinguishing length-n strings that contain
σ distinct symbols from length-n strings that contain n

2 distinct symbols requires
Ω(n log σ) order comparisons, or Ω(nσ) equality comparisons.

Lempel-Ziv Factorization (Part I) In Part I, we turn our attention to the
Lempel-Ziv (LZ) factorization [LZ76], one of the main tools in lossless data compres-
sion. In Chapter 3, we extend the adversarial lower bounds from Chapter 2 and show
that computing the LZ factorization requires Ω(n log σ) order comparisons, or Ω(nσ)
equality comparisons, even if the literal phrases of the factorization are known in
advance and given as part of the input.

Theorem 3.2. Let σ, n ∈ N+ with 8 ≤ σ ≤ n
5 be fixed. There is no algorithm

that computes the Lempel-Ziv Factorization with Known Literals (Problem 3.1) of a
string of length n that contains σ distinct symbols over

(i) general ordered alphabet in fewer than n log2 σ
256 symbol order comparisons, and

(ii) general unordered alphabet in fewer than nσ
256 symbol equality comparisons

in the worst case.

After reducing the alphabet to an integer alphabet, we can compute the LZ
factorization in O(n) time (e.g., using [CI08a]). Hence we do not need to design
algorithms that compute the LZ factorization over general alphabets. Instead, in
Chapter 4, we focus on the practical setting in which the string is packed over integer
alphabet {0, . . . , σ − 1}, and stored in O(n/ logσ n) words on a word RAM. By
exploiting word-level parallelism and combining multiple known techniques from LZ
compression, we obtain an algorithm that computes a constant factor approximation
of the LZ factorization in optimal time. We then use the approximate factorization
as a tool for computing the exact one in almost optimal time, significantly improving
the best previously known bounds.

Theorem 4.1. Let x[1..n] be packed over [0, σ). If the LZ factorization of x consists
of z phrases, then an LZ-like factorization of x that consists of at most 3z phrases
can be computed in O(n/ logσ n) time and O(n log σ) bits of space.

Theorem 4.2. Let x[1..n] be packed over [0, σ), and let ϵ ∈ R+ be an arbitrarily
small positive constant. If the LZ factorization of x consists of z phrases, then it
can be computed in O(n/ logσ n + z log3+ϵ z) time and O(n log σ) bits of space.

3

1 Introduction

Finally, in Chapter 5, we consider the rightmost LZ parsing, which aims to
improve the compression rate by computing the rightmost previous occurrence of
each referencing phrase of the factorization. It is unknown whether this computation
can be performed in O(n) time. While we do not conclusively resolve this question,
we do achieve linear (and in one case even sublinear) time for several non-trivial
subsets of the referencing phrases. We further introduce the first algorithm that
computes the rightmost parsing of the LZ-End factorization, which is a variation of
LZ that has special properties beneficial for indexing.

Computing the Lyndon Array (Part II) The Lyndon array of a string is a data
structure that plays a central role when detecting squares, or more generally when
computing length-wise maximal periodic substrings (see, e.g., [Ban+17]). Hence,
before discussing the computation of periodic substrings in Part III, we provide
efficient algorithms for computing the Lyndon array in Part II. While the Lyndon
array has a simple linear time construction algorithm for integer alphabets (using the
suffix array), it was previously unknown whether it can be computed in linear time
over general ordered alphabet. We positively answer this question with an algorithm
that directly computes the Lyndon array without depending on the suffix array. It
relies on combinatorial properties of Lyndon words and their close relation to the
lexicographical order of suffixes, which we describe in Chapter 6. We algorithmically
exploit these properties in Chapter 7, resulting in a simple linear time algorithm
with a fast practical implementation.

Theorem 7.1. The Lyndon array of a length-n string over general ordered alphabet
can be computed in O(n) time and words of space.

While the time is optimal, using O(n) words of working space is unsatisfactory.
The Lyndon array itself, when stored naively, already requires n words of memory.
However, it can be encoded more efficiently as a balanced parentheses sequence that
requires only around 2n bits of memory. In Chapter 8, we extend the ideas from
Chapter 7 and obtain an algorithm that directly computes this succinct version of
the Lyndon array, using only a sublinear amount of additional working space. This is
the most space efficient algorithm for the Lyndon array, even over polynomial integer
alphabet, and we complement it with a fast practical implementation.

Theorem 8.1. The succinct 2n + 2 bit representation of the Lyndon array of a
length-n string over general ordered alphabet can be computed in O(n) time and
O(n log log n/ log n) bits of additional working space (apart from the space needed
for input and output).

Finally, in Chapter 9 we also provide a new algorithm for computing the succinct
Lyndon array of a word-packed string over integer alphabet {0, . . . , σ − 1}. While
previous algorithms achieve O(n) time, we introduce novel lookup tables that allow
the computation in O(n/ logσ n) time. The tables are constructed by analyzing and
algorithmically exploiting properties of Lyndon words and periodic substrings.

Theorem 9.1. The succinct 2n+2 bit representation of the Lyndon array of a length-
n string packed over [0, σ) can be computed in O(n/ logσ n) time and O(n log σ) bits
of working space.

4

1.2 Corresponding Publications and Contributions of the Author

Computing Maximal Periodic Substrings (Part III) In Part III, we consider
the problem of computing all maximal periodic substrings of a string, which are
also called runs. The question whether computing all runs in a length-n string over
general ordered alphabet is possible in O(n) time dates back at least around 30 years,
when Breslauer asked the same question for the easier problem of detecting squares
[Bre92]. It was more recently conjectured that the answer is indeed positive [Kos16a].
In Chapter 11, we confirm the conjecture by providing a linear time algorithm. It
first constructs the Lyndon array with the algorithm from Chapter 7, and then once
more exploits properties of Lyndon words and periodic substrings to obtain the
runs. While the details of the proof are intricate and quite technical, the resulting
algorithm is surprisingly simple and can be implemented efficiently.

Theorem 10.1. All the runs contained in a length-n string over general ordered
alphabet can be computed in O(n) time and words of working space.

In Chapter 10, we resolve a similar open problem for general unordered alphabet.
In this setting, a simple divide and conquer algorithm computes (a representation of)
all runs in O(n log n) time, and the bound is tight if the string contains Ω(n) distinct
symbols. This was shown by Main & Lorentz around 40 years ago [ML84], who
also explicitly asked whether the bound can be improved if the number of distinct
symbols is smaller. We positively answer this question with an algorithm that runs in
O(n log σ) time for a length-n string that contains σ distinct symbols. It is inspired
by algorithms that compute runs from the LZ factorization. However, as shown
in Chapter 3, the LZ factorization cannot be computed efficiently for unordered
alphabets. Instead, we introduce a novel relaxed version of the factorization, and
combine it with a wide range of other techniques to obtain the final solution. We
complement the algorithm with a matching lower bound that is obtained by using
the adversary method. The lower bound holds for the easier problem of testing
square-freeness, which can trivially be solved once all runs have been computed.

Theorem 11.1. Let n, σ ∈ N+ with 8 ≤ σ ≤ n be fixed. There is no deterministic
algorithm that performs at most n ln σ − 3.6n = O(n log σ) equality comparisons in
the worst case, and determines whether a length-n string that contains at most σ
distinct symbols over general unordered alphabet is square-free.

Theorem 11.2. All the runs contained in a length-n string over general unordered
alphabet can be computed in O(n log σ) time, where σ is the number of distinct
symbols in the string, which is not known in advance.

Hence we fully resolve the time complexity of computing runs over general
alphabets, which is the most important result presented in the dissertation.

1.2 Corresponding Publications and
Contributions of the Author

Most contents of this dissertation have already been published at international
conferences and are the result of collaborations with other researchers. The chapters
are, for the most part, unchanged or only slightly modified copies of the conference

5

1 Introduction

papers. Whenever possible, the introductions and literature reviews at the beginning
of the papers have been extended and merged into a single part introduction. The
notation was adjusted such that it is consistent throughout the entire dissertation.
Now we describe the contributions of the author of the dissertation (henceforth
referred to by their name) to each of the presented results. The authors of each
paper are arranged in lexicographical order (rather than by level of contribution),
which is customary in the field. Please note the copyright statement provided for
each of the publications.

Chapter 2 and Part I The lower bounds in Chapters 2 and 3 have been developed
by Jonas Ellert specifically for the dissertation, and are inspired by their previous
work on general unordered alphabets [EGG23a, EGG23b]. The sublinear time word
RAM algorithms for the LZ factorization in Chapter 4 were developed and described
by Jonas Ellert, and were published as a single-author paper at SPIRE 2023.

[Ell23] Jonas Ellert. „Sublinear time Lempel-Ziv (LZ77) factorization.“ In: Pro-
ceedings of the 30th International Symposium on String Processing and In-
formation Retrieval (SPIRE 2023). Pisa, Italy, 2023, pages 171–187. doi:
10.1007/978-3-031-43980-3_14

© Jonas Ellert, under exclusive license to Springer Nature Switzerland AG
2023. Reproduced in the dissertation with permission from Springer Nature.

The new advances in rightmost LZ, presented in Chapter 5, are based on joint
ideas by Jonas Ellert, Johannes Fischer, and Max Rishøj Pedersen. The algorithmic
details as well as the description were, for the most part, developed by Jonas Ellert
and Max Rishøj Pedersen, with support of Johannes Fischer. The paper was published
at SPIRE 2023 and won the best paper award.

[EFP23] Jonas Ellert, Johannes Fischer, and Max Rishøj Pedersen. „New advances
in rightmost Lempel-Ziv.“ In: Proceedings of the 30th International Symposium
on String Processing and Information Retrieval (SPIRE 2023). Winner of
the SPIRE 2023 Best Paper Award. Pisa, Italy, 2023, pages 188–202.
doi: 10.1007/978-3-031-43980-3_15

© Jonas Ellert, Johannes Fischer, and Max Rishøj Pedersen, under exclusive li-
cense to Springer Nature Switzerland AG 2023. Reproduced in the dissertation
with permission from Springer Nature.

Part II The introduction to Lyndon words and arrays in Chapter 6 was created
by Jonas Ellert specifically for the dissertation, and unites the combinatorial insights
and basic ideas from the papers that are presented in Chapters 7 to 9. The simple
Lyndon array algorithm in Chapter 7 was developed and described by Jonas Ellert
(inspired by earlier work [Bil+20, Bad+22]), and published at ESA 2022 (track S).

6

https://doi.org/10.1007/978-3-031-43980-3_14
https://doi.org/10.1007/978-3-031-43980-3_15

1.2 Corresponding Publications and Contributions of the Author

[Ell22] Jonas Ellert. „Lyndon arrays simplified.“ In: Proceedings of the 30th
Annual European Symposium on Algorithms (ESA 2022). Potsdam, Germany,
2022, 48:1–48:14. doi: 10.4230/LIPICS.ESA.2022.48

© Jonas Ellert, under non-exclusive license to Schloss Dagstuhl – Leibniz-
Zentrum für Informatik GmbH, subject to the terms of Creative Commons
License CC-BY 4.0.

The algorithm that computes the succinct Lyndon array over general ordered
alphabet, presented in Chapter 8, is based on general ideas by Philip Bille, Jonas
Ellert, Johannes Fischer, Inge Li Gørtz, Florian Kurpicz, J. Ian Munro, and Eva
Rotenberg. The algorithmic details and most of the description were developed by
Jonas Ellert, with support of Johannes Fischer and Florian Kurpicz. Note that this
contribution should not be fully attributed to the dissertation, as the algorithm was
partially developed as part of Jonas Ellert’s Master’s thesis, which was supervised by
Johannes Fischer and Florian Kurpicz. The improvement over the Master’s thesis
is the reduction of additional working space from O(n) bits to O(n log log n/ log n)
bits. The results were published at ICALP 2020.

[Bil+20] Philip Bille, Jonas Ellert, Johannes Fischer, Inge Li Gørtz, Florian
Kurpicz, J. Ian Munro, and Eva Rotenberg. „Space efficient construction
of Lyndon arrays in linear time.“ In: Proceedings of the 47th International
Colloquium on Automata, Languages, and Programming (ICALP 2020). Saar-
brücken, Germany (Virtual Conference), 2020, 14:1–14:18. doi: 10.4230/
LIPIcs.ICALP.2020.14

© Philip Bille, Jonas Ellert, Johannes Fischer, Inge Li Gørtz, Florian Kurpicz,
J. Ian Munro, and Eva Rotenberg, under non-exclusive license to Schloss
Dagstuhl – Leibniz-Zentrum für Informatik GmbH, subject to the terms of
Creative Commons License CC-BY 4.0.

The sublinear time algorithm that computes the succinct Lyndon array of a string
over packed integer alphabet, presented in Chapter 9, was developed and described
by Jonas Ellert, with Hideo Bannai acting in a supporting role. The results were
published at ESA 2023 (track A).

[BE23] Hideo Bannai and Jonas Ellert. „Lyndon arrays in sublinear time.“ In:
Proceedings of the 31st Annual European Symposium on Algorithms (ESA
2023). Amsterdam, The Netherlands, 2023, 14:1–14:16. doi: 10.4230/
LIPICS.ESA.2023.14

© Hideo Bannai and Jonas Ellert, under non-exclusive license to Schloss
Dagstuhl – Leibniz-Zentrum für Informatik GmbH, subject to the terms of
Creative Commons License CC-BY 4.0.

Part III The linear time algorithm that computes runs over general ordered
alphabet, presented in Chapter 10, is based on ideas by Jonas Ellert, and the
algorithmic details and description were developed by Jonas Ellert and Johannes
Fischer. The paper was published at ICALP 2021.

7

https://doi.org/10.4230/LIPICS.ESA.2022.48
https://doi.org/10.4230/LIPIcs.ICALP.2020.14
https://doi.org/10.4230/LIPIcs.ICALP.2020.14
https://doi.org/10.4230/LIPICS.ESA.2023.14
https://doi.org/10.4230/LIPICS.ESA.2023.14

1 Introduction

[EF21] Jonas Ellert and Johannes Fischer. „Linear time runs over general ordered
alphabets.“ In: Proceedings of the 48th International Colloquium on Automata,
Languages, and Programming (ICALP 2021). Glasgow, Scotland (Virtual
Conference), 2021, 63:1–63:16. doi: 10.4230/LIPIcs.ICALP.2021.63

© Jonas Ellert and Johannes Fischer, under non-exclusive license to Schloss
Dagstuhl – Leibniz-Zentrum für Informatik GmbH, subject to the terms of
Creative Commons License CC-BY 4.0.

The runs algorithm for general unordered alphabet is based on ideas by Paweł
Gawrychowski, and the algorithmic details and description were developed by Jonas
Ellert, Paweł Gawrychowski, and Garance Gourdel. A preliminary version of the
algorithm tests square-freeness rather than computing all runs. The description of
this algorithm was published at SODA 2023. The extended version of the paper
(including the computation of runs) is available on arXiv [EGG23b].

[EGG23a] Jonas Ellert, Paweł Gawrychowski, and Garance Gourdel. „Optimal
square detection over general alphabets.“ In: Proceedings of the 34th Annual
Symposium on Discrete Algorithms (SODA 2023). Florence, Italy, 2023,
pages 5220–5242. doi: 10.1137/1.9781611977554.ch189

© SIAM 2023. Reproduced in the dissertation with permission from SIAM.
Unauthorized reproduction of this article is prohibited.

Further Contributions
The author’s doctoral studies lead to three additional publications that are loosely
related to the contents of the dissertation. For the sake of completeness, they are
listed below; however, they will not be discussed in the dissertation.

The first publication [Bad+22] introduces an alternative to the Lyndon array
algorithm from Chapter 7. The algorithm in [Bad+22] is more complex and computes
the Lyndon array from right to left. This results in a back-to-front online algorithm
(accessing the symbols of the string in right-to-left order, and at all times maintaining
the Lyndon array of the already inspected suffix). The algorithm is quite similar
to the one in Chapter 7, overcoming mostly technical challenges resulting from the
online setting. This is why it is not explicitly described in the dissertation. It is
based on ideas by Jonas Ellert, and was developed and described in a joint effort of
Golnaz Badkobeh, Maxime Crochemore, and Jonas Ellert. It was published at CPM
2022, together with results on the average time complexity of computing the Lyndon
array by Cyril Nicaud.

[Bad+22] Golnaz Badkobeh, Maxime Crochemore, Jonas Ellert, and Cyril Nicaud.
„Back-to-front online Lyndon forest construction.“ In: Proceedings of the 33rd
Annual Symposium on Combinatorial Pattern Matching (CPM 2022). Prague,
Czech Republic, 2022, 13:1–13:23. doi: 10.4230/LIPIcs.CPM.2022.13

The second publication [BEF21] introduces a new practical implementation of
Baier’s suffix sorter [Bai15, Bai16]. It is based on ideas by Johannes Fischer and (to
a lesser extent) Jonas Ellert. The development of the implementation began as part
of Nico Bertram’s master’s thesis, supervised by Johannes Fischer and Jonas Ellert.

8

https://doi.org/10.4230/LIPIcs.ICALP.2021.63
https://doi.org/10.1137/1.9781611977554.ch189
https://doi.org/10.4230/LIPIcs.CPM.2022.13

1.2 Corresponding Publications and Contributions of the Author

The final sequential implementation and its description were mostly created by Jonas
Ellert. The parallel implementation and its description, as well as the practical
evaluation, were done by Nico Bertram. Johannes Fischer provided algorithmic
ideas for both the sequential and parallel implementation, and also helped with their
description. The results were published at ESA 2021 (track B).

[BEF21] Nico Bertram, Jonas Ellert, and Johannes Fischer. „Lyndon words accel-
erate suffix sorting.“ In: Proceedings of the 29th Annual European Symposium
on Algorithms (ESA 2021). Lisbon, Portugal (Virtual Conference), 2021,
15:1–15:13. doi: 10.4230/LIPIcs.ESA.2021.15

The third publication [EFS20] considers the problem of lexicographically sorting a
collection of strings in parallel. A newly introduced theoretical framework serves the
purpose of making existing parallel string sorters distinguishing prefix aware. This
means that the complexity of the new sorters does not depend on the total size of the
string collection, but on the possibly much smaller number of symbols that actually
need to be inspected to establish the lexicographical ordering. The framework is
based on ideas by Johannes Fischer and Nodari Sitchinava. The algorithmic details
and description were developed by Jonas Ellert, with the help of Johannes Fischer
and Nodari Sitchinava. The results were published at Euro-Par 2020.

[EFS20] Jonas Ellert, Johannes Fischer, and Nodari Sitchinava. „LCP-aware
parallel string sorting.“ In: Proceedings of the 26th International Conference
on Parallel and Distributed Computing (Euro-Par 2020). Warsaw, Poland
(Virtual Conference), 2020, pages 329–342. doi: 10.1007/978-3-030-57675-
2_21

9

https://doi.org/10.4230/LIPIcs.ESA.2021.15
https://doi.org/10.1007/978-3-030-57675-2_21
https://doi.org/10.1007/978-3-030-57675-2_21

Chapter 2 2Strings and Alphabets

In this chapter, we introduce basic concepts used throughout the dissertation. We
start by formally defining strings (Section 2.1) and their representation on a word
RAM (Section 2.2). In particular, we consider the word-packed representation of
strings, and discuss the recent trend of word-packed string algorithmics. Then,
we introduce general ordered and unordered alphabets, for which we first provide
some background information and motivation, and then discuss their relation to the
complexity of sorting (Section 2.2.2). We show how to reduce strings over general
alphabets to strings over integer alphabets (Section 2.2.3), and finally also provide
lower bounds on the time needed to solve simple problems over general alphabets
(Section 2.3).

2.1 Basic Definitions and Notation
Intervals, Alphabets, and Strings We write N0 to denote the set of non-
negative integers, and N+ (respectively R+) to denote the set of positive integers
(respectively positive real numbers). For i, j ∈ Z, we use the interval notation
[i, j] = [i, j + 1) = (i− 1, j] = (i− 1, j + 1) to denote the set {k ∈ Z | i ≤ k ≤ j}. For
n ∈ N+, we sometimes write log n to denote the base-two logarithm log2 n.

An alphabet Σ is a finite set of symbols. For n ∈ N+, a string x of length |x| = n
over the alphabet Σ is a sequence of n symbols from Σ. The set Σn contains all the
|Σ|n distinct strings of length n over Σ. The unique and alphabet-independent empty
string of length 0 is denoted by ε, and it is the only element of the set Σ0. Finally,
the set Σ∗ = ⋃︁

i∈N0 Σi contains all strings over Σ, while Σ+ = ⋃︁
i∈N+ Σi contains only

the non-empty strings over Σ. In the context of the dissertation, the only distinction
between arrays and strings is the nomenclature. Therefore, we use the notation
introduced in the following paragraphs for both strings and arrays.

For some string x ∈ Σn, an integer i ∈ [1, n] is called index or position of
x, and we write x[i] to denote the ith symbol of the sequence x. Given another
position j ∈ [1, n], we use the equivalent notations x[i..j], x(i − 1..j], x[i..j + 1),
and x(i − 1..j + 1) to denote a substring of x. If i ≥ j, then the substring x[i..j]
is the sequence x[i]x[i + 1] . . . x[j] ∈ Σj−i+1. Otherwise, it is the empty string ε.
A proper substring of x is of length less than |x|. A non-trivial substring of x is
both proper and non-empty. Substring x[i..n] is a suffix of x, while x[1..i] is a
prefix. Additionally, x has the empty suffix x(n..n] = ε and empty prefix x[1..1) = ε.
For i ∈ [1, n + 1], we use the simplified notation xi = x[i..n]. However, in some
contexts (but always without ambiguity), we also use subscript indices to enumerate

11

2 Strings and Alphabets

a collection of strings, e.g., a list of strings y1, y2, . . . , yk, or to identify individual
(sub-)strings. Whenever we want to declare a string x of length n without specifying
the alphabet, we simply write x[1..n] or x = x[1..n]. The reversal of x is the string
rev(x)[1..n] with ∀i ∈ [1, n] : rev(x)[i] = x[n− i + 1]. Given two strings x[1..n] and
y[1..m] (each possibly empty), we write x · y (or simply xy if there is no ambiguity)
to denote the concatenation of the sequences x and y, which is a string of length
n + m. If x = y1y2 . . . yk for some strings y1, y2, . . . , yk, then we say that y1y2 . . . yk

is a factorization of x, and each substring yh with h ∈ [1, k] is called factor or phrase.
Note that the terms factor, phrase, and substring are synonymous. For non-empty
strings x[1..n] and y, an occurrence of y in x is a position i ∈ [1, n] such that y
is a prefix of x[i..n]. For the occurrence i of substring x[i..i + ℓ) in x, a previous
occurrence is an occurrence j ∈ [1, i) of x[i..i + ℓ) in x.

Repetitions For exponent k ∈ N0, the kth power of x is xk = ε if k = 0, and
otherwise the k-times concatenation of x, which is recursively defined as xk = x ·xk−1.
A k-power is a string of the form xk. A square is a 2-power. A string is primitive if
and only if it is not a k-power for any integer k ≥ 2. Let b ∈ [0, n], then x[1..n] has
border x[1..b] of length b if and only if x[1..b] = x(n− b..n]. A period p ∈ [1, n] of x
satisfies ∀i ∈ [1, n − p] : x[i] = x[i + p], or equivalently x[1..n − p] = x(p..n]. Note
that a length-n string has period p if and only if it has a border of length n− p. For
a given string, we refer to its period or the period of the string (rather than a period)
whenever we mean the minimal period. A string is periodic if it is non-empty and
its period is at most half its length. A repetition in some string x[1..n] is a triple
⟨i, j, p⟩ with i, j, p ∈ [1, n] such that substring x[i..j] is periodic with minimal period
p ≤ (j − i + 1)/2. A run (also called maximal periodic substring) is a repetition
⟨i, j, p⟩ that cannot be extended to either side with the same period, i.e., i = 1 or
x[i− 1] ̸= x[i + p− 1] and j = n or x[j + 1] ̸= x[j − p + 1].

Lexicographical Order and Longest Common Extensions If there is some
total order < on Σ, then it implies a lexicographical order ≺ on Σ∗ as follows. Given
strings x, y ∈ Σ∗, we say that x is lexicographically smaller than y and write x ≺ y
if and only if either x is a proper prefix of y or there is some ℓ ∈ [1, min(|x| , |y|)]
such that x[1..ℓ) = y[1..ℓ) and x[ℓ] < y[ℓ]. We write x ⪯ y to denote that y is not
lexicographically smaller than x. We say that x is co-lexicographically smaller than y
if and only if rev(x) ≺ rev(y).

We are often interested in the lexicographical order of suffixes of a single string
x[1..n]; given positions i, j ∈ [1, n], we want to determine if x[i..n] ≺ x[j..n]. This
can be achieved with the longest common extension (LCE) function, which is defined
as

lce(i, j) = max({ℓ ∈ [0, n−max(i, j) + 1] | x[i..i + ℓ) = x[j..j + ℓ)}),

i.e., lce(i, j) is the length of the longest shared prefix between x[i..n] and x[j..n].
It is easy to see that x[i..n] ≺ x[j..n] if and only if j + lce(i, j) ≤ n and either
i + lce(i, j) = n + 1 (in which case x[i..n] is a proper prefix of x[j..n]) or otherwise
x[i + lce(i, j)] < x[j + lce(i, j)]. Strings x[1..n] and y[1..n] are isomorphic if and
only if ∀i, j ∈ [1, n] : x[i] = x[j] ⇐⇒ y[i] = y[j]. Strings x[1..n] and y[1..n] over
(possibly different) totally ordered alphabets are order-isomorphic if and only if
∀i, j ∈ [1, n] : x[i] < x[j] ⇐⇒ y[i] < y[j].

12

2.2 Strings on a Word RAM

2.2 Strings on a Word RAM
The input to all considered problems is a string of length n, which we also call the
text. The computation is performed on a word RAM that operates on binary words
of width w ≥ ⌈log2 n⌉ bits. This assumption is justified by the fact that ⌈log2 n⌉ bits
are needed to address the string. For a description and discussion of the word RAM
model, see, e.g., [Hag98] and the references therein.

Depending on the permitted word RAM instructions, there are crucial differences
in the computational power of the model. Hence we briefly describe the instruction set.
A word is interpreted as an integer in the range [0, 2w), and the word RAM supports
the following operations on two such integers a and b in constant time: arithmetic
operations (⌊a⊕ b⌋ mod 2w for ⊕ ∈ {+,−, ·, /}), bit-shifts (left shift (a · 2b) mod 2w

and right shift ⌊a · 2−b⌋), and bit-wise logical operations (NOT, AND, OR, XOR). Constant
time modulo operations are possible due to (a mod b) = a−b·⌊a/b⌋. The time required
by an algorithm is measured in the number of word RAM operations performed, and
we express the time (and space) complexity using big-O notation (see, e.g., [Cor+22,
Chapter 3.2]). A polynomial time algorithm takes O(nc) time for arbitrarily large
constant c ∈ N+, written as O(poly(n)). A linear time algorithm takes O(n) time. A
polylogarithmic time algorithm takes O(logc n) time for an arbitrarily large constant
c ∈ N+, written as O(polylog(n)). The presented algorithms are deterministic.

The word RAM operates on a memory of 2O(w) cells with addresses 0, 1, 2 . . .
(not initialized in any particular way). Each cell contains a word, i.e., an integer
from [0, 2w), and given the address of a cell (stored in a constant number of memory
words), the value of a cell can be read or written in constant time. Memory does
not need to be allocated in any way. The space complexity (or memory usage) of an
algorithm, measured in words, is 1 + a, where a is the maximum address of a cell that
has been either read or written by the algorithm. The presented algorithms generally
only use a constant number of variables and few additional data structures that can
be laid out sequentially without gaps in the memory. Hence the space complexity
can also be expressed as the sum of the words occupied by all the data structures.

By using bit-shifts and bit-wise operations, the word RAM can simulate smaller
memory cells of arbitrary width without significant time overhead. For example,
an array of a entries from [0, b) can be stored in ⌈a ⌈log2 b⌉ /w⌉ (full size) words
by simulating a words of width ⌈log2 b⌉. We then express the space complexity in
terms of the number of used bits, e.g., the described array uses O(a log b) bits plus a
constant number of additional words.

2.2.1 Integer Alphabets
A natural assumption on a word RAM is that the text is over integer alphabet, i.e.,
x ∈ [0, 2w)n. For x[1..n] over integer alphabet, let σmin ∈ [1, 2w] be the minimal value
such that x ∈ [0, σmin)n (equivalently, σmin − 1 is the maximal symbol present in
the string). Then x is over polynomial integer alphabet if σmin = O(poly(n)), and
over effective integer alphabet if x contains σmin distinct symbols. Since symbols are
integers in [0, 2w), the alphabet is totally ordered. Also, we can store the binary
representation of each symbol in a memory word, and the entire string in n words.
This is the word-aligned representation of x.

Alternatively, x might be given packed over [0, σ) for some σ ∈ [σmin, 2w). This
means that the binary representation of each symbol is stored in only ⌈log2 σ⌉ bits,

13

2 Strings and Alphabets

000 110 110 100 100 0 01 001 111 011 101 01 0 000 001 001

W1 W2 W3

b o o k k e e p i n g b e ex =

symbol b e g i k n o p
binary 000 001 010 011 100 101 110 111

Figure 2.1: The string x[1..14] = bookkeepingbee contains eight distinct symbols
and can be stored in ⌈log2 8⌉ = 3 bits per symbol. The width of a word is w = 16 bits,
and thus

⌈︂
14·3
16

⌉︂
= 3 words W1, W2, and W3 suffice for storing x. In the drawing, the

leftmost bit of each word is the most significant one, while the rightmost bit is the least
significant one. Substrings of length at most ⌊16/3⌋ = 5 fit into a single word and can
be extracted in constant time by using bit-shifts and bit-wise logical operations. For
example, x[4..7] = kkee can be extracted as a word M = (0 000 100 100 001 001)2
using M =

⌊︁
((W1 · 29) mod 216) · 2−4⌋︁

OR
⌊︁
W2 · 2−11⌋︁

. The exponents used for the
shifts can be computed with simple arithmetic. Bee drawing by DALL·E [Bet+23].

and the entire text requires n ⌈log2 σ⌉ bits. Hence it can be stored in ⌈n ⌈log2 σ⌉ /w⌉ =
O(n/ logσ n) consecutive memory words. In this representation, a single memory
word may contain (parts of) many consecutive symbols, as visualized in Figure 2.1.
However, by using bit-shifts and bit-wise logical operations, it is easy to extract
a substring of length m ≤ ⌊w/ ⌈log2 σ⌉⌋ (e.g., a single symbol) and store it in the
least significant m ⌈log2 σ⌉ bits of a word in constant time. In the same way, we can
assign short substrings in constant time. An example of the extraction is provided
in the description of Figure 2.1. Hence there is no computational disadvantage
when working on a text in packed representation. On the contrary, one can benefit
from word-level parallelism, as multiple symbols are stored in a word and can thus
be processed simultaneously (which we exploit in Chapters 4, 5 and 9). From an
algorithmic perspective, it is most beneficial if the text is packed over effective integer
alphabet, which maximizes the number of symbols that are packed in a word.

Background of Packed String Algorithmics Since a length-n string packed over
[0, σ) occupies ⌈n ⌈log2 σ⌉ /w⌉ words of memory, merely reading the string requires
Θ(n log σ/w) time, or Θ(n/ logσ n) time if w = Θ(log n) (a common assumption).
Hence this time is also a natural lower bound for solving any problem that requires
inspecting all symbols of the string. In contrast to that, designers of string algorithms
traditionally strive for O(n) time solutions, i.e., they aim for time linear in the
length of the string. More recently, there has been a trend towards algorithms that
run in (or at least close to) Θ(n/ logσ n) time, i.e., in time linear in the number of
words occupied by the string, which is sublinear in n for sufficiently small σ. The
general idea is to use word-level parallelism, which means that multiple symbols
stored in a single word are processed simultaneously, for example by using specialized
instructions that exist in real-world computers (e.g., SIMD instruction sets like AVX2
or SSE) or by simulating such instructions with precomputed universal lookup tables.

Word-level parallelism has, for example, been applied to the classic pattern
matching problem, where one has to find the occurrences of a length-m pattern string
in a length-n text. There are multiple algorithms [Bil11, Bel12, Ben+14] that achieve

14

2.2 Strings on a Word RAM

O(n/ logσ n) time, plus some additional time depending on m and the number of
occurrences. Packed strings have also been considered [GGF13] for the approximate
pattern matching problem, where each occurrence of the pattern is allowed to have a
fixed number of mismatches under the Hamming distance. More recently, several
full-text indices [BGS17, Tak+17, MNN20a, MNN20b] have been proposed in the
packed setting. Such indices preprocess the text once, and then allow fast pattern
matching for arbitrary patterns.

Another line of research aims to exploit word-level parallelism for the efficient
implementation of fundamental tools and data structures that are commonly used
in string algorithmics. The perhaps most important result of this kind is a novel
LCE data structure by Kempa and Kociumaka [KK19] that can be constructed
in O(n/ logσ n) time and answers LCE queries in constant time (which we will
use repeatedly throughout the dissertation). This data structure has already been
used to compute the longest palindromic substring (i.e., a substring that equals its
reversal) [CPR22] and the longest common substring of two strings [Cha+21] in
sublinear time. In the same paper [KK19], Kempa and Kociumaka also show how to
compute the Burrows-Wheeler transform (a major data structure in text indexing)
in O(n log σ/

√
log n) time, which is another breakthrough result. In another work

[KK23], they show how to compute compressed versions of the suffix array and suffix
tree (also important data structures in text indexing) in O(n log σ/

√
log n) time. For

their solution, they use (among other things) the wavelet tree, a fundamental data
structure that has only recently been shown to be constructible in O(n log σ/

√
log n)

time [Bab+15, MNV16].

2.2.2 Extending the Word RAM with General Alphabets
A more abstract and weaker model of computation extends the word RAM by
assuming that the text x[1..n] is over a totally ordered alphabet, but the text has no
accessible representation in word RAM memory. Instead, the text can be seen as an
oracle that, given some query positions i, j ∈ [1, n], outputs whether or not x[i] < x[j]
in constant time. In this case, we say that x is over general ordered alphabet. An
algorithm for general ordered alphabet performs a mix of word RAM operations and
symbol order comparisons (i.e., oracle queries). The time complexity of the algorithm
is the combined number of word RAM operations and symbol comparisons.

For an even weaker version of this model, we reduce the power of the oracle.
Given two query positions i, j ∈ [1, n], the oracle can now only output whether or
not x[i] = x[j] in constant time. In this case, we say that x is over general unordered
alphabet. An algorithm for general unordered alphabet performs a mix of word
RAM operations and symbol equality comparisons (i.e., oracle queries). The time
complexity of the algorithm is the combined number of word RAM operations and
symbol comparisons.

Note that an equality comparison can be simulated by two order comparisons,
and an order comparison of two integers takes constant time on a word RAM. Hence
the order of computational strength among the considered models is (from weakest to
strongest): general unordered alphabet, general ordered alphabet, integer alphabet on
a word RAM. Sometimes comparison-based algorithms are analyzed in the decision
tree model, i.e., by merely counting the number of symbol comparisons and ignoring
the additional computation needed to decide which comparisons to perform. In
contrast to that, we choose to always consider the additional word RAM operations

15

2 Strings and Alphabets

Figure 2.2: The tacocat is under catattack. The educated-cat-catcher tries
to prevent the catattack by using a decoy taco. The string tacocat is a palindrome;
the string catattack contains the square atat; the string educated-cat-catcher
contains three occurrences of the pattern cat. Envisioned by DALL·E [Bet+23].

as well. This has the advantage that algorithms for the weaker models are compatible
with the stronger ones, and it also reflects the fact that some of the presented
algorithms indeed have fast practical implementations. However, we still use the
decision tree complexity for lower bounds.

Background of General Alphabets Stringology significantly predates the word
RAM model, which only gained widespread popularity in the 1990s. In contrast to
that, the foundations of stringology and combinatorics on words were laid, e.g., by
Axel Thue in the early 1900s (see [Thu06, Ber94]), and by Lyndon and Shirshov
in the 1950s (see [Lyn54, Shi58]). The perhaps most famous string algorithm,
the Knuth-Morris-Pratt pattern matching algorithm [KMP77], was introduced in
the 1970s. Its input is a text of length n and a pattern string of length m. The
output is a list of occurrences of the pattern in the text. For example, the text
educated-cat-catcher contains three occurrences of the pattern cat. The algorithm
works over general unordered alphabet, i.e., it interacts with text and pattern by
testing the equality of symbols. The number of symbol equality comparisons is also
the main complexity measure of the algorithm, and it is bounded by O(n + m). It is
known that n+Ω(n

m) equality comparisons are required to solve the pattern matching
problem [Col+95], and there is an online algorithm that matches this bound [CH97].
Another algorithm solves pattern matching in O(n + m) equality comparisons and
uses only a constant number of additional memory words [GS83]. A two-dimensional
pattern with dimensions m × m can be matched in a two-dimensional text with
dimensions n× n in O(n2 + m2) equality comparisons [GP92].

Pattern matching is not the only classic string problem that has an efficient
solution for general unordered alphabet. For example, for a text of length n, it
takes O(n) symbol equality comparisons to compute all the length-wise maximal
palindromic substrings (i.e., substrings that equal their own reversal, like tacocat)
[Man75, ABG95]. Testing whether the text contains a square (i.e., the two-times
repetition of a shorter string, like atat in the text catattack) takes O(n log n)
symbol equality comparisons, and there is a matching Ω(n log n) lower bound if
the text contains Ω(n) distinct symbols [ML84]. Interestingly, if the string is over

16

2.2 Strings on a Word RAM

general ordered alphabet, then testing square-freeness requires only O(n) symbol
order comparisons (which is the topic of Chapter 10). Hence the presence of order
seems to be beneficial when detecting squares, even though order is not needed for
defining a square. Figure 2.2 visualizes the cat-based examples.

While there are still new results targeted at general alphabets, like the work of
Duval, Lecroq, and Lefebvre [DLL14] on computing an unbordered cyclic shift, or
Kosolobov’s work [Kos16b] on finding the leftmost critical point, it is evident that
general alphabets are becoming increasingly uncommon. However, there is a point to
be made about their usefulness when analyzing the complexity of problems. General
alphabets offer a weaker model of computation than word RAMs with polynomial
integer alphabets. Hence general alphabets can be used to separate the hardness
of problems that are easy to solve over integer alphabet. An example of this is
provided in Table 2.1, which shows the time complexity of three classic problems:
computing maximal palindromic substrings, testing square-freeness, and computing
the Lempel-Ziv [LZ76] (LZ) factorization. If we only consider polynomial integer
alphabets, then all of the problems appear to be equally hard, with matching Θ(n)
time lower and upper bounds. We can only separate the problems by assuming
a weaker model of computation. For general ordered alphabet, computing the LZ
factorization is harder than the other two problems. If we assume a general unordered
alphabet, then we also observe that testing square-freeness is harder than computing
maximal palindromic substrings. This demonstrates that general alphabets are a
powerful tool for the theoretical analysis of problems.

General Alphabets and the Complexity of Sorting The distinction between
integer alphabet and general ordered alphabet is the same as the one between integer
sorting and comparison-based sorting. If solving a problem requires sorting the
symbols of the text, then there may be an O(n) time algorithm for polynomial
integer alphabet (due to, e.g., radix sorting [Cor+22, Section 8.3]), but such an
algorithm cannot exist for general ordered alphabet due to the well-known information

Table 2.1: Time complexities for three classic problems, given a length-n string
that contains σ distinct symbols. All problems have a trivial Ω(n) time lower bound
because they require inspecting all symbols of the string. The provided references
are examples, and not always the earliest publication with the claimed bounds.

word-aligned general general
over polynomial ordered unordered

problem integer alphabet alphabet alphabet

max. palindromic Θ(n) Θ(n) Θ(n)
substrings [Man75] [Man75] [Man75]

square-freeness Θ(n) Θ(n) Θ(n log σ)
Chap.10 or [EF21] Chap.10 or [EF21] Chap.11 or [EGG23a]

LZ factorization Θ(n) Θ(n log σ) Θ(nσ)
[CI08a] Lem.2.1+[CI08a], Lem.2.1+[CI08a],

Chap.3 or [Kos15b] Chap.3 or [EGG23a]

17

2 Strings and Alphabets

theoretical Ω(n log n) lower bound for comparison-based sorting [Cor+22, Section 8.1].
Hence, by using general alphabets, we limit the algorithm’s capability to sort the
symbols of the text.

It is a major open question if linear time sorting is possible for arbitrary integer
alphabets (of super-polynomial size). Particularly, it is unknown whether n integers
from [0, 2w) can be sorted in linear time if w ∈ ω(log n)∩O(log2+ϵ n) (for any constant
ϵ ∈ R+). This motivates a type of alphabet that characterizes exactly the texts that
can be sorted in linear time. A string x[1..n] is over linearly-sortable alphabet if and
only if all of the following three conditions are satisfied: the string is over totally
ordered alphabet; the equality of two symbols at any given positions can be tested
in constant time; it takes O(n) time and words of space to sort the text, i.e., to
compute a permutation π of [1, n] such that x[π(1)] ≤ x[π(2)] ≤ · · · ≤ x[π(n)] (where
the permutation is stored as an array). Examples of linearly-sortable alphabets are
polynomial integer alphabets, general ordered and unordered alphabets of constant
size (where we enforce an arbitrary order of symbols for general unordered alphabet),
or integer alphabets on a word RAM with w = Ω(log2+ϵ n) for any constant ϵ ∈ R+

(if we allow randomization and expected time bounds, see [And+98]).

2.2.3 Alphabet Reduction by Sorting
In this section, we show how to reduce a text over a linearly-sortable or general
(ordered or unordered) alphabet to an order-isomorphic text packed over its effective
integer alphabet. The reduction is achieved in the obvious way by sorting the symbols
of the text and replacing each symbol with its rank, and the proof is provided only
for the sake of completeness.

Lemma 2.1. Let x[1..n] be a string that contains σ distinct symbols.

(a) An order-isomorphic string packed over [0, σ) can be computed in O(n) time
and words of space if x is over linearly-sortable alphabet.

(b) An order-isomorphic string packed over [0, σ) can be computed in O(n log σ)
time and O(σ log n) bits of space if x is over general ordered alphabet.

(c) An equality-isomorphic string packed over [0, σ) can be computed in O(nσ) time
and O(σ log n) bits of space if x is over general unordered alphabet.

The stated space complexities ignore a constant number of words and the space
occupied by x, as well as the n ⌈log2 σ⌉ bits needed to store the isomorphic string.

Proof. For all results, we use a two stage reduction. In the first stage, we compute
the number σ of distinct symbols in x. Then, it takes O(log n) time to compute
the number ⌈log2 σ⌉ of bits used for each symbol of the isomorphic string in packed
representation. In the second stage, we actually compute the string, which is denoted
by y in the remainder of the proof.

For (a), we compute a permutation π of [1, n] such that x[π(1)] ≤ · · · ≤ x[π(n)],
which takes linear time and words of space by the definition of linearly-sortable
alphabets. Now it holds σ = 1 + |{i ∈ [2, n] | x[π(i− 1)] ̸= x[π(i)]}|, which can easily
be computed in O(n) time. Finally, we construct y. We start by assigning y[π(1)]← 0,
and then we consider i ∈ [2, n] in ascending order. Whenever x[π(i)] = x[π(i− 1)],

18

2.3 Lower Bounds for Basic Problems Over General Alphabets

we assign y[π(i)] = y[π(i− 1)]. Otherwise, we assign x[π(i)]← x[π(i− 1)] + 1. This
clearly results in an order-isomorphic string and takes linear time and words of space.

For (b), we scan the text from left to right and maintain a balanced binary search
tree (e.g., a red-black tree [Cor+22, Chapter 13]) of all the distinct symbols that we
have seen so far. Since the symbols have no accessible representation, we use the
position of the leftmost occurrence of each symbol as its representative. However, the
order used by the tree is the order of symbols, not the order of positions. Whenever
we process some symbol x[i], we try to find it in the tree, issuing O(log σ) symbol
comparisons. If the symbol is already present, then we do nothing. Otherwise, we
insert x[i] (represented by i) into the tree. Afterwards, the tree contains exactly
the σ distinct symbols that are present in the text, each represented by its leftmost
occurrence. For each node, we compute its rank, i.e., the number of nodes that
represent smaller symbols, which can be done by traversing the tree in O(σ) time.
Now we can create an order-isomorphic text y packed over its effective alphabet [0, σ),
where each y[i] is the rank of x[i] among all symbols in x. This only requires another
scan of x, during which we once more find each symbol in the tree and look up its
rank in overall O(n log σ) time. The memory usage is dominated by the O(σ log n)
bits needed for the tree.

The reduction for (c) works similarly. However, this time we maintain a simple
list of all the distinct symbols seen so far (where again each symbol is represented
by its leftmost occurrence). We process the positions i ∈ [1, n] in ascending order.
Whenever we process some symbol x[i], we naively try to find it in the list, issuing
at most σ′ symbol equality comparisons, where σ′ is the current length of the list.
If symbol x[i] has no representative in the list, then we append i to the end of the
list. Otherwise, we do nothing. Afterwards, the list contains exactly the σ distinct
symbols that are present in the text, each represented by its leftmost occurrence.
Now we construct the text y packed over effective integer alphabet [0, σ). For each
i ∈ [1, n], we find the unique k ∈ [0, σ) such that the kth entry of the list (counting
from 0) is a position j representing the symbol x[j] = x[i]. This takes at most σ
symbol equality comparisons and allows us to assign y[i]← k. Clearly, the strings y
and x are isomorphic. The memory usage is dominated by the O(σ log n) bits needed
for the list.

2.3 Lower Bounds for Basic Problems
Over General Alphabets

As shown in Lemma 2.1, a general ordered alphabet can be reduced to effective
integer alphabet in O(n log σ) time, and a general unordered alphabet can be reduced
to effective integer alphabet in O(nσ) time. For some problems, we cannot perform
better than these reductions. That is, given a string over general alphabet, the fastest
way to solve some problems is to reduce the alphabet with Lemma 2.1, and then use
an algorithm that is designed for effective integer alphabet. In this section, we show
that merely deciding whether a given string contains few or many distinct symbols
(Problem 2.2) is one of these problems, i.e., it has an Ω(n log σ) and respectively
Ω(nσ) time lower bound for general ordered and unordered alphabet (Theorem 2.3).

19

2 Strings and Alphabets

Problem 2.2 (Alphabet Size Testing). Let σ, n ∈ N+ with σ ≤ n
2 . Given a string

x[1..n] that contains either at most σ or at least n
2 distinct symbols, decide which of

the two cases applies.

Theorem 2.3. For any fixed σ, n ∈ N+ with σ ≤ n
2 , there is no deterministic

algorithm that solves Alphabet Size Testing (Problem 2.2) over

(i) general ordered alphabet in fewer than n⌈log2 σ⌉
4 symbol order comparisons, and

(ii) general unordered alphabet in fewer than nσ
4 symbol equality comparisons,

respectively in the worst case.

If the solution of some string algorithmic problem inherently reveals the number
of distinct symbols in the text, then Alphabet Size Testing can be reduced to this
problem, and the lower bounds from Theorem 2.3 apply. For example, the number of
literal phrases in the Lempel-Ziv factorization (as defined in Part I) equals the number
of distinct symbols in the string, and thus computing the Lempel-Ziv factorization
takes Ω(n log σ) and respectively Ω(nσ) time over general ordered and unordered
alphabet. However, showing lower bounds in this way has the disadvantage that
it only works for problems that do not expect the number σ of distinct symbols
as part of the input. Thus, we also show lower bounds for the related problem of
Alphabet Set Testing (Problem 2.4 and Theorem 2.5 below). This shows that making
a simple statement about the alphabet of a string is hard, even if an explicit list
of the distinct symbols is given in advance. In Chapter 3, we show that Alphabet
Set Testing can be reduced to computing the Lempel-Ziv factorization, even if we
formulate Lempel-Ziv such that the literal phrases are given as part of the input.
The definition of Alphabet Set Testing is inspired by Kosolobov’s lower bound for
Lempel-Ziv over general ordered alphabet [Kos15b, Theorem 1].

Problem 2.4 (Alphabet Set Testing). Let σ, n ∈ N+, let Σ = {a1, . . . , aσ}, and
let Σ′ = {b1, . . . , bσ} with |Σ ∪ Σ′| = 2σ. Given σ and x[1..n + 2σ] = uvy with
u = a1a2 . . . aσ, v = b1b2 . . . bσ and y ∈ (Σ ∪ Σ′)n, decide if y ∈ Σn.

Theorem 2.5. For any fixed σ, n ∈ N+, there is no deterministic algorithm that
solves Alphabet Set Testing (Problem 2.4) over

(i) general ordered alphabet in fewer than n⌈log2 σ⌉
2 symbol order comparisons, and

(ii) general unordered alphabet in fewer than nσ
2 symbol equality comparisons,

respectively in the worst case.

2.3.1 Adversary Method for Lower Bounds
All lower bounds will be shown with the adversary method. The general idea is as
follows. Suppose that there is some algorithm that solves a problem over general
(ordered or unordered) alphabet. Then the algorithm has no direct access to the
symbols of the text. Instead, the text can be seen as an oracle. The algorithm
provides a pair i, j ∈ [1, n] of query positions, and the oracle answers whether or not

20

2.3 Lower Bounds for Basic Problems Over General Alphabets

x[i] = x[j] (in case of an unordered alphabet) or x[i] < x[j] (in case of an ordered
alphabet). A malicious adversary will take over the role of the oracle, and its strategy
is to construct (a family of) worst-case instances of the problem.

This process can be seen as a game between the algorithm and the adversary.
In each round of the game, the algorithm asks a query and the adversary provides
the answer. The algorithm aims to minimize the number of rounds needed to solve
the problem, while the adversary aims to maximize it. The considered problems
are decision problems, i.e., the algorithm ultimately has to decide whether it is
working on a “yes” or on a “no” instance of the problem. Hence the adversary has to
ensure that there is always at least one “yes” instance and one “no” instance that is
consistent with the answers given so far. As long as the adversary can maintain this
state, the algorithm is unable to solve the problem.

Of course, the adversary has to give answers consistently. Once it answers that
x[i] < x[j], it has to ensure that future answers do not contradict x[i] < x[j] (either
directly, or due to the transitivity of < and =). Apart from that, there are no
restrictions on the actions of the adversary. It has infinite computational power, i.e,
we do not care about the time needed to answer a query. The same holds for the
algorithm; we are only concerned about the number of queries asked, without paying
attention to the time needed to choose the query positions. Thus, we will obtain
lower bounds on the number of comparisons needed by the algorithm, which also
trivially lower bounds the required time.

2.3.2 Lower Bounds for General Ordered Alphabet
Now we show the lower bounds from Theorem 2.5(i) and Theorem 2.3(i), respectively
restated in Lemma 2.6 and Lemma 2.7.

Lemma 2.6. For any fixed σ, n ∈ N+, there is no deterministic algorithm that
solves Alphabet Set Testing (Problem 2.4) over general ordered alphabet in fewer
than 1

2 · n ⌈log2 σ⌉ symbol order comparisons in the worst case.

Proof. We use an adversary as described in Section 2.3.1. Internally, the adversary
works with the integer alphabet Σ ∪ Σ′ = [1, 2σ] with Σ = {2, 4, 6, . . . , 2σ} (the even
symbols) and Σ′ = {1, 3, 5, . . . , 2σ − 1} (the odd symbols). Let σ′ = 2⌊log2 σ⌋. In
order to keep track of the given answers, the adversary annotates each position in
[1, n + 2σ] with a consecutive range of symbols that are consistent with the answers
given so far. The initial annotation of each position i ∈ (2σ, n + 2σ] is [1, 2σ′] (which
indicates that x[i] could be any symbol from [1, 2σ′]). The initial annotation of each
i ∈ [1, σ] is [2i, 2i], and the annotation of each i ∈ (σ, 2σ] is [2(i−σ)− 1, 2(i−σ)− 1],
which indicates that positions [1, 2σ] are already fixed to their respective symbols
(as required by the problem definition). The adversary may update the range of a
position by replacing it with a sub-range (which we describe in a moment). At all
times, the cardinality of each range will be a power of two. Once the cardinality
of a range becomes one, it will never change again. At any point in time, a string
x[1..n + 2σ] is consistent with the answers of the adversary if for every i ∈ [1, n + 2σ]
it holds x[i] ∈ [i′, i′ + 2p), where [i′, i′ + 2p) is the range that annotates position i. A
position annotated with a range of cardinality one is fixed; there is only one symbol
that can be assigned to such a position.

21

2 Strings and Alphabets

As mentioned earlier, the algorithm can only access x (or rather the simu-
lated family of strings) by asking the adversary whether or not x[i] < y[j], where
i, j ∈ [1, n + 2σ]. When given such a query, the adversary first inspects the respective
ranges I = [i′, i′ + 2p) and J = [j′, j′+2q) that currently annotate the query positions
i and j. The adversary proceeds in three steps:

• First, if I has cardinality exactly two, i.e., I = [i′, i′ + 1], then the adversary
replaces I with I ← [i′, i′] if i′ is even, or I ← [i′ + 1, i′ + 1] if i′ is odd. This
fixes position i to an even symbol. The same procedure is performed for J .

• From now on, I = [i′, i′ + 2p) and J = [j′, j′ + 2q) denote the (possibly new)
ranges after the first step. In the second step, the adversary aims to make the
ranges disjoint (if they are not disjoint already), which is required in order
to decide the query answer. This is done by discarding half of each range
in a way that depends on the positions of their respective centers. Assume
that i′ + 2p−1 ≤ j′ + 2q−1 (i.e., the center of I is at most the center of J ; the
opposite case works analogously), then the adversary replaces I with its left
half by assigning I ← [i′, i′ +

⌈︁
2p−1⌉︁

) and J with its right half by assigning
J ← [j′ +

⌊︁
2q−1⌋︁

, j′ + 2q). It can be readily verified that i′ + 2p−1 ≤ j′ + 2q−1

implies i′ +
⌈︁
2p−1⌉︁

≤ j′ +
⌊︁
2q−1⌋︁

, unless both p and q are 0. Hence the new
ranges are either disjoint, or both of them have cardinality one. Also, the
cardinality of each range was reduced by exactly half, unless the range already
had cardinality one (in which case it has not been changed).

• Now either both ranges are of cardinality one, or they are entirely disjoint.
Either way, by answering that x[i] < x[j] if and only if min(I) < min(J), the
adversary behaves consistently with the ranges.

Assume that some algorithm performs fewer than n ⌈log2 σ⌉ /2 symbol comparisons.
After the algorithm terminates, every position is either fixed to an even symbol,
or it is annotated with a range of cardinality at least two, which also contains
an even symbol. Hence there is always a string over the even symbols that is
consistent with the answers given by the adversary. Each comparison cuts the
range of at most two positions in half (either with the first or the second step from
the list above). A position from (2σ, n + 2σ] has initial range [1, 2σ′], and it gets
fixed as soon its range has cardinality one. Hence a position must be involved in
log2(2σ′) = ⌊log2 σ⌋+1 ≥ ⌈log2 σ⌉ comparisons before getting fixed. After fewer than
n ⌈log2 σ⌉ /2 comparisons, there must be fewer than 2 · (n ⌈log2 σ⌉ /2)/ ⌈log2 σ⌉ = n
fixed positions in (2σ, n + 2σ]. Thus, there is at least one position that is not fixed,
and we can fix it to an odd symbol from its range of cardinality at least two. We have
shown that, after fewer than n ⌈log2 σ⌉ /2 comparisons, the set of strings consistent
with the given answers contains both a string over the even symbols, and also a
string that contains an odd symbol. Hence the algorithm has not solved the problem
yet.

Lemma 2.7. For any fixed σ, n ∈ N+ with σ ≤ n
2 , there is no deterministic algorithm

that solves Alphabet Size Testing (Problem 2.2) over general ordered alphabet in
fewer than 1

4 · n ⌊log2 σ⌋ symbol order comparisons in the worst case.

Proof. We use the same adversary as in the proof of Lemma 2.6. The internally
used alphabet is [1, 2σ], and the constructed string will be of length n. Initially, all

22

2.3 Lower Bounds for Basic Problems Over General Alphabets

the positions i ∈ [1, n] are annotated with the full range [1, 2σ′], where σ′ = 2⌊log2 σ⌋.
Apart from that, the adversary works exactly like in the proof of Lemma 2.6.
Particularly, whenever a position gets fixed, it gets fixed to an even symbol. After
the algorithm terminates, each position is fixed to an even symbol, or annotated with
a range of cardinality at least two, which also contains an even symbol. Hence there
is always a string over the even symbols that is consistent with the answers given by
the adversary. Note that such a string contains at most σ distinct symbols.

Now assume that an algorithm performs fewer than n ⌈log2 σ⌉ /4 symbol compar-
isons. A position must be involved in ⌈log2 σ⌉ comparisons before it gets fixed, and
each comparison involves only two positions. After fewer than n ⌈log2 σ⌉ /4 compar-
isons, there must be fewer than 2 · (n ⌈log2 σ⌉ /4)/ ⌈log2 σ⌉ = n

2 fixed positions. Hence
there are at least n

2 positions that are not fixed, i.e., positions that are annotated
with a range of cardinality at least two. We retrospectively inflate the alphabet from
[1, 2σ] to [n, 2nσ] as follows. Every position annotated with a range [i′, i′ + 2p − 1] is
now annotated with a range [ni′, ni′+ n2p− n]. A position is fixed after the inflation
if and only if it was fixed before the inflation. Also, the inflated ranges are clearly
still consistent with the given answers. A position that is not fixed is annotated with
a range [ni′, ni′ + n2p − n] ⊇ [ni′, ni′ + n] of cardinality n + 1. Hence we can fix the
position to a symbol that has no other occurrence in x. By doing this for the at least
n
2 positions that are not fixed, we construct a string that contains at least n

2 distinct
symbols. Hence the algorithm has not solved the problem yet.

2.3.3 Lower Bounds for General Unordered Alphabet
Now we show the lower bounds from Theorem 2.5(ii) and Theorem 2.3(ii), respectively
restated in Lemma 2.8 and Lemma 2.9. The general idea is the same as the one for
general ordered alphabets. However, since inequality is not transitive, it is easier for
the adversary to force a large number of comparisons, and the details of the proof
are simpler.

Lemma 2.8. For any fixed σ, n ∈ N+, there is no deterministic algorithm that
solves Alphabet Set Testing (Problem 2.4) over general unordered alphabet in fewer
than 1

2 · nσ symbol equality comparisons in the worst case.

Proof. We use an adversary similar to the one in the proof of Lemma 2.6. Internally,
the adversary again works with the integer alphabet Σ ∪ Σ′ = [1, 2σ] with Σ =
{2, 4, 6, . . . , 2σ} (the even symbols) and Σ′ = {1, 3, 5, . . . , 2σ − 1} (the odd symbols).
The adversary maintains a family of strings of length n + 2σ. In order to keep track
of the given answers, it annotates each position i ∈ [1, n + 2σ] with an initially empty
set Li of conflicting positions. For every j ∈ [1, n + 2σ], it holds j ∈ Li if and only if
the adversary has previously answered that x[i] ̸= x[j]. Additionally, each position
i can get fixed to a symbol γ(i) ∈ [1, 2σ], but only if no position j ∈ Li has been
fixed to the same symbol. Initially, the positions i ∈ (2σ, n + 2σ] are not fixed, which
is formally expressed by γ(i) = 0. The positions i ∈ [1, σ] are fixed to γ(i) = 2i,
and the positions i ∈ (σ, 2σ] are fixed to γ(i) = 2(i − σ) − 1 (as required by the
problem definition). A string x[1..n + 2σ] over Σ ∪ Σ′ is consistent with the given
answers if for any two positions i, j ∈ [1, n + 2σ] it holds j ∈ Li =⇒ x[i] ̸= x[j] and
γ(i) > 0 =⇒ x[i] = γ(i).

23

2 Strings and Alphabets

Whenever the adversary has to answer whether or not x[i] = x[j] for some query
positions i, j ∈ [1, n] with i ̸= j, it first checks if |Li| = σ − 1. If this is the case, and
also i has not been fixed yet, then it fixes i to an even symbol such that afterwards
γ(i) ∈ {2, 4, 6, . . . , 2σ} \ {γ(j) | j ∈ Li} (there is always at least one possible symbol
due to |Li| = σ − 1). If |Lj | = σ − 1, then j gets fixed in the same way. After this,
the adversary answers that x[i] = x[j] if and only if γ(i) = γ(j) ̸= 0, i.e., if both
positions are fixed to the same symbol. Otherwise, it answers that x[i] ̸= x[j] and
inserts i into Lj and j into Li.

Assume that some algorithm performs fewer than nσ/2 symbol comparisons.
After the algorithm terminates, every position is either fixed to an even symbol, or its
set of conflicting positions is of cardinality less than σ. If we consider the non-fixed
positions one at a time (in arbitrary order), and for each such position i fix it to
an even symbol such that γ(i) ∈ {2, 4, 6, . . . , 2σ} \ {γ(j) | j ∈ Li}, then we obtain a
string over the even symbols that is consistent with the given answers. During the
algorithm execution, a position gets fixed exactly when it is involved in a comparison
for the σth time. Every comparison involves only two positions. Hence, after fewer
than nσ/2 comparisons, there are fewer than 2 · (nσ/2)/σ = n fixed positions. Since
at least one position is not fixed, we can fix it to an odd symbol (and all remaining
positions to even symbols in the same way as before). Thus, the algorithm has not
solved the problem yet.

Lemma 2.9. For any fixed σ, n ∈ N+ with σ ≤ n
2 , there is no deterministic algorithm

that solves Alphabet Size Testing (Problem 2.2) over general unordered alphabet in
fewer than 1

4 · nσ symbol equality comparisons in the worst case.

Proof. We use the adversary from the proof of Lemma 2.8. This time, it maintains
a family of strings of length n, and initially no position is fixed. Apart from that,
the adversary functions exactly as described before. Assume that some algorithm
performs fewer than nσ/4 symbol comparisons. By the same reasoning as in the
proof of Lemma 2.8, there is a string over the even symbols that is consistent with
the given answers, and this string contains at most σ distinct symbols. During the
algorithm execution, a position gets fixed exactly when it is involved in a comparison
for the σth time. Every comparison involves only two positions. Hence, after fewer
than nσ/4 comparisons, there are fewer than 2 · (nσ/4)/σ = n

2 fixed positions. We
can fix each of the at least n

2 non-fixed positions to an entirely new symbol that has
no other occurrence in the string. Hence there is a string that contains at least n

2
distinct symbols and is consistent with the answers given by the adversary. This
means that the algorithm has not solved the problem yet.

24

2.3 Lower Bounds for Basic Problems Over General Alphabets

25

I
Lempel-Ziv Compression

Lempel-Ziv Compression IIntroduction and
Related Work

In this part of the dissertation, we consider the problem of lossless data compression.
With the ever-growing amount of data generated, it has become almost inevitable
to store the data in compressed form. One of the most evident examples of this
is the amount of sequenced DNA. The human genome is a string of around three
billion base pairs, and ambitious sequencing projects like the 100000 genome project
[Weba] already sequenced the full genome of tens of thousands of individuals [Webb].
Repositories like the NCBI sequence read archive [Webe] maintain petabytes of DNA
and are rapidly growing [Kat+21]. While a single human genome is not very well
compressible (there are few long DNA strings that have multiple occurrences in the
genome), a collection of multiple genomes is highly-compressible. The reasons for this
is that, vaguely speaking, any two human individuals share the vast majority of their
DNA. It is often stated that the similarity between two human genomes is as high as
99.9%, extrapolated from a difference rate of 1 in 1250 base pairs [Ven+01]. This does
not capture larger structural variations in the genome, and more recent estimates
claim a more conservative similarity of only around 99.5% [Lev+07]. Regardless
of the precise number, applications like the compression of DNA collections can
benefit from techniques that exploit repetitiveness. One of the most widely spread
compression techniques with this property is Lempel-Ziv compression.

Compression by Lempel-Ziv Factorization The Lempel-Ziv (LZ) factorization
[LZ76] of a string x[1..n] decomposes it into a series of z phrases x = f1f2 . . . fz.
Each phrase fi′ = x[i..i + |fi′ |) with i′ ∈ [1, z] and i = 1 + ∑︁i′−1

k=1 |fk| is either a single
symbol x[i] that does not occur in x[1..i) (a literal phrase), or otherwise it is the
longest prefix of x[i..n] that has at least one previous occurrence x[j..j + |fi′ |) = fi′

with j ∈ [1, i) (a referencing phrase). This is Storer and Szymanski’s version of the
factorization [SS82]. Position i is the destination of fi′ . If fi′ is a referencing phrase,
then j is a source of fi′ . For example, the string ananas-fan gets factorized as

a
1

n
2

a
3

n
4

a
5

s
6

-
7

f
8

a
9

n .
10

f1 f2 f3 f4 f5 f6 f7
1

1Two ananas-fans, envisioned by DALL·E [Bet+23].

29

Lempel-Ziv Compression

Here, f3 = ana is a referencing phrase at destination 3 with unique source 1. We
stress that a phrase is allowed to overlap its previous occurrence, as is the case
for occurrences x[1..3] and x[3..5] of f3. Phrase f7 = an is a referencing phrase at
destination 9 with sources 1 and 3. All the other phrases are literal phrases. When
factorizing the string from left to right, the next phrase is always uniquely defined due
to the maximal length property of referencing phrases, and hence each string admits
exactly one LZ factorization. In an LZ-like factorization, we relax the definition of
referencing phrases such that they can be of arbitrary length. A string may admit
multiple LZ-like factorizations, but the (exact) LZ factorization is the unique one
that minimizes the number of phrases [SS82].

Compression can be achieved by encoding the phrases of an LZ(-like) factorization
as follows. A length-ℓ referencing phrase at destination i gets encoded as (d, ℓ), where
d ∈ [1, i) is the distance to a source of the phrase, i.e., x[i− d..i− d + ℓ) = x[i..i + ℓ).
Each literal phrase x[i] gets encoded as a pair (0, x[i]). For the previous example, we
choose 3 as the source of f6 and obtain the encoding shown below.

(0, a)(0, n)(2, 3)(0, s)(0, -)(0, f)(6, 2)

Given this list of pairs, it is easy to reconstruct the string from left to right in
O(n) time (interpreting each referencing phrase (d, ℓ) as an instruction to go back d
positions and copy ℓ symbols). If the string is over polynomial integer alphabet, then
each phrase (regardless if it is referencing or literal) is an integer pair that can be
encoded naively in O(log n) bits. This way, one can store the string in O(z log n) bits
of space, where z is the number of phrases. Of course, this requires that we know at
least one source of each referencing phrase. Hence, whenever we talk about computing
the LZ factorization, we actually mean the task of computing the factorization and
finding a source for each referencing phrase.

Background and Related Work
The LZ factorization was first introduced in 1976, when Lempel and Ziv proposed the
number z of phrases of the factorization as a complexity measure for strings (aimed
at evaluating the “randomness” of a string) [LZ76]. Over 45 years later, it is still
a standard measure for dictionary-based compression (see, e.g., [GNP18]). This is
because z can be computed in linear time (e.g., [CI08a]), and because it lower-bounds
other measures like the size of the smallest grammar that generates the string [Ryt03,
Cha+05]. Many compressibility measures are within polylogarithmic factors of z,
e.g., the size of the smallest bidirectional macro scheme [GNP18], the number of
unary runs in the Burrows-Wheeler transform [KK22], the size of the smallest string
attractor [KP18], and the normalized substring complexity [Ras+13, KNP20].

Apart from introducing z as a measure, Ziv and Lempel also used their factor-
ization to derive the compression scheme now commonly known as LZ77 [ZL77].
Nowadays, the LZ factorization – despite being introduced in 1976 – is often referred
to as the LZ77 factorization. Since then, the LZ factorization has become a corner-
stone of practical compression; LZ-based techniques are a crucial ingredient of the
most commonly used compressors (e.g., gzip, 7zip, rar, brotli) and compressed formats
(e.g., PDF, PNG). There has been extensive work aimed at computing (versions of)
the LZ factorization (and we list only a few examples). This includes parallel algo-
rithms [CR91, Nao91, FM95, SZ13, Shu18], online and streaming algorithms [OS08,

30

Introduction and Related Work

Sta12, Yam+14, PP15, Bil+17], external memory algorithms [KKP14, Bel+16], and
approximation algorithms [Fis+15a, Kos+20]. Another line of research improves the
compression rate by optimizing the encoding of phrases [ALU02, Cro+12, CLM13,
FNV13, Lar14, BP16, KNP22, EFP23]. There are several text indices that rely on LZ
compression [KS98, KN13, Fer+14, Gag+14, GGP15, Val16, Bil+18, BGS20, Nis+20,
Sun+21]. Despite this plethora of results, the ever-increasing relevance of compression
still drives the development of new ways to compute LZ(-like) factorizations [Köp21,
Wu21, Gag22, NT22, SI22, HRB23].

Computing the Lempel-Ziv Factorization There are many word RAM algo-
rithms for computing the LZ factorization. Most commonly, it is assumed that the
string x[1..n] is over polynomial integer alphabet. Whenever the string is packed over
[0, σ), it occupies O(n log σ) bits of space. If the word-width is not too large with
respect to the input, say, w = Θ(log n), then the O(n log σ) bits are equivalent to
Θ(n/ logσ n) words of space. In this case, Ω(n/ logσ n) is a trivial lower bound on the
time and words of space needed to compute the LZ factorization. Many algorithms
take O(n) time (see, e.g., [CI08a, GB13, KKP13b, GB14, FIK15]) or O(n log σ)
bits of working space (see, e.g., [OS08, OG11, Sta12, KKP13a, Yam+14, Kos15a,
BP16, KS16, Ell23]), and at least one algorithm achieves both [Fis+18]. Kempa
[Kem19] introduced an algorithm that takes O(n/ logσ n+r log9 n+z log9 n) time and
O(n/ logσ n+r log8 n) words of space, where r = O(z log2 n) [KK22] is the number of
unary runs in the Burrows-Wheeler transform. The algorithm presented in Chapter 4
achieves O(n/ logσ n + z log3+ϵ z) time and O(n log σ) bits of space (for arbitrary
constant ϵ ∈ R+). However, it remains unknown whether or not O(n/ logσ n) time
can be achieved. (Peculiarly, there is an O((n/ logσ n) ·polylog(log n)) time algorithm
[JSS15] for the related LZ78 factorization [ZL78]).

Rightmost Lempel-Ziv While the encoding of phrases as distance-length pairs
as described before is indeed used by practical compressors, storing each pair in a
fixed number of bits is far from optimal. Usually, the compression rate is further
optimized by applying a variable-length code to the pairs. For example, one could
use a universal code like Elias delta [Eli75] to encode the distance component of each
referencing phrase. Such codes often assign longer code words to larger integers, and
hence minimizing the distance component of the referencing phrases can improve
the compression rate. This motivates the problem of computing the rightmost LZ
factorization, where for each referencing phrases we have to find the maximal source
(i.e., the one at minimal distance).

The first theoretical result on computing the rightmost LZ factorization is by
Amir et al. [ALU02] and usesO(n log n) time and words of space. Larsson et al. [Lar14]
presented an online algorithm with the same time and space complexity. Crochemore
et al. [CLM13] gave the first approximation algorithm, which runs in O(n log n) time
and O(n) space and finds the rightmost equal-cost position for each phrase, meaning
it takes the same number of bits to encode as the rightmost position (as long as the
used code satisfies the right properties). Later, Bille et al. [Bil+17] gave an (1 + ϵ)-
approximation algorithm for the rightmost factorization in O(n(log z + log log n))
time and linear working space, where each reported source is allowed to be (1 + ϵ)
times further away than the rightmost one. The first exact algorithm to achieve
o(n log n) time is by Ferragina et al. [FNV13] and runs in O(n(1 + log σ/ log log n))

31

Lempel-Ziv Compression

time and O(n) words of space. This was improved by Belazzougui and Puglisi [BP16]
with an algorithm using only O(n log σ) bits of space and achieving O(n(log log σ +
log σ/

√
log n)) deterministic time or O(n(1+log σ/

√
log n)) time with randomization,

which is the current state of the art.

LZ-End Factorization The LZ factorization minimizes the number of phrases
among all the LZ-like factorizations, but it has some disadvantages if the practical
application requires efficient computation on the compressed text. In many cases,
LZ compressed data has to be fully decompressed in order to perform even simple
computational tasks. This motivates LZ-End [KN10, KN13], a family of LZ-like
factorizations that supports efficient compressed indexing. That is, when combined
with additional data structures, it allows fast random access to the string without
decompressing it first. This is achieved by enforcing the following property. Each
referencing phrase fi′ must have a previous occurrence as a suffix of f1f2 . . . fj′ for
some j′ ∈ [1, i′). We then call j = 1 − |fi′ | +

∑︁j′
k=1 |fk| an LZ-End aligned source

of fi′ . This definition is slightly different from the original one, but it leads to a
simpler description of algorithms (and the presented results can easily be adapted to
the original definition). Computing a rightmost LZ-End factorization is the task of
finding the maximal LZ-End aligned source of each referencing phrase.

LZ-End was introduced by Kreft and Navarro [KN10, KN13], who also provided a
compressed index based on LZ-End that allows fast pattern matching and substring
extraction. Their original definition requires referencing phrases to be of maximal
length (like in the standard LZ factorization). This results in a uniquely defined fac-
torization, which we call the greedy LZ-End factorization. It can be computed in linear
time and space [KK17], and the number of its phrases is within an O(log2 n/ log log n)
factor of the exact LZ factorization [KS22, GKM23]. Unlike normal LZ, the greedy
LZ-End factorization does not necessarily minimize the number of phrases among all
the possible LZ-End factorizations. Bannai et al. [Ban+23] proved that computing
the optimal LZ-End factorization (with minimal number of phrases) is NP-hard and
gave a lower bound of 2 on the approximation ratio of optimal LZ-End to greedy
LZ-End. There is a data structure that requires space linear in the number of greedy
LZ-End phrases and allows polylogarithmic time random access on the string. A
generalization of this data structure also answers LCE queries in polylogarithmic
time [KS22].

Contributions
This part of the dissertation consists of three chapters, each of which introduces
new results in the field of Lempel-Ziv compression. In Chapter 3, we show that
computing the LZ factorization over general alphabet cannot be done faster than
reducing the alphabet to effective integer alphabet with Lemma 2.1. Hence we do
not need to design dedicated algorithms for LZ over general alphabets. Instead, we
focus on the most practical case where the string x[1..n] is packed over [0, σ). In
Chapter 4, we introduce a new algorithm that computes the LZ factorization in
this setting in O(n/ logσ n + z log3+ϵ z) time and O(n log σ) bits of working space
(for arbitrary constant ϵ ∈ R+), significantly improving the best previously known
bounds. As part of the solution, we also show how to compute an LZ-like factorization
of at most 3z phrases in O(n/ logσ n) time and O(n log σ) bits of working space.
Finally, in Chapter 5, we consider the problem of computing rightmost LZ(-like)

32

Introduction and Related Work

factorizations. We show that the rightmost sources of some non-trivial subsets of the
referencing phrases can be computed in linear and sometimes even sublinear time.
As a prime example, we can resolve all the phrases of length Ω(log6.66 n/ log2 σ) in
O(n/ logσ n) time. We also provide the first algorithms for computing rightmost
LZ-End factorizations.

33

Chapter 3 3Lower Bounds for LZ Over
General Alphabets

In this short chapter, we show that computing the LZ factorization of a string x[1..n]
that contains σ distinct symbols takes Ω(n log σ) time over general ordered alphabet,
and Ω(nσ) time over general unordered alphabet. Note that σ is also the number
of literal phrases in the LZ factorization. Thus, if we require the LZ factorization
to be computed in a way that allows us to distinguish between literal phrases and
referencing phrases of length one, then the lower bounds follow directly from the
lower bounds for Alphabet Size Testing (Problem 2.2 and Theorem 2.3). However,
the bounds then only hold if the number σ of distinct symbols is not given as part of
the input. Therefore, we introduce a computationally easier version of Lempel-Ziv
that expects the set of literal phrases as part of the input (Problem 3.1). We use a
reduction from Alphabet Set Testing (Problem 2.4 and Theorem 2.5) to show that
this version of LZ still has the same lower bounds (Theorem 3.2).

Problem 3.1 (Lempel-Ziv Factorization with Known Literals). Given a string
x[1..n] and the destinations Σ̃ = {i ∈ [1, n] | ∄j ∈ [1, i) : x[j] = x[i]} of all literal LZ
phrases, output the destination of each phrase of the LZ factorization.

Theorem 3.2. Let σ, n ∈ N+ with 8 ≤ σ ≤ n
5 be fixed. There is no algorithm

that computes the Lempel-Ziv Factorization with Known Literals (Problem 3.1) of a
string of length n that contains σ distinct symbols over

(i) general ordered alphabet in fewer than n log2 σ
256 symbol order comparisons, and

(ii) general unordered alphabet in fewer than nσ
256 symbol equality comparisons

in the worst case.

3.1 Reducing Alphabet Set Testing to Lempel-Ziv
Below, we show that any instance of Alphabet Set Testing (Problem 2.4) can be
reduced to an instance of Lempel-Ziv with Known Literals (Problem 3.1) that is
of similar size. Hence Lempel-Ziv is at least as hard as Alphabet Set Testing.
This reduction is quite similar to the work of Kosolobov [Kos15b], who shows that
computing the Lempel-Ziv factorization (with unknown literals) requires Ω(n log σ)

35

3 Lower Bounds for LZ Over General Alphabets

comparisons over general ordered alphabet. We merely extend Kosolobov’s reduction
such that the positions of literals depend solely on the alphabet size.

Lemma 3.3. Let σ, n ∈ N+. Any instance x = u[1..σ]v[1..σ]y[1..n] of Alphabet Set
Testing (Problem 2.4) can be reduced to computing the Lempel-Ziv Factorization with
Known Literals (Problem 3.1) of a string x′[1..4n + 8σ + 13] that contains 2σ + 4
distinct symbols. The reduction requires no symbol comparisons.

Proof. Let Σ = {u[i] | i ∈ [1, σ]} and Σ′ = {v[i] | i ∈ [1, σ]}. We know that
y ∈ (Σ ∪ Σ′)n, and we have to decide whether or not y ∈ Σn. We show that the
problem can be solved by computing the LZ factorization of the string x′ below. The
symbols $1, $2, $3, and # are distinct separators that do not occur in u or v. In case
of general ordered alphabet, we define the order ∀i ∈ [1, 2σ] : $1 < $2 < $3 < # < x[i].
It can be readily verified that x′ is of length 4n + 8σ + 13 and contains exactly 2σ + 4
distinct symbols. Also, it is easy to perform a symbol comparison between some x′[i]
and x′[j] by performing at most one symbol comparison between symbols of x.

vsingle = #v[1]#v[2]#v[3]# . . . v[σ]#
vsquare = v[1]2 v[2]2 v[3]2 . . . v[σ]2

usquare = #5u[1]2##u[2]2##u[3]2## . . . ##u[σ]2##

ysquare = #y[1]2##y[2]2##y[3]2## . . . ##y[n]2#5

x′ = vsingle · $1 · vsquare · $2 · usquare · $3 · ysquare

Let x̂ = |x′| and ŷ = |ysquare|. Let g1 . . . gz′ · $3 · f1 . . . fz be the LZ factorization
of x′ (where $3 is a literal phrases because it is unique in x′). We start by showing
that the destinations of literal phrases only depend on σ. First, note that every
length-two substring of x′(x̂− ŷ..x̂] = ysquare has an occurrence in x′[1..x̂− ŷ]. Thus,
all the phrases f1, . . . , fz−1 must be of length at least two. Next, we show that
|fz| ≥ 3. Substring x′[x̂− 5..x̂− 2] = y[n]### has exactly one occurrence in x′. Thus
y[n]### has no previous occurrence and cannot be contained in a single phrase, which
means that there must be a phrase with destination x̂− i for some i ∈ [2, 4]. Since
x′[x̂ − i..x̂] = #i+1 has a previous occurrence as a prefix of usquare, it follows that
fz = x′[x̂ − i..x̂] and therefore |fz| = i + 1 ≥ 3. We have shown that there are no
literal phrases in x′(x̂− ŷ..x̂].

The literal phrases in x′[1..x̂− ŷ] are at fixed positions that depend only on σ.
More precisely, the separator literals are at positions 1, 2σ + 2, 4σ + 3, and 8σ + 9.
The literals corresponding to symbols from Σ′ are at positions {2j | j ∈ [1, σ]} (which
lie within the prefix vsingle of x′). The literals corresponding to symbols from Σ are
at positions {4j + 4σ + 5 | j ∈ [1, σ]} (which lie within substring usquare of x′). Hence
all literals can be computed without symbol comparisons.

We still have to show that computing the LZ factorization of x′ actually solves
the instance of Alphabet Set Testing. We claim that y contains a symbol from Σ′ if
and only if at least one of the phrases f1, . . . , fz has length exactly two. (Problem 3.1
gives the destination of all phrases as output, but it is trivial to compute the lengths
from the destinations.) Assume that all symbols in y are from Σ. Then it is easy to
see that every length-three substring of ysquare has an occurrence in usquare. Hence
all the phrases f1, . . . , fz−1 are of length at least three (and we have already shown

36

3.1 Reducing Alphabet Set Testing to Lempel-Ziv

that also |fz| ≥ 3). It remains to be shown that, if y contains at least one symbol
from Σ′, then at least one of the phrases f1, . . . , fz−1 has length exactly two. Assume
that some symbol a ∈ Σ′ occurs in y, and choose the minimal i ∈ (x̂ − ŷ, x̂] such
that x′[i] = a. Then x′[i− 1..i + 3] = #aa##. Note that x′[i− 1..i + 1] = #aa has no
previous occurrence, and thus there must be some phrase with destination i or i + 1.
Since neither x′[i..i + 2] = aa# nor x′[i + 1..i + 3] = a## has a previous occurrence,
and both x′[i..i + 1] = aa and x′[i + 1..i + 2] = a# do have a previous occurrence, it
follows that a phrase with destination i or i + 1 must be of length exactly two.

Now we use the reduction to show Theorem 3.2(i) and Theorem 3.2(ii), respec-
tively restated in Lemma 3.4 and Lemma 3.5.

Lemma 3.4. Let σ, n ∈ N+ with 8 ≤ σ ≤ n
5 be fixed. For general ordered alphabet,

there is no algorithm that computes the Lempel-Ziv Factorization with Known Literals
(Problem 3.1) of a string x[1..n] that contains σ distinct symbols in fewer than n log2 σ

256
symbol order comparisons in the worst case.

Proof. Let σ′ = ⌊(σ − 4)/2⌋ and n′ = ⌊(n− 8σ′ − 14)/4⌋. By Lemma 3.3, any
instance x′ = u[1..σ′]v[1..σ′]y[1..n′] of Alphabet Set Testing can be reduced to
computing the LZ factorization of some string x′′[1..n′′] with 2σ′ + 4 ∈ {σ − 1, σ}
known literals, where n′′ = 4n′ + 8σ′ + 13 ≤ n − 1. In order to obtain a string of
length exactly n, we use the separator symbol # from the proof of Lemma 3.3 as
padding. If 2σ′ + 4 = σ, then we use x[1..n] = #(n−n′′) · x′′[1..n′′]. Otherwise, it holds
2σ′ + 4 = σ − 1, and we introduce an entirely new symbol § that is smaller than
all other symbols. We then use x[1..n] = §(n−n′′) · x′′[1..n′′]. It is easy to see that
this does not affect the reduction from Lemma 3.3. Hence the instance of Alphabet
Set Testing can be solved by computing the LZ factorization of x[1..n] with exactly
σ known literals. By Theorem 2.5(ii), this requires at least n′ ⌈log2 σ′⌉ /2 symbol
comparisons, where 8 ≤ σ ≤ n

5 implies

n′ =

⎢⎢⎢⎣n− 8
⌊︂

σ−4
2

⌋︂
− 14

4

⎥⎥⎥⎦ ≥ ⌊︃
n− 4σ + 2

4

⌋︃
≥ n− 1

4 − σ ≥ n− 5
20 ≥ n

24, and

σ′ =
⌊︃

σ − 4
2

⌋︃
≥ σ − 5

2 ≥ σ3/16.

Hence it holds n′ ⌈log2 σ′⌉ /2 ≥ n
24 ·

3 log2 σ
16 · 1

2 = n log2 σ
256 .

Lemma 3.5. Let σ, n ∈ N+ with 8 ≤ σ ≤ n
5 . For general unordered alphabet, there

is no algorithm that computes the Lempel-Ziv Factorization with Known Literals
(Problem 3.1) of a string x[1..n] that contains σ distinct symbols in fewer than nσ

256
symbol equality comparisons in the worst case.

Proof. We use the same reduction as in the proof of Lemma 3.4. This time, we
observe that σ′ ≥ σ−5

2 ≥ 3σ
16 for σ ≥ 8. By Theorem 2.5(ii), we have to perform at

least n′σ′/2 ≥ n
24 ·

3σ
16 ·

1
2 = nσ

256 comparisons.

37

3 Lower Bounds for LZ Over General Alphabets

3.2 Lower Bounds for Large Alphabets
The lower bound from Theorem 3.2 holds for σ ≤ n

5 , which naturally raises the
question whether faster computation is possible for σ > n

5 . With a slight modification
of the proof, we can obtain lower bounds for σ = (1+ϵ)n

5 , where ϵ ∈ R+ with ϵ < 4
is an arbitrary constant. We create a string x[1..n] = x′x′′ that consists of a prefix
x′ of length k = ϵn

4 and a suffix x′′ of length k′ = n − k = (4−ϵ)n
4 . The prefix

x′[1..k] contains k distinct symbols (with the purpose of inflating the size of the
alphabet). The suffix x′′[1..k′] contains k′

5 distinct symbols that are not present in
x′. Hence x contains k + k′

5 = σ distinct symbols. Since x′ and x′′ are over disjoint
alphabets, computing the LZ factorization of x requires at least as many comparisons
as separately computing the respective LZ factorizations of x′ and x′′.

Computing the LZ factorization of x′′ over general ordered alphabet requires at
least k′ · log2(k′/5)/256 comparisons by Theorem 3.2. It holds k′ = (4−ϵ)n

4 = 20−5ϵ
4+4ϵ ·σ,

and thus it is easy to see that the previous term can be bounded from below by
c1 · n log2 σ, where c1 ∈ R+ is a constant that depends solely on ϵ. By similar
reasoning, computing the LZ factorization of x′′ over general unordered alphabet
requires at least c2 · nσ comparisons, where c2 ∈ R+ is a constant that depends
solely on ϵ. We implicitly assumed that (1+ϵ)n

5 and ϵn
4 are integers. This assumption

can easily be avoided by rounding and adjusting the constants. By choosing the
minimum c = min(c1, c2), we obtain the following result.

Corollary 3.6. Let ϵ ∈ R+ with ϵ < 4 be constant. There are constants c, n0 ∈ R+

such that the statement below holds for any n ∈ N+ with n ≥ n0.
There is no algorithm that computes the Lempel-Ziv Factorization with Known
Literals (Problem 3.1) of a string of length n that contains σ =

⌊︂
(1+ϵ)n

5

⌋︂
distinct

symbols over

(i) general ordered alphabet in fewer than c·n log2 σ symbol order comparisons, and

(ii) general unordered alphabet in fewer than c · nσ symbol equality comparisons

in the worst case.

38

Chapter 4 4Sublinear Time
Lempel-Ziv Factorization
of Packed Strings

As discussed in the introduction of this part of the dissertation, there are many linear
time algorithms that compute the LZ factorization over polynomial integer alphabet.
If the string x[1..n] is packed over integer alphabet [0, σ) (which is arguably the
most practical setting), the number of words occupied by the string is O(n/ logσ n).
Hence reading the string takes only O(n/ logσ n) time, which is sublinear in n for
sufficiently small σ. Lempel and Ziv showed that the LZ factorization of a length-n
string over an alphabet of size σ consists of z = O(n/ logσ n) phrases (see [LZ76,
Theorem 2] or Lemma 4.3 below). Thus O(n/ logσ n) time suffices for writing the LZ
factorization as a sequence of distance-length pairs (as defined in the beginning of
Part I). This naturally raises the question whether O(n/ logσ n) time is also enough
for computing the factorization. So far, there is neither a lower bound nor an
algorithm that answers this question. The only previous result in this direction is by
Kempa [Kem19], who introduced an algorithm that computes the LZ factorization
in O(n/ logσ n + r log9 n + z log9 n) time and O(n/ logσ n + r log8 n) words of space,
where r = O(z log2 n) [KK22] is the number of unary runs in the Burrows-Wheeler
transform. In this chapter, we present a more efficient solution.

Contributions We propose new deterministic algorithms for computing LZ(-like)
factorizations, summarized by the theorems below.

Theorem 4.1. Let x[1..n] be packed over [0, σ). If the LZ factorization of x consists
of z phrases, then an LZ-like factorization of x that consists of at most 3z phrases
can be computed in O(n/ logσ n) time and O(n log σ) bits of space.

Theorem 4.2. Let x[1..n] be packed over [0, σ), and let ϵ ∈ R+ be an arbitrarily
small positive constant. If the LZ factorization of x consists of z phrases, then it
can be computed in O(n/ logσ n + z log3+ϵ z) time and O(n log σ) bits of space.

The space asymptotically matches the space for storing the string. The time for
the exact factorization is optimal if w = Θ(log n) and z = O(n log σ/ log4+ϵ n), i.e.,
for strings that compress well, and on a word RAM with at most logarithmically
sized words (which is a standard assumption). The remainder of the chapter is
structured as follows. We first provide some auxiliary lemmas in Section 4.1. Next,

39

4 Sublinear Time Lempel-Ziv Factorization of Packed Strings

we propose the new algorithm for computing the 3-approximate factorization in
Section 4.2. It achieves its efficiency by combining string synchronizing sets [KK19],
an LCE data structure [KK19], and a classic linear time algorithm for the exact LZ
factorization [CI08a]. In Section 4.3, we introduce the new algorithm for the exact LZ
factorization. It samples a small number of positions, and then (co-)lexicographically
sorts the suffixes and prefixes that respectively start and end at these positions.
The exact sampling scheme depends on the 3-approximate factorization. The sorted
suffixes and prefixes can be used to reduce the computation of the LZ factorization to
two-dimensional orthogonal range reporting, which ultimately results in the claimed
bounds. Finally, we show how to adapt the algorithm to compute the LZ factorization
without overlaps in Section 4.3.2.

4.1 Auxiliary Lemmas
As mentioned earlier, the number of LZ phrases is at most O(n/ logσ n). Hence we
can afford O(z) time and O(z log n) bits of space for the proofs of Theorems 4.1
and 4.2.

Lemma 4.3 ([LZ76, Theorem 2]). Let x[1..n] be a string that contains σ distinct
symbols. Then the LZ factorization of x contains z = O(n/ logσ n) phrases.

Proof. Let m = ⌊logσ n/2⌋. Since the phrases of the LZ factorization do not overlap,
there are at most O(n/ logσ n) phrases of length at least m. There are trivially at
most m = O(n/ logσ n) phrases with destination larger than n−m. Let x[i..i + m′)
with m′ ∈ [1, m) be a phrase of length less than m at destination i ∈ [1, n−m]. By
the definition of the LZ factorization, there is no j ∈ [1, i) such that x[j..j + m′] =
x[i..i + m′]. Hence there is also no j ∈ [1, i) such that x[j..j + m] = x[i..i + m]. Over
an alphabet of size σ, there are only σm ≤ σlogσ n/2 =

√
n distinct strings of length

m. Since each of the remaining phrases corresponds to the leftmost occurrence of
one of these substrings, there cannot be more than

√
n = O(n/ logσ n) of them.

Lempel-Ziv and Longest Common Extensions LCEs are inherently related
to LZ because a referencing phrase fi′ with source j and destination i is of length
|fi′ | = lce(i, j) = maxj′∈[1,i)(lce(i, j′)). LCEs also reveal the lexicographical order
of substrings, which we will exploit repeatedly. For any substrings x[i..i + ℓi) and
x[i′..i′+ ℓi′), it holds x[i..i + ℓi) ≺ x[i′..i′+ ℓi′) if and only if either lce(i, i′) ≥ ℓi and
ℓi < ℓi′ , or lce(i, i′) < min(ℓi, ℓi′) and x[i + lce(i, i′)] < x[i′ + lce(i, i′)]. A data
structure by Kempa and Kociumaka provides constant time LCE queries, and thus
also constant time lexicographical order testing of substrings.

Lemma 4.4 ([KK19, Theorem 5.4]). Let x[1..n] be packed over [0, σ)n. A data
structure that supports constant time LCEs (given i, j ∈ [1, n], output lce(i, j)) and
lexicographical order testing (given i, j ∈ [1, n], output if x[i..n] ≺ x[j..n]) can be
computed in O(n/ logσ n) time and O(n log σ) bits of working space.a

aThe space complexity is not explicitly stated in [KK19, Theorem 5.4], but it is clear from the
construction that the working space in words is linear in the required time.

40

4.2 Algorithm for 3-Approximate LZ-like Factorization

4.2 Algorithm for 3-Approximate
LZ-like Factorization

We accelerate the computation with precomputed lookup tables. We access the tables
with short substrings of x. A (sub-)string y[1..m] packed over [0, σ) is a bitstring of
length m · ⌈log2 σ⌉. Hence we can interpret y as an integer int(y) ∈ [0, 2m·⌈log2 σ⌉). If
m ≤ log2 n/ ⌈log2 σ⌉, then y fits in a word of memory and can be extracted from x
in constant time by using bit-shifts and bit-wise operations. We can then obtain
int(y) and use it to access a lookup table in constant time. Unlike strings, we index
lookup tables starting with 0. For example, Q[0..n′) is a lookup table that has n′

entries, and the first entry is Q[0].
As a warm-up result (and for later usage), we describe a lookup table that

detects periodicities (Lemma 4.5) and a set of tables for leftmost pattern matching
queries (Lemma 4.6). Recall that a string y is of period p ∈ N+ if and only if
y[1.. |y| − p] = y[1 + p.. |y|] (or equivalently if ∀i ∈ [1, |y| − p] : y[i] = y[i + p]). We
say that p is the period of y if it is the minimal period of y.

Lemma 4.5. Let n ∈ [1, 2w]. There is a data structure that, given pattern y[1..m]
packed over [0, σ) with m ≤ log2 n/(2 ⌈log2 σ⌉), outputs the minimal period of y in
constant time. It can be computed in O(

√
n · polylog(n)) time and space.

Proof. Let y[1..m] be packed over [0, σ), then int(y) ∈ [0, n′) with n′ ≤ 2log2 n/2 =
√

n.
For each y ∈ [0, σ)m, we naively compute its period in O(m2) ⊆ O(log2 n) time, and
store it in entry Qm[int(y)] of a lookup table Qm. There are O(log n) tables (one per
possible value of m), and each table has at most

√
n entries. Hence the total time

and words of space are bounded by O(n′ log3 n) = O(
√

n · polylog(n)).

Lemma 4.6. Let x[1..n] be packed over [0, σ). Let ϵ ∈ R+ be constant. There
is a data structure that, given a query pattern y ∈ [0, σ)m with m ≤ log2 n/((2 +
ϵ) ⌈log2 σ⌉), outputs the leftmost occurrence of y in x in constant time. It can be
computed in O(n/ logσ n) time and o(n/ log n) bits of space.

Proof. Let k = ⌊log2 n/((2 + ϵ) ⌈log2 σ⌉)⌋ be the maximal allowed pattern length.
Let u ∈ [0, σ)2k, then int(u) ∈ [0, n′) with n′ ∈ O(n1−ϵ̂), where ϵ̂ = ϵ/(2 + ϵ) > 0.
In a table M [0..n′), we compute for every u ∈ [0, σ)2k the value M [int(u)] = ik + 1,
where i ∈ [0, n

k − 2] is the minimal value with u = x[ik + 1..ik + 2k + 1). If no such i
exists, we store M [int(u)] = n + 1. Computing the table takes O(n/ logσ n) time. We
simply iterate over the O(n/ logσ n) possible values of ik + 1 in decreasing order. For
each of them, we take constant time to assign M [int(x[ik + 1..ik + 2k + 1))] = ik + 1.

Now we use M to compute the leftmost occurrence of each possible pattern
of length at most k. We create k lookup tables L1, L2, . . . , Lk. For y ∈ [0, σ)m,
entry Lm[int(y)] will contain the leftmost occurrence of y in x. We compute Lm as
follows. Initially, all entries are set to n + 1. Now we consider each string u ∈ [0, σ)2k.
For every j ∈ [0, 2k −m], we let y = u[1 + j..1 + j + m) and assign Lm[int(y)] =
min(Lm[int(y)], M [int(u)] + j). The leftmost occurrence of any length-m pattern is
fully contained in a length-2k substring at some position ik + 1. Hence the computed
values are correct. For each of the n′ possible u ∈ [0, σ)2k, we have to consider O(k2)
substrings, and for each of them we spend constant time to update some table Lm.

41

4 Sublinear Time Lempel-Ziv Factorization of Packed Strings

The time is O(n′ · k2) ⊂ O(n1−ϵ̂polylog(n)) ⊂ O(n/ logσ n). There are k + 1 lookup
tables, and each has at most n′ entries. Hence O(n1−ϵ̂polylog(n)) ⊂ o(n/ log n) bits
of space are sufficient.

String Synchronizing Sets We will work with a small subset of sample positions
that has convenient synchronizing properties.

Definition 4.7 ([KK19]). Let x[1..n] be a string and let τ ∈ [1,
⌊︁

n
2

⌋︁
]. A subset

S ⊆ [1, n− 2τ + 1] of positions is τ -synchronizing (with respect to x) if and only if
the following conditions hold.

• Synchronizing condition: For any i, j ∈ [1, n − 2τ + 1] with x[i..i + 2τ) =
x[j..j + 2τ), it holds i ∈ S if and only if j ∈ S.

• Density condition: For any i ∈ [1, n− 3τ + 2], it holds S ∩ [i, i + τ) = ∅ if and
only if the period of x[i..i + 3τ − 2] is at most τ

3 .

Lemma 4.8 ([KK19, Theorems 4.3 and 8.11]). Let x[1..n] be packed over [0, σ)n.
There is a ⌊log2 n/(8 ⌈log2 σ⌉)⌋-synchronizing set of size O(n/ logσ n). It takes
O(n/ logσ n) time and O(n log σ) bits of working space to compute the set, and to
lexicographically sort all the suffixes that start at positions in the set.a

aThe space complexity is not explicitly stated in [KK19, Theorems 4.3 and 8.11], but it is clear
from the construction that the working space in words is linear in the required time.

4.2.1 Computing Longest Previous Factors
of Sample Positions

Let τ = ⌊log2 n/(8 ⌈log2 σ⌉)⌋. We use a τ -synchronizing set of sample positions. We
start by computing for each sample position the longest referencing phrase that could
hypothetically start at that position. This is similar to computing longest previous
factors [CI08a] in the sequential setting without word-packing.

We obtain a τ -synchronizing set {d1, d2, . . . , dN} with ∀h ∈ [1, N) : dh < dh+1 and
N = O(n

τ) = O(n/ logσ n). We lexicographically sort the suffixes at synchronizing
positions and obtain their sparse suffix array, which is the unique permutation suf
of [1, N] with ∀h ∈ [1, N) : x[dsuf[h]..n] ≺ x[dsuf[h+1]..n]. This takes O(n/ logσ n)
time with Lemma 4.8. Next, we compute an array LPF[1..N] (for longest previous
factor), where entry LPF[h] is a position from [1, dh) that maximizes lce(dh, LPF[h])
(this position may not be unique, and it is not necessarily a sample position). We
first use Lemma 4.6 to find the minimal j with x[j..j + 2τ) = x[dh..dh + 2τ) in
constant time. If j = dh, then x[dh..dh + 2τ) has no previous occurrence. In this
case, we issue at most O(τ) queries to Lemma 4.6 and find the maximal ℓ ∈ [0, 2τ)
such that x[dh..dh + ℓ) has a previous occurrence. This also reveals LPF[h] (we
can choose any position from [1, dh) if ℓ = 0), but it takes O(τ) time. However,
this can only happen once per distinct length-2τ substring, which limits the total
time to O(22τ ·⌈log2 σ⌉τ) ⊂ O(n/ log n). If j < dh, then x[dh..dh + 2τ) has a previous
occurrence, and the synchronizing property of Definition 4.7 guarantees that all
previous occurrences of x[dh..dh + 2τ) start at sample positions. Thus, we can
compute LPF in the same way as it is usually done for the entire suffix array. A

42

4.2 Algorithm for 3-Approximate LZ-like Factorization

detailed description can be found, e.g., in [CI08a] (where our LPF corresponds to
PrevOcc in [CI08a]), and we only give a brief summary. For each entry suf[h], we
find

prev[h] = max({h′ ∈ [1, h) | suf[h′] < suf[h]}) and
next[h] = min({h′ ∈ [h + 1, N] | suf[h′] < suf[h]}),

which takes O(N) time with an algorithm for nearest smaller values (see, e.g., [BFN11,
Lemma 1]). We then use Lemma 4.4 to compute ℓ1 = lce(dsuf[h], dsuf[prev[h]]) and ℓ2 =
lce(dsuf[h], dsuf[next[h]]), which are the respective maximal phrase lengths at destination
dsuf[h] that can be achieved with a lexicographically smaller and a lexicographically
larger suffix starting at an earlier sample position. If max(ℓ1, ℓ2) < 2τ , then we
have already assigned LPF[suf[h]] with Lemma 4.6 as described before. Otherwise,
if ℓ1 > ℓ2, then we assign LPF[suf[h]] = suf[prev[h]]. If, however, ℓ2 ≥ ℓ1, then
we assign LPF[suf[h]] = suf[next[h]]. It is possible that prev[h] and/or next[h] are
undefined, but treating this is trivial. The correctness follows from the synchronizing
property and the correctness of the same technique for the full suffix array [CI08a].
The total time and space in words are O(N) = O(n/ logσ n).

4.2.2 Computing a Gapped Factorization
Now we compute a gapped LZ factorization x = f1g1r1f2g2r2 . . . fz′gz′rz′ , where:

• Each fi′ is a perfect phrase at destination i = 1 + ∑︁i′−1
h=1 |fhghrh| defined just

like in the exact factorization. It is either the leftmost occurrence of a symbol
(a literal phrase), or the longest prefix of x[i..n] with a previous occurrence
x[j..j + |fi′ |) = fi′ at some source j ∈ [1, i) (a referencing phrase).

• Each gi′ is a (possibly empty) gap at destination i = 1 + |fi′ |+
∑︁i′−1

h=1 |fhghrh|.
A gap can be any string and does not necessarily have a previous occurrence.

• Each ri′ is a reference at destination i = 1 + |fi′gi′ | +
∑︁i′−1

h=1 |fhghrh|, which
is either empty or it has a previous occurrence x[j..j + |ri′ |) = ri′ at source
j ∈ [1, i) (with no requirement of maximal length).

Lemma 4.9. Any gapped LZ factorization x = f1g1r1f2g2r2 . . . fz′gz′rz′ satisfies
z′ ≤ z, where z is the number of phrases in the exact LZ factorization of x.

Proof. A suffix x[j..i + ℓ) of an exact LZ phrase x[i..i + ℓ) at destination i has a
previous occurrence. Hence, if j is the destination of a perfect phrase fj′ in the
gapped factorization, then this phrase is of length at least ℓ− j. This means that a
phrase of the exact LZ factorization contains the destination of at most one perfect
phrase of the gapped LZ factorization, which implies z′ ≤ z.

Computing any gapped factorization is trivial (e.g., x = fgr with f = x[1],
g = [x2..n], r = ε is a gapped factorization). We will compute a gapped factorization
with the additional property that none of the gaps contains a position from the
synchronizing set, which makes it easy to eliminate the gaps in a post-processing.
We compute the factorization from left to right using LPF.

The first perfect phrase is literal phrase f1 = x[1]. After creating some perfect
phrase fi′ at destination i, we iterate over the upcoming sample positions until we

43

4 Sublinear Time Lempel-Ziv Factorization of Packed Strings

reach the first dh ≥ i + |fi′ |. The next gap is gi′ = x[i + |fi′ | ..dh), and the next
reference ri′ is empty. The next perfect phrase fi′+1 at destination dh is a literal
phrase if lce(dh, LPF[h]) = 0. Otherwise, it is a referencing phrase with source LPF[h]
and length lce(dh, LPF[h]). As soon as we create a perfect phrase fi′ at destination
i with i + |fi′ | > dN , we complete the factorization with gap gi′ = x[i + |fi′ | ..n] and
empty reference ri′ . We spend constant time per sample position, and hence the
time is O(N) = O(n/ logσ n).

Eliminating Long Gaps Now we eliminate the gaps by replacing them with
references. We distinguish between short gaps of length at most 3τ , and long gaps
of length more than 3τ . A long gap gi′ at destination i is of length more than
3τ , and due to our method of computing the factorization it does not contain any
of the synchronizing positions. By the density condition of Definition 4.7, gi′ has
period p ≤ τ/3. The reference ri′ is empty (because all references in the initial
gapped factorization are empty, and we only replace them with non-empty references
when eliminating long gaps). We replace gi′ri′ with g′i′r

′
i′ , where g′i′ = gi′ [1..3τ] and

r′i′ = gi′ [3τ + 1.. |gi′ |). Since gi′ has period p, the new reference r′i′ at destination
i + 3τ has a previous occurrence at source j = i + 3τ − p. Hence the replacement
retains the properties of a gapped factorization.

If p ≤ τ
3 is the minimal period of gi′ of length at least 3τ , then it is easy to see

that also gi′ [1..3τ] has minimal period p (because gi′ [1..3τ] contains all the length
2p substrings of gi′ , and thus a smaller period would directly translate to the entire
gi′). Hence we can simply use Lemma 4.5 with query pattern gi′ [1..3τ] to look up p
in constant time. This way, replacing a long gap takes constant time, and the total
time needed for all long gaps is O(z) = O(n/ logσ n).

Eliminating Short Gaps and Finalizing the Factorization We have eliminated
all long gaps, and from now on we simply say gap rather than short gap. A non-empty
gap gi′ at destination i is referencing if there is some j < i with x[j..j + |gi′ |) = gi′ (we
could replace the gap with a reference). We first identify all the non-referencing non-
empty gaps. For each non-empty gap, we use Lemma 4.6 to find the minimal j with
x[j..j + |gi′ |) = gi′ in constant time. If and only if j = i, then gi′ is non-referencing.
The total time needed is O(z) ⊆ O(n/ logσ n).

We process each non-referencing non-empty gap gi′ separately. We find the
maximal ℓ ∈ [0, |gi′ |) such that the prefix x[i..i + ℓ) of gi′ has a previous occurrence.
We do so by issuing O(|gi′ |) queries to Lemma 4.6, which takes O(τ) time. This
also reveals the source position j ∈ [1, i) of the previous occurrence. We adjust the
gapped factorization by re-factorizing the gap as gi′ = grfg′, where g is a new empty
gap, r is a new empty reference, f = x[i..i + max(1, ℓ)) is a new perfect phrase (with
source j if ℓ > 0), and g′ = x[i + ℓ..i + |gi′ |) is the remainder of the gap. Note that
this replacement retains the properties of a gapped factorization, and by Lemma 4.9
there are still at most z factors of each type. If the new gap g′ is still non-empty
and non-referencing (we check this in the same way as before), then we replace g′

by applying the same re-factorization procedure again, and we keep doing so until
the remainder of the gap is either empty or referencing. Each application takes O(τ)
time and decreases the length of the remainder. Hence the total time for processing
gi′ is O(τ2).

44

4.3 Algorithm for Exact LZ Factorization

A non-referencing gap gi′ at destination i implies that x[i..i + |gi′ |) is the leftmost
occurrence of a substring of length at most 3τ . There are fewer than 23τ ·⌈log2 σ⌉ · 3τ
distinct substrings of this length, and hence re-factorizing all the non-referencing
gaps takes O(23τ ·⌈log2 σ⌉ · τ3) ⊆ O(n3/8 log3 n) time.

The remaining non-empty gaps are referencing, and we can use Lemma 4.6
to replace them with referencing phrases. We obtain an LZ-like factorization by
discarding all empty factors. This leaves at most z perfect phrases and 2z referencing
phrases. The total time is O(n/ logσ n). Lemmas 4.4 to 4.6 and 4.8 require O(n log σ)
bits of memory. Apart from that, we only use arrays of size N , which also require
O(N log n) = O(n log σ) bits of memory. Hence we have shown Theorem 4.1. It is
easy to see that, instead of first computing a gapped factorization and then closing
the gaps, we could just as well directly compute the approximate factorization from
left to right. This may result in a faster practical implementation.

4.3 Algorithm for Exact LZ Factorization

In the approximate algorithm, we create perfect phrases for which both source and
destination are samples. For the exact LZ factorization, we have to allow arbitrary
sources and destinations. We will define a new set of sample positions such that,
if a phrase fi′ has source j, there will be at least one sample position j′ that is
reasonably close to the source, say, j′ ∈ [j, j + min(δ, |fi′ |)) for some parameter δ.
We can conceptually divide the phrase into a head x[j..j′] and a tail x[j′..j + |fi′ |).
Computing a phrase means finding a sample position with matching head, and with
tail of maximal length. If we co-lexicographically sort the prefixes that end at sample
positions, then we group together samples that admit the same head. Similarly, if
we lexicographically sort the suffixes that start at sample positions, then we group
together samples that admit the same tail. This motivates a geometric interpretation
of sample positions, in which each sample is represented by the lexicographical rank
of its suffix and the co-lexicographical rank of its prefix. (This technique is similar to
what was done in [BP16, Section 6.2].) Ultimately, we use geometric data structures
for insertion-only orthogonal range one-reporting to handle most of the computational
effort. (We could also use static data structures with an extra dimension or weighted
points; however, there are few such data structures with known construction times.)

Definition 4.10. Let N ∈ [1, 2w] and let π be a permutation of [1, N]. The task
of insertion-only orthogonal range one-reporting is to maintain a set of points
P ⊆ {(i, π(i)) | i ∈ [1, N]} (initially empty) with the following operations:

(i) insert p ∈ {(i, π(i)) | i ∈ [1, N]} into P

(ii) given Q = [a1, a2]× [b1, b2], output any point from Q∩P , or report Q∩P = ∅

Now we show how to find previous occurrences of substrings by using orthogonal
range reporting and an arbitrary set of sample positions.

45

4 Sublinear Time Lempel-Ziv Factorization of Packed Strings

Lemma 4.11. Let x[1..n] be packed over [0, σ), and let A[1..N] be an array of N
distinct samples from [1, n] in increasing order. Let uA and qA be respectively the
insertion and query time of a data structure for insertion-only orthogonal range
one-reporting, and let sA be the maximum number of words occupied by this data
structure after N insertions. After an O(n/ logσ n + N log N) time preprocessing,
and in O(n/ logσ n + N + sA) words of space, a subset X of sample positions can be
maintained with the following operations.

(i) Given h ∈ [1, N], insert A[h] into X in O(uA) time

(ii) Given i ∈ [1, n] and k ∈ [0, n− i], find the (possibly not unique) ĥ ∈ X ∩ (k, n]
with x[ĥ− k..ĥ] = x[i..i + k] and maximal ℓ = lce(ĥ, i + k) in O(log ℓ · (log N +
qA)) time, or report that ĥ does not exist in O(log N + qA) time

Proof. We start by preprocessing the sample positions. Let suf be the unique
permutation of [1, N] that lexicographically sorts the suffixes of x that start at
sample positions, i.e., ∀h ∈ [1, N) : x[A[suf[h]]..n] ≺ x[A[suf[h + 1]]..n] (a sparse
suffix array). We use comparison-based sorting with Lemma 4.4 for constant time
lexicographical suffix comparisons and obtain suf in O(n/ logσ n + N log N) time and
O(n/ logσ n+N) words of space. Analogously, we obtain the unique permutation pref
of [1, N] that co-lexicographically sorts the prefixes of x that end at sample positions,
i.e., ∀h ∈ [1, N) : rev(x[1..A[pref[h]]]) ≺ rev(x[1..A[pref[h+1]]]). We compute rev(x)
in O(n/ logσ n) time and words of space with universal lookup tables (see, e.g., [BP16,
Section 6.2]). By once more comparison-based sorting with the data structure from
Lemma 4.4 constructed for rev(x), we obtain pref in O(n/ logσ n + N log N) time
and O(n/ logσ n + N) words of space. It is trivial to compute the respective inverse
permutations suf-rank and pref-rank of suf and pref in O(N) time and words of
space. This concludes the preprocessing.

Insertions. In order to insert A[h] into X , we insert the two-dimensional point
(suf-rank(h), pref-rank(h)) into the geometric data structure for orthogonal range
reporting, which leads to the claimed insertion time and space complexity.

Queries. We first show a fast way to answer a slightly simpler type of query. Given
suffix x[i..n], offset k, and length estimate ℓ, we want to find some A[h] ∈ X such that
x[A[h]− k..A[h] + ℓ) = x[i..i + k + ℓ) (if it exists). The lexicographical order groups
together suffixes of x that share a long prefix. Thus, there is an interval suf[a1..a2]
that contains exactly the h ∈ [1, N] with x[A[h]..A[h] + ℓ) = x[i + k..i + k + ℓ). We
compute the interval boundary a1 by binary searching in suf for the lexicographically
minimal suffix that starts at a sample position and has prefix x[i + k..i + k + ℓ). This
works similarly to pattern matching with the suffix array [MM93]. If suf[h′] is the
center of the search interval, then we compute ℓ′ = lce(A[suf[h′]], i + k). If ℓ′ ≥ ℓ, or
if x[i + k..n] ⪯ x[A[suf[h′]]..n], then we proceed in the left half of the search interval
(including suf[h′]). Otherwise, it holds ℓ′ < ℓ and x[i + k..n] ≻ x[A[suf[h′]]..n], and
we continue in the right half of the interval (excluding suf[h]). Computing LCEs
and performing lexicographical comparisons takes constant time with Lemma 4.4,
and hence the binary search takes O(log N) time. Analogously, we compute a2 in
O(log N) time. The co-lexicographical order groups together prefixes that share a
long suffix. There is an interval pref[b1..b2] that contains exactly the h ∈ [1, N] with
x[A[h]− k..A[h]] = x[i..i + k], and we can compute the interval borders in O(log N)
time (analogously to the computation of a1 and a2, but with the LCE data structure

46

4.3 Algorithm for Exact LZ Factorization

for rev(x)). A sample A[h] satisfies x[A[h]− k..A[h] + ℓ) = x[i..i + k + ℓ) if and only
if (suf-rank(h), pref-rank(h)) ∈ [a1, a2]× [b1, b2]. If we have already inserted a sample
position that satisfies this condition, then a query to the geometric data structure
returns a matching point (suf-rank(h), pref-rank(h)) in qA time. Obtaining A[h]
from the point takes constant time due to h = suf(suf-rank(h)). Otherwise, the data
structure returns that the point does not exist. Thus, we can find some A[h] ∈ X
such that x[A[h]− k..A[h] + ℓ) = x[i..i + k + ℓ), or report that such a sample does
not exist, in O(log N + qA) time.

Finally, in order to answer a query of the type stated in the lemma, we use
exponential search to find the maximal ℓ ∈ N+ such that there is some A[h] ∈ X with
x[A[h]−k..A[h]+ℓ) = x[i..i+k+ℓ). This way, we obtain A[h] in O(log ℓ·(log N +qA))
time, or the first query with ℓ = 1 to the geometric data structure comes back negative,
and we report that no matching sample position exists in O(log N + qA) time.

4.3.1 Computing the Exact LZ Factorization
Now we show how to compute the LZ factorization x = f1f2 . . . fz. We distinguish
between short phrases of length less than δ and long phrases of length at least δ,
where δ ∈ [1, n] is a parameter to be fixed later (it will be polylogarithmic in n).
We compute the factorization one phrase at a time and in left-to-right order. When
computing fi′ at destination i ∈ [1, δ), we compute lce(j, i) for each j ∈ [1, i) with
Lemma 4.4, which reveals the length and source of the phrase in O(δ) time (or all
LCEs are zero and fi′ is a literal phrase). When computing a phrase fi′ at destination
i ≥ δ, we use three different methods depending on the leftmost source j of fi′ . We
do not know j in advance, and thus we try each of the methods and then choose the
result that yields the longest phrase.

Method 1: Close Sources If j ∈ [i−δ, i), then we obtain the phrase by computing
lce(j′, i) for each j′ ∈ [i− δ, i) and keeping track of the longest LCE.

Methods 2 and 3: Far Sources If j ∈ [1, i− δ), then we use two instances of the
data structure from Lemma 4.11. The first one maintains a subset X of evenly spaced
samples from an array A[1..N] with N =

⌊︁
n
δ

⌋︁
and ∀h ∈ [1, N] : A[h] = hδ. The

second one maintains a subset Y of samples from an array B[1..M] of size M = O(z)
that is sorted in increasing order. The samples are chosen such that, if x[j′..j′ + ℓ)
is the leftmost occurrence of any substring (e.g., the leftmost source occurrence
of an LZ phrase), then [j′, j′ + ℓ) contains at least one sample position. This is
achieved with the LZ-like factorization from Theorem 4.1, which we explain later.
The space usage is O(n/ logσ n + N + M + sA + sB), and the preprocessing time is
O(n/ logσ n + N log N + M log M). For both instances, we maintain the following
invariant. At the time at which we compute phrase fi′ at destination i, we have
inserted exactly the samples that satisfy A[h] < i into X , and the samples that satisfy
B[h] < i into Y. Since we compute the phrases from left to right, we also insert
the samples of each array in left-to-right order. Thus, there is no time overhead for
finding the next sample to insert. The total insertion time is O(N · uA + M · uB).
Now we use X and Y to compute phrases.

Method 2: Long Phrases If |fi′ | ≥ δ, then [j, j + δ) contains the sample position
A[h] = hδ < j + δ < i with h = ⌈j/δ⌉ (where j + δ < i due to the assumption that
j ∈ [1, i − δ)). By the invariant on X , we have already inserted A[h] into X . Let

47

4 Sublinear Time Lempel-Ziv Factorization of Packed Strings

k = A[h]− j ∈ [0, δ), then it holds x[j..j + k] = x[A[h]− k..A[h]] = x[i..i + k]. Thus,
if we query X with position i and offset k, then we obtain either A[h] or another
sample position A[h′] < i with lce(A[h′]− k, i) = lce(A[h]− k, i) = lce(j, i) = |fi′ |.
This way, we find both a source and the length of fi′ . Since we do not know k
in advance, we issue one query for each possible value of k and keep track of the
maximal LCE, which takes O(δ · log |fi′ | · (log N + qA)) time.

Method 3: Short Phrases This works analogously to the method for long
phrases (but with Y instead of X). If |fi′ | < δ, then [j, j + |fi′ |) contains at
least one sample position B[h] < j + |fi′ | < j + δ < i (where j + δ < i due
to the assumption that j ∈ [1, i − δ), and a sample position is present because
x[j..j + |fi′ |) is the leftmost occurrence of a substring). By the invariant on Y,
we have already inserted B[h] into Y. Let k = B[h] − j ∈ [0, |fi′ |), then it holds
x[j..j + k] = x[B[h]− k..B[h]] = x[i..i + k]. Thus, if we query Y with position x[i..n]
and offset k, we obtain either B[h] or another sample position B[h′] < i for which
it holds lce(B[h′] − k, i) = lce(B[h] − k, i) = lce(j, i) = |fi′ |. This way, we find
both a source and the length of fi′ . Since we do not know k in advance, we issue one
query for each possible value of k and keep track of the maximal LCE, which takes
O(δ · log |fi′ | · (log N + qB)) time.

4.3.1.1 Analyzing the Procedure

Each method requires that j and possibly |fi′ | satisfies some condition. It is easy to
see that every scenario is covered by one of the conditions. Thus, there is always at
least one method that computes a phrase of maximal length. If we run any of the
methods even though the respective condition is not satisfied, then the result is still
an LCE between i and a smaller position. Thus, we will never overestimate |fi′ |, and
it is indeed correct to always run all three methods and produce the longest phrase
admitted by any of them.

Now we analyze the time and space complexity (in words). We use δ = Θ(log2 n)
and two different geometric data structures with amortized time bounds. The first one
[Mor06, CT18] has space complexity sA = O(N log N) ⊆ O(n/ log n) and performs
insertions and queries in uA = O(log n) and qA = O(log n) time (the precise bounds
are better, but we do not need them for our purposes). The second one [Nek09] uses
linear space sB = O(M) = O(z) ⊆ O(n/ logσ n) and performs insertions and queries
in uB = O(log3+ϵ n) and qB = O(log n) time (where ϵ ∈ R+ is an arbitrarily small
constant). The total space usage is O(n/ logσ n) words.

The preprocessing time is O(n/ logσ n + N log N + M log M) ⊆ O(n/ logσ n +
z log z), and the total time for insertions is O(N log n + M log3+ϵ n) ⊆ O(n/ log n +
z log3+ϵ n). The time for applying all three methods is O(log3 n · log |fi′ |) for phrase
fi′ . If |fi′ | = Ω(log5 n), then the time amortizes to O(1/ log n) per symbol in
fi′ , which results in O(n/ log n) time in total. If |fi′ | = O(log5 n), then the time
is O(log3 n · log log n), or O(z log3+ϵ n) for all phrases. Thus, the overall time is
O(n/ logσ n + z log3+ϵ n), and the space is O(n/ logσ n) words or O(n log σ) bits. For
a purely cosmetic improvement, assume that (z log3+ϵ n) > (n/ logσ n). Then z >
(n/ log5 n) and log z = Ω(log n). Thus, the time bound is equivalent to O(n/ logσ n +
z log3+ϵ z), and the complexities match the ones in Theorem 4.2.

48

4.3 Algorithm for Exact LZ Factorization

4.3.1.2 Computing B

We conclude the proof of Theorem 4.2 by showing how to compute B in O(n/ logσ n)
time and words of space. We compute an LZ-like factorization x = f ′1f ′2 . . . f ′M of
M = Θ(z) ⊆ O(n/ logσ n) phrases with Theorem 4.1. Now it is easy to obtain
B[1..M] with ∀h ∈ [1, M] = B[h] = ∑︁h

i′=1 |f ′i′ | (the end positions of all phrases).
Every leftmost occurrence of a symbol is a literal phrase in any LZ-like factorization.
Thus, the leftmost occurrence of any symbol is a sample position. Now assume that
x[j′..j′+ ℓ) with ℓ > 1 is the leftmost occurrence of a substring. If [j′, j′+ ℓ) contains
no sample position, then x[j′..j′ + ℓ) is fully contained within a referencing LZ-like
phrase. However, every such phrase has a previous occurrence, which contradicts the
fact that x[j′..j′ + ℓ) has no previous occurrence. Thus, B functions as required by
the algorithm, and we have shown Theorem 4.2.

4.3.2 Computing the Non-Overlapping
LZ Factorization

A common variation of the LZ factorization [SS82] requires that the leftmost source
j of a referencing phrase fi′ at destination i satisfies j + |fi′ | ≤ i, i.e., there has to be
at least one source occurrence that does not overlap the destination occurrence of the
phrase. Theorem 4.2 can be adapted to compute this non-overlapping factorization.
When using the first method, we avoid overlaps by simply truncating each LCE to
min(lce(j, i), i− j).

For the second method, we repeatedly use the geometric data structure to
decide if, for position i, offset k, and length estimate ℓ, there is any A[h] ∈
X with x[A[h]− k..A[h] + ℓ) = x[i..i + k + ℓ). To avoid overlaps, we have to
ensure A[h] ≤ i − ℓ. We add a third dimension and represent each A[h] as
a point (suf-rank(h), pref-rank(h),A[h]). The query interval becomes a three-
dimensional hyper-rectangle [a1, a2]× [b1, b2]× [1, i− ℓ]. There is a three-dimensional
geometric data structure with amortized times uA = O(log8/5+ϵ N) and qA =
O((log N/ log log N)2) [CT18]. Its space complexity is sA = O(N log8/5+ϵ N) words.
To accommodate for the more expensive update time and higher space complexity,
we use a larger δ = Θ(logσ n · log8/5+ϵ n). This increases the time for comput-
ing a phrase to O(log23/5+ϵ n · log |fi′ | / log σ), and the total time to O(n/ logσ n +
z log23/5+2ϵ z/ log σ). The space remains O(n/ logσ n) words.

For avoiding overlaps in the third method, we adjust the first method such that it
considers leftmost sources in [i− 2δ, i) rather than [i− δ, i) (which does not increase
the complexity). Now we can change the invariant for Y such that, at the time at
which we compute fi′ , we have inserted exactly the samples with B[h] < i− δ into
Y. We do not miss any sources this way due to our previous adjustment of the
first method. Now any source reported by the third method is from [1, i− δ). The
third method is only used for phrases of length less than δ, and thus an overlap is
impossible. If the third method reports a phrase of length at least δ, then we simply
ignore it; it will be computed by the second method already. The increased value of δ
increases the number of queries for the third method, but the time is still dominated
by O(z log23/5+ϵ z/ log σ).

49

4 Sublinear Time Lempel-Ziv Factorization of Packed Strings

Corollary 4.12. Let x[1..n] be packed over [0, σ), and let ϵ ∈ R+ be an arbitrarily
small constant. If the non-overlapping LZ factorization of x consists of z phrases,
then it can be computed in O(n/ logσ n + z log23/5+ϵ z/ log σ) time and O(n log σ)
bits of working space.

4.4 Conclusion
We presented sublinear time algorithms for LZ-like factorizations. While the algorithm
for the exact LZ factorization achieves O(n/ logσ n) time if the number z of phrases is
sufficiently small, it remains an open question whether this time can also be achieved
for all values of z. The presented solution relies heavily on geometric data structures
with super-constant query times, and the computation of each phrase requires at
least one query. While there is no obvious way of avoiding this cost per phrase, future
advances in geometric data structures may directly improve the time complexity of
the algorithm. The O(n/ logσ n) time solution for the 3-approximate factorization is
of independent interest. For example, it may be useful for computing squares and
runs in sublinear time. This could be achieved by adapting existing algorithms that
rely on the LZ factorization [Cro86, KK99]. Another potential application is the
sublinear time construction of the block tree [Bel+21], a data structure based on the
LZ factorization that allows fast random access to the compressed string.

50

Chapter 5 5New Advances in Rightmost
Lempel-Ziv

Recall the example from the introduction of Part I; the LZ factorization of string
ananas-fan and its encoding as a list of pairs is given by

a
1

n
2

a
3

n
4

a
5

s
6

-
7

f
8

a
9

n .
10

f1 f2 f3 f4 f5 f6 f7

(0, a)(0, n)(2, 3)(0, s)(0, -)(0, f)(6, 2)

last phrase
alternatively:

(8, 2)

We use the distance-length encoding for referencing phrases (which can be found
in practical compressors like gzip [Webd]). In this encoding, a length-ℓ referencing
phrase at destination i gets encoded as (d, ℓ), where d ∈ [1, i) is the distance to
a source of the phrase, i.e., x[i − d..i − d + ℓ) = x[i..i + ℓ). For example, f7 at
destination 9 gets encoded as (6, 2) because it is of length 2 and has source 3 at
distance 9− 3 = 6. However, f7 also has source 1 at distance 9− 1 = 8, and we could
alternatively encode the phrase as (8, 2). But which of the two options is better?

If we naively store each distance-length pair using fixed width integers, then
choosing one source over another does not make a difference. However, practical
compressors further encode the pairs using variable-length codes. That is, each
integer is assigned a binary codeword, but the codewords are not necessarily all of the
same length. Such codes often assign longer codewords to larger integers, as shown
in Figure 5.1. In this case, we can improve the compression rate by minimizing the
distance component of each pair. For the previous example, if we use Elias δ codes
[Eli75], then the distance component of (6, 2) uses a codeword of length five, while
the distance component of (8, 2) uses a codeword of length eight. Hence representing
f6 with the pair (6, 2) rather than (8, 2) saves three bits.

Rightmost Parsings of LZ-like and LZ-End Factorizations In order to mini-
mize the distance component of a referencing phrase, we have to find its rightmost
source. The problem of computing the rightmost parsing of a given LZ-like factor-
ization is to annotate each referencing phrase with its rightmost source. Recall the
definition of LZ-End [KN10, KN13]: an LZ-like factorization f1 . . . fz is an LZ-End
factorization if every referencing phrase fi′ occurs as a suffix of f1 . . . fj′ for some
j′ ∈ [1, i′). We then call j = 1 − |fi′ | +

∑︁j′
k=1 |fk| an LZ-End aligned source of fi′ .

51

5 New Advances in Rightmost Lempel-Ziv

20 22 24 26 28 210 220
1
5

10

15

20

25

30

35

encoded value

co
de

wo
rd

le
ng

th
in

bi
ts

Golomb (m = 64) [Gol66]
Elias γ [Eli75]
Elias δ [Eli75]
Fibonacci [FK96]

Figure 5.1: Common variable-length codes for positive integers.

We could define the rightmost parsing for LZ-End in the same way as for arbitrary
LZ-like factorizations (i.e., annotate each phrase with its rightmost source), but this
is undesirable because the rightmost source might not be LZ-End aligned. Hence
the rightmost parsing of an LZ-End factorization annotates each referencing phrase
with its rightmost LZ-End aligned source. The greedy LZ-End factorization is the
uniquely defined LZ-like factorization in which each referencing phrase is of maximal
length, i.e., a referencing phrase at destination i is the longest prefix if x[i..n] that
has an LZ-End aligned previous occurrence. (We again stress that this is not the
original definition of LZ-End. The modified definition simplifies the proofs, and all
presented results can be trivially adapted to the original definition.)

Contributions We present time-efficient deterministic algorithms for rightmost
parsings, summarized by Theorems 5.1 and 5.2 below.

Theorem 5.1. Let x[1..n] be over linearly-sortable alphabet. Given an LZ-End
factorization x = f1 . . . fz, we can compute its rightmost LZ-End parsing in O(n +
z
√

log z) time and O(n) words of space. For the greedy LZ-End factorization, we
achieve O(n) time and words of space.

Theorem 5.2. Let x[1..n] be over linearly-sortable alphabet. Given an LZ-like
factorization x = f1 . . . fz, we can compute the rightmost previous occurrence of all
referencing phrases

(a) of length Ω(log6.66 n/ log2 σ) in O(n/ logσ n) time and words of space,
assuming that x[1..n] is packed over integer alphabet [0, σ),

(b) fk with k ∈ F ⊆ [1, z] in O(n + |F | dϵ) time, where d = |{fk′ | k′ ∈ F}| ≤ |F |
and ϵ ∈ R+ is an arbitrarily small constant,

(c) fk with |{k′ ∈ [1, z] | fk′ = fk}| = O(log n) in O(n) time, and
(d) with rightmost previous occurrence at distance O(log n) in O(n) time.

Unless explicitly stated otherwise, the space complexity is O(n) words.

52

5.1 Preliminaries

The remainder of the chapter is structured as follows. First, we introduce
preliminary definitions and data structures (Section 5.1). We provide the solution
for rightmost parsings of LZ-End factorizations (Theorem 5.1) in Section 5.2. The
algorithms for partially solving general rightmost LZ-like parsings (Theorem 5.2) are
presented in Section 5.3.

5.1 Preliminaries
We assume that the reader is familiar with tries [Fre60]. The suffix tree [Wei73] of x
is the compact trie of all suffixes of x$, where $ is smaller than all symbols from the
alphabet. Each leaf corresponds to a suffix of x and is labeled with the start position
of this suffix. The outgoing edges of each node are arranged in increasing order of
the first symbol of the respective edge label. Hence the leaves are ordered from left
to right in lexicographical order of suffixes. In the present model of computation,
the suffix tree can be computed in O(n) time and space (see, e.g., [Far97, FFM00]).
The suffix array SA of x is the unique permutation of [1, n] that lexicographically
sorts the suffixes, i.e., ∀i ∈ [1, n) : x[SA[i]..n] ≺ x[SA[i + 1]..n] [MM93]. Equivalently,
it consists of the leaf-labels of the suffix tree in left-to-right order and can therefore
be constructed from the suffix tree in linear time.

From now on, we use z (commonly used to denote the number of phrases in the
exact LZ factorization) to denote the number of phrases in the factorization at hand,
even if it is an LZ-like or LZ-End factorization. Instead of saying that we compute
the rightmost source of fk, we simply say that we resolve fk.

5.2 Computing Rightmost LZ-End Parsings
In this section, we provide the solutions for Theorem 5.1. We exploit the fact that an
LZ-End phrase only has to choose from less than z sources, while a general LZ-like
phrase has to consider up to Ω(n) possible sources. This makes the computation
significantly easier for LZ-End factorizations.

5.2.1 Rightmost Greedy LZ-End Parsing
We start by computing an arbitrary LZ-End aligned source for each referencing
phrase fk with a technique that is similar to what was done in [Fis+18]. We compute
the suffix tree of rev(x). Apart from the parent operation, we will not need any
navigation in the trie. Hence we can construct it in O(n) deterministic time using
standard techniques (e.g., bottom-up from the suffix array of rev(x)). Now we
process each k ∈ [1, z] separately and in increasing order. We start at the leaf that
corresponds to rev(f1 . . . fk), and traverse the path towards the root one node at
a time. Whenever we see a node that has not been annotated yet, we annotate it
with k. As soon as we see a node that already has some annotation k′, we stop and,
unless the reached node is the root, report that fk has an LZ-End aligned source as
a suffix of f1 . . . fk′ . If we reach the root, then fk is a literal phrase. It is easy to see
that this indeed reports correct sources. The correctness follows readily from the
fact that the lowest common ancestor of the leaves corresponding to a referencing
phrase and its phrase aligned sources will be annotated by one of the sources. We
annotate each node of the suffix tree at most once, hence the time is O(n).

53

5 New Advances in Rightmost Lempel-Ziv

The computed sources are already rightmost for all phrases that only have a
single LZ-End aligned source. It remains to correct the sources of phrases that have
multiple LZ-End aligned sources, for which we observe the following.

Proposition 5.3. Let fk be a referencing phrase in the greedy LZ-End factorization,
and let k′, k′′ ∈ [1, k) with k′′ < k′ be such that fk is a suffix of both f1f2 . . . fk′ and
f1f2 . . . fk′′. Then fk is a suffix of fk′−1fk′.

Proof. If fk is a suffix of f1f2 . . . fk′ but not of fk′−1fk′ , then fk′−1fk′ is a suffix of fk.
Since fk is a suffix of f1f2 . . . fk′′ , this implies that fk′−1fk′ is a suffix of f1f2 . . . fk′′ .
Hence fk′−1fk′ has a previous occurrence that satisfies the LZ-End property. Thus,
fk′−1 is not of maximal length, which contradicts the definition of the greedy LZ-End
factorization.

We compute a compacted trie over the set of strings defined by rev(fk′−1fk′) for
k′ ∈ [2, z]. Note that the total length of the strings is less than 2n. We make the
respective nodes that spell rev(fk′) and rev(fk′−1fk′) explicit (if they are not explicit
already), and store pointers to these nodes. We will not need fast navigation on the
trie; as before, we only need the parent operation. Hence we can construct the trie
in O(n) deterministic time using standard techniques (e.g., from the suffix array of
rev(f1f2#f2f3# . . . #fz−1fz) where # is a special separator symbol). Now we process
the phrase pairs fk′−1fk′ with k′ ∈ [2, z] from right to left. Whenever we finish
processing a pair, we annotate the node that spells rev(fk′) with k′ (indicating that
the rightmost LZ-End aligned source of fk′ has not been found yet). Before adding
this annotation, we first check if fk′−1fk′ resolves other phrases. For this purpose,
we traverse the path from the leaf that spells rev(fk′−1fk′) to the root of the trie.
For each node on the path, we check if it has been annotated with some value k. If
we find such an annotation, then the corresponding node spells rev(fk), and fk is
a suffix of fk′−1fk′ . Hence we store |f1f2 . . . fk′ | − |fk|+ 1 as the maximal LZ-End
aligned source of fk, and remove the annotation of the node. By Proposition 5.3 and
the right-to-left order of processing, we correctly find the rightmost LZ-End aligned
source of any phrase that has multiple LZ-End aligned sources.

A node might spell the reversal of a phrase that has multiple occurrences in the
parsing. Nevertheless, each node has at most one annotation at any given point in
time. This is because we annotate the node that spells rev(fk′) only after we finish
processing pair fk′−1fk′ . If the node is already annotated with some k > k′ (because
fk = fk′), then we also find the source |f1f2 . . . fk′ | − |fk|+ 1 of fk while processing
pair fk′−1fk′ , and hence we remove annotation k before adding annotation k′.

We need O(n) time for computing the trie. Processing a pair fk′−1fk′ takes
time linear in the depth of the node that spells rev(fk′−1fk′). This is limited by
O(|fk′−1fk′ |), which sums to O(n) over all phrase pairs. The space for the trie is
O(n). Hence we have shown Theorem 5.1 for the greedy LZ-End factorization.

5.2.2 Rightmost (Arbitrary) LZ-End Parsing
If the given LZ-End factorization does not satisfy the greedy property, then Propo-
sition 5.3 no longer holds. However, each referencing phrase fk is still a suffix
of some f1f2 . . . fk′ with k′ ∈ [1, k), which limits the number of possible sources.
We will again exploit properties of the co-lexicographical order of prefixes. We

54

5.3 Partially Solving Rightmost LZ-Like Parsings

build the suffix array of the reversed text rev(x), and use filtering and rank re-
duction to obtain in O(n) time the unique permutation co of [1, z] that satisfies
∀k′ ∈ [1, z) : rev(f1f2 . . . fco(k′)) ≺ rev(f1f2 . . . fco(k′+1)). This permutation rear-
ranges the prefixes that end at phrase boundaries in co-lexicographical order. We
also compute its inverse permutation co−1.

Next, we compute a compacted trie that contains for each k′ ∈ [1, z] the reversed
prefix rev(f1f2 . . . fk′) of the text. We make the respective nodes that spell rev(fk′)
and rev(f1f2 . . . fk′) explicit (if they are not explicit already), and store pointers
to these nodes. We annotate the node that spells rev(f1f2 . . . fk′) with its co-
lexicographical rank co−1(k′). Additionally, we annotate the node that spells rev(fk′)
with its co-lexicographical range, which is given by the respectively smallest and
largest co-lexicographical ranks cmin

k′ and cmax
k′ that were used to annotate any of

its descendants (or itself). Again, we do not need fast navigation on the trie; for
writing the annotations, it suffices if we can perform a preorder-traversal in linear
time. Hence we can construct the trie and its annotations in O(n) deterministic time
using standard techniques (e.g., from the suffix array of rev(x)).

Now we show how to find the rightmost LZ-End aligned source of referencing
phrase fk. We have already annotated the node that spells rev(fk) with the co-
lexicographical range [cmin

k , cmax
k], and we have also computed the permutation co. We

assume that the permutation co is stored in an array. Note that, by design of the trie,
the range co[cmin

k ..cmax
k] contains exactly all the k′ for which fk is a suffix of f1f2 . . . fk′ .

Hence finding the rightmost LZ-End aligned source of fk is equivalent to answering
the following so-called range predecessor query. Given the range [cmin

k , cmax
k] ⊆ [1, z]

and the threshold k, find the largest value k′ < k in co[cmin..cmax]. Then, the
rightmost LZ-End aligned source of fk is |f1f2 . . . fk′ | − |fk|+ 1.

Belazzougui and Puglisi show how to compute a data structure in O(z
√

log z)
time and O(z) space that answers range predecessor queries on a permutation of
[1, z] in O(logϵ z) time (for any constant 0 < ϵ < 1) [BP16]. We issue less than z
queries, and thus the total construction and query time is O(z

√
log z). The total

time for computing the rightmost parsing (including the construction of the trie) is
O(n + z

√
log z), and the total space is O(n). Hence we have shown Theorem 5.1 for

an arbitrary LZ-End factorization.

5.3 Partially Solving Rightmost LZ-Like Parsings
In this section, we show how to efficiently compute the rightmost sources for some
subsets of the phrases of an LZ-like factorization (Theorem 5.2).

5.3.1 Long Phrases
Belazzougui and Puglisi [BP16] find the rightmost sources of all phrases of length
Ω(log5 n) in O(n) time and O(n/ logσ n) space. We show a similar result for resolving
all phrases of length Ω(log33/5+ϵ n/ log2 σ) in O(n/ logσ n) time and space. The
main contribution here is that we achieve sublinear time. The solution works for an
arbitrary LZ-like factorization x = f1f2 . . . fz. The techniques are quite similar to
the computation of long phrases in Chapter 4.

Let δ = Ω(log2 n/ log σ) be a parameter to be fixed later. We start by performing
a preprocessing as follows. In O(n/ logσ n) time, we compute the reversed text rev(x)

55

5 New Advances in Rightmost Lempel-Ziv

as described in [Bel+16, Section 6.2] (essentially, we use a precomputed lookup
table to reverse the text one half-word rather than one symbol at a time). We
consider a set D = {d ∈ [1, n] | d ≡ 0 (mod δ)} of m = |D| = O(n

δ) regularly
sampled positions. We construct the respectively unique permutations pref and suf
of [1, m] such that for every h ∈ [1, m) it holds x[suf(h)δ..n] ≺ x[suf(h + 1)δ..n] and
rev(x[1..pref(h)δ]) ≺ rev(x[1..pref(h + 1)δ]) (these are sparse suffix arrays of the
string and its reversal). We use comparison sorting and obtain the permutations
with O(m log m) ⊆ O(n

δ log n) ⊂ O(n/ logσ n) lexicographical comparisons between
suffixes of either x or rev(x). With the LCE data structure by Kempa and Kociumaka
Lemma 4.4 (constructed for both x and rev(x)), each lexicographical comparison
takes constant time. The data structure can be constructed in O(n/ logσ n) time
and space. We use O(m log m) ⊆ O(n

δ log n) ⊂ O(n log σ) bits of space to store pref,
suf, and their respective inverse permutations pref-rank and suf-rank.

A long phrase is of length at least γ > δ, where γ is another parameter to be
fixed later. When resolving a long phrase fk with rightmost source j and destination
i, we will use the fact that j + q with q = (δ− (j mod δ)) ∈ [1, δ] is a sample position.
For now, assume that we know the value of q in advance (we will later simply try
all the possible values of q). Finding the rightmost source of fk means that we have
to find the rightmost sample position hδ < i + q with x[hδ − q..hδ] = x[i..i + q] and
x[hδ..hδ− q + |fk|) = x[i + q..i + |fk|). Note that the co-lexicographical order groups
together prefixes that share a long suffix, and hence all the values of h for which
x[i..i + q] is a suffix of x[1....hδ] form a consecutive interval pref[p1..p2] (we treat the
permutations like arrays). We can find the boundaries p1 and p2 by binary searching
in pref for the respectively co-lexicographically minimal and maximal prefixes of x
that have suffix x[i..i + q]. This takes O(log m) time because we can perform each
LCE computation and lexicographical comparison in constant time using the same
LCE data structure as before. Similarly, it takes O(log m) time to compute the
interval suf[s1..s2] that contains exactly the values of h for which x[i + q..i + |fk|) is
a prefix of x[hδ..n].

We associate a three-dimensional point (pref-rank(h), suf-rank(h), h) with each
sample position. For resolving the phrase, we have to find the point (p, s, ĥ) with
p ∈ [p1, p2], s ∈ [s1, s2], and maximal value ĥδ < i + q (or equivalently h < i+q

δ).
Given this point, it is easy to compute the rightmost source ĥδ− q of fk. For solving
the geometric query, we use a data structure for three-dimensional orthogonal range
searching [CT18, Theorem 4]. For our m points from [1, m]3, it can be constructed in
O(m log8/5+ϵ m) time and space (for any constant ϵ ∈ R+). Given a three-dimensional
six-sided orthogonal query range, it returns a point in the range or reports that it is
empty in O(log2 m) time (the precise bound is slightly better, but not needed for
our purposes). For our queries, we have to find the point with maximal coordinate
in the third dimension. Thus, we binary search for this point with O(log n) queries
to the geometric data structure, which increases the query time to O(log3 n). Note
that this dominates the O(log m) time needed to compute the query range. Finally,
we do not actually know the value of q in advance. Hence we try all the possible
q ∈ [1, δ]. For each of them, we compute the query range and find the rightmost
admitted source in O(log3 n) time. Thus, the time needed per phrase is O(δ · log3 n).

We need O(n/ logσ n) time for computing the (co-)lexicographically sorted permu-
tations of samples, O(n

δ log8/5+ϵ n) time for computing the geometric data structure,
and O(nδ

γ · log3 n) time for actually resolving the phrases. We want δ to be small

56

5.3 Partially Solving Rightmost LZ-Like Parsings

in order to minimize the time for resolving phrases. On the other hand, the time
needed for computing the geometric data structure should become O(n/ logσ n).
Hence we use δ = Θ(log13/5+ϵ n/ log σ), which achieves the desired construction
time and implies that we take O(n

γ · log28/5+ϵ n/ log σ) time for resolving phrases.
Thus, in order to achieve O(n/ logσ n) time, long phrases have to be of length at
least γ = Ω(log33/5+ϵ n/ log2 σ) ⊂ Ω(log6.66 n/ log2 σ). For all steps (including the
geometric data structure), the space is linear in the time spent, and hence it is
O(n/ logσ n). This concludes the proof of Theorem 5.2(a).

5.3.2 Arbitrary Subsets of Phrases
Now we show how to solve an arbitrary subset of phrases of any LZ-like factorization
x = f1f2 . . . fz. The subset is given by F ⊆ [1, z], and the time complexity depends
on d = |{fk | k ∈ F}| ≤ F , i.e., on the number of distinct phrases in the subset. In
a slight abuse of terminology, we will say that fk is a phrase from F if k ∈ F . We
show how to resolve all phrases from F in O(n

ϵ + |F | dϵ) time and O(n
ϵ) space for

arbitrary ϵ ∈ R+ with ϵ ≤ 1
2 , or O(n + |F | dϵ) time and O(n) space for constant ϵ. If

the string is highly-compressible, say, z = O(n1−ϵ), then the time for all phrases (i.e.,
F = [1, z]) is O(n). The idea is to use range maximum data structures to find the
rightmost sources. We note that this solution is very similar to [FNV13], and mostly
differs in the choice of the range maximum data structure.

We start with the following preprocessing. We arrange the distinct phrases
of F into a tree of d + 1 nodes, and we start using the terms node and phrase
interchangeably (even though multiple phrases may refer to the same node). The
parent of phrase fk is the longest phrase fk′ from F that is a proper prefix of fk

(or the artificial root node ε if fk′ does not exist), and we call this tree the phrase
trie. This is a slight abuse of terminology, since the tree is only similar to a trie.
An example is provided in Figure 5.2. We annotate fk with its preorder-number
pk, which is the rank of fk in a preorder-traversal of the phrase trie, as well as the
maximal preorder-number qk of a descendant of fk. We also annotate each text
position i with the preorder-number of the longest phrase from F that is a prefix of
x[i..n], if any. This concludes the preprocessing.

In order to resolve the phrases, we traverse x from left to right and track in
an array A[1..d] the last position at which we encountered each preorder-number
as an annotation. When we reach the destination i of some phrase fk from F , the
rightmost previous occurrence will be at position maxp∈[pk,qk] A[p] (the solution of a
range maximum query), as any occurrence of fk is annotated with either pk or the
preorder-number pk′ of a phrase fk′ that is a descendant of fk in the phrase trie.
Hence, if we have a dynamic data structure for range maximum queries, then we can
compute each rightmost occurrence with one query.

The phrase trie can be obtained as follows. We compute the suffix tree for the
string x′ = x#0f1#1f2#2 . . . #z−1fz#z, where each #k is a unique separator symbol.
This takes O(n) time. For any fk from F , the parent of the leaf that spells suffix
fk#k . . . is exactly the node that spells fk. Thus, we can mark the d nodes that
spell phrases from F in O(|F |) time. It is then easy to compute the nearest marked
ancestor of each node in O(n) time. The phrase trie is obtained by creating a new
tree that contains only the marked nodes and an artificial root. The new parent
of a marked node is its nearest marked ancestor (or the artificial root node if it
does not exist). Finally, we compute the preorder-numbers in the phrase trie, and

57

5 New Advances in Rightmost Lempel-Ziv

ε

a
1

b
5

c
8

ab
2

ababab
3

abba
4

baa
7

bab
6

Figure 5.2: The phrase trie (where F contains all the distinct phrases) for the
LZ factorization a|b|b|a|ab|ababab|bab|c|abba|baa. Below each node is the
preorder-number.

also annotate the corresponding marked nodes in the suffix tree with these numbers.
Then, the annotation of text position i is the annotation of the nearest marked
ancestor of the leaf that corresponds to text position i in the suffix tree. Hence we
obtain the annotations in O(n) time.

We have to solve dynamic range maximum queries (RMQ) for A. The updates
are incremental in the sense that every update is the new global maximum (i.e., the
rightmost text position processed so far). Therefore, we can maintain a dynamic
RMQ data structure for A with O(1

ϵ) time updates and O(dϵ) time queries using
the standard technique of square-root decomposition, generalized to arbitrary ϵ. For
ϵ = 1

2 , we split A into blocks of size Θ(
√

d) and maintain the maximum of each block,
which we can update in constant time whenever we update an entry of A. To answer
queries we need to scan at most O(

√
d) elements in A that are in blocks that are only

partially overlapped by the query range. Then, we also scan the O(
√

d) maxima of
blocks that are fully contained in the query range. Thus, we take O(

√
d) time. This

generalizes to smaller ϵ by recursively subdividing the blocks into 1
ϵ layers, leading

to O(1
ϵ) update time and O(dϵ) query time. Each phrase in F incurs a range query

and each text position an update. We perform |F | range queries and n updates in
O(n

ϵ + |F | dϵ) time. This concludes the proof of Theorem 5.2(b).

5.3.3 Infrequent Phrases

Given an LZ-like parsing x = f1 . . . fz, we say that a phrase fk is infrequent if
|{k′ ∈ [1, z] | fk′ = fk}| = O(log n), i.e., if it occurs at most O(log n) times in the
parsing. We stress that such a phrase can have more than O(log n) occurrences in
the text. We now show how to resolve all infrequent phrases in O(n) time, and we
begin by establishing a data structure that is crucial for our solution.

58

5.3 Partially Solving Rightmost LZ-Like Parsings

Lemma 5.4. Let m, n ∈ [1, 2w]. For a tree of m nodes, labeled with preorder-
numbers from [1, m], after an O(m) + o(n) time preprocessing, and in O(m) + o(n)
space, we can maintain a data structure for nearest marked ancestor queries with
the following operations.

• mark/unmark a node i ∈ [1, m] with di descendants in O(1 + di/ log n) time

• check if a node i ∈ [1, m] is marked in O(1) time

• check if a node i ∈ [1, m] has a marked ancestor in O(1) time

• output the nearest marked ancestor j of a node i ∈ [1, m] in O(1 + dj/ log n)
time, where dj is the number of descendants of j.

Proof. We compute the balanced parenthesis sequence (BPS, see, e.g., [MR01, Nav16]
or Chapters 8 and 9) B[1..2m] of the tree by re-running the traversal used to obtain
preorder-numbers (with an artificial parent edge for the root to start the traversal).
When we walk down the edge to node i, we append i’s opening parenthesis to B,
when we walk up the edge from node i we append its closing one. The ith opening
parenthesis (in left-to-right order) belongs to node i, and between i’s opening and
closing parentheses there are exactly all the parentheses corresponding to descendants
of i. We preprocess B such that, given node i ∈ [1, m], we can look up the positions
open(i) and close(i) of its respective opening and closing parentheses in B in constant
time. This is possible with a simply linear scan in O(m) time and space. For open,
we also compute the inverse mapping prenum(open(i)) = i.

We use two additional bitvectors A[1..2m] and R[1..2m], both initialized with
zeroes. When asked to mark node i, we set the bits A[open(i)] and A[close(i)]
(marking the respective parentheses in B as active), and additionally we set the
entire range R[open(i) + 1..close(i)] one word at a time (indicating that nodes
whose opening parentheses lie in this region have a marked ancestor). If i has di

descendants, then it holds close(i)− open(i) = 1 + 2di, and thus the procedure takes
O(1 + di/w) ⊆ O(1 + di/ log n) time. A node i is marked if and only if A[open(i)] is
set, and it has a marked ancestor if and only if R[open(i)] is set (we do not consider
a node to be its own ancestor). Both can be tested in constant time. Finding the
nearest marked ancestor of i is more involved, and we explain it later.

When unmarking a node i, we unset the bits A[open(i)] and A[close(i)]. If i
currently has a marked ancestor, then there is no need to unset the range in R
associated with i. Otherwise, we cannot simply unset the entire range R[open(i) +
1..close(i)] because it may have also been set by descendants of i. Hence we have
to leave segments corresponding to marked nodes untouched. Starting at position
k = open(i) + 1, we scan A[k..close(i)] from left to right and keep track of the excess
of opening active parentheses, which is initially e = 0. We perform the scan in blocks
of size w′ = ⌊log n/7⌋. Processing A[k..k + w′) works as follows. We scan the block
from left to right. For each position A[j] in the block, we first check if currently
e = 0. If yes, then we unset bit R[j]. Afterwards, if A[j] = 1, we increment e if
B[j] is an opening parenthesis, and decrement e otherwise. Once we reach the end
of the block, we increase k by w′ and continue with the next block, until we reach
position close(i). This way, we avoid unsetting parts of R that have to remain active.
However, the procedure takes O(di) time, or O(w′) time per block.

59

5 New Advances in Rightmost Lempel-Ziv

The processing of block A[k..k + w′) depends only on A[k..k + w′), B[k..k + w′),
R[k..k+w′) and min(e, w′) (if e > w′, then the excess cannot reach 0 while processing
the block). Thus it depends on 3w′ + log w′ ≤ log n/2 bits of information, and in
principle there are fewer than 2log n/2 =

√
n distinct instances of the procedure. In a

lookup table, we precompute for each possible A[k..k +w′), B[k..k +w′), R[k..k +w′),
and min(e, w′) the result of the procedure, i.e., the total increment or decrement
that we have to apply to e, and the new value of R[k..k + w′). The lookup table
has O(

√
n) entries, and each of them can be computed naively in O(polylog(n))

time. Using the table, an entire block A[k..k + w′) can be processed in constant
time (and handling the last block that is possibly shorter than w′ can be solved with
additional lookup tables for each shorter block length). Thus, we can unmark a node
in O(1 + di/w′) = O(1 + di/ log n) time.

We have already shown how to check if i has a marked ancestor in constant time.
If we also want to output the nearest marked ancestor, then we start at position
o = open(i). Similarly to the technique for unmarking nodes, we now scan A[1..o]
and B[1..o] from right to left and keep track of the excess of active closing parentheses.
As soon as the excess becomes negative, we have found the opening parenthesis of
the nearest marked ancestor. If this parenthesis is at position o′, then the ancestor is
j = prenum(o′). We can implement this procedure with lookup tables (similar to
unmarking nodes), and thus it takes O(1 + dj/ log n) time, where dj is the number
of descendants of j.

Resolving the Phrases Now we are ready to resolve the infrequent phrases. We
first build the phrase trie including only the infrequent phrases, and compute the
mapping from phrases to preorder-numbers. We also annotate each text position i
with the preorder-number corresponding to the longest infrequent phrase that is a
prefix of x[i..n] (this works just like in Section 5.3.2). We prepare the phrase trie for
nearest marked ancestor queries with Lemma 5.4.

Now we scan x from right to left. For each text position i, we first try to resolve
phrases, which we explain in a moment. After that, if i is the destination of a phrase
fk with preorder-number pk, we mark node pk in the phrase trie (indicating that the
phrase needs to be resolved). We also store u[pk] = k in an array of size at most z.
This is necessary because the preorder-numbers correspond to the distinct infrequent
phrases, and thus the mapping from preorder-numbers to phrases is not necessarily
injective. Later, we resolve fk by discovering that node pk is marked, and we will
then need to be able to look up k = u[pk]. Note that we never try to resolve two
phrases with the same preorder-number at the same time, since the one further to
the left would have already resolved the one further to the right.

For every text position i, if its annotation is qi, we check if qi has a marked
ancestor. If this is the case, then we obtain the nearest marked ancestor p of qi,
which corresponds to phrase fu[p]. By the construction of the phrase trie and the
annotations of text positions, fu[p] is a prefix of x[i..n]. Since we have not unmarked
the node yet, and due to the right-to-left processing order, it follows that i is the
rightmost source of fu[p]. We unmark node p.

Analyzing the Complexity The preprocessing for the nearest marked ancestor
structure takes O(z)+o(n) time and space. For each text position, annotated with qi,
we check if qi has a marked ancestor in overall O(n) time. Whenever this is the case,

60

5.4 Conclusion

we also find its nearest marked ancestor. However, we will then also immediately
unmark the nearest marked ancestor, and thus the total time for finding marked
ancestors is the same as the time for unmarking nodes, which in turn is bounded by
the time for marking them.

Now we analyze the total time for marking nodes. Let m be the number of nodes
in the phrase trie (or equivalently the number of distinct infrequent phrases). We
mark nodes O(z) times, and thus the total time is O(z) plus the sum of all the
O(di/ log n) terms. For now, we assume that each node gets marked exactly once.
Then the time is O(1

log n ·
∑︁m

i=1 di). Let ai denote the number of ancestors of a node
i, and observe that ∑︁m

i=1 di = ∑︁m
i=1 ai (because in both sums each combination of

descendant and ancestor contributes value 1 to the sum). If node i corresponds
to a phrase fk, then the number of ancestors of i is bounded by ai < |fk|, since
each ancestor represents a phrase that is a proper prefix of fk. Hence the time is
O(1

log n ·
∑︁z

i=1 |fk|) = O(n/ log n). We assumed that each node gets marked exactly
once. Since we only consider infrequent phrases, each node gets marked O(log n)
times, and thus the time is O(n). This concludes the proof of Theorem 5.2(c).

5.3.4 Close Phrases
Given an LZ-like parsing x = f1 . . . fz, we say that a phrase fk with destination i is
close if its rightmost source is j and i− j = O(log n). We now show how to resolve
all close phrases in O(n) time. Let γ = Θ(log n). If a phrase at destination i is of
length at least γ, then we can afford O(log n) time to resolve it. We consider each
j ∈ [i− r, i) with r = O(log n) as a potential source. Checking if j is a source of i
takes constant time with an LCE data structure (e.g., [KK19]). Thus we can resolve
all close phrases of length at least γ in O(n) time.

For the phrases of length less than γ, we extract copies of overlapping segments
s1, . . . , s⌊n/2γ⌋ of length 4γ where ∀i ∈ [1, ⌊n/2γ⌋] : si = x[1 + 2(i− 1)γ . . . min(2(i +
1)γ, n)]. We modify each segment si by rank-reducing the alphabet of si to (a
subset of) [1, 4γ], which takes O(n) total time by radix sorting all segments in batch.
Then, we offset the alphabets such that si is over alphabet [1 + 4(i− 1)γ, 4iγ]. We
concatenate all segments si into x′ = s1s2 . . . s⌊n/2γ⌋.

Each phrase of length less than γ is fully contained in the right half of at least
one segment (apart from possible phrases with destination in the first 2γ position
of x, which we solve with the LCE data structure in O(polylog(n)) time). We map
each phrase of length less than γ to a corresponding destination in x′ such that if
the destination is within some segment sj then the phrase is fully contained in the
right half of sj . This results in a subset of an LZ-like factorization of x′. Since the
segments have disjoint alphabets, all phrases in the subset are infrequent and can be
solved with Theorem 5.2(c). We only have to map the sources back to original text
positions, which is easily done in linear time. Hence we have shown Theorem 5.2(d).

5.4 Conclusion
We presented new algorithms for computing rightmost LZ-End and LZ-like parsings.
Unfortunately, the question whether rightmost LZ-like parsings can be computed in
linear time remains open. With Theorem 5.2, we identify the hard instances of the
problem. As shown in Theorem 5.2(a) and (c), resolving a phrase is only problematic

61

5 New Advances in Rightmost Lempel-Ziv

if it is short (with length polylogarithmic in n) and has many occurrences in the
parsing (at least logarithmically many in n). The techniques for infrequent phrases
can likely be generalized such that we can resolve all phrases with polylogarithmically
many occurrences in the parsing. It remains to be shown if this sufficiently reduces
the number of remaining phrases, as well as the complexity of their structure, such
that they can be resolved in linear time.

62

5.4 Conclusion

63

II
Computing the Lyndon Array

Computing the Lyndon Array IIIntroduction and
Related Work

1

A Lyndon word is a string that is lexicographically smaller
than all of its non-trivial suffixes.2 For example, amtrak is
not a Lyndon word because of its suffix ak ≺ amtrak. On the
other hand, airbus is a Lyndon word. While Lyndon words
are named after and often attributed to the work of Ameri-
can mathematician Roger Lyndon (see [Lyn54, Lot83]), they were simultaneously
discovered and researched by Soviet mathematician Anatoly Shirshov [Shi58, Shi09].
Hence they are sometimes called Lyndon-Shirshov words. They were described as
standard sequences by Lyndon, and as regular words by Shirshov. By definition,
Lyndon words assume that the alphabet is totally ordered, and, whenever such an
order is present, they introduce additional structural elements in plain sequences of
symbols. They have shown their usefulness for designing efficient string algorithms.
For example, they underpinned the notion of critical positions [Lot83], the two-way
string matching [CP91] and rotations of periodic strings [BJJ97].

Lyndon Trees and Arrays The Lyndon tree (see, e.g., [BCN02, HR03, BCN04])
of a Lyndon word x is a well-known combinatorial structure. It can be defined via
the unique factorization x = uv such that v is the longest proper Lyndon suffix of
x. The string u is then also a Lyndon word. The Lyndon tree is a binary tree in
which the root corresponds to the entire string x, and the left and respectively right
subtree of the root are recursively defined as the Lyndon trees of u and v (where the
Lyndon tree of a string of length one is a leaf node). The less common left Lyndon
tree is based on the factorization x = uv such that u is the longest proper Lyndon
prefix of x [BC22] (we will not consider it any further and only mention it here
for completeness). Hohlweg and Reutenauer [HR03] showed that the Lyndon tree
is closely related to the lexicographical order of suffixes of a Lyndon word. More
precisely, it is the Cartesian tree [Vui80] of the inverse suffix array [MM93] (see also
[CR20]).

While the Lyndon tree stems from purely theoretical and combinatorial research,
it has recently gained renewed attention due to its practical algorithmic applications.
However, the more recent publications usually consider the Lyndon array (sometimes
called Lyndon table), which stores for each position of a string the length of the
longest Lyndon substring that starts at this position. In its essence, the Lyndon array

1Is it a train? Is it a plane? An Amtrak-Airbus, envisioned by DALL·E [Bet+23].
2In this context, the term word should not be confused with words of a word RAM.

67

Computing the Lyndon Array

is merely another representation of the Lyndon tree (see, e.g., [Ban+17, Lemma 5.4]
or [Bad+22]) that can be more easily used for algorithmic applications. The perhaps
most important application is as a tool for computing all maximal periodic substrings
of a string [Ban+17], which is also the main topic of Chapter 10 in Part III. The
Lyndon array has further been used to accelerate [OOB22] the computation of the
suffix array [MM93], one of the major data structures in string algorithmics. Lyndon
words are also used for computing the suffix array in [Man+13, Bai15, Bai16, BEF21].
A related topic of research is the reconstruction of a string from its Lyndon array or
tree [Nak+17, Day+18, Nak+19].

Algorithms to Compute the Lyndon Array As mentioned before, the Lyndon
tree is the Cartesian tree of the inverse suffix array. If the string is over linearly-
sortable alphabet, then we can compute the Lyndon tree in linear time by first
computing the inverse suffix array (e.g., using [KSB06]), and then constructing its
Cartesian tree (in the obvious way using a stack). In order to obtain the Lyndon
array instead, we only have to replace the Cartesian tree with the right-to-left minima
tree [BFN11] of the inverse suffix array, which is equivalent to computing all next
smaller values (see, e.g., [BSV93]) in the inverse suffix array. This approach was
explicitly described in [Fra+16, Fig. 2], and it is by far not the only algorithm that
computes the Lyndon array from the suffix array. Most notably, Baier’s suffix array
algorithm [Bai15, Bai16] produces the Lyndon array as a byproduct of computing
the suffix array. This has lead to a closer analysis of the relation between the Lyndon
array and suffix sorting [FPS17, FLS18, FL19, FL20]. There is at least one other
suffix sorter that can be modified to simultaneously compute the suffix array and the
Lyndon array [Lou+19]. The Lyndon array can also be constructed during inversion
of the Burrows-Wheeler transform [Lou+18], which is closely related to the suffix
array. A given string can be compressed into a grammar that efficiently simulates
access to the Lyndon array [Tsu+20]. The deterministic construction algorithm of
this grammar uses the suffix array.

Contributions
In Chapters 6 and 7, we introduce the first linear time algorithm for constructing
the Lyndon array over general ordered alphabet. In Chapter 8, we improve this
algorithm such that it computes the succinct version of the Lyndon array [Lou+18],
which can be stored in around 2n bits of memory. The presented algorithm requires
only O(n log log n/ log n) bits of additional working space, making it the so far most
space efficient solution. These new algorithms are also the first linear time solutions
that do not in any way rely on the suffix array. This results in significantly faster
practical implementations, since computing the suffix array is relatively slow in
practice. Finally, in Chapter 9, we show how to compute the succinct Lyndon array
of a string packed over integer alphabet [0, σ) in O(n/ logσ n) time and O(n log σ)
bits of space. The new algorithms are useful tools for the computation of maximal
periodic substrings (also known as runs). In fact, in Part III, Chapter 10, we use
the algorithm from Chapters 7 and 8 to obtain the first linear time algorithm for
computing runs over general ordered alphabet. We envision that the algorithm from
Chapter 9 will lead to the first sublinear time algorithm for computing runs.

68

Chapter 6 6The Lyndon Array and
Nearest Smaller Suffixes

A Lyndon word is lexicographically smaller than all of its non-trivial suffixes. For
example, amtrak is not a Lyndon word because of its suffix ak. On the other hand,
airbus is a Lyndon word. This is only one of many equivalent definitions of Lyndon
words. In this chapter, we show the equivalence of the most common definitions. We
then introduce the Lyndon array, which identifies the longest Lyndon substring that
starts at each position of a string (Section 6.1). Finally, we introduce the related
nearest smaller suffix arrays, and show that they are (in some sense) equivalent to
the Lyndon array (Section 6.2).

6.1 Lyndon Words and the Lyndon Array
We require the following self-evident properties of the lexicographical order.

Property 6.1. For some alphabet Σ, let u, v, s, t ∈ Σ∗ be arbitrary strings.

(i) If u ≺ v and |u| ≥ |v|, then us ≺ vt.

(ii) If u ≺ v ⪯ ut, then ∃w ∈ Σ+ : v = uw.

Lemma 6.2 (below) shows the equivalence of the most common definitions of Lyn-
don words. Lemma 6.2(b) is Lyndon’s original definition of standard sequences. The
equivalence of Lemma 6.2(b), (c) and (e) has previously been shown by Chen, Fox, and
Lyndon [CFL58, Theorem 1.4; the sets A′, A′′, and A′′′ correspond to Lemma 6.2(b),
(c) and (e)]. The characterization of Lyndon words stated in Lemma 6.2(d) is due to
Charlier, Philibert, and Stipulanti [CPS19, Theorem 28 (iii)].

Lemma 6.2 (Lyndon Word [Lyn54, CFL58, CPS19]). The following statements
regarding a non-empty string x ∈ Σ+ over totally ordered alphabet are equivalent:

(a) x is a Lyndon word.

(b) Every factorization x = uv with u, v ∈ Σ+ satisfies x ≺ v.
(x is lexicographically smaller than all of its non-trivial suffixes.)

(c) Every factorization x = uv with u, v ∈ Σ+ satisfies x ≺ vu.
(x is lexicographically smaller than all of its non-trivial cyclic shifts.)

69

6 The Lyndon Array and Nearest Smaller Suffixes

(d) Every factorization x = uv with u, v ∈ Σ+ and Lyndon word v satisfies x ≺ v.
(x is lexicographically smaller than all of its non-trivial Lyndon suffixes.)

(e) |x| = 1, or |x| > 1 and there are Lyndon words u, v with x = uv and u ≺ v.
(x is the concatenation of lexicographically strictly increasing Lyndon words.)

Proof. By definition, (a) and (b) are equivalent (see [Lyn54, p. 203]; Lyndon words
“have the property of preceding lexicographically all of their own proper terminal
segments”). We show that each of the statements (c) to (e) is equivalent to (b).

Statement (c): It holds (b) =⇒ (c) because x ≺ v always implies x ≺ vu. For
(b) ⇐= (c), assume that x satisfies (c) but not (b). Then there is a factorization
x = uv with u, v ∈ Σ+ such that x ≺ vu, but x ≻ v. It follows that v is a non-trivial
prefix of x due to Property 6.1(ii). Let w ∈ Σ+ be the suffix of x such that x = vw,
then it holds x = vw ≺ vu. However, this implies w ≺ u and by Property 6.1(i) also
wv ≺ uv = x, which contradicts the assumption that x satisfies (c).

Statement (d): Statements (d) and (e) recursively use shorter Lyndon words.
For the remainder of the proof, we inductively assume that we have already proven
the lemma for strings shorter than |x|. Strings of length 1 satisfy all statements.

Trivially, it holds (b) =⇒ (d), and thus we only need to show (b) ⇐= (d). By
induction, any non-trivial suffix of x is a Lyndon word according to either all or
none of the statements. Assume that x satisfies (d) but not (b). Then there is a
non-trivial suffix v of x with x ≻ v, but v is not a Lyndon word. Due to the inductive
assumption and (d), there must be a non-trivial Lyndon suffix w of v with v ≻ w.
Note that w is also a non-trivial Lyndon suffix of x with x ≻ w. This contradicts the
assumption that x satisfies (d).

Statement (e): For (b) =⇒ (e), assume that x satisfies (b) and let v be the
longest non-trivial Lyndon suffix of x. Let u be the prefix of x such that x = uv. If
u ⪰ v then also uv ≻ v, which contradicts the assumption that x satisfies (b). Thus
u ≺ v, and it remains to be shown that u is a Lyndon word. Assume the opposite,
then u does not satisfy (d) due to the inductive assumption. Consequently, there are
u′, v′ ∈ Σ+ such that u = u′v′, v′ ≺ u, and v′ is a Lyndon word. Since v′ ≺ u ≺ v
and both v′ and v are Lyndon words, the string v′v satisfies statement (e). This
contradicts the fact that v is the longest non-trivial Lyndon suffix of x.

Finally, we show (b) ⇐= (e). Assume that x satisfies (e), and let u and v be
the Lyndon words used in (e). By induction, both u and v satisfy (b). We have to
show that x is lexicographically smaller than all of its non-trivial suffixes. First, we
show that x = uv ≺ v. Assume the opposite, then it holds u ≺ v ≺ uv, and thus u
is a proper prefix of v due to Property 6.1(ii). Let w be the suffix of v such that
v = uw, then uw ≺ uv and therefore w ≺ v. However, w is a non-trivial suffix of v,
which contradicts the fact that v satisfies (b). We have shown that x ≺ v. Since v
satisfies (b), all non-trivial suffixes of v are lexicographically larger than x. We still
have to consider the suffixes w′v of x, where w′ is a non-trivial suffix of u. Since u
satisfies (b), it holds u ≺ w′ and by Property 6.1(i) also x = uv ≺ w′v. We have
shown that all non-trivial suffixes of x are lexicographically larger than x. Thus, x
satisfies (b).

The Lyndon array identifies, for each position of a string, the longest Lyndon
substring that starts at this position. We denote the Lyndon array by λ, which was

70

6.2 Nearest Smaller Suffixes

also done in [Fra+16, Day+18, Bil+20, BE23]. Other common notations are Lyn
in [CLR21, Bad+22], l in [Ban+17], and L in [FL19, FL20].

Definition 6.3 (Lyndon Array).
The Lyndon array λx[1..n] of a string x[1..n] is defined by

∀i ∈ [1, n] : λx[i] = max{m ∈ [1, n− i + 1] | x[i..i + m) is a Lyndon word }.

We omit the subscript x whenever it is clear from context.

An example of the Lyndon array is provided in Figure 6.1a. We can use the
Lyndon array to greedily factorize a string into a sequence of length-wise maximal
Lyndon words. For example, in Figure 6.1a, the longest Lyndon substring at position
1 is of length λ[1] = 4, and thus f1 = amtr is the first factor. The second factor starts
at position 1 + 4 = 5 and is of length λ[5] = 2, i.e., f2 = ak. The third and final
factor starts at position 5 + 2 = 7 and is of length λ[7] = 6, which yields f3 = airbus.
Hence we have factorized x = f1f2f3 into a sequence of Lyndon words, and it holds
f1 ⪰ f2 ⪰ f3 (this readily follows from choosing length-wise maximal Lyndon words
and Lemma 6.2(e)). The factorization of a string into lexicographically non-increasing
Lyndon words is often called Lyndon factorization or standard factorization. It was
introduced by Chen, Fox, and Lyndon [CFL58], and it is known that each string
admits exactly one such factorization [Lot83, Theorem 5.1.5, attributed to Lyndon].
Duval’s algorithm computes the factorization in linear time over general ordered
alphabet [Duv83].

Theorem 6.4 (Lyndon Factorization [CFL58, Duv83, Lot83]).
Every non-empty string x[1..n] has a unique factorization x = f1f2 . . . fk such that
each fi is a Lyndon word, and f1 ⪰ f2 ⪰ . . . ⪰ fk. This factorization can be
computed in O(n) time over general ordered alphabet.

6.2 Nearest Smaller Suffixes
In this section, we define the nearest smaller suffix arrays, which are strongly related
to the Lyndon array. We also show structural properties of these arrays, which we
will later exploit algorithmically. Throughout the remainder of Chapters 6 and 7, we
use the variables ℓ and r to denote positions in the string. The intended meaning of
these variables is left and right, i.e., when we use ℓ and r, it usually holds ℓ ≤ r.

Definition 6.5 (Nearest Smaller Suffix Arrays). Let x[1..n] be a string.

(PSS) The previous smaller suffix (PSS) array prevx[1..n] of x is defined by

∀r ∈ [1, n] : prevx[r] = max ({ℓ ∈ [1, r) | xℓ ≺ xr} ∪ {0}) .

(NSS) The next smaller suffix (NSS) array nextx[1..n] of x is defined by

∀ℓ ∈ [1, n] : nextx[ℓ] = min ({r ∈ (ℓ, n] | xℓ ≻ xr} ∪ {n + 1}) .

We omit the subscript x whenever it is clear from context.

71

6 The Lyndon Array and Nearest Smaller Suffixes

λ

1
a

2
m

3
t

4
r

5
a

6
k

7
a

8
i

9
r

10
b

11
u

12
s

a m t r
m t r

t
r

a k
k

a i r b u s
i r

r
b u s

u
s

4 3 1 1 2 1 6 2 1 3 1 1

(a) Array λ and longest Lyndon sub-
strings. The Lyndon factorization is
amtr|ak|airbus.

λ

next
prev

1
a

2
m

3
t

4
r

5
a

6
k

7
a

8
i

9
r

10
b

11
u

12
s

4 3 1 1 2 1 6 2 1 3 1 1
5 5 4 5 7 7 13 10 10 13 12 13
0 1 2 2 0 5 0 7 8 7 10 10

(b) Arrays λ, next and prev.

1 2

3

4

5 6

7

8 9

10

11

12

13

(c) The next smaller suffix tree.

0

1

2

3 4

5

6

7

8

9

10

11 12

(d) The previous smaller suffix tree.

Figure 6.1: The Lyndon array, and nearest smaller suffix arrays and trees of the
string amtrackairbus. Dashed edges point to next smaller suffixes, while solid edges
point to previous smaller suffixes.

If prevx[r] = ℓ, then we say that xℓ is the previous smaller suffix of xr, or (in a
slight abuse of terminology) that ℓ is the previous smaller suffix of r. Analogously,
we use the term next smaller suffix for the relations expressed by nextx.

Figure 6.1b shows an example of the nearest smaller suffix arrays. In drawings,
we use a directed edge between positions ℓ and r of a string to indicate that either
ℓ = prev[r] (whenever the edge is directed from right to left) or r = next[ℓ] (whenever
the edge is directed from left to right). We refer to these edges as PSS and NSS
edges. The NSS edge at any position points either to some position further to the
right or to |x|+ 1. Hence the edges form a tree in which each node is a position, the
parent of each position is its next smaller suffix, and |x|+ 1 is the root. Analogously,
the PSS edges form a tree with root 0. We refer to these trees as NSS tree and PSS
tree respectively. Examples are provided in Figures 6.1c and 6.1d.

Equivalence of Lyndon Array and Nearest Smaller Suffixes
In Figure 6.1b it holds next[ℓ] = ℓ + λ[ℓ] for all ℓ ∈ [1, |x|]. For example, the longest
Lyndon substring at position 2 is of length λ[2] = 3, and the next smaller suffix of 2 is
next[2] = 2+λ[2] = 5. This is a fundamental property of the Lyndon array, which was
first (indirectly in a different form) shown by Hohlweg and Reutenauer [HR03]. Sub-
sequently, Franek et al. [Fra+16, Lemma 15] and Franek and Liut [FL20, Lemma 1]1

1Lemma 1 (b) in [FL20] should state “x[i..j] is proto-Lyndon” rather than “x[i..n] is proto-
Lyndon”

72

6.2 Nearest Smaller Suffixes

proved the property in the form stated above. Lemmas 6.6 and 6.7 (below) provide
another proof of this result.

Lemma 6.6 (see also [HR03, Fra+16, FL20] and [Bil+20, Lemma 4]). .

Let x[1..n] be a string, and let either r ∈ [1, n] with prevx[r] = ℓ > 0, or ℓ ∈ [1, n]
with nextx[ℓ] = r. Then x[ℓ..r) is a Lyndon word.

Proof. Recall that xr = ϵ if r = n + 1. Let w = x[ℓ..r). If |w| = 1, then w is a
Lyndon word. Otherwise, let v be any non-trivial suffix of w. By Lemma 6.2(b), it
suffices to show that w ≺ v. For the sake of contradiction, assume that v ≺ w. Note
that vxr is a suffix of x starting at some position in (ℓ, r), and thus either next[ℓ] = r
or prev[r] = ℓ implies xℓ = wxr ≺ vxr. Since trivially w ⪯ wxr, we can combine the
previous inequalities and obtain v ≺ w ⪯ wxr ≺ vxr. By Property 6.1(ii), v is a
proper prefix of w, i.e., w = vu for some u ∈ Σ+. It follows wxr = vuxr ≺ vxr, and
thus uxr ≺ xr. However, uxr is a suffix of x starting at some position in (ℓ, r), such
that either next[ℓ] = r or prev[r] = ℓ implies the contradiction uxr ≻ xr.

Lemma 6.7 (see also [HR03, Fra+16, FL20]). .

For any string x[1..n], it holds ∀ℓ ∈ [1, n] : nextx[ℓ] = ℓ + λx[ℓ].

Proof. Let r = next[ℓ] and u = x[ℓ..r). Note that u is a Lyndon word due to
Lemma 6.6, and thus r ≤ ℓ + λ[ℓ]. It remains to be shown that r ≥ ℓ + λ[ℓ], i.e., that
u is the longest Lyndon word starting at position ℓ. Assume the opposite, then there
are strings v ∈ Σ+ and w ∈ Σ∗ such that xℓ = uvw, xr = vw, and uv is a Lyndon
word. By Lemma 6.2(b), it holds uv ≺ v. This implies xℓ = uvw ≺ vw = xr due to
Property 6.1(i), which contradicts the fact that r = next[ℓ].

Due to Lemma 6.7, instead of designing algorithms that compute the Lyndon
array, we can design algorithms that compute the NSS array. Such algorithms are
able to benefit from the rich structural properties of next and prev, which we explore
in the following chapter. Even though the array next would suffice for the purpose of
computing λ, many of the algorithms presented in Part II compute both next and
prev (either explicitly or implicitly). This is due to the fact that next and prev are
deeply intertwined, and computing one of them usually implies revealing the other
one.

73

Chapter 7 7A Simple Linear Time
Algorithm for the
Lyndon Array

In this chapter, we explore combinatorial structures of the nearest smaller suffix
arrays. They imply a simple O(n) time algorithm that computes the Lyndon array of
a string over linearly-sortable alphabet. With a few modifications, the same algorithm
takes O(n) time even if the string is over general ordered alphabet, resulting in the
main theorem below. The more advanced algorithms in Chapters 8 and 9 use the
ideas from this chapter as a starting point.

Theorem 7.1. The Lyndon array of a length-n string over general ordered alphabet
can be computed in O(n) time and words of space.

Before discussing the mechanism at play in full detail, we use a simple example
to demonstrate the main algorithmic idea. Ultimately, the algorithms in this chapter
will compute both next and prev simultaneously. For the sake of the example, we only
aim to compute prev. The computation is performed in left-to-right order, i.e., at
any given moment we have already computed a prefix prev[1..i) of the PSS array. At
this point in time, our goal is to compute prev[i]. In the example below, we already
know the prefix prev[1..11], and our goal is to determine prev[12].

x =
prev =

0
a
1

a
2

b
3

a
4

b
5

d
6

d
7

a
8

c
9

c
10

b
11

a
12

b
13

c
140 2 4 8 11

0 0 2 2 4 5 5 4 8 8 80 2 4 8 ?

A naive strategy for finding prev[12] is to simply try all the i ∈ [1, 11] in descending
order. As soon as we reach i such that xi ≺ x12, we know that prev[12] = i. In the
example, it holds prev[12] = 2, which means that we have to perform 12 − 2 = 10
lexicographical comparisons of suffixes. For a less naive strategy, we can use the
already computed prefix prev[1..11] to skip a significant number of suffix comparisons.
Initially, we compare x11 and x12 and discover that x11 ≻ x12. We already know
that prev[11] = 8, which implies x9 ≻ x11 and x10 ≻ x11. By transitivity of the
lexicographical order, we deduce that x9 ≻ x12 and x10 ≻ x12. Hence we do not need
to lexicographically compare x12 with either x9 or x10. Instead, we follow the NSS
edge from 11 to prev[11] = 8 and use x8 for the next comparison. It holds x8 ≻ x12,

75

7 A Simple Linear Time Algorithm for the Lyndon Array

and thus we have to keep searching for prev[12] further to the left. Like before, we
use the already computed value prev[8] = 4 to deduce that ∀i ∈ (4, 8) : xi ≻ x8 ≻ x12.
Hence the next comparison is between x4 and x12. It holds x4 ≻ x12, and we follow
the PSS edge from 4 to prev[4] = 2. Finally, we discover that x2 ≺ x12, which means
that we have established prev[12] = 2.

To summarize, we compute prev[12] by following the unique path of PSS edges
originating at position 11, and searching for the first suffix that is lexicographically
smaller than x12. We only perform the four suffix comparisons indicated by the
dotted lines in the drawing, which significantly improves upon the 10 comparisons of
the naive approach.

7.1 Properties of Nearest Smaller Suffixes
As shown by the introductory example, following a path of PSS edges can be beneficial
when computing prev from left to right. In this section, we formally describe the
combinatorial properties that enable this algorithmic approach. We start by defining
the set prev∗[r] that contains all the nodes on the path of PSS edges originating at
position r. We also consider the analogous set next∗[ℓ] for the path of NSS edges
originating at ℓ, which can be used to compute next from right to left (see [Bad+22]).
While the right-to-left computation is not described in the dissertation, it is based
on combinatorial properties that are entirely symmetric to the ones used for the
left-to-right computation. Hence there is no additional effort in proving the properties
for both directions (rather than only one).

Definition 7.2. Let x[1..n] be a string. For ℓ, r ∈ [1, n], we recursively define

(i) prev∗x[0] = 0 and prev∗x[r] = prev∗x[prevx[r]] ∪ {r}, as well as

(ii) next∗x[n + 1] = n + 1 and next∗x[ℓ] = next∗x[nextx[ℓ]] ∪ {ℓ}.

We omit the subscript x whenever it is clear from context.

In terms of the lexicographical order of suffixes, prev∗[r] contains the right-to-
left lexicographical minima of suffixes with starting position in [1, r], while next∗[ℓ]
contains the left-to-right lexicographical minima of suffixes with starting position in
[ℓ, n]. This is more formally expressed by the lemma below.

Lemma 7.3. Let x[1..n] be a string, and let ℓ, r ∈ [1, n] with ℓ ≤ r. Then

(i) ℓ ∈ prev∗x[r] ⇐⇒ ∀i ∈ (ℓ, r] : xℓ ≺ xi, and

(ii) r ∈ next∗x[ℓ] ⇐⇒ ∀i ∈ [ℓ, r) : xr ≺ xi.

Proof. The lemma trivially holds if ℓ = r. Assume ℓ < r and let prev∗[r] = {ℓ1, . . . , ℓq}
with ℓ1 = 0, ℓq = r, and ∀j ∈ [2, q] : prev[ℓj] = ℓj−1. First, assume that ℓ ∈ prev∗[r],
i.e., ℓ = ℓp for some p ∈ [2, q]. It is easy to see that xℓ = xℓp ≺ xℓp+1 ≺ . . . ≺ xℓq .
Now consider arbitrary p′ ∈ (p, q] and i ∈ (ℓp′−1, ℓp′). Due to prev[ℓp′] = ℓp′−1, it
holds xℓ = xℓp ≺ xℓp′ ≺ xi. Hence we have shown ∀i ∈ (ℓ, r] : xℓ ≺ xi.

76

7.1 Properties of Nearest Smaller Suffixes

For the other direction, assume ℓ /∈ prev∗[r], i.e., there is some p′ ∈ [2, q] such that
ℓ ∈ (ℓp′−1, ℓp′]. Due to prev[ℓp′] = ℓp′−1, it readily follows xℓp′ ≺ xℓ, which contradicts
∀i ∈ (ℓ, r] : xℓ ≺ xi. The proof of (ii) works analogously.

Corollary 7.4. Let x[1..n] be a string, and let either r ∈ [1, n] and ℓ = prevx[r], or
ℓ ∈ [1, n] and nextx[ℓ] = r. Then ℓ ∈ prev∗x[r − 1] and r ∈ next∗x[ℓ + 1].

Proof. If ℓ < r and ℓ /∈ prev∗x[r−1] (respectively r /∈ next∗x[ℓ+1]), then by Lemma 7.3(i)
(respectively Lemma 7.3(ii)) there is some i ∈ (ℓ, r) such that xℓ ≻ xi (respectively
xr ≻ xi). This contradicts both ℓ = prev[r] and r = next[ℓ].

By combining Definition 6.5 and Corollary 7.4, we obtain the characterization of
nearest smaller suffixes that we algorithmically exploited in the introductory example.

Corollary 7.5. Let x[1..n] be a string and let ℓ, r ∈ [1, n]. Then

(i) prevx[r] = max({ℓ′ ∈ prev∗x[r − 1] | ℓ′ = 0 ∨ xℓ′ ≺ xr}), and

(ii) nextx[ℓ] = min({r′ ∈ next∗x[ℓ + 1] | r′ = n + 1 ∨ xr′ ≺ xℓ}).

As mentioned before, we will compute next and prev simultaneously. In fact, the
arrays are deeply intertwined; given one of them, it is possible to compute the other
one without knowing the underlying string. The lemma below defines prev solely in
terms of next and vice versa, which will be crucial for the simultaneous computation.

Lemma 7.6. Let x[1..n] be a string and let ℓ, r ∈ [1, n].

(i) nextx[ℓ] = r if and only if prevx[r] < ℓ and ℓ ∈ prev∗x[r − 1].

nextx[ℓ] = n + 1 if and only if ℓ ∈ prev∗x[n].

(ii) prevx[r] = ℓ if and only if nextx[ℓ] > r and r ∈ next∗x[ℓ + 1], and

prevx[r] = 0 if and only if r ∈ next∗x[1].

Proof. For the first statement of (i), we show both directions separately. Assume
next[ℓ] = r, then ∀i ∈ [ℓ, r) : xr ≺ xℓ ⪯ xi, which implies prev[r] < ℓ. Due
to Corollary 7.4, it also holds ℓ ∈ prev∗x[r − 1]. For the other direction, assume
prev[r] < ℓ and ℓ ∈ prev∗[r − 1]. Then ∀i ∈ (ℓ, r) : xℓ ≺ xi because of Lemma 7.3(i).
Due to ℓ ∈ (prev[r], r), it also holds xℓ ≻ xr, and thus next[ℓ] = r. For the second
statement of (i), it holds ℓ ∈ prev∗[n] if and only if ∀i ∈ (ℓ, n] : xℓ ≺ xi because
of Lemma 7.3 (i). By Definition 6.5, it also holds next[ℓ] = n + 1 if and only if
∀i ∈ (ℓ, n] : xℓ ≺ xi. The proof of (ii) works analogously.

We conclude the section by observing that, whenever we draw NSS and PSS
edges underneath the string, the edges can be embedded in the plane, i.e., we can
draw them without intersections (like in Figure 6.1b). This is formally expressed by
lemma below.

77

7 A Simple Linear Time Algorithm for the Lyndon Array

Lemma 7.7. Let x[1..n] be a string.
Let either r1 ∈ [1, n] and ℓ1 = prevx[r1], or ℓ1 ∈ [1, n] and r1 = nextx[ℓ1].
Let either r2 ∈ [1, n] and ℓ2 = prevx[r1], or ℓ2 ∈ [1, n] and r2 = nextx[ℓ2].
Then it does not hold ℓ1 < ℓ2 < r1 < r2.

Proof. If ℓ2 ∈ (ℓ1, r1), then either r1 = next[ℓ1] or ℓ1 = prev[r1] implies xℓ2 ≻ xr1 .
However, by the same reasoning, r1 ∈ (ℓ2, r2) implies xℓ2 ≺ xr1 .

7.2 A Simple Algorithm for
Nearest Smaller Suffixes

Now we are well-prepared to more precisely describe and improve the algorithm from
the introductory example, see Algorithm 7.1(a). We obtain two additional versions of
this algorithm depending on how the lexicographical comparisons are implemented.
Algorithm 7.1(c) uses naively computed LCEs. Algorithm 7.1(d) refines the LCE
computation such that it is more time efficient. In the remainder of this section, we
explain each version of the algorithm in detail. The Algorithms 7.1(c) and 7.1(d)
require super-linear time, but they can be seen as incremental stepping stones towards
the final solution. In Section 7.2.1, we modify Algorithm 7.1(d) such that it runs in
O(n) time.

For all algorithms, we assume that the string x[1..n] starts and ends with special
sentinel symbols # and $ such that x = #x(1..n)$ and ∀i ∈ (1, n) : # < $ < x[i]. This
affects neither the asymptotic time or space complexity of the presented algorithms,
nor the lexicographical order of suffixes; for any i, j ∈ (1, n), it is easy to see
that x[i..n) ≺ x[j..n) if and only if x[i..n)$ ≺ x[j..n)$. The sentinels simplify the
description by eliminating border cases. For example, they ensure that for i ∈ (1, n)
it holds prev[i] ≥ 1 and next[i] ≤ n. Also, for i, j ∈ (1, n) with i ̸= j it holds
i + lce(i, j) ≤ n.

Algorithm 7.1(a): The General Approach Due to the sentinels, we can directly
assign prev[1], next[1], and next[n] (lines 1–2). We compute the arrays next and prev
in n − 1 iterations of a simple for-loop (line 3). Immediately before iteration r of
this loop, we have already computed prev[i] for i ∈ [1, r), as well as next[i] for all i
that satisfy next[i] < r. Hence the goal of iteration r is to compute prev[r], while also
identifying all indices ℓ with next[ℓ] = r.

A simple strategy for this follows from Corollary 7.5(i) and Lemma 7.6(i), which
state that there is a path of PSS edges from r − 1 to prev[r], and all of the positions
ℓ with next[ℓ] = r lie on this path. We thus inspect the positions ℓ ∈ prev∗[r − 1]
one at a time and in decreasing order, starting with ℓ = r − 1 (line 4). As long as
xℓ ≻ xr, we assign next[ℓ] ← r (as dictated by Lemma 7.6(i)), and then continue
with the next position ℓ← prev[ℓ] on the path of PSS edges (lines 5–7). As soon as
xℓ ≺ xr, we break out of the inner loop and finish the current iteration of the outer
loop by assigning prev[r]← ℓ (line 8, as dictated by Corollary 7.5(i)). The sentinel
x[1] = # ensures 1 ∈ prev∗[r] and x1 ≺ xr; thus, we always reach some ℓ with xℓ ≺ xr

eventually. The correctness of the algorithm follows directly from Corollary 7.5
and Lemma 7.6(i). An example of an outer loop iteration is provided in Figure 7.1a
(the arrays plce and nlce will be relevant later and can be ignored for now).

78

7.2 A Simple Algorithm for Nearest Smaller Suffixes

Algorithm 7.1 Computing nearest smaller suffixes over general ordered alphabet.

Require: String x = x[1..n] = #x(1..n)$ with ∀i ∈ (1, n) : # < $ < x[i].
Ensure: Previous and next smaller suffix arrays prev and next.
1: prev[1..n]← new array with prev[1] = 0
2: next[1..n]← new array with next[1] = next[n] = n + 1

(a) Folklore

3: for r = 2 to n do
4: ℓ← r − 1
5: while xℓ ≻ xr do
6: next[ℓ]← r
7: ℓ← prev[ℓ]
8: prev[r]← ℓ

(b) LCE Functions for (c) and (d)

function lce-scan(ℓ, r, m)
while x[ℓ + m] = x[r + m] do

m← m + 1
return m

function lce-scan(ℓ, r)
return lce-scan(ℓ, r, 0)

(c) Naive LCE-NSS

3: plce[1..n]← array filled with 0
4: nlce[1..n]← array filled with 0

5: for r = 2 to n do
6: ℓ← r − 1
7: m← lce-scan(ℓ, r)

8: while x[ℓ + m] > x[r + m] do
9: next[ℓ], nlce[ℓ]← r, m

10: m← lce-scan(prev[ℓ], r)
11: —

12: —
13: —

14: ℓ← prev[ℓ]

15: prev[r], plce[r]← ℓ, m

(d) Improved LCE-NSS

3: plce[1..n]← array filled with 0
4: nlce[1..n]← array filled with 0

5: for r = 2 to n do
6: ℓ← r − 1
7: m← lce-scan(ℓ, r)

8: while x[ℓ + m] > x[r + m] do
9: next[ℓ], nlce[ℓ]← r, m

10: if m = plce[ℓ] then
11: m← lce-scan(prev[ℓ], r, m)

12: else if m > plce[ℓ] then
13: m← plce[ℓ]

14: ℓ← prev[ℓ]

15: prev[r], plce[r]← ℓ, m

79

7 A Simple Linear Time Algorithm for the Lyndon Array

#
1

a
2

b
3

b
4

a
5

b
6

c
7

a
8

c
9

c
10

b
11

a
12

b
13

d
14

a
15

c
16

a
17

b
18

d
19

a
20

d
21

a
22

b
23

c
24

a
25

c
26

c
27

a
28

$
29

0 0 0 0 2 0 0 1 0 0 0 2 0 0 1 0 4 0 0 1 0 2 0 0 1 0 0 0 0
0 1 2 2 2 5 6 5 8 8 8 5 12 13 12 15 12 17 18 17 20 2 22 23 22 25 25 1 1

0 1 1 0 6 0 0 1 1 0 0 2 0 0 1 0 2 0 0 1 0 1 0 0 1 1 0 0 0
30 28 4 5 22 8 8 12 10 11 12 22 15 15 17 17 22 20 20 22 22 28 25 25 28 27 28 29 30

x =
plce =
prev =

nlce =
next =

(a) For any of the Algorithms 7.1(a), (c) and (d), we perform six suffix comparisons in
outer loop iteration r = 22. We lexicographically compare xℓ and xr for each of the values
ℓ = 21, 20, 17, 12, 5, 2 (precisely in this order). For the first five values ℓ = 21, 20, 17, 12, 5, it
holds xℓ ≻ xr. Hence we enter the body of the inner loop and assign next[ℓ]← 22. We break
out of the inner loop once we discover that x2 ≺ x22, after which we assign prev[22] ← 2.
The values assumed by ℓ lie on the dashed path of PSS edges starting at position r− 1 = 21.

(b) Algorithm 7.1(c) computes six LCEs during
the example iteration from Figure 7.1a. The com-
puted LCEs are lce(21, 22) = 0, lce(20, 22) = 1,
lce(17, 22) = 2, lce(12, 22) = 2, lce(5, 22) = 6
and lce(2, 22) = 2. As visualized on the right, the
total number of symbol comparisons is 19. Com-
parisons with outcome “equal” are hatched, while
comparisons with outcome “not equal” are solid.

x22 =
x21 =
x20 =
x17 =
x12 =
x5 =
x2 =

aa bb cc aa cc cc aa $$

aa
aa bb
aa bb
aa bb cc aa cc cc
aa bb

d
d

d
d

b
b

a b c a c c . . .

a b c a c . . .

a d a b . . .

a c a b . . .

. . .

a b c a . . .

(c) Algorithm 7.1(d) exploits Lemma 7.10(iv) to
deduce that lce(17, 22) ≥ 1 and lce(5, 22) ≥ 2. It
further deduces lce(12, 22) = 2 and next[12] = 22
using Lemma 7.10(iii), as well as lce(2, 22) = 2 and
prev[22] = 2 using Lemma 7.10(ii). As visualized on
the right, the total number of symbol comparisons is
10. Comparisons with outcome “equal” are hatched,
while comparisons with outcome “not equal” are
solid.

x22 =
x21 =
x20 =
x17 =
x12 =
x5 =
x2 =

aa bb cc aa cc cc aa $$

aa
bb

cc aa cc cc

d
d

d

b

a b c a c c . . .

a b c a c . . .

a a d a b . . .

a b d a c a b . . .

a b . . .

a b b a b c a . . .

Figure 7.1: Computing nearest smaller suffixes with Algorithms 7.1(a), (c) and (d).

80

7.2 A Simple Algorithm for Nearest Smaller Suffixes

After every lexicographical comparison of suffixes in line 5, we correctly assign
either next[ℓ] ← r or prev[r] ← ℓ immediately afterwards. Since each entry of prev
and next gets assigned exactly once, we perform exactly 2n− 3 suffix comparisons;
we enter the body of the inner loop exactly n− 2 times (once per entry of next, but
not for next[1] = next[n] = n + 1), and break out of the inner loop exactly n − 1
times (once per outer loop iteration, or equivalently once per entry of prev, but not
for prev[1] = 0). It is easy to see that the total time – apart from the time needed for
suffix comparisons – is linear in the number of suffix comparisons. We have shown:

Proposition 7.8. Algorithm 7.1(a) performs 2n− 3 lexicographical comparisons of
suffixes. Apart from these comparisons, the algorithm takes O(n) time.

Algorithm 7.1(c): Computing LCEs with Simple Scanning Due to the
sentinels, no suffix is a prefix of another suffix. Hence it holds xℓ ≺ xr ⇐⇒
x[ℓ + lce(ℓ, r)] < x[r + lce(ℓ, r)] for any ℓ, r ∈ (1, n) with ℓ ̸= r. The LCE can
be computed by naive scanning, as shown in Algorithm 7.1(b), and the sentinels
ensure that there is always a mismatching symbol eventually. Algorithm 7.1(c) is
structurally identical to Algorithm 7.1(a), but it implements the lexicographical
suffix comparisons with naively scanned LCEs (lines 7, 8, and 10). Additionally, it
stores the computed LCEs in two arrays nlce and plce (lines 3–4, 9, and 15), where
after termination it holds plce[i] = lce(prev[i], i) and nlce[i] = lce(i, next[i]) for all
i ∈ (1, n). These arrays are of independent interest. For example, nlce is useful
when computing maximal periodic substrings (which we explain in Chapter 10). The
correctness of the algorithm follows from the correctness of Algorithm 7.1(a).

Computing lce(ℓ, r) by scanning takes lce(ℓ, r)+1 symbol equality comparisons,
where the first lce(ℓ, r) comparisons have outcome “equal”, and the final comparison
has outcome “not equal”. As shown in Figure 7.1b, this can quickly lead to a large
number of symbol comparisons. In the worst case, a single LCE causes O(n) symbol
comparisons, and thus Algorithm 7.1(c) takes O(n2) time (the bound is tight, e.g.,
for the string x = #an−2$). If the input string is drawn uniformly at random from
the set of length-n strings over Σ, where |Σ| > 1, then the expected running time
of Algorithm 7.1(c) is O(n) (see [Bad+22, Theorem 7], where the expected running
time is analyzed for the symmetric right-to-left algorithm). If the string is over
linearly-sortable alphabet, then a data structure for constant time LCE queries can
be precomputed in O(n) time (e.g., the data structure from Lemma 4.4). This
reduces the time bound to O(n).

Proposition 7.9. Algorithm 7.1(c) can be implemented such that it takes O(n)
time for a string of length n over a linearly-sortable alphabet.

Algorithm 7.1(d): Using LCEs with Improved Scanning In a single outer
loop iteration r of Algorithm 7.1(c), we may compute lce(ℓ, r) for many different
values of ℓ. So far, we always computed each new LCE entirely from scratch (line 10).
For many of the LCEs, we can avoid (a part of) the scan by utilizing the additional
properties of nearest smaller suffixes that are stated in the lemma below.

81

7 A Simple Linear Time Algorithm for the Lyndon Array

x = u

ℓ = prev[k]
↓

s u

k
↓

t u

r = next[k]
↓

t
w w

(a) Lemma 7.10(ii).

x = u

ℓ = prev[k]
↓

u

k
↓

w

r = next[k]
↓

s
w t w t

(b) Lemma 7.10(iii).

Figure 7.2: Drawings for Lemma 7.10. NSS edges are dashed; PSS edges are solid.

Lemma 7.10. Let x = #x(1..n)$ be a string with ∀i ∈ (1, n) : # < $ < x[i]. Let
k ∈ (1, n) be an arbitrary index, and let ℓ = prevx[k] and r = nextx[k].

(i) It holds either prevx[r] = ℓ or nextx[ℓ] = r.

(ii) If lce(ℓ, k) < lce(k, r), then lce(ℓ, r) = lce(ℓ, k) and prevx[r] = ℓ.

(iii) If lce(ℓ, k) > lce(k, r), then lce(ℓ, r) = lce(k, r) and nextx[ℓ] = r.

(iv) If lce(ℓ, k) = lce(k, r), then lce(ℓ, r) ≥ lce(k, r).

Proof. We start with (i). Due to ℓ = prev[k] and r = next[k], it holds xℓ ≺ xk,
xr ≺ xk, and ∀i ∈ (ℓ, k) ∪ (k, r) : xk ≺ xi. Hence also ∀i ∈ (ℓ, r) : xr ≺ xi ∧ xℓ ≺ xi.
Thus, if xℓ ≺ xr then prev[r] = ℓ, and if xℓ ≻ xr then next[ℓ] = r.

For showing (ii), let u = x[ℓ..ℓ + lce(ℓ, k)) = x[k..k + lce(ℓ, k)), s = x[ℓ +
lce(ℓ, k)], and t = x[k + lce(ℓ, k)] (see Figure 7.2). By the definition of LCEs,
it holds s ̸= t, and due to ℓ = prev[k] it can only be that s < t. Because of
lce(ℓ, k) < lce(k, r), suffix xr has prefix ut. Hence xℓ = us·xℓ+|us| ≺ ut·xr+|ut| = xr.
Due to (i), this means next[ℓ] = r. The proof of (iii) works analogously to the one of
(ii).

Finally, (iv) is a trivial observation. Let m = lce(ℓ, k) = lce(k, r), then it is easy
to see that x[ℓ..ℓ + m) = x[k..k + m) = x[r..r + m), and hence lce(ℓ, r) ≥ m.

Algorithm 7.1(d) uses the new insights from Lemma 7.10. It is identical to
Algorithm 7.1(c), except for the highlighted computation of the LCE in lines 10–13.
At the point in time at which we reach line 10, let k′ = ℓ, ℓ′ = prev[ℓ], and r′ = r.
Note that ℓ′ = prev[k′] and r′ = next[k′], and thus we can use ℓ′, k′, and r′ to invoke
Lemma 7.10. We already computed lce(ℓ′, k′) = plce[k′] (due to the iteration order
of the algorithm) and lce(k′, r′) = nlce[k′] = m (this is the most recently computed
LCE). Now we compute lce(ℓ′, r′) according to the cases of Lemma 7.10.

• If lce(ℓ′, k′) = lce(k′, r′) then Lemma 7.10(iv) implies lce(ℓ′, r′) ≥ lce(k′, r′).
We compute lce(ℓ′, r′) by scanning, but we skip m = lce(k′, r′) symbol
comparisons (lines 10–11).

• If lce(ℓ′, k′) < lce(k′, r′) then Lemma 7.10(ii) implies lce(ℓ′, r′) = lce(ℓ′, k′).
Since plce[k′] = lce(ℓ′, k′), we can simply assign m ← plce[k′] (lines 12–13).
Note that Lemma 7.10(ii) also implies prev[r′] = ℓ′, which means that we will
immediately break out of the inner loop and finish the current iteration of the
outer loop.

82

7.2 A Simple Algorithm for Nearest Smaller Suffixes

• If lce(ℓ′, k′) > lce(k′, r′) then Lemma 7.10(iii) implies lce(ℓ′, r′) = lce(k′, r′).
It already holds m = lce(k′, r′), and thus there is no need to do anything.

As shown in Figure 7.1c, the new approach may require significantly fewer symbol
comparisons than Algorithm 7.1(c). However, Algorithm 7.1(d) still takes O(n2)
time in the worst case. In the next section, we slightly modify Algorithm 7.1(d) such
that it achieves linear time.

A Note on the Space Complexity In order to store the arrays next, prev, nlce,
and plce, Algorithms 7.1(c) and 7.1(d) require 4n ⌈log2 n⌉ bits of space. For a small
practical improvement, it is possible to remove the array prev. This is because the
only access to prev[ℓ] occurs at the same time at which we assign next[ℓ] (see lines 9
and 14). Thus, we only need to maintain access to the values prev[ℓ] for positions
with uninitialized next[ℓ], which means that we can use a single array for storing
both PSS and NSS information. The total working space (without the input string)
then becomes 3n ⌈log2 n⌉+O(log n) bits.

7.2.1 Achieving Linear Time
In order to achieve linear time, we use the function smart-lce (Algorithm 7.2) to
more efficiently compute LCEs. A call to smart-lce(ℓ, r, m) means that we want
to compute lce(ℓ, r), and we have already established lce(ℓ, r) ≥ m. We modify
Algorithm 7.1(d) by replacing line 7 with m ← smart-lce(ℓ, r, 0), and line 11
with m ← smart-lce(prev[ℓ], r, m) (and leave everything else unchanged). In the
remainder of the section, we show that smart-lce works correctly, and that the total
time spent for all invocations of smart-lce is O(n). Then, it directly follows that
the modified version of Algorithm 7.1(d) takes O(n) time. Note that Algorithm 7.2
is tailored to (and thus only works as a part of) Algorithm 7.1(d).

In the following description, whenever we use the variables ℓ, r, and m, we
mean the arguments of the function smart-lce (rather than the identically named
variables from Algorithm 7.1(d)). Now we explain how the new LCE function works.
Generally speaking, it computes LCEs with two different methods: naive scanning
(as done before), and deduction from previously computed LCEs. Sometimes, a
combination of both is necessary. Both methods rely on a global variable c (persistent
between the function calls) that stores at all times the rightmost position of the
string that we have already inspected (line 2).

Scanning LCEs We start by explaining the simpler method of naive scanning. If
at the beginning of the function call it holds r + m ≥ c (line 4), then we simply scan
the remainder of the LCE (lines 9–10; identical to what we did in lce-scan). Let
m′ be the initial value of m before the scan, and let m′′ = lce(ℓ, r) be the final value
of m after performing the scan. After the scan, the rightmost inspected position is
r + m′′, and we update c accordingly (line 11; the variable d is not relevant for now).
Since we only perform the scan if r + m′ ≥ c, the assignment c← r + m′′ increases
c by at least m′′ −m′. Note that m′′ −m′ is also exactly the number of times we
execute line 10. Since c never exceeds n, we execute line 10 no more than n times
during all the calls to smart-lce that initially satisfy r + m ≥ c. It follows that, for
all of these calls together, we spend at most O(n) time.

83

7 A Simple Linear Time Algorithm for the Lyndon Array

Algorithm 7.2 Efficient LCE computation for Algorithm 7.1(d).

Require: String x = x[1..n] = #x(i..n)$ with x[ℓ..ℓ + m) = x[r..r + m).
Ensure: Longest common extension lce(ℓ, r).

1: global variable c← 0
2: global variable d← 0
3: function smart-lce(ℓ, r, m)
4: if r + m < c then
5: if next[ℓ− d] = r − d then m← nlce[ℓ− d]
6: if next[ℓ− d] = r − d thenelse m← plce[r − d]
7: if r + m < c then return m
8: m← c− r

9: while x[ℓ + m] = x[r + m] do
10: m← m + 1

11: c, d← r + m, r − ℓ
12: return m

Deducing LCEs If at the beginning of the function call it holds r + m < c,
then we try to deduce lce(ℓ, r) from previously computed LCEs (lines 4–8). Let
rc be the rightmost position for which we already computed some lce(ℓc, rc) with
rc + lce(ℓc, rc) = c (such a position must exist because otherwise we would not have
inspected x[c] yet). The global variable d contains at all times the distance rc − ℓc

(line 2; we update d together with c, see line 11). Let ℓ∗ = ℓ− d and r∗ = r− d. The
example in Figure 7.3a helps with understanding the notation. Later, we will show
that (as suggested by the examples)

(i) it holds rc ≤ ℓ < r < c, and thus ℓc ≤ ℓ∗ < r∗ < ℓc + lce(ℓc, rc), and

(ii) either prev[r∗] = ℓ∗ (and thus plce[r∗] = lce(ℓ∗, r∗))
or next[ℓ∗] = r∗ (and thus nlce[ℓ∗] = lce(ℓ∗, r∗)).

When deducing LCEs, we first use (ii) to obtain lce(ℓ∗, r∗) (lines 5–6). Note
that, by the definition of ℓ∗ and r∗, the relative positions of ℓ∗ and r∗ within
x[ℓc..ℓc +lce(ℓc, rc)) are the same as the relative positions of ℓ and r within x[rc..rc +
lce(ℓc, rc)) (and the positions are indeed within these intervals due to (i)). If
r + lce(ℓ∗, r∗) < c then

x[r..r + lce(ℓ∗, r∗)] = x[r∗..r∗ + lce(ℓ∗, r∗)] and
x[ℓ..ℓ + lce(ℓ∗, r∗)] = x[ℓ∗..ℓ∗ + lce(ℓ∗, r∗)],

where both equalities follow from x[ℓc..ℓc + lce(ℓc, rc)) = x[rc..rc + lce(ℓc, rc)). This
implies lce(ℓ, r) = lce(ℓ∗, r∗), and we return lce(ℓ∗, r∗) in constant time (line 7).
Since it holds r + lce(ℓ, r) < c, there is no need to update c and d. In Figure 7.3a,
we have 21 + lce(4, 7) = 23 < 29 = c, and thus lce(18, 21) = lce(4, 7) = 2.

If, however, r + lce(ℓ∗, r∗) ≥ c then we cannot immediately deduce the exact
value of lce(ℓ, r) (as is the case in Figure 7.3c). We can still obtain some useful

84

7.2 A Simple Algorithm for Nearest Smaller Suffixes

a b a b c a b b c c a b b d a b a b c a b b c c a b b c c $
1 2 3 4 5 6 7 8 9 0 1 2 3 1 5 16 7 18 9 0 21 2 3 4 5 6 7 8 29 0 1
1 ℓc 3 ℓ∗ 5 6 r∗ 8 9 0 1 2 3 1 5 rc 7 ℓ 9 0 r 2 3 4 5 6 7 8 c 0 1

(a)

a b a d a c c c a d a b a d a $
1 2 3 4 5 6 7 8 9 0 11 2 3 1 15
1 2 3 4j−(i−j) 6 j 8 i 0 1 5 c

rad[5]=2 rad[11]=2

rad[8]=6(b)

a b a b c a b b c c a b b d a b a b c a b b c c a b b c c $
1 2 3 4 5 6 7 8 9 0 1 12 3 14 5 16 7 8 9 0 21 2 3 4 5 26 7 8 29 0 1
1 ℓc 3 4 5 6 ℓ∗ 8 9 0 1 r∗ 3 1 5 rc 7 8 9 0 ℓ 2 3 4 5 r 7 8 c 0 1

(c)

a b a d a c c c a d a b a d a $
1 2 3 4 5 6 7 8 9 0 11 2 13 1 15
3 4j−(i−j)6 j 8 i 5 c

rad[3]=2 rad[8]≥2

rad[8]=6(d)

Figure 7.3: Deducing LCEs with Algorithm 7.2 in (a) and (c), and deducing longest
palindromes with Manacher’s algorithm in (b) and (d). Boxes of equal color indicate
equal substrings. In (b) and (d), boxes of equal color sometimes indicate substrings
that are the reverse of each other.

information because of

x[r..r + c− r) = x[r∗..r∗ + c− r) = x[ℓ∗..ℓ∗ + c− r) = x[ℓ..ℓ + c− r),

where the first and the third equality follow from x[ℓc..ℓc + lce(ℓc, rc)) = x[rc..rc +
lce(ℓc, rc)), and the second equality follows from r + lce(ℓ∗, r∗) ≥ c, which is equal
to lce(ℓ∗, r∗) ≥ c − r. The equation implies lce(ℓ, r) ≥ c − r, and we update m
accordingly (line 8). In Figure 7.3c, we have 26 + lce(7, 12) = 29 = c, and thus
lce(21, 26) ≥ 29− 26 = 3.

We compute the remaining part of lce(ℓ, r) by scanning (lines 9–10), and then
update c and d (line 11). Since we assign m← (c− r) immediately before starting
the scan, we can use the same argument as in the previous paragraph about scanning
LCEs. For every symbol comparison of the scan (except for the last one), we will
increase c by one. Therefore, the total number of symbol comparisons for all calls
of smart-lce is O(n). In Figure 7.3c, the scan extends the LCE by two additional
positions, and we obtain lce(21, 26) = 5. We then have to update c← 26 + 5 = 31
and d← 26− 21 = 5.

The correctness of the algorithm follows from its description and the properties
(i) and (ii), which we will show in the next paragraphs.

Showing Property (i) The property states that, if we call smart-lce(ℓ, r, m)
with r + m < c, then rc ≤ ℓ < r < c. Since trivially ℓ < r ≤ r + m < c, we only
have to show rc ≤ ℓ. The property is readily proven for the call smart-lce(ℓ, r, 0)
in line 7 of Algorithm 7.1(d). It holds ℓ = r − 1, and this is the first LCE that we
compute between r and any smaller index. Since we already computed lce(ℓc, rc), it
holds r > rc and ℓ = r − 1 ≥ rc.

Now we consider the call smart-lce(ℓ, r, m) in line 11. As seen in the description
of Algorithm 7.1(d), for this call it holds m = lce(ℓ, k) = lce(k, r), where k ∈ (ℓ, r)
with prev[k] = ℓ and next[k] = r. For every h ∈ (ℓ, r), the definition of prev and

85

7 A Simple Linear Time Algorithm for the Lyndon Array

next implies that xh ⪰ xk ≻ xr. This also means that m = lce(k, r) ≥ lce(h, r). If
r = rc then, because we already computed lce(ℓc, r), and due to the iteration order
of the algorithm, it holds ℓ < ℓc. Then, however, ℓc ∈ (ℓ, r) and thus m = lce(k, r) ≥
lce(ℓc, r) = c− r, which contradicts r + m < c. We have shown that r > rc, which
also implies r∗ > ℓc. If ℓ < r∗ then r∗ ∈ (ℓ, r) and thus m ≥ lce(r∗, r) = c − r,
which contradicts r + m < c. It follows that ℓ ≥ r∗ > ℓc. Finally, if ℓ ∈ (ℓc, rc) then
ℓc < ℓ < rc < r, which contradicts Lemma 7.7. The only remaining possibility is
ℓ ≥ rc, which is what we wanted to show.

Showing Property (ii) The property states that either prev[r∗] = ℓ∗, or next[ℓ∗] =
r∗. By the definition of ℓ∗ and r∗, and due to (i) and x[ℓc..ℓc + lce(ℓc, rc)) =
x[rc..rc +lce(ℓc, rc)), it holds x[ℓ..r) = x[ℓ∗..r∗). Since we want to compute lce(ℓ, r),
it holds either next[ℓ] = r or prev[r] = ℓ. Therefore, Lemma 6.6 implies that
x[ℓ..r) = x[ℓ∗..r∗) is a Lyndon word. Due to Lemma 6.7, we know that next[ℓ∗] ≥ r∗.
If next[ℓ∗] = r∗ or prev[r∗] = ℓ∗, then there is nothing left to show. Thus, assume
that next[ℓ∗] > r∗ and prev[r∗] > ℓ∗ (it cannot be that prev[r∗] < ℓ∗ because then
prev[r∗] < ℓ∗ < r∗ < next[ℓ∗] contradicts Lemma 7.7). Let pr = r − (r∗ − prev[r∗]).
Due to Lemma 6.6, the substring x[prev[r∗]..r∗) = x[pr..r) is a Lyndon word, and
Lemma 6.7 implies next[pr] ≥ r. Since pr ∈ (ℓ, r) it holds next[pr] ≤ r (otherwise we
contradict Lemma 7.7), and the only possible option is next[pr] = r.

We have shown that next[pr] = r and thus xpr ≻ xr. By the definition of prev,
it also holds xprev[r∗] ≺ xr∗ . Since we chose rc to be the rightmost index with
rc + lce(ℓc, rc) = c, it holds r + lce(pr, r) < c (otherwise we would have updated rc

already). Therefore, we have

x[prev[r∗]..prev[r∗] + lce(pr, r)] = x[pr..pr + lce(pr, r)], and
x[r∗..r∗ + lce(pr, r)] = x[r..r + lce(pr, r)].

This, however, means that xprev[r∗] ≺ xr∗ ⇐⇒ xpr ≺ xr, which contradicts our
previous observation that xpr ≻ xr and xprev[r∗] ≺ xr∗ . It follows that the assumption
next[ℓ∗] > r∗ and prev[r∗] > ℓ∗ was wrong, and it holds next[ℓ∗] = r∗ or prev[r∗] = ℓ∗.

We have shown that properties (i) and (ii) hold, which concludes the proof
of correctness. The algorithm uses only a constant number of additional integer
variables, apart from the space needed for the auxiliary arrays of size n. Hence we
have shown the main theorem.

Theorem 7.1. The Lyndon array of a length-n string over general ordered alphabet
can be computed in O(n) time and words of space.

7.3 Similarity to Manacher’s Algorithm for
Computing Maximal Palindromes

In this section, we want to briefly highlight the similarity between the technique of
Section 7.2.1 and Manacher’s algorithm for computing maximal palindromes [Man75].
For simplicity, we only consider odd palindromes. An odd palindrome of radius |w|+1
is a string of the form w · s · rev(w), where s is a symbol and w is some possibly
empty string. (Equivalently, an odd palindrome is a string of odd length that equals

86

7.4 Conclusion and Practical Implementation

Algorithm 7.3 Manacher’s algorithm for odd palindromes.
Require: String x[1..n] = #x(1..n)$.
Ensure: Array rad containing the radii

of longest odd palindromes.

1: rad[1..n]← new array with
rad[1] = rad[n] = 1

2: global variable c← 0
3: global variable j ← 0

4: for i = 2 to n− 1 do
5: rad[i]← smart-pal(i, 1)

1: function smart-pal(i, m)
2: if i + m < c then
3: m← rad[j − (i− j)]
4: if i + m < c then return m
5: m← c− i

6: while x[i−m] = x[i + m] do
7: m← m + 1

8: c, j ← i + m, i
9: return m

its reversal.) For a string x[1..n], the presented version of Manacher’s algorithm
computes an array rad[1..n], where ∀i ∈ [1, n] :

rad[i] = max{m ∈ [1, min(i, n− i + 1)] | x(i−m..i + m) is an odd palindrome}.

If we compute the entries of rad in left-to-right order, then we can sometimes fully
or partially deduce an entry, see Figures 7.3b and 7.3d. This is very similar to
our observations for LCEs in Figures 7.3a and 7.3c. A possible implementation of
Manacher’s algorithm is provided in Algorithm 7.3. It computes rad from left to
right, while keeping track of the rightmost inspected position of the string. Whenever
possible, the function smart-pal partially or fully deduces rad[i]. Note that the
functions smart-lce and smart-pal are structurally identical and use the same
algorithmic ideas. We omit the proof of why Algorithm 7.3 functions as intended and
why it takes O(n) time because it is much simpler than the proofs for Algorithm 7.1(d)
and Algorithm 7.2. Specifically, it requires no complicated technicalities like properties
(i) and (ii) in Section 7.2.1.

7.4 Conclusion and Practical Implementation
We presented a linear time construction algorithm for the Lyndon array over general
ordered alphabet. While the proof is still quite involved and could possibly be
simplified, the algorithm itself is surprisingly simple. Algorithm 7.1(d) augmented
with the LCE computation from Algorithm 7.2 requires no additional complex data
structures and can be directly implemented in practice. We provide a simple C++
implementation that is publicly available1 and consists of less than 50 lines of code,
using no additional libraries (neither external nor from the C++ standard library).
A copy is provided in Listing 7.1. While we do not provide experimental results for
its performance, it shall be noted that it is indeed quite fast in practice; this is also
evident from the fact that it is a simpler version of the algorithm from Chapter 8, for
which we provide a preliminary practical evaluation in Section 8.5. The simplicity is

1https://github.com/jonas-ellert/simple-lyndon, permanently archived in the Software
Heritage Archive at https://archive.softwareheritage.org/swh:1:dir:dbbf2b4ac2fa652eb086
5cdc6719924ce8a81952;origin=https://github.com/jonas-ellert/simple-lyndon;visit=swh:
1:snp:1a40ff8c462536624a348dbd651a5e66629fb09c;anchor=swh:1:rev:4b61d4a2500693886e0d
69cd0c1c5ea68e48dd89

87

https://github.com/jonas-ellert/simple-lyndon
https://archive.softwareheritage.org/swh:1:dir:dbbf2b4ac2fa652eb0865cdc6719924ce8a81952;origin=https://github.com/jonas-ellert/simple-lyndon;visit=swh:1:snp:1a40ff8c462536624a348dbd651a5e66629fb09c;anchor=swh:1:rev:4b61d4a2500693886e0d69cd0c1c5ea68e48dd89
https://archive.softwareheritage.org/swh:1:dir:dbbf2b4ac2fa652eb0865cdc6719924ce8a81952;origin=https://github.com/jonas-ellert/simple-lyndon;visit=swh:1:snp:1a40ff8c462536624a348dbd651a5e66629fb09c;anchor=swh:1:rev:4b61d4a2500693886e0d69cd0c1c5ea68e48dd89
https://archive.softwareheritage.org/swh:1:dir:dbbf2b4ac2fa652eb0865cdc6719924ce8a81952;origin=https://github.com/jonas-ellert/simple-lyndon;visit=swh:1:snp:1a40ff8c462536624a348dbd651a5e66629fb09c;anchor=swh:1:rev:4b61d4a2500693886e0d69cd0c1c5ea68e48dd89
https://archive.softwareheritage.org/swh:1:dir:dbbf2b4ac2fa652eb0865cdc6719924ce8a81952;origin=https://github.com/jonas-ellert/simple-lyndon;visit=swh:1:snp:1a40ff8c462536624a348dbd651a5e66629fb09c;anchor=swh:1:rev:4b61d4a2500693886e0d69cd0c1c5ea68e48dd89

7 A Simple Linear Time Algorithm for the Lyndon Array

a consequence of designing an algorithm for general ordered alphabet, leading to a
solution that does not rely on the usual machinery like the suffix array.

1 void lyndon (char const *text , int n, // input
2 int *nss , int *nlce , int *pss , int *plce) { // output
3
4 auto T_l = [&](int x) // simulate left sentinel
5 { return (x >= 0) ? ((int)text[x]) : ((int) -256); };
6 auto T_r = [&](int x) // simulate right sentinel
7 { return (x < n) ? ((int)text[x]) : ((int) -256); };
8
9 int d, rhs = -1;

10
11 auto extend_lce = [&](int l, int r, int known_lce = 0) {
12 if (r + known_lce < rhs) {
13 known_lce = (nss[l - d] == r - d) ? nlce[l - d] : plce[r - d];
14 if (r + known_lce < rhs) return known_lce ;
15 known_lce = rhs - r;
16 }
17
18 while (T_l(l + known_lce) == T_r(r + known_lce)) ++ known_lce ;
19
20 rhs = r + known_lce ;
21 d = r - l;
22 return known_lce ;
23 };
24
25 for (int r = 0; r < n; ++r) {
26 int l = r - 1;
27 int lce = extend_lce (l, r, 0);
28 while (T_l(l + lce) > T_r(r + lce)) {
29 nss[l] = r;
30 nlce[l] = lce;
31 if (lce == plce[l]) {
32 lce = extend_lce (pss[l], r, lce);
33 } else if (lce > plce[l]) {
34 lce = plce[l];
35 }
36 l = pss[l];
37 }
38 pss[r] = l;
39 plce[r] = lce;
40 }
41
42 int l = n - 1;
43 while (l >= 0) {
44 nss[l] = n;
45 nlce[l] = 0;
46 l = pss[l];
47 }
48 }

Listing 7.1: C++ implementation of Algorithm 7.1(d) and Algorithm 7.2.

88

Chapter 8 8Computing the Succinct
Lyndon Array in Small
Working Space

The algorithm from Chapter 7 requires O(n) words or O(n log n) bits of working
space. This is unsatisfactory if the text is packed over [0, σ), in which case it requires
only O(n log σ) bits of space. In this chapter, we significantly improve the working
space with the following three main ideas. First, instead of storing the Lyndon
array naively in Θ(n log n) bits, we store it in its succinct representation [Lou+18],
which requires only around 2n bits of space. Second, we show how to construct
this representation in an append-only manner, while also maintaining auxiliary data
structures that support fast operations on the already computed part. Third, we
show that, unlike the algorithm presented in Chapter 7, which has to explicitly store
the LCEs associated with each entry of the Lyndon array, we can indeed entirely
avoid storing LCEs by instead using sophisticated amortization techniques. This
ultimately leads to the following result, which is the most space efficient Lyndon
array algorithm to date, even for linearly-sortable alphabet.

Theorem 8.1. The succinct 2n + 2 bit representation of the Lyndon array of a
length-n string over general ordered alphabet can be computed in O(n) time and
O(n log log n/ log n) bits of additional working space (apart from the space needed
for input and output).

8.1 Storing the Lyndon Array as a
Balanced Parentheses Sequence

As mentioned before, naively storing the Lyndon array requires Θ(n log n) bits (since
each entry is an integer from [1, n]). In contrast to that, the succinct Lyndon
array, first described in [Lou+18], requires only around 2n bits of space. This
representation is a balanced parentheses sequence that describes the nested structure
of Lyndon substrings (previously observed, e.g., in [SR03, Fra+16]). We provide
a new semantic interpretation of the succinct Lyndon array; we show that it is a
common tree encoding applied to the previous smaller suffix tree, which we already
briefly mentioned in Section 6.2. Now we give a precise definition of the PSS tree
and the associated terminology. An example is provided in Figure 8.1a.

89

8 Computing the Succinct Lyndon Array in Small Working Space

0 1 2 3 4 5 6 7 8 9 10 11 12 13

x =

λ =
prev =

1
r

2
y

3
a

4
n

5
a

6
i

7
r

8
a

9
i

10
r

11
b

12
u

13
s

2 1 2 1 9 2 1 6 2 1 3 1 1
0 1 0 3 0 5 6 5 8 9 8 11 11

(a) Lyndon array λ and PSS array prev.
The edges drawn beneath form the PSS
tree with root node 0.

.

0
1

2
3

4
5

6
7

8
9

10
11

12 13

(
0
(
1
(
2
)
2
)
1
(
3
(
4
)
4
)
3
(
5
(
6
(
7
)
7
)
6
(
8
(
9
(
10

)
10

)
9
(

11
(
12

)
12

(
13

)
13

)
11

)
8
)
5
)
0 .

(b) The PSS tree and its BPS. The numbers
above and below the parentheses indicate the
correspondence between nodes and parentheses.

Figure 8.1: Data structures for the string ryanairairbus.

Definition 8.2. Given a string x[1..n], its previous smaller suffix (PSS) tree is a
rooted ordered tree with nodes [0, n]. The unique root node is 0. Further it holds:

• Every node r ∈ [1, n] is a child of its parent prevx[r].

• A leaf is a node without children.

• The children of any node ℓ ∈ [0, n] are arranged in increasing order. If ℓ has
children r1 < r2 < · · · < rk, then r1 is the leftmost child, while rk is the
rightmost child.

• A node r ∈ [1, n] is a descendant of a node ℓ ∈ [0, r) if and only if ℓ ∈ prev∗x[r].
If r is a descendant of ℓ, then ℓ is an ancestor of r.

Now we show that the PSS tree inherently encodes all next smaller suffixes.

Lemma 8.3. For a string x[1..n] and a position ℓ ∈ [1, n], the descendants of ℓ in
the PSS tree are exactly the nodes from (ℓ, nextx[ℓ]).

Proof. Assume that there is some node r ∈ (ℓ, next[ℓ]) that is not a descendant of
ℓ, i.e., ℓ /∈ prev∗[r]. By Lemma 7.3 (i), there is some i ∈ (ℓ, r] such that xℓ ≻ xi.
However, this contradicts the fact that i ∈ (ℓ, next[ℓ]). Next, assume that there is some
r ∈ [next[ℓ], n] that is a descendant of ℓ, i.e., ℓ ∈ prev∗[r]. By Lemma 7.3(i), it holds
∀i ∈ (ℓ, r] : xℓ ≺ xi. However, this implies xℓ ≺ xnext[ℓ] due to next[ℓ] ∈ (ℓ, r].

We only need two operations on the PSS tree in order to simulate access to the
arrays prev, next, and λ. Given a node i ∈ [1, n], we need to be able to report its
parent Parent(i) and the size SubtreeSize(i) of the subtree that is rooted in node i.
By definition of the PSS tree, we can then report prev[i] = Parent(i), and due to
Lemmas 6.7 and 8.3 also next[i] = i + SubtreeSize(i) and λ[i] = SubtreeSize(i). For
example, in Figure 8.1 it holds λ[8] = SubtreeSize(8) = 6.

Storing the PSS Tree as a Parentheses Sequence While a naive pointer-based
representation of the PSS tree would lead to Θ(n) words of space, we can instead use
a succinct tree encoding that requires only 2n + 2 bits of space. One such encoding

90

8.2 Maintaining Operations on a BPS Prefix

is the balanced parentheses sequence (see, e.g., [MR01]), in which we interpret each
1-bit as an opening parenthesis (, and each 0-bit as a closing parenthesis).

Definition 8.4. Given a string x, the balanced parentheses sequence (BPS) of its
PSS tree is recursively defined as Bx[1..2n + 2] = Bx(0), where

• for any leaf node ℓ of the PSS tree, it holds Bx(ℓ) = (), and

• for any non-leaf node ℓ of the PSS tree with children r1 < · · · < rk, it holds
Bx(ℓ) = (· Bx(r1) · . . . · Bx(rk) ·).

We omit the subscript x whenever it is clear from context.

Alternatively, we can define B in the following constructive way. We write B in
an append-only manner, starting with an empty sequence. We perform a depth-first
traversal of the tree (see, e.g., [Cor+22, Section 20.3]), during which we visit the
children of each node in increasing (i.e., left-to-right) order. Whenever we walk down
an edge from prev[i] to i, we append the opening parenthesis of node i. Whenever
we walk up an edge from i to prev[i], we write the closing parenthesis of node i.
An example of the BPS is provided in Figure 8.1b. This description of the BPS
also defines a one-to-one relation between nodes and opening parentheses, as well as
nodes and closing parentheses. We say that an opening parenthesis and a closing
parenthesis match, if and only if they belong to the same node.

During the traversal, we may assign preorder-numbers from [0, n] to the nodes.
The root has preorder-number 0. Whenever we walk down an edge from prev[i] to
i, we assign the smallest so far unused preorder-number to node i. The order of
preorder-numbers is induced by the order of children, as well as by the fact that
every node is a child of a smaller node. This leads to Observation 8.5, which was also
made by Fischer [Fis10] for the related 2d-min-heap, more commonly known under
the name LRM (for left-to-right minima) tree [SN10, BFN11]). In fact, a reader
familiar with the LRM tree and suffix arrays may notice that the PSS tree is merely
the LRM tree of the inverse suffix array.

Observation 8.5. In the PSS tree of x[1..n], every node i ∈ [0, n] has preorder-
number i. The ith opening parenthesis in the BPS corresponds to node i.

There are multiple data structures that, given a BPS encoding an ordered tree
of n nodes, augment or replace the BPS with an index of size 2n + o(n) bits that
supports fast tree operations (e.g., [MR01, SN10, NS14]). Given the preorder-number
of a node, these data structures then return the preorder-number of its parent and
also the size of the subtree rooted in the node in constant time. The construction
time and working space in bits is O(n), and hence, given the BPS of the PSS tree,
we can in O(n) time and bits of space obtain an index of size 2n + o(n) bits that
simulates constant time access to λ, prev, and next.

8.2 Maintaining Operations on a BPS Prefix
In Section 8.3, we will show how to directly compute the BPS B of the PSS tree in
an append-only manner, i.e., at any given point in time, we have already written

91

8 Computing the Succinct Lyndon Array in Small Working Space

a prefix of B. For an efficient implementation of the construction algorithm, it is
crucial that we maintain support for the following queries in constant time.

• Given the position oi of an opening parenthesis in B, determine the node i that
belongs to the parenthesis. We have i = rankopen(oi)− 1, where rankopen(oi) is
the number of opening parentheses in B[1..oi].

• Given a node i, find the index oi of the corresponding opening parenthesis in
B. We have oi = selectopen(i) = min{o | rankopen(o) > i}.

• Given an integer k ≥ 1, find the index ouncl(k) = selectuncl(k) of the kth
unclosed parenthesis in B. An opening parenthesis is called unclosed, if we
have not written the matching closing parenthesis yet. For example, there are
five opening parentheses in (()((), but only the first and the third one are
unclosed.

There are space efficient data structures that can be built on top of B and support
the required queries in constant time. However, such data structures are either static,
or they are dynamic with super-constant query or update times. In the remainder of
the section, we show how to use existing static data structures as a black box for
append-only parentheses sequences.

8.2.1 Static Data Structures
We start by describing the static data structures used by the solution for the append-
only setting. In theory, we could simply use the range-min-max tree [NS14] as a
static data structure for all queries. However, the range-min-max tree converts the
BPS into a sequence of aB-trees [Pat08]. We prefer a data structure that merely
augments the BPS with additional information (rather than replacing it), and thus
our solution is based on the much simpler index by Golynski [Gol07].

Lemma 8.6 ([Gol07]). Given a (not necessarily balanced) parentheses sequence B of
length n, there is a data structure of size n +O(n log log n/ log n) bits that answers
rankopen and selectopen queries in constant time. The data structure consists of
B augmented with additional tables, and it can be constructed on O(n) time and
O(n log log n/ log n) bits of working space (apart from the space needed to store B).a

aGolynski does not explicitly describe the construction time and space. However, the data
structure consists of arrays and universal lookup tables that can easily be computed in linear time,
using negligible space apart from the space needed for the arrays and tables themselves.

Hence we have efficient data structures for rankopen and selectopen, and we only
need a solution for selectuncl. Below, we show how to reduce selectuncl to selectopen,
which means that we can simply use another instance of Lemma 8.6.

Lemma 8.7. Given a (not necessarily balanced) parentheses sequence B of length n,
there is a data structure of size n +O(n log log n/ log n) bits that answers selectuncl
queries in constant time. The data structure consists of B augmented with additional
tables, and it can be constructed on O(n) time and O(n log log n/ log n) bits of
working space (apart from the space needed to store B).

92

8.2 Maintaining Operations on a BPS Prefix

(

(

11

1

(

)

2

)

)

(

(

33

3

(

)

4

)

)

(

)

55

5

(

)

66

6

(

)

77

7

)

)

)

)

)

)

(

)

8

(

)

9

(

)

10

)

)

)

)

)

)

(

(

1111

11

(

)

12

)

)

(

(

1313

13

(

)

14

)

)

(

(

1515

15

(

(

1616

16

(

)

1717

17

(

)

18

)

)

)

)

(

(

1919

19

(

)

20

)

)

(

)

21

)

)

(

(

2222
22

B =

B̂ =

↑
A[1] = 4A[1] = 4 A[2] = 0A[2] = 0

↑
A[3] = 8A[3] = 8

↑
A[4] = 9A[4] = 9

(a) Sequence B[1..n] contains eight unclosed parentheses, which correspond to the large nodes.
We split B into blocks of length ⌈log2 n/2⌉, and for the sake of visualization we pretend
that ⌈log2 n/2⌉ = 9. Blocks B[1..9] and B[19..27] are identical, but they contain a different
number of unclosed parentheses. This is because the opening parentheses corresponding to
the medium size nodes are unclosed with respect to their block, but not with respect to
the entire sequence B. Array A[1..4] stores the relative position of the rightmost unclosed
parenthesis in each block. In B̂, it holds B̂[i] = (if and only if B[i] is an unclosed parenthesis.

input block input output block
input block interpretation B(ik − k..ik] A[i] B̂(ik − k..ik]

))))))))) = (000000000)2 = 0 0 1 —
...

...
...

439 1 ())))))))
439 2 —
439 3 —
439 4 ())()))))B[1..9] = B[19..27]

= (()(()(((= (110110111)2 = 439
439 5 —
439 6 —
439 7 ())())())
439 8 ())())(()
439 9 ())())(((

...
...

...

(((((((((= (111111111)2 = 511 511 9 (((((((((

(b) Lookup table with k = 9 for retrieving blocks of the simulated sequence B̂.

Figure 8.2: Data structures used in the proof of Lemma 8.7.

93

8 Computing the Succinct Lyndon Array in Small Working Space

Proof. Let B̂ be the length-n parentheses sequence such that B̂[i] = (if and only
if B[i] is unclosed (see Figure 8.2a). Then answering selectuncl on B is equivalent
to answering selectopen on B̂. Hence we use the data structure from Lemma 8.6
constructed for B̂. However, we cannot afford to actually store B̂. Instead, we
compute a small auxiliary data structure that allows us to simulate access to B̂ using
B. In order to use Lemma 8.6 for the simulated sequence B̂, we have to be able to
provide the following access in constant time. Given a position i ∈ [1, n] and a length
ℓ ∈ [0, ⌈log2 n⌉) with i + ℓ ≤ n, return B̂[i..i + ℓ] (packed in a word).

Let k = ⌈(log2 n)/2⌉ and assume without loss of generality that k divides n.
We conceptually divide B and B̂ into blocks of size k. In an array A[1..n/k], we
store A[i] = 0 whenever the block B̂(ik − k..ik] contains no opening parenthesis, or
equivalently when B(ik−k..ik] contains no unclosed parenthesis. Otherwise, we store
the maximal value A[i] ∈ [1, k] such that B̂[ik − k + A[i]] = (, i.e., B[ik − k + A[i]]
is the rightmost unclosed parenthesis in B(ik − k..ik]. An example is provided in
Figure 8.2a. We compute A by enumerating the unclosed parentheses in right-to-left
order as follows. We start with an all-zero array A[1..n/k]. We process B one
parenthesis B[j] at a time and in right-to-left order. A counter h is initially 0 and
keeps track of the excess of closing parentheses. Whenever B[j] =), we increase h
by one. Whenever B[j] = (and h > 0, we decrease h by one. Whenever B[j] = (
and h = 0, we leave h unchanged. In this case, we know that B[j] is an unclosed
parenthesis in block i = ⌈j/k⌉. If A[i] = 0, then we assign A[i]← j − (ik − k). It is
easy to see that this computes A correctly and in O(n) time.

Now we describe how to extract a block B̂(ik − k..ik] for some i ∈ [1, n/k]. If
A[i] = 0, then we simply return)k. Otherwise, note that the unclosed parentheses in
B(ik− k..ik] can be enumerated with the same technique that we used for computing
A[i], i.e., starting with a counter h = 0 and scanning B(ik−k..ik−k+A[i]] from right
to left. (We only need the array A to find a suitable position for starting the scan
with h = 0.) Whenever we find an unclosed parentheses, we set the corresponding
bit in the result word. When implemented naively, this approach takes O(k) time.
Note that B̂(ik− k..ik] depends solely on B(ik− k..ik] and A[i]. There are k possible
values of A[i], and the block B(ik − k..ik] is one of 2k possible parentheses sequences
of length k. The query result B̂(ik − k..ik] is also a parentheses sequence of length k.
Thus, we can precompute B̂(ik − k..ik] for every possible B(ik − k..ik] and A[i] in a
lookup table of k · 2k = O(

√
n · log n) entries, each of size k = O(log n) bits. An entry

of the table can be computed naively in O(k) = O(log n) time. Hence o(n/ log n)
time and bits of space suffice for computing and storing the table. Using the table, a
block of B̂ can be retrieved in constant time. See Figure 8.2b for an example.

In order to answer an arbitrary query asking for B̂[i..i + ℓ], we simply extract the
at most three blocks of B̂ that overlap B̂[i..i+ℓ]. Then, it is trivial to obtain B̂[i..i+ℓ)
by applying bit-wise logical operations and bit-shifts on the three blocks.

8.2.2 Dynamic Data Structures
As mentioned earlier, the algorithm for Theorem 8.1 requires that we maintain
support for rankopen, selectopen, and selectuncl while writing B in an append-only
manner. Now we explain how to use Lemmas 8.6 and 8.7 for this purpose, starting
with the solution for rankopen. The general idea is to divide B[1..n] into chunks of size
m = ⌈n/ log2 n⌉. At any given moment, we have already written a prefix B[1..bm+m′],
where b ∈ [0, ⌊n/m⌋] and m′ ∈ [0, m). There are b complete chunks B1, B2, . . . , Bb

94

8.2 Maintaining Operations on a BPS Prefix

with Bi = B(im−m..im], and one incomplete chunk Bb+1 = B(bm..bm + m′]. For
every complete chunk Bi, we store the static data structure from Lemma 8.6 and
the number Oi of opening parentheses that precede the chunk (i.e., the opening
parentheses in B[1..im−m]). If a query position of rankopen lies within a complete
chunk Bi, then the answer is the sum of Oi and the answer of the corresponding rank
query within Bi, which can be obtained in constant time. For the only incomplete
chunk Bb+1, we store the value Ob+1 and the query answers for all the positions in
Bb+1 (which can easily be maintained when appending parentheses). Hence we can
answer any query in constant time. Once we complete chunk Bb+1, we construct its
static data structure and compute Ob+2 for the new incomplete chunk.

The solution for selectopen is slightly more involved. In order to locate the kth
opening parenthesis (counting from 1), we first determine the maximal i such that
Oi < k. Since there are only O(log2 n) chunks, we can use a fusion node [FW93,
PT14] to compute i in constant time (some trivial adjustments are needed if multiple
Oi are identical). If i < b + 1, then we know that the kth opening parenthesis is
the (k −Oi)th opening parenthesis in the complete chunk Bi. Hence we can use the
static data structure from Lemma 8.6 constructed for chunk Bi to return the answer
in constant time. Otherwise, the kth opening parenthesis is the (k−Ob+1)th opening
parenthesis in the incomplete chunk. We can afford to explicitly store the positions
of all the opening parentheses in the incomplete chunk, and thus we can output the
answer in constant time. Once we complete the chunk, we have to insert the newly
computed Ob+2 into the fusion node.

Finally, we solve selectuncl, which is again more involved. We construct the data
structure from Lemma 8.7 for each chunk; however, this only allows us to select
unclosed parentheses with respect to each chunk. The difficulty lies in the fact that
an unclosed parenthesis with respect to a chunk may get closed when appending
a new chunk, and thus it may not be unclosed with respect to the entire prefix
B[1..bm + m′]. Hence we additionally maintain, for each complete chunk Bi, the
number Ei of unclosed parentheses with respect to B[1..bm] that it contains (i.e.,
with respect to the prefix consisting exactly of the complete chunks). We additionally
store the number Si = ∑︁

j∈[1,i) Ei of unclosed parentheses in all preceding chunks,
also for the incomplete chunk Bb+1 (where the Si have the same purpose as the Oi for
answering select queries). We use a stack to keep track of the unclosed parentheses
in Bb+1. Whenever we append an opening parenthesis, we push its position onto the
stack. Whenever we append a closing parenthesis, we either pop the topmost stack
element, or, whenever the stack is empty, we increment a counter C by one. This
counter indicates how many of the unclosed parentheses with respect to B[1..bm]
have already been closed by Bb+1. We store the stack in an array of size m. When
a query asks for the kth unclosed parenthesis (counting from 1), we first check if
Sb+1 − C ≥ k, i.e., if the kth unclosed parenthesis lies in a complete chunk. If this is
the case, then we use a fusion node to find the maximal i with Si < k, and then use
the static data structure to find the (k−Si)th unclosed parenthesis in Bi. Otherwise,
the kth unclosed parenthesis is the (k− (Sb+1−C))th unclosed parenthesis within the
already written part of Bb+1, and we can simply look up its location by accessing the
array that stores the stack. As soon as we complete the newly appended chunk Bb+1,
we update the counters Ei as follows. We start with the rightmost chunk that was
already complete, i.e., i = b. As long as C > Ei, we assign C ← C − Ei and Ei ← 0,
and then continue with i← i− 1. As soon as C ≤ Ei, we assign Ei ← Ei − C and
C ← 0. Since unclosed parentheses get closed in right-to-left order, it is easy to see

95

8 Computing the Succinct Lyndon Array in Small Working Space

that the described procedure correctly updates the number of unclosed parentheses
in each chunk. We then recompute all the values Si. Next, we construct the static
data structures from Lemma 8.7 for chunk Bb+1, and compute Eb+1 (the current size
of the stack) and Sb+2 = Sb+1 + Eb+2. Finally, we empty the stack and recompute
the fusion node that manages the values Si from scratch.

Whenever we append a parenthesis, we have to update the explicitly stored answers
for the incomplete chunk (e.g., the stack for selectuncl), which takes constant time.
The space needed for the explicitly stored answers is O(m log n) = O(n/ log n) bits.
Once we complete a chunk, we compute its static data structures from Lemmas 8.6
and 8.7 in O(m) time (summing to O(n) time for all chunks), permanently adding
O(m log log m/ log m) = O(m log log n/ log n) bits of space to the data structure, and
summing to overall O(n log log n/ log n) bits for all chunks. There are only O(log2 n)
values Oi, Ei, and Si, and updating them and recomputing the fusion nodes for
the Oi and Si takes O(polylog(n)) time and space [PT14]. The total space needed
(on top of B) is O(n log log n/ log n) bits, and the amortized time for appending a
parenthesis is constant. Hence we can maintain constant time operations in the
claimed complexity bounds.

8.3 Constructing the PSS Tree
Equipped with fast operations on a BPS prefix, we now describe how to actually
compute the BPS of the PSS tree in an append-only manner. We start with a
simple algorithm that is a straight-forward adaptation of Algorithm 7.1(a) from
Chapter 7. Suppose that we have already computed the subtree induced by nodes
[0, i). Attaching node i requires finding prev[i]. A strategy for this follows from
Corollary 7.5(i), which states that

(a) prev[i] lies on the already computed path from i− 1 to the root 0 (where the
nodes on the path are exactly the elements of prev∗[i− 1]), and

(b) on this path, prev[i] is the deepest node (or equivalently the rightmost position)
j such that either j = 0 or x[j..n] ≺ x[i..n].

These properties imply an algorithm in which the positions are inserted into
the tree one by one and in left-to-right order, similarly to how the algorithm from
Chapter 7 fills the PSS array in left-to-right order. This is also the approach of
Algorithm 8.1, which directly computes the BPS of the tree.

At the time at which the algorithm starts processing position i, the sequence
B contains the prefix of the BPS that ends with the opening parenthesis of node
i− 1, and the stack Q contains exactly the nodes on the path from i− 1 (topmost
stack element) to the root 0 (bottommost stack element). A loop is used to find the
topmost element j on the stack that satisfies j = 0 or x[j..n] ≺ x[i..n] (lines 4–8). By
properties (a) and (b), the final value of j is the previous smaller suffix of i, which
means that node i will be attached as a child of j. Hence we pop the nodes on the
path from i− 1 to j (but excluding j) from the stack, and then push i on the stack
(lines 7 and 10). As explained earlier, the BPS encodes a depth-first traversal of
this tree. In terms of this traversal, we just moved from node i − 1 up to node j,
and then down to node i. Thus, we write one closing parenthesis for each step up
(line 6), and then one opening parenthesis for moving down to node i (line 9). After

96

8.3 Constructing the PSS Tree

0

n
1

o
2

r
3

t
4

h
5

a
6

m
7

e
8

r
9

i
10

c
11

a
12

x =
prev = 0 1 2 3 0 6 80 6 8 ?

x0 = ε

x6 = america
x11 = ca
x8 = erica

x10 = ica

(a) String x = northamerica and lexicographically sorted list of suffixes that are relevant
for attaching node 11 to the partial PSS tree that contains the nodes [0, 10].

0

5 6

7 8

9 10 11

1
2

3
4 ??

?
?

B =
0
((((()))) ()

6
(()

8
(()

10
(

(b) PSS tree before attaching node 11.

0

5 6

7 8

9 10 11

1
2

3
4

B =
0
((((()))) ()

6
(()

8
(()

10
()

10
)
8

11
(

(c) PSS tree after attaching node 11.

Figure 8.3: The partial PSS tree before and after processing index 11 of the string
x = northamerica during the execution of Algorithms 8.1 and 8.2. We have p1 = 10,
p2 = 8, p3 = 6, p4 = 0, and pm = p3.

Algorithm 8.1 Simple construction of the PSS tree.
Require: String x[1..n] over general ordered alphabet.
Ensure: BPS B of the PSS tree of x.
1: B ← (▷ opening parenthesis of node 0
2: Q ← stack that contains only 0
3: for i = 1 to n do
4: j ← Q.top()
5: while j > 0 and x[i..n]≺x[j..n] do
6: append) to B ▷ closing parenthesis of node j
7: Q.pop()
8: j ← Q.top()
9: append (to B ▷ opening parenthesis of node i

10: Q.push(i)
11: append |Q| times) to B ▷ closing parentheses of nodes on path from n to 0

97

8 Computing the Succinct Lyndon Array in Small Working Space

processing position n, we write the closing parentheses of the nodes on the path from
n to 0 (line 11). Figure 8.3 shows the BPS before and after an outer loop iteration.

The correctness follows from properties (a) and (b). However, the algorithm
poses two challenges that make an efficient implementation difficult. First, we cannot
efficiently perform a lexicographical comparison of suffixes over general ordered
alphabet. Second, to achieve the desired space complexity, we cannot afford to
explicitly store the stack. Nevertheless, we will still use Algorithm 8.1 as a starting
point for our solution. An alternative description of Algorithm 8.1 is provided in
Algorithm 8.2, which omits the inner loop and the stack by instead using the set
prev∗[i − 1], which contains exactly the elements that were previously stored on
the stack. It should be easy to see that the positions contained in prev∗[i− 1] also
directly correspond to the so far unclosed parentheses. Hence we can use the data
structures from Section 8.2 to obtain any pq = rankopen(selectuncl(k − q + 1)) − 1
in constant time. We only have to maintain the number k of unclosed parentheses,
which is trivial. Hence the question is how to, given access to all the pq, efficiently
find m ∈ [1, k] such that pm = prev[i].

Algorithm 8.2 Constructing the BPS of the PSS tree.
Require: String x[1..n] over general ordered alphabet.
Ensure: BPS of the PSS Tree of x.
1: B ← (▷ open node 0
2: for i = 1 to n do
3: Let prev∗[i− 1] = {p1, . . . , pk} with ∀q ∈ [1, k) : prev[pq] = pq+1
4: Determine pm = prev[i]
5: Append m− 1 closing parentheses to B ▷ close nodes p1, . . . , pm−1
6: Append one opening parenthesis to B ▷ open node i
7: Append |prev∗[n]| closing parentheses to B ▷ close rightmost path

8.3.1 Efficiently Computing pm

Algorithm 8.1 computes pm = prev[i] by iterating over the indices p1, . . . , pk in
descending order (i.e., p1 first, pk last; the pq are exactly the stack elements). For
each index pq, it evaluates whether xpq ≺ xi. As soon as this is the case, we have
found pm = prev[i]. The cost of this approach is high: A naive suffix comparison
between xpq and xi takes lce(pq, i) + 1 individual character comparisons, which
means that we spend O(m + ∑︁m

q=1 lce(pq, i)) time to determine m. However, the
following property will allow us to decrease this time bound significantly.

Property 8.8 (Bitonic LCE Values). Let p1, . . . , pk be exactly the elements of
prev∗[i−1] in descending order and let pm = prev[i]. Furthermore, let ℓq = lce(pq, i)
for all q ∈ [1, k]. We have ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓm−1 as well as ℓm ≥ ℓm+1 ≥ · · · ≥ ℓk.

Proof. Follows from xp1 ≻ . . . ≻ xpm−1 ≻ xi ≻ xpm ≻ . . . ≻ xpk
and simple properties

of the lexicographical order.

From now on, we continue using the notation ℓq = lce(pq, i) from the corollary.
Note that the longest LCE between i and any of the pq occurs either with pm or
with pm−1. Let ℓmax = max(ℓm−1, ℓm) be this largest LCE value, then our more

98

8.3 Constructing the PSS Tree

xi =

xp1 = α

xp|α|+2 = β

xp|α|+|β|+3 = γ

xp|α|+|β|+|γ|+4 = δ

xi =

xpu = γ

xpu+1 =
xpu+2 =
xpu+3 =

...

xpw−3 =
xpw−2 =
xpw−1 =

xpw = δ

xi =

Figure 8.4: Matching character comparisons when determining pm. On the left we
have the suffix xi as well as xp1 , xp2 , . . . , xpw , which are relevant for the first step.
Each prefix α, β, γ, δ highlights the longest shared prefix between the respective suffix
xpq and xi. On the right side we have the suffixes xpu , xpu+1 , . . . , xpw , which are
relevant for the second step.

sophisticated approach for determining m only takes O(m + ℓmax) time. It consists
of two steps. First, we determine a candidate interval (u, w] ⊆ [1, k] of size at most
ℓmax that contains m. In the second step we gradually narrow down the borders of
the candidate interval until the exact value of m is known.

Step 1: Find a candidate interval Our goal is to find (u, w] = (u, u + ℓu + 1]
with m ∈ (u, w]. Initially, we naively compute ℓ1 = lce(p1, i), allowing us to evaluate
xp1 ≺ xi. If this condition holds, then we have m = 1 and no further steps are
necessary. Otherwise, let u← 1 and (i) let w ← u + ℓu + 1. We already know that
u < m holds. Now we have to evaluate if m ≤ w also holds, unless w ≥ k, in which
case we assign w ← k and terminate. If w < k, we compute ℓw = lce(pw, i) naively,
which allows us to check in constant time if xpw ≺ xi and decide if m ≤ w holds. If
this is not the case, then we assign u← w as well as ℓu ← ℓw and continue at (i). If
however xpw ≺ xi, then we have m ≤ w and therefore m ∈ (u, w]. Figure 8.4 (left)
outlines the procedure.

Step 2: Narrow down (u, w] to the exact value of m Now we gradually
tighten the borders of the candidate interval. If ℓu is smaller than ℓw, then we try to
increase u by one. Otherwise, we try to decrease w by one.

Assume that we have ℓu < ℓw, then it follows from Property 8.8 that ℓu+1 ≥ ℓu

holds. Therefore, when computing ℓu+1 we can simply skip the first ℓu character
comparisons. Now we use ℓu+1 to evaluate in constant time if xpu+1 ≻ xi holds. If
that is the case, then we have u + 1 < m and thus we can assign u← u + 1 and start
Step 2 from the beginning. If however xpu+1 ≺ xi holds, then we have m = u + 1
and no further steps are necessary. In case of ℓu ≥ ℓw we proceed analogously. Once
again, Figure 8.4 (right) visualizes the procedure.

99

8 Computing the Succinct Lyndon Array in Small Working Space

Time Complexity Step 1 is dominated by computing LCE values. Determining
the final LCE value ℓw takes ℓw + 1 individual character comparisons and thus
Θ(ℓw + 1) time. Whenever we compute any previous value of ℓw, we increase w by
ℓw + 1 afterwards. Therefore, the time for computing all LCE values is bounded by
Θ(w + ℓw) = Θ(u + ℓu + ℓw) ⊆ O(m + ℓmax). Since initially (u, w] has size at most
ℓmax, we call Step 2 at most O(ℓmax) times. With every call we increase ℓu or ℓw by
exactly the number of matching character comparisons that we perform. Therefore,
the total number of matching character comparisons is bounded by 2ℓmax. Thus, the
total time needed for Step 2 is O(ℓmax). In sum, processing index i takes O(m+ ℓmax)
time. For the total processing time of all indices (and thus the execution time of
Algorithm 8.2) we get:

n∑︂
i=1
O(

m⏟ ⏞⏞ ⏟
|prev∗[i− 1] ∩ [prev[i], i]|) +

n∑︂
i=1
O(

ℓmax⏟ ⏞⏞ ⏟
maxpq∈prev∗[i−1]lce(pq, i))

= O(n) + O(n2)

The O(m)-terms sum to O(n) since m−1 is exactly the number of closing parentheses
that we write while processing i, and there are exactly n + 1 closing parentheses in
the entire BPS. As it appears, the total time bound of the algorithm is still far from
linear time. However, it is easy to identify the crucial time component that makes
the algorithm too expensive. From now on we call the O(m) term of the processing
time negligible, while the O(ℓmax) term is called critical.

Clearly, if we could somehow remove the critical terms, we would already achieve
linear time. There exists a variety of data structures that could help us to achieve this
goal by accelerating suffix comparisons, e.g., the (compressed or sparse) suffix tree,
the (compressed) suffix array, or dedicated data structures for fast LCE queries (like
the one from Lemma 4.4). However, none of them can be constructed in O(n) time
over general ordered alphabet, and (even if we were considering a linearly-sortable
alphabet) such data structures are too large to achieve the desired space complexity.
This motivates the techniques that we describe in the following sections, which
directly remove the critical terms without relying on any of the aforementioned data
structures. This way, the execution time of Algorithm 8.2 decreases to O(n), while
the additional working space remains unchanged.

8.3.2 Achieving Linear Time
The critical time component for processing index i is ℓmax = maxpq∈prev∗[i−1]lce(pq, i).
When processing i with the technique from Section 8.3.1, we inherently find out
the exact value of ℓmax, and we also discover the index pmax for which we have
lce(pmax, i) = ℓmax. From now on, we simply use ℓ = ℓmax and j = pmax. While
discovering a large LCE value ℓ is costly, it yields valuable structural information
about the input text: There is a repeating substring of length ℓ with occurrences
x[j..j + ℓ) and x[i..i + ℓ). Intuitively, there is also a large repeating structure in the
PSS tree, and consequently a repeating substring in B. This motivates the techniques
shown in this section, which conceptually alter Algorithm 8.2 as follows. Whenever
we finish processing an index i with critical cost ℓ, we skip the next Ω(ℓ) iterations of
the loop by simply extending the BPS prefix with the copy of an already computed
part, which means that the amortized critical cost per index becomes constant.

100

8.3 Constructing the PSS Tree

Depending on j and ℓ we choose either the run extension (Section 8.3.2.1) or
the amortized look-ahead (Section 8.3.2.2) to perform the extension. Algorithm 8.3
outlines our final construction algorithm on a higher level, and complements the
written description by showing when the special cases arise. Before going into detail,
we point out that x[j..i) is a Lyndon word. As mentioned earlier, it follows from
Property 8.8 that j equals pm or pm−1. Regardless of which case applies, it definitely
holds next[pm−1] = i and prev[i] = pm, and thus Lemma 6.6 implies that x[j..i) is a
Lyndon word.

Algorithm 8.3 Linear time construction of the PSS tree.
Require: String x[1..n] over general ordered alphabet.
Ensure: BPS B of the PSS Tree of x.
1: B ← (
2: for i = 1 to n do
3: Let prev∗[i− 1] = {p1, . . . , pk} with prev[pq] = pq+1
4: Determine pm = prev[i],

using the technique from Section 8.3.1, causing critical cost
ℓ and discovering the index j with lce(j, i) = ℓ as described
in the beginning of Section 8.3.2.

5: Append m− 1 closing parentheses to B ▷ close node p1, . . . , pm−1
6: Append one opening parenthesis to B ▷ open node i

(For any q, let oq be the opening parenthesis of node q.)

7: if ℓ ≥ 2(i− j) then
8: Apply the run extension as described in Section 8.3.2.1.

Let t = ⌊ℓ/(i− j)⌋+ 1. Take B(oj ..oi] and append it (t− 2)
times to B. Continue in line 2 with i← i + (t− 2) · (i− j).

9: else
10: Apply the amortized look-ahead as described in Section 8.3.2.2.

Using Lemma 8.12, find the largest value χ ∈ [1, ⌊ℓ/4⌋] that
satisfies B[oj ..oj+χ−1] = B[oi..oi+χ−1], and append a copy
of B(oj ..oj+χ−1] to B. Continue in line 2 with i ← i + χ.
If χ < ⌊ℓ/4⌋, then iteration i + χ will automatically skip
additional Ω(ℓ) iterations by using the run extension.

11: Append |prev∗[n]| closing parentheses to B

8.3.2.1 Run Extension

We apply the run extension whenever ℓ ≥ 2(i− j). It is easy to see that in this case
x[j..j + ℓ) and x[i..i + ℓ) overlap such that the Lyndon word µ = x[j..i) repeats itself
at least three times, starting at index j. We call the substring x[j..i + ℓ) Lyndon run
with period |µ|. The number of repeated occurrences is t = ⌊ℓ/ |µ|⌋+ 1 ≥ 3, and the
starting positions of the repeated occurrences are r1, . . . , rt with r1 = j, r2 = i, and
generally rq = rq−1 + |µ|. In a moment we will show that in this particular situation
the following lemma holds.

101

8 Computing the Succinct Lyndon Array in Small Working Space

Lemma 8.9. Let oq be the index of the opening parenthesis of node q in B. Then
we have B[or1 ..or2] = B[or2 ..or3] = · · · = B[ort−1 ..ort].

Expressed less formally, each repeated occurrence of µ — except for (possibly) the
last one — induces the same substring in the BPS. Performing the run extension is
as easy as taking the already written substring B(or1 ..or2] = B(oj ..oi], and appending
it t − 2 times to B. Afterwards, the last parenthesis that we have written is the
opening parenthesis of node rt, and we continue the execution of Algorithm 8.2 with
iteration rt + 1. Thus, we have skipped the processing of rt − i indices. Since

rt − i = (t− 2) · |µ| ≥ (t− 2) · |µ|
t · |µ|

· ℓ ≥ 1
3 · ℓ = Ω(ℓ),

it follows that the average critical cost per index from [i, rt] is constant.

Proving the Lemma It remains to be shown that Lemma 8.9 holds. It is sufficient
to prove the correctness for t = 3, since the correctness for the general case inductively
follows by repeatedly applying the lemma with t = 3. Therefore, we only have to
show B[or1 ..or2] = B[or2 ..or3].

Isomorphic Subtrees Since µ is a Lyndon word, it is easy to see that the suffixes
at the starting positions of the repeated occurrences are lexicographically smaller than
the suffixes that begin in between the starting positions of the repeated occurrences,
i.e., we have ∀q ∈ (r1, r2) : xr1 ≺ xq and ∀q ∈ (r2, r3) : xr2 ≺ xq. Consequently,
the indices from (r1, r2) are descendants of r1 in the PSS tree, and the indices from
(r2, r3) are descendants of r2 in the PSS tree, i.e., each of the intervals [r1, r2) and
[r2, r3) induces a tree.

Next, we show that these trees are actually isomorphic. Clearly, the tree induced
by [r1, r2) solely depends on the lexicographical order of suffixes that begin within
[r1, r2), and the tree induced by [r2, r3) solely depends on the lexicographical order
of suffixes that begin within [r2, r3). Assume that the trees are not isomorphic,
then there must be a suffix comparison that yields different results in each interval,
i.e., there must be offsets a, b ∈ [0, |µ|) such that xr1+a ≺ xr1+b ⇐⇒ xr2+a ≻ xr2+b.
However, this is impossible, as shown by the lemma below.

Lemma 8.10. For a, b ∈ [0, |µ|) it holds xr1+a ≺ xr1+b ⇐⇒ xr2+a ≺ xr2+b.

Proof. The statement is trivial if a = b. Assume w.l.o.g. a < b, and let a′ = a + 1
and b′ = b + 1. We can show that the strings µa′ · µ and µb′ · µ have a mismatch:

µ =

1
↓

a′

↓
b′

↓

µ

a′+|µb′ |
↓
|µ|
↓

µa′ · µ = µa′ µ

µb′ µ

µb′ · µ = µb′ µ

Consider the two hatched areas in the drawing above. The top area highlights the
suffix µa′+|µb′ | of µ, which has length c = |µ| − (a′ + |µb′ |) + 1. The bottom area

102

8.3 Constructing the PSS Tree

µ

r1

r2 − 1
µ

r2

r3 − 1

r3

(a) Increasing run.

prev[r1]

µ

r1

r2 − 1

µ

r2

r3 − 1

r3

(b) Decreasing run.

Figure 8.5: The run of the Lyndon word µ = x[r1..r2) = x[r2..r3) = x[r3..r3 + |µ|)
induces isomorphic subtrees in the PSS tree. If xr1 ≺ xr2 , then the roots of the
subtrees form a chain (a). Otherwise, they have the same parent (b).

highlights the prefix µ[1..c] of µ. Since µ is a Lyndon word, there is no non-trivial
suffix of µ that is also a prefix of µ. It follows that the hatched areas cannot be
equal, i.e., µa′+|µb′ | ̸= µ[1..c]. This guarantees a mismatch between µa′ · µ and µb′ · µ.
Therefore, appending an arbitrary string to µa′ · µ and µb′ · µ does not influence
the outcome of a lexicographical comparison. The statement of the lemma directly
follows by appending xr3 and xr4 respectively:

µa′ · µ ≺ µb′ · µ ⇐⇒ µa′ · µ · xr3⏞ ⏟⏟ ⏞
= xr1+a

≺ µb′ · µ · xr3⏞ ⏟⏟ ⏞
= xr1+b

⇐⇒ µa′ · µ · xr4⏞ ⏟⏟ ⏞
= xr2+a

≺ µb′ · µ · xr4⏞ ⏟⏟ ⏞
= xr2+b

Finally, we show that in the PSS tree the induced isomorphic trees are connected
in a way that ultimately implies B[or1 ..or2] = B[or2 ..or3]. There are two possible
scenarios for this connection, which depend on the so called direction of the Lyndon
run. We call a run increasing if xr1 ≺ xr2 , and decreasing otherwise.

Increasing Runs First, we focus on increasing runs. It follows from xr1 ≺ xr2 ⇐⇒
µ · xr2 ≺ µ · xr3 ⇐⇒ xr2 ≺ xr3 that xr1 ≺ xr2 ≺ xr3 . Since µ is a Lyndon word,
we have ∀q ∈ (r1, r2) : xr2 ≺ xq as well as ∀q ∈ (r2, r3) : xr3 ≺ xq. Therefore, we
have prev[r2] = r1 and prev[r3] = r2, and the isomorphic subtrees are connected
as visualized in Figure 8.5a. It is easy to see that a preorder-traversal from r1 to
r2 yields the same sequence of parentheses as a preorder-traversal from r2 to r3.
Therefore we have B[or1 ..or2] = B[or2 ..or3], which means that Lemma 8.9 holds for
increasing runs.

Decreasing Runs With the same argument as for increasing runs, we have
xr1 ≻ xr2 ≻ xr3 in decreasing runs. We also have ∀q ∈ (r1, r2) : xr2 ≺ xq as well as
∀q ∈ (r2, r3) : xr3 ≺ xq, which means that prev[r2] ≤ prev[r1] and prev[r3] ≤ prev[r1]
hold. In Lemma 8.11, we show that prev[r1] = prev[r2] = prev[r3], such that the
isomorphic subtrees are connected as visualized in Figure 8.5b. A preorder-traversal
from r1 to r2 yields the same sequence of parentheses as a preorder-traversal from

103

8 Computing the Succinct Lyndon Array in Small Working Space

r2 to r3. Therefore we have B[or1 ..or2] = B[or2 ..or3], which means that Lemma 8.9
holds for decreasing runs.

Lemma 8.11. In decreasing runs we have prev[r1] = prev[r2] = prev[r3].

Proof. As explained previously, we have prev[r2] ≤ prev[r1] and prev[r3] ≤ prev[r1],
and thus only need to show xprev[r1] ≺ xr2 and xprev[r1] ≺ xr3 . We will show below
that µ cannot be a prefix of xprev[r1], from which the statement of the lemma can
be deduced easily because the suffixes xr1 , xr2 , and xr3 begin with the prefix µ.
Assume for the sake of contradiction that µ is a prefix of xprev[r1]. If we also assume
prev[r1] + |µ| > r1, then the situation is as visualized below.

x =

prev[r1]
↓

µ

r1
↓

prev[r1]+|µ|
↓

µ

As indicated by the hatched area, there is a non-trivial suffix of µ that is also a
prefix of µ, which contradicts the fact that µ is a Lyndon word. Thus we have
prev[r1] + |µ| ≯ r1. Also, we cannot have prev[r1] + |µ| = r1, because then prev[r1]
would be the starting position of another repeated occurrence of µ, which would
imply xprev[r1] ≻ xr1 . It follows prev[r1] + |µ| < r1, i.e., prev[r1] + |µ| ∈ (prev[r1], r1)
and thus xprev[r1]+|µ| ≻ xr1 . However, as shown below, this leads to a contradiction.

xprev[r1] ≺ xr1 ⇐⇒ µ · xprev[r1]+|µ| ≺ µ · xr2

⇐⇒ xprev[r1]+|µ| ≺ xr2

=⇒
xr1≻xr2

xprev[r1]+|µ| ≺ xr1

Hence µ is not a prefix of xprev[r1], and the correctness of the lemma follows.

8.3.2.2 Amortized Look-Ahead

Finally, we show how to amortize the critical cost O(ℓ) of processing index i if the
run extension is not applicable, i.e., if we have ℓ < 2(i− j). Unfortunately, the trees
induced by the nodes from [j, j + ℓ) and [i, i + ℓ) are not necessarily isomorphic.
However, we can still identify a sufficiently large isomorphic structure. In a moment
we will show that the following lemma holds.

Lemma 8.12. Let oq be the index of the opening parenthesis of node q in B. We
either have B[oj ..oj+⌊ℓ/4⌋−1] = B[oi..oi+⌊ℓ/4⌋−1], or there is an integer χ < ⌊ℓ/4⌋
with B[oj ..oj+χ−1] = B[oi..oi+χ−1] and an index h ∈ [i, i + χ) such that x[h..i + ℓ) is
a Lyndon run of the Lyndon word x[h..i + χ). We can determine which case applies,
and also determine the value of χ (if applicable) in O(ℓ) time and O(1) words of
additional space.

When performing the amortized look-ahead, we first determine which case of the
lemma applies. Then, if B[oj ..oj+⌊ℓ/4⌋−1] = B[oi..oi+⌊ℓ/4⌋−1], we extend the known
prefix of the BPS by appending a copy of B(oj ..oj+⌊ℓ/4⌋−1], and continue the execution
of Algorithm 8.2 with iteration i + ⌊ℓ/4⌋. Since this way we skip the processing

104

8.3 Constructing the PSS Tree

xi+h =

1
↓

d
↓

α

ℓ−h
↓

xi+ℓ

xj+h = α xj+ℓ
⎛⎝
∧ d < ℓ− q
∧ d = lce(j + h, j + q)

ℓ = lce(j, i)
⎞⎠ =⇒ =⇒

(︃
⇔ xi+h ≺ xi+q

xj+h ≺ xj+q

)︃
xj+q = β xj+ℓ

xi+q =
↑
1

↑
d

β

↑
ℓ−q

xi+ℓ

Figure 8.6: Proving Lemma 8.12. Equal patterns indicate equal substrings.

of ⌊ℓ/4⌋ − 1 = Ω(ℓ) indices, the average critical cost per index from [i, i + ⌊ℓ/4⌋)
is constant. If, however, the second case applies, then we determine the value of
χ and extend the known prefix of the BPS by appending a copy of B(oj ..oj+χ−1],
allowing us to continue the execution of Algorithm 8.2 with iteration i + χ. We know
that there is some h ∈ [i, i + χ) such that x[h..i + ℓ) is a Lyndon run of the Lyndon
word µ = x[h..i + χ). This run might even be longer; let ℓ′ = lce(h, i + χ), then
x[h..i + χ + ℓ′) is the longest run of µ that starts at index h. If the run is increasing,
then prev[i + χ] = h holds (see Section 8.3.2.1), and the longest LCE that we discover
when processing index i + χ is ℓ′. If the run is decreasing, then prev[i + χ] = prev[h]
holds. Also in this case, the longest LCE that we discover when processing index
i + χ is ℓ′, since lce(prev[i + χ], i + χ) is less than |µ| (see proof of Lemma 8.11).
Therefore, the critical cost of processing index i + χ will be O(ℓ′). However, since the
Lyndon run has at least three repeated occurrences, we will also skip the processing
of Ω(ℓ′) indices by using the run extension. The algorithmic procedure for the second
case can be summarized as follows. We process index i with critical cost O(ℓ) and
skip χ− 1 indices afterwards. Then, we process index i + χ with critical cost O(ℓ′)
and skip another Ω(ℓ′) indices by using the run extension. Since we have ℓ′ = Ω(ℓ),
the total critical cost is O(ℓ′), and the total number of processed or skipped indices
is Ω(ℓ′). Thus, the average critical cost per index is constant.

Proving Lemma 8.12 It remains to be shown that Lemma 8.12 holds. For
this purpose, assume B[oj ..oj+⌊ℓ/4⌋−1] ̸= B[oi..oi+⌊ℓ/4⌋−1]. From now on we refer to
B[oj ..oj+⌊ℓ/4⌋−1] and B[oi..oi+⌊ℓ/4⌋−1] as left and right side, respectively. Consider
the first mismatch between the two, where w.l.o.g. we assume that the mismatch
has an opening parenthesis on the left side, and a closing one on the right side. On
the left side, the opening parenthesis corresponds to a node j + q with q ∈ [1, ⌊ℓ/4⌋)
that is a child of another node j + h. Since x[j..i) is a Lyndon word, all nodes from
(j, j + ⌊ℓ/4⌋) ⊂ (j, i) are descendants of j (where j + ⌊ℓ/4⌋ < i because we only
apply the amortized look-ahead if ℓ < 2(i − j)). Consequently, we have h ∈ [0, q).
Now we look at the right side. Since we have a closing parenthesis instead of an
opening one, we know that i + q is not attached to i + h, but to a smaller node,
i.e., we have prev[i + q] < i + h. It follows that xj+h ≺ xj+q and xi+h ≻ xi+q. Let
d = lce(j + h, j + q) and assume d ≤ ℓ − q. Then due to xj+h ≺ xj+q we have
x[j + h + d] < x[j + q + d]. However, since we have x[j..j + ℓ] = x[i..i + ℓ], it follows
lce(i + h, i + q) = d and x[i + h + d] < x[i + q + d], which contradicts xi+h ≻ xi+q

(see Figure 8.6). Thus, it holds d = lce(j + h, j + q) ≥ ℓ− q, allowing us to show
that x[j + h..j + ℓ) is a Lyndon run with period q − h. Since prev[j + q] = j + h
holds, it follows from Lemma 6.6 that x[j + h..j + q) is a Lyndon word. Due to

105

8 Computing the Succinct Lyndon Array in Small Working Space

lce(j + h, j + q) > ℓ − q ≥ 3(ℓ/4) ≥ 3(q − h) we know that the Lyndon word
repeats at least four times, and the run extends all the way to the end of x[j..j + ℓ).
Note that since the opening parenthesis of node j + q causes the first mismatch
between B[oj ..oj+⌊ℓ/4⌋−1] and B[oi..oi+⌊ℓ/4⌋−1], we have B[oj ..oj+q−1] = B[oi..oi+q−1].
Therefore, χ← q already satisfies Lemma 8.12.

Finally, we explain how to determine χ = q in O(ℓ) time. As described above,
if B[oj ..oj+⌊ℓ/4⌋−1] ̸= B[oi..oi+⌊ℓ/4⌋−1], then there is some offset h < ⌊ℓ/4⌋ such
that x[j + h..j + ℓ) is a Lyndon run of at least four repeated occurrences of a
Lyndon word µ with |µ| ≤ ⌊ℓ/4⌋. Consequently, x[j + ⌊ℓ/4⌋ ..j + ℓ) has the form
suf(µ) · µt · pre(µ) with t ≥ 2, where suf(µ) and pre(µ) are respectively a proper
suffix and a proper prefix of µ (both possibly empty). A string of this form is called
extended Lyndon run. In Section 8.3.2.3 we propose an algorithm that checks whether
or not x[j + ⌊ℓ/4⌋ ..j + ℓ) is an extended Lyndon run in O(ℓ) time and constant
additional space. If x[j + ⌊ℓ/4⌋ ..j + ℓ) is not an extended Lyndon run, then we
have B[oj ..oj+⌊ℓ/4⌋−1] = B[oi..oi+⌊ℓ/4⌋−1] and no further steps are needed to satisfy
Lemma 8.12. Otherwise, the algorithm from Section 8.3.2.3 also provides the period
|µ| of the run, as well as |suf(µ)|. In this case, we try to further extend the extended
Lyndon run to the left: We are now not only considering x[j + ⌊ℓ/4⌋ ..j + ℓ), but
x[j..j + ℓ). We want to find the leftmost index j + h that is the starting position
of a repeated occurrence of µ. Given |µ| and |suf(µ)|, this can be done naively
by scanning x[j..j + ⌊ℓ/4⌋] from right to left, which takes O(ℓ) time. If we have
h ≥ ⌊ℓ/4⌋ − |µ|, then the first case of Lemma 8.12 applies and no further steps are
necessary. Otherwise, we use χ← h + |µ|. This concludes the proof of Lemma 8.12
and the description of the construction algorithm.

8.3.2.3 Detecting Extended Lyndon Runs

In this section, we propose a linear time algorithm that identifies extended Lyndon
runs, i.e., strings of the form suf(µ) · µt · pre(µ) with t ≥ 2, where suf(µ) and pre(µ)
are a proper suffix and a proper prefix of µ. Our approach exploits properties of the
Lyndon factorization, the definition of which is repeated below.

Theorem 6.4 (Lyndon Factorization [CFL58, Duv83, Lot83]).
Every non-empty string x[1..n] has a unique factorization x = f1f2 . . . fk such that
each fi is a Lyndon word, and f1 ⪰ f2 ⪰ . . . ⪰ fk. This factorization can be
computed in O(n) time over general ordered alphabet.

Lemma 8.13. Let x = suf(µ) · µt · pre(µ) be an extended Lyndon run. Let q1, . . . , qk1

be the Lyndon factorization of suf(µ), and let y1, . . . , yk2 be the Lyndon factorization
of pre(µ). Then the Lyndon factorization of x is q1, . . . , qk1 , µ, µ, . . . , µ⏞ ⏟⏟ ⏞

t times
, y1, . . . , yk2 .

Proof. Clearly, the factorization given by the lemma consists solely of Lyndon words.
Thus, we only have to show q1 ⪰ . . . ⪰ qk1 ⪰ µ ⪰ y1 ⪰ . . . ⪰ yk2 . Since we defined
q1, . . . , qk1 and y1, . . . , yk2 to be the Lyndon factorizations of suf(µ) and pre(µ)
respectively, we already know that ∀i ∈ [2, k1] : qi−1 ⪰ qi and ∀i ∈ [2, k2] : yi−1 ⪰ yi

hold. It remains to be shown that qk1 ⪰ µ ⪰ y1 holds. Since qk1 is a non-empty suffix
of suf(µ) and thus also a non-trivial suffix of µ, it follows that qk1 ≻ µ (because µ is a

106

8.4 Adaptation to the (Non-Succinct) Lyndon Array

Lyndon word and hence lexicographically smaller than all of its non-trivial suffixes).
Since y1 is a prefix of pre(µ) and thus also a prefix of µ, it follows (by definition of
the lexicographical order) that µ ≻ y1.

Lemma 8.13 implies that the longest factor of the Lyndon factorization of an
extended Lyndon run is exactly the repeating Lyndon word µ. This is the key insight
that we use to detect extended Lyndon runs.

Lemma 8.14. Let x be a string of length n. If x is an extended Lyndon run of the
form x = suf(µ) · µt · pre(µ), then we can determine |µ| and |suf(µ)| in O(n) time
and O(1) words of additional space.

Proof. Using Duval’s algorithm [Duv83, Algorithm 2.1], we compute the Lyndon
factorization of x in O(n) time and O(1) words of additional space. The algorithm
computes and outputs the factors one at a time and in left-to-right order. Whenever
it outputs a factor that is longer than all previous ones, we store its length l and its
starting position d. Note that since we investigate each factor individually and then
immediately discard it, we never need to store the entire factorization in memory.
If x is an extended Lyndon run, then following Lemma 8.13 it must have the form
x = suf(µ) · µt · pre(µ) with |suf(µ)| = d − 1 and |µ| = l. Since we know d and l,
checking whether x = suf(µ) ·µt ·pre(µ) holds can be achieved by performing a simple
scan over x.

8.4 Algorithmic Summary &
Adaptation to the Lyndon Array

We now summarize our construction algorithm for the PSS tree. We process the
indices from left to right using the techniques from Section 8.3.1, where processing an
index means attaching it to the PSS tree. Whenever the critical time of processing an
index is O(ℓ), we skip the next Ω(ℓ) indices by using the run extension (Section 8.3.2.1)
or the amortized look-ahead (Section 8.3.2.2). Thus, the critical time per index
is constant, and the total worst-case execution time is O(n). In terms of working
space, we only need O(n log log n/ log n) bits to support the operations described in
Section 8.2. The correctness of the algorithm follows from the description. Hence we
have shown the main result of the chapter.

Theorem 8.1. The succinct 2n + 2 bit representation of the Lyndon array of a
length-n string over general ordered alphabet can be computed in O(n) time and
O(n log log n/ log n) bits of additional working space (apart from the space needed
for input and output).

The algorithm can easily be adapted to compute the plain Lyndon array instead
of the PSS tree. For this purpose, we use a single array A (which later becomes
the Lyndon array), and no further auxiliary data structures. We maintain the
following invariant: At the time we start processing index i, we have A[j] = prev[j]
for j ∈ prev∗[i − 1], and A[j] = λ[j] for j ∈ [1, i) \ prev∗[i − 1]. As before, we
determine pm = prev[i] with the techniques from Section 8.3.1. In Step 1 and Step
2 we require some access on elements of prev∗[i− 1], which we can directly retrieve

107

8 Computing the Succinct Lyndon Array in Small Working Space

from A. Apart from that, the algorithm remains unchanged. Once we computed
pm, we set A[i] ← pm (= prev[i]). Additionally, it follows that i is the first node
that is not a descendant of any of the nodes p1, . . . , pm−1, which means that we have
next[pq] = i for any such node. Therefore, we assign A[pq]← i− pq (= λ[pq]). The
run extension and the amortized look-ahead remain essentially unchanged, with the
only difference being that we copy and append respective array intervals instead
of BPS substrings (some trivial shifts on copied values are necessary). Once we
have processed index n, we have A[j] = prev[j] for j ∈ prev∗[n], and A[j] = λ[j] for
j ∈ [1, n]\prev∗[n]. Clearly, all indices pq ∈ prev∗[n] do not have a next smaller suffix,
and we set A[pq]← n− pq + 1 = λ[pq]. After this, we have A = λ. Since at all times
we only use A and no auxiliary data structures, the additional working space needed
(apart from input and output) is constant. The linear execution time and correctness
of the algorithm follow from the description.

Theorem 8.15. Given a string x[1..n] over general ordered alphabet, we can compute
its Lyndon array λ in O(n) time using O(1) words of working space apart from the
space needed for x and λ.

8.5 Experimental Results
We implemented the construction algorithm for both the succinct and the plain Lyn-
don array (LA-Succ and LA-Plain). The C++ implementation is publicly available
at GitHub1. As a baseline, we compared the throughput of our algorithms with
the throughput of DivSufSort2, which is one of the fastest suffix array construction
algorithms in practice [FK17]. Thus, it can be seen as a natural lower bound for any
Lyndon array construction algorithm that depends on the suffix array. Additionally
we consider LA-ISA-NSV, which builds the Lyndon array by computing next smaller
values on the inverse suffix array (see [Fra+16], we use DivSufSort to construct the
suffix array). For LA-Succ we only construct the succinct Lyndon array without
the support data structure for fast queries. Instead of the described data structures
for fast selection of unclosed parentheses, we simply maintain a space efficient stack
that contains the positions of all the unclosed parentheses. All experiments were
conducted on the LiDO3 cluster3, using an Intel Xeon E5-2640v4 processor and
64GiB of memory. We repeated each experiment five times and use the median as
the final result. All texts are taken from the Pizza & Chili text corpus4.

Table 8.1 shows the throughput of the different algorithms, i.e., the number of
input bytes that can be processed per second. We are able to construct the plain
Lyndon array at a speed of between 41 MiB/s (fib41) and 82 MiB/s (xml), which is
on average 9.9 times faster than LA-ISA-NSV, and 8.1 times faster than DivSufSort.
Even in the worst case, LA-Plain is still 6.8 times faster than LA-ISA-NSV, and 5.2
times faster than DivSufSort (pitches). When constructing the succinct Lyndon

1https://github.com/jonas-ellert/nearest-smaller-suffixes, permanently archived in
the Software Heritage Archive at https://archive.softwareheritage.org/swh:1:dir:e0423be2
932248664f948e01c4aa9083929f2ce9;origin=https://github.com/jonas-ellert/nearest-sma
ller-suffixes;visit=swh:1:snp:14acaf39fa4ccd00ef9d1746465bb13d34966f09;anchor=swh:1:
rev:72cf8906b29199476e32fdd295d792ddada40ebe

2https://github.com/y-256/libdivsufsort
3https://www.lido.tu-dortmund.de/cms/de/LiDO3/index.html
4http://pizzachili.dcc.uchile.cl/

108

https://github.com/jonas-ellert/nearest-smaller-suffixes
https://archive.softwareheritage.org/swh:1:dir:e0423be2932248664f948e01c4aa9083929f2ce9;origin=https://github.com/jonas-ellert/nearest-smaller-suffixes;visit=swh:1:snp:14acaf39fa4ccd00ef9d1746465bb13d34966f09;anchor=swh:1:rev:72cf8906b29199476e32fdd295d792ddada40ebe
https://archive.softwareheritage.org/swh:1:dir:e0423be2932248664f948e01c4aa9083929f2ce9;origin=https://github.com/jonas-ellert/nearest-smaller-suffixes;visit=swh:1:snp:14acaf39fa4ccd00ef9d1746465bb13d34966f09;anchor=swh:1:rev:72cf8906b29199476e32fdd295d792ddada40ebe
https://archive.softwareheritage.org/swh:1:dir:e0423be2932248664f948e01c4aa9083929f2ce9;origin=https://github.com/jonas-ellert/nearest-smaller-suffixes;visit=swh:1:snp:14acaf39fa4ccd00ef9d1746465bb13d34966f09;anchor=swh:1:rev:72cf8906b29199476e32fdd295d792ddada40ebe
https://archive.softwareheritage.org/swh:1:dir:e0423be2932248664f948e01c4aa9083929f2ce9;origin=https://github.com/jonas-ellert/nearest-smaller-suffixes;visit=swh:1:snp:14acaf39fa4ccd00ef9d1746465bb13d34966f09;anchor=swh:1:rev:72cf8906b29199476e32fdd295d792ddada40ebe
https://github.com/y-256/libdivsufsort
https://www.lido.tu-dortmund.de/cms/de/LiDO3/index.html
http://pizzachili.dcc.uchile.cl/

8.6 Conclusion

array we achieve around 86% of the throughput of LA-Plain on average, but never
less than 81% (pitches). In terms of memory usage, we measured the additional
working space needed apart from the space for the text and the (succinct) Lyndon
array. Both LA-Plain and LA-Succ never needed more than 0.002 bytes of additional
memory per input character (or 770 KiB of additional memory in total), which is
why we do not list the results in detail.

8.6 Conclusion
We showed how to construct the succinct Lyndon array for a string over general
ordered alphabet in linear time using O(n log log n/ log n) bits of working space.
The construction algorithm can also produce the (non-succinct) Lyndon array in
linear time using only O(1) words of working space. Regardless of the computed
representation, the algorithm performs very well in practice. We envision practical
applications of this result in full-text indexing. For example, it has already been used
to accelerate Baier’s algorithm for constructing the suffix array [Bai16, OOB22].

Table 8.1: Throughput in MiB/s. All numbers are truncated to two decimal places.
(normal corpus) (repetitive corpus)

en
gl

is
h

10
24

M
iB

dn
a

38
5

M
iB

pi
tc

he
s

53
M

iB

pr
ot

ei
ns

10
24

M
iB

so
ur

ce
s

20
1

M
iB

xm
l

28
2

M
iB

ce
re

43
9

M
iB

ei
ns

te
in

.d
e

89
M

iB

fi
b4

1
25

5
M

iB

ke
rn

el
24

7
M

iB

LA-Plain 60.57 50.83 60.58 62.18 66.13 82.10 53.08 59.09 41.71 62.27
LA-Succ 52.81 46.03 49.49 52.77 57.31 68.56 48.20 50.35 35.30 54.42

LA-ISA-NSV 4.61 4.86 9.13 4.40 7.41 7.11 5.44 6.72 3.81 6.79
DivSufSort 5.53 5.76 11.61 5.21 9.25 8.62 6.57 8.45 4.20 8.45

109

Chapter 9 9Computing the
Succinct Lyndon Array in
Sublinear Time

The algorithms from Chapters 7 and 8 compute the Lyndon array of a length-n
string over general ordered alphabet in O(n) time. It is easy to see that this time is
optimal; computing the Lyndon array requires that each symbol gets inspected at
least once (i.e., each symbol must be involved in at least one symbol comparison).
However, this Ω(n) time lower bound does not apply if the string is packed over
integer alphabet [0, σ). In this case, each symbol is encoded in ⌈log2 σ⌉ bits, and the
string occupies only n ⌈log2 σ⌉ bits of space, which is at most O(n/ logσ n) words.
Hence O(n/ logσ n) time also suffices to read the string and inspect each symbol.
Since the succinct Lyndon array from Chapter 8 consists of merely O(n) bits, it
can also be written in a word-wise manner in O(n/ log n) ⊆ O(n/ logσ n) time. This
raises the question whether O(n/ logσ n) time also suffices for computing the succinct
Lyndon array. In this chapter, we positively answer this question.

Theorem 9.1. The succinct 2n+2 bit representation of the Lyndon array of a length-
n string packed over [0, σ) can be computed in O(n/ logσ n) time and O(n log σ) bits
of working space.

The plain BPS of the PSS tree, without additional support data structures,
cannot be used directly to efficiently simulate the Lyndon array or the nearest smaller
suffix arrays. However, as discussed in Chapter 8, we only have to support Parent
and SubtreeSize operations, which can be implemented with simple primitives on
the parentheses sequence, namely rank, select, find-close, and enclose (see, e.g.,
[MR01]). Some of the primitives, particularly rank and select, can be implemented
in constant time after an O(n/ log n) time preprocessing [Bab+15, MNV16]. We
leave the sublinear time construction of support data structures for the remaining
operations as future work.

111

9 Computing the Succinct Lyndon Array in Sublinear Time

Simple Construction Algorithm for the PSS Tree We use Algorithm 8.1 from
Chapter 8 as a starting point, and (for the sake of convenience) the algorithm and
its description are reproduced below. Suppose that we have already computed the
subtree induced by nodes [0, i). Attaching node i requires finding prev[i]. A strategy
for this follows from Corollary 7.5(i), which states that

(a) prev[i] lies on the already computed path from i− 1 to the root 0, and

(b) on this path, prev[i] is the deepest node (or equivalently the rightmost position)
j such that either j = 0 or x[j..n] ≺ x[i..n].

These properties motivate Algorithm 8.1, which directly computes the BPS of
the PSS tree by inserting the nodes in left-to-right order, which means that it writes
the BPS in an append-only manner.

Algorithm 8.1 Simple construction of the PSS tree.
Require: String x[1..n] over general ordered alphabet.
Ensure: BPS B of the PSS tree of x.
1: B ← (▷ opening parenthesis of node 0
2: Q ← stack that contains only 0
3: for i = 1 to n do
4: j ← Q.top()
5: while j > 0 and x[i..n]≺x[j..n] do
6: append) to B ▷ closing parenthesis of node j
7: Q.pop()
8: j ← Q.top()
9: append (to B ▷ opening parenthesis of node i

10: Q.push(i)
11: append |Q| times) to B ▷ closing parentheses of nodes on path from n to 0

At the time at which the algorithm starts processing position i, the sequence
B contains the prefix of the BPS that ends with the opening parenthesis of node
i− 1, and the stack Q contains exactly the nodes on the path from i− 1 (topmost
stack element) to the root 0 (bottommost stack element). A loop is used to find the
topmost element j on the stack that satisfies j = 0 or x[j..n] ≺ x[i..n] (lines 4–8). By
properties (a) and (b), the final value of j is the previous smaller suffix of i, which
means that node i will be attached as a child of j. Hence we pop the nodes on the
path from i− 1 to j (but excluding j) from the stack, and then push i on the stack
(lines 7 and 10). As explained earlier, the BPS encodes a depth-first traversal of
this tree. In terms of this traversal, we just moved from node i − 1 up to node j,
and then down to node i. Thus, we write one closing parenthesis for each step up
(line 6), and then one opening parenthesis for moving down to node i (line 9). After
processing position n, we write the closing parentheses of the nodes on the path from
n to 0 (line 11).

The correctness follows from properties (a) and (b). Each line takes constant time,
except for the lexicographical suffix comparison in line 5. It holds x[i..n] ≺ x[j..n] if
and only if either lce(i, j) = n− i + 1 or x[i + lce(i, j)] < x[j + lce(i, j)]. Thus, the

112

9.1 A Blockwise Algorithm for the PSS Tree

LCE data structure by Kempa and Kociumaka [KK19] (see Lemma 4.4) suffices to
lexicographically compare suffixes in constant time (we use this technique repeatedly
throughout the chapter). The number of inner loop iterations is less than the number
of closing parentheses, and hence the total time needed by the algorithm is O(n).

9.1 A Blockwise Algorithm for the PSS Tree
In this section, we modify Algorithm 8.1 such that instead of processing a single
index at a time, it processes blocks (i.e., consecutive intervals) of indices in each step.
The block size k =

⌊︂
log2 n

8⌈log2 σ⌉

⌋︂
is approximately one eighth of the number of symbols

that fit into one word of memory, and hence there are N =
⌈︁

n
k

⌉︁
= Θ(n/ logσ n) blocks.

Let B1, . . . , BN with ∀b ∈ [1, N] : Bb = (bk − k, bk] be the sequence of blocks (where
without loss of generality we assume that k divides n).

In the PSS tree, each block Bb induces a forest that contains exactly the nodes
that are members of the block. For any node j ∈ Bb, if prev[j] ∈ Bb, then prev[j]
is the parent of j in the forest induced by Bb. Otherwise, j is the root of a tree in
the forest. We call these trees small trees, and their roots small roots. The small
roots are exactly the left-to-right lexicographical minima of suffixes starting in Bb,
i.e., i ∈ Bb is a root if and only if ∀i′ ∈ Bb : i′ < i =⇒ x[i′..n] ≻ x[i..n]. Just like in
the PSS tree, we arrange the children of each node in increasing order. The BPS of
the forest is the concatenation of the BPSs of its small trees in left-to-right order.

High-Level Description of the Blockwise Algorithm We process the blocks
one at a time in left-to-right order. At the time at which we process block Bb, we
have already computed the partial PSS tree induced by all previous blocks, i.e., by
[0, bk − k]. For Bb, we first obtain its induced PSS forest. Our goal is to attach the
small roots (including their small trees) to the respective previous smaller suffixes,
which lie on the path from bk − k to 0 in the partial PSS tree. This is schematically
shown in Figure 9.1a. Note that small roots further to the right will be attached
further up in the path. This is because suffixes on the path are lexicographically
decreasing towards the root, while the suffixes corresponding to small roots are
lexicographically decreasing from left to right. Hence our task is to lexicographically
interleave the path with the small roots. For an efficient implementation of this
interleaving process, it is crucial that we maintain the path from bk − k to 0 in a
blockwise manner. Just like in Algorithm 8.1, we maintain a stack of the nodes on
the path. However, each stack element is a pair (a,L), where a indicates that we
consider block Ba, and L[1..k] is a bitvector indicating which of the positions in the
block are relevant. For j′ ∈ [1, k], it holds L[j′] = 1 if and only if ak − k + j′ lies on
the path from bk − k to 0. The stack then contains exactly the blocks with at least
one 1-bit in the bitvector. This is visualized in Figure 9.1a.

9.1.1 Detailed Description of the Blockwise Algorithm
So far, we described the algorithm in terms of the PSS tree. However, we want to
directly compute its BPS. After O(N) preprocessing time, we can obtain the BPS of
the forest induced by any block in O(1) time. This follows directly from the lemma
below.

113

9 Computing the Succinct Lyndon Array in Sublinear Time

Lemma 9.2. Let x[1..n] be packed over [0, σ) and let ϵ ∈ R+. After O(n/ logσ n)
preprocessing time, the following type of query can be answered in O(1) time. Given
a range [i, i + ℓ) ⊆ [1, n] of length ℓ ≤ log2 n

(2+ϵ)⌈log2 σ⌉ , output the BPS of the PSS forest
induced by [i, i + ℓ), as well as a bitvector R[1..ℓ] such that for j ∈ [1, ℓ] it holds
R[j] = 1 if and only if i + j − 1 is the root of a tree in the forest.

The proof of the lemma is provided in Section 9.2. When we lexicographically
interleave the suffixes, we will repeatedly encounter another type of query. Given a
small root, we have to find its previous smaller suffix within a block on the stack. A
solution for this is provided by the lemma below, which we prove in Section 9.3.

Lemma 9.3. Let x[1..n] be packed over [0, σ) and let ϵ ∈ R+. After O(n/ logσ n)
preprocessing time, we can answer the following type of query in O(1) time. Given a
position i ∈ [1, n] and a non-empty interval [j, j+ℓ) ⊆ [1, n] of length ℓ ≤ log2 n

(5+ϵ)·⌈log2 σ⌉ ,
find the position jmax = max({j′ ∈ [j, j + ℓ) | x[j′..n] ≺ x[i..n]} ∪ {j − 1}).

Now we have all the tools needed to describe the algorithm. We start with an
empty stack Q and B = (, i.e., with the opening parenthesis of the artificial root
node 0. Now we process the blocks B1, . . . , BN in left-to-right order. At the time at
which we start processing Bb, the stack Q contains the nodes on the path from bk−k
to 0 in the previously described blockwise manner, and B contains the prefix of the
BPS of the PSS tree that ends with the opening parenthesis of node bk− k. We start
by querying Lemma 9.2 with Bb and obtain the BPS F of the forest induced by Bb,
as well as the bitvector R indicating the small roots. We then find the rightmost
1-bit in R in constant time (there are only 2k = O(8

√
n) possible values of R, hence

a lookup table for rightmost or leftmost 1-bits can be precomputed in o(n/ log n)
time). If this bit is at position R[r′b], then rb = r′b + bk − k is the rightmost small
root in the forest induced by Bb. Note that x[rb..n] is the lexicographically smallest
suffix starting in Bb. The state after this step is visualized in Figure 9.1a. Now we
repeatedly run the interleaving main routine described below, during which we will
alter F , R, Q, and B.

Main Routine The goal of this routine is to interleave (the remaining small trees
of) Bb with the topmost block on the stack. If F is empty (which happens if and
only if R contains only zeroes), then we have attached all small trees and the main
routine terminates. Otherwise, if Q is empty, the remaining small trees need to be
attached to the root of the PSS tree, and we append F to B. This takes O(1) time
and also terminates the main routine.

If neither F norQ are empty, then we retrieve and pop the topmost pair (a,L) from
Q. We use Lemma 9.3 to obtain ra = max({j′ ∈ Ba | x[j′..n] ≺ x[rb..n]} ∪ {ak− k}),
and the corresponding within-block offset r′a = ra − ak + k. If prev[rb] ∈ Ba then
ra = prev[rb], and all remaining small trees have to be attached to nodes from
Ba ∩ [ra, n]. Since rb will be attached to ra, none of the nodes from Ba ∩ (ra, n] will
remain on the stack. Hence we compute a bitvector L′[1..k] where for j′ ∈ [1, k]
it holds L′[j′] = 1 if and only if L[j′] = 1 and j′ ≤ r′a (this takes constant time
using bit-wise operations). We then push (a,L′) back onto the stack. If however
prev[rb] /∈ Ba, then ra = ak − k (the first position to the left of Ba) and rb will be

114

9.1 A Blockwise Algorithm for the PSS Tree

B1 = [1, 10] B2 = [11, 20] B3 = [21, 30] B4 = [31, 40] forest of
small trees
induced by

B5 = [41, 50]
0

3
9

13
16

19
31

40 41
43

44
47

48

r5

B = ((())
0
↓

(()(())(())
3
↓

((()())
9
↓

((())
13
↓

(()()
16
↓

(()((()()())()(()()()))
19
↓

((()())(())(()())
31
↓

(
40
↓

Q : (1, 001
↑
3

000001
↑
9

0), (2, 001
↑

13

001
↑

16

001
↑

19

0), (4, 1
↑

31

000000001
↑

40

)

F = (())
41
↓

()
43
↓

(()())
44
↓

()
47
↓

((()))
48
↓

R = 1
↑

41

0 1
↑

43

1
↑
44

0 0 1
↑

47

1
↑
48

0 0

(a) . .

B = ((())
0
↓

(()(())(())
3
↓

((()())
9
↓

((())
13
↓

(()()
16
↓

(()((()()())()(()()()))
19
↓

((()())(())(()())
31
↓

(
40
↓

B′ =)
40
↓

(
41
↓

()))
31
↓

Q : (1, 001
↑
3

000001
↑
9

0), (2, 001
↑

13

001
↑

16

001
↑

19

0) F = ()
↑

43

(()())
↑

44

()
↑

47

((()))
↑

48

R = 0 0 1
↑

43

1
↑
44

0 0 1
↑

47

1
↑
48

0 0

(b) . .

B = ((())
0
↓

(()(())(())
3
↓

((()())
9
↓

((())
13
↓

(()()
16
↓

(()((()()())()(()()()))((()())(())(()())()(()))

19
↓

B′ =)
19
↓

(
43
↓

))
16
↓

(
44
↓

()()))
13
↓

Q : (1, 001
↑
3

000001
↑
9

0) F = ()
↑

47

((()))
↑

48

R = 0 0 0 0 0 0 1
↑

47

1
↑
48

0 0

(c) . .

B = ((())
0
↓

(()(())(())
3
↓

((()())((())(()()(()((()()())()(()()()))((()())(())(()())()(())))())(()()))

9
↓

B′ =)
9
↓

(
47
↓

)(
48
↓

(()))

Q : (1, 001
↑
3

0000000) F = εR = 0 0 0 0 0 0 0 0 0 0

(d) . .

B = ((())
0
↓

(()(())(())((()())((())(()()(()((()()())()(()()()))((()())(())(()())()(())))())(()())))()

3
↓

(
48
↓

(
49
↓

(
50
↓

Q : (1, 001
↑
3

0000000), (5, 00000001
↑

48

1
↑

49

1
↑
50

)
(e) . .

Figure 9.1: Data structures during the execution of the blockwise algorithm with
block size k = 10. While processing B5 = [41..50], the dashed edges will be inserted
into the partial PSS tree induced by [0..40]. The drawings show the state of the
relevant data structures before calling the subroutine during the first iteration of the
main routine (a), and after calling the subroutine in the first (b), second (c), and
third (d) iteration of the main routine. The state after finalizing B5 is shown in (e).

115

9 Computing the Succinct Lyndon Array in Sublinear Time

attached to a node in a block to the left of Ba. This means that block Ba will no
longer be on the stack. Note that either way ∀j′ ∈ (ra, rb) : x[j′..n] ≻ x[rb..n].

Our next task is as follows. We have to attach some (possibly none, possibly all)
of the remaining small trees to nodes in Ba. We reflect this change in F and R by
removing the corresponding prefix of F , and setting the corresponding bits in R to
0. Simultaneously, we extend B such that it contains the newly attached small trees,
possibly interleaved with additional closing parentheses of nodes from Ba. This is
realized by the following interleaving subroutine, which we run in a loop (and which
will later be replaced by a single constant-time table lookup). A sequence B′ is used
to buffer the parentheses that we will append to B.

Subroutine If either L or R consists only of 0-bits, we terminate the subroutine.
Otherwise, we obtain the rightmost 1-bit of L (with a lookup table). If this bit is at
position L[j′], then the corresponding absolute position is j = j′ + ak − k. If j′ = r′a
(which is equivalent to j = ra = prev[rb]), then all remaining small trees need to be
attached to j, and we append F to B′. We replace F with ε and R with an all-zero
bitvector. This terminates the subroutine.

Otherwise (i.e., if j′ > r′a or equivalently j > ra), we obtain the leftmost 1-bit
of R (with a lookup table). If this bit is at position R[i′], then i = i′ + bk − k is
the leftmost small root that we still have to attach. Now we have to determine if
x[i..n] ≺ x[j..n]. (This state is equivalent to reaching the head of the inner loop of
Algorithm 8.1 with the current values of i and j.) It holds x[i..n] ≺ x[j..n] if and only
if x[i..rb) ⪯ x[j..j + rb − i). This is because j + rb − i ∈ (ra, rb), and hence we have
already established that x[rb..n] ≺ x[j + rb − i..n]. Thus, if x[i..rb) = x[j..j + rb − i),
it immediately follows that x[i..n] ≺ x[j..n]. Note that x[i..rb) and x[j..j + rb − i)
are substrings of x(bk − k..bk] and x(ak − k..ak + k] respectively, which will later
be relevant for an efficient implementation. If x[i..n] ≺ x[j..n], then we append
) to B′ (this is the closing parenthesis of node j), and we assign L[j′] = 0. If,
however, x[i..n] ≻ x[j..n], then prev[i] = j. In this case, we take the prefix of F
that corresponds to the small tree rooted in i (which is the shortest balanced prefix
of F), and append it to B′. We remove this prefix from F and assign R[i′] = 0.
We then continue with the next iteration of the subroutine. After the subroutine
terminates, we append B′ to B and continue with the next iteration of the main
routine. Figures 9.1b to 9.1d shows the result of the subroutine in three consecutive
iterations of the main routine.

Finalizing the Block Once the main routine terminates for block Bb, we have
attached all the small trees of Bb to B. The stack Q contains the blockwise repre-
sentation of all the nodes on the path from bk to 0, except for the ones in block Bb.
Before we can continue with the next iteration of the main routine, we have to push
(b,L′′) on the stack, where the 1-bits in L′′ correspond to the nodes on the path
from bk to rb. Note that this information can be obtained from the state of F at the
beginning of the main routine iteration. Since F is a bitvector of length 2k, a lookup
table W [0..22k) suffices to store the bitvector L′′ for each possible F . The table has
O(4
√

n) entries and can be filled naively in O(4
√

n · polylog(n)) ⊂ O(n/ log n) time.
Once we need L′′, we simply look up W [int(F)] in constant time. Here, just like in
Chapter 4, int(F) is the value obtained by interpreting the binary representation of
F as an integer. Finally, in order to continue, the last written parenthesis needs to

116

9.1 A Blockwise Algorithm for the PSS Tree

be the opening parenthesis of bk. Hence we remove the at most k trailing closing
parentheses of B (in constant time, using another lookup table), and then continue
by processing block Bb+1. Figure 9.1e shows the running example after finalizing the
processed block.

After block BN has been processed, we finish the algorithm execution by ap-
pending the 2n + 2− |B| closing parentheses of the nodes on the path from n to 0.
This can be done in O(n/ log n) time by appending them one word (rather than one
parenthesis) at a time.

9.1.2 Analyzing the Time and Space Complexity
The initial and final processing of each block (i.e., computing F , R, rb, and the pair
(b,L′′) to push on the stack) takes constant time. There are exactly N terminal
iterations of the main routine, i.e., iterations where either F or Q is empty. Each
terminal iteration takes constant time. In each of the non-terminal iterations, we
pop a pair (a,L) from the stack. If we do not push an updated pair (a,L′) back
onto the stack, then block Ba will never participate in the stack again, and hence
this case occurs at most N times. If, however, we do push an updated pair (a,L′)
back onto the stack, then during the same main routine iteration we will also attach
all remaining small trees of Bb to the partial PSS tree, which can also occur only N
times. Hence the total number of iterations of the main routine is O(N). In each
non-terminal iteration of the main routine, we call the subroutine exactly once (even
though a single call may lead to multiple iterations of the subroutine). Apart from
this call, each iteration of the main routine takes constant time.

It remains to be shown how to implement the subroutine such that the O(N)
calls take O(n/ logσ n) time in total. A straightforward naive implementation takes
O(poly(k)) ⊆ O(polylog(n)) time per call. Note that the subroutine only accesses
the following information: L, r′a, R (which allows access to r′b), F , and substrings
xa = x(ak−k..ak +k] and xb = x(bk−k..bk]. Bitvectors L and R are of length k bits
each; r′a is an integer from [0, k] and hence can be encoded in ⌈log2(k + 1)⌉ ≤ ⌊0.99k⌋
bits (for sufficiently large k); sequence F is of length at most 2k bits; strings xa and
xb in packed representation require 2k ⌈log2 σ⌉ and k ⌈log2 σ⌉ bits respectively. This
motivates a lookup table

M [0..2k)[0..2⌊0.99k⌋)[0..2k)[0..22k)[0..22k⌈log2 σ⌉)[0..2k⌈log2 σ⌉).

In entry M [int(L)][r′a][int(R)][int(F)][int(xa)][int(xb)], we store B′ as well as the
new values of R and F after running the subroutine. Note that B′ is of length at
most 3k because it contains at most all the parentheses from F and one closing
parenthesis per 1-bit in L. Hence the information stored in each table entry fits in a
constant number of words and can be retrieved in constant time. We fill the table
in a lazy manner. Initially, we mark each entry as uninitialized. When accessing
M [int(L)][r′a][int(R)][int(F)][int(xa)][int(xb)], we check if this entry is marked. If it is,
then we run the naiveO(polylog(n)) time algorithm for the subroutine, store the result
in the entry, and remove its marking. Otherwise, the entry already contains the values
of B′, R, and F after running the subroutine, and we return them in constant time.
The lookup table has at most 27.99k⌈log2 σ⌉ ≤ 2log2 n·7.99/8 = n7.99/8 entries. Computing
one entry takes O(polylog(n)) time. Thus, the entire time spent on filling the table
(i.e., on running the subroutine naively) is O(n7.99/8 · polylog(n)) ⊂ O(n/ log n).

117

9 Computing the Succinct Lyndon Array in Sublinear Time

Additional O(n/ logσ n) preprocessing time is needed for Lemmas 9.2 and 9.3. Hence
we have shown that the entire algorithm runs in O(n/ logσ n) time.

For analyzing the space complexity, we observe that no uninitialized memory
or similar techniques are used (this includes the lookup tables used in the proofs
of Lemmas 9.2 and 9.3), and thus the working space measured in memory words
is linear in the time spent. Without loss of generality, we can assume that words
are of width Θ(log n) bits (since Ω(log n) bits are indeed sufficient, and, in case that
the actual width is much larger than O(log n) bits, we can simply simulate smaller
words). Therefore, the total space is O(n log σ) bits. The correctness of the algorithm
follows from the description. It remains to be shown that Lemmas 9.2 and 9.3 hold.

9.2 Proving Lemma 9.2
A key insight for the proof of Lemma 9.2 is that the lexicographical order of suffixes
starting in a small range either depends entirely on a short substring, or there is a
periodic substring that can still be exploited in order to determine the lexicographical
order of suffixes. This is formally expressed by the auxiliary lemma below.

Lemma 9.4. Let x[1..n] be a string over totally ordered alphabet, and let [i, i+2ℓ) ⊆
[1, n] be a non-empty interval of even length. Then at least one of the following
properties holds:

• ∀a, b ∈ [i, i + ℓ) : x[a..n] ≺ x[b..n] ⇐⇒ x[a..i + 2ℓ) ≺ x[b..i + 2ℓ), or

• ∀a, b ∈ [i, i + ℓ) : x[a..n] ≺ x[b..n] ⇐⇒ x[a..i + 2ℓ)# ≺ x[b..i + 2ℓ)#,
where # is an infinitely large symbol, i.e., ∀i′ ∈ [1, n] : x[i′] < #.

Proof. Let ñ = i + 2ℓ. Assume that neither of the properties holds, then there are
indices a1, a2, b1, b2 ∈ [i, i + ℓ) such that x[a1..n] ≺ x[b1..n] but x[a1..ñ) ≻ x[b1..ñ),
and x[a2..n] ≺ x[b2..n] but x[a2..ñ)# ≻ x[b2..ñ)#. It is easy to see that this implies

x[b1..ñ) ≺ x[a1..ñ) ≺ x[a1..n] ≺ x[b1..n] = x[b1..ñ)x[ñ..n], and
x[a2..ñ)# ≻ x[b2..ñ)# ≻ x[b2..n] ≻ x[a2..n] = x[a2..ñ)x[ñ..n].

Due to first condition and Property 6.1(ii), x[b1..ñ) is a proper prefix of x[a1..ñ),
which implies a1 < b1. Note that x[b1..ñ) is therefore also a proper suffix (and hence
a border) of x[a1..ñ), and thus x[a1..ñ) has period p1 = (b1 − a1). By the same
reasoning, the second condition implies that x[a2..ñ) is a border of x[b2..ñ). Hence
b2 < a2, and x[b2..ñ) has period p2 = (a2 − b2). By combining these observations
with the initial assumption, we obtain

x[b1..ñ)x[ñ− p1..n] = x[a1..n] ≺ x[b1..n] = x[b1..ñ)x[ñ..n], and
x[a2..ñ)x[ñ..n] = x[a2..n] ≺ x[b2..n] = x[a2..ñ)x[ñ− p2..n].

The former implies x[ñ − p1..n] ≺ x[ñ..n], the latter implies x[ñ..n] ≺ x[ñ − p2..n].
Hence

x[ñ− p1..ñ)x[ñ..n] ≺ x[ñ..n] ≺ x[ñ− p2..ñ)x[ñ..n]. (9.1)

Since x[max(a1, b2)..ñ) is a suffix of both x[a1..ñ) and x[b2..ñ), it has periods p1 and
p2. Note that a1 < i+ℓ−p1 and b2 < i+ℓ−p2, and hence x[max(a1, b2)..ñ) is of length

118

9.2 Proving the First Technical Lemma

ñ−max(a1, b2) > ñ−i−ℓ+min(p1, p2) = ℓ+min(p1, p2) > p1+p2. Therefore, it follows
from the periodicity lemma [FW65] that x[max(a1, b2)..ñ) has period p0 = gcd(p1, p2).
Since both x[ñ− p1..ñ) and x[ñ− p2..ñ) are suffixes of x[max(a1, b2)..ñ), they also
have period p0. Let α = x[ñ − p0..ñ), k1 = p1/p0 and k2 = p2/p0. Then both k1
and k2 are positive integers, and it holds x[ñ− p1..ñ) = αk1 and x[ñ− p2..ñ) = αk2 .
Let k0 be the largest integer (possibly 0) such that x[ñ..n] = αk0x[ñ + k0p0..n],
and let β = x[ñ + k0p0..n]. Then α is not a prefix of β. The inequality above
(Equation (9.1)) can be written as αk1+k0β ≺ αk0β ≺ αk2+k0β. However, this is
equivalent to αk1β ≺ β ≺ αk2β, which implies that α is a prefix of β. Due to this
contradiction, the initial assumption must be false, and the lemma holds.

Now we are ready to show Lemma 9.2, which is restated below.

Lemma 9.2. Let x[1..n] be packed over [0, σ) and let ϵ ∈ R+. After O(n/ logσ n)
preprocessing time, the following type of query can be answered in O(1) time. Given
a range [i, i + ℓ) ⊆ [1, n] of length ℓ ≤ log2 n

(2+ϵ)⌈log2 σ⌉ , output the BPS of the PSS forest
induced by [i, i + ℓ), as well as a bitvector R[1..ℓ] such that for j ∈ [1, ℓ] it holds
R[j] = 1 if and only if i + j − 1 is the root of a tree in the forest.

Proof. The answer to any query [i, i+ℓ) is a parentheses sequence of length exactly 2ℓ
and a bitvector of length ℓ. Hence it fits in a constant number of words. Let ℓmax =⌊︂

log2 n
(2+ϵ)·⌈log2 σ⌉

⌋︂
. We precompute a two-dimensional lookup table E[0..2ℓmax)[0..ℓmax)

with the purpose of answering the subset of queries that satisfy i + 2ℓmax > n. For
any such query [i, i + ℓ), it holds n− i ∈ [0, 2ℓmax), and we explicitly store its answer
in E[n− i][ℓ− 1). Since these queries only consider suffixes of length O(log n), each
of the O(log2 n) table entries can be computed naively in O(polylog(n)) time. Using
the lookup table, the corresponding queries can be answered in constant time.

We answer the remaining queries using the LCE data structure from Lemma 4.4
and additional lookup tables. For each possible value of ℓ, we construct tables
Aℓ[0..22ℓ⌈log2 σ⌉) and Bℓ[0..22ℓ⌈log2 σ⌉). For every string y[1..2ℓ] packed over [0, σ), we
store at position Aℓ[int(y)] the BPS of the PSS forest of y that is induced by [1, ℓ],
as well as the bitvector that indicates the roots. At position Bℓ[int(y)], we store the
BPS of the PSS forest of y# that is induced by [1, ℓ], as well as the bitvector that
indicates the roots. As before, # is an infinitely large symbol.

When answering query [i, i+ℓ), we first extract x′ = x[i, i+2ℓ). Due to Lemma 9.4,
the answer to the query is either Aℓ[int(x′)] or Bℓ[int(x′)]. A table Cℓ[0..22ℓ⌈log2 σ⌉) is
used to decide which answer is correct. For every string y[1..2ℓ] packed over [0, σ), we
store at position Cℓ[int(y)] an integer pair (a, b) ∈ [1, ℓ]2 such that y[a..2ℓ] ≺ y[b..2ℓ]
and y[a..2ℓ]# ≻ y[b..2ℓ]# (or a = b = 1 if such a pair does not exist). This is a
witness pair of suffixes for which y and y# disagree on the lexicographical order. At
query time, we look up (â, b̂) = Cℓ[int(x′)]. If x[i + â− 1..n] ≺ x[i + b̂− 1..n], then we
return Aℓ[int(x′)], and otherwise we return Bℓ[int(x′)]. The correctness follows from
Lemma 9.4. Testing x[i + â − 1..n] ≺ x[i + b̂ − 1..n] takes constant time with the
LCE data structure from Lemma 4.4. Extracting x′ and performing table lookups
also takes constant time because x′ fits in a single word of memory.

A single lookup table entry can be computed naively in O(polylog(n)) time.
There are O(log n) tables, each storing at most 22ℓmax⌈log2 σ⌉ ≤ 2log2 n/(1+ϵ/2) = 1+ϵ/2

√
n

entries. Thus, the precomputation of lookup tables takes O(1+ϵ/2
√

n · polylog(n)) time,

119

9 Computing the Succinct Lyndon Array in Sublinear Time

which is dominated by the O(n/ logσ n) time needed to construct the LCE data
structure.

9.3 Proving Lemma 9.3
The proof of Lemma 9.3 relies on the properties of periodic substrings that are stated
below.

Proposition 9.5. Let α, β, and γ be arbitrary strings. The following properties
hold.

(1) If αβ ≻ β and αγ ≺ γ then β ≺ γ.

(2) If αγ ≺ γ and α is not a prefix of γ, then ∀g, h ∈ N0 : g > h =⇒ αgβ ≺ αhγ.

Proof. We start with (1). Let k ∈ N0 be the maximal value such that both β = αkβ′

and γ = αkγ′ for some (possibly empty) strings β′ and γ′. If αk+1β′ ≻ αkβ′ and
αk+1γ′ ≺ αkγ′, then β′ ≺ αβ′ and αγ′ ≺ γ′. Now assume that γ′ ⪯ β′, then
αγ′ ≺ γ′ ⪯ β′ ≺ αβ′. However, this implies that α is a prefix of both β and γ, which
contradicts the definition of k. Thus β′ ≺ γ′, which also implies β = αkβ′ ≺ αkγ′ = γ.
For (2), consider any g, h ∈ N0 with g > h, and assume that αγ ≺ γ. Since α is
not a prefix of γ, it follows from αγ ≺ γ that αδ ≺ γ for every string δ. Hence also
αg−hβ ≺ γ, which implies αgβ = αhαg−hβ ≺ αhγ.

Now we are ready to show Lemma 9.3, which is restated below.

Lemma 9.3. Let x[1..n] be packed over [0, σ) and let ϵ ∈ R+. After O(n/ logσ n)
preprocessing time, we can answer the following type of query in O(1) time. Given a
position i ∈ [1, n] and a non-empty interval [j, j+ℓ) ⊆ [1, n] of length ℓ ≤ log2 n

(5+ϵ)·⌈log2 σ⌉ ,
find the position jmax = max({j′ ∈ [j, j + ℓ) | x[j′..n] ≺ x[i..n]} ∪ {j − 1}).

Proof. Without loss of generality, we assume j + 3ℓ < n and i + 2ℓ < n (otherwise,
we can simply add simulated padding 03ℓ to the end of the string, which does not
affect the query result or access time). We focus on the set

C = {j′ ∈ [j, j + ℓ) | x[j′..j′ + 2ℓ) = x[i..i + 2ℓ)} = {c1, c2, . . . , ch}

with c1 < c2 < · · · < ch. This set contains exactly the positions j′ ∈ [j, j + ℓ) for
which we cannot easily determine whether x[j′..n] ≺ x[i..n] by inspecting only a
small number of symbols. Hence it captures the difficult part of answering a query,
and we treat it separately from the rest. We answer the query using the following
subsets of [j, j + ℓ):

• D′ = {j′ ∈ C | x[j′..n] ≺ x[i..n]} (the hard subset), and

• D′′ = {j′ ∈ [j, j + ℓ) \ C | x[j′..n] ≺ x[i..n]} (the easy subset).

The result of the query is jmax = max(j′max, j′′max), where j′max = max(D′∪{j−1})
and j′′max = max(D′′∪{j−1}). We start with the significantly harder task of comput-
ing j′max. First, we outline the algorithmic approach and the combinatorial properties

120

9.3 Proving the Second Technical Lemma

of the present substrings (without giving details of an efficient implementation).
Later, we describe lookup tables that achieve the claimed preprocessing and query
times.

Periodicity of x[i..i + 2ℓ) and x[c1..ch + 2ℓ) We show that, if |C| ≥ 2, then
there is some p such that x[c1..ch + 2ℓ) has period p, and ∀k ∈ [1, h) : ck+1 − ck = p.
This is similar, e.g., to [MST97, Lemma 1] and [Kid+03, Lemma 2]. Assume
that |C| ≥ 2. For k ∈ [1, h), let pk = ck+1 − ck < ℓ. By design of C, it holds
x[ck..ck + 2ℓ− pk) = x[ck+1..ck+1 + 2ℓ− pk) = x[ck + pk..ck + 2ℓ). This means that
x[i..i + 2ℓ) = x[ck..ck + 2ℓ) has a border of length 2ℓ− pk, and therefore it has period
pk. Let p be the minimal period of x[i..i + 2ℓ). If there was some k ∈ [1, h) such that
pk < p, then p would not be the minimal period of x[i..i + 2ℓ). Hence pk ≥ p. Now
we show that ∀k ∈ [1, h) : pk = p. For the sake of contradiction, assume pk > p. By
definition of C, it holds pk < ℓ, which means that x[ck..ck +2ℓ) and x[ck+1..ck+1 +2ℓ)
overlap by ck + 2ℓ − ck+1 = 2ℓ − pk > ℓ > p symbols. Due to this overlap, and
because the identical substrings x[ck..ck + 2ℓ) and x[ck+1..ck+1 + 2ℓ) have period p,
it is clear that also their union x[ck..ck+1 + 2ℓ) has period p. However, this implies
x[ck..ck + 2ℓ) = x[ck + p..ck + p + 2ℓ), which means that ck + p should be in C. Due
to this contradiction, it holds pk = p. It also follows that x[c1..ch + 2ℓ) has period p.

Computing j′
max from c1, ch, and p We will later introduce lookup tables that

output c1, ch, and p for any query in constant time. The tables might return that c1
and ch do not exist (i.e., |C| = 0), in which case we report j′max = j − 1. Otherwise,
it might be that c1 = ch (i.e., |C| = 1). In this case, we report that j′max = c1 if
x[i..n] ≻ x[c1..n] (using an LCE query for the comparison). Otherwise, we report
j′max = j − 1. It remains to be shown how to compute j′max if c1 ̸= ch (i.e., if |C| ≥ 2,
and the previously described periodicity exists).

We evaluate x[i..n] ≺ x[i + p..n] and x[ch..n] ≺ [ch + p..n] (using LCE queries).
Due to the periodicity of x[c1..ch + 2ℓ), for k ∈ [1, h) it holds x[ch..n] ≺ x[ch + p..n]
if and only if

x[ck..n] = x[i..i + p)h−kx[ch..n] ≺ x[i..i + p)h−kx[ch + p..n] = x[ck+1..n].

Hence either x[c1..n] ≺ x[c2..n] ≺ . . . ≺ x[ch..n] or x[c1..n] ≻ x[c2..n] ≻ . . . ≻ x[ch..n],
and we already know which of the two applies. Depending on the outcome of the
lexicographical comparisons, we report j′max according to one of the following three
cases.

Case 1: x[c1..n] ≻ x[c2..n] ≻ . . . ≻ x[ch..n].
For the computation of j′max, we are only interested in the rightmost k ∈ [1, h]
such that x[i..n] ≻ x[ck..n]. Since x[ch..n] is both rightmost and lexicographi-
cally minimal among all the possible x[ck..n], we simply use another LCE query
to check if x[i..n] ≻ x[ch..n]. If yes, then we report j′max = ch. Otherwise, we
report j′max = j − 1.

Case 2: x[i..n] ≻ x[i + p..n] and x[c1..n] ≺ x[c2..n] ≺ . . . ≺ x[ch..n].
Let α = x[i..i + p), β = x[i + p..n], and γ = x[c2..n]. The precondition of this
case means that αβ ≻ β and αγ ≺ γ. Proposition 9.5(1) implies β ≺ γ, and
thus also x[i..n] = αβ ≺ αγ = x[c1..n] ≺ x[c2..n] ≺ . . . ≺ x[ch..n]. Hence we
report j′max = j − 1.

121

9 Computing the Succinct Lyndon Array in Sublinear Time

Case 3: x[i..n] ≺ x[i + p..n] and x[c1..n] ≺ x[c2..n] ≺ . . . ≺ x[ch..n].
Let α = x[i..i + p). We start by computing r = ⌊lce(i, i + p)/p⌋ + 1 and
s = ⌊lce(c1, c1 + p)/p⌋+ 1, i.e., the respectively maximal integer powers with
x[i..n] = αrβ and x[c1..n] = αsγ, where β = x[i + rp..n] and γ = x[c1 + sp..n].
The precondition of this case means that αsγ ≺ αs−1γ, and thus also αγ ≺ α.
Note that α is not a prefix of γ. Hence Proposition 9.5 (2) implies that
αrβ ≺ αs′γ for any s′ < r. Thus, for k ∈ [1, h], if s − k + 1 < r then
x[i..n] = αrβ ≺ αs−k+1γ = x[ck..n]. Hence we only have to consider k ≤ s−r+1.
On the other hand, the precondition of the case also implies αrβ ≺ αr−1β, and
thus αβ ≺ α. Also, α is not a prefix of β. Hence Proposition 9.5 (2) (with
swapped roles of β and γ) implies that αrβ ≻ αs′γ for any s′ > r. For k ∈ [1, h],
if k ≤ s− r then x[i..n] = αrβ ≻ αs−k+1γ = x[ck..n].
This motivates the following strategy. If s− r + 1 < 1, then there is no suitable
choice of k and we report j′max = j − 1. If h ≤ s − r, then x[i..n] ≻ x[ch..n]
and we report j′max = ch. We are left with the case where s − r + 1 ∈ [1, h].
If x[i..n] ≻ x[cs−r+1..n], then we report j′max = cs−r+1 (we use another LCE
query to achieve constant time). If we still have not reported anything, then we
report j′max = cs−r if and only if s− r ∈ [1, h] (we have already established that
x[i..n] ≻ x[cs−r..n]). If, however, s− r /∈ [1, h], then we report j′max = j − 1.

The three cases are exhaustive, and it takes constant time to determine which case
applies. Regardless of the case, we report j′max in constant time. We require the LCE
data structure from Lemma 4.4, and hence the preprocessing time is O(n/ logσ n).

Lookup Tables for c1, ch, p, and j′′
max As described above, we can compute

j′max in constant time if we can determine c1, ch, and p in constant time. Note that
these values depend solely on the substrings x[i..i + 2ℓ) and x[j..j + 3ℓ). This also
holds for j′′max, which can be written as

j′′max = max({j′ ∈ [j, j + ℓ) | x[j′..j′ + 2ℓ) ≺ x[i..i + 2ℓ)} ∪ {j − 1}).

For each possible value of ℓ, we compute a lookup table Lℓ[0..22ℓ⌈log2 σ⌉)[0..23ℓ⌈log2 σ⌉).
Let y1[1..2ℓ] and y2[1..3ℓ] be packed over [0, σ). In entry Lℓ[int(y1)][int(y2)], we store
the quadruple ⟨p̂, ĉmin, ĉmax, ĝmax⟩, where

• p̂ is the minimal period of y1,

• ĉmin = min({k′ ∈ [1, ℓ] | y2[k′..k′ + 2ℓ) = y1} ∪ {∞}),

• ĉmax = max({k′ ∈ [1, ℓ] | y2[k′..k′ + 2ℓ) = y1} ∪ {−∞}),

• ĝmax = max({k′ ∈ [1, ℓ] | y2[k′..k′ + 2ℓ) ≺ y1} ∪ {−∞}).

A single entry Lℓ[int(y1)][int(y2)] can be computed naively in O(poly(ℓ)) ⊆
O(polylog(n)) time. Table Lℓ has 25ℓ⌈log2 σ⌉ ≤ 2log2 n/(1+ϵ/5) = 1+ϵ/5

√
n entries,

and there are O(log n) tables. Thus, the entire preprocessing time is O(1+ϵ/5
√

n ·
polylog(n)) ⊂ O(n/ logσ n). Whenever we have to answer a query i, [j, j + ℓ), we
extract x′ = x[i..i + 2ℓ) and x′′ = x[j..j + 3ℓ) and look up ⟨p, cmin, cmax, gmax⟩ =
Lℓ[int(x′)][int(x′′)]. This takes constant time because x′ and x′′ fit in a single word
of memory. From the construction of Lℓ, it is clear that

122

9.4 Conclusion

• p is the minimal period of x[i..i + 2ℓ).

• If cmin ̸=∞ then c1 = j + cmin − 1. Otherwise, c0 does not exist.

• If cmax ̸= −∞ then ch = j + cmax − 1. Otherwise, ch does not exist.

• If gmax ̸= −∞ then j′′max = j + gmax − 1. Otherwise, j′′max = j − 1.

Hence we can compute j′max in constant time as described above, and output the
query result jmax = max(j′max, j′′max) in constant time.

9.4 Conclusion
We presented an algorithm that computes the succinct Lyndon array in O(n/ logσ n)
time, which is optimal on a word RAM of width w = O(log n). The working space
is O(n log σ) bits, dominated by the LCE data structure and the stack Q. The
working space may possibly be improved by adapting the techniques from Chapter 8.
However, this seems challenging due to the technical nature of Chapters 8 and 9. We
envision that the new algorithm will lead to the first sublinear time algorithm that
computes all runs, which can be done in linear time by using the Lyndon array (which
we discuss in Chapter 10). This will require overcoming multiple smaller hurdles.
Most notably, we will need support data structures that allow fast operations on the
BPS after a sublinear time preprocessing. Also, since a string may contain Ω(n) runs,
we need a non-trivial encoding of runs in order to report them in sublinear time.

123

III
Computing Maximal Periodic

Substrings

Computing Maximal Periodic Substrings IIIIntroduction and
Related Work

The notion of repetition is a central concept in combinatorics on words and algorithms
on strings. The simplest type of repetition is a square, which is a string of the form
y ·y (for some non-empty string y). A fundamental algorithmic task is to detect square
substrings in a longer string x[1..n], i.e., substrings of the form x[i..i+2ℓ) = x[i..i+ℓ)2.
For example, the string mississippi contains the squares pp, ss (twice), ississ,
and ssissi, which is visualized below.

m
1

i
2

s
3

s
4

i
5

s
6

s
7

i
8

p
9

p
10

i
11

i s s i s s
s s i s s i 1

The number of squares in a length-n string can be Θ(n2). For example, every
even-length substring of x = x[1]n is a square. Hence, if we want to efficiently report
all square substrings, we cannot explicitly output each square separately. However,
one might argue that a square y ·y is of less interest if y itself is already non-primitive,
i.e., if there is a string w and integer k ≥ 2 such that y = wk. This is because a
square y · y = wk · wk is covered by 2k − 1 overlapping occurrences of the square w2,
and thus we indirectly report occurrences of y · y by reporting occurrences of w · w.
Hence we are only interested in primitively rooted squares, i.e., squares y · y where y
is primitive.

A length-n string contains at most O(n log n) primitively rooted squares. This
bound is tight, as some strings, e.g., Fibonacci strings, contain Θ(n log n) primitively
rooted squares [Cro81]. Thus, if we explicitly output each primitively rooted square
separately, then we still cannot achieve linear time. A more efficient approach is to
report groups of squares that form a periodic substring. A run (also called maximal
periodic substring) is a substring x[i..j] of minimal period p ≤ j−i+1

2 such that neither
x[i− 1..j] nor x[i..j + 1] has period p (respectively if i > 0 and j < n). We represent
the run as a triple ⟨i, j, p⟩. For example, the substring ississi of mississippi is a
run ⟨2, 8, 3⟩. In a run of period p, every length 2p substring is a primitively rooted
square. Conversely, every primitively rooted square of length 2p is contained in
exactly one run of period p, and thus the runs in a string fully capture the structure
of squares. Conveniently, there are less than n runs in any length-n string [Ban+17],
which means that we can hope to compute and report the runs in linear time.

1Classic Mississippi steamboat, envisioned by DALL·E [Bet+23].

127

Computing Maximal Periodic Substrings

Background and Related Work
Bioinformatics Runs in DNA sequences are called tandem repeats and have a
profound biological meaning. For example, the human HTT gene contains the CAG
triplet repeat, i.e., a substring of the form (CAG)k. The exponent k is inversely
correlated with the probability of developing Huntington’s disease. The higher k is,
the earlier the onset of the disease (see, e.g., [BM13]). There are numerous other
pathogenic conditions that are caused by abnormally long tandem repeats in the
DNA, e.g., myotonic dystrophy, fragile X syndrome, spinocerebellar ataxias, and
Friedreich’s ataxia (see, e.g., [Cie+17]).

Another notable application of runs is in forensic DNA analysis, where short
tandem repeat typing is one of the primary methods (see, e.g., [Tre12, Udo+20]). In
the human genome, many tandem repeats and their genetic locations are well-known
and understood. Forensic laboratories frequently use the selective amplification
of these DNA locations, which allows them to determine the lengths of the runs.
The lengths exhibit significant variability among individuals. Consequently, even a
few genetic locations are sufficient to generate a unique fingerprint that identifies
an individual. Such DNA fingerprints streamline the process of comparing a DNA
sample from a crime scene with that of a subject. The FBI originally used 13 different
runs as a core requirement for their DNA database, with seven new runs added in
2017 [Webc]. It is debated whether the runs used for forensic analysis can reveal
sensitive information about an individual that goes beyond mere identity [WBM20].

Due to their significance in DNA, the computation of runs has been a topic of
practical research. For example, there is an efficient practical implementation for
computing all runs (either exactly or allowing some error) [KBK03].

Combinatorics on Words We will study runs primarily from a theoretical per-
spective. The study of squares in strings goes back to the work of Thue published in
1906 [Thu06, Ber94], who considered the question of constructing an infinite string
with no squares. It is easy to see that any sufficiently long binary string must contain
a square, and Thue proved that there exists an infinite ternary string with no squares.
His result has been rediscovered multiple times, and in 1979 Bean, Ehrenfeucht and
McNulty [BEM79] started a systematic study of the so-called avoidable repetitions,
see for example the survey by Currie [Cur05].

A basic tool in the area of combinatorics on words is the so-called periodicity
lemma, which states that, if p and q are distinct periods of x[1..n] and p + q −
gcd(p, q) ≤ n, then gcd(p, q) is also a period [FW65] (which we already used in the
proof of Lemma 9.3). This was generalized in a myriad of ways, for example for
strings [CMR99, Jus00, TZ03], partial words (strings with “don’t cares”) [BB99, SK01,
BH02, SG04, BBS08, IS14, Koc+22], Abelian periods[CI06, Bla+13], parametrized
periods [AG08], order-preserving periods [Mat+16, Gou+20], and approximate
periods [AEL10, AL12, AEL15].

As mentioned earlier, a length-n string may contain Ω(n2) squares. While
considering runs rather than squares is one way of avoiding this lower bound, from
the combinatorial point of view it would also be natural to count only distinct squares.
Fraenkel and Simpson [FS98] showed an upper bound of 2n and a lower bound of
n−Θ(

√
n) on the maximum number of distinct squares in a length-n string. After

a sequence of improvements [Ili07, DFT15, Thi20], the upper bound was recently
improved to n [BL22, BL23]. The last result was already generalized to higher

128

Introduction and Related Work

powers [LPR22]. However, counting or reporting distinct squares inherently requires
some form of sorting, which means that we cannot accomplish it in linear time over
general alphabets.

Computing all runs does not require sorting and, as discussed earlier, it fully
captures the structure of all square substrings. Kolpakov and Kucherov [KK99]
showed an upper bound of O(n) on the number of runs in a length-n string, which
started a long line of work on determining the exact constant [Ryt06, CI08b, Gir08,
PSS08, Gir09, CIT11], culminating in the celebrated paper by Bannai et al. [Ban+17]
showing an upper bound of n, and followed by even better upper bounds for bi-
nary strings [Fis+15b, Hol17]. This was complemented by a sequence of lower
bounds [FY08, Mat+08, Mat+09, Sim10]. Apart from showing the O(n) upper
bound, Kolpakov and Kucherov [KK99] also provided an algorithm that computes
all runs over linearly-sortable alphabet in O(n) time.

Computing Repetitions Over General Alphabets In this part of the disserta-
tion, we are interested in the algorithmic aspects of detecting repetitions in strings,
particularly over general ordered and unordered alphabet. The most basic problem
is checking if a given string contains at least one square, while the most general
problem is computing all the runs. Testing square-freeness was considered by Main
and Lorentz [ML84] around 40 years ago, who designed an O(n log n) time algorithm
based on a divide-and-conquer approach and a linear-time procedure for finding all
new squares obtained when concatenating two strings. In fact, their algorithm can
be used to find (a compact representation of) all squares in a given string within the
same time complexity. Their algorithm is designed for general unordered alphabet,
i.e., it performs only equality comparisons of symbols. They also proved that any
algorithm based on such comparisons needs Ω(n log n) operations to test square-
freeness in the worst case. However, to obtain the lower bound they had to consider
instances consisting of up to n distinct characters, that is, over alphabet of size n.
This is somewhat unsatisfactory; indeed, Main and Lorentz [ML84] explicitly asked
whether there is a faster algorithm that tests square-freeness over general unordered
alphabet if the size of the alphabet is restricted. In Chapter 11, we positively answer
this question with an O(n log σ) time algorithm, where σ is the number of distinct
symbols in the string.

Another O(n log n) time algorithm for finding all repetitions was provided by
Crochemore [Cro81], who also showed that testing square-freeness can be done in
O(n) time for constant-size alphabet [Cro86]. In fact, the latter algorithm works
in O(n log σ) time for general ordered alphabet of size σ, i.e., it requires order
comparisons of symbols. Later, Kosaraju [Kos94] showed that, assuming constant-
size alphabet, O(n) time is enough to find the shortest square starting at each
position of the input string. Apostolico and Preparata [AP83] provide another
O(n log n) time algorithm assuming a general ordered alphabet, based more on
data structure considerations than combinatorial properties of strings. Finally, a
number of alternative O(n log n) and O(n log σ) time algorithms (respectively for
general unordered and general ordered alphabet) can be obtained from the work
on online [HC08, Kos14, Kos15c] and parallel [Apo92, AB96] square detection
(interestingly, this cannot be done efficiently in the related streaming model [MS19,
MS22]). Breslauer explicitly asked whether testing square-freeness in linear time is
possible over general ordered alphabet [Bre92, Section 4.4] around 30 years ago.

129

Computing Maximal Periodic Substrings

The first steps towards answering Breslauer’s question were made as a byproduct
of the more general results on finding all runs (since a string is square-free if and only
if it is run-free). For general ordered alphabet, Kosolobov [Kos15b] showed that the
decision tree complexity of this problem is indeed only O(n), and later complemented
this with an efficient O(n(log n)2/3) time algorithm [Kos16a] (still using only O(n)
comparisons, i.e., the time is dominated by other word RAM operations). The
algorithm is based on an earlier solution by Bannai et el. [Ban+17] that reduces the
computation of all the runs to answering an online sequence of O(n) LCE queries.
Kosolobov conjectured that O(n) time could be achieved, which inspired a line of
work aimed at accelerating the LCEs. The time complexity for computing all runs
was first improved to O(n log log n) by providing a general mechanism for LCEs over
general ordered alphabet [Gaw+16], and then to O(nα(n)) by observing that the
LCE queries have additional structure [Cro+16]. In Chapter 10, we show how to
compute the LCEs in O(n) time by exploiting the rich structure of Lyndon words in
the string.

Contributions
We fully resolve the complexity of computing runs (and thus detecting squares)
over general alphabets. For general ordered alphabet, we provide an algorithm that
computes all runs in O(n) time and words of space (Chapter 10). This confirms
Kosolobov’s conjecture [Kos16a] and positively answers the long-standing question
whether testing square-freeness over general ordered alphabet is possible in linear
time (see [Bre92, Section 4.4]). The algorithm is much simpler than previous near-
linear time solutions, and we complement the theoretical result with a fast practical
implementation.

For general unordered alphabet, we provide an algorithm that computes all
runs in O(n log σ) time, and a matching Ω(n log σ) time lower bound for testing
square-freeness (Chapter 11). The algorithm positively answers the long-standing
question whether square-freeness can be tested in less than Ω(n log n) time for general
unordered alphabet of restricted size [ML84].

130

Chapter 10 10Computing Runs Over
General Ordered
Alphabet

In this chapter, we show how to compute all runs in a length-n string over general
ordered alphabet in O(n) time and words of space. The algorithm is based on the
solution by Bannai et al. [Ban+17], which computes the runs using the Lyndon array
and a data structure for constant time LCE queries. We can compute the Lyndon
array in linear time over general ordered alphabet (see Chapters 7 and 8 or [Bil+20,
Ell22]), but such a result is not known for an LCE data structure. Instead, we exploit
combinatorial properties of the Lyndon array that allow us to directly compute the
required LCEs in overall linear time. A string is square-free if and only it is run-free.
Therefore, the new algorithm positively answers the question whether or not testing
square-freeness is possible in linear time over general ordered alphabet.

Theorem 10.1. All the runs contained in a length-n string over general ordered
alphabet can be computed in O(n) time and words of working space.

Corollary 10.2. Testing whether or not a length-n string over general ordered
alphabet contains a square can be done in O(n) time and words of space.

The chapter is structured as follows. First, we introduce the algorithmic tools and
combinatorial properties that we use throughout the chapter (Section 10.1). Then,
we give a simplified description of the runs algorithm by Bannai et al. (Section 10.2).
In Section 10.3, we show how to compute the LCEs required by the runs algorithm
in overall linear time, which directly yields the linear time bound for the entire
algorithm. Even though the main contribution is the improved asymptotic time
bound, it is worth mentioning that the algorithm is also very fast in practice. On
commodity hardware, computing all runs for a text of length 107(= 10MB) takes
only one second. We discuss additional practical aspects and experimental results in
Section 10.4.

10.1 Algorithmic Toolbox
In this section, we introduce the main algorithmic tools and properties that we use
for computing runs.

131

10 Computing Runs Over General Ordered Alphabet

10.1.1 Lyndon Array and Nearest Smaller Suffixes
We use the Lyndon array and the next smaller suffix array from Chapter 6 as the main
algorithmic tool for computing runs. For the sake of convenience, their definitions
are repeated below. Examples can be found in Chapter 6, Figure 6.1.

Definition 6.3 (Lyndon Array).
The Lyndon array λx[1..n] of a string x[1..n] is defined by

∀i ∈ [1, n] : λx[i] = max{m ∈ [1, n− i + 1] | x[i..i + m) is a Lyndon word }.

We omit the subscript x whenever it is clear from context.

Definition 6.5 (Nearest Smaller Suffix Arrays). Let x[1..n] be a string.

(PSS) The previous smaller suffix (PSS) array prevx[1..n] of x is defined by

∀j ∈ [1, n] : prevx[j] = max ({i ∈ [1, j) | xi ≺ xj} ∪ {0}) .

(NSS) The next smaller suffix (NSS) array nextx[1..n] of x is defined by

∀i ∈ [1, n] : nextx[i] = min ({j ∈ (i, n] | xi ≻ xj} ∪ {n + 1}) .

We omit the subscript x whenever it is clear from context.

Lemma 6.7 (see also [HR03, Fra+16, FL20]). .

For any string x[1..n], it holds ∀i ∈ [1, n] : nextx[i] = i + λx[i].

A fundamental property of next smaller suffixes is that they do not intersect.
We have previously shown this property in Lemma 7.7, and we will use it for the
computation of runs in the slightly different form stated below.

Corollary 10.3. Let x[1..n] be a string, let i ∈ [1, n], and i′ ∈ [i, nextx[i]). Then it
holds nextx[i′] ≤ nextx[i].

10.1.2 Relation Between Runs and Lyndon Words
We start by showing that every run of minimal period p contains a Lyndon word of
length p. This is a well-known property, and we only add the proof for completeness.
Recall that a run in a string x[1..n] is a triple ⟨i, j, p⟩ such that x[i..j] has minimal
period p ≤ j−i+1

2 , and neither x[i− 1..j] nor x[i..j + 1] has period p (respectively if
i > 0 and j < n). In a slight abuse of terminology, we may then refer to both ⟨i, j, p⟩
and x[i..j] as a run. We will need the notion of primitive strings and cyclic shifts.
A string w is primitive if there is no string u and integer k ≥ 2 such that w = uk.
A string w is a cyclic shift of another string w′ if there are strings u and v (one of
which is possibly empty) such that w = uv and w′ = vu. We say that w and w′ are
cyclically equivalent if w is a cyclic shift of w′. This is indeed an equivalence relation;
every string is a cyclic shift of itself, the definition of a cyclic shift is inherently
symmetric, and the transitivity is easy to show.

132

10.1 Algorithmic Toolbox

Lemma 10.4. If ⟨i, j, p⟩ is a run in a string x[1..n], then every length-p substring
of x[i..j] is primitive.

Proof. Let u be a length-p substring of x[i..j], then x[i..j] is a substring of uh with
h = ⌊(j − i + 1)/p⌋+ 2 (this readily follows from the fact that x[i..j] has period p).
If u is not primitive, then u = vk for some string v and integer k ≥ 2. This means
that x[i..j] is a substring of uh = vhk. However, then it is easy to see that x[i..j] has
period |v| < p, which contradicts the fact that p is the minimal period of x[i..j].

Lemma 10.5. For a run ⟨i′, j′, p⟩ in a string x, there is exactly one position
i0 ∈ [i′, i′ + p) such that x[i0..i0 + p) is a Lyndon word.

Proof. Let u = x[i..i + p) and y = x[i..i + 2p− 1) = uu[1..p). It is easy to see that
the length-p substrings of y are exactly the p cyclic shifts of u.

Now we show that all of the cyclic shifts are distinct, i.e., no length-p substring of
y has more than one occurrence in y. We will show that, if a length-p substring has
two occurrences, then it cannot be primitive. Assume that there are i, j ∈ [1, p] with
i < j and y[i..i + p) = y[j..j + p). Then y[i..i + p) is a length-p border of y[i..j + p),
and thus y[i..j + p) has period j − i. Since y[i..j + p) is a substring of the run, it also
has period p. Hence it has periods p and j − i, and by the periodicity lemma [FW65]
also period p′ = gcd(p, j − i) < p. Trivially, if p′ is a period of y[i..j + p), then it is
also a period of y[i..i+p). Since p′ divides p, it is clear that y[i..i+p) = y[i..i+p′)p/p′ ,
where p/p′ is an integer larger than one. Hence y[i..i + p) is a non-primitive substring
of x[i′..j′], but this contradicts Lemma 10.4.

We have shown that the length-p substrings of y are exactly the p cyclic shifts
of u, and all the cyclic shifts are distinct. A Lyndon word is lexicographically
smaller than all of its non-trivial cyclic shifts, see Lemma 6.2(c). Hence the unique
lexicographically minimal cyclic shift of u is the only length-p Lyndon substring of
y.

Finally, we can make a stronger statement about Lyndon words in runs if we
distinguish between lexicographically increasing and lexicographically decreasing
runs (like previously done in Chapter 8).

Definition 10.6. Let ⟨i, j, p⟩ be a run in some string x. We say that ⟨i, j, p⟩
is (lexicographically) decreasing if and only if xi ≻ xi+p. Otherwise, ⟨i, j, p⟩ is
(lexicographically) increasing.

Lemma 10.7. Let ⟨i, j, p⟩ be a decreasing run, then there is exactly one index
i0 ∈ [i, i + p) such that λ[i0] = p.

Proof. Let i0 ∈ [i, i + p) be the unique position such that x[i0..i0 + p) is a Lyndon
word, where the existence and uniqueness are due to Lemma 10.5. It is clear that
λ[i0] ≥ p, and it remains to be shown that λ[i0] ≤ p. Since x[i..j] has period p, it
holds x[i..i0) = x[i+p..i0 +p). The run is decreasing, which implies x[i..i0)xi0 = xi ≻
xi+p = x[i + p..i0 + p)xi0+p and consequently xi0 ≻ xi0+p. Hence next[i0] ≤ i0 + p
and by Lemma 6.7 also λ[i0] ≤ p.

133

10 Computing Runs Over General Ordered Alphabet

10.1.3 Longest Common Extensions
As mentioned before, a key component of the runs algorithm is the computation of
LCEs. In the previous chapters, we used LCEs that extend from left to right, i.e., the
LCE between i and j indicates the length of the longest shared prefix between x[i..n]
and x[j..n]. For the computation of runs, we also need LCEs in the opposite direction,
i.e., the length of the longest shared suffix between x[1..i] and x[1..j]. Formally, we
define R-LCEs and L-LCEs for a string x[1..n] and positions i, j ∈ [1, n] as follows.

lcer(i, j) = max({m ∈ [0, n−max(i, j) + 1] | x[i..i + m) = x[j..j + m)})
lceℓ(i, j) = max({m ∈ [0, min(i, j)] | x(i−m..i] = x(j −m..j]})

Given three suffixes, we can deduce properties of their R-LCEs from their lexico-
graphical order.

Lemma 10.8. For any three suffixes xi ≺ xj ≺ xk of some string x, it holds
lcer(i, k) ≤ lcer(i, j) and lcer(i, k) ≤ lcer(j, k).

Proof. Assume ℓ = lcer(i, j) < lcer(i, k), then xi[1..ℓ] = xj [1..ℓ] = xk[1..ℓ] and
xj [ℓ + 1] ̸= xi[ℓ + 1] = xk[ℓ + 1]. This implies xi ≺ xj ⇔ xk ≺ xj , which contradicts
xi ≺ xj ≺ xk. The proof of lcer(i, k) ≤ lcer(j, k) works analogously.

10.2 The Runs Algorithm Revisited
In this section, we recapitulate the main ideas of the algorithm by Bannai et al.
[Ban+17] that computes all runs in a string. This will be the basis of our solution
for general ordered alphabet. We have already shown that every decreasing run is
rooted in a longest Lyndon word (Lemma 10.7).

Definition 10.9 (Root of a Run). Let ⟨i, j, p⟩ be a decreasing run, and let
i0 ∈ [i, i + p) be the unique index with λ[i0] = p (as described in Lemma 10.7).
We say that ⟨i, j, p⟩ is rooted in i0.

Note that our notion of a root differs from the L-roots introduced by Crochemore
et al. [Cro+14]. While an L-root is any length-p Lyndon word contained in the run,
our root is exactly the starting position of the leftmost one. Now we explain how to
compute a run from its root.

For a longest Lyndon word x[i0..next[i0]) of length p = next[i0]− i0 = λ[i0], it is
easy to determine whether i0 is the root of a decreasing run. We simply try to extend
the periodicity as far as possible to both sides by using the LCE functions. For this
purpose, we only need to compute ℓ = lceℓ(i0, next[i0]) and r = lcer(i0, next[i0]).
Let i = i0 − ℓ + 1 and j = next[i0] + r − 1, then clearly the substring x[i..j] has
minimal period p, and we cannot extend the substring to either side without breaking
the periodicity. Thus, if j− i+1 ≥ 2p then ⟨i, j, p⟩ is a run. Note that this run is only
rooted in i0 if additionally i0 ∈ [i, i + p) (or equivalently ℓ ≤ p) holds. An example
of the LCEs and their role in the computation of a run is provided in Figure 10.1.

A Simple Runs Algorithm Since each decreasing run is rooted in exactly one
index, we can find all decreasing runs by checking for each index whether it is the

134

10.2 The Runs Algorithm Revisited

a
1

a
2

a
3

a
4

a
5

b
6

c
7

a
8

b
9

a
10

b
1

a
2

b
3

c
4

a
5

b
6

a
7

b
8

a
9

b
20

c
1

a
2

b
3

a
4

b
5

a
6

b
7

c
8

a
9

b
30

a
1

a
2

a
3

a
4

a
5

x =

u u u u[1..6]

substring x[5..31] is a run ⟨5, 31, 7⟩

· ·
· ·

next[8] = 15, λ[8] = 7next[8] = 15, λ[8] = 7

a b a b a b c

Figure 10.1: Decreasing run ⟨5, 31, 7⟩ with x[5..31] = (abcabab)3abcaba. The
run is a repetition of the substring u = abcabab, and is rooted in position 8 with
longest Lyndon word x[8..next[8]) = x[8..15) = u4u[1..3] = abababc. The solid boxes
underneath the string indicate lceℓ(8, 15) = 4, while the hatched boxes indicate
lcer(8, 15) = 17. The leftmost position of the run is 8− lceℓ(8, 15) + 1 = 5, while
the rightmost position is next[8] + lcer(8, 15)− 1 = 31.

root of a run. This procedure is outlined in Algorithm 10.1. First, we compute
the NSS array (line 2), for example with the algorithm from Chapter 7. Then, we
investigate one index i0 ∈ [1, n] at a time (line 3), and consider it as the root of
a run with period p = next[i0] − i0 (line 4). If the left-extension covers an entire
period (i.e., lceℓ(i0, next[i0]) > p), then we have already investigated the root of the
run in an earlier iteration of the for-loop, and no further action is required (line 5).
Otherwise, we compute the left and right border of the potential run as described
earlier (lines 6–7). If the resulting interval has length at least 2p, then we have
discovered a run that is rooted in i0 (lines 8–9). Note that we do not need to consider
i0 with next[i0] = n + 1, since the definition of a root implies that position next[i0] is
contained in the run.

Algorithm 10.1 Computing all decreasing runs.
Require: String x[1..n] over general ordered alphabet.
Ensure: Set R of all decreasing runs in x.
1: R← ∅
2: compute array next (the NSS array of x)
3: for i0 ∈ [1, n] with next[i0] ̸= n + 1 do
4: p← next[i0]− i0
5: if lceℓ(i0, next[i0]) ≤ p then
6: i← i0 − lceℓ(i0, next[i0]) + 1
7: j ← next[i0] + lcer(i0, next[i0])− 1
8: if j − i + 1 ≥ 2p then
9: R← R ∪ {⟨i, j, p⟩}

Time and Space Complexity The NSS array can be computed in O(n) time and
space for general ordered alphabet (see Chapters 7 and 8 or [Bil+20, Ell22]). Assume
for now that we can answer L-LCE and R-LCE queries in constant time, then clearly
the rest of the algorithm also requires O(n) time and space. The correctness of the
algorithm follows from Lemma 10.7 and the description.

135

10 Computing Runs Over General Ordered Alphabet

Lemma 10.10. Let x be a string of length n over general ordered alphabet. We
can compute all decreasing runs of x in O(n) + t(n) time and O(n) + s(n) space,
where t(n) and s(n) are the time and space needed to compute lceℓ(i, nextx[i]) and
lcer(i, nextx[i]) for all i ∈ [1, n] with nextx[i] ̸= n + 1.

In order to also find all increasing runs, we only need to rerun the algorithm with
reversed alphabet order. This way, previously increasing runs become decreasing.

10.3 Algorithm for Computing the LCEs
In this section, we show how to precompute the LCEs required by Algorithm 10.1
in linear time and space. If we use the algorithm from Chapter 7 for computing
the Lyndon array, then we already obtain all the R-LCEs as a byproduct (they are
exactly the values stored in the array nlce). However, the algorithm from Chapter 7
requires a large amount of working space, which we can reduce if we use the solution
from Chapter 8 instead. Hence we explicitly provide a solution for computing the
R-LCEs from the precomputed Lyndon array. Our approach is asymmetric in the
sense that we require different algorithms for L-LCEs and R-LCEs (whereas previous
approaches usually compute L-LCEs by applying the R-LCE algorithm to the reverse
text). However, for both directions we use similar properties of the Lyndon array
that are shown in Lemmas 10.11 and 10.12 and visualized in Figure 10.2a.

Lemma 10.11. Let i ∈ [1, n] and j = next[i] ̸= n + 1. If lcer(i, j) ≥ (j − i), then
it holds lcer(j, j + (j − i)) = lcer(i, j)− (j − i) and next[j] = j + (j − i).

Proof. From lcer(i, j) ≥ (j − i) follows lcer(i, j) = (j − i) + lcer(j, j + (j − i)),
which is equivalent to lcer(j, j + (j − i)) = lcer(i, j) − (j − i). It remains to be
shown that next[j] = j + (j − i). Since xi and xj share a prefix of length at least
(j − i), and since next[i] = j implies xi ≻ xj , it is easy to see that xi+(j−i) ≻ xj+(j−i).
This means that next[j] ≤ j + (j− i). Note that x[i..j) = x[j..j + (j− i)) is a Lyndon
word due to next[i] = j and Lemma 6.7. Hence it holds λ[j] ≥ (j − i), or equivalently
next[j] ≥ j + (j − i).

Lemma 10.12. Let i ∈ [1, n] and j = next[i] ̸= n + 1. If lceℓ(i, j) > (j − i), then
it holds lceℓ(i− (j − i), i) = lceℓ(i, j)− (j − i) and next[i− (j − i)] = i.

Proof. Analogous to Lemma 10.11.

10.3.1 Computing the R-LCEs
First, we will briefly describe our general technique for computing LCEs, and our
method of showing the linear time bound. Assume for this purpose that we want
to compute ℓ = lcer(i, j) with i < j. It is easy to see that we can determine ℓ by
performing ℓ + 1 individual symbol comparisons (by simultaneously scanning the
suffixes xi and xj from left to right until we find a mismatch). Whenever we use
this naive way of computing an LCE, we charge one symbol comparison to each of
the indices in the interval [j, j + ℓ). This way, we account for ℓ symbol comparisons.
Since we want to compute O(n) R-LCE values in O(n) time, we can afford a constant

136

10.3 Algorithm for Computing the LCEs

x =

i−(j−i)
↓

v

i
↓

v

j
↓

v

j+(j−i)
↓

(a) Lemmas 10.11 and 10.12. The dot-
ted edge follows from lcer(i, j) ≥ (j − i)
(Lemma 10.11). The dashed edge follows
from lceℓ(i, j) > (j − i) (Lemma 10.12).

x =

i6
↓

i5
↓

i2
↓

i1
↓

j1
↓

i4
↓

i3
↓

j2
↓

(b) Relative order of R-LCE computations
from first to last: lcer(i1, j1), lcer(i2, j1),
lcer(i3, j2), lcer(i4, j2), lcer(i5, j2),
lcer(i6, j2).

Figure 10.2: An edge from text position a to text position b indicates next[a] = b.

time overhead (i.e., a constant number of unaccounted symbol comparisons) for each
LCE computation. Thus, there is no need to charge the (ℓ + 1)th comparison to
any index. At the time at which we want to compute ℓ, we may already know some
lower bound k ≤ ℓ. In such cases, we simply skip the first k symbol comparisons and
compute ℓ = k + lcer(i + k, j + k). This requires ℓ− k + 1 symbol comparisons, of
which we charge ℓ− k to the interval [j + k, j + ℓ).

Ultimately, we will show that all R-LCE values lcer(i, j) with i ∈ [1, n] and
j = next[i] ̸= n + 1 can be computed in a way such that each text position gets
charged at most once, which results in the desired linear time bound. From now on,
we refer to i as the left index and j as the right index of the R-LCE computation. Our
algorithm computes the R-LCEs in the following order (a visualization is provided
in Figure 10.2b): We consider the possible right indices j ∈ [2, n] one at a time and
in increasing order. For each right index j, we then consider the corresponding left
indices i with next[i] = j in decreasing order (we will see how to efficiently deduce
this order from the Lyndon array later).

Assume that we are computing the R-LCEs in the previously described order,
and let ℓ = lcer(i, j) with j = next[i] ̸= n + 1 be the next value that we want
to compute. The set of indices that we have already considered as left indices for
LCE computations is I = {i′ | (next[i′] < j) ∨ ((next[i′] = j) ∧ (i < i′))}. For
example, when we compute lcer(i4, j2) in Figure 10.2b it holds {i1, i2, i3} ⊆ I. At
this point in time, the rightmost text position that we have already inspected is
→c = maxi′∈I(next[i′] + lcer(i′, next[i′])) if I ̸= ∅, or →c = 1 otherwise. Due to the
nature of our charging method, we have not charged any indices from the interval
[→c , n] yet. Thus, in order to show that we can compute all LCEs without charging
any index twice, it suffices to show how to compute ℓ = lcer(i, j) without charging
any index from the interval [1,→c). If j ≥ →c then we naively compute ℓ and charge the
symbol comparisons to the interval [j, j + ℓ), thus only charging previously uncharged
indices. The new value of →c is j + ℓ. If however j < →c , then the computation of ℓ
depends on the previously computed LCEs, which we describe in the following.

Let ℓ′ = lcer(i′, j′) with j′ = next[i′] be the most recently computed R-LCE
that satisfies j′ + ℓ′ = →c . Our strategy for computing ℓ depends on the position of
i relative to i′ and j′. First, note that i /∈ [i′, j′) because otherwise Corollary 10.3
implies j ≤ j′, which contradicts our order of computation. This leaves us with
three possible cases (just like in Part II, a directed edge from text position a to text
position b indicates next[a] = b):

137

10 Computing Runs Over General Ordered Alphabet

x =

i
↓

i′

↓
j′

↓
j
↓

→
c
↓

Case R1: i < i′

(possibly j′ = j)

x =

i′

↓
j′=i
↓

j
↓

→
c
↓

Case R2: i = j′

x =

i′

↓
j′

↓
i
↓

j
↓

→
c
↓

Case R3: i > j′

Now we explain the cases in detail. Each case is accompanied by a schematic
drawing. We kindly advise the reader to study the drawings alongside the description,
since they are essential for an easy understanding of the matter.

Case R1: i < i′ (and j′ ≤ j < →c).

|u| = j − j′, |v| = →c − j x =

i
↓
v w

i′

↓
u

(i′+j−j′)
↓
v

j′

↓
u

j
↓
v

→
c
↓
w

ℓ′ = |uv|, ℓ = |vw|

Due to i < (i′+ j− j′) < j = next[i] we have xj ≺ xi ≺ xi′+j−j′ . From Lemma 10.8
follows →c − j = lcer(i′+ j− j′, j) ≤ lcer(i, j) = ℓ, i.e., both xi and xj start with v.
Since now we know a lower bound →c − j ≤ ℓ on the desired LCE value, we can skip
symbol comparisons during its computation. Later, we will see that the same bound
also holds for most of the other cases. Generally, whenever we can show →c −j ≤ ℓ we
use the following strategy. We compute ℓ = (→c − j) + lcer(i + (→c − j),→c) using
ℓ− (→c − j) + 1 symbol comparisons, of which we charge ℓ− (→c − j) to the interval
[→c , j + ℓ). Thus we only charge previously uncharged positions. We continue with
i′ ← i, j′ ← j, ℓ′ ← ℓ, and →c ← j + ℓ.

Case R2: i = j′. We divide this case into two subcases.

Case R2a: ℓ′ < j′ − i′.

|u| = j − j′, |v| = →c − j x =

i′

↓
u

(i′+j−i)
↓

v

j′=i
↓

u

j
↓

v

→
c
↓

From j < →c =⇒ j − i < →c − i = ℓ′ and ℓ′ < j′ − i′ follows i′ + j − i < j′ = i.
Therefore, next[i′] = i and the definition of next smaller suffixes imply xi ≺ xi′+j−1.
Due to next[i] = j we also have xj ≺ xi, such that it holds xj ≺ xi ≺ xi′+j−1. It is
easy to see that xi′+j−i and xj share a prefix v of length lcer(i′+ j − i, j) = →c − j.
In fact, also xi has prefix v because Lemma 10.8 implies that lcer(i′ + j − i, j) ≤
lcer(i, j) = ℓ. Thus it holds →c − j ≤ ℓ, and we can use the strategy from Case R1.

138

10.3 Algorithm for Computing the LCEs

Case R2b: ℓ′ ≥ j′ − i′.

|v| = j′ − i′, ℓ = ℓ′ − |v| x =

i′

↓
v

j′=i
↓

v

j
↓

→
c
↓

Due to ℓ′ ≥ j′− i′, Lemma 10.11 implies j = i + (j′− i′) and ℓ = ℓ′− (j′− i′). Since
i′, j′, and ℓ′ are known, we can compute ℓ in constant time without performing
symbol comparisons. We continue with i′ ← i, j′ ← j, and ℓ′ ← ℓ (leaving →c
unchanged).

Case R3: i > j′. This is the most complicated case, and it is best explained
by dividing it into three subcases. Let d = j′ − i′, i′′ = i − d, j′′ = j − d, and
ℓ′′ = lcer(i′′, j′′).
(In this situation it is implied that j′′ ≤ j′ because otherwise ℓ′ = lcer(i′, j′) would
not be the most recently computed R-LCE that satisfies j′+ ℓ′ = →c . However, since
our proof does not rely on this property, we will not explain it in more detail.)

Case R3a: next[i′′] ̸= j′′:

|u| = ℓ′, |v| = |w| = →c − j x =

i′′

↓
j′′

↓
i′

↓
u

(i′+ℓ′)
↓

i
↓

j
↓

j′

↓
u

→
c
↓

ℓ′′ ≥ |v|, ℓ ≥ |v| v w v w

First, note that x[i′..i′ + ℓ′) = x[j′..→c) implies x[i..j) = x[i′′..j′′). From next[i] = j
follows that x[i..j) = x[i′′..j′′) is a Lyndon word. Thus, due to Lemma 6.7 and
next[i′′] ̸= j′′ it holds next[i′′] > j′′, which implies xi′′ ≺ xj′′ . Let v = x[i′′..i′′ +
→c − j) = x[i..i + →c − j) and let w = x[j′′..i′ + ℓ′) = x[j..→c). From xi′′ ≺ xj′′

follows v ⪯ w, while xi ≻ xj implies v ⪰ w. Thus it holds v = w, and therefore
lcer(i, j) ≥ |w| = →c − j. This means that we can use the strategy from Case R1.

Case R3b: next[i′′] = j′′ and
(j′′ + ℓ′′) < (i′ + ℓ′):

x =

i′′

↓
j′′

↓
i′

↓
u

(i′+ℓ′)
↓

i
↓

j
↓

j′

↓
u

→
c
↓

|u| = ℓ′, |v| = ℓ′′ = ℓ v v v v

Due to ℓ′′ = lcer(i′′, j′′), there is a shared prefix v = x[i′′..i′′ + ℓ′′) = x[j′′..j′′ + ℓ′′)
between xi′′ and xj′′ , and the first mismatch between the two suffixes is x[i′′+ ℓ′′] ̸=
x[j′′+ ℓ′′]. Because of (j′′+ ℓ′′) < (i′+ ℓ′), both the shared prefix and the mismatch
are contained in x[i′..i′ + ℓ′) (i.e., in the first occurrence of u). If we consider the
substring x[j′..j′ + ℓ′) instead (i.e., the second occurrence of u), then xi and xj

clearly also share the prefix v = x[i..i + ℓ′′) = x[j..j + ℓ′′), with the first mismatch
occurring at x[i + ℓ′′] ̸= x[j + ℓ′′]. Thus it holds ℓ = ℓ′′. Due to next[i′′] = j′′ and
our order of R-LCE computations, we have already computed ℓ′′. Therefore, we
can simply assign ℓ← ℓ′′ and continue without changing i′, j′, ℓ′, and →c .

139

10 Computing Runs Over General Ordered Alphabet

Case R3c: next[i′′] = j′′ and
(j′′ + ℓ′′) ≥ (i′ + ℓ′):

x =

i′′

↓
j′′

↓
i′

↓
u

(i′+ℓ′)
↓

i
↓

j
↓

j′

↓
u

→
c
↓

|u| = ℓ′, |v| = →c − j, |vw| = ℓ′′ v w v w v v
ℓ ≥ |v|

This situation is similar to Case R3b. There is a shared prefix v =
x[i′′..i′′ +→c − j) = x[j′′..i′ + ℓ′) between the suffixes xi′′ and xj′′ . They may
share an even longer prefix vw, but only the first |v| = →c − j symbols of their
shared prefix are contained in x[i′..i′ + ℓ′) (i.e., in the first occurrence of u). If we
consider the substring x[j′..j′ + ℓ′) instead (i.e., the second occurrence of u), then
xi and xj clearly also share at least the prefix v = x[i..i +→c − j) = x[j..→c). Thus
it holds →c − j ≤ ℓ, and we can use the strategy from Case R1.

We have shown how to compute ℓ without charging any index twice. It follows
that the total number of symbol comparisons for all R-LCEs is O(n).

A Simple Algorithm for R-LCEs While the detailed differentiation between the
six subcases helps to show the correctness of our approach, it can be implemented
in a significantly simpler way (see Algorithm 10.2). At all times, we keep track
of j′, →c and the distance d = j′ − i′ (line 1). We consider the indices j ∈ [2, n]
in increasing order (line 2). For each index j, we then consider the indices i with
next[i] = j in decreasing order (line 3). Each time we want to compute an R-LCE
value ℓ = lcer(i, j), we first check whether Case R3b applies (line 4). If it does, then
we simply copy the previously computed R-LCE value lcer(i − d, j − d) (line 5).
Otherwise, we either compute the LCE naively (if j ≥ →c), or we have to apply the
strategy from Case R1 (since all other cases except for Case R2b use this strategy;
in Case R2b it holds →c − j = ℓ, which means that it can also be solved with the
strategy from Case R1). If j ≥ →c then in lines 7–8 we have k = 0, and thus we
naively compute lcer(i, j) by scanning. If however j < →c , then we have k = →c − j,
and we skip k symbol comparisons. In any case, we update the values j′, →c , and d
accordingly (line 9).

Algorithm 10.2 Computing all R-LCEs.
Require: String x[1..n] and its NSS array next.
Ensure: R-LCE value lcer(i, next[i]) for each index i ∈ [1, n] with next[i] ̸= n + 1.
1: j′ ← 0; →c ← 1; d← 0
2: for j ∈ [2, n] in increasing order do
3: for i with next[i] = j ̸= n + 1 in decreasing order do

4: if

⎛⎜⎝ i, j ∈ (j′,→c)
∧ next[i− d] = j − d
∧ j + lcer(i− d, j − d) < →c

⎞⎟⎠ then

5: lcer(i, j)← lcer(i− d, j − d) ▷ retrieve LCE in constant time
6: else
7: k ← max(→c , j)− j
8: lcer(i, j)← k + naive-scan-lcer(i + k, j + k)
9: j′ ← j; →c ← j + lcer(i, j); d ← j − i

140

10.3 Algorithm for Computing the LCEs

The correctness of the algorithm follows from the description of Cases 1–3. Since
for each left index i we have to store at most one R-LCE, we can simply maintain
the LCEs in a length-n array, where the ith entry is lcer(i, next[i]). This way, we
use linear space and can access the R-LCE that is required in line 5 in constant time.
Apart from the at most n symbol comparisons that we charge to the indices, we only
need a constant number of additional primitive operations per computed R-LCE.
The order of iteration can be realized by first generating all (i, next[i])-pairs, and
then using a linear time radix sorter to sort the pairs in increasing order of their
second component and decreasing order of their first component. We have shown:

Lemma 10.13. Given a string x[1..n] and its NSS array next, we can compute
lcer(i, next[i]) for all indices i ∈ [1, n] with next[i] ̸= n + 1 in O(n) time and space.

10.3.2 Computing the L-LCEs
Our solution for the L-LCEs is similar to the one for R-LCEs, but differs in subtle
details. We generally compute ℓ = lceℓ(i, j) by simultaneously scanning the prefixes
x[1..i] and x[1..j] from right to left until we find the first mismatch. This takes ℓ + 1
symbol comparisons, of which we charge ℓ comparisons to the interval (i− ℓ, i]. As
before, if some lower bound k ≤ ℓ is known then we skip k symbol comparisons. In
this case, we compute the L-LCE as ℓ = k + lceℓ(i − k, j − k), and charge ℓ − k
comparisons to the interval (i− ℓ, i− k].

Again, we will show how to compute all values lceℓ(i, next[i]) with i ∈ [1, n]
and next[i] ̸= n + 1 such that each index gets charged at most once. In contrast
to the more complex R-LCE iteration order, we can simply compute the L-LCE
values in decreasing order of i. Thus, when we want to compute ℓ = lceℓ(i, j)
with j = next[i] ̸= n + 1, we have already considered the indices I = {i′ | i′ ∈
(i, n] ∧ next[i′] ̸= n + 1} as left indices of L-LCE computations. The leftmost text
position that we have already inspected so far is ←c = mini′∈I(i′ − lceℓ(i′, next[i′]))
if I ̸= ∅, or ←c = n otherwise. Due to our charging method, we have not charged
any index from the interval [1,←c] yet. Thus, we only have to show how to compute
ℓ without charging indices from (←c , n]. Let ℓ′ = lceℓ(i′, j′) be the most recently
computed L-LCE that satisfies i′ − ℓ′ = ←c . If i ≤ ←c then we compute ℓ naively and
charge the symbol comparisons to the interval (i− ℓ, i] (thus only charging previously
uncharged indices). If however i > ←c , then our strategy is more complicated. Before
explaining it in detail, we show three important properties that hold in the present
situation.

First, we show that i ≥ i′ − (j′ − i′). Assume the opposite (as visualized in
Figure 10.3a), then from ←c = i′ − ℓ′ < i follows ℓ′ > j′ − i′. Thus, Lemma 10.12
implies next[i′ − (j′ − i′)] = i′ (dashed edge) and lceℓ(i′ − (j′ − i′), i′) = ℓ′− (j′− i′).
Due to our order of computation and i < i′− (j′− i′) we must have already computed
this L-LCE. However, it holds i′ − (j′ − i′) − lceℓ(i′ − (j′ − i′), i′) = →c , which
contradicts the fact that ℓ′ = lceℓ(i′, j′) is the most recently computed L-LCE with
i′ − ℓ′ = ←c .

Next, we show that j ≤ i′. First, note that j /∈ (i′, j′), since due to i < i′

we would otherwise contradict Corollary 10.3. Thus we only have to show j < j′.
Assume for this purpose that j ≥ j′ (as visualized in Figure 10.3b). From j′ − i′ + i ∈
(i, next[i]) and the definition of next smaller suffixes follows xi ≺ xj′−i′+i. Because

141

10 Computing Runs Over General Ordered Alphabet

←
c
↓

i
↓

i′−(j′−i′)
↓
∗ v

i′

↓
∗ v

j′

↓
∗

(a)

←
c
↓

w

i
↓

v

i′

↓
w

(j′−i′+i)
↓

v

j′

↓
j
↓

(b)

←
c
↓

i
↓

j
↓

i′

↓
u

i′′

↓
j′′

↓
j′

↓
u

(c)

Figure 10.3: Illustration of the proofs of the three properties in Section 10.3.2.

of lceℓ(i′, j′) > (i′ − i) it holds x[i..i′] = x[j′ − i′ + i..j′]. Thus xi ≺ xj′−i′+i implies
xi′ ≺ xj′ , which contradicts the fact that next[i′] = j′.

Lastly, let d = j′ − i′, i′′ = i + d, and j′′ = j + d (as visualized in Figure 10.3c).
Now we show that next[i′′] = j′′ (dashed edge in the figure). Because of x(←c ..i′] =
x(j′ − ℓ′..j′] it holds x[i..j) = x[i′′..j′′). From next[i] = j and Lemma 6.7 follows
that x[i′′..j′′) is a Lyndon word, and thus next[i′′] ≥ j′′. We have already shown
that i ≥ i′ − (j′ − i′), which implies i′′ ≥ i′. Due to next[i′] = j′ and i′′ ∈ [i′, j′) it
follows from Corollary 10.3 that next[i′′] ≤ j′. Now assume next[i′′] ∈ (j′′, j′], then
x[i′′..next[i′′]) = x[i..j + (next[i′′]− j′′)) is a Lyndon word, which contradicts the fact
that x[i..j) is the longest Lyndon word starting at position i. Thus, we have ruled
out all possible values of next[i′′] except for j′′.

Now we show how to compute ℓ. We keep using the definition of i′′ and j′′ from
the previous paragraph. Furthermore, let ℓ′′ = lceℓ(i′′, j′′). There are two possible
cases.
Case L1: (i′′ − ℓ′′) > (j′ − ℓ′).

x =

←
c
↓

u

i′

↓
i
↓

j
↓

(j′−ℓ′)
↓

u

j′

↓
i′′

↓
j′′

↓

ℓ′ = |u|, ℓ = ℓ′′ = |v| v v v v

Due to ℓ′′ = lceℓ(i′′, j′′), the prefixes x[1..i′′] and x[1..j′′] share the suffix v =
x(i′′ − ℓ′′..i′′] = x(j′′ − ℓ′′..j′′], and the first (from the right) mismatch between
these prefixes is x[i′′ − ℓ′′] ̸= x[j′′ − ℓ′′]. Both the shared suffix and the mismatch
are contained in x(j′ − ℓ′..j′] (i.e., in the right occurrence of u). If we consider the
substring x(←c ..i′] instead (i.e., the left occurrence of u), then x[1..i] and x[1..j]
clearly also share the suffix v = x(i− ℓ′′..i] = x(j − ℓ′′..j], with the first mismatch
occurring at x[i− ℓ′′] ̸= x[j′′ − ℓ]. Thus it holds ℓ = ℓ′′. Due to next[i′′] = j′′ and
the order of L-LCE computations, we have already computed ℓ′′. Therefore, we
can simply assign ℓ← ℓ′′ and continue without changing i′, j′, ℓ′, and ←c .
(Note that possibly i′′ ̸= i′∧j′′ = j′, which requires no special handling. We provide
a sketch in Figure 10.4a at the end of the chapter.)

Case L2: (i′′ − ℓ′′) ≤ (j′ − ℓ′).

x =

←
c
↓

u

i′

↓
i
↓

j
↓

(j′−ℓ′)
↓

u

j′

↓
i′′

↓
j′′

↓

ℓ′ = |u|, ℓ′′ = |vw|, ℓ ≥ |v| v v w v w v

This situation is similar to Case L1. There is a shared suffix v = x(j′ − ℓ′..i′′] =
x(j′′ − (i−←c)..j′′] between the prefixes x[1..i′′] and x[1..j′′]. They may share an

142

10.4 Practical Implementation

even longer suffix wv, but only the rightmost |v| = i′ − ←c symbols of this suffix
are contained in x(j′ − ℓ′..j′] (i.e., in the right occurrence of u). If we consider the
substring x(←c ..i′] instead (i.e., the left occurrence of u), then x[1..i] and x[1..j]
clearly also share the suffix v = x(←c ..i] = x(j − (i−←c)..j]. Thus it holds i−←c ≤ ℓ,
and we can skip the first i − ←c symbol comparisons by computing the LCE as
ℓ = (i−←c) + lceℓ(←c , j +←c − i). We charge ℓ− (i−←c) symbol comparisons to the
previously uncharged interval (i− ℓ,←c], and continue with i′ ← i, j′ ← j, ℓ′ ← ℓ,
and ←c ← i− ℓ.
(Note that possibly i′′ ̸= i′ ∧ j′′ = j′ or even i′′ = i′ ∧ j′′ = j′, which requires no
special handling. We provide schematic drawings in Figures 10.4b and 10.4c at the
end of the chapter.)

We have shown how to compute ℓ without charging any index twice. It follows
that the total number of symbol comparisons for all LCEs is O(n). For completeness,
we outline a simple implementation of our approach in Algorithm 10.3. Lines 4–5
correspond to Case L1. If i ≤ ←c , then lines 7–9 compute the LCE naively. Otherwise,
they correspond to Case L2.

Algorithm 10.3 Computing all L-LCEs.
Require: String x[1..n] and its NSS array next.
Ensure: L-LCE value lceℓ(i, next[i]) for each index i ∈ [1, n] with next[i] ̸= n + 1.
1: i′ ← 0; ←c ← n; d← 0
2: for i ∈ [1, n] with next[i] ̸= n + 1 in decreasing order do
3: j ← next[i]
4: if i ∈ (←c , i′) ∧ i− lceℓ(i + d, j + d) > ←c then
5: lceℓ(i, j)← lceℓ(i + d, j + d) ▷ retrieve LCE in constant time
6: else
7: k ← i−min(←c , i)
8: lceℓ(i, j)← k + naive-scan-lceℓ(i− k, j − k)
9: i′ ← i; ←c ← i− lceℓ(i, j); d ← j − i

Lemma 10.14. Given a string of length n and its NSS array next, we can compute
lceℓ(i, next[i]) for all indices i ∈ [1, n] with next[i] ̸= n + 1 in O(n) time and space.

The main theorem is a corollary of Lemmas 10.10, 10.13 and 10.14. These lemmas
state that all decreasing runs can be computed in linear time and space. For the
increasing runs, we only have to reverse the order of the alphabet and rerun the
algorithm. This way, previously increasing runs become decreasing. Hence we have
shown Theorem 10.1.

Theorem 10.1. All the runs contained in a length-n string over general ordered
alphabet can be computed in O(n) time and words of working space.

10.4 Practical Implementation
We implemented the algorithm for the runs computation in C++17 and evaluated
it by computing all runs on texts from the natural, real repetitive, and artificial

143

10 Computing Runs Over General Ordered Alphabet

repetitive text collections of the Pizza-Chili corpus1. Additionally, we used the
binary run-rich strings proposed by Matsubara et al. [Mat+09] as input. Table 10.1
shows the achieved throughput, i.e., the number of input bytes (or equivalently
input symbols) processed per second. On the string tm29 we achieve the highest
throughput of 15.6 MiB/s. The lowest throughput of 8.8 MiB/s occurs on the text
dna. Generally, we perform better for run-rich strings.

Lastly, it is noteworthy that our new method of LCE computation leads to
a remarkably simple implementation of the runs algorithm. In fact, the entire
implementation including the computation of the NSS array needs only 250 lines
of code. We achieve this by interleaving the computation of the R-LCEs with the
computation of the NSS array (as described in Chapter 7), which also improves the
practical performance. For technical details we refer to the source code, which is
publicly available on GitHub2.

10.5 Conclusion
We have shown the first linear time algorithm for computing all runs over general
ordered alphabet. The algorithm is also very fast in practice and remarkably easy
to implement. It is an open question whether our techniques could be used for the
computation of runs on tries, where the best known algorithms require super-linear
time, even for linearly-sortable alphabets (see, e.g., [Sug+21]).

1http://pizzachili.dcc.uchile.cl/texts.html, http://pizzachili.dcc.uchile.cl/repco
rpus.html

2https://github.com/jonas-ellert/linear-time-runs, permanently archived in the
Software Heritage Archive at https://archive.softwareheritage.org/swh:1:dir:6117eb0b8f
1f857e585efc1e359809e680776f4e;origin=https://github.com/jonas-ellert/linear-tim
e-runs;visit=swh:1:snp:aa7b1dc6293d939b5ec6e554d3102b15a518b7e7;anchor=swh:1:rev:
065dfae01cccc8fa7fa8b116cfa91f272c0b22ba

Table 10.1: Throughput achieved by the new runs algorithm using an AMD EPYC
7452 processor. The run-density is the number of runs divided by the length of the
respective string, scaled up by a factor of 100. We repeated each experiment five
times and use the median throughput as the final result (the minimum and maximum
throughputs were almost identical to the median). All numbers are truncated to one
decimal place.

Te
xt

n
in

M
iB

t 4
9
[M

at
+0

9]
10

77
M

iB
so

ur
ce

s
20

1
M

iB
pi

tc
he

s
53

M
iB

pr
ot

ei
ns

10
24

M
iB

dn
a

38
5

M
iB

en
gl

is
h

10
24

M
iB

xm
l

28
2

M
iB

ec
ol

i
10

7
M

iB

ce
re

43
9

M
iB

fi
b4

1
25

5
M

iB

rs
.1

3
20

6
M

iB

tm
29

25
6

M
iB

run-density 94.4 4.7 11.7 7.0 25.3 2.4 3.4 24.4 23.6 76.3 92.7 83.3
MiB/s 15.0 11.4 11.0 10.9 8.8 10.5 12.8 9.0 9.2 15.4 15.1 15.6

144

http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/repcorpus.html
http://pizzachili.dcc.uchile.cl/repcorpus.html
https://github.com/jonas-ellert/linear-time-runs
https://archive.softwareheritage.org/swh:1:dir:6117eb0b8f1f857e585efc1e359809e680776f4e;origin=https://github.com/jonas-ellert/linear-time-runs;visit=swh:1:snp:aa7b1dc6293d939b5ec6e554d3102b15a518b7e7;anchor=swh:1:rev:065dfae01cccc8fa7fa8b116cfa91f272c0b22ba
https://archive.softwareheritage.org/swh:1:dir:6117eb0b8f1f857e585efc1e359809e680776f4e;origin=https://github.com/jonas-ellert/linear-time-runs;visit=swh:1:snp:aa7b1dc6293d939b5ec6e554d3102b15a518b7e7;anchor=swh:1:rev:065dfae01cccc8fa7fa8b116cfa91f272c0b22ba
https://archive.softwareheritage.org/swh:1:dir:6117eb0b8f1f857e585efc1e359809e680776f4e;origin=https://github.com/jonas-ellert/linear-time-runs;visit=swh:1:snp:aa7b1dc6293d939b5ec6e554d3102b15a518b7e7;anchor=swh:1:rev:065dfae01cccc8fa7fa8b116cfa91f272c0b22ba
https://archive.softwareheritage.org/swh:1:dir:6117eb0b8f1f857e585efc1e359809e680776f4e;origin=https://github.com/jonas-ellert/linear-time-runs;visit=swh:1:snp:aa7b1dc6293d939b5ec6e554d3102b15a518b7e7;anchor=swh:1:rev:065dfae01cccc8fa7fa8b116cfa91f272c0b22ba

10.5 Conclusion

x =

←
c
↓

i
↓

u

j=i′

↓
(j′−ℓ′)
↓

i′′

↓
u

j′′=j′

↓

v v v v

(a) Case L1 with i′′ ̸= i′ and j′′ = j′.

x =

←
c
↓

i
↓

u

j=i′

↓
(j′−ℓ′)
↓

i′′

↓
u

j′′=j′

↓

v v w v w v

(b) Case L2 with i′′ ̸= i′ and j′′ = j′.

x =

←
c
↓

j′−ℓ′

↓
i
↓

j=i′′=i′

↓
j′=j′′

↓

u
w v

⎫⎪⎪⎬⎪⎪⎭
for the right

occurrence x(j′ − ℓ′..j′] of u,
prefixes x[1..i′′] and x[1..j′′]

share the suffix wv(= u)w v

u
v

⎫⎪⎪⎬⎪⎪⎭
for the left

occurrence x(←c ..i′] of u,
prefixes x[1..i] and x[1..j]

share the suffix v
v

(c) Case L2 with i′′ = i′ and j′′ = j′.

Figure 10.4: Additional drawings for Cases L1 and L2. The notation is the same
as in the description of the cases.

145

Chapter 11 11Computing Runs Over
General Unordered
Alphabet

In Chapter 10, we resolved the complexity of computing runs over general ordered
alphabet. In this chapter, we show a similar result for general unordered alphabet,
i.e., using only equality comparisons of symbols. We start by analyzing the decision
tree complexity of the problem. That is, we only consider the required and necessary
number of comparisons, without worrying about an efficient implementation. We
show that, even if the value of σ is assumed to be known, Ω(n log σ) comparisons
are required for testing whether a length-n string that contains σ distinct symbols is
square-free. Then, we also provide an efficient algorithm that not only tests square-
freeness, but actually computes all runs in O(n log σ) time. Here (just like in the
previous chapters), we do not only count the number of performed symbol comparison,
but also the additional word RAM operations performed by the algorithm.

Theorem 11.1. Let n, σ ∈ N+ with 8 ≤ σ ≤ n be fixed. There is no deterministic
algorithm that performs at most n ln σ − 3.6n = O(n log σ) equality comparisons in
the worst case, and determines whether a length-n string that contains at most σ
distinct symbols over general unordered alphabet is square-free.

Theorem 11.2. All the runs contained in a length-n string over general unordered
alphabet can be computed in O(n log σ) time, where σ is the number of distinct
symbols in the string, which is not known in advance.

We stress again that the value of σ is not assumed to be known. Considering
the lower bounds for Alphabet Size Testing (Problem 2.2) from Chapter 2, this may
seem surprising. In Theorem 2.3(ii), we essentially showed that finding a sublinear
multiplicative approximation of σ requires Ω(nσ) comparisons. However, this does
not contradict the claimed upper bound in Theorem 11.2, as we are only saying that
the number of comparisons used on a particular input string is at most O(n log σ),
but might actually be smaller. Thus, it is not possible to extract any meaningful
approximation of the value of σ from the number of performed comparisons. The
algorithm for Theorem 11.2 is quite involved, and we describe it in an incremental
manner. First, we consider the easier problem of testing square-freeness, and provide
a solution that performs an asymptotically optimal number of equality comparisons.

147

11 Computing Runs Over General Unordered Alphabet

Lemma 11.3. Testing square-freeness of a length-n string that contains σ distinct
symbols over general unordered alphabet can be done using O(n log σ) comparisons.

The above result is not efficient in the sense that it only restricts the overall
number of comparisons, and not the time to actually figure out which comparisons
should be used. A direct implementation results in a quadratic time algorithm. We
first show how to improve this to O(n log σ + n log∗ n) time (while still keeping the
asymptotically optimal O(n log σ) number of comparisons), and finally to O(n log σ).

Lemma 11.4. Testing square-freeness of a length-n string that contains σ distinct
symbols over general unordered alphabet can be implemented in O(n log σ) time.

Finally, we also generalize this result to the computation of runs, which results
in Theorem 11.2. Altogether, our results fully resolve the open question of Main
and Lorentz [ML84] for the case of general unordered alphabet and deterministic
algorithms. We leave extending the lower bound to randomized algorithms as an
open question.

Overview of the Methods
As mentioned before, Main and Lorentz [ML84] designed an O(n log n) time algorithm
for testing square-freeness of length-n strings over general unordered alphabet. The
high-level idea of their algorithm goes as follows. They first designed a procedure for
checking, given two strings x and y, if their concatenation contains a square that
is not fully contained in x nor y in O(|x|+ |y|) time. Then, a divide-and-conquer
approach can be used to detect a square in the whole input string in O(n log n) total
time. For general unordered alphabet of unbounded size this cannot be improved,
but Crochemore [Cro86] showed that, for general ordered alphabet of size σ, a faster
O(n log σ) time algorithm exists. The gist of his approach is to first obtain the
so-called f -factorization of the input string, which in a certain sense “discovers”
repetitive fragments (this factorization is the same as Storer and Szymanski’s version
of the Lempel-Ziv factorization [LZ76, SS82], which we also used in Part I). Then, the
factorization can be used to apply the procedure of Main and Lorentz on appropriately
selected fragments of the input strings in such a way that the leftmost occurrence
of every distinct square is detected, and the total length of the strings on which we
apply the procedure is only O(n). The factorization can be found in O(n log σ) time
for general ordered alphabet of size σ, e.g., by reducing the string to effective integer
alphabet with Lemma 2.1, and then using a linear time algorithm for such alphabet
(e.g., [CI08a]).

For general unordered alphabet, computing the Lempel-Ziv factorization (or
anything similar) is problematic, as we have already shown in Chapter 3 that it
requires Ω(nσ) equality tests. Thus, we need another approach. Additionally, the
O(n) time algorithm from Chapter 10 hinges on the notion of Lyndon words, which is
simply not defined for strings over general unordered alphabet. Thus, at first glance
it might seem that Θ(nσ) is the right time complexity for testing square-freeness
over length-n strings over general unordered alphabet of size σ. However, due to the
Ω(n log n) lower bound by Main and Lorentz for testing square-freeness of length-n
strings consisting of up to n distinct symbols, one might hope for an O(n log σ) time
algorithm when there are only σ distinct symbols.

148

We begin the chapter with a lower bound of Ω(n log σ) equality comparisons for
such strings. Intuitively, we show that testing square-freeness has the direct sum
property: n

σ instances over length-σ strings can be combined into a single instance
over a length-n string. As in the proof of Main and Lorentz, we use the adversarial
method, which we also used for the lower bounds in Chapters 2 and 3. While the
underlying calculation is essentially the same as the one by Main and Lorentz, we
need to appropriately combine the smaller instances, which is done using the infinite
square-free Prouhet-Thue-Morse sequence, and we have to use significantly more
complex rules for resolving the subsequent equality tests.

We then move to designing an algorithm that uses O(n log σ) equality comparisons
to test square-freeness. As discussed earlier, one way of detecting squares uses the
LZ factorization of the string. However, as shown in Chapter 3, we cannot compute
the factorization over general unordered alphabet in o(nσ) comparisons. Therefore,
we will instead use a novel type of factorization, the ∆-approximate LZ factorization,
which can be seen as an approximate version of the LZ factorization (but not to
be confused with the LZ-like factorizations from Part I). Intuitively, its goal is
to “capture” all sufficiently long squares, while the original LZ factorization (or f -
factorization) captures all squares. Each phrase in a ∆-approximate LZ factorization
consists of a head of length at most ∆ and a tail (possibly empty) that must occur
at least once before, such that the whole phrase is at least as long as the standard
LZ phrase starting at the same position. Contrary to the standard LZ factorization,
this factorization is not unique. The advantage of our modification is that there are
fewer phrases (and there is more flexibility as to what they should be), and hence
one can hope to compute such a factorization more efficiently.

To design an efficient construction method for a ∆-approximate LZ factorization,
we first show how to compute a sparse suffix tree while trying to use only a few symbol
comparisons. This is then applied on a set of positions from a so-called difference
cover with some convenient synchronizing properties. Then, a ∆-approximate LZ
factorization allows us to detect squares of length ≥ 8∆.

The first warm-up algorithm fixes ∆ depending on n and σ (assuming that σ is
known), and uses the approximate LZ factorization to find all squares of length at
least 8∆. It then finds all the shorter squares by dividing the string into blocks of
length 8∆, and applying the original algorithm by Main and Lorentz on each block
pair. Our choice of ∆ leads to O(n(log σ + log log n)) comparisons.

The improved algorithm does not need to know σ, and instead starts with a
large ∆ = Ω(n), and then progressively decreases ∆ in at most O(log log n) phases,
where later phases detect shorter squares. As soon as we notice that there are
many distinct symbols in the alphabet, by carefully adjusting the parameters, we
can afford switching to the approach of Main and Lorentz on sufficiently short
fragments of the input string. Since we cannot afford Ω(n) comparisons per phase,
we use a deactivation technique, where whenever we perform a large number of
comparisons in a phase, we will discard a large part of the string in all following
phases. More precisely, during a given phase, we avoid looking for squares in a
fragment fully contained in a tail from an earlier phase. This leads to optimal
O(n log σ) comparisons.

The above approach uses an asymptotically optimal number of equality tests in
the worst case, but does not result in an efficient algorithm. The main bottleneck is
constructing the sparse suffix trees. However, it is not hard to provide an efficient
implementation using the general mechanism for answering LCE queries for strings

149

11 Computing Runs Over General Unordered Alphabet

over general unordered alphabet [Gaw+16]. Unfortunately, the best known approach
for answering such queries incurs an additional O(n log∗ n) in the time complexity,
even if the size of the alphabet is constant. We overcome this technical hurdle by
once more carefully deactivating fragments of the text to account for the performed
work.

Many of our techniques can easily be modified to compute all runs rather than de-
tecting squares. We exploit that the approximate factorization reveals long substrings
with a previous occurrence. Hence we compute runs only for the first occurrence of
such substrings, while for later occurrences we simply copy the already computed
runs. By carefully arranging the order of the computation, we ensure that the total
time for copying is bounded by the number of runs, which is known to be O(n). This
way, we achieve O(n log σ) time and comparisons to compute all runs.

11.1 Preliminaries
Unlike in the rest of the dissertation, we use the letter T (rather than x) to denote
the input string. As in the previous chapters, the substring T [i..j] is the string
T [i] . . . T [j]. However, we may also refer to the fragment T [i..j] whenever we talk
about the specific occurrence of T [i..j] starting at position i in T . We say that a
fragment T [i′..j′] is properly contained in another fragment T [i..j] if i < i′ ≤ j′ < j.
A substring is properly contained in T [i..j], if it equals a fragment that is properly
contained in fragment T [i..j]. Recall that we refer to the minimal period of a string
as its period or the period of the string, and a string is called periodic if its period is
at most half its length.

Computational Model We assume a general unordered alphabet as described
in Chapter 2, and the time taken by an algorithm is the combined number of
symbol equality comparisons and word RAM operations. Since we do not consider
general ordered alphabets in this chapter, we simply write comparison rather than
equality comparison. Our algorithms will internally use strings over linearly-sortable
alphabet (for example by reducing parts of the input string with techniques similar
to Lemma 2.1). We stress that in such strings the symbols are not the symbols from
the input string, but simply integers calculated by the algorithm.

Squares and Runs Recall that a square in a string is a length-2ℓ fragment of
period ℓ. The following theorem is a classical result by Main and Lorentz [ML84].

Theorem 11.5. Testing square-freeness of a length-n string over general unordered
alphabet can be implemented in O(n log n) time.

The proof of the above theorem is based on running a divide-and-conquer proce-
dure using the following lemma.

Lemma 11.6. Given two strings x and y over general unordered alphabet, we can
test if there is a square in xy that is not fully contained in x nor y in O(|x|+ |y|)
time and comparisons.

Recall that a repetition in T [1..n] is a triple ⟨s, e, p⟩ with s, e, p ∈ [1, n] such that
T [s..e] is a periodic substring of minimal period p ≤ e−s+1

2 , and a run is a repetition

150

11.1 Preliminaries

⟨s, e, p⟩ that cannot be extended to the left nor to the right with the same period, in
other words s = 1 or T [s− 1] ̸= T [s− 1 + p] and e = n or T [e + 1] ̸= T [e + 1−p]. The
celebrated runs conjecture, proven by Bannai et al. [Ban+17], states that the number
of runs is any length-n string is less than n. As shown in Chapter 10, computing runs
(and thus testing square-freeness) over general ordered alphabet takes O(n) time.

Theorem 10.1. All the runs contained in a length-n string over general ordered
alphabet can be computed in O(n) time and words of working space.

Corollary 10.2. Testing whether or not a length-n string over general ordered
alphabet contains a square can be done in O(n) time and words of space.

Lempel-Ziv Factorization In contrast to Part I, we will use Lempel and Ziv’s
original definition of the LZ factorization. The unique LZ phrase starting at position
s of T [1..n] is a fragment T [s..e] such that T [s..(e − 1)] occurs at least twice in
T [1..(e− 1)] (where the empty string ε occurs twice in every string) and either e = n
or T [s..e] occurs only once in T [1..e]. The Lempel-Ziv factorization of T consists of
z phrases f1, . . . , fz such that the concatenation f1 . . . fz is equal to T [1..n] and each
fi is the unique LZ phrase starting at position 1 + ∑︁i−1

j=1 |fj |.

Tries Given a collection S = {T1, . . . , Tk} of strings over some alphabet Σ, its trie
is a rooted tree with edge labels from Σ. For any node v, the concatenation of the
edge labels from the root to the node spells a string. The string-depth of a node is
the length of the string that it spells. No two nodes spell the same string, i.e., for
any node, the labels of the edges to its children are pairwise distinct. Each leaf spells
one of the Ti, and each Ti is spelled by either an internal node or a leaf.

The compacted trie of S can be obtained from its (non-compacted) trie by
contracting each path between a leaf or a branching node and its closest branching
ancestor into a single edge (i.e., by contraction we eliminate all non-branching internal
nodes). The label of the new edge is the concatenation of the edge labels of the
contracted path in root to leaf direction. Since there are at most k leaves and all
internal nodes are branching, there are O(k) nodes in the compacted trie. Each edge
label is some substring Ti[s..e] of the string collection, and we can avoid explicitly
storing the label by instead storing the reference (i, s, e). Thus O(k) words are
sufficient for storing the compacted trie. Consider a string T ′ that is spelled by
a node of the non-compacted trie. We say that T ′ is explicit, if and only if it is
spelled by a node of the compacted trie, in which case this node is also called explicit.
Otherwise T ′ is implicit, and we say that it is spelled by an implicit node.

The suffix tree of a string T [1..n] is the compacted trie containing exactly its
suffixes, i.e., a trie over the string collection {T [i..n] | i ∈ {1, . . . , n}}. It is one of the
most fundamental data structures in string algorithmics, and is widely used, e.g., for
compression and indexing [Gus97]. The suffix tree can be stored in O(n) words of
memory, and for linearly-sortable alphabets it can be computed in O(n) time [Far97].
The sparse suffix tree of T for some set B ⊆ {1, . . . , n} of sample positions is the
compacted trie containing exactly the suffixes {T [i..n] | i ∈ B}. It can be stored in
O(|B|) words of memory.

We assume that T is terminated by some special symbol T [n] = $ that occurs
nowhere else in T . This ensures that, in a (sparse) suffix tree, each suffix is spelled

151

11 Computing Runs Over General Unordered Alphabet

by a leaf, and we label the leaves with the respective starting positions of the suffixes.
Note that for any two leaves i ̸= j, their lowest common ancestor (i.e., the deepest
node that is an ancestor of both i and j) spells a string of length lce(i, j).

11.2 Lower Bound for Testing Square-Freeness
Over General Unordered Alphabet

In this section, we show that Ω(n log σ) symbol comparisons are needed to test
square-freeness over general unordered alphabet. We use the adversarial method
as described in Section 2.3.1, which we briefly recall now. The present model of
computation may be interpreted as follows. An algorithm working on a string over
general unordered alphabet has no access to the actual string. Instead, it can only ask
an oracle whether or not there are identical symbols at two positions. The number
of questions asked is exactly the number of performed comparisons. In order to show
a lower bound on the number of comparisons required to solve some problem, we
describe an adversary that takes over the role of the oracle, forcing the algorithm to
perform as many symbol comparisons as possible.

Similar to the conflict lists in the proof of Theorem 2.5(ii) and Theorem 2.3(ii),
we use a conflict graph G = (V, E) with V = {1, . . . , n} and E ⊆ V 2 to keep track of
the answers given by the adversary. The nodes directly correspond to the positions
of the string. Initially, we have E = ∅ and all nodes are colorless, which formally
means that they have color γ(i) = ⊥. During the algorithm execution, the adversary
may assign colors from the set Σ = {0, . . . , n− 1} to the nodes, which can be seen
as permanently fixing the alphabet symbol at the corresponding position (i.e., each
node gets colored at most once). The rule used for coloring nodes will be described
later. Apart from the coloring rule, the general behavior of the adversary is as follows.
Whenever the algorithm asks whether T [i] = T [j] holds, the adversary answers “yes”
if and only if γ(i) = γ(j) ̸= ⊥. Otherwise, it answers “no” and inserts an edge (i, j)
into E. Whenever the adversary assigns the color of a node, it has to choose a color
that is not used by any of the adjacent nodes in the conflict graph. This ensures that
the coloring does not contradict the answers given in the past.

Let us define a set T ⊆ Σn of strings that is consistent with the answers given by
the adversary. A string T ∈ Σn is a member of T if

∀i ∈ V : γ(i) ∈ {⊥, T [i]} ∧ ∀i, j ∈ V : (T [i] = T [j]) =⇒ (i, j) /∈ E.

Note that T changes over time. Initially (before the algorithm starts), we have
T = Σn. With every question asked, the algorithm might eliminate some strings
from T . However, there is always at least one string in T , which can be obtained,
e.g., by coloring each colorless node in a previously entirely unused color.

Testing Square-Freeness In order to obtain a lower bound for testing square-
freeness, we will ensure that T always contains a square-free string with at most σ
distinct symbols. At the same time, we try to ensure that T also contains a string
with at least one square. We will show that we can maintain this state until at least
n ln σ − 3.6n comparisons have been performed.

The string (or rather family of strings) constructed by the adversary is organized
in

⌈︂
4n
σ

⌉︂
non-overlapping blocks of length σ

4 (we assume σ
4 ∈ N and 8 ≤ σ ≤ n). Each

152

11.2 Lower Bound for Testing Square-Freeness

2
1

33
2 3 4

1
5

44
6

66
7

55
8

0
9 10 11 12

2
13

55
14

33
15

44
16

0
17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 11.1: Example conflict graph of the adversary described in Section 11.2.
The alphabet {0, . . . , 15} is of size σ = 16. The blocks are of length σ

4 = 4. The gray
nodes are exactly the starting positions of the blocks and contain the symbols of
the ternary Thue-Morse sequence v = 2, 1, 0, 2, 0, 1, 2, . . . , which is square-free. We
assume that the colored nodes were colored in the following order: 2, 6, 8, 7, 15, 16, 14.
At the time of coloring node 8, we had to avoid colors 0, 1, 2 (because they are
reserved for the separator positions), 3 (because the adjacent node 2 already has
color 3), and 4 (because node 6 is in the same block and already has color 4). The
algorithm has not eliminated all squares yet. For example, nodes 10 and 11 with
absent edge (10, 11) /∈ E are adjacent to nodes of colors {3, 6, 5} ∪ {5, 3, 4}. Thus,
any of the colors {0, 1, 2} ∪ {7, . . . , 15} can be assigned to both nodes, enforcing the
square T [10..11]. As visualized on the right, an edge of length ℓ eliminates at most ℓ
squares.

block begins with a special separator symbol. More precisely, the first symbol of
the kth block is the kth symbol of a ternary square-free string over the alphabet
{0, 1, 2} (e.g., the distance between the kth and (k + 1)th occurrence of 0 in the
Prouhet-Thue-Morse sequence, also known as the ternary Thue-Morse-Sequence,
see [AS98, Corollary 1] or [Webf]). Initially, the adversary colors the nodes that
correspond to the separator positions in their respective colors from {0, 1, 2}. All
remaining nodes will later get colors other than {0, 1, 2}. Any fragment crossing a
block boundary can be projected on the colors {0, 1, 2}, and by construction the
string cannot contain a square. Thus, the separator symbols ensure that there is no
square crossed by a block boundary, which implies that the string is square-free if
and only if each of its blocks is square-free.

During the algorithm execution, we use the following coloring rule. The available
colors are {3, . . . , σ − 1}. Whenever the degree of a node becomes σ

4 , we assign
its color. We avoid not only the at most σ

4 colors of already colored neighbors in
the conflict graph, but also the less than σ

4 colors of nodes within the same block
(due to σ ≥ 8, there are at least σ − 3 − σ

2 ≥ 1 colors available). An example of
the conflict graph is provided in Figure 11.1. At any moment in time, we could
hypothetically complete the coloring by assigning one of the colors {3, . . . , σ − 1} to
each colorless node, avoiding colors of adjacent nodes and colors of nodes in the same
block. Afterwards, each node holds one of the σ colors, but no two nodes within the
same block have the same color. Hence each block is square-free, and therefore T
always contains a square-free string with at most σ distinct symbols.

Now we consider the state of the conflict graph after the algorithm has terminated.
We are particularly concerned with consecutive ranges of colorless nodes. The
following lemma states that for each such range, the algorithm either performed
many comparisons, or we can enforce a square within the range.

153

11 Computing Runs Over General Unordered Alphabet

Lemma 11.7. Let R = [i, j] ⊂ V be a range of m = j − i + 1 colorless nodes in the
conflict graph. Then either

⃓⃓
E ∩R2⃓⃓

≥
∑︁⌊m/2⌋

ℓ=1
m−2ℓ+1

ℓ , or there is a string T ∈ T
with at most σ distinct symbols such that T [i..j] contains a square.

Proof. We say that an integer interval [x, x + 2ℓ− 1] with i ≤ x < (x + 2ℓ− 1) ≤ j
has been eliminated if for some y with x ≤ y < x + ℓ there is an edge (y, y + ℓ) in
the conflict graph. If such an edge exists, then (by the definition of T) all strings
T ∈ T satisfy T [y] ̸= T [y + ℓ]. Thus T [x..x + 2ℓ− 1] is not a square for any of them.

Now we show that, if [x, x + 2ℓ− 1] has not been eliminated, then there exists
a string T ∈ T such that T [x..x + 2ℓ − 1] is a square. For this purpose, consider
any position y with x ≤ y < x + ℓ, i.e., a position in the first half of the potential
square. Since [x, x + 2ℓ − 1] has not been eliminated, (y, y + ℓ) is not an edge in
the conflict graph. It follows that we could assign the same color to y and y + ℓ.
We only have to avoid the at most 2 · (σ

4 − 1) colors of adjacent nodes of both y
and y + ℓ in the conflict graph. Thus there are σ

2 + 2 appropriate colors that can
be assigned to both nodes. Unlike during the algorithm execution, we do not need
to avoid the special separator colors or the colors in the same block; since we are
trying to enforce a square, we do not have to worry about accidentally creating one.
By applying this coloring scheme for all possible choices of y, we enforce that all
strings T ∈ T have a square T [x..x + 2ℓ− 1]. Note that by coloring additional nodes
after the algorithm terminated, we only remove elements from T . Thus, the strings
with square T [x..x + 2ℓ− 1] were already in T when the algorithm terminated. It
follows that, if the algorithm actually guarantees square-freeness, then it must have
eliminated all possible intervals [x, x + 2ℓ− 1] with i ≤ x < (x + 2ℓ− 1) ≤ j.

While each interval needs at least one edge to be eliminated, a single edge
eliminates multiple intervals. However, all the intervals eliminated by an edge must
be of the same length. Now we give a lower bound on the number of edges needed
to eliminate all intervals of length 2ℓ. Any edge (y, y + ℓ) eliminates ℓ intervals,
namely the intervals [x, x + 2ℓ− 1] that satisfy x ≤ y < x + ℓ. Within R, we have
to eliminate m − 2ℓ + 1 intervals of length 2ℓ, namely the intervals [x, x + 2ℓ − 1]
that satisfy i ≤ x ≤ j − 2ℓ + 1 (see right side of Figure 11.1). Thus, we need at least
m−2ℓ+1

ℓ edges to eliminate all squares of length 2ℓ. Finally, by summing over all
possible values of ℓ, we need at least ∑︁⌊m/2⌋

ℓ=1
m−2ℓ+1

ℓ edges to eliminate all intervals
in R. Note that the edges used for elimination have both endpoints in R, and are
thus contained in E ∩R2. Consequently, if

⃓⃓
E ∩R2⃓⃓

<
∑︁⌊m/2⌋

ℓ=1
m−2ℓ+1

ℓ , then not all
intervals have been eliminated, and there is a string in T that contains a square.

Finally, we show that the algorithm either performed at least Ω(n log σ) com-
parisons, or there is a string T ∈ T that contains a square. Let c1, c2, . . . , ck be
exactly the colored nodes. Initially (before the algorithm execution), the adversary
colored

⌈︂
4n
σ

⌉︂
nodes (corresponding to the separators of the Prouhet-Thue-Morse

sequence). Thus k ≥
⌈︂

4n
σ

⌉︂
, and there are k −

⌈︂
4n
σ

⌉︂
nodes that have been colored

after their degree reached σ
4 . Therefore, the sum of degrees of all colored nodes is at

least (k −
⌈︂

4n
σ

⌉︂
) · σ

4 ≥
σk−4n−σ

4 ≥ σk−5n
4 . Each comparison may increase the degree

of two nodes by one. Thus, the colored nodes account for at least σk−5n
8 comparisons.

There are k non-overlapping maximal colorless ranges of nodes, namely the range
{ci + 1, . . . , ci+1 − 1} for every i ∈ [1, k], with auxiliary value ck+1 = n + 1. If all the

154

11.3 Testing Square-Freeness in O(n log σ) Comparisons

T ∈ T are square-free, then each range accounts for ei = ∑︁⌊mi/2⌋
ℓ=1

mi−2ℓ+1
ℓ edges by

Lemma 11.7, where mi = ci+1− ci−1. No edge gets counted more than once because
the ranges are non-overlapping, and both endpoints of the respective edges are within
the range. Thus, to verify square-freeness, the algorithm must have performed at
least ∑︁k

i=1 ei + σk−5n
8 comparisons. The remainder of the proof consists of simple

algebra. First, we provide a lower bound on ei (explained below).

ei =
⌊mi/2⌋∑︂

ℓ=1

mi − 2ℓ + 1
ℓ

=
⌈mi/2⌉∑︂

ℓ=1

mi − 2ℓ + 1
ℓ

≥ (mi + 1)

⎛⎝⎛⎝⌈mi/2⌉∑︂
ℓ=1

1
ℓ

⎞⎠− 1

⎞⎠
> (mi + 1) · (ln mi

2 −
1
2)

= (mi + 1) · ln mi

2
√

e

≥ (mi + 1) · ln mi + 1
2.5
√

e

We can replace ⌊mi/2⌋ with ⌈mi/2⌉ because if mi is odd the additional summand
equals zero. The first inequality uses simple arithmetic operations. The second
inequality uses the classical lower bound (ln x + 1

2) < Hx on harmonic numbers. The
last inequality holds for mi ≥ 4. For mi < 4 the result becomes negative and is thus
still a correct lower bound on the number of comparisons. We obtain:

k∑︂
i=1

(mi + 1) · ln mi + 1
2.5
√

e⏞ ⏟⏟ ⏞
comparisons within

colorless ranges

+ σk − 5n

8⏞ ⏟⏟ ⏞
comparisons for
colored nodes

≥ n · ln n

2.5
√

ek
+ σk − 5n

8

= n · ln σ

2.5
√

ex
+ xn− 5n

8

= n · ln σ + n ·
(︃

x− 5
8 − ln(2.5

√
ex)

)︃
> n · ln σ − 3.12074n

The first step follows from ∑︁k
i=1(mi + 1) = n and the log sum inequality (see

[CT06, Theorem 2.7.1]). In the second step we replace k by using x = σk
n . The

third step uses simple arithmetic operations. The last step is reached by substituting
x = 8, which minimizes the equation. Finally, we assumed that σ is divisible by 4.
We account for this by adjusting the lower bound to n ln(σ − 3)− 3.12074n, which is
larger than n ln σ − 3.6n for σ ≥ 8.

Theorem 11.1. Let n, σ ∈ N+ with 8 ≤ σ ≤ n be fixed. There is no deterministic
algorithm that performs at most n ln σ − 3.6n = O(n log σ) equality comparisons in
the worst case, and determines whether a length-n string that contains at most σ
distinct symbols over general unordered alphabet is square-free.

11.3 Testing Square-Freeness
in O(n log σ) Comparisons

In this section, we consider the problem of testing square-freeness. We introduce
an algorithm that decides whether a given string is square-free using O(n log σ)

155

11 Computing Runs Over General Unordered Alphabet

comparisons, matching the lower bound from Theorem 11.1. Note that this algorithm
is not yet time efficient because, apart from the performed symbol comparisons,
it uses other operations that are expensive in the word RAM model. A time
efficient implementation of the algorithm will be presented in Section 11.4, where we
first achieve O(n log σ + n log∗ n) time, and then improve this to O(n log σ) time. In
Section 11.5, we generalize the result to compute all runs in the same time complexity.

11.3.1 Sparse Suffix Trees and Difference Covers
As mentioned earlier, we will detect squares using an approximate version of the LZ
factorization. In order to compute this factorization efficiently, we need to be able to
construct sparse suffix trees in few symbol comparisons. From now on, whenever we
say that some cost is shared by all invocations of some lemma, we implicitly mean
that the cost is shared by all invocations of this lemma on the same text T .

Lemma 11.8. The sparse suffix tree containing any b suffixes T [i1..n], . . . , T [ib..n]
of T [1..n] can be constructed using O(bσ log b) comparisons plus O(n) comparisons
shared by all invocations of the lemma.

Proof. We maintain a union-find structure over the positions of T [1..n]. Initially,
each position is in a separate component. Whenever we have to perform an equality
comparison between symbols T [x] and T [y], we check if x and y are in the same
component of the union-find structure, and if so immediately return that T [x] = T [y]
without performing any comparisons. Otherwise, we perform the comparison and, if
the outcome of the comparison is T [x] = T [y], we merge the components of x and y.
We merge components at most n times, which means that the total number of issued
queries with positive answer, over all invocations of the lemma, is less than n, and it
remains to bound the number of issued queries with negative answer.

We insert the suffixes T [ij ..n] one-by-one into an initially empty sparse suffix tree.
To insert the next suffix, we descend from the root of the tree to identify the node
u that corresponds to the longest common prefix between T [ij ..n] and any of the
already inserted suffixes. We then make u explicit unless it is explicit already, and
add an edge from u to a new leaf corresponding to the whole T [ij ..n]. We say that the
insertion procedure terminates at u. Node u can be identified using only O(σ log b)
comparisons with negative answers as follows. Let v be the current node (initially the
root), and let v1, . . . , vd be its children, where d ≤ σ. Here, v can be either explicit
or implicit, in the latter case d = 1. We arrange the children of v so that the number
of leaves in the subtree rooted at v1 is at least as large as the number of leaves in
the subtree rooted at any other child of v. Then, we compare the symbol on the
edge leading to v1 with the corresponding symbol of the current suffix. If they are
equal we continue with v1, otherwise we compare the symbols on the edges leading
to v2, . . . , vd with the corresponding symbol of the current suffix one-by-one. Then,
we either continue with some vj , j ≥ 2, or terminate at v. To bound the number of
comparisons with negative answer, observe that such comparisons only occur when
we either terminate at v or continue with vj , j ≥ 2. Whenever we continue with vj ,
j ≥ 2, the number of leaves in the current subtree rooted at vj decreases at least by
a factor of 2 compared to subtree rooted at v (as the subtree rooted at v1 had the
largest number of leaves). Thus, during the whole descent from the root performed
during an insertion this can happen only at most 1 + log2 b times. Every time we do

156

11.3 Testing Square-Freeness in O(n log σ) Comparisons

∆
√

∆

Figure 11.2: Positions in a ∆-difference cover.

not continue in the subtree v1 we might have up to d ≤ σ comparisons with negative
answer, thus the total number of such comparisons is as claimed1.

Now we describe the sample positions that we will later use to compute the
approximate LZ factorization. A set S ⊆ N is called a t-cover of {1, . . . , n} if there
is a constant-time computable function h such that, for any i, j ∈ [1, n− t + 1], we
have h(i, j) ∈ [0, t) and i + h(i, j), j + h(i, j) ∈ S. A possible construction of t-covers
is given by the lemma below, and visualized in Figure 11.2.

Lemma 11.9. For any n and t ≤ n, there exists a t-cover D(t) of {1, . . . , n} with
size O(n/

√
t). Furthermore, its elements can be enumerated in time proportional to

their number.

Proof. We use the well-known combinatorial construction known as difference covers,
see, e.g. [Mae85]. Let r = ⌊

√
t⌋ and define D(t) = {i ∈ {1, . . . , n} : i mod r =

0 or i mod r2 ∈ {0, . . . , r− 1}}. By definition, |D(t)| ≤ ⌊n/r⌋+ ⌊n/r2⌋r = O(n/r) =
O(n/

√
t). The function h(i, j) is defined as a + b · r, where a = (r − i) mod r and

b = (r − ⌊(j + a)/r⌋) mod r. Note that i + h(i, j) ≤ n and j + h(i, j) ≤ n. Then,
i + (a + b · r) = 0 (mod r), while ⌊(j + (a + b · r))/r⌋ = ⌊(j + a)/r + b⌋ = 0 mod r
implies j + h(i, j) mod r2 ∈ {0, . . . , r − 1}}, thus i + h(i, j), j + h(i, j) ∈ D(t) as
required.

11.3.2 Detecting Squares with a ∆-Approximate
LZ Factorization

Now we are ready to introduce the new approximate version of the Lempel-Ziv
factorization.

Definition 11.10 (∆-approximate LZ factorization). For a positive integer param-
eter ∆, the fragment T [s..e] is a ∆-approximate LZ phrase if it can be split into
a head and a tail T [s..e] = head(T [s..e])tail(T [s..e]) such that |head(T [s..e])| < ∆
and additionally

• tail(T [s..e]) is either empty or occurs at least twice in T [1..e], and

• the unique (standard) LZ phrase T [s..e′] starting at position s satisfies e′− 1 ≤ e.

In a ∆-approximate LZ factorization T = b1b2 . . . bz, each factor bi is a ∆-approximate
phrase T [s..e] with s = 1 + ∑︁i−1

j=1 |bj | and e = ∑︁i
j=1 |bj |.

1In the descent, if all children are sorted according to their subtree size, the number of comparisons
decreases to O(b(σ/ log σ) log b), but this is irrelevant for our final algorithm.

157

11 Computing Runs Over General Unordered Alphabet

T =
s e

T [s..e)⏞ ⏟⏟ ⏞T [s..e)

T [s..e] occurs exactly once in T [1..e]

T [s..e) occurs at least twice in T [1..e)

(a) A standard LZ phrase T [s..e].

T =
s

s+d < s+∆
↓ ee′

LZ phrase
head tail T [s+d..e]

⏞ ⏟⏟ ⏞
T [s+d..e]

T [s..e′] occurs exactly once in T [1..e′]

T [s+d..e] occurs at least twice in T [1..e]

(b) A ∆-approximate phrase T [s..e]. The (stan-
dard) LZ phrase at position s is T [s..e′], and it
holds e′ − 1 ≤ e.

Figure 11.3: Illustration of an LZ-phrase and a ∆-approximate phrase.

Note that a standard LZ phrase is not a ∆-approximate phrase. Also, while
the LZ phrase starting at each position (and thus also the LZ factorization) is
uniquely defined, there may be multiple different ∆-approximate phrases starting
at each position. This also means that a single string can have multiple different
∆-approximate factorizations. The definitions of both standard and ∆-approximate
LZ phrases are illustrated in Figure 11.3.

The intuition behind the above definition is that constructing the ∆-approximate
LZ factorization becomes easier for larger values of ∆. In particular, for ∆ = n one
phrase is enough. We formalize this in the following lemma, which is made more
general for the purpose of obtaining the final result in this section.

Lemma 11.11. For any parameter ∆ ∈ [1, m], a ∆-approximate LZ factoriza-
tion of any fragment T [x..y] of length m can be computed using O(mσ log m/

√
∆)

comparisons plus O(n) comparisons shared by all invocations of the lemma.

Proof. By Lemma 11.9, there is a ∆-cover D(∆) of {1, . . . , n} with size O(n/
√

∆).
Let S = (D(∆) ∩ {x, x + 1, . . . , y}) = {i1, i2, . . . , ib}. It is straightforward to verify
that the construction additionally guarantees b = O(m/

√
∆). We apply Lemma 11.8

on the suffixes T [i1..n], . . . , T [ib..n] to obtain their sparse suffix tree using O(bσ log b)
comparisons plus O(n) comparisons shared by all invocations of the lemma. The
sparse suffix tree allows us to obtain the longest common prefix of any two fragments
T [i..y] and T [j..y], for i, j ∈ S, with no additional comparisons. By the properties of
D(∆), for any i, j ∈ [x, y−∆+1] we have h(i, j) ∈ [0, ∆) and i+h(i, j), j +h(i, j) ∈ S.

We compute the ∆-approximate LZ factorization of T [x..y] phrase-by-phrase.
Denoting the remaining suffix of the whole T [x..y] by T [x′..y], we need to find
y′ ∈ [x′, y] such that T [x′..y′] is a ∆-approximate phrase. This is done as follows.
We iterate over every x′′ ∈ [x′, x′ + ∆) ∩ S. For every such x′′, we consider every
a′ ∈ [x, x′) ∩ S, and compute the length ℓ of the longest common prefix of T [x′′..y]
and T [a′..y]. Among all such x′′, a′ we choose the pair that results in the largest
value of x′′− x′ + ℓ− 1 and choose the next phrase to be T [x′..(x′′ + ℓ− 1)], with the
head being T [x′..(x′′ − 1)] and the tail T [x′′..(x′′ + ℓ− 1)]. Finally, if there is no such
pair, or the value of x′′−x′+ ℓ− 1 corresponding to the found pair is less than ∆− 2,
we take the next phrase to be T [x′.. min{x′ + ∆− 1, y}] (with empty tail). Selecting
such a pair requires no extra comparisons, as for every x′′, a′ ∈ S we can use the

158

11.3 Testing Square-Freeness in O(n log σ) Comparisons

sparse suffix tree to compute ℓ. While it is clear that the generated ∆-approximate
phrase has the required form, we need to establish that it is sufficiently long.

Let T [x′..y′′] be the (unique) standard LZ phrase of T [x..y] that is prefix of
T [x′..y]. If y′′ < x′ + ∆ − 1 then we only need to ensure that the generated ∆-
approximate phrase is of length at least min{∆− 1, y − x′ + 1}, which is indeed the
case. Therefore, it remains to consider the situation when y′′ ≥ x′+∆−1. Let T [a..b]
be a previous occurrence of T [x′..(y′′−1)] in T [x..y] (because T [x′..y′′] is a phrase this
is well-defined). Thus, T [a..b] = T [x′..(y′′ − 1)] and a < x′. Because y′′ ≥ x′ + ∆− 1
and y′′ ≤ y, as explained above 0 ≤ h(a, x′) < ∆ and a + h(a, x′), x′ + h(a, x′) ∈ S.
We will consider x′′ = x′ + h(a, x′) and a′ = a + h(a, x′) in the above procedure.
Next, T [a′..b] = T [x′′..(y′′ − 1)], so when considering this pair we will obtain ℓ ≥
|T [x′′..(y′′− 1)]|. Thus, for the found pair we will have x′′+ ℓ− 1 ≥ y′′− 1 as required
in the definition of a ∆-approximate phrase.

Next, we show that even though the ∆-approximate LZ factorization does not
capture all distinct squares (as it is the case for the standard LZ factorization), it is
still helpful in detecting all squares that are sufficiently long relative to ∆. A crucial
component is the following property of the ∆-approximate LZ factorization.

Lemma 11.12. Let b1b2 . . . bz be a ∆-approximate LZ factorization of a string T .
For every square T [s..s + 2ℓ− 1] of length 2ℓ ≥ 8∆, there is at least one phrase bi

with |tail(bi)| ≥ ℓ
4 ≥ ∆ such that tail(bi) and the right-hand side T [s + ℓ..s + 2ℓ− 1]

of the square intersect.

Proof. Assume that all tails that intersect T [s + ℓ..s + 2ℓ − 1] are of length less
than ℓ

4 , then the respective phrases of these tails are of length at most ℓ
4 + ∆ − 1

(because each head is of length less than ∆). This means that T [s + ℓ..s + 2ℓ− 1]
intersects at least

⌈︂
ℓ/(ℓ

4 + ∆− 1)
⌉︂
≥

⌈︂
ℓ/(ℓ

2 − 1)
⌉︂

= 3 phrases. Thus, there is some
phrase bi = T [x..y] properly contained in T [s + ℓ..s + 2ℓ − 1], formally s + ℓ <
x ≤ y < s + 2ℓ− 1. However, this contradicts the definition of the ∆-approximate
LZ factorization because T [x..s + 2ℓ] is the prefix of a standard LZ phrase (due to
T [x..s+2ℓ−1] = T [x−ℓ..s+ℓ−1]), and the ∆-approximate phrase bi = T [x..y] must
satisfy y ≥ s + 2ℓ− 1. The contradiction implies that T [s + ℓ..s + 2ℓ− 1] intersects a
tail of length at least ℓ

4 ≥ ∆.

Lemma 11.13. Given a ∆-approximate LZ factorization T = b1b2 . . . bz, we can
detect whether there is at least one square of length ≥ 8∆ and report such a square
in O

(︂
z + ∑︁

|tail(bi)|≥∆ |tail (bi)|
)︂

time and O
(︂∑︁
|tail(bi)|≥∆ |tail (bi)|

)︂
comparisons.

Proof. We consider each phrase bi = T [a1..a3] with head(bi) = T [a1..a2 − 1] and
tail(bi) = T [a2..a3] separately. Let k = |tail(bi)|. If k ≥ ∆, we apply Lemma 11.6 to
x1 = T [a2− 8k..a2− 1] and y1 = T [a2..a3 + 4k− 1], as well as x2 = T [a2− 8k..a3− 1]
and y2 = T [a3..a3 + 4k − 1] trimmed to T [1..n]. This takes O(|tail(bi)|) time and
comparisons, or O

(︂∑︁
|tail(bi)|≥∆ |tail (bi)|

)︂
time and comparisons for all phrases. We

need additional O(z) time to check if k ≥ ∆ for each phrase.
Now we show that the described strategy detects a square of size at least 8∆.

Let T [s..s + 2ℓ− 1] be any such square. Due to Lemma 11.12, the right-hand side
T [s + ℓ..s + 2ℓ− 1] of this square intersects some tail tail(bi) = T [a2..a3] of length

159

11 Computing Runs Over General Unordered Alphabet

k = |tail(bi)| ≥ ℓ
4 ≥ ∆. Due to the intersection, we have a2 ≤ s+2ℓ−1 and a3 ≥ s+ℓ.

Thus, when processing bi and applying Lemma 11.6, the starting position of x1 and x2
satisfies a2−8k ≤ s + 2ℓ−1−8 ℓ

4 = s−1, while the end position of y1 and y2 satisfies
a3 + 4k− 1 ≥ s + ℓ + 4 ℓ

4 − 1 = s + 2ℓ− 1. Therefore, the square is entirely contained
in the respective fragments corresponding to x1y1 and x2y2. If s < a2 ≤ s + 2ℓ− 1,
we find the square with our choice of x1 and y1. If s < a3 ≤ s + 2ℓ− 1, we find the
square with our choice of x2 and y2. Otherwise, T [s..s + 2ℓ− 1] is entirely contained
in tail T [a2..a3], and we find another occurrence of the square further to the left.

11.3.3 Simple Algorithm for Detecting Squares
Now we have all the tools to introduce our simple method for testing square-freeness
of T [1..n] using O(n(log σ + log log n)) comparisons, assuming that σ is known in
advance. Let ∆ = (σ log n)2. We partition T [1..n] into blocks of length 8∆, and
denote the kth block by Bk. A square of length at most 8∆ can be found by invoking
Main and Lorentz’s algorithm from Theorem 11.5 on B1B2, B2B3, and so on. This
takes O(∆ log ∆) = O(∆(log σ + log log n)) comparisons for each pair of adjacent
blocks, or O(n(log σ + log log n)) comparisons in total. It remains to test for squares
of length exceeding 8∆. This is done by first invoking Lemma 11.11 to compute a ∆-
approximate LZ factorization of T [1..n] using O(nσ log n/

√
∆) = O(n) comparisons,

and then using Lemma 11.13, which adds another O(n) comparisons. The total
number of comparisons is dominated by the O(n(log σ + log log n)) comparisons
needed to apply Theorem 11.5 to the block pairs.

11.3.4 Improved Algorithm for Detecting Squares
We are now ready to describe the algorithm that uses only O(n log σ) comparisons
without knowing the value of σ. Intuitively, we will proceed in phases, trying to
“guess” the value of σ. We first observe that Lemma 11.11 can be extended to obtain
the following.

Lemma 11.14. There is an algorithm that, given any parameter ∆ ∈ [1, m],
estimate σ̃ and fragment T [x..y] of length m, uses O(mσ̃ log m/

√
∆) comparisons

plus O(n) comparisons shared by all invocations of the lemma, and either computes
a ∆-approximate LZ factorization of T [x..y] or determines that σ > σ̃.

Proof. We run the procedure described in the proof of Lemma 11.11 and keep
track of the number of comparisons with negative answer. As soon as it exceeds
O(mσ̃ log m/

√
∆) (where the constant follows from the complexity analysis) we know

that necessarily σ > σ̃, so we can terminate. Otherwise, the algorithm obtains a
∆-approximate LZ factorization using O(mσ̃ log m/

√
∆) comparisons. Comparisons

with positive answer are paid for globally.

Now we describe how to find any square using O(n log σ) comparisons. We
define the sequence σt = 22⌈log log n⌉−t , for t = 0, 1, . . . , ⌈log log n⌉. We observe that
σt−1 = (σt)2, and proceed in phases corresponding to the values of t. In the tth phase
we are guaranteed that any square of length at least (σt)2 has been already detected,
and we aim to detect square of length less than (σt)2, and at least σt. We partition
the whole T [1..n] into blocks of length (σt)2, and denote the kth block by Bk. A

160

11.3 Testing Square-Freeness in O(n log σ) Comparisons

square of length less than (σt)2 is fully contained within some two consecutive blocks
BiBi+1, hence we consider each such pair B1B2, B2B3, and so on. We first apply
Lemma 11.14 with ∆ = σt/8 and σ̃ = (σt)1/4/ log(σt) to find an (σt/8)-approximate
LZ factorization of the corresponding fragment of T [1..n], and then use Lemma 11.13
to detect squares of length at least σt. We cannot always afford to apply Lemma 11.13
to all block pairs. Thus, we have to deactivate some of the blocks, which we explain
when analyzing the number of comparisons performed by the algorithm. If any of the
calls to Lemma 11.14 in the current phase detects that σ > σ̃, we switch to applying
Main and Lorentz’s algorithm from Theorem 11.5 on every pair of blocks BiBi+1 of
the current phase and then terminate the whole algorithm.

We now analyze the total number of comparisons, ignoring the O(n) comparisons
shared by all invocations of Lemma 11.14. Throughout the tth phase, we use
O(n · σ̃ log σt/

√
∆) = O(n ·(σt)1/4/ log(σt) · log(σt)/

√
σt) = O(n/(σt)1/4) comparisons

to construct the ∆-approximate factorizations (using Lemma 11.14) until we either
process all pairs of blocks or detect that σ > (σt)1/4/ log(σt). In the latter case, we
finish off the whole computation using O(n log(σt)) comparisons (with Theorem 11.5),
and by assumption on σ this is O(n log σ) as required. Until this happens (or until we
reach phase t = ⌈log log n⌉−3 where σt ≤ 256), we useO(∑︁t′

t=0 n/(σt)1/4) comparisons
to construct the ∆-approximate factorizations, for some t′ ∈ [0, ⌈log log n⌉]. To
analyze the sum, we need the following bound (made more general for the purpose
of the next section).

Lemma 11.15. For any 0 ≤ x ≤ y and c ≥ 0 we have ∑︁y
i=x 2ic/22i = O(2xc/22x).

Proof. The sequence of exponents 2i is strictly increasing from i = 0, hence

y∑︂
i=x

2ic

22i ≤
2y∑︂

i=2x

ic

2i
≤
∞∑︂

i=2x

ic

2i
=
∞∑︂

i=0

(2x + i)c

2(2x+i) ≤
∞∑︂

i=0

2xc · (i + 1)c

2(2x+i) = 2xc

22x ·
∞∑︂

i=0

(i + 1)c

2i
.

Since ∑︁∞
i=0

(i+1)c

2i is a series of positive terms, we can use Alembert’s ratio test. The
ratio (i+2)c

2i+1 · 2i

(i+1)c = 1
2

(i+2)c

(i+1)c of consecutive terms tends to 1
2 when i goes to the

infinity, thus the series converges to a constant.

Corollary 11.16. For t′ ∈ [0, ⌈log log n⌉], it holds

t′∑︂
t=0

n · polylog(σt)/(σt)1/4 = O(n).

Proof. We have to show that ∑︁t′
t=0 logc(σt)/(σt)1/4) = O(1) for any constant c ≥ 0.

We achieve this by splitting the sum and applying Lemma 11.15.

t′∑︂
t=0

logc(σt)
(σt)1/4 ≤

⌈log log n⌉∑︂
t=0

(2⌈log log n⌉−t)c

(22⌈log log n⌉−t)1/4 =
⌈log log n⌉∑︂

t=0

(2t)c

(22t)1/4

=
⌈log log n⌉∑︂

t=0

2tc

22t−2 = 1
22−2 + 2c

22−1 + 4 ·
⌈log log n⌉−2∑︂

t=0

2tc

22t = O(1)

161

11 Computing Runs Over General Unordered Alphabet

Thus, all invocations of Lemma 11.14 cause O(∑︁t′
t=0 n/(σt)1/4) = O(n) compar-

isons. So far, we analyzed all comparisons except for the ones issued by Lemma 11.13,
and the total number of comparisons is dominated by the O(n log σ) comparisons
needed when applying Theorem 11.5 to all block pairs.

Deactivating Block Pairs

It remains to analyze the number of comparisons used by Lemma 11.13 throughout
all phases. As mentioned earlier, we cannot actually afford to apply Lemma 11.13 to
all block pairs. Thus, we introduce a mechanism that deactivates some of the pairs.

First, note that there are O(∑︁t′
t=0 n/(σt)2) ⊆ O(∑︁t′

t=0 n/(σt)1/4) = O(n) block
pairs in all phases. For each pair, we store whether it has been deactivated or not,
where being deactivated broadly means that we do not have to investigate the pair
because it does not contain a leftmost distinct square. For each block pair BiBi+1 in
the current phase t, we first check if it has been marked as deactivated. If not, we
also check if it has been implicitly deactivated, i.e., if any of the two pairs from the
previous phase that contain BiBi+1 are marked as deactivated. If BiBi+1 has been
implicitly deactivated, then we mark it as deactivated and do not apply Lemma 11.14
and Lemma 11.13 (the implicit deactivation serves the purpose of propagating the
deactivation to all later phases). Note that if some position of the string is not
contained in any active block pair in some phase, then it is also not contained in any
active block pair in all later phases. This is because always σt−1 = (σt)2 (with no
rounding required), which guarantees that block boundaries of earlier phases do not
intersect blocks of later phases.

We only apply Lemma 11.14 and then Lemma 11.13 to BiBi+1 if the pair has
neither explicitly nor implicitly been deactivated. When applying Lemma 11.13,
a tail T [a..a + ℓ) contributes O(ℓ) comparisons if ℓ ≥ ∆ = σt/8 (and otherwise it
contributes no comparisons). As the entire fragment T [a..a + ℓ) occurs earlier, it
cannot contain the leftmost occurrence of a square within T . Thus, any block pair
(of any phase) contained in T [a..a + ℓ) also cannot contain such an occurrence, and
thus such block pairs can be deactivated.

The mechanism used for deactivation works as follows. Let T [a..a + ℓ) be a tail
contributing O(ℓ) comparisons with ℓ ≥ ∆ = σt/8 in phase t. We mark all block pairs
of phase t+2 that are entirely contained in T [a..a+ℓ) as deactivated. Note that blocks
in phase t + 2 are of length √σt, and consider the fragment T [a + 2√σt..a + ℓ−2√σt).
In phase t + 2, and by implicit deactivation in all later phases, this fragment overlaps
(either partially or fully) only block pairs that have been deactivated. Thus, after
phase t + 1, we will never inspect any of the symbols in T [a + 2√σt..a + ℓ− 2√σt)
again. We say that tail T [a..a+ℓ) deactivated the fragment of length ℓ−4√σt = Ω(ℓ),
which is positive until phase t = ⌈log log n⌉−3 because σt > 256. Since the number of
deactivated positions is linear in the number of comparisons that the tail contributes
to Lemma 11.13, it suffices to show that each position gets deactivated at most a
constant number of times. In a single phase, any position gets deactivated at most
twice. This is because the tails of each factorization do not overlap by definition,
but the tails of the two factorizations of adjacent block pairs BiBi+1 and Bi+1Bi+2
can overlap. If a position gets deactivated for the first time in phase t, then (as
explained earlier) we will not consider it in any of the phases t′ ≥ t + 2. Thus, it
can only be that we deactivate the position again in phase t + 1, but not in any of

162

11.4 Testing Square-Freeness in O(n log σ) Time

the later phases. In total, each position gets deactivated at most four times. Hence
Lemma 11.13 contributes O(n) comparisons in total.

We have shown:

Lemma 11.3. Testing square-freeness of a length-n string that contains σ distinct
symbols over general unordered alphabet can be done using O(n log σ) comparisons.

11.4 Testing Square-Freeness in O(n log σ) Time
In this section, we show how to implement the approach described in the previous
section to work in O(n log σ) time. The main difficulty is to efficiently implement
the sparse suffix tree construction algorithm, and then compute a ∆-approximate
factorization. We first how to obtain an O(n log σ + n log∗ n) time algorithm that
still uses only O(n log σ) comparisons, and then further improve its running time to
O(n log σ).

11.4.1 Constructing the Sparse Suffix Tree and the
∆-Approximate LZ Factorization

To give an efficient algorithmic construction of the sparse suffix tree from Lemma 11.8,
we will use a restricted version of LCEs, where a query ShortLCEx(i, j) (for any
positive integer x) returns min(x, lce(i, j)). The following result was given by
Gawrychowski et al. [Gaw+16]:

Lemma 11.17 (Lemma 14 in [Gaw+16]). For a length-n string over general
unordered alphabeta, a sequence of q queries ShortLCE4ki for i ∈ {1, . . . , q} can be
answered online in total time O(n log∗ n + s) and O(n + q) comparisonsb, where
s = ∑︁q

i=1(ki + 1).
aLemma 14 in [Gaw+16] does not explicitly mention that it works over general unordered

alphabet. However, the proof of the lemma relies solely on equality tests.
bLemma 14 in [Gaw+16] does not explicitly mention that it requires O(n + q) comparisons.

However, they use a union-find approach where there can be at most O(n) comparisons with
outcome "equal", and each LCE query performs only one comparison with outcome "not-equal",
similarly to what we describe in the proof of Lemma 11.8.

In the lemma, apart from the O(n log∗ n) time, each ShortLCE4ki query accounts
for O(ki + 1) time. Note that we can answer the queries online, without prior
knowledge of the number and length of the queries. Also, computing an LCE in
a fragment T [x..y] of length m trivially reduces to a ShortLCE4⌈log4 m⌉ query on T .
Thus, we have:

Corollary 11.18. A sequence of q longest common extension queries on a fragment
T [x..y] of length m over general unordered alphabet can be answered in O(q log m)
time, plus O(n log∗ n) time shared by all invocations of the lemma. The number of
comparisons is O(q), plus O(n) comparisons shared by all invocations of the lemma.

While constructing the sparse suffix tree, we will maintain a heavy-light decom-
position using a rebuilding scheme introduced by Gabow [Gab90]. Let L(u) denote
the number of leaves in the subtree of a node u. We use the following recursive

163

11 Computing Runs Over General Unordered Alphabet

construction of a heavy-light decomposition. Starting from a node r (initially the
root of the tree), we find the deepest descendant node e such that L(e) ≥ 5

6L(r)
(possibly e = r). The path p from the root r(p) = r to e(p) = e is a heavy path. Any
edge (u, v) on this path satisfies L(v) ≥ 5

6L(u), and we call those edges heavy. As a
consequence, a node u can have at most one child v such that (u, v) is heavy. For
each edge (u, v) where u is on the heavy path and v is not, we recursively build a
new heavy path construction starting from v.

When inserting a new suffix in our tree, we keep track of the insertion in the
following way. For every root of a heavy path, we maintain the number I(u) of
insertions made in the subtree of u since we built the heavy-light decomposition of
this subtree. When I(u) ≥ 1

6L(u) we recalculate the values of L(v) for all nodes v in
the subtree of u and rebuild the heavy-light decomposition for the subtree of u.

This insures that, despite insertion, for any heavy path starting at node r and
a node u on that heavy path, L(u) ≥ 2

3L(r). When crossing a non-heavy edge the
number of nodes in the subtree reduces by a constant fraction, which leads to the
following property:

Observation 11.19. The path from any node to the root crosses at most O(log m)
heavy paths.

Additionally, rebuilding a subtree of size s takes O(s) time, and adding a suffix
T [ij ..y] to the tree increases I(r) for each path p from the root r to the new leaf. Those
are at most O(log m) nodes, and thus maintaining the heavy path decomposition
takes amortized time O(log m) time per insertion.

With these building blocks now clearly defined, we are ready to describe the
construction of the sparse suffix tree.

Lemma 11.20. The sparse suffix tree containing any b suffixes T [i1..y], . . . , T [ib..y]
of T [x..y] with m = |T [x..y]| can be constructed using O(bσ log b log m) time and
comparisons, plus O(n log∗ n) time and O(n) comparisons shared by all invocations
of the lemma.

Proof. As in the proof of Lemma 11.8, we consider the insertion of a suffix T [ij ..y]
into the sparse suffix tree with suffixes T [i1..y], T [i2..y] · · ·T [ij−1..y]. At all times,
we maintain the heavy path decomposition. Additionally, we maintain for each heavy
path a predecessor data structure, where given some length ℓ, we can quickly identify
the deepest explicit node on the heavy path that spells a string of length at least ℓ.
The data structure can, e.g., be a balanced binary search tree with insertion and search
operations in O(log b) time (the final sparse suffix tree and thus each heavy path
contains O(b) nodes). When rebuilding a subtree of the heavy path decomposition,
we also have to rebuild the predecessor data structure for each of its heavy paths.
Thus, rebuilding a size-q subtree takes O(q log b) time (each node is on exactly one
heavy path and has to be inserted into one predecessor data structure), and the
amortized insertion time increases from O(log m) to O(log m · log b). Whenever we
insert a suffix, we make at most one node explicit, and thus have to perform at most
one insertion into a predecessor data structure. The time for this is O(log b), which
is dominated by the previous term.

When inserting T [ij ..y], we look for the node u corresponding to the longest
common prefix between T [ij ..y] and the inserted suffixes, make u explicit if necessary

164

11.4 Testing Square-Freeness in O(n log σ) Time

and add a new leaf corresponding to T [ij ..y] attached to u. Let v be the current node
(initialized by the root, and always an explicit node) and v1, · · · , vd be its (explicit)
children. If there is a heavy edge (v, va) for 1 ≤ a ≤ d, let p be the corresponding
heavy path. For each heavy path p, we store the label of one leaf (i.e., the starting
position of one suffix) that is contained in the subtree of e(p). Thus, we can use
Corollary 11.18 to compute the longest common extension between the string spelled
by e(p) and T [ij ..y]. Now we use the predecessor data structure on the heavy path to
find the deepest (either explicit or implicit) node v′ on the path that spells a prefix
of T [ij ..y]. If v′ is implicit, we make it explicit and add the leaf. If v′ is explicit and
v′ ≠ v, we use v′ as the new current node and continue. Otherwise, we have v′ = v,
i.e., the suffix does not belong to the subtree rooted in va. In this case, we issue d
LCE queries between T [ij ..y] and each of the strings spelled by the nodes v1, . . . , vd.
This either reveals that we can continue using one of the va as the new current node,
or that we can create a new explicit node on some (v, va) edge and attach the leaf to
it, or that we can simply attach a new leaf to v.

We spend O(b · log m · log b) total time for inserting O(b) nodes into the dynamic
heavy path decomposition and the predecessor data structures. Now we analyze the
time spent while inserting one suffix. In each step of the insertion process, we either
(i) move as far as possible along some heavy path or (ii) move along some non-heavy
edge. For (i), we issue one LCE query and one predecessor query. For (ii) we issue
O(σ) LCE queries. Due to Observation 11.19, both (i) and (ii) happen at most
O(log b) times per suffix. Thus, for all suffixes, we perform O(b log b) predecessor
queries and O(bσ log b) LCE queries. The total time is O(b log2 b) for predecessor
queries, and O(bσ log b log m) for LCE queries (apart from the O(n log∗ n) time and
O(n) comparisons shared by all invocations of Corollary 11.18).

Lemma 11.21. For any parameter ∆ ∈ [1, m], a ∆-approximate LZ factorization
of any fragment T [x..y] of length m can be computed in O(mσ log2 m/

√
∆) time and

comparisons, plus O(n log∗ n) time and O(n) comparisons shared by all invocations
of the lemma.

Proof. Let T ′ = T [x..y], and let {i1, i2, . . . , ib} be a ∆-cover of {1, . . . , m}, which
implies b = Θ(m/

√
∆). We obtain a sparse suffix tree that contains the suffixes

T ′[i1..m], . . . , T ′[ib..m], which takes O(bσ log b log m) ⊆ O(mσ log2 m/
√

∆) time ac-
cording to Lemma 11.20, plus O(n log∗ n) time shared by all invocations of the lemma.
Now we compute a ∆-approximate LZ factorization of T ′ from the spare suffix tree
in O(b) time.

In the following proof, we use i1, i2, . . . , ib interchangeably to denote both the
difference cover positions, as well as their corresponding leaves in the sparse suffix
tree. Assume that the order of difference cover positions is i1 < i2 < · · · < ib. First,
we determine for each ik > i1, the position src(ik) = ih and the length len(ik) =
lce(ih, ik), where ih ∈ {i1, . . . , ik−1} is a position that maximizes lce(ih, ik). This
is similar to what was done in [Fis+18] for the LZ77 factorization. We start by
assigning labels from {1, . . . , b} to the nodes of the sparse suffix tree. A node has
label k if and only of ik is its smallest descendant leaf. We assign the labels as follows.
Initially, all nodes are unlabeled. We assign label 1 to each node on the path from i1
to the root. Then, we process the remaining leaves i2, . . . , ib in increasing order. For
each ik, we follow the path from ik to the root. We assign label k to each unlabeled
node that we encounter. As soon as we reach a node that has already been labeled,

165

11 Computing Runs Over General Unordered Alphabet

say, with label h and string-depth ℓ, we are done processing leaf ik. It should be easy
to see that ih is also exactly the desired index that maximizes lce(ih, ik), and we
have lce(ih, ik) = ℓ. Thus, we have found src(ik) = ih and len(ik) = ℓ. The total
time needed is linear in the number of sparse suffix tree nodes, which is O(b).

Finally, we obtain a ∆-approximate LZ factorization using src and len. The
previously computed values can be interpreted as follows: ik could become the starting
position of a length-len(ik) tail (with previous occurrence at position src(ik)). For the
∆-approximate LZ factorization, we will create the factors greedily in a left-to-right
manner. Assume that we already factorized T ′[1..s− 1], then the next phrase starts
at position s, and thus the next tail starts within T ′[s..s + ∆) (as a reminder, the
head is by definition shorter than ∆). Let S = {i1, i2, . . . , ib} ∩ {s, . . . , s + ∆− 1}.
If there is no ik ∈ S with ik + len(ik) > s + ∆− 1, then the next phrase is simply
T ′[s.. min(|T ′|, s + ∆− 1)) with empty tail. Otherwise, the next phrase has (possibly
empty) head T ′[s..ik) and tail T ′[ik..ik + len(ik)) (with previous occurrence src(ik)),
where ik is chosen from S such that it maximizes ik + len(ik). Creating the phrase in
this way clearly takes O(|S|) time. Since the next phrase starts at least at position
s + ∆ − 1, none of the positions from S \ {s + ∆ − 1} will ever be considered as
starting positions of other tails. Thus, every ik is considered during the creation of
at most two phrases, and the total time needed to create all phrases is O(b).

It remains to be shown that the computed factorization is indeed a ∆-approximate
LZ factorization, i.e., if we output a phrase T ′[s..e], then the unique (non-approximate)
LZ phrase T ′[s..e′] starting at position s satisfies e′ − 1 ≤ e. First, note that for
the created approximate phrases (except possibly the last phrase of T) we have
s + ∆ − 2 ≤ e. Assume e′ < s + ∆, then clearly e′ − 1 ≤ e. Thus, we only have
to consider e′ > s + ∆ − 1. Since T ′[s..e′] is an LZ phrase, there is some s′ < s
such that lce(s′, s) = e′ − s. Let h be the constant-time computable function that
defines the ∆-cover, and let ik′ = s′ + h(s′, s) and ik = s + h(s′, s). Note that
ik′ ∈ {i1, i2, . . . , ik−1} and ik ∈ {i1, i2, . . . , ib} ∩ {s, . . . , s + ∆ − 1}. Therefore, we
have len(ik) ≥ lce(ik′ , ik) = lce(s′, s) − h(s′, s) = (e′ − s) − (ik − s) = e′ − ik.
While computing the ∆-approximate phrase T ′[s..e], we considered ik as the starting
positions of the tail, which implies e ≥ ik + len(ik)− 1 ≥ e′ − 1.

Lemma 11.22. There is an algorithm that, given any parameter ∆ ∈ [1, m],
estimate σ̃ and fragment T [x..y] of length m, takes O(mσ̃ log2 m/

√
∆) time and

comparisons, and either computes a ∆-approximate LZ factorization of T [x..y] or
determines σ > σ̃. Additional O(n log∗ n) time and O(n) comparisons are shared by
all invocations of the lemma.

Proof. We simply use Lemma 11.21 to compute the factorization. In the first step,
we have to construct the sparse suffix tree using the algorithm from Lemma 11.20.
While this algorithm takes O(mσ log2 m/

√
∆) time, it is easy to see that a more

accurate time bound is O(md log2 m/
√

∆), where d is the maximum degree of any
node in the sparse suffix tree. If during construction the maximum degree of a node
becomes σ̃ + 1, we immediately stop and return that σ > σ̃. Otherwise, we finish the
construction in the desired time.

Now we can describe the algorithm that detects squares in O(n log σ + n log∗ n)
time and O(n log σ) comparisons. We simply use the algorithm from Section 11.3, but
use Lemma 11.22 instead of Lemma 11.14. Next, we analyze the time needed apart

166

11.4 Testing Square-Freeness in O(n log σ) Time

from the O(n log∗ n) time shared by all invocations of Lemma 11.22. Throughout the
tth phase, we use O(n · σ̃ · log2(σt)/

√
∆) = O(n · (σt)1/4/ log(σt) · log2(σt)/

√
σt) =

O(n log(σt)/(σt)1/4) comparisons to construct all the ∆-approximate factorizations.
As before, if at any time we discover that σ̃ > (σt)1/4/ log(σt), then we use Theo-
rem 11.5 to finish the computation in O(n log σt) = O(n log σ) time. Until then (or
until we finished all ⌈log log n⌉ phases), we use O(∑︁t′

t=0 n log(σt)/(σt)1/4) time, and
by Corollary 11.16 this is O(n). For detecting squares, we still use Lemma 11.13,
which as explained in Section 11.3 takes O(n) time and comparisons in total, plus
additional O(Z) time, where Z is the number of approximate LZ factors considered
during all invocations of the lemma. We apply the lemma to each approximate LZ
factorization exactly once, and by construction each factor in phase t has size at least
∆ = Ω(σt). Also, each text position is covered by at most two tails per phase. Hence
Z = O(∑︁t′

t=0 n/σt), which is O(n) by Corollary 11.16.
The last thing that remains to be shown is how to implement the bookkeeping of

blocks, i.e., in each phase we have to efficiently deactivate block pairs as described
at the end of Section 11.3. We maintain the block pairs in ⌈log log n⌉ bitvectors of
total length O(n), where a set bit means that a block pair has been deactivated
(recall that there are O(n) pairs in total). Bitvector t contains at position j the bit
corresponding to block pair BjBj+1 = T [i..i + 2(σt)2) with i = 1 + (σt)2 · (j − 1).
Note that translating between i and j takes constant time. For each sufficiently
long tail in phase t, we simply iterate over the relevant block pairs in phase t + 2
and deactivate them, i.e., we set the corresponding bit. This takes time linear in
the number of deactivated blocks. Since there are O(n) block pairs, and each block
pair gets deactivated at most a constant number of times, the total cost for this
bookkeeping is O(n).

The number of comparisons is dominated by the O(n log σ) comparisons used
when finishing the computation with Theorem 11.5. The only other comparisons
are performed by Lemma 11.13, which we already bounded by O(n), and by LCE
queries via Corollary 11.18. Since we ask O(n) such queries in total, the number of
comparisons is also O(n). We have shown:

Lemma 11.23. The square detection algorithm from Section 11.3 can be imple-
mented in O(n log σ + n log∗ n) time and O(n log σ) comparisons.

11.4.2 Final Improvement
For our final improvement we need to replace the LCE queries implemented by
Corollary 11.18 with our own mechanism. The goal will remain the same, that is,
given a parameter ∆ and estimate σ̃ of the alphabet size, find a ∆-approximate LZ
factorization of any fragment T [x..y] of length m in O(mσ̃ log m/

√
∆) time, where

m = |T [x..y]| (with m = Θ(∆2), as otherwise we are not required to detect anything).
As in the previous section, the algorithm might detect that the size of the alphabet
is larger than σ̃, and in such case we revert to the divide-and-conquer algorithm. Let
τ = ⌊

√
∆⌋.

Initially, we only consider some fragments of T [x..y]. We say that T [i ·τ2..i ·τ2 +τ)
is a dense fragment. We start by remapping the symbols in all dense fragments that
intersect T [x..y] to a linearly-sortable alphabet. This can be done in O(σ̃) time for
each position by maintaining a list of the already seen distinct symbols (as in the

167

11 Computing Runs Over General Unordered Alphabet

i · τ2 (i + 1) · τ2 (i + 2) · τ2

T =

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13

D1D1 D2D2 D3D3
D3 D3 D1

rj−1 rjℓj ℓj+1

τ

h0 = j · τ h1 = (j + 1) · τ

(a) Sampling dense fragments and cutting the text into chunks. Dotted lines indicate chunk
boundaries, and hx = (j + x) · τ for some integer j and x ∈ [0, 13] are positions of chunk
boundaries. The dense fragments are D1 = T [h2..h3), D2 = T [h7..h8), and D3 = T [h12..h13).
The primary occurrences of dense fragments are grey, while the secondary occurrences (the
ones that we aim to find) are white. A solid box in the text, and the matching solid bar
underneath the text, correspond to some substring T [j · τ − rj−1..j · τ). Similarly, the hatched
boxes and bars correspond to substrings T [j · τ..j · τ + ℓj).

ĥ0

$
0

ĥ1

$
1

ĥ2

$
2

D1D1

ĥ3

$
3

D1D1

ĥ4

$
4

ĥ5

$
5

D3

ĥ6

$
6

ĥ7

$
7

D2D2

ĥ8

$
8

D2D2

ĥ9

$
9

D3

ĥ10

$
10

ĥ11

$
11

ĥ12

$
12

D3D3D1

T ′ =

(b) The string T ′ used to find all the occurrences of dense fragments. Each position ĥx

maps to position hx in Figure 11.4a. The substring indicated by the solid box preceding
hx = (j + x)τ and the hatched box succeding hx is exactly T [hx − rj+x−1..hx + ℓj+x). Each
$
x

is a distinct separator symbol that is unique within T ′.

Figure 11.4: Supplementary drawings for Section 11.4.2.

reduction shown in Lemma 2.1). For each position in a dense fragment, we iterate
over the symbols in the list, and possibly append a new symbol to the list if it is not
present. As soon as the size of the list exceeds σ̃, we terminate the procedure and
revert to the divide-and-conquer algorithm. Otherwise, we replace each symbol by
its position in the list. Overall, there are O(m/

√
∆) positions in the dense fragments

of T [x..y], and the remapping takes O(mσ̃/
√

∆) time.
Next, we construct two generalized suffix trees [Gus97], the first one of all dense

fragments, and the second one of their reversals. (The generalized suffix tree of a
collection of strings is the compacted trie that contains all suffixes of all strings in
the collection.) Since we now work with a linearly-sortable alphabet, this takes only
O(m/

√
∆) time [Far97]. We consider fragments of the form T [i · τ..(i + 1) · τ) having

non-empty intersection with T [x..y]. We call such fragments chunks. We note that
there are O(m/

√
∆) chunks, and their total length is O(m). For each chunk, we find

its longest prefix T [i · τ..i · τ + ℓi) and longest suffix T [(i + 1) · τ − ri..(i + 1) · τ) that
occur in one of the dense fragments. Figure 11.4a visualizes the dense fragments,
chunks, and longest prefixes and suffixes. This can be done efficiently by following

168

11.4 Testing Square-Freeness in O(n log σ) Time

the heavy path decomposition of the generalized suffix tree of all dense fragments
and their reversals, respectively. On each current heavy path, we just naively match
the symbols as long as possible. In case of a mismatch, we spend O(σ̃) time to
descend to the appropriate subtree, which happens at most O(log m) times due to
the heavy path decomposition. After having found ℓi and ri, we test square-freeness
of T [i · τ..i · τ + ℓi) and T [(i + 1) · τ − ri..(i + 1) · τ). Because they both occur in
dense fragments, and we have remapped the alphabet of all dense fragments, we can
use Theorem 10.1 to implement this in O(ℓi + ri) time. Thus, the total time per
chunk is thus O(σ̃ log m) plus O(ℓi + ri). The former sums up to O(mσ̃ log m/

√
∆),

and we will later show that the latter can be amortized by deactivating blocks on
the lower levels.

The situation so far is that we have remapped the alphabet of all dense fragments
to linearly-sortable alphabet, and for every chunk we know its longest prefix and
suffix that occur in one of the dense fragments. We concatenate all fragments of the
form T [i ·τ−ri−1..i ·τ +ℓi) (intersected with T [x..y]) while adding distinct separators
in between to form a new string T ′. We stress that, because we have remapped the
alphabet of all dense fragments, and the found longest prefix and suffix of each chunk
also occur in some dense fragment, T ′ is over linearly-sortable alphabet. Thus, we
can build the suffix tree ST of T ′ in O(|T ′|) time [Far97]. A visualization of T ′ is
provided in Figure 11.4b

Let D = {D1, D2, . . .} be the set of distinct dense fragments. We would like to
construct the set of all occurrences of the strings from D in T [x..y]. Using the suffix
tree of T ′, we can retrieve all occurrences of every Dj in T ′. We observe that, because
of how we have defined T [i · τ..i · τ + ℓi) and T [(i + 1) · τ − ri..(i + 1) · τ), this will in
fact give us all occurrences of every Dj in the original T [x..y]. To implement this
efficiently, we proceed as follows. First, for every i we traverse ST starting from
its root to find the (explicit or implicit) node corresponding to the dense fragment
T [i ·τ2..i ·τ2 +τ). This takes only O(mσ̃/

√
∆) time. Then, all leaves in every subtree

rooted at such a node correspond to occurrences of some Dj , and can be reported by
traversing the subtree in time proportional to its size, so at most O(|T ′|) in total.
Finally, remapping the occurrences back to T [x..y] can be done in constant time per
occurrence by precomputing, for every position in T ′, its corresponding position in
T [x..y], which can be done in O(|T ′|) time when constructing T ′. Thus, in O(|T ′|)
time, we obtain the set S of starting positions of all occurrences of the strings in D.
We summarize the properties of S below.

Proposition 11.24. The described set S admits the following properties:

(1) For every i ∈ [x, y] such that i = 0 (mod τ2), i ∈ S.

(2) For every i ∈ [x, y − τ], i ∈ S if and only if T [i..i + τ) ∈ D.

(3) |S| ≤ |T ′|.

We now define a parsing of T [x..y]$ based on S. Let i1 < i2 < . . . ik be all the
positions in S, that is, (ij , ij+1) ∩ S = ∅ for every j = 1, 2, . . . , k − 1. For every
j = 1, 2, . . . , k − 1, we create the phrase T [ij ..ij+1 + τ). We add the last phrase
T [ik..y]$. We stress that consecutive phrases overlap by τ symbols, and each phrase
begins with a length-τ fragment starting at a position in S. This, together with
Proposition 11.24(2), implies the following property.

169

11 Computing Runs Over General Unordered Alphabet

Observation 11.25. The set of distinct phrases is prefix-free, i.e., no phrase is a
proper prefix of another phrase.

We would like to construct the compacted trie Tphrase of all such phrases, so that
we particularly identify identical phrases. We first notice that each phrase begins
with a fragment T [ij ..ij + τ) that has its corresponding occurrence in T ′. We note
that, given a set of positions P in T , we can find their corresponding positions in T ′

(if they exist) by sorting and scanning in O(|P |+ |T ′|) time.
Thus, we can assume that for each ij we know its corresponding position i′j in T ′.

Next, for each node of ST we precompute its unique ancestor at string depth τ in
O(|T ′|) time. Then, for every fragment T [ij ..ij + τ) we can access its corresponding
(implicit or explicit) node of ST . This allows us to partition all phrases according to
their prefixes of length τ . In fact, this gives us the top part of Tphrase containing all
such prefixes in O(m/

√
∆) time, and for each phrase we can assume that we know

the node of Tphrase corresponding to its length-τ prefix.
To build the remaining part of Tphrase, we partition the phrases into short and

long. T [ij ..ij+1 + τ) is short when ij+1 ≤ ij + τ (meaning that its length is at most
2τ), and long otherwise.

We begin with constructing the compacted trie T ′phrase of all short phrases. This
can be done similarly to constructing the top part of Tphrase, except that now the
fragments have possibly different lengths. However, every short phrase T [ij ..ij+1 + τ)
occurs in T ′ as T ′[i′j ..i′j+1 + τ). We claim that the nodes of ST corresponding to
every T ′[i′j ..i′j+1 + τ) can be found in O(|T ′|) time. This can be done by traversing
ST in the depth-first order while maintaining a stack of all explicit nodes with string
depth at least τ on the current path. Then, when visiting the leaf corresponding to
the suffix of T ′ starting at position i′j , we iterate over the current stack to find the
sought node. This takes at most O(|T ′[ij + τ..ij+1 + τ]|) time, which sums up to
O(|T ′|). Having found the node of ST corresponding to T [ij ..ij+1 + τ), we extract
T ′phrase from ST in O(|T ′|) time.

With T ′phrase in hand, we construct the whole Tphrase as follows. We begin with
taking the union of T ′phrase and the already obtained top part of Tphrase, this can be
obtained in O(|T ′|) time. For each long phrase T [ij ..ij+1 + τ), we know the node
corresponding to T [ij ..ij + τ) and would like to insert the whole string T [ij ..ij+1 + τ)
into Tphrase. We perform the insertions in increasing order of ij (this will be crucial
for amortizing the time later). This is implemented with a dynamic heavy path
decomposition similarly as in Section 11.4.1, however with one important change.
Namely, we fix a heavy path decomposition of the part of Tphrase corresponding
to the union of T ′phrase and the top part of Tphrase, and maintain a dynamic heavy
path decomposition of every subtree hanging off from this part. Thanks to this
change, the time to maintain the dynamic trie and all heavy path decompositions
is O(m log m/

√
∆), as there are only O(m/

√
∆) long phrases. Next, for each long

phrase T [ij ..ij+1+τ), we begin the insertion at the already known node corresponding
to T [ij ..ij + τ), and continue the insertion by following the heavy paths, first in
the static heavy path decomposition in the part of Tphrase corresponding to T ′phrase,
second in the dynamic heavy path decomposition in the appropriate subtree. On
each heavy path, we naively match the symbols as long as possible. The time to
insert a single phrase T [ij ..ij+1 + τ) is O(log m) (twice) plus the length of the longest
prefix of T [ij + τ..ij+1 + τ) equal to a prefix of T [ij′ + τ..ij′+1 + τ), for some j′ < j.

170

11.4 Testing Square-Freeness in O(n log σ) Time

The former sums up to another O(m log m/
√

∆), and we will later show that the
latter can be amortized by deactivating blocks on the lower levels.

The trie Tphrase allows us to form metasymbols corresponding to the phrases,
where every metasymbol is an integer, and two phrases are mapped to the same
integer if and only if they are identical. We then transform T [x..y] into a string Tparse
of length O(|T ′|) consisting of these metasymbols, where the strings underlying any
two consecutive metasymbols overlap by τ symbols. We build a suffix tree Sparse of
this string over linearly-sortable metasymbols in O(|T ′|) time. Next, we convert it
into the sparse suffix tree S ′parse of all suffixes T [ij ..y] as follows. Consider an explicit
node u ∈ Sparse with children v1, v2, . . . , vd, d ≥ 2. We first compute the subtree Tu

of Tphrase induced by the leaves corresponding to the first metasymbols on the edges
(u, vi), for i = 1, 2, . . . , d, and connect every vi to the appropriate leaf of Tu. This
can be implemented in O(d) time, assuming constant-time lowest common ancestor
queries [BF00] on Tphrase, and processing the leaves from left to right with a stack,
similarly as in the Cartesian tree construction algorithm [Vui80]. We note that the
order on the leaves is the same as the order on the metasymbols, and hence no extra
sorting is necessary. Overall, this sums up to O(|T ′|) time. Next, we observe that,
unless u is the root of Sparse, all metasymbols on the edges (u, vi) correspond to
strings starting with the same prefix of length τ (this is due to the fact that the
substrings underlying the metasymbols overlap by τ symbols). We obtain the subtree
T ′u by truncating this prefix (or taking Tu if u is the root). Finally, we identify the
root of T ′u with u, and every child vi with its corresponding leaf of T ′u. Because we
truncate the overlapping prefixes of length τ , after this procedure is executed on every
node of Sparse we obtain a tree S ′parse with the property that each leaf corresponds
to a suffix T [ij ..y]. Also, by Observation 11.25, the edges outgoing from every node
start with different symbols as required.

By following an argument from the proof of Lemma 11.21, S ′parse allows us to
determine, for every suffix T [ij ..y], its longest prefix equal to a prefix of some T [i′..y]
with i′ < ij , as long as its length is at least τ . Indeed, in such case we must have
i′ ∈ S by Proposition 11.24(2), so in fact i′ = ij′ and it is enough to maximize the
length of the common prefix with all earlier positions in S, which can be done using
S ′parse. Thus, we either know that the length of this longest prefix is less than τ , or
know its exact value (and the corresponding position i′ ∈ S).

Lemma 11.26. For any parameter ∆ ∈ [1, m] and estimate σ̃ of the alphabet size,
a (∆ + τ)-approximate LZ factorization of any fragment T [x..y] of length m can be
computed in O(m/

√
∆) time, plus the time needed for the preprocessing described

earlier in this section.

Proof. Let e ∈ [x, y] and suppose we have already constructed the factorization of
T [x..e − 1] and are now trying to construct the next phrase. Let e′ be the next
multiple of τ2, we have that e′ − e < τ2 ≤ ∆ and T [e′..e′ + τ) is a dense fragment.
Thus, by Proposition 11.24(1) we have e′ ∈ S.

The first possibility is that the longest common prefix between T [e′..y] and any
suffix starting at an earlier position is shorter than τ . In this case, we can simply set
the head of the new phrase to be T [e..e′ + τ) and the tail to be empty. Otherwise,
we know the length ℓ of this longest prefix by the preprocessing described above. We
set the head of the new phrase to be T [e..e′) and the tail to be T [e′..e′′ + ℓ). This

171

11 Computing Runs Over General Unordered Alphabet

takes constant time per phrase, and each phrase is of length at least τ , giving the
claimed overall time complexity. It remains to argue correctness of every step.

Let T [e..s] be the longest LZ phrase starting at position e, to show that we obtain
a valid (∆ + τ)-approximate phrase it suffices to show that s ≤ e′ + max(τ, ℓ). Let
the previous occurrence of T [e..s) be at position p < e. If s− e′ < τ then there is
nothing to prove. Otherwise, T [e′..s) is a string of length at least τ that also occurs
starting earlier at position p + e′ − e < e′. Thus, we will correctly determine that
ℓ ≥ τ , and find a previous occurrence of the string maximizing the value of ℓ. In
particular, we will have ℓ ≥ s− e′ as required.

To achieve the bound of Lemma 11.4, we now proceed as in Section 11.3.4,
except that instead of Lemma 11.22 we use Lemma 11.26. For every T [x..y] with
m = |T [x..y]| this takes O(mσ̃ log m/

√
∆) time plus the time used for computing

the longest prefix and suffix of each chunk (the latter also accounts for constructing
the suffix tree ST and other steps that have been estimated as taking O(|T ′|) in
the above reasoning) plus the time for inserting T [ij + τ..ij+1 + τ) into Tphrase when
ij+1 ≥ ij + τ .

We observe that we can deactivate any block pair fully contained in T [i ·τ..i ·τ +ℓi)
and T [(i + 1) · τ − ri..(i + 1) · τ), as we have already checked that these fragments
are square-free. Also, we can deactivate any block pair fully contained in the longest
prefix of T [ij + τ..ij+1 + τ) equal to T [ij′ + τ..ij′+1 + τ), for some j′ < j, because
such fragment cannot contain the leftmost occurrence of a square.

There are O(m/
√

∆) chunks and long phrases. If a chunk or a long phrase
contributes x = Ω(4√∆) to the total time, then we explicitly deactivate the block
pairs in phase t + 3 that are entirely contained in the corresponding fragment. Block
pairs in phase t + 3 are of length O(4√∆), and thus we deactivate Ω(x) positions.
Therefore, the time spent on such chunks and long phrases in all phases sums to
O(n). The remaining chunks and long phrases contribute O(4√∆) to the total time,
and there are O(m/

√
∆) of them, which adds up to O(m/

4√∆). In every phase, this
is O(n/

4√∆), so O(n) overall by Corollary 11.16. Hence we have shown the final
result for testing square-freeness.

Lemma 11.4. Testing square-freeness of a length-n string that contains σ distinct
symbols over general unordered alphabet can be implemented in O(n log σ) time.

11.5 Computing Runs
Now we adapt the algorithm such that it computes all runs. We start with the
algorithm from Sections 11.3 and 11.4 without the final improvement from Sec-
tion 11.4.2. First, note that the key properties of the ∆-approximate LZ factorization,
in particular Lemmas 11.12 and 11.13, also hold for the computation of runs. This is
expressed by the lemmas below.

Lemma 11.27. Let b1b2 . . . bz be a ∆-approximate LZ factorization of a string T .
For every run ⟨s, e, p⟩ of length e− s + 1 ≥ 8∆, there is at least one phrase bi with
|tail(bi)| ≥ e−s+1

8 ≥ ∆ such that tail(bi) and the right-hand side T [s +
⌈︂

e−s+1
2

⌉︂
..e]

of the run intersect.

172

11.5 Computing Runs

Proof. Let ℓ = e−s+1
2 and note that ℓ

4 ≥ ∆ and e = s + 2ℓ− 1. Assume that all tails
that intersect T [s + ⌈ℓ⌉ ..e] are of length less than ℓ

4 , then the respective phrases
of these tails are of length at most ℓ

4 + ∆ − 1 ≤ ℓ
2 − 1 (because each head is of

length less than ∆). This means that T [s + ⌈ℓ⌉ ..e] (of length ⌊ℓ⌋) intersects at least⌈︂
⌊ℓ⌋ /(ℓ

2 − 1)
⌉︂
≥ 3 phrases (the inequality holds for ℓ ≥ 4, which is implied by ∆ ≥ 1).

Thus there is some phrase bi = T [x..y] properly contained in T [s + ⌈ℓ⌉ ..e], formally
s + ⌈ℓ⌉ < x ≤ y < e. However, this contradicts the definition of the ∆-approximate
LZ factorization because T [x..e + 1] is the prefix of a standard LZ phrase (due to
T [x..e] = T [x− p..e− p]). The contradiction implies that T [s + ⌈ℓ⌉ ..e] intersects a
tail of length at least ℓ

4 .

Before we show how to algorithmically apply Lemma 11.27, we need to explain
how Lemma 11.6 extends to computing runs, and then how this implies that the
approach of Main and Lorentz [ML84] easily extends to computing all runs. We do
not claim this to be a new result, but the original paper only talks about finding a
representation of all squares, and we aim to find runs, and hence include a description
for completeness.

Lemma 11.28. Given two strings x and y over general unordered alphabet, we can
compute all runs in xy that include either the last symbol of x or the first symbol of
y using O(|x|+ |y|) time and comparisons.

Proof. Consider a run ⟨s, e, p⟩ in t = xy that includes either the last symbol of x or
the first symbol of y, meaning that s ≤ |x| + 1 and e ≥ |x|. Let ℓ = ⌊ e−s+1

2 ⌋ ≥ p.
We separately compute all runs with s + ℓ ≤ |x|+ 1 and s + ℓ > |x|+ 1. Below we
describe the former, and the latter is symmetric.

Due to s + ℓ ≤ |x|+ 1, the length-p substring x[|x| − p + 1.. |x|] is fully within the
run. This suggests the following strategy to generate all runs with s + ℓ ≤ |x|+ 1.
We iterate over the possible values of p = 1, 2, . . . , |x|. For a given p, we calculate the
length of the longest common prefix of x[|x| − p + 1.. |x|]y and y, denoted pref, and
the length of the longest common suffix of x[1.. |x| − p] and x, denoted suf. It is easy
to see that t[|x|−p+1−suf.. |x|+pref] is a length-wise maximal p-periodic substring,
and its length is ℓ′ = p + suf + pref. If pref + suf ≥ p and s + ⌊ℓ′/2⌋ ≤ |x|+ 1, then
we report the substring as a run. (The latter condition ensures that each run gets
reported by exactly one of the two symmetric cases.)

This procedure reports lengthwise maximal p-periodic substrings (for every p),
but it is not guaranteed that p is also the minimal period. Hence we additionally
filter the reported runs such that, whenever the same substring gets reported multiple
times with different period, we only report the one with the minimal period. It is
easy to see that this takes O(|x|+ |y|) time using, e.g., radix sorting.

We use a prefix table to compute the longest common prefixes. For a given string,
this table contains at position i the length of the longest substring starting at position
i that is also a prefix of the string. For computing the values pref, we use the prefix
table of y$xy (where $ is a new symbol that does not match any symbol in x nor y).
Similarly, for computing the values suf, we use the prefix table of the reversal of a
new string x$x. The tables can be computed in O(|x|+ |y|) time and comparisons
(see, e.g., computation of table lppattern in [ML84]). Then, each value of p can be
checked in constant time.

173

11 Computing Runs Over General Unordered Alphabet

Lemma 11.29. Computing all runs in a length-n string over general unordered
alphabet can be implemented in O(n log n) time and comparisons.

Proof. Let the input string be T [1..n]. We apply divide-and-conquer. Let x =
T [1..⌊n/2⌋] and y = T [⌊n/2⌋ + 1..n]. First, we recursively compute all runs in x
and y. Of the reported runs, we filter out all the ones that contain either the last
symbol of x or the first symbol of y, which takes O(|x|+ |y|) time. In this way, if
some reported run is a run with respect to x (or y), but not with respect to xy,
then it will be filtered out. We have generated all runs except for the ones that
contain the last symbol of x or the first symbol of y (or both). Thus we simply invoke
Lemma 11.28 on xy, which will output exactly the missing runs in O(|x|+ |y|) time
and comparisons. There are O(log n) levels of recursion, and each level takes O(n)
time and comparisons in total.

Lemma 11.30. Let T = b1b2 . . . bz be a ∆-approximate LZ factorization, and
χ = ∑︁

|tail(bi)|≥∆ |tail (bi)|. We can compute in O (χ + z) time and O (χ) comparisons
a multiset R of size O(χ) of runs with the property that a run T [s..e] is possibly not
in R only if e− s + 1 < 8∆ or there is some tail tail(bi) = T [a2..a3] with a2 < s and
e < a3.

Proof. The general idea is the same as in the proof of Lemma 11.13 for detecting
squares. Let n = |T |. We consider each phrase bi = T [a1..a3] with head(bi) =
T [a1..a2 − 1] and tail(bi) = T [a2..a3] separately. Let k = |tail(bi)|. If k ≥ ∆, we
apply Lemma 11.28 to x1 = T [a2 − 8k..a2 − 1] and y1 = T [a2..a3 + 4k], as well as
x2 = T [a2 − 8k..a3 − 1] and y2 = T [a3..a3 + 4k] trimmed to T [1..n]. This takes
O(|tail(bi)|) time and comparisons and reports O(|tail(bi)|) runs with respect to
x1y1 = x2y2 = T [a2 − 8k..a3 + 4k] (trimmed to T [1..n]). Of these runs, we filter
out the ones that contain any of the positions a2 − 8k (only if a2 − 8k > 1) and
a3 + 4k (only if a3 + 4k < n), which takes O(|tail(bi)|) time. This way, each reported
run is not only a run with respect to x1y1, but also a run with respect to T . In
total, we report O(χ) runs (including possible duplicates) and spend O (χ) time and
comparisons when applying Lemma 11.28. Additional O(z) time is needed to check
if |tail(bi)| ≥ ∆ for each phrase.

Now we show that the described strategy computes all runs of length at least
8∆, except for the ones that are properly contained in a tail. Let ⟨s, e, p⟩ be a
run of length 2ℓ, where ℓ ≥ 4∆ is a multiple of 1

2 . Due to Lemma 11.27, the
right-hand side T [s + ⌈ℓ⌉ ..e] of this run intersects some tail tail(bi) = T [a2..a3]
of length k = |tail(bi)| ≥ ℓ

4 ≥ ∆. Due to the intersection, we have a2 ≤ e and
a3 ≥ s + ⌈ℓ⌉. Thus, when processing bi and applying Lemma 11.28, the starting
position of x1 and x2 satisfies a2 − 8k ≤ e − 8 ℓ

4 < s, while the end position of y1
and y2 satisfies a3 + 4k ≥ s + ⌈ℓ⌉+ 4 ℓ

4 > e. Therefore, the run is contained in the
fragment T [a2 − 8k..a3 + 4k] (trimmed to T [1..n]) corresponding to x1y1 and x2y2,
and the run does not contain positions a2 − 8k and a3 + 4k. If s ≤ a2 ≤ e, we find
the run when applying Lemma 11.28 to x1 and y1. If s ≤ a3 ≤ e, we find the run
when applying Lemma 11.28 to x2 and y2. Otherwise, T [s..e] is entirely contained in
T [a2 + 1..a3 − 1] and we do not have to report the run.

Now we describe how to compute all runs using O(n log σ) comparisons and
O(n log σ + n log∗ n) time. We again use the sequence σt = 22⌈log log n⌉−t , for t =

174

11.5 Computing Runs

0, 1, . . . , ⌈log log n⌉. We observe that σt−1 = (σt)2, and proceed in phases correspond-
ing to the values of t. In the tth phase we aim to compute runs of length at least
σt and less than (σt)2. We stress that this condition depends on the length of the
run and not on its period. We partition the whole T [1..n] into blocks of length (σt)2,
and denote the kth block by Bk. A run of length less than (σt)2 is fully contained
within some two consecutive blocks BiBi+1, and there is always a pair of consecutive
blocks such that the run contains neither the first nor the last position of the pair
(unless the first position is T [1] or the last position is T [n] respectively). Hence
we consider each pair B1B2, B2B3, and so on. We first apply Lemma 11.22 with
∆ = σt/8 and σ̃ = (σt)1/4/ log(σt) to find an (σt/8)-approximate LZ factorization of
the corresponding fragment of T [1..n], and then use Lemma 11.30 to compute all
runs of length at least σt, apart from possibly the ones that are properly contained
in a tail. Of the computed runs, we discard the ones that contain the first or last
position of the block pair (unless the first position is T [1] or the last position is T [n]
respectively). This way, each reported run is a run not only with respect to the block
pair, but with respect to the entire T [1..n]. If we do not report some run of length
at least σt and less than (σt)2 in this way, then it is properly contained in one of the
tails.

We cannot always afford to apply Lemmas 11.22 and 11.30 to all block pairs.
Thus, we have to deactivate some of the blocks. During the current phase t, for
each tail T [s..e] of length at least ∆, we deactivate all block pairs in phase t + 3
that are contained in T [s + 1..e − 1]. By similar logic as in Section 11.3, if a tail
contributes e− s + 1 comparisons and time to the application of Lemma 11.30, then
it permanently deactivates Ω(e− s + 1) positions of the string, and thus the total
time and comparisons needed for all invocations of Lemmas 11.22 and 11.30 are
bounded by O(n) (apart from the additional O(n log∗ n) total time for Lemma 11.22).
Whenever we apply Lemma 11.22, we add all the tails of length at least ∆ to a list
L, where each tail is annotated with the position of its previous occurrence. After
the algorithm terminates, L contains all sufficiently long tails from all phases. We
have already shown that the total time needed for Lemma 11.30 is bounded by O(n),
and thus the total length of the tails in L is at most O(n).

If any of the calls to Lemma 11.22 in the current phase detects that σ > σ̃, or if
σ̃ < 256, we immediately switch to applying Lemma 11.29 on every pair of blocks
BiBi+1 of the current phase, which takes O(n log σ) time (because the length of a
block pair is polynomial in σ̃). Again, after applying Lemmas 11.22 and 11.30 to
BiBi+1, we discard all runs that contain the first or last position of BiBi+1 (unless
the first position is T [1] or the last position is T [n], respectively). After this procedure
terminates, we have computed all runs, except for possibly some of the runs that were
properly contained in a tail in list L. We may have reported some duplicate runs,
which we filter out as follows. The number of runs reported so far (including possible
duplicates) is r = O(n log σ)2. We sort them in additional O(n + r) = O(n log σ)
time, e.g., by using radix sort, and remove duplicates. The running time so far is
O(n log σ).

2A more careful analysis would reveal that it is O(n), but this is not necessary for the proof.

175

11 Computing Runs Over General Unordered Alphabet

11.5.1 Copying Runs From Previous Occurrences
Lastly, we have to compute the runs that were properly contained in a tail in L.
Consider such a run ⟨sr, er, p⟩, and let T [s..e] be a tail in L with s < sr and er < e.
If multiple tails match this criterion, let T [s..e] be the one that maximizes e. In
L, we annotated T [s..e] with its previous occurrence T [s − d..e − d]. Note that
⟨sr − d, er − d, p⟩ is also a run. Thus, if we compute the runs in an appropriate order,
we can simply copy the missing runs from their respective previous occurrences. For
this sake, we annotate each position i ∈ [1, n] with:

• a list of all the runs ⟨i, e, p⟩ that we already computed, arranged in increasing
order of end position e. We already sorted the runs for duplicate elimination,
and can annotate all position in O(n) time.

• a pair (e∗, d∗), where e∗ = d∗ = 0 if there is no tail T [s..e] such that s < i < e.
Otherwise, among all tails T [s..e] with s < i < e, we choose the one that
maximizes e. Let T [s− d..e− d] be its previous occurrence, then we use e∗ = e
and d∗ = d. As explained earlier, the total length of all tails in L is O(n),
and thus we can simply scan each tail and update the annotation pair of each
contained position whenever necessary.

Observe that, if a position is annotated with (0, 0), then none of the runs starting
at position i is fully contained in a tail, and thus we have already annotated position
i with the complete list of the runs starting at i. Now we process the positions
i ∈ [1, n] one at a time and in increasing order. We inductively assume that, at the
time at which we process i, we have already annotated each j < i with the complete
list of runs starting at j. Hence our goal is to complete the list of i such that it
contains all runs starting at i. If i is annotated with (0, 0), then the list is already
complete. Otherwise, i is annotated with (e, d), every missing run ⟨i, er, p⟩ satisfies
er < e, and the annotation list of i − d already contains the run ⟨i− d, er − d, p⟩
(due to T [i− 1..er + 1] = T [i− d− 1..er − d + 1] and the inductive assumption). For
each run ⟨i− d, er − d, p⟩ in the annotation list of position i− d, we insert the run
⟨i, er, p⟩ into the annotation list of i. We perform this step in a merging fashion,
starting with the shortest runs of both lists and zipping them together. As soon
as we are about to insert a run ⟨i, er, p⟩ with er ≥ e, we do not insert it and abort.
Thus, the time needed for processing i is linear in the number of runs starting at
position i. By the runs theorem [Ban+17], the total number of runs is less than n,
limiting the total time for this step by O(n).

Apart from the new steps in Section 11.5.1, the complexity analysis works exactly
like in Section 11.3. Hence we have shown:

Lemma 11.31. Computing all runs in a length-n string that contains σ distinct sym-
bols over general unordered alphabet can be implemented in O(n log σ) comparisons
and O(n log σ + n log∗ n) time.

11.5.2 Final Improvement for Computing Runs
The goal is now to adapt the final algorithm to detect all runs. We can no longer stop
as soon as we detect a square, and we cannot simply deactivate pairs of blocks that
occur earlier. However, Theorem 10.1 is capable of reporting all runs in T [i·τ..i·τ +ℓi)

176

11.6 Conclusion

and T [(i+1) ·τ−ri..(i+1) ·τ) in O(ℓi +ri) time, and we do not need to terminate the
algorithm if these fragments are not square-free. Thus, we can indeed deactivate any
block pair fully contained in T [i ·τ..i ·τ + ℓi) and T [(i+1) ·τ −ri..(i+1) ·τ). Next, we
also deactivate block pairs fully contained in the longest prefix of T [ij + τ..ij+1 + τ)
equal to a prefix of T [ij′ + τ..ij′+1 + τ), for some j′ < j. Denoting the length of this
prefix by ℓ, we treat T [ij + τ..ij + ℓ) as a tail and add it to the list L (annotated
with ij′ + τ). The total length of all fragments added to L is still O(n).

Theorem 11.2. All the runs contained in a length-n string over general unordered
alphabet can be computed in O(n log σ) time, where σ is the number of distinct
symbols in the string, which is not known in advance.

11.6 Conclusion
We presented the first algorithm that computes all runs in optimal O(n log σ) time
over general unordered alphabet. The solution is quite complicated and requires
many technical details. Considering the simplicity of the previous O(n log n) time
algorithm by Main and Lorentz [ML84], it seems likely that the new algorithm can
be significantly simplified, which we leave as future work. Another open question
is whether or not the new Ω(n log σ) time lower bound also applies to randomized
algorithms. Finally, it would also be interesting to consider the computation of runs
in tries over unordered alphabet (which has already been done for linearly-sortable
alphabet, see, e.g., [Sug+21]).

177

Bibliography

[AS98] Jean-Paul Allouche and Jeffrey O. Shallit. „The ubiquitous Prouhet-
Thue-Morse sequence.“ In: Proceedings of the 1st International Confer-
ence on Sequences and their Applications (SETA 1998). Singapore, 1998,
pages 1–16. doi: 10.1007/978-1-4471-0551-0_1 (cited on page 153).

[AEL10] Amihood Amir, Estrella Eisenberg, and Avivit Levy. „Approximate
periodicity.“ In: Proceedings of the 21st International Symposium on
Algorithms and Computation, Part I (ISAAC 2010). Jeju Island, Korea,
2010, pages 25–36. doi: 10.1007/978-3-642-17517-6_5 (cited on
page 128).

[AEL15] Amihood Amir, Estrella Eisenberg, and Avivit Levy. „Approximate
periodicity.“ In: Information and Computation 241 (2015), pages 215–
226. doi: 10.1016/j.ic.2015.02.004 (cited on page 128).

[ALU02] Amihood Amir, Gad M. Landau, and Esko Ukkonen. „Online times-
tamped text indexing.“ In: Information Processing Letters 82.5 (2002),
pages 253–259. doi: 10. 1016/S0020 - 0190(01) 00275- 7 (cited on
page 31).

[AL12] Amihood Amir and Avivit Levy. „Approximate period detection and
correction.“ In: Proceedings of the 19th International Symposium on
String Processing and Information Retrieval (SPIRE 2012). Cartagena
de Indias, Colombia, 2012, pages 1–15. doi: 10.1007/978- 3- 642-
34109-0_1 (cited on page 128).

[And+98] Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev Raman.
„Sorting in linear time?“ In: Journal of Computer and System Sciences
57.1 (1998), pages 74–93. doi: 10.1006/JCSS.1998.1580 (cited on
page 18).

[Apo92] Alberto Apostolico. „Optimal parallel detection of squares in strings.“ In:
Algorithmica 8.1–6 (1992), pages 285–319. doi: 10.1007/bf01758848
(cited on pages 1, 129).

[AB96] Alberto Apostolico and Dany Breslauer. „An optimal O(log log N)-
time parallel algorithm for detecting all squares in a string.“ In: SIAM
Journal on Computing 25.6 (1996), pages 1318–1331. doi: 10.1137/
S0097539793260404 (cited on page 129).

[ABG95] Alberto Apostolico, Dany Breslauer, and Zvi Galil. „Parallel detection
of all palindromes in a string.“ In: Theoretical Computer Science 141.1–2
(1995), pages 163–173. doi: 10.1016/0304-3975(94)00083-u (cited on
page 16).

179

https://doi.org/10.1007/978-1-4471-0551-0_1
https://doi.org/10.1007/978-3-642-17517-6_5
https://doi.org/10.1016/j.ic.2015.02.004
https://doi.org/10.1016/S0020-0190(01)00275-7
https://doi.org/10.1007/978-3-642-34109-0_1
https://doi.org/10.1007/978-3-642-34109-0_1
https://doi.org/10.1006/JCSS.1998.1580
https://doi.org/10.1007/bf01758848
https://doi.org/10.1137/S0097539793260404
https://doi.org/10.1137/S0097539793260404
https://doi.org/10.1016/0304-3975(94)00083-u

Bibliography

[AG08] Alberto Apostolico and Raffaele Giancarlo. „Periodicity and repeti-
tions in parameterized strings.“ In: Discrete Applied Mathematics 156.9
(2008), pages 1389–1398. doi: 10.1016/j.dam.2006.11.017 (cited on
page 128).

[AP83] Alberto Apostolico and Franco P. Preparata. „Optimal off-line detec-
tion of repetitions in a string.“ In: Theoretical Computer Science 22.3
(1983), pages 297–315. doi: 10.1016/0304-3975(83)90109-3 (cited on
page 129).

[Bab+15] Maxim A. Babenko, Paweł Gawrychowski, Tomasz Kociumaka, and
Tatiana Starikovskaya. „Wavelet trees meet suffix trees.“ In: Proceedings
of the 25th Annual Symposium on Discrete Algorithms (SODA 2015). San
Diego, CA, USA, 2015, pages 572–591. doi: 10.1137/1.9781611973730.
39 (cited on pages 15, 111).

[BC22] Golnaz Badkobeh and Maxime Crochemore. „Linear construction of a
left Lyndon tree.“ In: Information and Computation 285.Part B (2022),
page 104884. doi: 10.1016/J.IC.2022.104884 (cited on page 67).

[Bad+22] Golnaz Badkobeh, Maxime Crochemore, Jonas Ellert, and Cyril Nicaud.
„Back-to-front online Lyndon forest construction.“ In: Proceedings of
the 33rd Annual Symposium on Combinatorial Pattern Matching (CPM
2022). Prague, Czech Republic, 2022, 13:1–13:23. doi: 10.4230/LIPIcs.
CPM.2022.13 (cited on pages 6, 8, 68, 71, 76, 81).

[Bai15] Uwe Baier. „Linear-time suffix sorting - A new approach for suffix
array construction.“ Master’s thesis. Ulm University, 2015. url: https:
//www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.190/
Mitarbeiter/baier/gsaca.pdf (cited on pages 8, 68).

[Bai16] Uwe Baier. „Linear-time suffix sorting - A new approach for suffix
array construction.“ In: Proceedings of the 27th Annual Symposium on
Combinatorial Pattern Matching (CPM 2016). Tel Aviv, Israel, 2016,
23:1–23:12. doi: 10.4230/LIPIcs.CPM.2016.23 (cited on pages 8, 68,
109).

[BE23] Hideo Bannai and Jonas Ellert. „Lyndon arrays in sublinear time.“
In: Proceedings of the 31st Annual European Symposium on Algorithms
(ESA 2023). Amsterdam, The Netherlands, 2023, 14:1–14:16. doi: 10.
4230/LIPICS.ESA.2023.14 (cited on pages 7, 71).

[Ban+23] Hideo Bannai, Mitsuru Funakoshi, Kazuhiro Kurita, Yuto Nakashima,
Kazuhisa Seto, and Takeaki Uno. „Optimal LZ-End parsing is hard.“ In:
Proceedings of the 34th Annual Symposium on Combinatorial Pattern
Matching (CPM 2023). Marne-la-Vallée, France, 2023. doi: 10.4230/
LIPIcs.CPM.2023.3 (cited on page 32).

[Ban+17] Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima,
Masayuki Takeda, and Kazuya Tsuruta. „The “runs” theorem.“ In:
SIAM Journal on Computing 46.5 (2017), pages 1501–1514. doi: 10.
1137/15M1011032 (cited on pages 4, 68, 71, 127, 129–131, 134, 151,
176).

180

https://doi.org/10.1016/j.dam.2006.11.017
https://doi.org/10.1016/0304-3975(83)90109-3
https://doi.org/10.1137/1.9781611973730.39
https://doi.org/10.1137/1.9781611973730.39
https://doi.org/10.1016/J.IC.2022.104884
https://doi.org/10.4230/LIPIcs.CPM.2022.13
https://doi.org/10.4230/LIPIcs.CPM.2022.13
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.190/Mitarbeiter/baier/gsaca.pdf
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.190/Mitarbeiter/baier/gsaca.pdf
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.190/Mitarbeiter/baier/gsaca.pdf
https://doi.org/10.4230/LIPIcs.CPM.2016.23
https://doi.org/10.4230/LIPICS.ESA.2023.14
https://doi.org/10.4230/LIPICS.ESA.2023.14
https://doi.org/10.4230/LIPIcs.CPM.2023.3
https://doi.org/10.4230/LIPIcs.CPM.2023.3
https://doi.org/10.1137/15M1011032
https://doi.org/10.1137/15M1011032

Bibliography

[BFN11] Jérémy Barbay, Johannes Fischer, and Gonzalo Navarro. „LRM-trees:
Compressed indices, adaptive sorting, and compressed permutations.“ In:
Proceedings of the 22nd Annual Symposium on Combinatorial Pattern
Matching (CPM 2011). Palermo, Italy, 2011, pages 285–298. doi: 10.
1007/978-3-642-21458-5_25 (cited on pages 43, 68, 91).

[BCN02] Frédérique Bassino, Julien Clément, and Cyril Nicaud. „The average
lengths of the factors of the standard factorization of Lyndon words.“
In: Proceedings of the 6th International Conference on Developments in
Language Theory (DLT 2002). Kyoto, Japan, 2002, pages 307–318. doi:
10.1007/3-540-45005-X_27 (cited on page 67).

[BCN04] Frédérique Bassino, Julien Clément, and Cyril Nicaud. „Lyndon words
with a fixed standard right factor.“ In: Proceedings of the 15th Annual
Symposium on Discrete Algorithms (SODA 2004). New Orleans, LA,
USA, 2004, pages 653–654. url: http://dl.acm.org/citation.cfm?
id=982792.982891 (cited on page 67).

[BEM79] Dwight R. Bean, Andrzej Ehrenfeucht, and George F. McNulty. „Avoid-
able patterns in strings of symbols.“ In: Pacific Journal of Mathematics
85.2 (1979), pages 261–294. doi: pjm/1102783913 (cited on page 128).

[Bel12] Djamal Belazzougui. „Worst-case efficient single and multiple string
matching on packed texts in the word-RAM model.“ In: Journal of
Discrete Algorithms 14 (2012), pages 91–106. doi: 10.1016/J.JDA.
2011.12.011 (cited on page 14).

[Bel+21] Djamal Belazzougui, Manuel Cáceres, Travis Gagie, Paweł
Gawrychowski, Juha Kärkkäinen, Gonzalo Navarro, Alberto Or-
dóñez Pereira, Simon J. Puglisi, and Yasuo Tabei. „Block trees.“ In:
Journal of Computer and System Sciences 117 (2021), pages 1–22. doi:
10.1016/J.JCSS.2020.11.002 (cited on page 50).

[Bel+16] Djamal Belazzougui, Juha Kärkkäinen, Dominik Kempa, and Simon J.
Puglisi. „Lempel-Ziv decoding in external memory.“ In: Proceedings of
the 15th International Symposium on Experimental Algorithms (SEA
2016). St. Petersburg, Russia, 2016, pages 63–74. doi: 10.1007/978-3-
319-38851-9_5 (cited on pages 31, 56).

[BP16] Djamal Belazzougui and Simon J. Puglisi. „Range predecessor and
Lempel-Ziv parsing.“ In: Proceedings of the 27th Annual Symposium
on Discrete Algorithms (SODA 2016). Arlington, VA, USA, 2016,
pages 2053–2071. doi: 10.1137/1.9781611974331.ch143 (cited on
pages 31, 32, 45, 46, 55).

[Ben+14] Oren Ben-Kiki, Philip Bille, Dany Breslauer, Leszek Gasieniec, Roberto
Grossi, and Oren Weimann. „Towards optimal packed string matching.“
In: Theoretical Computer Science 525 (2014), pages 111–129. doi: 10.
1016/J.TCS.2013.06.013 (cited on page 14).

[BF00] Michael A. Bender and Martin Farach-Colton. „The LCA problem
revisited.“ In: Proceedings of the 4th Latin American Symposium on
Theoretical Informatics (LATIN 2000). Punta del Este, Uruguay, 2000,
pages 88–94. doi: 10.1007/10719839_9 (cited on page 171).

181

https://doi.org/10.1007/978-3-642-21458-5_25
https://doi.org/10.1007/978-3-642-21458-5_25
https://doi.org/10.1007/3-540-45005-X_27
http://dl.acm.org/citation.cfm?id=982792.982891
http://dl.acm.org/citation.cfm?id=982792.982891
https://doi.org/pjm/1102783913
https://doi.org/10.1016/J.JDA.2011.12.011
https://doi.org/10.1016/J.JDA.2011.12.011
https://doi.org/10.1016/J.JCSS.2020.11.002
https://doi.org/10.1007/978-3-319-38851-9_5
https://doi.org/10.1007/978-3-319-38851-9_5
https://doi.org/10.1137/1.9781611974331.ch143
https://doi.org/10.1016/J.TCS.2013.06.013
https://doi.org/10.1016/J.TCS.2013.06.013
https://doi.org/10.1007/10719839_9

Bibliography

[BSV93] Omer Berkman, Baruch Schieber, and Uzi Vishkin. „Optimal doubly
logarithmic parallel algorithms based on finding all nearest smaller
values.“ In: Journal of Algorithms 14.3 (1993), pages 344–370. doi:
10.1006/JAGM.1993.1018 (cited on page 68).

[Ber94] Jean Berstel. „Axel Thue’s papers on repetitions in words: A transla-
tion.“ In: (1994). url: https://www-igm.univ-mlv.fr/~berstel/
Articles/1994ThueTranslation.pdf (cited on pages 16, 128).

[BB99] Jean Berstel and Luc Boasson. „Partial words and a theorem of Fine and
Wilf.“ In: Theoretical Computer Science 218.1 (1999), pages 135–141.
doi: 10.1016/S0304-3975(98)00255-2 (cited on page 128).

[BEF21] Nico Bertram, Jonas Ellert, and Johannes Fischer. „Lyndon words
accelerate suffix sorting.“ In: Proceedings of the 29th Annual European
Symposium on Algorithms (ESA 2021). Lisbon, Portugal (Virtual Con-
ference), 2021, 15:1–15:13. doi: 10.4230/LIPIcs.ESA.2021.15 (cited
on pages 8, 9, 68).

[Bet+23] James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie
Li, Long Ouyang, Juntang Zhuang, Joyce Lee, Yufei Guo, Wesam Man-
assra, Prafulla Dhariwal, Casey Chu, Yunxin Jiao, and Aditya Ramesh.
Improving image generation with better captions. Technical report. Ope-
nAI, 2023. url: https://cdn.openai.com/papers/dall-e-3.pdf
(cited on pages 14, 16, 29, 67, 127).

[Bil11] Philip Bille. „Fast searching in packed strings.“ In: Journal of Discrete
Algorithms 9.1 (2011), pages 49–56. doi: 10.1016/J.JDA.2010.09.003
(cited on page 14).

[Bil+17] Philip Bille, Patrick Hagge Cording, Johannes Fischer, and Inge Li Gørtz.
„Lempel-Ziv compression in a sliding window.“ In: Proceedings of the 28th
Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Warsaw, Poland, 2017, 15:1–15:11. doi: 10.4230/LIPIcs.CPM.2017.15
(cited on page 31).

[Bil+20] Philip Bille, Jonas Ellert, Johannes Fischer, Inge Li Gørtz, Florian
Kurpicz, J. Ian Munro, and Eva Rotenberg. „Space efficient construction
of Lyndon arrays in linear time.“ In: Proceedings of the 47th International
Colloquium on Automata, Languages, and Programming (ICALP 2020).
Saarbrücken, Germany (Virtual Conference), 2020, 14:1–14:18. doi:
10.4230/LIPIcs.ICALP.2020.14 (cited on pages 6, 7, 71, 73, 131,
135).

[Bil+18] Philip Bille, Mikko Berggren Ettienne, Inge Li Gørtz, and Hjalte Wedel
Vildhøj. „Time–space trade-offs for Lempel–Ziv compressed indexing.“
In: Theoretical Computer Science 713 (2018), pages 66–77. doi: https:
//doi.org/10.1016/j.tcs.2017.12.021 (cited on page 31).

[BGS17] Philip Bille, Inge Li Gørtz, and Frederik Rye Skjoldjensen. „Determin-
istic indexing for packed strings.“ In: Proceedings of the 28th Annual
Symposium on Combinatorial Pattern Matching (CPM 2017). Warsaw,
Poland, 2017, 6:1–6:11. doi: 10.4230/LIPICS.CPM.2017.6 (cited on
page 15).

182

https://doi.org/10.1006/JAGM.1993.1018
https://www-igm.univ-mlv.fr/~berstel/Articles/1994ThueTranslation.pdf
https://www-igm.univ-mlv.fr/~berstel/Articles/1994ThueTranslation.pdf
https://doi.org/10.1016/S0304-3975(98)00255-2
https://doi.org/10.4230/LIPIcs.ESA.2021.15
https://cdn.openai.com/papers/dall-e-3.pdf
https://doi.org/10.1016/J.JDA.2010.09.003
https://doi.org/10.4230/LIPIcs.CPM.2017.15
https://doi.org/10.4230/LIPIcs.ICALP.2020.14
https://doi.org/https://doi.org/10.1016/j.tcs.2017.12.021
https://doi.org/https://doi.org/10.1016/j.tcs.2017.12.021
https://doi.org/10.4230/LIPICS.CPM.2017.6

Bibliography

[BGS20] Philip Bille, Inge Li Gørtz, and Teresa Anna Steiner. „String indexing
with compressed patterns.“ In: Proceedings of the 37th International
Symposium on Theoretical Aspects of Computer Science (STACS 2020).
Montpellier, France, 2020, 10:1–10:13. doi: 10.4230/LIPIcs.STACS.
2020.10 (cited on page 31).

[BBS08] Francine Blanchet-Sadri, Deepak Bal, and Gautam Sisodia. „Graph
connectivity, partial words, and a theorem of Fine and Wilf.“ In: Infor-
mation and Computation 206.5 (2008), pages 676–693. doi: 10.1016/j.
ic.2007.11.007 (cited on page 128).

[BH02] Francine Blanchet-Sadri and Robert A. Hegstrom. „Partial words and a
theorem of Fine and Wilf revisited.“ In: Theoretical Computer Science
270.1-2 (2002), pages 401–419. doi: 10.1016/S0304-3975(00)00407-2
(cited on page 128).

[Bla+13] Francine Blanchet-Sadri, Sean Simmons, Amelia Tebbe, and Amy
Veprauskas. „Abelian periods, partial words, and an extension of a
theorem of Fine and Wilf.“ In: RAIRO Theoretical Informatics and
Applications 47.3 (2013), pages 215–234. doi: 10.1051/ita/2013034
(cited on page 128).

[Bre92] Dany Breslauer. „Efficient string algorithmics.“ PhD thesis. Columbia
University, 1992. url: https://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.42.1251 (cited on pages 1, 5, 129, 130).

[BJJ97] Dany Breslauer, Tao Jiang, and Zhigen Jiang. „Rotations of periodic
strings and short superstrings.“ In: Journal of Algorithms 24.2 (1997),
pages 340–353. doi: 10.1006/jagm.1997.0861 (cited on page 67).

[BL23] Srecko Brlek and Shuo Li. „On the number of distinct squares in finite
sequences: Some old and new results.“ In: Proceedings of the 14th Inter-
national Conference on Combinatorics on Words (WORDS 2023). Umeå,
Sweden, 2023, pages 35–44. doi: 10.1007/978-3-031-33180-0_3
(cited on page 128).

[BL22] Srečko Brlek and Shuo Li. „On the number of squares in a finite word.“
In: CoRR abs/2204.10204 (2022). doi: 10.48550/arXiv.2204.10204.
arXiv: 2204.10204 (cited on page 128).

[BM13] Helen Budworth and Cynthia T. McMurray. „A brief history of triplet
repeat diseases.“ In: Trinucleotide Repeat Protocols. 2nd edition. Vol-
ume 1010. Methods in Molecular Biology. Springer, 2013, pages 3–17.
isbn: 978-1-62703-411-1. doi: 10.1007/978-1-62703-411-1_1 (cited
on page 128).

[CMR99] Maria Gabriella Castelli, Filippo Mignosi, and Antonio Restivo. „Fine
and Wilf’s theorem for three periods and a generalization of Sturmian
words.“ In: Theoretical Computer Science 218.1 (1999), pages 83–94. doi:
10.1016/S0304-3975(98)00251-5 (cited on page 128).

[CT18] Timothy M. Chan and Konstantinos Tsakalidis. „Dynamic orthogonal
range searching on the RAM, revisited.“ In: Journal of Computational
Geometry 9.2 (2018), pages 45–66. doi: 10.20382/jocg.v9i2a5 (cited
on pages 48, 49, 56).

183

https://doi.org/10.4230/LIPIcs.STACS.2020.10
https://doi.org/10.4230/LIPIcs.STACS.2020.10
https://doi.org/10.1016/j.ic.2007.11.007
https://doi.org/10.1016/j.ic.2007.11.007
https://doi.org/10.1016/S0304-3975(00)00407-2
https://doi.org/10.1051/ita/2013034
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.1251
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.1251
https://doi.org/10.1006/jagm.1997.0861
https://doi.org/10.1007/978-3-031-33180-0_3
https://doi.org/10.48550/arXiv.2204.10204
https://arxiv.org/abs/2204.10204
https://doi.org/10.1007/978-1-62703-411-1_1
https://doi.org/10.1016/S0304-3975(98)00251-5
https://doi.org/10.20382/jocg.v9i2a5

Bibliography

[Cha+21] Panagiotis Charalampopoulos, Tomasz Kociumaka, Solon P. Pissis, and
Jakub Radoszewski. „Faster algorithms for longest common substring.“
In: Proceedings of the 29th Annual European Symposium on Algorithms
(ESA 2021). Lisbon, Portugal (Virtual Conference), 2021, 30:1–30:17.
doi: 10.4230/LIPICS.ESA.2021.30 (cited on page 15).

[CPR22] Panagiotis Charalampopoulos, Solon P. Pissis, and Jakub Radoszewski.
„Longest palindromic substring in sublinear time.“ In: Proceedings of
the 33rd Annual Symposium on Combinatorial Pattern Matching (CPM
2022). Prague, Czech Republic, 2022, 20:1–20:9. doi: 10.4230/LIPICS.
CPM.2022.20 (cited on page 15).

[Cha+05] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prab-
hakaran, Amit Sahai, and Abhi Shelat. „The smallest grammar problem.“
In: IEEE Transactions on Information Theory 51.7 (2005), pages 2554–
2576. doi: 10.1109/TIT.2005.850116 (cited on page 30).

[CPS19] Émilie Charlier, Manon Philibert, and Manon Stipulanti. „Nyldon
words.“ In: Journal of Combinatorial Theory, Series A 167 (2019),
pages 60–90. doi: 10.1016/j.jcta.2019.04.002 (cited on page 69).

[CFL58] Kuo Tsai Chen, Ralph Hartzler Fox, and Roger Conant Lyndon. „Free
differential calculus, iv. The quotient groups of the lower central series.“
In: Annals of Mathematics 68.1 (1958), pages 81–95. doi: 10.2307/
1970044 (cited on pages 69, 71, 106).

[Cie+17] Adam Ciesiolka, Magdalena Jazurek, Karolina Drazkowska, and Wlodz-
imierz J. Krzyzosiak. „Structural characteristics of simple RNA repeats
associated with disease and their deleterious protein interactions.“ In:
Frontiers in Cellular Neuroscience 11 (2017). doi: 10.3389/fncel.
2017.00097 (cited on page 128).

[CH97] Richard Cole and Ramesh Hariharan. „Tighter upper bounds on the
exact complexity of string matching.“ In: SIAM Journal on Computing
26.3 (1997), pages 803–856. doi: 10.1137/S009753979324694X (cited
on page 16).

[Col+95] Richard Cole, Ramesh Hariharan, Mike Paterson, and Uri Zwick.
„Tighter lower bounds on the exact complexity of string matching.“
In: SIAM Journal on Computing 24.1 (1995), pages 30–45. doi: 10.
1137/S0097539793245829 (cited on page 16).

[CI06] Sorin Constantinescu and Lucian Ilie. „Fine and Wilf’s theorem for
abelian periods.“ In: Bulletin of the EATCS 89 (2006), pages 167–170.
url: https://eatcs.org/images/bulletin/beatcs89.pdf (cited on
page 128).

[Cor+22] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to algorithms. 4th edition. MIT Press, 2022. isbn:
9780262367509 (cited on pages 13, 17–19, 91).

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of information theory.
2nd edition. Wiley, 2006. isbn: 978-0-471-24195-9. url: http://www.
elementsofinformationtheory.com/ (cited on page 155).

184

https://doi.org/10.4230/LIPICS.ESA.2021.30
https://doi.org/10.4230/LIPICS.CPM.2022.20
https://doi.org/10.4230/LIPICS.CPM.2022.20
https://doi.org/10.1109/TIT.2005.850116
https://doi.org/10.1016/j.jcta.2019.04.002
https://doi.org/10.2307/1970044
https://doi.org/10.2307/1970044
https://doi.org/10.3389/fncel.2017.00097
https://doi.org/10.3389/fncel.2017.00097
https://doi.org/10.1137/S009753979324694X
https://doi.org/10.1137/S0097539793245829
https://doi.org/10.1137/S0097539793245829
https://eatcs.org/images/bulletin/beatcs89.pdf
http://www.elementsofinformationtheory.com/
http://www.elementsofinformationtheory.com/

Bibliography

[Cro81] Maxime Crochemore. „An optimal algorithm for computing the rep-
etitions in a word.“ In: Information Processing Letters 12.5 (1981),
pages 244–250. doi: 10 . 1016 / 0020 - 0190(81) 90024 - 7 (cited on
pages 127, 129).

[Cro86] Maxime Crochemore. „Transducers and repetitions.“ In: Theoretical
Computer Science 45.1 (1986), pages 63–86. doi: 10 . 1016 / 0304 -
3975(86)90041-1 (cited on pages 50, 129, 148).

[Cro+12] Maxime Crochemore, Laura Giambruno, Alessio Langiu, Filippo Mignosi,
and Antonio Restivo. „Dictionary-symbolwise flexible parsing.“ In: Jour-
nal of Discrete Algorithms 14 (2012), pages 74–90. doi: 10.1016/j.jda.
2011.12.021 (cited on page 31).

[CI08a] Maxime Crochemore and Lucian Ilie. „Computing longest previous factor
in linear time and applications.“ In: Information Processing Letters 106.2
(2008), pages 75–80. doi: 10.1016/j.ipl.2007.10.006 (cited on
pages 3, 17, 30, 31, 40, 42, 43, 148).

[CI08b] Maxime Crochemore and Lucian Ilie. „Maximal repetitions in strings.“
In: Journal of Computer and System Sciences 74.5 (2008), pages 796–807.
doi: 10.1016/j.jcss.2007.09.003 (cited on page 129).

[CIT11] Maxime Crochemore, Lucian Ilie, and Liviu Tinta. „The “runs” conjec-
ture.“ In: Theoretical Computer Science 412.27 (2011), pages 2931–2941.
doi: 10.1016/j.tcs.2010.06.019 (cited on page 129).

[Cro+16] Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Ritu
Kundu, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and
Tomasz Walen. „Near-optimal computation of runs over general alphabet
via non-crossing LCE queries.“ In: Proceedings of the 23rd International
Symposium on String Processing and Information Retrieval (SPIRE
2016). Beppu, Japan, 2016, pages 22–34. doi: 10.1007/978-3-319-
46049-9_3 (cited on page 130).

[Cro+14] Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica, Jakub Ra-
doszewski, Wojciech Rytter, and Tomasz Walen. „Extracting powers
and periods in a word from its runs structure.“ In: Theoretical Computer
Science 521 (2014), pages 29–41. doi: 10.1016/j.tcs.2013.11.018
(cited on page 134).

[CLM13] Maxime Crochemore, Alessio Langiu, and Filippo Mignosi. „The right-
most equal-cost position problem.“ In: Proceedings of the 2013 Data Com-
pression Conference (DCC 2013). Snowbird, UT, USA, 2013, pages 421–
430. doi: 10.1109/DCC.2013.50 (cited on page 31).

[CLR21] Maxime Crochemore, Thierry Lecroq, and Wojciech Rytter. 125 problems
in text algorithms. 334 pages. Cambridge University Press, 2021. isbn:
9781108869317. doi: 10.1017/9781108835831 (cited on page 71).

[CP91] Maxime Crochemore and Dominique Perrin. „Two-way string-matching.“
In: Journal of the ACM 38.3 (1991), pages 651–675. doi: 10.1145/
116825.116845 (cited on page 67).

[CR20] Maxime Crochemore and Luís M. S. Russo. „Cartesian and Lyndon
trees.“ In: Theoretical Computer Science 806 (2020), pages 1–9. doi:
10.1016/j.tcs.2018.08.011 (cited on page 67).

185

https://doi.org/10.1016/0020-0190(81)90024-7
https://doi.org/10.1016/0304-3975(86)90041-1
https://doi.org/10.1016/0304-3975(86)90041-1
https://doi.org/10.1016/j.jda.2011.12.021
https://doi.org/10.1016/j.jda.2011.12.021
https://doi.org/10.1016/j.ipl.2007.10.006
https://doi.org/10.1016/j.jcss.2007.09.003
https://doi.org/10.1016/j.tcs.2010.06.019
https://doi.org/10.1007/978-3-319-46049-9_3
https://doi.org/10.1007/978-3-319-46049-9_3
https://doi.org/10.1016/j.tcs.2013.11.018
https://doi.org/10.1109/DCC.2013.50
https://doi.org/10.1017/9781108835831
https://doi.org/10.1145/116825.116845
https://doi.org/10.1145/116825.116845
https://doi.org/10.1016/j.tcs.2018.08.011

Bibliography

[CR91] Maxime Crochemore and Wojciech Rytter. „Efficient parallel algorithms
to test square-freeness and factorize strings.“ In: Information Processing
Letters 38.2 (1991), pages 57–60. doi: 10.1016/0020-0190(91)90223-5
(cited on page 30).

[Cur05] James D. Currie. „Pattern avoidance: Themes and variations.“ In: The-
oretical Computer Science 339.1 (2005), pages 7–18. doi: 10.1016/j.
tcs.2005.01.004 (cited on page 128).

[Day+18] Jacqueline W. Daykin, Frantisek Franek, Jan Holub, A. S. M. Sohidull
Islam, and W. F. Smyth. „Reconstructing a string from its Lyndon
arrays.“ In: Theoretical Computer Science 710 (2018), pages 44–51. doi:
10.1016/J.TCS.2017.04.008 (cited on pages 68, 71).

[DFT15] Antoine Deza, Frantisek Franek, and Adrien Thierry. „How many double
squares can a string contain?“ In: Discrete Applied Mathematics 180
(2015), pages 52–69. doi: 10.1016/j.dam.2014.08.016 (cited on
page 128).

[Duv83] Jean-Pierre Duval. „Factorizing words over an ordered alphabet.“ In:
Journal of Algorithms 4.4 (1983), pages 363–381. doi: 10.1016/0196-
6774(83)90017-2 (cited on pages 71, 106, 107).

[DLL14] Jean-Pierre Duval, Thierry Lecroq, and Arnaud Lefebvre. „Linear com-
putation of unbordered conjugate on unordered alphabet.“ In: Theoretical
Computer Science 522 (2014), pages 77–84. doi: 10.1016/j.tcs.2013.
12.008 (cited on page 17).

[Eli75] Peter Elias. „Universal codeword sets and representations of the integers.“
In: IEEE Transactions on Information Theory 21.2 (1975), pages 194–
203. doi: 10.1109/TIT.1975.1055349 (cited on pages 31, 51, 52).

[Ell22] Jonas Ellert. „Lyndon arrays simplified.“ In: Proceedings of the 30th
Annual European Symposium on Algorithms (ESA 2022). Potsdam,
Germany, 2022, 48:1–48:14. doi: 10.4230/LIPICS.ESA.2022.48 (cited
on pages 7, 131, 135).

[Ell23] Jonas Ellert. „Sublinear time Lempel-Ziv (LZ77) factorization.“ In:
Proceedings of the 30th International Symposium on String Processing
and Information Retrieval (SPIRE 2023). Pisa, Italy, 2023, pages 171–
187. doi: 10.1007/978-3-031-43980-3_14 (cited on pages 6, 31).

[EF21] Jonas Ellert and Johannes Fischer. „Linear time runs over general
ordered alphabets.“ In: Proceedings of the 48th International Colloquium
on Automata, Languages, and Programming (ICALP 2021). Glasgow,
Scotland (Virtual Conference), 2021, 63:1–63:16. doi: 10.4230/LIPIcs.
ICALP.2021.63 (cited on pages 8, 17).

[EFP23] Jonas Ellert, Johannes Fischer, and Max Rishøj Pedersen. „New ad-
vances in rightmost Lempel-Ziv.“ In: Proceedings of the 30th International
Symposium on String Processing and Information Retrieval (SPIRE
2023). Winner of the SPIRE 2023 Best Paper Award. Pisa, Italy,
2023, pages 188–202. doi: 10.1007/978-3-031-43980-3_15 (cited on
pages 6, 31).

186

https://doi.org/10.1016/0020-0190(91)90223-5
https://doi.org/10.1016/j.tcs.2005.01.004
https://doi.org/10.1016/j.tcs.2005.01.004
https://doi.org/10.1016/J.TCS.2017.04.008
https://doi.org/10.1016/j.dam.2014.08.016
https://doi.org/10.1016/0196-6774(83)90017-2
https://doi.org/10.1016/0196-6774(83)90017-2
https://doi.org/10.1016/j.tcs.2013.12.008
https://doi.org/10.1016/j.tcs.2013.12.008
https://doi.org/10.1109/TIT.1975.1055349
https://doi.org/10.4230/LIPICS.ESA.2022.48
https://doi.org/10.1007/978-3-031-43980-3_14
https://doi.org/10.4230/LIPIcs.ICALP.2021.63
https://doi.org/10.4230/LIPIcs.ICALP.2021.63
https://doi.org/10.1007/978-3-031-43980-3_15

Bibliography

[EFS20] Jonas Ellert, Johannes Fischer, and Nodari Sitchinava. „LCP-aware
parallel string sorting.“ In: Proceedings of the 26th International Confer-
ence on Parallel and Distributed Computing (Euro-Par 2020). Warsaw,
Poland (Virtual Conference), 2020, pages 329–342. doi: 10.1007/978-
3-030-57675-2_21 (cited on page 9).

[EGG23a] Jonas Ellert, Paweł Gawrychowski, and Garance Gourdel. „Optimal
square detection over general alphabets.“ In: Proceedings of the 34th
Annual Symposium on Discrete Algorithms (SODA 2023). Florence,
Italy, 2023, pages 5220–5242. doi: 10.1137/1.9781611977554.ch189
(cited on pages 6, 8, 17).

[EGG23b] Jonas Ellert, Paweł Gawrychowski, and Garance Gourdel. „Optimal
square detection over general alphabets.“ In: CoRR abs/2303.07229
(2023). doi: 10.48550/ARXIV.2303.07229. arXiv: 2303.07229 (cited
on pages 6, 8).

[Far97] Martin Farach. „Optimal suffix tree construction with large alphabets.“
In: Proceedings of the 38th Annual Symposium on Foundations of Com-
puter Science (FOCS 1997). Miami Beach, FL, USA, 1997, pages 137–
143. doi: 10.1109/SFCS.1997.646102 (cited on pages 53, 151, 168,
169).

[FM95] Martin Farach and S. Muthukrishnan. „Optimal parallel dictionary
matching and compression (extended abstract).“ In: Proceedings of
the 7th Annual Symposium on Parallel Algorithms and Architectures
(SPAA 1995). Santa Barbara, CA, USA, 1995, pages 244–253. doi:
10.1145/215399.215451 (cited on page 30).

[FFM00] Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. „On the
sorting-complexity of suffix tree construction.“ In: Journal of the ACM
47.6 (2000), pages 987–1011. doi: 10.1145/355541.355547 (cited on
page 53).

[Fer+14] Héctor Ferrada, Travis Gagie, Tommi Hirvola, and Simon J. Puglisi.
„Hybrid indexes for repetitive datasets.“ In: Philosophical Transactions
of the Royal Society A 372.2016 (2014). doi: 10.1098/rsta.2013.0137
(cited on page 31).

[FNV13] Paolo Ferragina, Igor Nitto, and Rossano Venturini. „On the bit-
complexity of Lempel-Ziv compression.“ In: SIAM Journal on Com-
puting 42.4 (2013), pages 1521–1541. doi: 10.1137/120869511 (cited
on pages 31, 57).

[FW65] Nathan J. Fine and Herbert S. Wilf. „Uniqueness theorems for periodic
functions.“ In: Proceedings of the American Mathematical Society 16.1
(1965), pages 109–114. doi: 10.1090/s0002-9939-1965-0174934-9
(cited on pages 119, 128, 133).

[Fis10] Johannes Fischer. „Optimal succinctness for range minimum queries.“
In: Proceedings of the 9th Latin American Symposium Theoretical In-
formatics (LATIN 2010). Oaxaca, Mexico, 2010, pages 158–169. doi:
10.1007/978-3-642-12200-2_16 (cited on page 91).

187

https://doi.org/10.1007/978-3-030-57675-2_21
https://doi.org/10.1007/978-3-030-57675-2_21
https://doi.org/10.1137/1.9781611977554.ch189
https://doi.org/10.48550/ARXIV.2303.07229
https://arxiv.org/abs/2303.07229
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1145/215399.215451
https://doi.org/10.1145/355541.355547
https://doi.org/10.1098/rsta.2013.0137
https://doi.org/10.1137/120869511
https://doi.org/10.1090/s0002-9939-1965-0174934-9
https://doi.org/10.1007/978-3-642-12200-2_16

Bibliography

[Fis+15a] Johannes Fischer, Travis Gagie, Paweł Gawrychowski, and Tomasz
Kociumaka. „Approximating LZ77 via small-space multiple-pattern
matching.“ In: Proceedings of the 23rd Annual European Symposium
on Algorithms (ESA 2015). Patras, Greece, 2015, pages 533–544. doi:
10.1007/978-3-662-48350-3_45 (cited on page 31).

[Fis+15b] Johannes Fischer, Stepan Holub, Tomohiro I, and Moshe Lewenstein.
„Beyond the runs theorem.“ In: Proceedings of the 22nd International
Symposium on String Processing and Information Retrieval (SPIRE
2015). London, UK, 2015, pages 277–286. doi: 10.1007/978-3-319-
23826-5_27 (cited on page 129).

[FIK15] Johannes Fischer, Tomohiro I, and Dominik Köppl. „Lempel Ziv com-
putation in small space (LZ-CISS).“ In: Proceedings of the 26th Annual
Symposium on Combinatorial Pattern Matching (CPM 2015). Ischia Is-
land, Italy, 2015, pages 172–184. doi: 10.1007/978-3-319-19929-0_15
(cited on page 31).

[Fis+18] Johannes Fischer, Tomohiro I, Dominik Köppl, and Kunihiko Sadakane.
„Lempel-Ziv factorization powered by space efficient suffix trees.“ In:
Algorithmica 80.7 (2018), pages 2048–2081. doi: 10.1007/s00453-017-
0333-1 (cited on pages 31, 53, 165).

[FK17] Johannes Fischer and Florian Kurpicz. „Dismantling DivSufSort.“ In:
Proceedings of the 2017 Prague Stringology Conference (PSC 2017).
Prague, Czech Republic, 2017, pages 62–76. url: http : / / www .
stringology.org/event/2017/p07.html (cited on page 108).

[FK96] Aviezri S. Fraenkel and Shmuel T. Klein. „Robust universal complete
codes for transmission and compression.“ In: Discrete Applied Mathe-
matics 64.1 (1996), pages 31–55. doi: 10.1016/0166-218X(93)00116-H
(cited on page 52).

[FS98] Aviezri S. Fraenkel and Jamie Simpson. „How many squares can a string
contain?“ In: Journal of Combinatorial Theory, Series A 82.1 (1998),
pages 112–120. doi: 10.1006/jcta.1997.2843 (cited on page 128).

[Fra+16] Frantisek Franek, A. S. M. Sohidull Islam, Mohammad Sohel Rah-
man, and William F. Smyth. „Algorithms to compute the Lyndon
array.“ In: Proceedings of the 2016 Prague Stringology Conference (PSC
2016). Prague, Czech Republic, 2016, pages 172–184. url: http://www.
stringology.org/event/2016/p15.html (cited on pages 68, 71–73,
89, 108, 132).

[FL19] Frantisek Franek and Michael Liut. „Algorithms to compute the Lyn-
don array revisited.“ In: Proceedings of the 2019 Prague Stringology
Conference (PSC 2019). Prague, Czech Republic, 2019, pages 16–28.
url: http://www.stringology.org/event/2019/p03.html (cited on
pages 68, 71).

[FL20] Frantisek Franek and Michael Liut. „Computing maximal Lyndon
substrings of a string.“ In: Algorithms 13.11 (2020). doi: 10.3390/
a13110294 (cited on pages 68, 71–73, 132).

188

https://doi.org/10.1007/978-3-662-48350-3_45
https://doi.org/10.1007/978-3-319-23826-5_27
https://doi.org/10.1007/978-3-319-23826-5_27
https://doi.org/10.1007/978-3-319-19929-0_15
https://doi.org/10.1007/s00453-017-0333-1
https://doi.org/10.1007/s00453-017-0333-1
http://www.stringology.org/event/2017/p07.html
http://www.stringology.org/event/2017/p07.html
https://doi.org/10.1016/0166-218X(93)00116-H
https://doi.org/10.1006/jcta.1997.2843
http://www.stringology.org/event/2016/p15.html
http://www.stringology.org/event/2016/p15.html
http://www.stringology.org/event/2019/p03.html
https://doi.org/10.3390/a13110294
https://doi.org/10.3390/a13110294

Bibliography

[FLS18] Frantisek Franek, Michael Liut, and William F. Smyth. „On Baier’s
sort of maximal Lyndon substrings.“ In: Proceedings of the 2018 Prague
Stringology Conference (PSC 2018). Prague, Czech Republic, 2018,
pages 63–78. url: http://www.stringology.org/event/2018/p07.
html (cited on page 68).

[FPS17] Frantisek Franek, Asma Paracha, and William F. Smyth. „The lin-
ear equivalence of the suffix array and the partially sorted Lyndon
array.“ In: Proceedings of the 2017 Prague Stringology Conference (PSC
2017). Prague, Czech Republic, 2017, pages 77–84. url: http://www.
stringology.org/event/2017/p08.html (cited on page 68).

[FY08] Frantisek Franek and Qian Yang. „An asymptotic lower bound for
the maximal number of runs in a string.“ In: International Journal
of Foundations of Computer Science 19.1 (2008), pages 195–203. doi:
10.1142/S0129054108005620 (cited on page 129).

[Fre60] Edward Fredkin. „Trie memory.“ In: Communications of the ACM 3.9
(1960), pages 490–499. doi: 10.1145/367390.367400 (cited on page 53).

[FW93] Michael L. Fredman and Dan E. Willard. „Surpassing the information
theoretic bound with fusion trees.“ In: Journal of Computer and System
Sciences 47.3 (1993), pages 424–436. doi: 10.1016/0022-0000(93)
90040-4 (cited on page 95).

[Gab90] Harold N. Gabow. „Data structures for weighted matching and nearest
common ancestors with linking.“ In: Proceedings of the 1st Annual Sym-
posium on Discrete Algorithms (SODA 1990). San Francisco, California,
USA, 1990, pages 434–443. url: http://dl.acm.org/citation.cfm?
id=320176.320229 (cited on page 163).

[Gag22] Travis Gagie. „Space-efficient RLZ-to-LZ77 conversion.“ In: CoRR
abs/2211.13254 (2022). doi: 10.48550/arXiv.2211.13254. arXiv:
2211.13254 (cited on page 31).

[Gag+14] Travis Gagie, Paweł Gawrychowski, Juha Kärkkäinen, Yakov Nekrich,
and Simon J. Puglisi. „LZ77-based self-indexing with faster pattern
matching.“ In: Proceedings of the 11th Latin American Symposium on
Theoretical Informatics (LATIN 2014). Montevideo, Uruguay, 2014,
pages 731–742. doi: 10.1007/978- 3- 642- 54423- 1_63 (cited on
page 31).

[GGP15] Travis Gagie, Paweł Gawrychowski, and Simon J. Puglisi. „Approximate
pattern matching in LZ77-compressed texts.“ In: Journal of Discrete
Algorithms 32 (2015), pages 64–68. doi: 10.1016/j.jda.2014.10.003
(cited on page 31).

[GNP18] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. „On the approxi-
mation ratio of Lempel-Ziv parsing.“ In: Proceedings of the 13th Latin
American Theoretical Informatics Symposium (LATIN 2018). Buenos
Aires, Argentina, 2018, pages 490–503. doi: 10.1007/978- 3- 319-
77404-6_36 (cited on page 30).

189

http://www.stringology.org/event/2018/p07.html
http://www.stringology.org/event/2018/p07.html
http://www.stringology.org/event/2017/p08.html
http://www.stringology.org/event/2017/p08.html
https://doi.org/10.1142/S0129054108005620
https://doi.org/10.1145/367390.367400
https://doi.org/10.1016/0022-0000(93)90040-4
https://doi.org/10.1016/0022-0000(93)90040-4
http://dl.acm.org/citation.cfm?id=320176.320229
http://dl.acm.org/citation.cfm?id=320176.320229
https://doi.org/10.48550/arXiv.2211.13254
https://arxiv.org/abs/2211.13254
https://doi.org/10.1007/978-3-642-54423-1_63
https://doi.org/10.1016/j.jda.2014.10.003
https://doi.org/10.1007/978-3-319-77404-6_36
https://doi.org/10.1007/978-3-319-77404-6_36

Bibliography

[GP92] Zvi Galil and Kunsoo Park. „Truly alphabet-independent two-
dimensional pattern matching.“ In: Proceedings of the 33rd Annual
Symposium on Foundations of Computer Science (FOCS 1992). Pitts-
burgh, PA, USA, 1992, pages 247–256. doi: 10.1109/SFCS.1992.267767
(cited on page 16).

[GS83] Zvi Galil and Joel I. Seiferas. „Time-space-optimal string matching.“ In:
Journal of Computer and System Sciences 26.3 (1983), pages 280–294.
doi: 10.1016/0022-0000(83)90002-8 (cited on page 16).

[Gaw+16] Paweł Gawrychowski, Tomasz Kociumaka, Wojciech Rytter, and Tomasz
Walen. „Faster longest common extension queries in strings over general
alphabets.“ In: Proceedings of the 27th Annual Symposium on Combina-
torial Pattern Matching (CPM 2016). Tel Aviv, Israel, 2016, 5:1–5:13.
doi: 10.4230/LIPIcs.CPM.2016.5 (cited on pages 130, 150, 163).

[GKM23] Pawel Gawrychowski, Maria Kosche, and Florin Manea. „On the number
of factors in the LZ-End factorization.“ In: Proceedings of the 30th
International Symposium on String Processing and Information Retrieval
(SPIRE 2023). Pisa, Italy, 2023, pages 253–259. doi: 10.1007/978-3-
031-43980-3_20 (cited on page 32).

[GGF13] Emanuele Giaquinta, Szymon Grabowski, and Kimmo Fredriksson. „Ap-
proximate pattern matching with k-mismatches in packed text.“ In:
Information Processing Letters 113.19-21 (2013), pages 693–697. doi:
10.1016/J.IPL.2013.07.002 (cited on page 15).

[Gir08] Mathieu Giraud. „Not so many runs in strings.“ In: Proceedings of the
2nd International Conference on Language and Automata Theory and
Applications (LATA 2008). Tarragona, Spain, 2008, pages 232–239. doi:
10.1007/978-3-540-88282-4_22 (cited on page 129).

[Gir09] Mathieu Giraud. „Asymptotic behavior of the numbers of runs and
microruns.“ In: Information and Computation 207.11 (2009), pages 1221–
1228. doi: 10.1016/j.ic.2009.02.007 (cited on page 129).

[Gol66] Solomon W. Golomb. „Run-length encodings (corresp.)“ In: IEEE
Transactions on Information Theory 12.3 (1966), pages 399–401. doi:
10.1109/TIT.1966.1053907 (cited on page 52).

[Gol07] Alexander Golynski. „Optimal lower bounds for rank and select indexes.“
In: Theoretical Computer Science 387.3 (2007), pages 348–359. doi:
10.1016/j.tcs.2007.07.041 (cited on page 92).

[GB13] Keisuke Goto and Hideo Bannai. „Simpler and faster Lempel Ziv fac-
torization.“ In: Proceedings of the 2013 Data Compression Conference
(DCC 2013). Snowbird, UT, USA, 2013, pages 133–142. doi: 10.1109/
DCC.2013.21 (cited on page 31).

[GB14] Keisuke Goto and Hideo Bannai. „Space efficient linear time Lempel-Ziv
factorization for small alphabets.“ In: Proceedings of the 2014 Data Com-
pression Conference (DCC 2014). Snowbird, UT, USA, 2014, pages 163–
172. doi: 10.1109/DCC.2014.62 (cited on page 31).

190

https://doi.org/10.1109/SFCS.1992.267767
https://doi.org/10.1016/0022-0000(83)90002-8
https://doi.org/10.4230/LIPIcs.CPM.2016.5
https://doi.org/10.1007/978-3-031-43980-3_20
https://doi.org/10.1007/978-3-031-43980-3_20
https://doi.org/10.1016/J.IPL.2013.07.002
https://doi.org/10.1007/978-3-540-88282-4_22
https://doi.org/10.1016/j.ic.2009.02.007
https://doi.org/10.1109/TIT.1966.1053907
https://doi.org/10.1016/j.tcs.2007.07.041
https://doi.org/10.1109/DCC.2013.21
https://doi.org/10.1109/DCC.2013.21
https://doi.org/10.1109/DCC.2014.62

Bibliography

[Gou+20] Garance Gourdel, Tomasz Kociumaka, Jakub Radoszewski, Wojciech
Rytter, Arseny M. Shur, and Tomasz Walen. „String periods in the
order-preserving model.“ In: Information and Computation 270 (2020).
doi: 10.1016/j.ic.2019.104463 (cited on page 128).

[Gus97] Dan Gusfield. Algorithms on strings, trees, and sequences - Computer sci-
ence and computational biology. Cambridge University Press, 1997. isbn:
0-521-58519-8. doi: 10.1017/cbo9780511574931 (cited on pages 151,
168).

[Hag98] Torben Hagerup. „Sorting and searching on the word RAM.“ In: Pro-
ceedings of the 15th Annual Symposium on Theoretical Aspects of Com-
puter Science (STACS 1998). Paris, France, 1998, pages 366–398. doi:
10.1007/BFb0028575 (cited on pages 1, 13).

[HR03] Christophe Hohlweg and Christophe Reutenauer. „Lyndon words, per-
mutations and trees.“ In: Theoretical Computer Science 307.1 (2003),
pages 173–178. doi: 10. 1016/S0304 - 3975(03) 00099- 9 (cited on
pages 67, 72, 73, 132).

[Hol17] Stepan Holub. „Prefix frequency of lost positions.“ In: Theoretical Com-
puter Science 684 (2017), pages 43–52. doi: 10.1016/j.tcs.2017.01.
026 (cited on page 129).

[HRB23] Aaron Hong, Massimiliano Rossi, and Christina Boucher. „LZ77 via
prefix-free parsing.“ In: Proceedings of the 25th Symposium on Algo-
rithm Engineering and Experiments (ALENEX 2023). Florence, Italy,
2023, pages 123–134. doi: 10.1137/1.9781611977561.ch11 (cited on
page 31).

[HC08] Jin-Ju Hong and Gen-Huey Chen. „Efficient on-line repetition detection.“
In: Theoretical Computer Science 407.1-3 (2008), pages 554–563. doi:
10.1016/j.tcs.2008.08.038 (cited on page 129).

[IS14] Lidia A. Idiatulina and Arseny M. Shur. „Periodic partial words and
random bipartite graphs.“ In: Fundamenta Informaticae 132.1 (2014),
pages 15–31. doi: 10.3233/FI-2014-1030 (cited on page 128).

[Ili07] Lucian Ilie. „A note on the number of squares in a word.“ In: Theoretical
Computer Science 380.3 (2007), pages 373–376. doi: 10.1016/j.tcs.
2007.03.025 (cited on page 128).

[JSS15] Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. „Linked dy-
namic tries with applications to LZ-compression in sublinear time and
space.“ In: Algorithmica 71.4 (2015), pages 969–988. doi: 10.1007/
S00453-013-9836-6 (cited on page 31).

[Jus00] Jacques Justin. „On a paper by Castelli, Mignosi, Restivo.“ In: RAIRO
Theoretical Informatics and Applications 34.5 (2000), pages 373–377.
doi: 10.1051/ita:2000122 (cited on page 128).

[KKP13a] Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. „Lightweight
Lempel-Ziv parsing.“ In: Proceedings of the 12th International Symposium
on Experimental Algorithms (SEA 2013). Rome, Italy, 2013, pages 139–
150. doi: 10.1007/978-3-642-38527-8_14 (cited on page 31).

191

https://doi.org/10.1016/j.ic.2019.104463
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1007/BFb0028575
https://doi.org/10.1016/S0304-3975(03)00099-9
https://doi.org/10.1016/j.tcs.2017.01.026
https://doi.org/10.1016/j.tcs.2017.01.026
https://doi.org/10.1137/1.9781611977561.ch11
https://doi.org/10.1016/j.tcs.2008.08.038
https://doi.org/10.3233/FI-2014-1030
https://doi.org/10.1016/j.tcs.2007.03.025
https://doi.org/10.1016/j.tcs.2007.03.025
https://doi.org/10.1007/S00453-013-9836-6
https://doi.org/10.1007/S00453-013-9836-6
https://doi.org/10.1051/ita:2000122
https://doi.org/10.1007/978-3-642-38527-8_14

Bibliography

[KKP13b] Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. „Linear time
Lempel-Ziv factorization: Simple, fast, small.“ In: Proceedings of the 24th
Annual Symposium on Combinatorial Pattern Matching (CPM 2013).
Bad Herrenalb, Germany, 2013, pages 189–200. doi: 10.1007/978-3-
642-38905-4_19 (cited on page 31).

[KKP14] Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. „Lempel-Ziv
parsing in external memory.“ In: Proceedings of the 2014 Data Compres-
sion Conference (DCC 2014). Snowbird, UT, USA, 2014, pages 153–162.
doi: 10.1109/DCC.2014.78 (cited on page 31).

[KSB06] Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. „Linear work
suffix array construction.“ In: Journal of the ACM 53.6 (2006), pages 918–
936. doi: 10.1145/1217856.1217858 (cited on page 68).

[KS98] Juha Kärkkäinen and Erkki Sutinen. „Lempel-Ziv index for q-grams.“
In: Algorithmica 21.1 (1998), pages 137–154. doi: 10.1007/PL00009205
(cited on page 31).

[Kat+21] Kenneth Katz, Oleg Shutov, Richard Lapoint, Michael Kimelman, J
Rodney Brister, and Christopher O’Sullivan. „The sequence read archive:
A decade more of explosive growth.“ In: Nucleic Acids Research 50.D1
(2021), pages D387–D390. doi: 10 . 1093 / nar / gkab1053 (cited on
page 29).

[Kem19] Dominik Kempa. „Optimal construction of compressed indexes for highly
repetitive texts.“ In: Proceedings of the 30th Annual Symposium on Dis-
crete Algorithms (SODA 2019). San Diego, CA, USA, 2019, pages 1344–
1357. doi: 10.1137/1.9781611975482.82 (cited on pages 31, 39).

[KK19] Dominik Kempa and Tomasz Kociumaka. „String synchronizing sets:
Sublinear-time BWT construction and optimal LCE data structure.“
In: Proceedings of the 51st Annual Symposium on Theory of Computing
(STOC 2019). Phoenix, AZ, USA, 2019, pages 756–767. doi: 10.1145/
3313276.3316368 (cited on pages 15, 40, 42, 61, 113).

[KK22] Dominik Kempa and Tomasz Kociumaka. „Resolution of the Burrows-
Wheeler transform conjecture.“ In: Communications of the ACM 65.6
(2022), pages 91–98. doi: 10.1145/3531445 (cited on pages 30, 31, 39).

[KK23] Dominik Kempa and Tomasz Kociumaka. „Breaking the O(n)-barrier
in the construction of compressed suffix arrays and suffix trees.“ In:
Proceedings of the 34th Annual Symposium on Discrete Algorithms
(SODA 2023). Florence, Italy, 2023, pages 5122–5202. doi: 10.1137/1.
9781611977554.CH187 (cited on page 15).

[KK17] Dominik Kempa and Dmitry Kosolobov. „LZ-End parsing in linear time.“
In: Proceedings of the 25th Annual European Symposium on Algorithms
(ESA 2017). Vienna, Austria, 2017, 53:1–53:14. doi: 10.4230/LIPIcs.
ESA.2017.53 (cited on page 32).

[KP18] Dominik Kempa and Nicola Prezza. „At the roots of dictionary compres-
sion: String attractors.“ In: Proceedings of the 50th Annual Symposium
on Theory of Computing (STOC 2018). Los Angeles, CA, USA, 2018,
pages 827–840. doi: 10.1145/3188745.3188814 (cited on page 30).

192

https://doi.org/10.1007/978-3-642-38905-4_19
https://doi.org/10.1007/978-3-642-38905-4_19
https://doi.org/10.1109/DCC.2014.78
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1007/PL00009205
https://doi.org/10.1093/nar/gkab1053
https://doi.org/10.1137/1.9781611975482.82
https://doi.org/10.1145/3313276.3316368
https://doi.org/10.1145/3313276.3316368
https://doi.org/10.1145/3531445
https://doi.org/10.1137/1.9781611977554.CH187
https://doi.org/10.1137/1.9781611977554.CH187
https://doi.org/10.4230/LIPIcs.ESA.2017.53
https://doi.org/10.4230/LIPIcs.ESA.2017.53
https://doi.org/10.1145/3188745.3188814

Bibliography

[KS22] Dominik Kempa and Barna Saha. „An upper bound and linear-space
queries on the LZ-End parsing.“ In: Proceedings of the 33rd Annual
Symposium on Discrete Algorithms (SODA 2022). Alexandria, VA,
USA (Virtual Conference), 2022, pages 2847–2866. doi: 10.1137/1.
9781611977073.111 (cited on page 32).

[Kid+03] Takuya Kida, Tetsuya Matsumoto, Yusuke Shibata, Masayuki Takeda,
Ayumi Shinohara, and Setsuo Arikawa. „Collage system: A unifying
framework for compressed pattern matching.“ In: Theoretical Computer
Science 298.1 (2003), pages 253–272. doi: https://doi.org/10.1016/
S0304-3975(02)00426-7 (cited on page 121).

[KMP77] Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. „Fast
pattern matching in strings.“ In: SIAM Journal on Computing 6.2 (1977),
pages 323–350. doi: 10.1137/0206024 (cited on pages 1, 16).

[KNP20] Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza. „Towards a
definitive measure of repetitiveness.“ In: Proceedings of the 14th Latin
American Symposium on Theoretical Informatics (LATIN 2020). São
Paulo, Brazil, 2020, pages 207–219. doi: 10.1007/978-3-030-61792-
9_17 (cited on page 30).

[Koc+22] Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz
Walen. „A periodicity lemma for partial words.“ In: Information and
Computation 283 (2022), page 104677. doi: 10.1016/j.ic.2020.104677
(cited on page 128).

[KBK03] Roman M. Kolpakov, Ghizlane Bana, and Gregory Kucherov. „mreps:
Efficient and flexible detection of tandem repeats in DNA.“ In: Nucleic
Acids Research 31.13 (2003), pages 3672–3678. doi: 10.1093/NAR/
GKG617 (cited on page 128).

[KK99] Roman M. Kolpakov and Gregory Kucherov. „Finding maximal repeti-
tions in a word in linear time.“ In: Proceedings of the 40th Annual Sym-
posium on Foundations of Computer Science (FOCS 1999). New York,
NY, USA, 1999, pages 596–604. doi: 10.1109/SFFCS.1999.814634
(cited on pages 50, 129).

[Köp21] Dominik Köppl. „Non-overlapping LZ77 factorization and LZ78 substring
compression queries with suffix trees.“ In: Algorithms 14.2 (2021), page 44.
doi: 10.3390/a14020044 (cited on page 31).

[KNP22] Dominik Köppl, Gonzalo Navarro, and Nicola Prezza. „HOLZ: High-
order entropy encoding of Lempel-Ziv factor distances.“ In: Proceedings
of the 2022 Data Compression Conference (DCC 2022). Snowbird, UT,
USA, 2022, pages 83–92. doi: 10.1109/DCC52660.2022.00016 (cited
on page 31).

[KS16] Dominik Köppl and Kunihiko Sadakane. „Lempel-Ziv computation in
compressed space (LZ-CICS).“ In: Proceedings of the 2016 Data Com-
pression Conference (DCC 2016). Snowbird, UT, USA, 2016, pages 3–12.
doi: 10.1109/DCC.2016.38 (cited on page 31).

193

https://doi.org/10.1137/1.9781611977073.111
https://doi.org/10.1137/1.9781611977073.111
https://doi.org/https://doi.org/10.1016/S0304-3975(02)00426-7
https://doi.org/https://doi.org/10.1016/S0304-3975(02)00426-7
https://doi.org/10.1137/0206024
https://doi.org/10.1007/978-3-030-61792-9_17
https://doi.org/10.1007/978-3-030-61792-9_17
https://doi.org/10.1016/j.ic.2020.104677
https://doi.org/10.1093/NAR/GKG617
https://doi.org/10.1093/NAR/GKG617
https://doi.org/10.1109/SFFCS.1999.814634
https://doi.org/10.3390/a14020044
https://doi.org/10.1109/DCC52660.2022.00016
https://doi.org/10.1109/DCC.2016.38

Bibliography

[Kos94] S. Rao Kosaraju. „Computation of squares in a string (preliminary
version).“ In: Proceedings of the 5th Annual Symposium on Combinatorial
Pattern Matching (CPM 1994). Asilomar, CA, USA, 1994, pages 146–
150. doi: 10.1007/3-540-58094-8_13 (cited on page 129).

[Kos14] Dmitry Kosolobov. „Online square detection.“ In: CoRR abs/1411.2022
(2014). doi: 10.48550/arXiv.1411.2022. arXiv: 1411.2022 (cited on
page 129).

[Kos15a] Dmitry Kosolobov. „Faster lightweight Lempel-Ziv parsing.“ In: Proceed-
ings of the 40th International Symposium on Mathematical Foundations
of Computer Science (MFCS 2015). Milan, Italy, 2015, pages 432–444.
doi: 10.1007/978-3-662-48054-0_36 (cited on page 31).

[Kos15b] Dmitry Kosolobov. „Lempel-Ziv factorization may be harder than com-
puting all runs.“ In: Proceedings of the 32nd International Symposium
on Theoretical Aspects of Computer Science (STACS 2015). Garching,
Germany, 2015, pages 582–593. doi: 10.4230/LIPICS.STACS.2015.582
(cited on pages 17, 20, 35, 130).

[Kos15c] Dmitry Kosolobov. „Online detection of repetitions with backtracking.“
In: Proceedings of the 26th Annual Symposium on Combinatorial Pattern
Matching (CPM 2015). Ischia Island, Italy, 2015, pages 295–306. doi:
10.1007/978-3-319-19929-0_25 (cited on page 129).

[Kos16a] Dmitry Kosolobov. „Computing runs on a general alphabet.“ In: Infor-
mation Processing Letters 116.3 (2016), pages 241–244. doi: 10.1016/j.
ipl.2015.11.016 (cited on pages 5, 130).

[Kos16b] Dmitry Kosolobov. „Finding the leftmost critical factorization on
unordered alphabet.“ In: Theoretical Computer Science 636 (2016),
pages 56–65. doi: 10.1016/j.tcs.2016.04.037 (cited on page 17).

[Kos+20] Dmitry Kosolobov, Daniel Valenzuela, Gonzalo Navarro, and Simon J.
Puglisi. „Lempel-Ziv-like parsing in small space.“ In: Algorithmica 82.11
(2020), pages 3195–3215. doi: 10.1007/s00453-020-00722-6 (cited on
page 31).

[KN10] Sebastian Kreft and Gonzalo Navarro. „LZ77-like compression with
fast random access.“ In: Proceedings of the 2010 Data Compression
Conference (DCC 2010). Snowbird, UT, USA, 2010, pages 239–248. doi:
10.1109/DCC.2010.29 (cited on pages 32, 51).

[KN13] Sebastian Kreft and Gonzalo Navarro. „On compressing and indexing
repetitive sequences.“ In: Theoretical Computer Science 483 (2013),
pages 115–133. doi: 10.1016/j.tcs.2012.02.006 (cited on pages 31,
32, 51).

[Lar14] N. Jesper Larsson. „Most recent match queries in on-line suffix trees.“ In:
Proceedings of the 25th Annual Symposium on Combinatorial Pattern
Matching (CPM 2014). Moscow, Russia, 2014, pages 252–261. doi:
10.1007/978-3-319-07566-2_26 (cited on page 31).

[LZ76] Abraham Lempel and Jacob Ziv. „On the complexity of finite sequences.“
In: IEEE Transactions on Information Theory 22.1 (1976), pages 75–81.
doi: 10.1109/TIT.1976.1055501 (cited on pages 3, 17, 29, 30, 39, 40,
148).

194

https://doi.org/10.1007/3-540-58094-8_13
https://doi.org/10.48550/arXiv.1411.2022
https://arxiv.org/abs/1411.2022
https://doi.org/10.1007/978-3-662-48054-0_36
https://doi.org/10.4230/LIPICS.STACS.2015.582
https://doi.org/10.1007/978-3-319-19929-0_25
https://doi.org/10.1016/j.ipl.2015.11.016
https://doi.org/10.1016/j.ipl.2015.11.016
https://doi.org/10.1016/j.tcs.2016.04.037
https://doi.org/10.1007/s00453-020-00722-6
https://doi.org/10.1109/DCC.2010.29
https://doi.org/10.1016/j.tcs.2012.02.006
https://doi.org/10.1007/978-3-319-07566-2_26
https://doi.org/10.1109/TIT.1976.1055501

Bibliography

[Lev+07] Samuel Levy, Granger Sutton, Pauline C Ng, Lars Feuk, Aaron L
Halpern, Brian P Walenz, Nelson Axelrod, Jiaqi Huang, Ewen F Kirkness,
Gennady Denisov, Yuan Lin, Jeffrey R MacDonald, Andy Wing Chun
Pang, Mary Shago, Timothy B Stockwell, Alexia Tsiamouri, Vineet
Bafna, Vikas Bansal, Saul A Kravitz, Dana A Busam, et al. „The
diploid genome sequence of an individual human.“ In: PLoS Biology 5.10
(2007), pages 2113–2144. doi: 10.1371/journal.pbio.0050254 (cited
on page 29).

[LPR22] Shuo Li, Jakub Pachocki, and Jakub Radoszewski. „A note on the
maximum number of k-powers in a finite word.“ In: CoRR abs/2205.10156
(2022). doi: 10.48550/arXiv.2205.10156. arXiv: 2205.10156 (cited
on page 129).

[Lot83] M. Lothaire. Combinatorics on words. 1st edition. (2nd edition with
minor corrections in 1997). Cambridge University Press, 1983. isbn:
9780511566097. doi: 10.1017/CBO9780511566097 (cited on pages 67,
71, 106).

[Lou+19] Felipe A. Louza, Sabrina Mantaci, Giovanni Manzini, Marinella Sciortino,
and Guilherme P. Telles. „Inducing the Lyndon array.“ In: Proceedings of
the 26th International Symposium on String Processing and Information
Retrieval (SPIRE 2019). Segovia, Spain, 2019, pages 138–151. doi:
10.1007/978-3-030-32686-9_10 (cited on page 68).

[Lou+18] Felipe A. Louza, William F. Smyth, Giovanni Manzini, and Guilherme P.
Telles. „Lyndon array construction during Burrows-Wheeler inversion.“
In: Journal of Discrete Algorithms 50 (2018), pages 2–9. doi: 10.1016/
J.JDA.2018.08.001 (cited on pages 68, 89).

[Lyn54] Roger C. Lyndon. „On Burnside’s problem.“ In: Transactions of the
American Mathematical Society 77.2 (1954), pages 202–215. doi: 10.
2307/1990868 (cited on pages 16, 67, 69, 70).

[Mae85] Mamoru Maekawa. „A square root N algorithm for mutual exclusion
in decentralized systems.“ In: ACM Transactions on Computer Systems
3.2 (1985), pages 145–159. doi: 10.1145/214438.214445 (cited on
page 157).

[ML84] Michael G. Main and Richard J. Lorentz. „An O(n log n) algorithm
for finding all repetitions in a string.“ In: Journal of Algorithms 5.3
(1984), pages 422–432. doi: 10.1016/0196-6774(84)90021-X (cited on
pages 1, 5, 16, 129, 130, 148, 150, 173, 177).

[Man75] Glenn Manacher. „A new linear-time “on-line” algorithm for finding the
smallest initial palindrome of a string.“ In: Journal of the ACM 22.3
(1975), pages 346–351. doi: 10.1145/321892.321896 (cited on pages 16,
17, 86).

[MM93] Udi Manber and Eugene W. Myers. „Suffix arrays: A new method for
on-line string searches.“ In: SIAM Journal on Computing 22.5 (1993),
pages 935–948. doi: 10.1137/0222058 (cited on pages 1, 46, 53, 67, 68).

195

https://doi.org/10.1371/journal.pbio.0050254
https://doi.org/10.48550/arXiv.2205.10156
https://arxiv.org/abs/2205.10156
https://doi.org/10.1017/CBO9780511566097
https://doi.org/10.1007/978-3-030-32686-9_10
https://doi.org/10.1016/J.JDA.2018.08.001
https://doi.org/10.1016/J.JDA.2018.08.001
https://doi.org/10.2307/1990868
https://doi.org/10.2307/1990868
https://doi.org/10.1145/214438.214445
https://doi.org/10.1016/0196-6774(84)90021-X
https://doi.org/10.1145/321892.321896
https://doi.org/10.1137/0222058

Bibliography

[Man+13] Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella
Sciortino. „Sorting suffixes of a text via its Lyndon factorization.“ In: Pro-
ceedings of the 2013 Prague Stringology Conference (PSC 2013). Prague,
Czech Republic, 2013, pages 119–127. url: http://www.stringology.
org/event/2013/p11.html (cited on page 68).

[Mat+09] Wataru Matsubara, Kazuhiko Kusano, Hideo Bannai, and Ayumi Shi-
nohara. „A series of run-rich strings.“ In: Proceedings of the 3rd In-
ternational Conference on Language and Automata Theory and Ap-
plications (LATA 2009). Tarragona, Spain, 2009, pages 578–587. doi:
10.1007/978-3-642-00982-2_49 (cited on pages 129, 144).

[Mat+08] Wataru Matsubara, Kazuhiko Kusano, Akira Ishino, Hideo Bannai,
and Ayumi Shinohara. „New lower bounds for the maximum number
of runs in a string.“ In: Proceedings of the 2008 Prague Stringology
Conference (PSC 2008). Prague, Czech Republic, 2008, pages 140–145.
url: http://www.stringology.org/event/2008/p13.html (cited on
page 129).

[Mat+16] Yoshiaki Matsuoka, Takahiro Aoki, Shunsuke Inenaga, Hideo Bannai,
and Masayuki Takeda. „Generalized pattern matching and periodicity
under substring consistent equivalence relations.“ In: Theoretical Com-
puter Science 656.Part B (2016), pages 225–233. doi: 10.1016/j.tcs.
2016.02.017 (cited on page 128).

[MS19] Oleg Merkurev and Arseny M. Shur. „Searching runs in streams.“ In: Pro-
ceedings of the 26th International Symposium on String Processing and
Information Retrieval (SPIRE 2019). Segovia, Spain, 2019, pages 203–
220. doi: 10.1007/978-3-030-32686-9_15 (cited on page 129).

[MS22] Oleg Merkurev and Arseny M. Shur. „Computing the maximum exponent
in a stream.“ In: Algorithmica 84.3 (2022), pages 742–756. doi: 10.1007/
s00453-021-00883-y (cited on page 129).

[MST97] Masamichi Miyazaki, Ayumi Shinohara, and Masayuki Takeda. „An
improved pattern matching algorithm for strings in terms of straight-line
programs.“ In: Proceedings of the 8th Annual Symposium on Combinato-
rial Pattern Matching (CPM 1997). Aarhus, Denmark, 1997, pages 1–11.
doi: 10.1007/3-540-63220-4_45 (cited on page 121).

[Mor06] Christian Worm Mortensen. „Fully dynamic orthogonal range reporting
on RAM.“ In: SIAM Journal on Computing 35.6 (2006), pages 1494–1525.
doi: 10.1137/S0097539703436722 (cited on page 48).

[MNN20a] J. Ian Munro, Gonzalo Navarro, and Yakov Nekrich. „Fast compressed
self-indexes with deterministic linear-time construction.“ In: Algorithmica
82.2 (2020), pages 316–337. doi: 10.1007/S00453-019-00637-X (cited
on page 15).

[MNN20b] J. Ian Munro, Gonzalo Navarro, and Yakov Nekrich. „Text indexing and
searching in sublinear time.“ In: Proceedings of the 31st Annual Sym-
posium on Combinatorial Pattern Matching (CPM 2020). Copenhagen,
Denmark, 2020, 24:1–24:15. doi: 10.4230/LIPICS.CPM.2020.24 (cited
on page 15).

196

http://www.stringology.org/event/2013/p11.html
http://www.stringology.org/event/2013/p11.html
https://doi.org/10.1007/978-3-642-00982-2_49
http://www.stringology.org/event/2008/p13.html
https://doi.org/10.1016/j.tcs.2016.02.017
https://doi.org/10.1016/j.tcs.2016.02.017
https://doi.org/10.1007/978-3-030-32686-9_15
https://doi.org/10.1007/s00453-021-00883-y
https://doi.org/10.1007/s00453-021-00883-y
https://doi.org/10.1007/3-540-63220-4_45
https://doi.org/10.1137/S0097539703436722
https://doi.org/10.1007/S00453-019-00637-X
https://doi.org/10.4230/LIPICS.CPM.2020.24

Bibliography

[MNV16] J. Ian Munro, Yakov Nekrich, and Jeffrey Scott Vitter. „Fast construction
of wavelet trees.“ In: Theoretical Computer Science 638 (2016), pages 91–
97. doi: 10.1016/J.TCS.2015.11.011 (cited on pages 15, 111).

[MR01] J. Ian Munro and Venkatesh Raman. „Succinct representation of bal-
anced parentheses and static trees.“ In: SIAM Journal on Computing
31.3 (2001), pages 762–776. doi: 10.1137/s0097539799364092 (cited
on pages 59, 91, 111).

[Nak+17] Yuto Nakashima, Takuya Takagi, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda. „On reverse engineering the Lyndon tree.“ In: Pro-
ceedings of the 2017 Prague Stringology Conference (PSC 2017). Prague,
Czech Republic, 2017, pages 108–117. url: http://www.stringology.
org/event/2017/p11.html (cited on page 68).

[Nak+19] Yuto Nakashima, Takuya Takagi, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda. „On the size of the smallest alphabet for Lyndon
trees.“ In: Theoretical Computer Science 792 (2019), pages 131–143. doi:
10.1016/J.TCS.2018.06.044 (cited on page 68).

[Nao91] Moni Naor. „String matching with preprocessing of text and pattern.“
In: Proceedings of the 18th International Colloquium on Automata,
Languages, and Programming (ICALP 1991). Madrid, Spain, 1991,
pages 739–750. doi: 10.1007/3-540-54233-7_179 (cited on page 30).

[Nav16] Gonzalo Navarro. Compact data structures: A practical approach. Cam-
bridge University Press, 2016. isbn: 9781316588284. doi: 10.1017/
CBO9781316588284 (cited on page 59).

[NS14] Gonzalo Navarro and Kunihiko Sadakane. „Fully functional static and
dynamic succinct trees.“ In: ACM Transactions on Algorithms 10.3
(2014), pages 1–39. doi: 10.1145/2601073 (cited on pages 91, 92).

[Nek09] Yakov Nekrich. „Orthogonal range searching in linear and almost-linear
space.“ In: Computational Geometry 42.4 (2009), pages 342–351. doi:
10.1016/j.comgeo.2008.09.001 (cited on page 48).

[Nis+20] Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda. „Dynamic index and LZ factorization in compressed
space.“ In: Discrete Applied Mathematics 274 (2020), pages 116–129.
doi: 10.1016/j.dam.2019.01.014 (cited on page 31).

[NT22] Takaaki Nishimoto and Yasuo Tabei. „LZRR: LZ77 parsing with right
reference.“ In: Information and Computation 285.Part B (2022). doi:
10.1016/j.ic.2021.104859 (cited on page 31).

[OG11] Enno Ohlebusch and Simon Gog. „Lempel-Ziv factorization revisited.“ In:
Proceedings of the 22nd Annual Symposium on Combinatorial Pattern
Matching (CPM 2011). Palermo, Italy, 2011, pages 15–26. doi: 10.1007/
978-3-642-21458-5_4 (cited on page 31).

[OS08] Daisuke Okanohara and Kunihiko Sadakane. „An online algorithm for
finding the longest previous factors.“ In: Proceedings of the 16th Annual
European Symposium on Algorithms (ESA 2008). Karlsruhe, Germany,
2008, pages 696–707. doi: 10.1007/978-3-540-87744-8_58 (cited on
pages 30, 31).

197

https://doi.org/10.1016/J.TCS.2015.11.011
https://doi.org/10.1137/s0097539799364092
http://www.stringology.org/event/2017/p11.html
http://www.stringology.org/event/2017/p11.html
https://doi.org/10.1016/J.TCS.2018.06.044
https://doi.org/10.1007/3-540-54233-7_179
https://doi.org/10.1017/CBO9781316588284
https://doi.org/10.1017/CBO9781316588284
https://doi.org/10.1145/2601073
https://doi.org/10.1016/j.comgeo.2008.09.001
https://doi.org/10.1016/j.dam.2019.01.014
https://doi.org/10.1016/j.ic.2021.104859
https://doi.org/10.1007/978-3-642-21458-5_4
https://doi.org/10.1007/978-3-642-21458-5_4
https://doi.org/10.1007/978-3-540-87744-8_58

Bibliography

[OOB22] Jannik Olbrich, Enno Ohlebusch, and Thomas Büchler. „On the optimi-
sation of the GSACA suffix array construction algorithm.“ In: Proceedings
of the 29th International Symposium on String Processing and Informa-
tion Retrieval (SPIRE 2022). Concepción, Chile, 2022, pages 99–113.
doi: 10.1007/978-3-031-20643-6_8 (cited on pages 68, 109).

[Pat08] Mihai Patrascu. „Succincter.“ In: Proceedings of the 49th Annual Sympo-
sium on Foundations of Computer Science (FOCS 2008). Philadelphia,
PA, USA, 2008, pages 305–313. doi: 10.1109/FOCS.2008.83 (cited on
page 92).

[PT14] Mihai Patrascu and Mikkel Thorup. „Dynamic integer sets with optimal
rank, select, and predecessor search.“ In: Proceedings of the 55th Annual
Symposium on Foundations of Computer Science (FOCS 2014). Philadel-
phia, PA, USA, 2014, pages 166–175. doi: 10.1109/FOCS.2014.26 (cited
on pages 95, 96).

[PP15] Alberto Policriti and Nicola Prezza. „Fast online Lempel-Ziv factoriza-
tion in compressed space.“ In: Proceedings of the 22nd International
Symposium on String Processing and Information Retrieval (SPIRE
2015). London, UK, 2015, pages 13–20. doi: 10.1007/978- 3- 319-
23826-5_2 (cited on page 31).

[PSS08] Simon J. Puglisi, Jamie Simpson, and William F. Smyth. „How many
runs can a string contain?“ In: Theoretical Computer Science 401.1-3
(2008), pages 165–171. doi: 10.1016/j.tcs.2008.04.020 (cited on
page 129).

[Ras+13] Sofya Raskhodnikova, Dana Ron, Ronitt Rubinfeld, and Adam Smith.
„Sublinear algorithms for approximating string compressibility.“ In: Algo-
rithmica 65.3 (2013), pages 685–709. doi: 10.1007/s00453-012-9618-6
(cited on page 30).

[Ryt03] Wojciech Rytter. „Application of Lempel–Ziv factorization to the approx-
imation of grammar-based compression.“ In: Theoretical Computer Sci-
ence 302.1 (2003), pages 211–222. doi: 10.1016/S0304-3975(02)00777-
6 (cited on page 30).

[Ryt06] Wojciech Rytter. „The number of runs in a string: Improved analysis of
the linear upper bound.“ In: Proceedings of the 23rd Annual Symposium
on Theoretical Aspects of Computer Science (STACS 2006). Marseille,
France, 2006, pages 184–195. doi: 10.1007/11672142_14 (cited on
page 129).

[SN10] Kunihiko Sadakane and Gonzalo Navarro. „Fully-functional succinct
trees.“ In: Proceedings of the 21st Annual Symposium on Discrete Al-
gorithms (SODA 2010). Austin, TX, USA, 2010, pages 134–149. doi:
10.1137/1.9781611973075.13 (cited on page 91).

[SR03] Joe Sawada and Frank Ruskey. „Generating Lyndon brackets. An ad-
dendum to: Fast algorithms to generate necklaces, unlabeled necklaces
and irreducible polynomials over GF(2).“ In: Journal of Algorithms 46.1
(2003), pages 21–26. doi: 10.1016/S0196-6774(02)00286-9 (cited on
page 89).

198

https://doi.org/10.1007/978-3-031-20643-6_8
https://doi.org/10.1109/FOCS.2008.83
https://doi.org/10.1109/FOCS.2014.26
https://doi.org/10.1007/978-3-319-23826-5_2
https://doi.org/10.1007/978-3-319-23826-5_2
https://doi.org/10.1016/j.tcs.2008.04.020
https://doi.org/10.1007/s00453-012-9618-6
https://doi.org/10.1016/S0304-3975(02)00777-6
https://doi.org/10.1016/S0304-3975(02)00777-6
https://doi.org/10.1007/11672142_14
https://doi.org/10.1137/1.9781611973075.13
https://doi.org/10.1016/S0196-6774(02)00286-9

Bibliography

[SI22] Masaki Shigekuni and Tomohiro I. „Converting RLBWT to LZ77 in
smaller space.“ In: Proceedings of the 2022 Data Compression Conference
(DCC 2022). Snowbird, UT, USA, 2022, pages 242–251. doi: 10.1109/
DCC52660.2022.00032 (cited on page 31).

[Shi58] Anatoly Illarionovich Shirshov. „On free lie rings.“ In: Matematicheskii
Sbornik. Novaya Seriya 45(87).2 (1958), pages 113–122 (cited on pages 16,
67).

[Shi09] Anatoly Illarionovich Shirshov. „On free lie rings.“ In: Selected Works
of A.I. Shirshov. 1st edition. (Translated by M.R. Bremner and M.V.
Kochetov). Birkhäuser Basel, 2009, pages 77–87. isbn: 9783764388584.
doi: 10.1007/978-3-7643-8858-4_8 (cited on page 67).

[Shu18] Julian Shun. „Parallel Lempel-Ziv factorization.“ In: Shared-Memory
Parallelism Can Be Simple, Fast, and Scalable. Association for Com-
puting Machinery and Morgan & Claypool, 2018. Chapter 13. isbn:
9781970001914. doi: 10.1145/3018787.3018801 (cited on page 30).

[SZ13] Julian Shun and Fuyao Zhao. „Practical parallel Lempel-Ziv factoriza-
tion.“ In: Proceedings of the 2013 Data Compression Conference (DCC
2013). Snowbird, UT, USA, 2013, pages 123–132. doi: 10.1109/DCC.
2013.20 (cited on page 30).

[SG04] Arseny M. Shur and Yulia V. Gamzova. „Partial words and the in-
teraction property of periods.“ In: Izvestiya: Mathematics 68.2 (2004),
pages 405–428. doi: 10.1070/im2004v068n02abeh000480 (cited on
page 128).

[SK01] Arseny M. Shur and Yulia V. Konovalova. „On the periods of partial
words.“ In: Proceedings of the 26th International Symposium on Math-
ematical Foundations of Computer Science (MFCS 2001). Marianske
Lazne, Czech Republic, 2001, pages 657–665. doi: 10.1007/3-540-
44683-4_57 (cited on page 128).

[Sim10] Jamie Simpson. „Modified Padovan words and the maximum number of
runs in a word.“ In: Australasian Journal of Combinatorics 46 (2010),
pages 129–146. url: http://ajc.maths.uq.edu.au/pdf/46/ajc_v46_
p129.pdf (cited on page 129).

[Sta12] Tatiana Starikovskaya. „Computing Lempel-Ziv factorization online.“
In: Proceedings of the 37th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2012). Bratislava, Slovakia,
2012, pages 789–799. doi: 978-3-642-32589-2_68 (cited on page 31).

[SS82] James A. Storer and Thomas G. Szymanski. „Data compression via
textual substitution.“ In: Journal of the ACM 29.4 (1982), pages 928–951.
doi: 10.1145/322344.322346 (cited on pages 29, 30, 49, 148).

[Sug+21] Ryo Sugahara, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda. „Efficiently computing runs on a trie.“ In: Theoretical
Computer Science 887 (2021), pages 143–151. doi: 10.1016/j.tcs.
2021.07.011 (cited on pages 144, 177).

199

https://doi.org/10.1109/DCC52660.2022.00032
https://doi.org/10.1109/DCC52660.2022.00032
https://doi.org/10.1007/978-3-7643-8858-4_8
https://doi.org/10.1145/3018787.3018801
https://doi.org/10.1109/DCC.2013.20
https://doi.org/10.1109/DCC.2013.20
https://doi.org/10.1070/im2004v068n02abeh000480
https://doi.org/10.1007/3-540-44683-4_57
https://doi.org/10.1007/3-540-44683-4_57
http://ajc.maths.uq.edu.au/pdf/46/ajc_v46_p129.pdf
http://ajc.maths.uq.edu.au/pdf/46/ajc_v46_p129.pdf
https://doi.org/978-3-642-32589-2_68
https://doi.org/10.1145/322344.322346
https://doi.org/10.1016/j.tcs.2021.07.011
https://doi.org/10.1016/j.tcs.2021.07.011

Bibliography

[Sun+21] Xiuwen Sun, Di Wu, Da Mo, Jie Cui, and Hong Zhong. „Accelerating
Knuth-Morris-Pratt string matching over LZ77 compressed text.“ In:
Proceedings of the 2021 Data Compression Conference (DCC 2021).
Snowbird, UT, USA, 2021, page 372. doi: 10.1109/DCC50243.2021.
00070 (cited on page 31).

[Tak+17] Takuya Takagi, Shunsuke Inenaga, Kunihiko Sadakane, and Hiroki
Arimura. „Packed compact tries: A fast and efficient data structure for
online string processing.“ In: IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences 100-A.9 (2017),
pages 1785–1793. doi: 10.1587/TRANSFUN.E100.A.1785 (cited on
page 15).

[Thi20] Adrien Thierry. „A proof that a word of length n has less than 1.5n
distinct squares.“ In: CoRR abs/2001.02996 (2020). doi: 10.48550/
arXiv.2001.02996. arXiv: 2001.02996 (cited on page 128).

[Thu06] Axel Thue. „Über unendliche Zeichenreihen.“ In: Norske Vid. Selsk. Skr.,
I Mat.–Nat. Kl., Christiania 7 (1906), pages 1–22 (cited on pages 16,
128).

[TZ03] Rob Tijdeman and Luca Zamboni. „Fine and Wilf words for any periods.“
In: Indagationes Mathematicae 14.1 (2003), pages 135–147. doi: https:
//doi.org/10.1016/S0019-3577(03)90076-0 (cited on page 128).

[Tre12] Ronald J Trent. „Forensic science and medicine.“ In: Molecular Medicine.
4th edition. Elsevier, 2012. Chapter 9, pages 275–299. doi: 10.1016/
b978-0-12-381451-7.00009-8 (cited on page 128).

[Tsu+20] Kazuya Tsuruta, Dominik Köppl, Yuto Nakashima, Shunsuke Inenaga,
Hideo Bannai, and Masayuki Takeda. „Grammar-compressed self-index
with Lyndon words.“ In: CoRR abs/2004.05309 (2020). doi: 10.48550/
arXiv.2004.05309. arXiv: 2004.05309 (cited on page 68).

[Udo+20] Nwawuba Stanley Udogadi, Mohammed Khadija Abdullahi, Adams
Tajudeen Bukola, Omusi Precious Imose, and Ayevbuomwan Davidson
Esewi. „Forensic DNA profiling: Autosomal short tandem repeat as
a prominent marker in crime investigation.“ In: Malaysian Journal of
Medical Sciences 27.4 (2020), pages 22–35. doi: 10.21315/mjms2020.
27.4.3 (cited on page 128).

[Val16] Daniel Valenzuela. „CHICO: A compressed hybrid index for repetitive
collections.“ In: Proceedings of the 15th International Symposium on
Experimental Algorithms (SEA 2016). St. Petersburg, Russia, 2016,
pages 326–338. doi: 10.1007/978- 3- 319- 38851- 9_22 (cited on
page 31).

[Ven+01] J. Craig Venter, Mark D. Adams, Eugene W. Myers, Peter W. Li, Richard
J. Mural, Granger G. Sutton, Hamilton O. Smith, Mark Yandell, Cheryl
A. Evans, Robert A. Holt, Jeannine D. Gocayne, Peter Amanatides,
Richard M. Ballew, Daniel H. Huson, Jennifer Russo Wortman, Qing
Zhang, Chinnappa D. Kodira, Xiangqun H. Zheng, Lin Chen, Marian
Skupski, et al. „The sequence of the human genome.“ In: Science 291.5507
(2001), pages 1304–1351. doi: 10.1126/science.1058040 (cited on
page 29).

200

https://doi.org/10.1109/DCC50243.2021.00070
https://doi.org/10.1109/DCC50243.2021.00070
https://doi.org/10.1587/TRANSFUN.E100.A.1785
https://doi.org/10.48550/arXiv.2001.02996
https://doi.org/10.48550/arXiv.2001.02996
https://arxiv.org/abs/2001.02996
https://doi.org/https://doi.org/10.1016/S0019-3577(03)90076-0
https://doi.org/https://doi.org/10.1016/S0019-3577(03)90076-0
https://doi.org/10.1016/b978-0-12-381451-7.00009-8
https://doi.org/10.1016/b978-0-12-381451-7.00009-8
https://doi.org/10.48550/arXiv.2004.05309
https://doi.org/10.48550/arXiv.2004.05309
https://arxiv.org/abs/2004.05309
https://doi.org/10.21315/mjms2020.27.4.3
https://doi.org/10.21315/mjms2020.27.4.3
https://doi.org/10.1007/978-3-319-38851-9_22
https://doi.org/10.1126/science.1058040

Bibliography

[Vui80] Jean Vuillemin. „A unifying look at data structures.“ In: Communications
of the ACM 23.4 (1980), pages 229–239. doi: 10.1145/358841.358852
(cited on pages 67, 171).

[Weba] Website. 100000 Genomes Project. Accessed: 24 Nov 2023. url: https:
/ / www . genomicsengland . co . uk / initiatives / 100000 - genomes -
project (cited on page 29).

[Webb] Website. Faster diagnosis from ’transformational’ gene project. Accessed:
24 Nov 2023. url: https://www.bbc.com/news/health-46456984
(cited on page 29).

[Webc] Website. Frequently asked questions on CODIS and NDIS. Accessed: 24
Nov 2023. url: https://www.fbi.gov/how-we-can-help-you/dna-
fingerprint-act-of-2005-expungement-policy/codis-and-ndis-
fact-sheet (cited on page 128).

[Webd] Website. GNU Gzip. Accessed: 28 Dec 2023. url: https://www.gnu.
org/software/gzip/ (cited on page 51).

[Webe] Website. The sequence read archive. Accessed: 24 Nov 2023. url: https:
//www.ncbi.nlm.nih.gov/sra (cited on page 29).

[Webf] Website. The ternary Thue-Morse sequence in the on-line encyclopedia
of integer sequences (OEIS). Accessed: 08 Jan 2024. url: https://oeis.
org/A036577 (cited on page 153).

[Wei73] Peter Weiner. „Linear pattern matching algorithms.“ In: Proceedings of
the 14th Annual Symposium on Switching and Automata Theory (SWAT
1973). Iowa City, IA, USA, 1973, pages 1–11. doi: 10.1109/SWAT.1973.
13 (cited on page 53).

[Wu21] Cody Yingquan Wu. „Improved LZ77 compression.“ In: Proceedings of
the 2021 Data Compression Conference (DCC 2021). Snowbird, UT,
USA, 2021, page 377. doi: 10.1109/DCC50243.2021.00066 (cited on
page 31).

[WBM20] Nicole Wyner, Mark Barash, and Dennis McNevin. „Forensic autosomal
short tandem repeats and their potential association with phenotype.“
In: Frontiers in Genetics 11 (2020). doi: 10.3389/fgene.2020.00884
(cited on page 128).

[Yam+14] Jun’ichi Yamamoto, Tomohiro I, Hideo Bannai, Shunsuke Inenaga, and
Masayuki Takeda. „Faster compact on-line Lempel-Ziv factorization.“ In:
Proceedings of the 31st International Symposium on Theoretical Aspects
of Computer Science (STACS 2014). Lyon, France, 2014, pages 675–686.
doi: 10.4230/LIPIcs.STACS.2014.675 (cited on page 31).

[ZL77] Jacob Ziv and Abraham Lempel. „A universal algorithm for sequential
data compression.“ In: IEEE Transactions on Information Theory 23.3
(1977), pages 337–343. doi: 10.1109/TIT.1977.1055714 (cited on
page 30).

[ZL78] Jacob Ziv and Abraham Lempel. „Compression of individual sequences
via variable-rate coding.“ In: IEEE Transactions on Information Theory
24.5 (1978), pages 530–536. doi: 10.1109/TIT.1978.1055934 (cited on
page 31).

201

https://doi.org/10.1145/358841.358852
https://www.genomicsengland.co.uk/initiatives/100000-genomes-project
https://www.genomicsengland.co.uk/initiatives/100000-genomes-project
https://www.genomicsengland.co.uk/initiatives/100000-genomes-project
https://www.bbc.com/news/health-46456984
https://www.fbi.gov/how-we-can-help-you/dna-fingerprint-act-of-2005-expungement-policy/codis-and-ndis-fact-sheet
https://www.fbi.gov/how-we-can-help-you/dna-fingerprint-act-of-2005-expungement-policy/codis-and-ndis-fact-sheet
https://www.fbi.gov/how-we-can-help-you/dna-fingerprint-act-of-2005-expungement-policy/codis-and-ndis-fact-sheet
https://www.gnu.org/software/gzip/
https://www.gnu.org/software/gzip/
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://oeis.org/A036577
https://oeis.org/A036577
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/DCC50243.2021.00066
https://doi.org/10.3389/fgene.2020.00884
https://doi.org/10.4230/LIPIcs.STACS.2014.675
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1978.1055934

	Introduction
	Main Results and Overview of the Dissertation
	Corresponding Publications and Contributions of the Author

	Strings and Alphabets
	Basic Definitions and Notation
	Strings on a Word RAM
	Integer Alphabets
	General Alphabets
	Alphabet Reduction by Sorting

	Lower Bounds for Basic Problems Over General Alphabets
	Adversary Method for Lower Bounds
	Lower Bounds for General Ordered Alphabet
	Lower Bounds for General Unordered Alphabet

	Lempel-Ziv Compression
	 Introduction and Related Work
	Lower Bounds for LZ Over General Alphabets
	Reducing Alphabet Set Testing to Lempel-Ziv
	Lower Bounds for Large Alphabets

	Sublinear Time Lempel-Ziv Factorization of Packed Strings
	Auxiliary Lemmas
	Algorithm for 3-Approximate LZ-like Factorization
	Computing Longest Previous Factors of Sample Positions
	Computing a Gapped Factorization

	Algorithm for Exact LZ Factorization
	Computing the Exact LZ Factorization
	Computing the Non-Overlapping LZ Factorization

	Conclusion

	New Advances in Rightmost Lempel-Ziv
	Preliminaries
	Computing Rightmost LZ-End Parsings
	Rightmost Greedy LZ-End Parsing
	Rightmost (Arbitrary) LZ-End Parsing

	Partially Solving Rightmost LZ-Like Parsings
	Long Phrases
	Arbitrary Subsets of Phrases
	Infrequent Phrases
	Close Phrases

	Conclusion

	Computing the Lyndon Array
	 Introduction and Related Work
	The Lyndon Array and Nearest Smaller Suffixes
	Lyndon Words and the Lyndon Array
	Nearest Smaller Suffixes

	A Simple Linear Time Algorithm for the Lyndon Array (Over General Ordered Alphabet)
	Properties of Nearest Smaller Suffixes
	A Simple Algorithm for Nearest Smaller Suffixes
	Achieving Linear Time

	Similarity to Manacher's Algorithm for Palindromes
	Conclusion and Practical Implementation

	Computing the Succinct Lyndon Array in Small Working Space (Over General Ordered Alphabet)
	Storing the Lyndon Array as a Balanced Parentheses Sequence
	Maintaining Operations on a BPS Prefix
	Static Data Structures
	Dynamic Data Structures

	Constructing the PSS Tree
	Efficiently Computing the Previous Smaller Suffix
	Achieving Linear Time

	Adaptation to the (Non-Succinct) Lyndon Array
	Experimental Results
	Conclusion

	Computing the Succinct Lyndon Array in Sublinear Time (For a String Packed Over Integer Alphabet)
	A Blockwise Algorithm for the PSS Tree
	Detailed Description of the Blockwise Algorithm
	Analyzing the Time and Space Complexity

	Proving the First Technical Lemma
	Proving the Second Technical Lemma
	Conclusion

	Computing Maximal Periodic Substrings
	 Introduction and Related Work
	Computing Runs Over General Ordered Alphabet
	Algorithmic Toolbox
	Lyndon Array and Nearest Smaller Suffixes
	Relation Between Runs and Lyndon Words
	Longest Common Extensions

	The Runs Algorithm Revisited
	Algorithm for Computing the LCEs
	Computing the R-LCEs
	Computing the L-LCEs

	Practical Implementation
	Conclusion

	Computing Runs Over General Unordered Alphabet
	Preliminaries
	Lower Bound for Testing Square-Freeness
	Testing Square-Freeness in O(n log sigma) Comparisons
	Sparse Suffix Trees and Difference Covers
	Detecting Squares with a Delta-Approximate LZ Factorization
	Simple Algorithm for Detecting Squares
	Improved Algorithm for Detecting Squares

	Testing Square-Freeness in O(n log sigma) Time
	Constructing the Delta-Approximate LZ Factorization
	Final Improvement

	Computing Runs
	Copying Runs From Previous Occurrences
	Final Improvement for Computing Runs

	Conclusion

	Bibliography

